TW202205670A - 包含具氧單層及碳單層之超晶格之半導體元件及相關方法 - Google Patents

包含具氧單層及碳單層之超晶格之半導體元件及相關方法 Download PDF

Info

Publication number
TW202205670A
TW202205670A TW110124251A TW110124251A TW202205670A TW 202205670 A TW202205670 A TW 202205670A TW 110124251 A TW110124251 A TW 110124251A TW 110124251 A TW110124251 A TW 110124251A TW 202205670 A TW202205670 A TW 202205670A
Authority
TW
Taiwan
Prior art keywords
superlattice
semiconductor
layer
region
carbon
Prior art date
Application number
TW110124251A
Other languages
English (en)
Other versions
TWI765765B (zh
Inventor
基思多蘭 威克斯
馬瑞克 海達
奈爾思溫 柯蒂
羅勃J 米爾斯
羅勃約翰 史蒂芬生
竹內秀樹
Original Assignee
美商安托梅拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商安托梅拉公司 filed Critical 美商安托梅拉公司
Publication of TW202205670A publication Critical patent/TW202205670A/zh
Application granted granted Critical
Publication of TWI765765B publication Critical patent/TWI765765B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7849Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being provided under the channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一種半導體元件,其可包括一半導體層及相鄰於該半導體層之一超晶格。該超晶格可包含堆疊之層群組,各層群組包含堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。該超晶格之第一層群組中的至少一非半導體單層可包含氧且沒有碳,以及該超晶格之第二層群組中的至少一非半導體單層可包含碳。

Description

包含具氧單層及碳單層之超晶格之半導體元件及相關方法
本發明一般而言與半導體元件有關,詳細而言,本發明涉及含先進半導體材料之半導體元件及相關方法。
利用諸如增強電荷載子之遷移率(mobility)增進半導體元件效能之相關結構及技術,已多有人提出。例如,Currie等人之美國專利申請案第2003/0057416號揭示了矽、矽-鍺及鬆弛矽之應變材料層,其亦包含原本會在其他方面導致效能劣退的無雜質區(impurity-free zones)。此等應變材料層在上部矽層中所造成的雙軸向應變(biaxial strain)會改變載子的遷移率,從而得以製作較高速與/或較低功率的元件。Fitzgerald等人的美國專利申請公告案第2003/0034529號則揭示了同樣以類似的應變矽技術為基礎的CMOS反向器。
授予Takagi的美國專利第6,472,685 B2號揭示了一半導體元件,其包含夾在矽層間的一層矽與碳層,以使其第二矽層的導帶及價帶承受拉伸應變(tensile strain)。這樣,具有較小有效質量(effective mass)且已由施加於閘極上的電場所誘發的電子,便會被侷限在其第二矽層內,因此,即可認定其N型通道MOSFET具有較高的遷移率。
授予Ishibashi等人的美國專利第4,937,204號揭示了一超晶格,其中包含一複數層,該複數層少於八個單層(monolayer)且含有一部份(fractional)或雙元(binary)半導體層或一雙元化合物半導體層,該複數層係交替地以磊晶成長方式生長而成。其中的主電流方向係垂直於該超晶格之各層。
授予Wang等人的美國專利第5,357,119號揭示了一矽-鍺短週期超晶格,其經由減少超晶格中的合金散射(alloy scattering)而達成較高遷移率。依據類似的原理,授予Candelaria的美國專利第5,683,934號揭示了具較佳遷移率之MOSFET,其包含一通道層,該通道層包括矽與一第二材料之一合金,該第二材料以使該通道層處於拉伸應力下的百分比替代性地存在於矽晶格中。
授予Tsu的美國專利第5,216,262號揭示了一量子井結構,其包括兩個阻障區(barrier region)及夾於其間的一磊晶生長半導體薄層。每一阻障區各係由厚度範圍大致在二至六個交替之SiO2/Si單層所構成。阻障區間則另夾有厚得多之一矽區段。
在2000年9月6日線上出版的應用物理及材料科學及製程(Applied Physics and Materials Science & Processing) pp. 391 – 402中,Tsu於一篇題為「矽質奈米結構元件中之現象」(Phenomena in silicon nanostructure devices)的文章中揭示了矽及氧之半導體-原子超晶格(semiconductor-atomic superlattice, SAS)。此矽/氧超晶格結構被揭露為對矽量子及發光元件有用。其中特別揭示如何製作並測試一綠色電輝光二極體(electroluminescence diode)結構。該二極體結構中的電流流動方向是垂直的,亦即,垂直於SAS之層。該文所揭示的SAS可包含由諸如氧原子等被吸附物種(adsorbed species) 及CO分子所分開的半導體層。在被吸附之氧單層以外所生長的矽,被描述為具有相當低缺陷密度之磊晶層。其中的一種SAS結構包含1.1 nm厚之一矽質部份,其約為八個原子層的矽,而另一結構的矽質部份厚度則有此厚度的兩倍。在物理評論通訊(Physics Review Letters),Vol. 89, No. 7 (2002年8月12日)中,Luo等人所發表的一篇題為「直接間隙發光矽之化學設計」(Chemical Design of Direct-Gap Light-Emitting Silicon)的文章,更進一步地討論了Tsu的發光SAS結構。
授予Wang等人之美國專利第7,105,895號揭示了薄的矽與氧、碳、氮、磷、銻、砷或氫的一阻障建構區塊,其可以將垂直流經晶格的電流減小超過四個十之次方冪次尺度(four orders of magnitude)。其絕緣層/阻障層容許低缺陷磊晶矽挨著絕緣層而沉積。
已公開之Mears等人的英國專利申請案第2,347,520號揭示,非週期性光子能帶間隙 (aperiodic photonic band-gap, APBG)結構可應用於電子能帶間隙工程(electronic bandgap engineering)中。詳細而言,該申請案揭示,材料參數(material parameters),例如能帶最小值的位置、有效質量等等,皆可加以調節,以獲致具有所要能帶結構特性之新非週期性材料。其他參數,諸如導電性、熱傳導性及介電係數(dielectric permittivity)或導磁係數(magnetic permeability),則被揭露亦有可能被設計於材料之中。
除此之外,授予Wang等人的美國專利第6,376,337號揭示一種用於製作半導體元件絕緣或阻障層之方法,其包括在矽底材上沉積一層矽及至少一另外元素,使該沉積層實質上沒有缺陷,如此實質上無缺陷的磊晶矽便能沉積於該沉積層上。作為替代方案,一或多個元素構成之一單層,較佳者為包括氧元素,在矽底材上被吸收。夾在磊晶矽之間的複數絕緣層,形成阻障複合體。
儘管已有上述方法存在,但為了實現半導體元件效能的改進,進一步強化先進半導體材料及處理技術的使用,是吾人所期望的。
一種半導體元件,其可包括一半導體層,以及相鄰於該半導體層之一超晶格。該超晶格可包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。該超晶格之第一層群組中的至少一非半導體單層可包含氧且沒有碳,以及該超晶格之第二層群組中的至少一非半導體單層可包含碳。
在一示例實施例中,該第二層群組在該超晶格中可位於該第一層群組上方。在一示例性實施方式中,該半導體層可包含該超晶格下方之一底材,且該半導體層可更包括在該超晶格上方之一應變半導體層。作為示例,該超晶格之第二層群組可包含碳且沒有氧。根據另一示例,該超晶格之第二層群組可包含碳及氧。
在一示例性組構中,該半導體元件可更包括位於該半導體層上面且在該超晶格中界定出一通道之源極區和汲極區,以及該超晶格上方之一閘極。根據另一示例實施例,該半導體元件可更包括該超晶格上方之一金屬層。此外,在某些實施例中,該超晶格可將該半導體層劃分為第一區和第二區,該第一區具有相同於該第二區之導電類型,該第一區具有不同於該第二區之摻雜物濃度。根據另一示例性實施方式,該超晶格可將該半導體層劃分為第一區和第二區,該第一區具有不同於該第二區之導電類型。作為示例,該基底半導體層可包含矽。
另一面向涉及一種用於製作半導體元件之方法,該方法可包括形成相鄰於該半導體層之一超晶格。該超晶格可包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層。該超晶格之第一層群組中的至少一非半導體單層可包含氧且沒有碳,以及該超晶格之第二層群組中的至少一非半導體單層可包含碳。
在一示例實施例中,該第二層群組在該超晶格中可位於該第一層群組上方。在一示例性實施方式中,該半導體層可包含該超晶格下方之一底材,且該方法可更包括在該超晶格上方形成一應變半導體層。作為示例,該超晶格之第二層群組可包含碳且沒有氧。根據另一示例,該超晶格之第二層群組可包含碳及氧。
在一示例性組構中,該方法可更包括形成位於該半導體層上面且在該超晶格中界定出一通道之源極區和汲極區,以及該超晶格上方之一閘極。根據另一示例實施例,該方法可更包括在該超晶格上方形成一金屬層。此外,在某些實施例中,該超晶格可將該半導體層劃分為第一區和第二區,該第一區具有相同於該第二區之導電類型,該第一區具有不同於該第二區之摻雜物濃度。根據另一示例性實施方式,該超晶格可將該半導體層劃分為第一區和第二區,該第一區具有不同於該第二區之導電類型。作為示例,該基底半導體層可包含矽。
茲參考說明書所附圖式詳細說明示例性實施例,圖式中所示者為示例性實施例。不過,實施例可以許多不同形式實施,且不應解釋為僅限於本說明書所提供之特定示例。相反的,這些實施例之提供,僅是為了使本發明所揭示之發明內容更為完整詳盡。在本說明書及圖式各處,相同圖式符號係指相同元件,而撇號(‘)則用以標示不同實施方式中之類似元件。
整體而言,本發明涉及應用強化半導體超晶格形成半導體元件。在本發明中,該強化之半導體超晶格亦可稱為「MST層/薄膜」或「MST技術」。
詳言之,MST技術涉及進階的半導體材料,例如下文將進一步說明之超晶格25。申請人之理論認為(但申請人並不欲受此理論所束縛),本說明書所述之超晶格結構可減少電荷載子之有效質量,並由此而帶來較高之電荷載子遷移率。有效質量之各種定義在本發明所屬技術領域之文獻中已有說明。為衡量有效質量之改善程度,申請人分別為電子及電洞使用了「導電性反有效質量張量」(conductivity reciprocal effective mass tensor)
Figure 02_image001
Figure 02_image003
Figure 02_image005
為電子之定義,且:
Figure 02_image007
為電洞之定義,其中f為費米-狄拉克分佈(Fermi-Dirac distribution),EF為費米能量(Fermi energy),T為溫度,E(k,n)為電子在對應於波向量k及第n個能帶狀態中的能量,下標i及j係指直交座標x,y及z,積分係在布里羅因區(Brillouin zone,B.Z.)內進行,而加總則是在電子及電洞的能帶分別高於及低於費米能量之能帶中進行。
申請人對導電性反有效質量張量之定義為,一材料之導電性反有效質量張量之對應分量之值較大者,其導電性之張量分量 (tensorial component)亦較大。申請人再度提出理論(但並不欲受此理論所束縛)認為,本說明書所述之超晶格可設定導電性反有效質量張量之值,以增進材料之導電性,例如電荷載子傳輸之典型較佳方向。適當張量項數之倒數,在此稱為導電性有效質量(conductivity effective mass)。換句話說,若要描述半導體材料結構的特性,如上文所述,在載子預定傳輸方向上計算出電子/電洞之導電性有效質量,便可用於分辨出較佳之材料。
申請人已辨識出可用於半導體元件之改進材料或結構。更具體而言,申請人所辨識出之材料或結構所具有之能帶結構,其電子及/或電洞之適當導電性有效質量之值,實質上小於對應於矽之值。這些結構除了有較佳遷移率之特點外,其形成或使用之方式,亦使其得以提供有利於各種不同元件類型應用之壓電、焦電及/或鐵電特性,下文將進一步討論之。
參考圖1及圖2,所述材料或結構是超晶格25的形式,其結構在原子或分子等級上受到控制,且可應用原子或分子層沉積之已知技術加以形成。超晶格25包含複數個堆疊排列之層群組45a~45n,如圖1之概要剖視圖所示。
如圖所示,超晶格25之每一層群組45a~45n包含複數個堆疊之基底半導體單層46,其界定出各別之基底半導體部份46a~46n與其上之一能帶修改層50。為清楚呈現起見,該能帶修改層50於圖1中以雜點表示。
如圖所示,該能帶修改層50包含一非半導體單層,其係被拘束在相鄰之基底半導體部份之一晶格內。「被拘束在相鄰之基底半導體部份之一晶格內」一語,係指來自相對之基底半導體部份46a~46n之至少一些半導體原子,透過該些相對基底半導體部份間之非半導體單層50,以化學方式鍵結在一起,如圖2所示。一般而言,此一組構可經由控制以原子層沉積技術沉積在半導體部份46a~46n上面之非半導體材料之量而成為可能,這樣,可用之半導體鍵結位置便不會全部(亦即非完全或低於100%之涵蓋範圍)被連結至非半導體原子之鍵結佔滿,下文將進一步討論之。因此,當更多半導體材料單層46被沉積在一非半導體單層50上面或上方時,新沉積之半導體原子便可填入該非半導體單層下方其餘未被佔用之半導體原子鍵結位置。
在其他實施方式中,使用超過一個此種非半導體單層是可能的。應注意的是,本說明書提及非半導體單層或半導體單層時,係指該單層所用材料若以塊狀形成,會是非半導體或半導體。亦即,一種材料(例如矽)之單一單層所顯現之特性,並不必然與形成塊狀或相對較厚層時所顯現之特性相同,熟習本發明所屬技術領域者當可理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),能帶修改層50與相鄰之基底半導體部份46a~46n,可使超晶格25在平行層之方向上,具有較原本為低之電荷載子適當導電性有效質量。換一種方向思考,此平行方向即正交於堆疊方向。該能帶修改層50亦可使超晶格25具有一般之能帶結構,同時有利地發揮作為該超晶格垂直上下方之多個層或區域間之絕緣體之作用。
再者,此超晶格結構亦可有利地作為超晶格25垂直上下方多個層之間之摻雜物及/或材料擴散之阻擋。因此,這些特性可有利地允許超晶格25為高K值介電質提供一界面,其不僅可減少高K值材料擴散進入通道區,還可有利地減少不需要之散射效應,並改進裝置行動性,熟習本發明所屬技術領域者當可理解。
本發明之理論亦認為,包含超晶格25之半導體元件可因為較原本為低之導電性有效質量,而享有較高之電荷載子遷移率。在某些實施方式中,因為本發明而實現之能帶工程,超晶格25可進一步具有對諸如光電元件等尤其有利之實質上之直接能帶間隙。
如圖所示,超晶格25亦可在一上部層群組45n上方包含一頂蓋層52。該頂蓋層52可包含複數個基底半導體單層46。作爲示例,該頂蓋層52可包含基底半導體的1及100個之間的單層46,較佳者為10至50個之間的單層。但在某些應用中,頂蓋層52可省略,或者可以使用大於100個單層的厚度。
每一基底半導體部份46a~46n可包含由 IV 族半導體、 III-V 族半導體及 II-VI 族半導體所組成之群組中選定之一基底半導體。當然, IV 族半導體亦包含 IV-IV 族半導體,熟習本發明所屬技術領域者當可理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
每一能帶修改層50可包含由,舉例而言,氧、氮、氟、碳及碳-氧所組成之群組中選定之一非半導體。該非半導體亦最好具有在沈積下一層期間保持熱穩定之特性,以從而有利於製作。在其他實施方式中,該非半導體可為相容於給定半導體製程之另一種無機或有機元素或化合物,熟習本發明所屬技術領域者當能理解。更詳細而言,該基底半導體可包含,舉例而言,矽及鍺當中至少一者。
應注意的是,「單層(monolayer)」一詞在此係指包含一單一原子層,亦指包含一單一分子層。亦應注意的是,經由單一單層所提供之能帶修改層50,亦應包含層中所有可能位置未完全被佔據之單層(亦即非完全或低於100%之涵蓋範圍)。舉例來說,參照圖2之原子圖,其呈現以矽作為基底半導體材料並以氧作為能帶修改材料之一4/1重複結構。氧原子之可能位置僅有一半被佔據。
在其他實施方式及/或使用不同材料的情況中,則不必然是二分之一的佔據情形,熟習本發明所屬技術領域者當能理解。事實上,熟習原子沈積技術領域者當能理解,即便在此示意圖中亦可看出,在一給定單層中,個別的氧原子並非精確地沿著一平坦平面排列。舉例來說,較佳之佔據範圍是氧的可能位置有八分之一至二分之一被填滿,但在特定實施方式中其他佔據範圍亦可使用。
由於矽及氧目前廣泛應用於一般半導體製程中,故製造商將能夠立即應用本說明書所述之材質。原子沉積或單層沉積亦是目前廣泛使用之技術。因此,依照本發明之結合超晶格25之半導體元件,可立即加以採用並實施,熟習本發明所屬技術領域者當能理解。
申請人之理論認為(但申請人並不欲受此理論所束縛),對一超晶格而言,例如所述矽/氧超晶格,矽單層之數目理想應為七層或更少,以使該超晶格之能帶在各處皆為共同或相對均勻,以實現所欲之優點。圖1及圖2所示之矽/氧 4/1重複結構,已經過模型化以表示電子及電洞在X方向上之較佳遷移率。舉例而言,電子(就塊狀矽而言具等向性)之計算後導電性有效質量為0.26,而X方向上的4/1 矽/氧超晶格之計算後導電性有效質量則為0.12,兩者之比為0.46。同樣的,在電洞之計算結果方面,塊狀矽之值為0.36,該4/1 矽/氧超晶格之值則為0.16,兩者之比為0.44。
雖然此種方向上優先(directionally preferential)之特點可有利於某些半導體元件,其他半導體元件亦可得益於遷移率在平行於層群組之任何方向上更均勻之增加。電子及電洞兩者之遷移率同時增加,或僅其中一種電荷載子遷移率之增加,亦皆可有其好處,熟習本發明所屬技術領域者當可理解。
超晶格25之4/1 矽/氧實施方式之較低導電性有效質量,可不到非超晶格25者之導電性有效質量之三分之二,且此情形就電子及電洞而言皆然。當然,超晶格25可更包括至少一種類型之導電性摻雜物在其中,熟習本發明所屬技術領域者當能理解。
茲另參考圖3說明依照本發明之具有不同特性之超晶格25’之另一實施方式。在此實施方式中,其重複模式為3/1/5/1。更詳細而言,最底下的基底半導體部份46a’有三個單層,第二底下的基底半導體部份46b’則有五個單層。此模式在整個超晶格25’重複。每一能帶修改層50’可包含一單一單層。就包含矽/氧之此種超晶格25’ 而言,其電荷載子遷移率之增進,係獨立於該些層之平面之定向。圖3中其他元件在此未提及者,係與前文參考圖1所討論者類似,故不再重複討論。
在某些元件實施方式中,其超晶格之每一基底半導體部份可為相同數目之單層之厚度。在其他實施方式中,其超晶格之至少某些基底半導體部份可為相異數目之單層之厚度。在另外的實施方式中,其超晶格之每一基底半導體部份可為相異數目之單層之厚度。
圖4A-4C呈現使用密度功能理論(Density Functional Theory, DFT)計算出之能帶結構。在本發明所屬技術領域中廣為習知的是,DFT通常會低估能帶間隙之絕對值。因此,間隙以上的所有能帶可利用適當之「剪刀形更正」(scissors correction)加以偏移。不過,能帶的形狀則是公認遠較為可靠。縱軸之能量應從此一角度解釋之。
圖4A呈現塊狀矽 (以實線表示)及圖1之4/1 矽/氧超晶格25 (以虛線表示)兩者由迦碼點(G)計算出之能帶結構。圖中該些方向係指該4/1 矽/氧結構之單位晶格(unit cell)而非指矽之一般單位晶格,雖然圖中之方向(001)確實對應於一般矽單位晶格之方向(001),並因此而顯示出矽導帶最小值之預期位置。圖中方向(100)及方向(010)係對應於一般矽單位晶格之方向(110)及方向(-110)。熟習本發明所屬技術領域者當可理解,圖中之矽能帶係被摺疊收攏,以便在該4/1 矽/氧結構之適當反晶格方向(reciprocal lattice directions)上表示。
由圖中可見,與塊狀矽相較,該4/1 矽/氧結構之導帶最小值係位於G點,而其價帶最小值則出現在方向(001)上布里羅因區之邊緣,吾人稱為Z點之處。吾人亦可注意到,與矽之導帶最小值曲率比較下,該4/1 矽/氧結構之導帶最小值之曲率較大,此係因額外氧層引入之微擾(perturbation)造成能帶分裂(band splitting)之故。
圖4B呈現塊狀矽(實線)及該4/1 矽/氧超晶格25 (虛線)兩者由Z點計算出之能帶結構。此圖描繪出價帶在方向(100)上之增加曲率。
圖4C呈現塊狀矽(實線)及圖3之5/1/3/1 矽/氧超晶格25’ (虛線)兩者由迦碼點及Z點計算出之能帶結構之曲線圖。由於該5/1/3/1 矽/氧結構之對稱性,在 方向(100)及方向(010)上計算出之能帶結構是相當的。因此,在平行於各層之平面中,亦即垂直於堆疊方向(001)上,導電性有效質量及遷移率可預期為等向性。請注意,在該5/1/3/1 矽/氧之實施例中,導帶最小值及價帶最大值兩者皆位於或接近Z點。
雖然曲率增加是有效質量減少的一個指標,但適當的比較及判別可經由導電性反有效質量張量之計算而進行。此使得本案申請人進一步推論,該5/1/3/1超晶格25’實質上應為直接能帶間隙。熟習本發明所屬技術領域者當可理解,光躍遷(optical transition)之適當矩陣元素(matrix element)是區別直接及間接能帶間隙行為之另一指標。
茲參考圖5,使用前述技術,可以內部包含不同類型非半導體材料(例如氧及碳/碳氧)的MST層製作先進半導體元件。在此示例中,半導體元件120概要地包含半導體層121(例如底材)及相鄰於該半導體層之超晶格125。如前所述,超晶格125包含複數個堆疊之層群組145a-145b,各層群組包含複數個堆疊之基底半導體(例如矽)單層146,其界定出一基底半導體部份146a-146b,以及被拘束在相鄰的基底半導體部份之一晶格內之與各層群組相應的非半導體單層150a、150b。
詳細而言,第一層群組145a中的非半導體單層150a包含氧且沒有碳,以及第二層群組145b中的非半導體單層150b包含碳,例如全碳(fully carbon)單層或碳氧(carbon-oxygen)單層。如下文所要進一步討論,包含碳可有利地為超晶格內的氧提供更高的安定性(在熱處理期間的遷移方面),但碳的設置必須遠離重要界面(例如閘極界面),否則碳可能會導致效能問題。應注意的是,如前所述,雖然圖5示例為具有兩個層群組145a、145b之4/1模式,但其他群組組構/層組構亦可用於不同實施例。此外,在不同實施例中,氧和碳/碳氧單層的設置順序亦可不同,而且在所有實施例中,超晶格125中的氧單層及碳/碳氧單層的數目不必相同。
作為背景說明,過去以化學氣相沉積(CVD)生長碳矽合金,係透過使諸如SiH3 CH3 (單甲基矽烷)的碳源,與諸如矽烷(SiH4 )、二矽烷(Si2 H6 )、三矽烷(Si3 H8 ) 或二氯矽烷(SiH2 Cl2 )的矽源之混合物流動而沉積。所述碳源及矽源可為稀釋過或未經稀釋的混合物。稀釋劑可為氫氣(H2 )、氮氣(N2 )、氬氣(Ar)或氦氣(He),舉例而言。在減壓(RP)CVD過程中,前述矽源及碳源是以例如H2 、N2 、Ar或He等載體氣體進一步稀釋。混合之氣體流經加熱的底材,造成反應物分子發生反應並沉積在底材上而形成磊晶層。換言之,所述元素係在共同氣體流中被輸送至底材。其他技術,例如低壓CVD(通常低於1 torr至1 millitorr,通常是現代垂直爐操作的壓力),或UHV CVD(10 millitorr至10-9 torr)亦可使用。MOCVD則為另一種用於製作磊晶SiC之方法。
前述方式皆可用於進行「短促給料(pulsed dose)」法,以在超晶格中製作包含氧單層及碳/碳氧單層的MST薄膜。「短促給料」一詞係指在製作每一非半導體單層時,使不同類型的氣體源短暫地流動,以形成對應於層群組45a-45n的氧單層或碳/碳氧單層50。在一示例性實施方式中,相較於使碳源與矽源共同流動的習知方法,本發明之方法可從向起始表面(starting surface)給予例如丙烯(C3 H6 )等碳源開始。可使用包含碳,且碳源中其他元素會消失/離開且不會顯著與MST薄膜結合的碳源。所述其他元素可包含氫、氯、氟,舉例而言。短促給料磊晶法的另一示例碳源為環丙烷,因為環丙烷是一個僅包含碳及氫的分子。諸如氟利昂(CCl3 F2 )及氯二氟甲烷(CF3 CFCH2 )等前驅物,亦可爲短促給料生長的潛在碳源。在此情況下,氟和氯主要成為副產品而離開,碳則會留在薄膜中。
甲基矽烷(SiH3 CH3 )為短促給料磊晶法的另一潛在碳源示例。該氣體常用於磊晶生長矽碳,但其分子中的矽原子可在反應過程中沉積,從而擾亂短促給料MST薄膜製程所期望的次表面交換機制(subsurface exchange mechanism)。
表面給料(surface dosing)的進行,需使被吸收的碳原子不處於過高的表面密度,以免磊晶生長在給料過程後因矽生長的矽源開始流動而被擾亂。此外,被給料在表面上的許多碳原子,可能會在矽生長之前,與次表面的矽原子進行交換機制。這種次表面的交換機制類似於製作MST氧界面層(interface layer)時所發生者。所述碳源及矽源可為稀釋過或未經稀釋的混合物。稀釋劑可為氫氣(H2 )、氮氣(N2 )、氬氣(Ar)或氦氣(He)。氫氣是理想的,因為與氫終端(hydrogen terminated)矽表面接觸的碳原子很可能被摻入次表面而非表面,從而避免其在表面形成團簇而干擾磊晶生長。
茲另參考圖6之流程圖600,說明製作超晶格120的示例性短促給料方法。該方法始於(方框601)製備底材121(例如矽),以用於磊晶生長(方框602)。底材121晶圓製備可包括氫氟酸(HF)濕式清潔,接著在處理腔室中以相對較低的溫度(例如700°C至900°C)進行H2 烘烤。其他製備步驟可包括在反應爐中以相對高溫(約1000°C或更高)進行H2 烘烤,以及預清潔程序中的底材表面製備步驟,熟習本發明所屬技術領域者當可理解。
底材121可在所需的給料條件下安定化,初始基底矽部份146a可以磊晶方式形成並以氧源給料(方框603)。在其他實施例中,底材121的上部可作為基底矽部份146a,其被以氧源給料以形成氧單層150a。給料時間及溫度最好經過選定,以使氧原子與次表面進行交換,並使留在表面的氧的密度不會高到妨礙後續的磊晶矽生長,如前文所討論。
在氧的表面給料之後,接著進行矽生長步驟,以形成基底矽部份146b(方框604)。舉例而言,可在已添加氧的表面上面/上方,生長1及100埃之間的矽。所生長的矽可在5A及40A之間,但其他厚度亦可用於不同實施例。矽源可包括Si2 H6 、Si3 H8 、SiCl2 H2 或SiHCl3 ,舉例而言。
在生長矽之後,可視需要接著進行蝕刻循環(方框605),例如但不限於氫氯酸(HCl)蝕刻。其他蝕刻劑亦可使用,例如氯(Cl2 )或NF3 。此蝕刻步驟係用於去除在生長步驟或碳給料步驟期間可能引發的任何缺陷。此蝕刻步驟被設計成對非晶、多晶及/或錯位矽之蝕刻速率,高於對單晶磊晶之蝕刻速率。每個循環的蝕刻去除量,可為任何小於所沉積矽厚度的量。舉例而言,當初始的矽沉積層厚度約為25Å及35Å時,蝕刻量可為所沈積之矽層之20%至30%。以回蝕刻(etch-back)法製作較少缺陷超晶格的更多細節,可在授予Weeks等人的美國專利第10,566,191號及第10,811,498號中找到,各該專利已讓與本案申請人且其全部內容茲此併入成為本說明書之一部。
接著可在所需的給料條件下使底材121安定,並如前所述以碳源對矽表面給料(或以碳氧源對碳氧單層150b給料)(方框606)。如前所述,給料時間及溫度可經過選定,以使碳(或碳氧)原子與矽次表面進行交換,但留在表面的碳(或碳氧)密度不會高到妨礙後續的磊晶矽生長。
接著可進行磊晶矽生長及回蝕刻(方框607-608),以生長頂蓋層152或額外的基底半導體部份,其取決於超晶格120要包含多少個層群組(方框609)。如圖所示,圖6之方法結束於方框610,但亦可接著進行額外的半導體處理步驟,以製作不同類型之半導體元件,下文將進一步討論其示例。
有許多方法可使氧層及碳層交錯。舉例而言,氧源及碳源可在碳氧單層的同一短促給料期間給料至一矽層。依照另一示例,可先進行氧短促給料再進行碳短促給料(carbon pulse),或以相反的順序進行。如前所述,單層150a、150b之間的矽分離厚度可在5Å至50Å的範圍內,但在某些實施例可使用其他厚度。
舉例而言,可在100°C至1400°C的溫度範圍內,詳言之在300°C及900°C之間,進行短促給料碳摻入。在低於600°C的溫度下,共流(co-flowed)之矽碳層將主要在置換格位(substitutional site)與矽晶格結合。在高於600°C的溫度下,MST薄膜中的碳有些是置換的(substitutional)、有些是填隙的(interstitial),還有些可能成為碳化矽沉澱物(在接近800°C的溫度下)。不同溫度下每種狀態的碳量取決於幾個因素。舉例而言,在600°C時,若合金化組成物(alloyed composition)小於0.5原子百分比,吾人可以將幾乎所有的碳納入置換晶格格位(substitutional lattice sites)。若高於1原子百分比,則越多的碳會進入MST薄膜中不是晶格格位(lattice sites)的位置。不同的因素,例如薄膜生長速度、選定的來源氣體等,將影響碳的最終置換/填隙/沉澱狀態。
相較於標準的共流矽碳磊晶(co-flowed silicon carbon epitaxy),本說明書所述之短促給料碳方法可使製程工程師更精確控制碳摻入,因為碳主要先摻入次表面的位置。傳統的矽碳磊晶要獲得大於或等於一個原子置換碳(atomic substitutional carbon),可使用等於或低於550°C的生長溫度,但如此低的沉積溫度是很大的挑戰。雖然使用低溫可獲得置換碳,但這麼做通常也伴隨著較低的生長速率及較低的生長晶質。短促碳沉積結合蝕刻有助於確保碳被摻入在晶格格位,而且該方法可限制缺陷和碳沉澱,因為缺陷和沉澱的蝕刻比無缺陷磊晶快。
可用於短促給料碳沉積的氣體來源之一例爲丙烯(C3 H6 ),亦即甲基乙烯。丙烯在室溫下是有機碳源液體,其蒸氣壓略高於SiH2 Cl2 (DCS)。使用丙烯可允許在不需使用起泡器(bubbler)的情況下,透過質流控制器(mass flow controller, MFC)輸送蒸氣。在丙烯製程之金屬測試中,丙烯在530°C至800°C的溫度下之測試結果良好。詳細而言,在基於30元素VPD-ICP-MS之測試中,未觀察到因丙烯沉積物導致腔室過度褪色,也未觀察到任何金屬污染。所有金屬皆低於該測試的偵測極限(detection limit)。
在圖6所示的製程中,各步驟循環進行直到超晶格120達成所需的厚度/組構。應注意的是,碳給料及氧給料步驟的順序可與所示順序相反(例如碳單層150b可在超晶格120的底部),或在某些實施例中可對碳氧單層共同給料(co-dosed)。
額外參考圖7至圖11之半導體元件120示例性製作流程之二次離子質譜(SIMS)圖表170、180、190、200及X光繞射(XRD)圖表210,將更容易理解前述內容。在SIMS圖表170的示例中,使用的氧(氧16)劑量為1.1E15 at/cm2 ,碳劑量為1.49E14 at/cm2 。這將使元件中含有0.22原子百分比的碳,其相容於阻擋摻雜物之異質接面雙極電晶體(HBT)技術之碳百分比。使用前述方法可產生期望的矽晶體品質、原子排列沒有明顯破壞,且在橫截面穿透式電子顯微鏡(cross-sectional transmission electron microscopy, X-TEM)下,氧與矽之間有相對鮮明的質量對比(mass contrast)。
SIMS圖表180繪示一不同製作梯次,其中碳(12C)劑量為4.27E17 at/cm2 (峰值為4.6E20 at/cm3 )且氧(氧16)劑量為1.16E15 at/cm2 。此方法表現出0.96原子百分比的碳量,其相容於以下應用,舉例而言:MOSFET平面及3D結構,例如finFET;摻雜物阻擋;應力源(stressor);微機電系統(MEMS)及底材應用,例如矽上小晶格常數材料之蝕刻停止層及漸變緩衝(graded buffers)等。關於在這類應用中實施MST薄膜的更多細節,可在美國專利公開案第2007/0020860號、第2007/0015344號、第2007/0007508號、第2007/0010040號、第2006/0292765號、第2006/0273299號;以及美國專利案第7,531,828號、第7,586,165號、第7,598,515號、第7,202,494號、第10,580,867號、第10,854,717號、第10,840,337號中找到,各該專利案皆已讓與本案申請人且其全部內容茲此併入成為本說明書之一部。
SIMS圖表190繪示又另一製作梯次,其中碳(12C)劑量為6.97E14 at/cm2 (峰值為6.2E20 at/cm3 )且氧(氧16)劑量為1.16E15 at/cm2 。這將產生具有1.2原子百分比碳的薄膜,其有利於諸如應力源、蝕刻停止和摻雜物阻擋等應用。
SIMS圖表200繪示又另一製作梯次,其中碳(12C)劑量為1.54E15 at/cm2 (12C濃度為6.75E20 at/cm3 ),氧(氧16)劑量為2.16E15 at/cm2 。此梯次與圖7所示者類似,但沒有磊晶矽頂蓋且包括八個短促給料生長循環。從圖10可看出,此梯次實現了穩定的碳及氧之給料濃度。此外,XRD圖表210的X光分析證明,圖10示例中的碳是置換性的,此係基於繞射光譜(diffraction spectra)中所示的拉伸應變碳波峰(tensile strained carbon peak)。同樣在此示例中,傅立葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy, FTIR)分析證明,示例中的碳是置換性的,因此產生拉伸應變磊晶層。612 cm-1 的光譜峰值表示碳與晶格格位上的矽鍵合,而非成爲碳化矽沉澱物而於層中黏合。
進行蝕刻是許多半導體元件製程中的一個重要製作步驟。在某些情況下,蝕刻必須均勻,但在其他情況下,蝕刻最好具有選擇性或在特定深度時停止。環繞式閘極(GAA)元件的製作即為一例,其通常要生長矽和矽鍺交替之堆疊,以在後續製程中選擇性蝕去矽鍺只留下矽,然後在矽周圍形成閘極。在其他元件中,例如某些感光元件或射頻元件等,理想者為去除所需元件下方的矽,或將矽蝕刻至特定深度。此外還有許多示例,本發明所屬技術領域者應當熟悉。
常規的Si/O MST薄膜配方可使其蝕刻速率與塊狀矽非常類似。然而,相較於塊狀矽,前述超晶格125配方可提供顯著不同的蝕刻速率,使該薄膜可用於前述之選擇性蝕刻或蝕刻停止應用。在這方面,將除了氧之外的其他元素加入此薄膜中,可有利地促成可用於表示給定蝕刻之終點(end point)的「信號」產生,熟習本發明所屬技術領域者當可理解。
在一示例性應用中,超晶格125可作為高等邏輯應用(例如在NMOS的情況下)之通道材料使用,因為拉伸應變具有改善電子遷移率的效果。另一應用為應力源,例如用於凹入式源極/汲極組構。這涉及以摻雜物如硼、砷、磷等摻雜超晶格125。詳細而言,超晶格125可作為應力源襯裡(stressor liner)使用,以防止例如磷或砷等摻雜物擴散至電晶體通道中。將超晶格125作為凹槽之襯裡使用,可在對薄膜電阻率造成最小影響的情況下產生摻雜物阻擋的效果。「襯裡」一詞係指超晶格125位於應力源凹槽(stressor recess)的前幾個單層內部。
此外,進行蝕刻是許多半導體元件製程中的一個重要步驟。在某些情況下,蝕刻必須均勻,但在其他情況下,蝕刻最好具有選擇性或在特定深度時停止。環繞式閘極(GAA)元件的形成即為一例(下文將參考圖16及圖17進一步討論之),其通常要生長矽和矽鍺交替之堆疊,以在後續製程中選擇性蝕去矽鍺只留下矽,然後在矽周圍形成閘極。在其他元件中,例如某些感光元件或射頻元件等,理想者為去除所需元件下方的矽,或將矽蝕刻至特定深度。此外還有許多示例,本發明所屬技術領域者應當熟悉。
常規的MST矽配方可使其蝕刻速率與一般矽非常類似。然而,相較於一般矽,本說明書所述SiC/SiCO MST薄膜配方可提供顯著不同的蝕刻速率,因此SiC/SiCO薄膜可用於選擇性蝕刻或蝕刻停止之應用。亦可預期的是,將其他元素加入此薄膜中,可促成可用於表示給定蝕刻之終點的「信號」產生。
超晶格125的其他用途包括作為例如絕緣體上矽(SOI)及MEMS等應用之抗蝕刻材料。詳細而言,若一矽鍺磊晶層被生長成作為製作虛擬底材的抗蝕刻材料使用,則可加入超晶格125,以補償磊晶矽鍺層中因添加大型鍺原子而導致的壓縮應變。加入碳可有助於防止該磊晶層在超過臨界厚度後鬆弛。一旦磊晶層超過臨界厚度,應變層就會鬆弛,從而在磊晶中產生線差排(threading dislocation)及錯位(misfit dislocation)。超晶格125的另一種應用是應變SOI之漸變緩衝層(graded buffer layer for strained-SOI)。超晶格125更可用於在異質接面雙載子電晶體(HBT)中提供摻雜物阻擋,以及如前所述強化遷移率。
許多類型的半導體結構可用前述的氧及碳/碳氧超晶格製作並從中得益。例如平面MOSFET 220即為一例,茲參考圖12進行說明。如圖所示,MOSFET 220包括底材221、源極區/汲極區222、223、源極延伸部/汲極延伸部226、227,及介於延伸部之間由氧及碳/碳氧超晶格225提供之通道區。該通道可全部或部分形成於超晶格225內部。源極矽化物層/汲極矽化物層230、231及源極接點/汲極接點232、233覆蓋在源極區/汲極區上方,熟習本發明所屬技術領域者當可理解。虛線234a、234b所示區域為視情況殘留的部分,這些部分最初係與超晶格225一起形成,但後來被重度摻雜。在其他實施方式中,該些殘留超晶格區234a、234b可能不存在,熟習本發明所屬技術領域者當可理解。如圖所示,一閘極235包含閘極絕緣層237,其毗鄰超晶格225所提供之通道,以及該閘極絕緣層上面之閘電極層236。圖中繪示的MOSFET 220亦提供側壁間隔件240、241。
茲參考圖13,依照另一示例,半導體元件300可包含氧及碳/碳氧超晶格325,該超晶格作為摻雜物擴散阻擋超晶格使用,以有利地提升表面摻雜濃度,從而在原位摻雜磊晶處理期間,藉由防止摻雜物擴散至元件之通道區330中而允許更高的ND (金屬/半導體界面處之活性摻雜物濃度)。更詳細而言,元件300概要地包含一半導體層或底材301、形成於該半導體層中隔開的源極區與汲極區302、 303及在二者間延伸之通道區330。如圖所示,摻雜物擴散阻擋超晶格325延伸穿過源極區302,將其劃分為下源極區304及上源極區305,並延伸穿過汲極區303,將其劃分為下汲極區306及上汲極區307。
摻雜物擴散阻擋超晶格325在概念上亦可視為源極區302內部的源極摻雜物擴散阻擋超晶格、汲極區303內部的汲極摻雜物擴散阻擋超晶格,及通道區330下方的本體摻雜物擴散阻擋超晶格,雖然在此組構中,這三者都是透過在整個底材301上以MST材料進行單一地毯式沉積成為連續薄膜而提供。位於摻雜物阻擋超晶格325上方的半導體材料(上源極區/上汲極區305、307和通道區330被定義於其中),可在摻雜物阻擋超晶格325上磊晶生長為厚的超晶格頂蓋層或塊狀半導體層(bulk semiconductor layer),舉例而言。在圖示實施例中,上源極區/上汲極區305、307可分別與此半導體層之上表面齊平(亦即被植入該層內)。
這樣,上源極區/上汲極區305、307可有利地具備與下源極區/下汲極區304、306相同之導電性,但較高之摻雜物濃度。在圖示實施例中,上源極區/上汲極區305、307與下源極區/下汲極區304、306為用於N型通道元件之N型摻雜,但該些區亦可為用於P型通道元件之P型摻雜。表面摻雜物可透過諸如離子植入而引入。然而,摻雜物擴散被擴散阻擋超晶格325的MST薄膜材料減少了,因其捕捉了離子植入所引入,促成摻雜物擴散之點缺陷(point defects)/間隙子(interstitials)。
如圖所示,半導體元件300更包含通道區330上一閘極308。如圖所示,該閘極包含閘極絕緣層309與閘電極310。圖中示例亦提供側壁間隔件311。關於元件300及其他可使用氧及碳/碳氧超晶格之類似結構的更多細節,可在授予Takeuchi等人的美國專利第10,818,755號中找到,該專利已讓與本案申請人且其全部內容茲此併入成為本說明書之一部。
茲參考圖14說明可使用氧及碳/碳氧超晶格之半導體元件400之另一示例實施例。詳細而言,在圖示實施例中,源極與汲極摻雜物擴散阻擋超晶格425s、425d二者有利地透過異質磊晶薄膜集成(hetero-epitaxial film integration)提供蕭特基能障高度調節(Schottky barrier height modulation)。更詳細而言,下源極區與下汲極區404、406包含與上源極區與上汲極區405、407不同之材料。在此示例中,下源極區與下汲極區404、406為矽,上源極區與上汲極區405、407為SiGeC,但不同實施例可使用不同材料。下金屬層(Ti) 442、443係形成於上源極區與上汲極區(SiGeC層) 405、407上。上金屬層(Co) 444、445係分別形成於下金屬層442、443上。由於MST材料可有效整合異質磊晶半導體材料,因此將碳(1-2%)加入矽或矽上矽鍺(SiGe on Si)可誘發正導帶偏移(positive conduction band offset)。更詳細而言,此為可有效降低蕭特基能障高度之SiGeC/MST/n+矽結構。關於元件400的更多細節載於前述‘755專利中。
茲參考圖15說明平面MOSFET 500之一示例實施例,其使用具有氧及碳/碳/氧單層之超晶格525作為半導體(主動元件)層552的應力源。一般而言,電子與電洞在應變(雙軸向拉伸,biaxial tension)矽中具有較高遷移率。理想者為分別針對NMOS及PMOS元件使應力極性(stress polarity)在各方向上最佳化。用於改進NMOS遷移率的矽頂蓋/SiGe/矽底材結構已經過研究,其中矽頂蓋受到拉伸應變係因其下方插入SiGe層。圖示實施例並非使用SiGe層,而是包括一個或多個碳/碳氧單層的超晶格525,以有利地在矽頂蓋層552中誘發壓縮應力(compressive stress)。由於原子半徑是C<Si<Ge,因此這種組構亦有利地適用於縱向(亦即在源極S和汲極D之間)PMOS元件。因此,超晶格525可提供改善遷移率所需之應力極性。在某些實施例中,上頂蓋層552可包含另一個或不同的半導體,例如應變SiGe。此外,如圖所示,包括閘電極536與閘極介電質537並且被側壁間隔件540包圍的閘極535,可為以閘極優先(gate-first)或閘極後製(gate-last)組構形成的高K值金屬閘極,熟習本發明所屬技術領域者當可理解。
茲參考圖16說明依照另一示例實施例,包含前述氧及碳/碳氧超晶格薄膜625之堆疊之奈米片GAA電晶體600。如圖所示,電晶體600包含內部具有淺溝槽隔離(STI)區647之底材621。界定出該電晶體之通道的半導體(例如矽)奈米片646以垂直堆疊形式排列,並被閘極氧化物637及閘電極636包圍。在圖示實施例中,如前所述,在每個奈米片646的頂部和底部形成各自的氧及碳/碳氧超晶格625,以在奈米片中提供所需的應力。如圖17所示,在GAA電晶體600’之一替代實施例中,氧及碳/碳氧超晶格625’係設置在更靠近奈米片646’的中間或中心處。應理解的是,如有需要,其他組構是可能的,例如超晶格625、625’位於每個奈米片646、646’的底部、中間及/或頂部,且各奈米片之間的組構可有所不同。
亦應注意的是,在某些示例性實施例中,矽28及/或氧18材料亦可與前述氧及碳/碳氧MST薄膜結合,相關說明分別見於2021年4月21日提交之美國專利申請案第17/236,329及17/236,289號, 2021年5月26日提交之美國專利申請案第17/330,860及17/330,831號,各該專利案已讓與本案申請人且其全部內容茲此併入成為本說明書之一部。
熟習本發明所屬技術領域者將受益於本說明書揭示之內容及所附圖式而構思出各種修改及其他實施方式。因此,應了解的是,本發明不限於本說明書所述之特定實施方式,且相關修改及實施方式均落入以下申請專利範圍所界定之範疇。
21,21’:底材 25,25’:超晶格 45a~45n,45a’~45n’:層群組 46,46’:基底半導體單層 46a~46n,46a’~46n’:基底半導體部份 50,50’:能帶修改層 52,52’:頂蓋層 120:半導體元件 121:底材 125:超晶格 145a:第一層群組 145b:第二層群組 146:基底半導體單層 146a,146b:基底半導體部份 150a,150b:非半導體單層 152,552:頂蓋層 170,180,190,200,210:圖表 220,500:平面MOSFET 221,301,621:底材 222,302:源極區 223,303:汲極區 225,525,625,625’:超晶格 226:源極延伸部 227:汲極延伸部 230:源極矽化物層 231:汲極矽化物層 232:源極接點 233:汲極接點 234a,234b:殘留超晶格區 235,308,535:閘極 236:閘電極層 237,309:閘極絕緣層 240,241,311,540:側壁間隔件 300,400:半導體元件 304,404:下源極區 305,405:上源極區 306,406:下汲極區 307,407:上汲極區 310,536,636:閘電極 325:摻雜物擴散阻擋超晶格 330:通道區 425s:源極摻雜物擴散阻擋超晶格 425d:汲極摻雜物擴散阻擋超晶格 442,443:下金屬層 444,445:上金屬層 537:閘極介電質 600,600’:GAA電晶體 637:閘極氧化物 646,646’:奈米片 647:STI區
圖1為依照一示例實施例之半導體元件用超晶格之放大概要剖視圖。
圖2為圖1所示超晶格之一部份之透視示意原子圖。
圖3為依照另一示例實施例之超晶格放大概要剖視圖。
圖4A為習知技術之塊狀矽及圖1-2所示之4/1 矽/氧超晶格兩者從迦碼點(G)計算所得能帶結構之圖。
圖4B為習知技術之塊狀矽及圖1-2所示之4/1 矽/氧超晶格兩者從Z點計算所得能帶結構之圖。
圖4C為習知技術之塊狀矽及圖3所示之5/1/3/1 矽/氧超晶格兩者從G點與Z點計算所得能帶結構之圖。
圖5繪示依照一示例實施例之包含具氧單層及碳單層之超晶格之半導體元件之概要剖視圖。
圖6繪示製作圖5半導體元件之示例性方法之流程圖。
圖7至圖10繪示圖5半導體元件之不同製程梯次(fabrication run)之二次離子質譜(secondary ion mass spectroscopy, SIMS)圖表。
圖11繪示對應於圖10之製作梯次之X光繞射(X-ray diffraction,XRD)圖表。
圖12繪示包含超晶格通道之半導體元件之概要剖視圖,該超晶格通道結合了圖5之超晶格。
圖13繪示一種包含圖5超晶格之半導體元件之概要剖視圖,該超晶格將半導體層劃分為具有相同導電類型及不同摻雜物濃度的區域。
圖14繪示一半導體元件之概要剖視圖,該半導體元件包含圖5超晶格及該超晶格上方之金屬接觸層。
圖15繪示依照一示例實施例結合圖5超晶格之平面MOSFET元件之概要剖視圖。
圖16及圖17繪示結合圖5超晶格之堆疊奈米片(stacked nanosheet)環繞式閘極(GAA)電晶體之概要剖視圖。
120:半導體元件
121:底材
125:超晶格
145a:第一層群組
145b:第二層群組
146:基底半導體單層
146a,146b:基底半導體部份
150a,150b:非半導體單層
152:頂蓋層

Claims (20)

  1. 一種半導體元件,該半導體元件包括: 一半導體層;及 一超晶格,該超晶格相鄰於該半導體層且包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層; 該超晶格之第一層群組中的至少一非半導體單層包含氧且沒有碳,以及該超晶格之第二層群組中的至少一非半導體單層包含碳。
  2. 如請求項1之半導體元件,其中該第二層群組在該超晶格中位於該第一層群組上方。
  3. 如請求項1之半導體元件,其中該半導體層包含該超晶格下方之一底材;且該半導體元件更包括該超晶格上方之一應變半導體層。
  4. 如請求項1之半導體元件,其中該超晶格之第二層群組包含碳且沒有氧。
  5. 如請求項1之半導體元件,其中該超晶格之第二層群組包含碳及氧。
  6. 如請求項1之半導體元件,其更包括位於該半導體層上面且在該超晶格中界定出一通道之源極區和汲極區,以及該超晶格上方之一閘極。
  7. 如請求項1之半導體元件,其中該超晶格將該半導體層劃分為第一區和第二區,該第一區具有相同於該第二區之導電類型,該第一區具有不同於該第二區之摻雜物濃度。
  8. 如請求項1之半導體元件,其更包括該超晶格上方之一金屬層。
  9. 如請求項1之半導體元件,其中該超晶格將該半導體層劃分為第一區和第二區,該第一區具有不同於該第二區之導電類型。
  10. 如請求項1之半導體元件,其中所述基底半導體部份包含矽。
  11. 一種用於製作一半導體元件之方法,該方法包括: 形成一超晶格使其相鄰於一半導體層且包含複數個堆疊之層群組,各層群組包含複數個堆疊之基底半導體單層,其界定出一基底半導體部份,以及被拘束在相鄰的基底半導體部份之一晶格內之至少一非半導體單層; 該超晶格之第一層群組中的至少一非半導體單層包含氧且沒有碳,以及該超晶格之第二層群組中的至少一非半導體單層包含碳。
  12. 如請求項11之方法,其中該第二層群組在該超晶格中位於該第一層群組上方。
  13. 如請求項11之方法,其中該半導體層包含該超晶格下方之一底材;且更包括在該超晶格上方形成一應變半導體層。
  14. 如請求項11之方法,其中該超晶格之第二層群組包含碳且沒有氧。
  15. 如請求項11之方法,其中該超晶格之第二層群組包含碳及氧。
  16. 如請求項11之方法,其更包括形成位於該半導體層上面且在該超晶格中界定出一通道之源極區和汲極區,以及該超晶格上方之一閘極。
  17. 如請求項11之方法,其中該超晶格將該半導體層劃分為第一區和第二區,該第一區具有相同於該第二區之導電類型,該第一區具有不同於該第二區之摻雜物濃度。
  18. 如請求項11之方法,其更包括在該超晶格上方形成一金屬層。
  19. 如請求項11之方法,其中該超晶格將該半導體層劃分為第一區和第二區,該第一區具有不同於該第二區之導電類型。
  20. 如請求項11之方法,其中所述基底半導體部份包含矽。
TW110124251A 2020-07-02 2021-07-01 包含具氧單層及碳單層之超晶格之半導體元件及相關方法 TWI765765B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202063047356P 2020-07-02 2020-07-02
US63/047,356 2020-07-02
US17/305,098 US11837634B2 (en) 2020-07-02 2021-06-30 Semiconductor device including superlattice with oxygen and carbon monolayers
US17/305,098 2021-06-30
US17/305,101 2021-06-30
US17/305,101 US11848356B2 (en) 2020-07-02 2021-06-30 Method for making semiconductor device including superlattice with oxygen and carbon monolayers

Publications (2)

Publication Number Publication Date
TW202205670A true TW202205670A (zh) 2022-02-01
TWI765765B TWI765765B (zh) 2022-05-21

Family

ID=79167017

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124251A TWI765765B (zh) 2020-07-02 2021-07-01 包含具氧單層及碳單層之超晶格之半導體元件及相關方法

Country Status (5)

Country Link
US (5) US11848356B2 (zh)
EP (1) EP4154321B1 (zh)
CN (1) CN115885388A (zh)
TW (1) TWI765765B (zh)
WO (1) WO2022006379A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848356B2 (en) 2020-07-02 2023-12-19 Atomera Incorporated Method for making semiconductor device including superlattice with oxygen and carbon monolayers
US20220285152A1 (en) 2021-03-03 2022-09-08 Atomera Incorporated Radio frequency (rf) semiconductor devices including a ground plane layer having a superlattice
TWI816399B (zh) 2021-05-18 2023-09-21 美商安托梅拉公司 含提供金屬功函數調諧之超晶格之半導體元件及相關方法
US11804532B2 (en) * 2021-08-27 2023-10-31 Taiwan Semiconductor Manufacturing Co., Ltd. Gate-all-around devices with superlattice channel
WO2024034433A1 (ja) * 2022-08-08 2024-02-15 信越半導体株式会社 量子コンピュータ用シリコン基板の製造方法、量子コンピュータ用シリコン基板及び半導体装置

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210679A (ja) 1985-03-15 1986-09-18 Sony Corp 半導体装置
US5216262A (en) 1992-03-02 1993-06-01 Raphael Tsu Quantum well structures useful for semiconductor devices
US5357119A (en) 1993-02-19 1994-10-18 Board Of Regents Of The University Of California Field effect devices having short period superlattice structures using Si and Ge
US5796119A (en) 1993-10-29 1998-08-18 Texas Instruments Incorporated Silicon resonant tunneling
US5561302A (en) 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
GB9419757D0 (en) 1994-09-30 1994-11-16 Lynxvale Ltd Wavelength selective filter and laser including it
US6376337B1 (en) 1997-11-10 2002-04-23 Nanodynamics, Inc. Epitaxial SiOx barrier/insulation layer
JP3443343B2 (ja) 1997-12-03 2003-09-02 松下電器産業株式会社 半導体装置
GB2386254A (en) 1999-03-05 2003-09-10 Nanovis Llc Superlattices
US6993222B2 (en) 1999-03-05 2006-01-31 Rj Mears, Llc Optical filter device with aperiodically arranged grating elements
GB9905196D0 (en) 1999-03-05 1999-04-28 Fujitsu Telecommunications Eur Aperiodic gratings
GB2347620B (en) 1999-03-10 2002-12-24 Autoliv Dev Improvements in or relating to a vehicle seat
US20020100942A1 (en) 2000-12-04 2002-08-01 Fitzgerald Eugene A. CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs
US6447933B1 (en) 2001-04-30 2002-09-10 Advanced Micro Devices, Inc. Formation of alloy material using alternating depositions of alloy doping element and bulk material
US6858904B2 (en) 2001-08-30 2005-02-22 Micron Technology, Inc. High aspect ratio contact structure with reduced silicon consumption
JP2005504436A (ja) 2001-09-21 2005-02-10 アンバーウェーブ システムズ コーポレイション 画定された不純物勾配を有するひずみ材料層を使用する半導体構造、およびその構造を製作するための方法。
US20050032241A1 (en) 2003-02-26 2005-02-10 Coassin Peter J. Reagent dispenser and dispensing method
US20040266116A1 (en) 2003-06-26 2004-12-30 Rj Mears, Llc Methods of fabricating semiconductor structures having improved conductivity effective mass
US20060289049A1 (en) 2003-06-26 2006-12-28 Rj Mears, Llc Semiconductor Device Having a Semiconductor-on-Insulator (SOI) Configuration and Including a Superlattice on a Thin Semiconductor Layer
US20060243964A1 (en) 2003-06-26 2006-11-02 Rj Mears, Llc Method for making a semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US20060263980A1 (en) 2003-06-26 2006-11-23 Rj Mears, Llc, State Of Incorporation: Delaware Method for making a semiconductor device including a floating gate memory cell with a superlattice channel
US7531829B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US7598515B2 (en) 2003-06-26 2009-10-06 Mears Technologies, Inc. Semiconductor device including a strained superlattice and overlying stress layer and related methods
US7045377B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US6830964B1 (en) 2003-06-26 2004-12-14 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US20070020860A1 (en) 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making Semiconductor Device Including a Strained Superlattice and Overlying Stress Layer and Related Methods
US7612366B2 (en) 2003-06-26 2009-11-03 Mears Technologies, Inc. Semiconductor device including a strained superlattice layer above a stress layer
US20070015344A1 (en) 2003-06-26 2007-01-18 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Between at Least One Pair of Spaced Apart Stress Regions
US7659539B2 (en) 2003-06-26 2010-02-09 Mears Technologies, Inc. Semiconductor device including a floating gate memory cell with a superlattice channel
US20070063185A1 (en) 2003-06-26 2007-03-22 Rj Mears, Llc Semiconductor device including a front side strained superlattice layer and a back side stress layer
US20060292765A1 (en) 2003-06-26 2006-12-28 Rj Mears, Llc Method for Making a FINFET Including a Superlattice
US7586116B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US7227174B2 (en) 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US20070012910A1 (en) 2003-06-26 2007-01-18 Rj Mears, Llc Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US7491587B2 (en) 2003-06-26 2009-02-17 Mears Technologies, Inc. Method for making a semiconductor device having a semiconductor-on-insulator (SOI) configuration and including a superlattice on a thin semiconductor layer
US20060267130A1 (en) 2003-06-26 2006-11-30 Rj Mears, Llc Semiconductor Device Including Shallow Trench Isolation (STI) Regions with a Superlattice Therebetween
US20060220118A1 (en) 2003-06-26 2006-10-05 Rj Mears, Llc Semiconductor device including a dopant blocking superlattice
US20050279991A1 (en) 2003-06-26 2005-12-22 Rj Mears, Llc Semiconductor device including a superlattice having at least one group of substantially undoped layers
US20060231857A1 (en) 2003-06-26 2006-10-19 Rj Mears, Llc Method for making a semiconductor device including a memory cell with a negative differential resistance (ndr) device
US7514328B2 (en) 2003-06-26 2009-04-07 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with a superlattice therebetween
US6833294B1 (en) 2003-06-26 2004-12-21 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US20060223215A1 (en) 2003-06-26 2006-10-05 Rj Mears, Llc Method for Making a Microelectromechanical Systems (MEMS) Device Including a Superlattice
US20070063186A1 (en) 2003-06-26 2007-03-22 Rj Mears, Llc Method for making a semiconductor device including a front side strained superlattice layer and a back side stress layer
US7531850B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a memory cell with a negative differential resistance (NDR) device
US7202494B2 (en) 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
US20040262594A1 (en) 2003-06-26 2004-12-30 Rj Mears, Llc Semiconductor structures having improved conductivity effective mass and methods for fabricating same
US20060273299A1 (en) 2003-06-26 2006-12-07 Rj Mears, Llc Method for making a semiconductor device including a dopant blocking superlattice
AU2004300982B2 (en) 2003-06-26 2007-10-25 Mears Technologies, Inc. Semiconductor device including MOSFET having band-engineered superlattice
US7446002B2 (en) 2003-06-26 2008-11-04 Mears Technologies, Inc. Method for making a semiconductor device comprising a superlattice dielectric interface layer
US20070010040A1 (en) 2003-06-26 2007-01-11 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Layer Above a Stress Layer
US7229902B2 (en) 2003-06-26 2007-06-12 Rj Mears, Llc Method for making a semiconductor device including a superlattice with regions defining a semiconductor junction
US7531828B2 (en) 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions
US20050282330A1 (en) 2003-06-26 2005-12-22 Rj Mears, Llc Method for making a semiconductor device including a superlattice having at least one group of substantially undoped layers
US7045813B2 (en) 2003-06-26 2006-05-16 Rj Mears, Llc Semiconductor device including a superlattice with regions defining a semiconductor junction
US7535041B2 (en) 2003-06-26 2009-05-19 Mears Technologies, Inc. Method for making a semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US20070020833A1 (en) 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making a Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US20060011905A1 (en) 2003-06-26 2006-01-19 Rj Mears, Llc Semiconductor device comprising a superlattice dielectric interface layer
US7586165B2 (en) 2003-06-26 2009-09-08 Mears Technologies, Inc. Microelectromechanical systems (MEMS) device including a superlattice
US7148712B1 (en) 2005-06-24 2006-12-12 Oxford Instruments Measurement Systems Llc Probe for use in determining an attribute of a coating on a substrate
TWI334646B (en) 2005-12-22 2010-12-11 Mears Technologies Inc Electronic device including a selectively polable superlattice
US7517702B2 (en) 2005-12-22 2009-04-14 Mears Technologies, Inc. Method for making an electronic device including a poled superlattice having a net electrical dipole moment
WO2007098138A2 (en) 2006-02-21 2007-08-30 Mears Technologies, Inc. Semiconductor device comprising a lattice matching layer and associated methods
US7625767B2 (en) 2006-03-17 2009-12-01 Mears Technologies, Inc. Methods of making spintronic devices with constrained spintronic dopant
US20080012004A1 (en) 2006-03-17 2008-01-17 Mears Technologies, Inc. Spintronic devices with constrained spintronic dopant
US7696000B2 (en) 2006-12-01 2010-04-13 International Business Machines Corporation Low defect Si:C layer with retrograde carbon profile
US8217423B2 (en) 2007-01-04 2012-07-10 International Business Machines Corporation Structure and method for mobility enhanced MOSFETs with unalloyed silicide
US7781827B2 (en) 2007-01-24 2010-08-24 Mears Technologies, Inc. Semiconductor device with a vertical MOSFET including a superlattice and related methods
US7928425B2 (en) 2007-01-25 2011-04-19 Mears Technologies, Inc. Semiconductor device including a metal-to-semiconductor superlattice interface layer and related methods
US7880161B2 (en) 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US7863066B2 (en) 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7812339B2 (en) 2007-04-23 2010-10-12 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with maskless superlattice deposition following STI formation and related structures
US20090068824A1 (en) 2007-09-11 2009-03-12 United Microelectronics Corp. Fabricating method of semiconductor device
US7834345B2 (en) * 2008-09-05 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistors with superlattice channels
US20110215299A1 (en) 2010-03-08 2011-09-08 Mears Technologies, Inc. Semiconductor device including a superlattice and dopant diffusion retarding implants and related methods
WO2015077580A1 (en) 2013-11-22 2015-05-28 Mears Technologies, Inc. Semiconductor devices including superlattice depletion layer stack and related methods
US9275996B2 (en) 2013-11-22 2016-03-01 Mears Technologies, Inc. Vertical semiconductor devices including superlattice punch through stop layer and related methods
WO2015191561A1 (en) 2014-06-09 2015-12-17 Mears Technologies, Inc. Semiconductor devices with enhanced deterministic doping and related methods
US9722046B2 (en) 2014-11-25 2017-08-01 Atomera Incorporated Semiconductor device including a superlattice and replacement metal gate structure and related methods
CN107771355B (zh) 2015-05-15 2022-01-14 阿托梅拉公司 具有超晶格和在不同深度处的穿通停止(pts)层的半导体装置和相关方法
US9721790B2 (en) 2015-06-02 2017-08-01 Atomera Incorporated Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
TWI552948B (zh) 2015-06-05 2016-10-11 環球晶圓股份有限公司 半導體元件
KR102389363B1 (ko) 2015-06-26 2022-04-22 인텔 코포레이션 기판 상의 갈륨 질화물(GaN) 트랜지스터 구조체들
US9558939B1 (en) 2016-01-15 2017-01-31 Atomera Incorporated Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source
WO2017197108A1 (en) 2016-05-11 2017-11-16 Atomera Incorporated Dram architecture to reduce row activation circuitry power and peripheral leakage and related methods
US10453945B2 (en) 2016-08-08 2019-10-22 Atomera Incorporated Semiconductor device including resonant tunneling diode structure having a superlattice
US10107854B2 (en) 2016-08-17 2018-10-23 Atomera Incorporated Semiconductor device including threshold voltage measurement circuitry
EP3635789B1 (en) 2017-05-16 2022-08-10 Atomera Incorporated Semiconductor device and method including a superlattice as a gettering layer
TWI685109B (zh) 2017-06-13 2020-02-11 美商安托梅拉公司 具有含超晶格之凹槽通道陣列電晶體(rcat)之半導體元件及其相關方法
US10109479B1 (en) * 2017-07-31 2018-10-23 Atomera Incorporated Method of making a semiconductor device with a buried insulating layer formed by annealing a superlattice
CN111247640B (zh) 2017-08-18 2023-11-03 阿托梅拉公司 包括与超晶格sti界面相邻的非单晶纵梁的半导体器件和方法
US10529757B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated CMOS image sensor including pixels with read circuitry having a superlattice
US10529768B2 (en) 2017-12-15 2020-01-07 Atomera Incorporated Method for making CMOS image sensor including pixels with read circuitry having a superlattice
US10615209B2 (en) 2017-12-15 2020-04-07 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10355151B2 (en) 2017-12-15 2019-07-16 Atomera Incorporated CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10276625B1 (en) 2017-12-15 2019-04-30 Atomera Incorporated CMOS image sensor including superlattice to enhance infrared light absorption
US10608043B2 (en) 2017-12-15 2020-03-31 Atomera Incorporation Method for making CMOS image sensor including stacked semiconductor chips and readout circuitry including a superlattice
US10304881B1 (en) 2017-12-15 2019-05-28 Atomera Incorporated CMOS image sensor with buried superlattice layer to reduce crosstalk
US10461118B2 (en) 2017-12-15 2019-10-29 Atomera Incorporated Method for making CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10367028B2 (en) 2017-12-15 2019-07-30 Atomera Incorporated CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
US10361243B2 (en) 2017-12-15 2019-07-23 Atomera Incorporated Method for making CMOS image sensor including superlattice to enhance infrared light absorption
US10396223B2 (en) 2017-12-15 2019-08-27 Atomera Incorporated Method for making CMOS image sensor with buried superlattice layer to reduce crosstalk
US10608027B2 (en) 2017-12-15 2020-03-31 Atomera Incorporated Method for making CMOS image sensor including stacked semiconductor chips and image processing circuitry including a superlattice
EP3762959B1 (en) 2018-03-08 2024-04-10 Atomera Incorporated Semiconductor device including enhanced contact structures having a superlattice and related methods
US10727049B2 (en) 2018-03-09 2020-07-28 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10468245B2 (en) 2018-03-09 2019-11-05 Atomera Incorporated Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
WO2019199926A1 (en) 2018-04-12 2019-10-17 Atomera Incorporated Device and method for making an inverted t channel field effect transistor (itfet) including a superlattice
US10884185B2 (en) 2018-04-12 2021-01-05 Atomera Incorporated Semiconductor device including vertically integrated optical and electronic devices and comprising a superlattice
US10811498B2 (en) 2018-08-30 2020-10-20 Atomera Incorporated Method for making superlattice structures with reduced defect densities
US10566191B1 (en) 2018-08-30 2020-02-18 Atomera Incorporated Semiconductor device including superlattice structures with reduced defect densities
US11189694B2 (en) 2018-10-29 2021-11-30 Mediatek Inc. Semiconductor devices and methods of forming the same
US20200135489A1 (en) 2018-10-31 2020-04-30 Atomera Incorporated Method for making a semiconductor device including a superlattice having nitrogen diffused therein
US10580867B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated FINFET including source and drain regions with dopant diffusion blocking superlattice layers to reduce contact resistance
US10840337B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making a FINFET having reduced contact resistance
US10840335B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Method for making semiconductor device including body contact dopant diffusion blocking superlattice to reduce contact resistance
US10847618B2 (en) 2018-11-16 2020-11-24 Atomera Incorporated Semiconductor device including body contact dopant diffusion blocking superlattice having reduced contact resistance
US10593761B1 (en) 2018-11-16 2020-03-17 Atomera Incorporated Method for making a semiconductor device having reduced contact resistance
US10854717B2 (en) 2018-11-16 2020-12-01 Atomera Incorporated Method for making a FINFET including source and drain dopant diffusion blocking superlattices to reduce contact resistance
US10580866B1 (en) 2018-11-16 2020-03-03 Atomera Incorporated Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10818755B2 (en) 2018-11-16 2020-10-27 Atomera Incorporated Method for making semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance
US10840336B2 (en) 2018-11-16 2020-11-17 Atomera Incorporated Semiconductor device with metal-semiconductor contacts including oxygen insertion layer to constrain dopants and related methods
US11094818B2 (en) 2019-04-23 2021-08-17 Atomera Incorporated Method for making a semiconductor device including a superlattice and an asymmetric channel and related methods
US11183565B2 (en) 2019-07-17 2021-11-23 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including spaced-apart superlattices and related methods
US10825901B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Semiconductor devices including hyper-abrupt junction region including a superlattice
US10879357B1 (en) 2019-07-17 2020-12-29 Atomera Incorporated Method for making a semiconductor device having a hyper-abrupt junction region including a superlattice
US10840388B1 (en) 2019-07-17 2020-11-17 Atomera Incorporated Varactor with hyper-abrupt junction region including a superlattice
US10825902B1 (en) 2019-07-17 2020-11-03 Atomera Incorporated Varactor with hyper-abrupt junction region including spaced-apart superlattices
US10937868B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making semiconductor devices with hyper-abrupt junction region including spaced-apart superlattices
US10937888B2 (en) 2019-07-17 2021-03-02 Atomera Incorporated Method for making a varactor with a hyper-abrupt junction region including spaced-apart superlattices
US10868120B1 (en) 2019-07-17 2020-12-15 Atomera Incorporated Method for making a varactor with hyper-abrupt junction region including a superlattice
US11437487B2 (en) 2020-01-14 2022-09-06 Atomera Incorporated Bipolar junction transistors including emitter-base and base-collector superlattices
US11177351B2 (en) 2020-02-26 2021-11-16 Atomera Incorporated Semiconductor device including a superlattice with different non-semiconductor material monolayers
US11302823B2 (en) 2020-02-26 2022-04-12 Atomera Incorporated Method for making semiconductor device including a superlattice with different non-semiconductor material monolayers
US11075078B1 (en) 2020-03-06 2021-07-27 Atomera Incorporated Method for making a semiconductor device including a superlattice within a recessed etch
KR20210134445A (ko) 2020-04-29 2021-11-10 삼성전자주식회사 반도체 소자
US11469302B2 (en) 2020-06-11 2022-10-11 Atomera Incorporated Semiconductor device including a superlattice and providing reduced gate leakage
US11569368B2 (en) 2020-06-11 2023-01-31 Atomera Incorporated Method for making semiconductor device including a superlattice and providing reduced gate leakage
CN115868004A (zh) 2020-07-02 2023-03-28 阿托梅拉公司 使用具有不同非半导体热稳定性的超晶格制造半导体器件的方法
US11848356B2 (en) 2020-07-02 2023-12-19 Atomera Incorporated Method for making semiconductor device including superlattice with oxygen and carbon monolayers
US11810784B2 (en) 2021-04-21 2023-11-07 Atomera Incorporated Method for making semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
US11923418B2 (en) 2021-04-21 2024-03-05 Atomera Incorporated Semiconductor device including a superlattice and enriched silicon 28 epitaxial layer
US11728385B2 (en) 2021-05-26 2023-08-15 Atomera Incorporated Semiconductor device including superlattice with O18 enriched monolayers
US11682712B2 (en) 2021-05-26 2023-06-20 Atomera Incorporated Method for making semiconductor device including superlattice with O18 enriched monolayers

Also Published As

Publication number Publication date
WO2022006379A1 (en) 2022-01-06
US11837634B2 (en) 2023-12-05
US11978771B2 (en) 2024-05-07
US20230122723A1 (en) 2023-04-20
TWI765765B (zh) 2022-05-21
EP4154321A1 (en) 2023-03-29
US20220005926A1 (en) 2022-01-06
EP4154321B1 (en) 2024-05-22
US20220005927A1 (en) 2022-01-06
US20230121774A1 (en) 2023-04-20
US20240063268A1 (en) 2024-02-22
CN115885388A (zh) 2023-03-31
US11848356B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
TWI722398B (zh) 包含具有超晶格之改良接觸結構之半導體元件及相關方法
TWI765765B (zh) 包含具氧單層及碳單層之超晶格之半導體元件及相關方法
JP6342527B2 (ja) 酸素源としてのn2oを使用する原子層構造を包含する半導体デバイスの製造方法
CN113228294A (zh) 制造具有减小的接触电阻的半导体器件的方法
TWI761725B (zh) 具有包含用於限制摻雜物之氧插入層之金屬半導體接點的半導體元件及相關方法
EP3871269A1 (en) Method for making a finfet having reduced contact resistance
TWI823111B (zh) 使用具不同非半導體熱穩定性之超晶格製作半導體元件之方法
US20240194740A1 (en) Gate-all-around (gaa) device including a superlattice
TWI751609B (zh) 設有含超晶格之突陡接面區之可變電容器及相關方法
TW202249276A (zh) 包含具氧-18富集單層之超晶格之半導體元件及相關方法
CN113228293A (zh) 包括具有减小的接触电阻的本体接触部掺杂剂扩散阻挡超晶格的半导体器件和方法以及相关方法
WO2020102282A1 (en) Semiconductor device including source/drain dopant diffusion blocking superlattices to reduce contact resistance and associated methods