TW202111901A - 具有奈米結構能量儲存裝置之中介層裝置及其製造方法 - Google Patents

具有奈米結構能量儲存裝置之中介層裝置及其製造方法 Download PDF

Info

Publication number
TW202111901A
TW202111901A TW109137112A TW109137112A TW202111901A TW 202111901 A TW202111901 A TW 202111901A TW 109137112 A TW109137112 A TW 109137112A TW 109137112 A TW109137112 A TW 109137112A TW 202111901 A TW202111901 A TW 202111901A
Authority
TW
Taiwan
Prior art keywords
nanostructure
energy storage
electrode
storage device
nanostructures
Prior art date
Application number
TW109137112A
Other languages
English (en)
Other versions
TWI757931B (zh
Inventor
安德斯 傑漢森
薩黎曼 穆罕默德 阿米恩
文森 德斯馬瑞斯
M 沙斐克 卡拜耳
彼得 伊納克森
理查 安德森
Original Assignee
瑞典商斯莫勒科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞典商斯莫勒科技公司 filed Critical 瑞典商斯莫勒科技公司
Publication of TW202111901A publication Critical patent/TW202111901A/zh
Application granted granted Critical
Publication of TWI757931B publication Critical patent/TWI757931B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

揭露了一種奈米結構能量儲存裝置,其包括:至少第一複數個導電奈米結構,其設置在基板的電絕緣表面部分上;導電控制材料,其將所述第一複數個導電奈米結構中的每個奈米結構嵌入;第一電極,其連接到所述第一複數個奈米結構中的每個奈米結構;以及第二電極,其透過所述導電控制材料而與所述第一複數個奈米結構中的每個奈米結構分開,其中所述第一電極和所述第二電極被配置為允許所述奈米結構能量儲存裝置與積體電路的電連接。

Description

具有奈米結構能量儲存裝置之中介層裝置及其製造方法
本發明涉及一種用於佈置在電子裝置和裝置基板之間的中介層裝置,以透過所述中介層裝置將第一電子裝置和裝置基板互連。本發明還涉及一種製造這種中介層裝置的方法。
電子裝置需要電能來操作。在可攜式電子裝置中,通常提供電池,並且從電池提取電能以為被包括在電子裝置中的積體電路供電。此外,許多驅動因數持續改善包括但不限於具有較高數據傳輸速率、信號完整性、記憶體帶寬、功率和熱管理能力等的更小形狀因數(form-factor)的系統級性能。最重要的是,今天的整合和可攜式產品不斷努力改進至少這些指標。直通矽晶穿孔(TSV)技術的成熟已經為在小的形狀因數組裝件中緊密地共同定位邏輯、類比、感測器和記憶器的同質和異質整合開闢了巨大的可能性。此外,TSV技術的突破和成熟已經使得利用將中介層封裝技術推進到更高水平的可能性。包括TSV的中介層的一些良好範例在專利US8426961B2、US8928132B2、US8426961B2、US8263434B2中公開。中介層技術的應用在半導體工業中穩步增加。中介層技術帶來了許多好處,包括實現異質晶粒封裝、通過TSV方式得較短互連線、整合被動裝置(IPD)、垂直封裝整合等。這種整合能夠獲得高密度I/O,使得不同類型的晶粒可以彼此靠近地位於TSV中介層上,例如,邏輯和記憶體。這種技術也被稱為2.5D封裝技術。此外,矽晶粒可以彼此的頂層上逐層地(tier-to-tier)堆疊,這減少了定義構件的物理面積。這種層到層堆疊被稱為3D封裝技術。
然而,這種密集地層疊晶粒的整合可能不便宜。許多低功率、高速積體電路對於由位於電路塊中的電晶體的連續切換所產生的電噪聲非常敏感。這個問題的已知解決方案是將電路與所謂的去耦電容器連接,以使功率波動引起的噪聲最小化。去耦電容器基本上局部地儲存電荷,其然後可以給出所需的能量以補償電晶體切換狀態期間的任何突然波動或電壓變化,從而最小化任何電壓噪聲,使得電路可以繼續平順地工作,從而實現增進的性能。
還已知的是,隨著電路的頻率上升,電感的影響變得更加關鍵。因此,重要的改良是使這種去耦電容器盡可能靠近所要的電路,為此應當減少來自互連線的寄生電感。已經進行了許多方法來製造整合的去耦電容器,例如,利用閘極介電層的一部分、利用電路的金屬層之間的空間、多層不同材料堆疊電容器結構等。然而,這些方法受困於要麼需要主動矽區域的實質覆蓋區(footprint)、介電漏電、寄生電阻,要麼受到由平行板區所限定的每單位面積的增加電容值的基本限制或受加工複雜性或成本所限制。在專利US7416954B2中公開了不同方法的良好範例。
在專利US7518881B2中解釋了在中介層上具有經整合的矽基電容器的優點。這種整合能夠降低可以連接到整合電容器的中介層之積體(IC)電路裝置上的電壓噪聲。本公開內容的主要改良處是透過將電容器整合在IC將被連接的中介層表面處而使電容器更靠近IC。這種方法的變型在US7488624B2中公開,其中描述如何在中介層中配置多個矽基的整合電容器。在US8618651B1中公開了整合電容器的另一個範例,其中矽電容器形成在盲TSV通孔內。在US9236442B2中公開了基於矽溝槽的電容器的另一個範例,其中高縱橫比(aspect ratio)矽溝槽用於製造電容器裝置。在US9257383B2中公開了溝槽電容器製造方法的變型。
因此,傳統的矽基嵌入式高縱橫比溝槽電容器技術已經成熟用於大量生產,並且可以在當今的智慧手機封裝中找到。然而,考慮到小型化的趨勢,矽基電容器技術的潛力受到訂製(tailor)每單位面積的電容器密度的能力、不期望的寄生電阻、在處理期間矽基板中增加的膜應力、增加的製造複雜性和每個功能的經濟成本所限制。
此外,對於許多積體電路,期望還局部儲存能量。然而,積體電路中的局部能量儲存需要使用可能與所謂前端製造工藝的標準不兼容或者可能不是經濟上有利的或其組合的有價值空間和/或處理。
因此,顯然存在許多可以進一步改進中介層組裝件技術之途徑,並且本發明公開的內容旨在對具有減少的膜應力的更智能、更好和成本有效的中介層以及用作組裝平台的新增機能提出貢獻。
考慮到現有技術的上述和其他缺點,本發明的目的是提供局部能量儲存和/或去耦而不必修改積體電路本身。
根據本發明的第一方面,因此提供了一種用於佈置在積體電路和裝置基板之間的中介層裝置,透過所述中介層裝置互連所述第一積體電路和所述裝置基板,所述中介層包括:中介層基板,其具有電絕緣表面部分;複數個導電通孔,其延伸穿過所述中介層基板;導電圖案,其設置在所述中介層基板的所述電絕緣表面部分上,所述導電圖案導電連接到所述通孔並且定義用於與所述積體電路和所述裝置基板中的至少一個連接的連接位置;以及奈米結構能量儲存裝置,其包括:至少第一複數個導電奈米結構,其設置在所述中介層基板的所述電絕緣表面部分上;導電控制材料,其將所述第一複數個導電奈米結構中的每個奈米結構嵌入;第一電極,其連接到所述第一複數個奈米結構中的每個奈米結構;以及第二電極,其透過所述導電控制材料而與所述第一複數個奈米結構中的每個奈米結構分離,其中所述第一電極和所述第二電極被配置為允許所述奈米結構能量儲存裝置與所述積體電路的電連接。
所述第一電極可以導電連接到所述奈米結構,使得DC電流可以從所述第一電極流到所述奈米結構。
所述中介層基板可以由絕緣材料或材料組合物製成。或者,中介層基板可包括導電或半導電基底和絕緣塗層,以至少在提供奈米結構的地方形成中介層基板的絕緣表面部分。在實施例中,絕緣表面部分可以是中介層基板的整個表面。例如,中介層基板的基底材料可以是Si/摻雜的Si、GaAs、SiC或InP,並且絕緣塗層可以是例如氧化物、氮化物或絕緣聚合物。在具有導電或半導體基板基底的實施例中,絕緣介電層用於將不同的金屬通孔和重新分佈線或層彼此隔離(並且還可能與導電或半導體基底隔離),以避免任何不希望的短路或漏電。在這種情況下的介電層可以有利地以電漿CVD沉積或ALD沉積或在玻璃上旋轉塗覆,或者可以使用標準半導體加工方案中使用的標準氧化或氮化製程來透過氧化或氮化從基板成長。在中介層基板完全由絕緣材料製成的實施例中,合適的材料包括玻璃、各種聚醯亞胺、氧化鋁和環氧樹脂基的材料,例如SU-8。穿過中介層基板的導電通孔可以有利地設有擴散阻擋層或介電質阻擋層,以阻止金屬擴散到中介層基板。
導電控制材料應理解為控制(例如防止)第二電極與第一複數個奈米結構中的奈米結構之間的導電以允許能量儲存的任何材料。
本發明係基於使用包括奈米結構能量儲存裝置的中介層裝置可以方便地提供局部能量儲存及/或有效和緊湊的去耦的這樣認知。以這種方式,可以提供相當大的能量儲存能力,而不需要昂貴和占用空間的外部構件。另外,可以向已經存在的積體電路提供局部能量儲存能力。此外,可以在比典型積體電路更高的溫度下處理中介層裝置,允許奈米結構的配置更自由及/或更具成本效益的處理。
在實施例中,本發明因此打算使用整合電容器中介層裝置,其可被訂製(tailor)為同時滿足電容器和能量儲存要求的能量儲存裝置。根據本發明的中介層裝置的實施例也設想訂製適合用於給定電路需要或組裝件要求所需的電容能量密度。因此,本發明的實施例實現了設計和幾何輪廓的自由、成本有效的處理和工業可擴展性。在實施例中,本發明還允許控制作為電極材料的奈米結構的成長,以影響電極性質、關鍵有效表面積提升以及對電荷儲存裝置的幾何輪廓的控制。
根據各種實施例,第一複數個導電奈米結構中的導電奈米結構可以是在中介層基板上成長的垂直奈米結構。經成長的奈米結構的使用允許奈米結構的性質的廣泛訂製。例如,可以選擇成長條件以實現給出每個奈米結構的大表面積的形態(morphology),這可以進而增加奈米結構能量儲存裝置的能量儲存容量。
奈米結構可以有利地為碳奈米結構,例如碳奈米纖維、碳奈米管或碳化物衍生的碳奈米結構。
根據各種實施例,第一電極可以佈置在中介層基板和第一複數個導電奈米結構中的每個奈米結構之間。在這些實施例中,第一複數個奈米結構中的奈米結構可以從第一電極成長,即從導電材料成長。
根據實施例,導電控制材料可以有利地佈置為在第一複數個導電奈米結構中的每個奈米結構上的保形(conformal)塗層。
根據實施例,第二電極可以覆蓋導電控制材料。
在一些實施例中,第一電極可以是第一複數個奈米結構中的奈米結構和中介層基板的絕緣表面部分之間的連續電極層,並且第二電極可以是覆蓋導電控制材料的連續電極層,使得第二電極透過所述導電控制材料而與所述第一複數個奈米結構分離。在這些實施例中,導電控制材料可有利地基本上與奈米結構保形,以提供非常大的第二電極的總面積。
此外,根據各種實施例,奈米結構能量儲存裝置還可包括嵌入導電控制材料中的第二複數個導電奈米結構。對於第一複數個奈米結構中的奈米結構,第二複數個奈米結構中的奈米結構可以有利地在中介層基板上成長。
在這樣的實施例中,第二電極可以導電連接到第二複數個奈米結構中的每個奈米結構。
在一些實施例中,第二電極可以佈置在中介層基板和第二複數個導電奈米結構中的每個奈米結構之間。
第二複數個導電奈米結構中的每個奈米結構可以有利地從第二電極成長。
第二電極或第二電極的一部分可替代地連接到第二複數個奈米結構中的奈米結構的尖端。在這樣的實施例中,奈米結構可以成長且嵌入導電控制材料中,然後透過例如乾或濕蝕刻或拋光來去除導電控制材料以暴露奈米結構的尖端。
根據另外的實施例,第一電極或第一電極的一部分還可以連接到第一複數個奈米結構中的奈米結構的尖端。在這樣的實施例中,奈米結構可以成長且嵌入導電控制材料中,然後透過例如乾或濕蝕刻或拋光來去除導電控制材料以暴露奈米結構的尖端。因此,第一電極和第二電極都可以在奈米結構體成長之後提供。
根據各種實施例,奈米結構能量儲存裝置可以是奈米結構電容器,並且導電控制材料可以是介電質材料。在奈米結構電容器中,導電控制材料透過防止從第一複數個奈米結構中的導電奈米結構到第二電極的電傳導而提供能量儲存。因此,能量可以透過在奈米結構-介電質界面處的電荷累積來儲存。介電質可以有利地是所謂的高k介電質。高k介電質材料例如是HfOx、TiOx、TaOx或其它公知的高k介電質。或者,介電質可以是聚合物基的,例如聚丙烯、聚苯乙烯、聚(對二甲苯)(poly-(p-xylylene))、聚對二甲苯(parylene)等。例如SiOx或SiNx等之其它公知的介電材料也可以作為導電控制層使用。可以適當地使用任何其它合適的導電控制材料。導電控制材料可以透過CVD、熱處理、ALD或旋轉塗覆或噴灑塗覆或工業中使用的任何其它合適的方法沉積。
根據其他實施例,奈米結構能量儲存裝置可以是奈米結構電池,並且導電控制材料可以是固體(solid)電解質。在奈米結構電池中,導電控制材料藉由透過固體電解質允許離子傳輸而提供能量儲存。固體電解質可以是固體晶體、陶瓷、石榴石或聚合物或凝膠的選擇形式,以用作電解質,例如鈦酸鍶,氧化釔穩定的氧化鋯、PMMA、KOH等。
根據本發明的各種實施例的中介層裝置可以配置為儲存相對大量的能量,以允許奈米結構能量提供裝置去提供用於連接到中介層裝置的積體電路操作的能量。根據其他實施例,奈米結構能量提供裝置可以配置為儲存相對少量的能量,以需要例如允許奈米結構能量提供裝置用作去耦電容器以充當RF頻率的電短路,限制DC線路上的來自電壓諧波或瞬態變化的干擾。根據再進一步的實施例,中介層裝置可以包括多個奈米結構能量提供裝置,其可以提供相互不同的功能。
此外,根據本發明的各種實施例的中介層裝置可以被有利地包括在電子構件中,還包括電連接到中介層裝置的導電通孔及/或導電圖案的積體電路。
電子構件可以被包括在電子裝置中,例如手持電子裝置。
根據本發明的另一態樣,提供了一種能量儲存裝置,其包括:具有電絕緣表面部分的基板;至少第一複數個導電奈米結構,其設置在所述中介層基板的所述電絕緣表面部分上;導電控制材料,其將所述第一複數個導電奈米結構中的每個奈米結構嵌入;第一電極,其連接到所述第一複數個奈米結構中的每個奈米結構;以及第二電極,其透過所述導電控制材料而與所述第一複數個奈米結構中的每個奈米結構分離,其中所述第一電極和所述第二電極被配置為允許所述能量儲存裝置與外部裝置的電連接。
在實施例中,能量儲存裝置(或上述中介層裝置)可包括在電子裝置(智慧型手機、膝上型計算機、感測器或任何其它手持式電池驅動裝置)的能量供應系統中。能量儲存裝置(或中介層裝置)可以直接連接到電子裝置的電池,及/或被包括在電子裝置的能量管理系統中,使得能量儲存裝置可以接收和儲存電能,並且當需要時將所儲存的電能提供給電子裝置。特別地,這種儲存的能量可以用於延長正常電池壽命,及/或改進功率管理系統及/或處理任何不想要的電力突波或漣波(電壓噪聲),使得可以即時提供所需的額外功率。
根據本發明的第二態樣,提供了一種製造用於佈置在積體電路和裝置基板之間的中介層裝置的方法,透過所述中介層互連第一積體電路和裝置基板,所述方法包括以下步驟:提供具有電絕緣表面部分的中介層基板,具有延伸穿過所述中介基板的多個導電通孔,以及所述中介基板的所述電絕緣表面部分上的導電圖案,所述導電圖案導電連接到所述通孔並且定義用於與所述積體電路和所述裝置基板中的至少一個連接的位置;在所述中介層基板的所述電絕緣表面部分上形成至少第一複數個導電奈米結構;將所述第一複數個導電奈米結構中的每個奈米結構嵌入導電控制材料中;提供第一電極,使得所述第一電極電連接到所述第一複數個奈米結構中的每個奈米結構,並且所述第一電極被配置為允許其連接到所述積體電路;以及提供第二電極,使得所述第二電極透過所述導電控制材料而與所述第一複數個奈米結構中的每個奈米結構分離,並且所述第二電極被配置為允許其連接到所述積體電路。
應當注意,根據本發明的各種實施例的方法的步驟不需要以任何特定的順序執行,例如,可以在提供第一和第二電極之前形成奈米結構。或者,可以在形成奈米結構之前提供第一和第二電極中的一者或兩者。
可以以任何合適的方式提供電極,例如透過光微影、濺鍍、蒸鍍、電鑄、矽化等。
根據實施例,形成至少第一複數個導電奈米結構的步驟可以包括以下步驟:在中介層基板上提供圖案化的催化劑層;以及從所述催化劑層成長所述第一複數個導電奈米結構中的每個奈米結構。根據一些實施例,電極可以是與催化劑層相同的材料。根據一些實施例,催化劑層可便利地具有足夠厚度以利用催化劑層的上部作為催化劑來成長奈米結構並且將底部用作電極。
通過本發明的第二態樣獲得的其它實施例和效果大體上類似於上面針對本發明的第一態樣所描述的那些。
在本詳細描述中,主要參考包括以奈米結構電容器形式的奈米結構能量儲存裝置之能量儲存中介層裝置來描述能量儲存中介層裝置的各種實施例。
應當注意,這不意味著限制本發明的範圍,本發明的範圍也同樣地包括例如包含奈米結構電池或奈米結構電容器的中介層裝置和奈米結構電池。此外,中介層基板可以包括半導體或導電基板基底以及至少部分地覆蓋所述基板基底的絕緣表面塗層。
圖1示意性說明電子組裝件1,其包括在此以簡化的印刷電路板(PCB)2的形式的裝置基板、積體電路(IC)3和根據本發明的示例實施例的能量儲存中介層裝置4。
PCB包括形成在PCB基板7上的PCB連接墊6,並且IC 3包括IC連接墊9。如圖1中示意性指出,IC連接墊9之間的間隔顯著小於PCB連接墊6之間的間隔。
圖1中的能量儲存中介層裝置中介層裝置4包括中介層基板11(其在此被設為由電絕緣材料製成的基板)、延伸穿過中介層基板11的複數個通孔12、導電圖案13和奈米結構能量儲存裝置14。
導電圖案13導電地連接到通孔12並且被配置為定義用於與IC 3和PCB 2連接的連接位置15。在圖1中,這是以透過從用於將IC連接墊9連接到通孔12之第一組凸塊延伸的導體為例,此處的通孔通過中介層基板11與用於連接到PCB連接墊6之第二組凸塊17直接連接。
奈米結構能量儲存裝置14包括至少第一複數個導電奈米結構和嵌入所述奈米結構的導電控制材料。這些結構沒有在圖1中明確示出,但將在下面參考圖2A-B和圖3更詳細地描述。
除了上述導電奈米結構和導電控制材料之外,奈米結構能量儲存裝置14包括第一電極19和第二電極20。在圖1的範例中,第一電極19和第二電極20設置在中介層基板11和奈米結構之間。此外,第一電極19和第二電極20交錯。此外,第一電極19和第二電極20被配置為允許奈米結構能量儲存裝置14與PCB連接墊6和IC連接墊9兩者電連接。因此,奈米結構能量儲存裝置14可以例如透過從PCB連接墊提供的電能被充電,並且透過IC連接墊9被放電到IC 3。因此,能量儲存中介層裝置4可以用作為與其連接的IC 3的電荷儲存器。
應當注意,許多其他電極配置是可能的,並且取決於具體應用可能是有利的。還應注意,允許電連接到積體電路和裝置基板兩者的第一和第二電極的配置可以是有利的而不管電極配置如何。
圖2A是圖1中的奈米結構能量儲存裝置14的示意性俯視圖,導電控制材料被部分去除以暴露包含在奈米結構能量儲存裝置14中的一些奈米結構。
參考圖2A,奈米結構能量儲存裝置14包括形成在第一電極19上的第一複數個導電奈米結構25和形成在第二電極20上的第二複數個導電奈米結構27。所有奈米結構嵌入導電控制材料29中。在該實例中,奈米結構能量儲存裝置14可以是奈米結構電容器,在這種情況下,導電控制材料29可以是介電材料,例如所謂的高k介電質。如圖2A中示意性所示,第一電極19可連接到第一PCB連接墊6a和第一IC連接墊9a,並且第二電極20可連接到第二PCB連接墊6b和第二IC連接墊9b。
圖2B是從側面示意性顯示圖2A中的奈米結構能量儲存裝置14的另一實施例的橫截面圖,該奈米結構能量儲存裝置包括從中介層基板11的電絕緣表面部分成長的第一複數個奈米結構25和第二複數個奈米結構27。特別地,奈米結構可以從未圖案化(如均勻)催化劑層或從圖案化催化劑層31成長為膜/叢(forest),如圖2B中示意所示。
奈米結構被嵌入在導電控制材料29中,但是奈米結構的尖端已經暴露,例如透過拋光或蝕刻導電控制材料29。在第一複數個奈米結構中的奈米結構25的尖端33的頂部上,提供第一電極19以實現第一電極19與第一複數個奈米結構中的每個導電奈米結構25之間的電接觸。在第二複數個奈米結構中的奈米結構27的尖端35的頂部上,提供第二電極20以實現第二電極20與第二複數個奈米結構中的每個導電奈米結構27之間的電接觸。
圖3是示意性顯示圖1中的奈米結構能量儲存裝置14的另一個實施例的橫截面視圖。在圖3的實施例中,沒有第二複數個奈米結構,所有奈米結構25屬於形成在第一電極19上的前述第一複數個奈米結構。此外,導電控制材料29作為保形塗層而設置在奈米結構25上,第二電極20作為保形塗層而形成在導電控制材料29上。
圖4至圖9是圖1中的能量儲存中介層裝置4的各種實施例的示意性橫截面圖,主要意圖說明奈米結構能量儲存裝置14的不同可能位置和連接。
首先參考圖4,奈米結構-導電控制材料組裝件30被嵌入在中介層基板11中,並且第一電極19包括穿過中介層基板11的通孔連接。
在圖5中,奈米結構-導電控制材料組裝件30再次被嵌入在中介層基板11中。然而,此處的第一電極19和第二電極20都至少部分地設置在奈米結構-導電控制材料組裝件30的頂部上。
在圖6中,奈米結構-導電控制材料組裝件30佈置在能量儲存中介層裝置4的面向PCB 2的一側上。
圖7示意性顯示圖5中的能量儲存中介層裝置4的變化,其中第一電極19和第二電極20部分地在奈米結構-導電控制材料組裝件30上且部分地直接在中介層基板11上。
圖8和圖9顯示中介層的其他變化,其中奈米結構-導電控制材料組裝件30佈置在能量儲存中介層裝置4的一側上,並且第一電極19和第二電極20都被安排成透過中介層基板11到能量儲存中介層裝置4的另一側。在這些圖中,連接位置15至少藉由導電奈米結構部分地形成。
任何先前描述的實施例都適合於在工業中使用的晶圓級製程和面板級製程製造。它們可以方便地分別稱為晶圓級中介層處理和面板級中介層處理。在晶圓級處理中,通常使用圓形基板,尺寸範圍從2英吋到12英吋晶圓。在面板級處理中,尺寸由機器容積定義,並且可以是圓形或矩形或正方形之具有較大尺寸,通常但不限於12至100英吋。面板級處理通常用於生產智能電視。因此,尺寸可以是如電視機的尺寸或更大。中介層基板尺寸越大,針對用於組裝的半導體工業中之單個中介層基板係成本有效的。在用於晶圓級製程的方面中,上述實施例中的至少一個在半導體處理鑄造中以晶圓級處理。在另一方面,對於面板級處理,使用面板級處理來處理上述實施例中的至少一個。根據設計要求,在處理之後,使用標準切割、電漿切割或雷射切割以將中介層晶圓或面板級晶圓切割成較小片。在另一方面,切割、電漿切割或雷射切割係在晶片/晶粒以晶圓或面板級組裝在中介層上之後進行。這種單一化(singulaiton)製程步驟可以通過切割或電漿切割或雷射切割來配置以訂製根據需求所形成的中介層的形狀和尺寸。
在使用上述中介層實施例中的任一個的態樣中,能量儲存中介層可以方便地與例如智慧手機、膝上型計算機、感測器或任何其他手持電池驅動裝置之裝置中的電池及/或功率管理單元連接,使得根據本發明的中介層可以儲存能量。這種儲存的能量可以用於延長正常電池壽命,及/或用於改善功率管理系統及/或處理任何不想要的電力突波或漣波(電壓噪聲),使得可以即時提供所需的額外功率。
此外,還提供以下信息: 在一方面,經製造的電容器可以作為去耦電容器使用,其然後將執行作為RF頻率的電短路的作用,從而限制DC線路上來自電壓諧波或瞬態變化的干擾。
當將DC線路盡可能靠近裝置而接地時,最好使用去耦電容器。因此,在本發明中,某一態樣是在中介層的表面上的兩個再分配連接線之間定位或製造這種電容器。在另一態樣中,電容器可以在中介層的厚度內被定位或製造,或者以中介層的凹陷形式或在中介層的底表面處定位或製造。
在使用電容器作為濾波電容器(類似於DC阻隔(DC block))的另一態樣中,應該與RF線路串聯連接來定位,並且可以整合在中介層的通孔內或其中一表面上。
在濾波或去耦電容器的一態樣中,它們可以是完全固體裝置。因此,在使用PVD、CVD、ALD或電鍍形成頂部電極之前,在透過PVD、CVD、ALD方式沉積絕緣層之前,裝置應當由連接或成長在底部電極上的奈米結構製成。
在使用電容器作為儲存裝置的另一態樣中,液體、聚合物或凝膠可用作接合位於彼此頂部或簡單地交錯的兩個電極的電解質。
在本發明的另一態樣中,一種用於佈置在積體電路和裝置基板之間的中介層裝置,通過所述中介層裝置互連第一積體電路和裝置基板,所述中介層包括:中介層基板;複數個導電通孔,其延伸穿過所述中介層基板;導電圖案,其在所述中介層基板上,所述導電圖案導電地連接到所述通孔並且定義用於與所述積體電路和所述裝置基板中的至少一個連接的連接位置;以及複數個奈米結構,其形成在所述微凸塊的至少一個上,其中所述微凸塊被配置為允許所述積體電路和裝置基板的電連接。
在一些實施方式中,使用厚的催化劑層來成長奈米結構以及作為連接電極使用。在這種實施方式中,催化劑可以是鎳、鐵、鉑、鈀、矽化鎳、鈷、鉬、Au或其合金的厚層,或者可以與週期表中的其它材料組合。
在本發明的一態樣中,用於製造一或多個奈米結構的方法包括:在基板的上表面上沉積導電助層;在所述導電助層上沉積圖案化的催化劑層;在所述催化劑層上成長所述一或多個奈米結構;以及選擇性去除所述一或多個奈米結構之間和周圍的所述導電助層。在一些實施方式中,催化劑層在沉積之後被圖案化。在一些實施方式中,基板另外包括金屬底層,與其上表面共同延伸,並且被導電助層覆蓋。在一些實施方式中,金屬底層被圖案化。在一些實施方式中,金屬底層包括選自Cu、Ti、W、Mo、Co、Pt、Al、Au、Pd、P、Ni、矽化物和Fe中的一種或多種金屬。在一些實施方式中,金屬底層包括選自TiC、TiN、WN和AlN中的一種或多種導電合金。在一些實施方式中,金屬底層包括一種或多種導電聚合物。
本文所述的技術可以與作為助層的許多不同的材料使用。選擇助層材料和蝕刻參數是重要的,以便奈米結構可以在助層蝕刻期間作為自我對準遮罩層來使用。助層材料的選擇可以取決於位於助層下面的材料。
助層也可以是催化劑,因為選擇性除去製程也可以用於除去成長的奈米結構之間的任何不要的催化劑殘餘物。
催化劑可以是鎳、鐵、鉑、鈀、矽化鎳、鈷、鉬、Au或其合金,或者可以與其它材料(例如矽)結合。催化劑可以是任選的,因為本文所述的技術也可以應用於奈米結構的無催化劑的成長製程中。催化劑也可以透過旋轉塗覆催化劑顆粒來沉積。
在一些實施方式中,使用催化劑層來成長奈米結構以及作為連接電極使用。在這種實施方式中,催化劑可以是鎳、鐵、鉑、鈀、矽化鎳、鈷、鉬、Au或其合金的厚層,或者可以與週期表中的其它材料組合。
在一些實施方式中,任何沉積係透過選自以下的方法進行:蒸鍍、電鍍、濺鍍、分子束磊晶、脈衝雷射沉積、CVD、ALD、旋轉塗覆或噴灑塗覆。在一些實施方式中,一或多個奈米結構包括碳、GaAs、ZnO、InP、InGaAs、GaN、InGaN或Si。在一些實施方式中,一或多個奈米結構包括奈米纖維、奈米管或奈米線。在一些實施方式中,導電助層包括選自以下的材料:半導體、導電聚合物和合金。在一些實施方式中,導電助層的厚度為1nm至100微米。在一些實施方式中,一或多個奈米結構係以電漿成長。
在一些實施方式中,一或多個奈米結構是碳化物衍生的碳。在一些實施方式中,導電助層的選擇性去除係透過蝕刻來實現。在一些實施方式中,蝕刻是電漿乾蝕刻。在一些實施方式中,蝕刻是電化學蝕刻。在一些實施方式中,蝕刻是光化學熱解蝕刻。在一些實施方式中,蝕刻是熱解蝕刻。在一些實施方式中,該方法還包括在導電助層和催化劑層之間沉積附加層。
根據一態樣,使用包括以下步驟的方法進行複數個奈米結構的成長:在所述電極上沉積催化劑層,所述催化劑層包含平均粒徑不同於所述電極的平均粒徑的顆粒,由此形成包括底層和催化劑層的堆疊層;將所述堆疊層加熱至可形成奈米結構的溫度,並且提供包含反應物的氣體,使得所述反應物與所述催化劑層接觸。
在一些實施方式中,使用氯化法(chlorination process)來從金屬碳化物層衍生出碳奈米結構,例如從TiC形成碳奈米結構。
在一些實施方式中,奈米結構的成長可使用包括以下步驟的方法進行:沉積層堆疊和在所述層堆疊上成長奈米結構,其中所述層堆疊包括允許所述層相互擴散的材料。其中,相互擴散的層可以方便地存在於奈米結構中。層堆疊可以是不同金屬、催化劑金屬或金屬合金的組合。
在某一態樣中,電容器的這種整合以控制電容器及/或能量儲存裝置的輪廓尺寸、高度和能量密度的方式是合適的。在某一態樣中,這種整合以透過適當地使奈米結構的每單位面積能有高的表面積之成長製程來控制成長的奈米結構的形態的方式是合適的。
在本發明的另一態樣中,利用上述方法和製程中的任何一種製造的這種電容器及/或能量儲存結構可以與被包括在主動裝置中的其它積體電路結合而直接在基板上實現。這種主動基板例如是邏輯電路、微處理器、圖形處理器、ASIC、CMOS裝置、FPGA、模擬RF電路、感測器等。作為範例,積體電路可以包括除標準電路元件之外的至少一個電容器及/或根據上述方法中的任一種製造的能量儲存裝置。在這樣的實施例中,電容器及/或能量儲存裝置根據電路需求而直接連接到主電路。
在某一態樣中,電容器的這種整合以控制電容器及/或能量儲存裝置的輪廓尺寸、高度和能量密度的方式是合適的。在某一態樣中,這種整合以透過適當地使奈米結構的每單位面積能有高的表面積之成長製程來控制成長的奈米結構的形態的方式是合適的。
於本文所述的方法中,可以製造單個奈米結構、奈米結構陣列或奈米結構的“叢(forest)”。
“奈米結構”是具有至少一個奈米級尺寸的結構。
奈米結構可以包括碳、GaAs、ZnO、InP、GaN、InGaN、InGaAs、Si或其他材料的奈米纖維、奈米管或奈米線。奈米結構也可以透過從合金衍生出奈米結構來形成,例如來自TiC的碳化物衍生碳。
本領域技術人士意識到本發明決不限於上述優選實施例。相反地,在所附申請專利範圍的範疇內可以有許多修改和變化。
在申請專利範圍中,用語“包括”不排除其他元件或步驟,並且不定冠詞“一”不排除多個。單個處理器或其他單元可以實現申請專利範圍中記載的若干項目的功能。在彼此不同的附屬請求項中陳述的某些手段的一點事實並不表示不能有利地使用這些手段的組合。電腦程式可以儲存/分佈在合適的媒介上,諸如與其它硬體一起提供或作為其它硬體的一部分提供的光學儲存媒介或固態媒介,但是也可以其他形式分佈,例如經由網際網路或其他有線或無線電信系統。申請專利範圍中的任何元件符號不應被解釋為限制本發明的範圍。
1:電子組裝件 2:印刷電路板 / PCB 3:積體電路 / IC 4:能量儲存中介層裝置 6:PCB連接墊 6a:第一PCB連接墊 6b:第二PCB連接墊 7:PCB基板 9:IC連接墊 9a:第一IC連接墊 9b:第二IC連接墊 11:中介層基板 12:通孔 13:導電圖案 14:奈米結構能量儲存裝置 15:連接位置 17:第二組凸塊 19:第一電極 20:第二電極 25:第一複數個導電奈米結構 / 導電奈米結構 / 奈米結構 27:第二複數個導電奈米結構 / 導電奈米結構 / 奈米結構 29:導電控制材料 30:奈米結構-導電控制材料組裝件 31:圖案化催化劑層 33:尖端 35:尖端
現在將參照顯示本發明的示例實施例的附圖更詳細地描述本發明的這些和其它態樣,其中: [圖1]是以電子組裝件的形式示意性說明根據本發明的示例實施例的中介層裝置的應用; [圖2A-B]是示意性顯示包括在根據本發明的中介層裝置中的奈米結構能量儲存裝置的兩個實施例; [圖3]是示意性顯示包括在根據本發明的中介層裝置中的奈米結構能量儲存裝置的另一實施例;以及 [圖4至圖9]是示意性說明圖1中的中介層裝置的不同實施例。
1:電子組裝件
2:印刷電路板/PCB
3:積體電路/IC
4:能量儲存中介層裝置
6:PCB連接墊
7:PCB基板
9:IC連接墊
11:中介層基板
12:通孔
13:導電圖案
14:奈米結構能量儲存裝置
17:第二組凸塊
19:第一電極
20:第二電極

Claims (27)

  1. 一種奈米結構能量儲存裝置,包括: 至少第一複數個導電奈米結構,其設置在基板的電絕緣表面部分上; 導電控制材料,其將所述第一複數個導電奈米結構中的每個奈米結構嵌入; 第一電極,其連接到所述第一複數個奈米結構中的每個奈米結構;以及 第二電極,其透過所述導電控制材料而與所述第一複數個奈米結構中的每個奈米結構分開, 其中所述第一電極和所述第二電極被配置為允許所述奈米結構能量儲存裝置與積體電路的電連接。
  2. 如請求項1所述的奈米結構能量儲存裝置,其中所述第一電極和所述第二電極中的至少一個被包括在所述基板上的導電圖案中。
  3. 如請求項1所述的奈米結構能量儲存裝置,其中所述第一複數個導電奈米結構中的所述導電奈米結構為在所述基板的所述電絕緣表面部分上成長的垂直奈米結構。
  4. 如請求項3所述的奈米結構能量儲存裝置,其進一步包括在所述基板的所述電絕緣表面部分和所述第一複數個導電奈米結構中的所述導電奈米結構之間的催化劑層。
  5. 如請求項1所述的奈米結構能量儲存裝置,其中所述第一電極被佈置在所述基板的所述電絕緣表面部分與所述第一複數個導電奈米結構中的每個奈米結構之間。
  6. 如請求項5所述的奈米結構能量儲存裝置,其中所述第一複數個導電奈米結構中的每個奈米結構係從所述第一電極成長。
  7. 如請求項1所述的奈米結構能量儲存裝置,其中所述導電控制材料被佈置為所述第一複數個導電奈米結構中的每個奈米結構上的保形塗層。
  8. 如請求項1所述的奈米結構能量儲存裝置,其中所述第二電極覆蓋所述導電控制材料。
  9. 如請求項1所述的奈米結構能量儲存裝置,其中所述奈米結構能量儲存裝置進一步包括嵌入在所述導電控制材料中的第二複數個導電奈米結構。
  10. 如請求項9所述的奈米結構能量儲存裝置,其中所述第二複數個導電奈米結構中的所述導電奈米結構為在所述基板的所述電絕緣表面部分上成長的垂直奈米結構。
  11. 如請求項10所述的奈米結構能量儲存裝置,其進一步包括在所述基板的所述電絕緣表面部分和所述第二複數個導電奈米結構中的所述導電奈米結構之間的催化劑層。
  12. 如請求項10所述的奈米結構能量儲存裝置,其中所述第二電極被佈置在所述基板的所述電絕緣表面部分與所述第二複數個導電奈米結構中的每個奈米結構之間。
  13. 如請求項12所述的奈米結構能量儲存裝置,其中所述第二複數個導電奈米結構中的每個奈米結構係從所述第二電極成長。
  14. 如請求項9所述的奈米結構能量儲存裝置,其中所述導電控制材料被佈置為所述第二複數個導電奈米結構中的每個奈米結構上的保形塗層。
  15. 如請求項9所述的奈米結構能量儲存裝置,其中所述第一電極覆蓋所述第一複數個導電奈米結構,且所述第二電極覆蓋所述第二複數個導電奈米結構。
  16. 如請求項15所述的奈米結構能量儲存裝置,其中所述第一電極電連接到所述第一複數個奈米結構中的每個奈米結構的尖端,並且所述第二電極電連接到所述第二複數個奈米結構中的每個奈米結構的尖端。
  17. 如請求項1所述的奈米結構能量儲存裝置,其中所述導電奈米結構是碳奈米結構。
  18. 如請求項17所述的奈米結構能量儲存裝置,其中所述導電奈米結構是碳奈米纖維。
  19. 如請求項1所述的奈米結構能量儲存裝置,其中所述奈米結構能量儲存裝置是奈米結構電容器,並且所述導電控制材料是介電材料。
  20. 如請求項1所述的奈米結構能量儲存裝置,其中所述奈米結構能量儲存裝置是奈米結構電池,並且所述導電控制材料是固體電解質。
  21. 如請求項1所述的奈米結構能量儲存裝置,其進一步包括佈置在所述奈米結構和所述基板的所述電絕緣表面部分之間的導電助層,在所述奈米結構之間以及所述奈米結構周圍選擇性移除所述導電助層。
  22. 如請求項1所述的奈米結構能量儲存裝置,其中每個奈米結構形成在包含允許材料層相互擴散的所述材料的層堆疊上,其中相互擴散的所述材料存在於所述奈米結構中。
  23. 一種奈米結構能量儲存裝置,包括: 第一電極,其設置在基板的電絕緣表面部分上; 複數個導電奈米結構,其設置在所述第一電極上; 導電控制材料,其保形地塗覆所述複數個導電奈米結構中的每個奈米結構;以及 第二電極,其覆蓋所述導電控制材料, 其中所述第一電極和所述第二電極被配置為允許所述奈米結構能量儲存裝置與積體電路的電連接。
  24. 一種電子裝置,包括: 積體電路;以及 如請求項1所述的奈米結構能量儲存裝置,其耦接到所述積體電路。
  25. 一種電子裝置,包括: 積體電路; 電池;以及 奈米結構能量儲存裝置,其連接到所述電池且連接到所述積體電路,所述奈米結構能量儲存裝置被配置成藉由所述電池充電且放電至所述積體電路,其中所述奈米結構能量儲存裝置包括: 複數個導電奈米結構,其設置在基板的電絕緣表面部分上; 導電控制材料,其將所述複數個導電奈米結構中的每個奈米結構嵌入; 第一電極,其連接到所述複數個奈米結構中的每個奈米結構;以及 第二電極,其透過所述導電控制材料而與所述複數個奈米結構中的每個奈米結構分開, 其中所述第一電極和所述第二電極被配置為允許所述奈米結構能量儲存裝置與所述電池和所述積體電路的電連接。
  26. 一種電子裝置,包括: 裝置基板; 積體電路;以及 中介層裝置,其佈置在所述積體電路和所述裝置基板之間,以通過所述中介層裝置互連所述積體電路和所述裝置基板,所述中介層裝置包括: 中介層基板,其具有電絕緣表面部分; 複數個導電通孔,其延伸穿過所述中介層基板; 導電圖案,其設置在所述中介層基板的所述電絕緣表面部分上,所述導電圖案導電連接到所述通孔並且定義用於與所述積體電路和所述裝置基板中的至少一個連接的連接位置,以及 奈米結構能量儲存裝置,包括: 複數個導電奈米結構,其設置在所述中介層基板的所述電絕緣表面部分上; 導電控制材料,其將所述複數個導電奈米結構中的每個奈米結構嵌入; 第一電極,其連接到所述複數個奈米結構中的每個奈米結構;以及 第二電極,其透過所述導電控制材料而與所述複數個奈米結構中的每個奈米結構分開, 其中所述第一電極和所述第二電極被配置為允許所述奈米結構能量儲存裝置與所述積體電路的電連接。
  27. 如請求項26所述的電子裝置,其進一步包括電池,其中所述中介層裝置電連接到所述電池,以允許所述中介層裝置的所述奈米結構能量儲存裝置接收來自所述電池的能量。
TW109137112A 2016-02-29 2017-03-01 奈米結構能量儲存裝置以及電子裝置 TWI757931B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1650263 2016-02-29
SE1650263-5 2016-02-29

Publications (2)

Publication Number Publication Date
TW202111901A true TW202111901A (zh) 2021-03-16
TWI757931B TWI757931B (zh) 2022-03-11

Family

ID=59744295

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109137112A TWI757931B (zh) 2016-02-29 2017-03-01 奈米結構能量儲存裝置以及電子裝置
TW106106642A TWI710082B (zh) 2016-02-29 2017-03-01 具有奈米結構能量儲存裝置之中介層裝置及其製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW106106642A TWI710082B (zh) 2016-02-29 2017-03-01 具有奈米結構能量儲存裝置之中介層裝置及其製造方法

Country Status (7)

Country Link
US (3) US10438880B2 (zh)
EP (1) EP3424078A4 (zh)
JP (1) JP7007285B2 (zh)
KR (2) KR102085789B1 (zh)
CN (1) CN108701672B (zh)
TW (2) TWI757931B (zh)
WO (1) WO2017151040A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766072B (zh) * 2017-08-29 2022-06-01 瑞典商斯莫勒科技公司 能量存儲中介層裝置、電子裝置和製造方法
KR20210073514A (ko) 2018-10-18 2021-06-18 스몰텍 에이비 이산 금속 절연체 금속(mim) 에너지 저장 구성 요소 및 제조 방법
CN111682003B (zh) * 2019-03-11 2024-04-19 奥特斯奥地利科技与系统技术有限公司 包括具有竖向贯通连接件的部件的部件承载件
US11038011B2 (en) * 2019-10-29 2021-06-15 Globalfoundries U.S. Inc. Metal-insulator-metal capacitors including nanofibers
US11477856B2 (en) 2020-01-21 2022-10-18 Goodrich Corporation Abraded bus bar area of CNT resistive element
KR20220136357A (ko) * 2020-02-06 2022-10-07 스몰텍 에이비 부품 패드에 연결된 커패시터를 포함하는 배전 네트워크가 있는 전자 시스템
TW202141805A (zh) * 2020-04-17 2021-11-01 瑞典商斯莫勒科技公司 具有分層堆疊的金屬-絕緣體-金屬(mim)能量儲存裝置及製造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211210B2 (ja) * 2000-09-08 2009-01-21 日本電気株式会社 コンデンサとその実装構造ならびにその製造方法、半導体装置およびその製造方法
JP2004513529A (ja) 2000-11-09 2004-04-30 エフオーシー フランケンブルク オイル カンパニー エスト. スーパーキャパシタおよび当該スーパーキャパシタを製造する方法
US6737699B2 (en) 2002-06-27 2004-05-18 Intel Corporation Enhanced on-chip decoupling capacitors and method of making same
US7030481B2 (en) * 2002-12-09 2006-04-18 Internation Business Machines Corporation High density chip carrier with integrated passive devices
JP4293437B2 (ja) 2003-09-18 2009-07-08 パナソニック株式会社 キャパシタ内蔵基板及び電子回路用キャパシタ
US7268419B2 (en) 2004-06-17 2007-09-11 Apple Inc. Interposer containing bypass capacitors for reducing voltage noise in an IC device
JP2006073651A (ja) * 2004-08-31 2006-03-16 Fujitsu Ltd 半導体装置
JP4823213B2 (ja) * 2005-03-17 2011-11-24 富士通株式会社 半導体パッケージ、およびその製造方法
US7126207B2 (en) 2005-03-24 2006-10-24 Intel Corporation Capacitor with carbon nanotubes
US7435627B2 (en) 2005-08-11 2008-10-14 International Business Machines Corporation Techniques for providing decoupling capacitance
US7428138B2 (en) 2005-10-06 2008-09-23 Intel Corporation Forming carbon nanotube capacitors
KR100836131B1 (ko) 2006-10-19 2008-06-09 삼성전기주식회사 나노와이어를 이용한 커패시터 및 그 제조방법
US8385046B2 (en) * 2006-11-01 2013-02-26 The Arizona Board Regents Nano scale digitated capacitor
CN101896424B (zh) * 2007-12-12 2015-05-13 新日铁住金化学株式会社 内包金属的树状碳纳米结构物、碳纳米结构体、内包金属的树状碳纳米结构物的制备方法、碳纳米结构体的制备方法以及电容器
US8535830B2 (en) * 2007-12-19 2013-09-17 The University Of Maryland, College Park High-powered electrochemical energy storage devices and methods for their fabrication
US8546930B2 (en) * 2008-05-28 2013-10-01 Georgia Tech Research Corporation 3-D ICs equipped with double sided power, coolant, and data features
US8263434B2 (en) 2009-07-31 2012-09-11 Stats Chippac, Ltd. Semiconductor device and method of mounting die with TSV in cavity of substrate for electrical interconnect of Fi-PoP
JP5577670B2 (ja) 2009-10-23 2014-08-27 富士通セミコンダクター株式会社 電子回路素子の製造方法
US8987896B2 (en) * 2009-12-16 2015-03-24 Intel Corporation High-density inter-package connections for ultra-thin package-on-package structures, and processes of forming same
US8426961B2 (en) 2010-06-25 2013-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Embedded 3D interposer structure
KR101817159B1 (ko) 2011-02-17 2018-02-22 삼성전자 주식회사 Tsv를 가지는 인터포저를 포함하는 반도체 패키지 및 그 제조 방법
US8896521B2 (en) * 2012-04-24 2014-11-25 Qualcomm Mems Technologies, Inc. Metal-insulator-metal capacitors on glass substrates
US8618651B1 (en) * 2012-11-01 2013-12-31 Nvidia Corporation Buried TSVs used for decaps
US9236442B2 (en) 2012-11-26 2016-01-12 Broadcom Corporation Integration of chips and silicon-based trench capacitors using low parasitic silicon-level connections
EP3129321B1 (en) * 2013-03-15 2021-09-29 Seerstone LLC Electrodes comprising nanostructured carbon
US9396883B2 (en) * 2013-04-26 2016-07-19 Intel Corporation Faradaic energy storage device structures and associated techniques and configurations
CN105393396A (zh) 2013-07-03 2016-03-09 加州理工学院 用于不含分离器的硅-硫电池的碳纳米管-石墨烯混合结构
US9257383B2 (en) 2014-01-15 2016-02-09 Globalfoundries Inc. Method and device for an integrated trench capacitor
US9510454B2 (en) 2014-02-28 2016-11-29 Qualcomm Incorporated Integrated interposer with embedded active devices
US9165793B1 (en) 2014-05-02 2015-10-20 Invensas Corporation Making electrical components in handle wafers of integrated circuit packages
US10586651B2 (en) * 2014-06-26 2020-03-10 Cnm Technologies Gmbh Method of manufacture of a multilayer structure
US10586909B2 (en) * 2016-10-11 2020-03-10 Massachusetts Institute Of Technology Cryogenic electronic packages and assemblies
US11037737B2 (en) * 2017-06-27 2021-06-15 Uchicago Argonne, Llc Energy storage technology with extreme high energy density capability
TWI766072B (zh) * 2017-08-29 2022-06-01 瑞典商斯莫勒科技公司 能量存儲中介層裝置、電子裝置和製造方法

Also Published As

Publication number Publication date
KR102085789B1 (ko) 2020-03-06
CN108701672B (zh) 2021-07-13
US10741485B2 (en) 2020-08-11
JP2019512871A (ja) 2019-05-16
TW201742220A (zh) 2017-12-01
US20190051591A1 (en) 2019-02-14
US20200365502A1 (en) 2020-11-19
CN108701672A (zh) 2018-10-23
TWI757931B (zh) 2022-03-11
EP3424078A1 (en) 2019-01-09
KR102614960B1 (ko) 2023-12-19
US10438880B2 (en) 2019-10-08
TWI710082B (zh) 2020-11-11
EP3424078A4 (en) 2019-05-01
JP7007285B2 (ja) 2022-02-10
WO2017151040A1 (en) 2017-09-08
KR20180115693A (ko) 2018-10-23
KR20200047546A (ko) 2020-05-07
US20190385943A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
TWI710082B (zh) 具有奈米結構能量儲存裝置之中介層裝置及其製造方法
US20240128186A1 (en) Bonded structures with integrated passive component
US10991652B2 (en) Energy storage interposer device with conductive nanostructures
TWI832909B (zh) 離散金屬-絕緣體-金屬(mim)能量儲存構件及製造方法
CN109075152B (zh) 组装平台
US10910309B2 (en) Nanotube structure based metal damascene process
US11430761B2 (en) Semiconductor package and method for manufacturing the same