US20200365502A1 - Nanostructure energy storage and electronic device - Google Patents

Nanostructure energy storage and electronic device Download PDF

Info

Publication number
US20200365502A1
US20200365502A1 US16/986,679 US202016986679A US2020365502A1 US 20200365502 A1 US20200365502 A1 US 20200365502A1 US 202016986679 A US202016986679 A US 202016986679A US 2020365502 A1 US2020365502 A1 US 2020365502A1
Authority
US
United States
Prior art keywords
electrode
energy storage
nanostructure
interposer
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/986,679
Inventor
M Shafiqul Kabir
Anders Johansson
Muhammad Amin Saleem
Peter Enoksson
Vincent Desmaris
Rickard Andersson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smoltek AB
Original Assignee
Smoltek AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smoltek AB filed Critical Smoltek AB
Priority to US16/986,679 priority Critical patent/US20200365502A1/en
Publication of US20200365502A1 publication Critical patent/US20200365502A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an interposer device for arrangement between an electronic device and a device substrate to interconnect the first electronic device and the device substrate through said interposer device.
  • the present invention also relates to a method of manufacturing such an interposer device.
  • TSV Through Silicon Via
  • interposers including TSV are disclosed in patent U.S. Pat. Nos. 8,426,961B2, 8,928,132B2, 8,426,961B2, 8,263,434B2.
  • Interposer technology brings multiples of benefits including enabling heterogeneous die packaging, shorter interconnect lines by means of TSVs, integrated passive devices (IPD), vertical package integration etc.
  • IPD integrated passive devices
  • Such integration enables to gain high density I/O so that different types of dies can be located near to each other on a TSV interposer e.g. logic and memory.
  • Such technology is also known as 2.5D packaging technology.
  • silicon dies can be stacked tier-to-tier on top of each other, which reduces the physical area for defined components. Such tier-to-tier stacking is called 3D packaging technology.
  • a known solution to this problem is to connect the circuit with a so called decoupling capacitor to minimize the power fluctuation induced noise.
  • a decoupling capacitor essentially stores charge locally, which can then give out required energy to compensate for any sudden fluctuations or voltage variations during transistor switching stages and thereby minimize any voltage noise so that the circuit can continue functioning smoothly, and thereby enhanced performance is achieved.
  • interposer assembly technology can further be improved and the present described invention disclosures intends to contribute to enable a smarter, better and cost effective interposer with reduced film stress, and added functionality to be used as an assembly platform.
  • an interposer device for arrangement between an integrated circuit and a device substrate to interconnect the first integrated circuit and the device substrate through the interposer device, the interposer comprising: an interposer substrate having an electrically insulating surface portion; a plurality of conducting vias extending through the interposer substrate; a conductor pattern provided on the electrically insulating surface portion of the interposer substrate, the conductor pattern being conductively connected to the vias and defining connection locations for connection with at least one of the integrated circuit and the device substrate, and a nanostructure energy storage device comprising: at least a first plurality of conductive nanostructures provided on the electrically insulating surface portion of the interposer substrate; a conduction controlling material embedding each nanostructure in the first plurality of conductive nanostructures; a first electrode connected to each nanostructure in the first plurality of nanostructures; and a second electrode separated from each nanostructure in the first plurality of nanostructures by the conduction controlling material, wherein
  • the first electrode may be conductively connected to the nanostructures, so that DC-current can flow from the first electrode to the nanostructures.
  • the interposer substrate may be made of an insulating material or material composition.
  • the interposer substrate may comprise a conducting or semi-conducting base and an insulating coating to form an insulating surface portion of the interposer substrate at least where the nanostructures are provided.
  • the insulating surface portion may be the entire surface of the interposer substrate.
  • the base material of the interposer substrate may be Si/doped Si, GaAs, SiC or InP
  • the insulating coating may, for example, be an oxide, a nitride or an insulating polymer.
  • the insulating dielectric layer serves to isolate different metal vias and redistributions lines or layers from each other (and possibly also from the conducting or semiconducting base) to avoid any unwanted short circuits or electrical leakage.
  • the dielectric layer in such cases may advantageously be plasma CVD deposited or ALD deposited or spin on glass coated or may be grown through oxidation or nitridation from the substrate using standard oxidation or nitridation processes used in the standard semiconductor processing schemes.
  • suitable materials include glass, various polyimides, alumina, and epoxy-based materials, such as SU-8.
  • the conducting vias through the interposer substrate may advantageously be provided with a layer of diffusion barrier or dielectric barrier to stop diffusion of the metal to the interposer substrate.
  • conduction controlling material should be understood any material that controls, such as prevents, electrical conduction between the second electrode and the nanostructures in the first plurality of nanostructures to allow for energy storage.
  • the present invention is based upon the realization that local energy storage and/or efficient and compact decoupling can conveniently be provided using an interposer device comprising a nanostructure energy storage device.
  • an interposer device comprising a nanostructure energy storage device.
  • considerable energy storage capability can be provided without the need for expensive and space consuming external components.
  • the local energy storage capability can be provided to already existing integrated circuits.
  • the interposer device can be processed at higher temperatures than typical integrated circuits, allowing more freedom in the configuration of the nanostructures and/or a more cost-efficient processing.
  • the present invention thus contemplates to enable integrated capacitor interposer devices that may be tailored to be energy storage devices fulfilling both the capacitor and the energy storing requirements.
  • Embodiments of the interposer device according to the present invention are also contemplated to be suitable to tailor the capacitance energy density needed for a given circuit need or the assembly requirements.
  • embodiments of the present invention enable freedom of design and geometrical profile, cost effective processing and industrially scalability.
  • the present invention also allows for controlling the growth of nanostructures as electrode materials to influence the electrode properties, crucial effective surface area enhancement and control over geometrical profile of charge storage devices.
  • the conductive nanostructures in the first plurality of conductive nanostructures may be vertical nanostructures grown on the interposer substrate.
  • the use of grown nanostructures allows extensive tailoring of the properties of the nanostructures.
  • the growth conditions may be selected to achieve a morphology giving a large surface area of each nanostructure, which may in turn increase the energy storage capacity of the nanostructure energy storage device.
  • the nanostructures may advantageously be carbon nanostructures, such as carbon nanofibers, carbon nanotubes or carbide-derived carbon nanostructures.
  • the first electrode may be arranged between the interposer substrate and each nanostructure in the first plurality of conductive nanostructures.
  • the nanostructures in the first plurality of nanostructures may be grown from the first electrode, that is, from a conductive material.
  • the conduction controlling material may advantageously be arranged as a conformal coating on each nanostructure in the first plurality of conductive nanostructures.
  • the second electrode may cover the conduction controlling material.
  • the first electrode may be a continuous electrode layer between the nanostructures in the first plurality of nanostructures and the insulating surface portion of the interposer substrate and the second electrode may be a continuous electrode layer covering the conduction controlling material such that the second electrode is separated from the first plurality of nanostructures by the conduction controlling material.
  • the conduction controlling material may advantageously be substantially conformal with the nanostructures, to provide for a very large total area of the second electrode.
  • the nanostructure energy storage device may further comprise a second plurality of conductive nanostructures embedded in the conduction controlling material.
  • the nanostructures in the first plurality of nanostructures may advantageously be grown on the interposer substrate.
  • the second electrode may be conductively connected to each nanostructure in the second plurality of nanostructures.
  • the second electrode may be arranged between the interposer substrate and each nanostructure in the second plurality of conductive nanostructures.
  • Each nanostructure in the second plurality of conductive nanostructures may advantageously be grown from the second electrode.
  • the second electrode, or a portion of the second electrode, may instead be connected to the tip of nanostructures in the second plurality of nanostructures.
  • the nanostructures may be grown, embedded in the conduction controlling material, and the tips of the nanostructures then be exposed by removal of conduction controlling material, for example through dry or wet etching or polishing.
  • the first electrode, or a portion of the first electrode may also be connected to the tip of nanostructures in the first plurality of nanostructures.
  • the nanostructures may be grown, embedded in the conduction controlling material, and the tips of the nanostructures then be exposed by removal of conduction controlling material, for example through dry or wet etching or polishing. Accordingly, both the first electrode and the second electrode may be provided after growth of the nanostructures.
  • the nanostructure energy storage device may be a nanostructure capacitor, and the conduction controlling material may be a dielectric material.
  • the conduction controlling material provides for energy storage by preventing electrical conduction from the conductive nanostructures in the first plurality of nanostructures to the second electrode.
  • energy can be stored through accumulation of charge at the nanostructure—dielectric interface.
  • the dielectric may advantageously be a so-called high-k dielectric.
  • the high k-dielectric materials e.g. be HfOx, TiOx, TaOx or other well-known high k dielectrics.
  • the dielectric can be polymer based e.g.
  • the conduction controlling materials may be deposited via CVD, thermal processes, ALD or spin coating or spray coating or any other suitable method used in the industry.
  • the nanostructure energy storage device may be a nanostructure battery
  • the conduction controlling material may be a solid electrolyte.
  • the conduction controlling material provides for energy storage by allowing transport of ions through the solid electrolyte.
  • Solid electrolytes may be chosen forms of solid crystals, ceramic, garnet or polymers or gel to act as electrolyte e.g. strontium titanate, yttria-stabilized zirconia, PMMA, KOH etc.
  • the interposer device may be configured to store a relatively large amount of energy to allow the nanostructure energy providing device to provide energy for operation of the integrated circuit connected to the interposer device.
  • the nanostructure energy providing device may be configured to store a relatively small amount of energy needed to, for instance, allow the nanostructure energy providing device to function as a de-coupling capacitor to act as an electrical short for RF frequency, limiting the disturbance on the DC lines from voltage harmonic(s) or transient variations.
  • the interposer device may include a plurality of nanostructure energy providing devices, which may provide mutually different functionalities.
  • interposer device may advantageously be included in an electronic component, further comprising an integrated circuit electrically connected to the conducting vias and/or the conductor pattern of the interposer device.
  • the electronic component may be comprised in an electronic device, such as a handheld electronic device.
  • an energy storage device comprising a substrate having an electrically insulating surface portion; at least a first plurality of conductive nanostructures provided on the electrically insulating surface portion of the interposer substrate; a conduction controlling material embedding each nanostructure in the first plurality of conductive nanostructures; a first electrode connected to each nanostructure in the first plurality of nanostructures; and a second electrode separated from each nanostructure in the first plurality of nanostructures by the conduction controlling material, wherein the first electrode and the second electrode are configured to allow electrical connection of the energy storage device to an external device.
  • the energy storage device may be comprised in an energy supply system of an electronic device (smart phone, laptop, sensor or any other handheld battery driven device).
  • the energy storage device (or interposer device) may be directly connected to a battery of the electronic device, and/or be included in an energy management system of the electronic device, in such a way that the energy storage device can receive and store electrical energy, and supply the stored electrical energy to the electronic device when required.
  • stored energy can be used to either extend the regular batter life time, and/or improve the power management systems and/or tackle any unwanted power surge or ripples (voltage noise) such that extra power needed can be provided instantaneously.
  • a method of manufacturing an interposer device for arrangement between an integrated circuit and a device substrate to interconnect the first integrated circuit and the device substrate through the interposer, the method comprising the steps of: providing an interposer substrate having an electrically insulating surface portion with a plurality of conducting vias extending through the interposer substrate, and a conductor pattern on the electrically insulating surface portion of the interposer substrate, the conductor pattern being conductively connected to the vias and defining connection locations for connection with at least one of the integrated circuit and the device substrate; forming at least a first plurality of conductive nanostructures on the electrically insulating surface portion of the interposer substrate; embedding each nanostructure in the first plurality of conductive nanostructures in a conduction controlling material; providing a first electrode in such a way that the first electrode is electrically connected to each nanostructure in the first plurality of nanostructures, and the first electrode is configured to allow connection thereof to the integrated circuit; and providing a
  • the steps of the method according to various embodiments of the present invention need not necessarily be carried out in any particular order, for instance, the nanostructures can be formed before the first and second electrodes are provided. Alternatively, one or both of the first and second electrodes may be provided before formation of the nanostructures.
  • the electrodes may be provided in any suitable manner, such as through photo-lithography, sputtering, evaporation, electroforming, silicidation etc.
  • the step of forming the at least first plurality of conductive nanostructures may comprise the steps of: providing a patterned catalyst layer on the interposer substrate; and growing each nanostructure in the first plurality of conductive nanostructures from the catalyst layer.
  • the electrodes may be the same material as the catalyst layer.
  • the catalyst layer conveniently be thick enough to utilize the upper part of the catalyst layer as catalyst to grow nanostructures from and the bottom part to be used as electrodes.
  • FIG. 1 schematically illustrates an application for an interposer device according to an example embodiment of the present invention, in the form of an electronic assembly
  • FIGS. 2A-B schematically show two embodiments of the nanostructure energy storage device comprised in the interposer device according to the present invention
  • FIG. 3 schematically shows a further embodiment of the nanostructure energy storage device comprised in the interposer device according to the present invention.
  • FIGS. 4 to 9 schematically illustrate different embodiments of the interposer device in FIG. 1 .
  • the interposer substrate may comprise a semiconducting or conducting substrate base, and an insulating surface coating at least partly covering the substrate base.
  • FIG. 1 schematically illustrates an electronic assembly 1 comprising a device substrate, here in the form of a simplified printed circuit board (PCB) 2 , an integrated circuit (IC) 3 , and an energy storing interposer device 4 according to an example embodiment of the present invention.
  • PCB printed circuit board
  • IC integrated circuit
  • FIG. 1 schematically illustrates an electronic assembly 1 comprising a device substrate, here in the form of a simplified printed circuit board (PCB) 2 , an integrated circuit (IC) 3 , and an energy storing interposer device 4 according to an example embodiment of the present invention.
  • PCB printed circuit board
  • IC integrated circuit
  • the PCB includes PCB connection pads 6 formed on a PCB-substrate 7
  • the IC 3 includes IC connection pads 9 .
  • the spacing between the IC connection pads 9 is considerably smaller than the spacing between the PCB connection pads 6 .
  • the interposer device 1 in FIG. 1 comprises an interposer substrate 11 , which is here provided as a substrate made of an electrically insulating material, a plurality of vias 12 extending through the interposer substrate 11 , a conductor pattern 13 , and a nanostructure energy storage device 14 .
  • the conductor pattern 13 is conductively connected to the vias 12 and configured to define connection locations for connection with the IC 3 and with the PCB 2 .
  • this is exemplified by conductors extending from a first set of bumps 15 for connection to the IC connection pads 9 to the vias 12 , with the vias here being directly connected through the interposer substrate 11 with a second set of bumps 17 for connection to the PCB connection pads 6 .
  • the nanostructure energy storage device 14 comprises at least a first plurality of conductive nanostructures and a conduction controlling material embedding the nanostructures. These structures are not explicitly shown in FIG. 1 , but will be described in greater detail below with reference to FIGS. 2A-B and FIG. 3 .
  • the nanostructure energy storage device 14 comprises a first electrode 19 and a second electrode 20 .
  • the first electrode 19 and the second electrode 20 are provided between the interposer substrate 11 and the nanostructures. Further, the first 19 and second 20 electrodes are interdigitated.
  • the first 19 and second 20 electrodes are configured to allow electrical connection of the nanostructure energy storage device 14 to both the PCB connection pads 6 and the IC connection pads 9 .
  • the nanostructure energy storage device 14 can, for example, be charged by electrical energy provided from the PCB connection pads, and discharged to the IC 3 through the IC connection pads 9 .
  • the interposer device 4 can function as a charge reservoir for the IC 3 connected to it.
  • first and second electrodes may be advantageous regardless of the electrode configuration.
  • FIG. 2A is a schematic top view of the nanostructure energy storage device 14 in FIG. 1 , with the conduction controlling material partly removed to expose some of the nanostructures comprised in the nanostructure energy storage device 14 .
  • the nanostructure energy storage device 14 comprises a first plurality of conductive nanostructures 25 formed on the first electrode 19 , and a second plurality of conductive nanostructure 27 formed on the second electrode 20 . All nanostructures are embedded in conduction controlling material 29 .
  • the nanostructure energy storage device 14 may be a nanostructure capacitor, in which case the conduction controlling material 29 may be a dielectric material, such as a so-called high-k dielectric. As is schematically indicated in FIG.
  • the first electrode 19 is connectable to a first PCB connection pad 6 a and to a first IC connection pad 9 a
  • the second electrode 20 is connectable to a second PCB connection pad 6 b and to a second IC connection pad 9 b.
  • FIG. 2B is a cross-section view from the side schematically showing another embodiment of the nanostructure energy storage device 14 in FIG. 2A comprising a first plurality 25 and second plurality 27 of nanostructures grown from an electrically insulating surface portion of the interposer substrate 11 .
  • the nanostructures may have been grown as film/forest from an unpatterned (such as uniform) catalyst layer, or from a patterned catalyst layer 31 as is schematically indicated in FIG. 2B .
  • the nanostructures are embedded in a conduction controlling material 29 , but the tips of the nanostructures have been exposed, for example through polishing or etching of the conducting controlling material 29 .
  • the first electrode 19 has been provided to achieve electrical contact between the first electrode 19 and each conductive nanostructure 25 in the first plurality of nanostructures.
  • the second electrode 20 has been provided to achieve electrical contact between the second electrode 20 and each conductive nanostructure 27 in the second plurality of nanostructures.
  • FIG. 3 is a cross-section view from the side schematically showing another embodiment of the nanostructure energy storage device 14 in FIG. 1 .
  • the conduction controlling material 29 is provided as a conformal coating on the nanostructures 25
  • the second electrode 20 is formed as a conformal coating on the conduction controlling material 29 .
  • FIGS. 4 to 9 are schematic cross-section views of various embodiments of the energy storing interposer device 4 in FIG. 1 mainly intended to illustrate different possible locations and connections of the nanostructure energy storage device 14 .
  • the nanostructure-conduction controlling material assembly 30 is embedded in the interposer substrate 11 , and the first electrode 19 comprises a via connection through the interposer substrate 11 .
  • the nanostructure-conduction controlling material assembly 30 is again embedded in the interposer substrate 11 .
  • the first electrode 19 and the second electrode 20 are both at least partly provided on top of the nanostructure-conduction controlling material assembly 30 .
  • the nanostructure-conduction controlling material assembly 30 is arranged on the side of the interposer 4 facing the PCB 2 .
  • FIG. 7 schematically shows a variation of the interposer 4 in FIG. 5 , where the first 19 and second electrodes 20 are partly on the nanostructure-conduction controlling material assembly 30 and partly directly on the interposer substrate 11 .
  • FIG. 8 and FIG. 9 show other variations of the interposer, where the nanostructure-conduction controlling material assembly 30 is arranged on one side of the interposer 4 and the first 19 and second 20 electrodes are both routed through the interposer substrate 11 to the other side of the interposer 4 .
  • the connection locations 15 are at least partly formed by conductive nanostructures.
  • any of the previously described embodiments are suitable to be fabricated at a wafer level processes and panel level processes used in the industry. They may conveniently address as wafer level interposer processing and panel level interposer processing respectively.
  • wafer level processing typically a circular shaped substrate is used, size ranging from 2 inch to 12 inch wafers.
  • the size is defined by the machine capacity and can be circular or rectangular or square ranging larger sizes typically but not limited to 12 to 100 inches.
  • Panel level processing is typically used in producing smart televisions. Hence the size can be as the size of a television or larger.
  • the larger the interposer substrate size the cost effective it becomes for individual interposer substrate to be used in the semiconductor industry for assembly.
  • the at least one of the embodiment described above is processed at a wafer level in a semiconductor processing foundry.
  • the at least one of the embodiments described above is processed using panel level processing.
  • the interposer wafer or panel level wafer is cut into smaller pieces utilizing standard dicing, plasma dicing or laser cutting.
  • the dicing, plasma dicing or laser cutting is done after the chips/dies are assembled on the interposer at a wafer or panel level.
  • singulation process step can be configured through dicing or plasma dicing or laser cutting to tailor the shape and size of the interposer is formed according to the need.
  • the energy storing interposer may conveniently be connected with the battery and/or power management unit in devices for example, smart phone, laptop, sensors or any other handheld battery driven devices such that the interposer according to the present invention can store energy.
  • Such stored energy can be used either to extend the regular batter life time, and/or to improve the power management systems and/or to tackle any unwanted power surge or ripples (voltage noise) such that extra power needed can be provided instantaneously.
  • fabricated capacitor may be used as decoupling capacitor which will then have the role to act as an electrical short for RF frequency, limiting the disturbance on the DC lines from voltage harmonic(s) or transient variations.
  • the decoupling capacitors are best used when connected a DC lines to the ground as close as possible from the device.
  • one of the aspects is to position or manufacture such capacitor between two redistribution connecting lines on the surface of the interposer.
  • the capacitor may be positioned or manufactured within the thickness of the interposer or in a recessed format of the interposer or at the bottom surface of the interposer.
  • capacitor in another aspect of using capacitor as a filtering capacitor (similarly to a DC block) should be located in series connection with a RF line and can be integrated within the via of the interposer or on one of the surfaces.
  • the filtering or de-coupling capacitors may be fully solid state devices. Therefore the device should be made of nanostructures connected or grown on the bottom electrode, before an insulating layer is deposited by means of PVD, CVD, ALD, before the top electrode is formed either using PVD, CVD, ALD or plating.
  • liquid, polymeric or Gel can be used as electrolyte joining two electrodes, located on the top of each other or simply interdigitated.
  • an interposer device for arrangement between an integrated circuit and a device substrate to interconnect the first integrated circuit and the device substrate through said interposer device, said interposer comprising: an interposer substrate; a plurality of conducting vias extending through said interposer substrate; a conductor pattern on said interposer substrate, said conductor pattern being conductively connected to said vias and defining connection locations for connection with at least one of said integrated circuit and said device substrate, and a plurality of nanostructure formed on at least one of the micro-bumps, wherein the said micro-bumps are configured to allow electrical connection of said integrated circuit and a device substrate.
  • a thick layer of catalyst is used to grow the nanostructures as well as to be used as connecting electrodes.
  • the catalyst can be thick layer of nickel, iron, platinum, palladium, nickel-silicide, cobalt, molybdenum, Au or alloys thereof, or can be combined with other materials from periodic table.
  • the method for making one or more nanostructures includes: depositing a conducting helplayer on an upper surface of a substrate; depositing a patterned layer of catalyst on the conducting helplayer; growing the one or more nanostructures on the layer of catalyst; and selectively removing the conducting helplayer between and around the one or more nanostructures.
  • the layer of catalyst is patterned after it is deposited.
  • the substrate additionally comprises a metal underlayer, co-extensive with its upper surface, and which is covered by the conducting helplayer.
  • the metal underlayer is patterned.
  • the metal underlayer comprises one or more metals selected from: Cu, Ti, W, Mo, Co, Pt, Al, Au, Pd, P, Ni, silicide and Fe.
  • the metal underlayer comprises one or more conducting alloys selected from: TiC, TiN, WN, and AlN.
  • the metal underlayer comprises one or more conducting polymers.
  • helplayer The technology described herein can be utilized with a number of different materials as the helplayer. It is important to select helplayer materials and etching parameters so that the nanostructures can be used as a self-aligned mask layer during the etching of the helplayer.
  • the choice of the helplayer material can depend on the material lying beneath the help layer.
  • the helplayer can also be a catalyst, as the selective removal process can also be used to remove any unwanted catalyst residuals between the grown nanostructures.
  • the catalyst can be nickel, iron, platinum, palladium, nickel-silicide, cobalt, molybdenum, Au or alloys thereof, or can be combined with other materials (e.g., silicon).
  • the catalyst can be optional, as the technology described herein can also be applied in a catalyst-free growth process for nanostructures. Catalyst can also be deposited through spin coating of catalyst particles.
  • a layer of catalyst is used to grow the nanostructures as well as to be used as connecting electrodes.
  • the catalyst can be a thick layer of nickel, iron, platinum, palladium, nickel-silicide, cobalt, molybdenum, Au or alloys thereof, or can be combined with other materials from periodic table.
  • any of the depositing is carried out by a method selected from: evaporating, plating, sputtering, molecular beam epitaxy, pulsed laser depositing, CVD, ALD, spin-coating or spray coating.
  • the one or more nanostructures comprises carbon, GaAs, ZnO, InP, InGaAs, GaN, InGaN, or Si.
  • the one or more nanostructures include nanofibers, nanotubes, or nanowires.
  • the conducting helplayer comprises a material selected from: a semiconductor, a conducting polymer, and an alloy.
  • the conducting helplayer is from 1 nm to 100 microns thick.
  • the one or more nanostructures are grown in a plasma.
  • the one or more nanostructures are carbide derived carbon.
  • the selective removal of the conducting helplayer is accomplished by etching.
  • the etching is plasma dry etching.
  • the etching is an electrochemical etching.
  • the etching is photo chemical pyrolysis etching.
  • the etching is pyrolysis etching.
  • the method further includes depositing an additional layer between the conducting help layer and the layer of catalyst.
  • growing a plurality of nanostructures was carried out using the method comprising: depositing a catalyst layer on the electrodes, the catalyst layer comprising grains having an average grain size different from the average grain size of the electrodes, thereby forming a stack of layers comprising the bottom layer and the catalyst layer; heating the stack of layers to a temperature where nanostructures can form and providing a gas comprising a reactant such that the reactant comes into contact with the catalyst layer.
  • chlorination process is used to derive carbon nanostructures from metal carbide layer e.g. forming carbon nanostructures from TiC.
  • growing of nanostructure may be carried out using the method comprising: depositing a stack of layers and crowing nanostructures on said stack of layers, wherein said stack of layers comprises materials permitting interdiffusion of said layers.
  • the interdiffused layers may conveniently be present in the nanostructures.
  • the stack of layers may be combination of different metals, catalyst metals or metal alloys.
  • such integration of capacitor is suitable by means of controlling the profile size, height and energy density of the capacitor and/or energy storing devices.
  • such integration is suitable by means of controlling the morphology of the grown nanostructures through growth processes suitably enable high surface area per unit area of the nanostructures.
  • such capacitor and or energy storage structures fabricated utilizing any one of the above mentioned methods and processes may be implemented directly on a substrate in combination with other integrated circuits included with active devices.
  • active substrate for example be a logic circuit, a microprocessor, a graphic processor, ASIC, CMOS devices, FPGA, analog RF circuits, sensors etc.
  • an integrated circuit may comprise apart from standard circuit elements, at least one capacitor and/or energy storing device fabricated according to any one of the methods described above. In such embodiments, the capacitor and/or energy storage device is connected directly to the main circuit as per circuit requirements.
  • such integration of capacitor is suitable by means of controlling the profile size, height and energy density of the capacitor and/or energy storing devices.
  • such integration is suitable by means of controlling the morphology of the grown nanostructures through growth processes suitably enable high surface area per unit area of the nanostructures.
  • Nanostructure is a structure that has at least one dimension in the order of nanometers.
  • Nanostructures can include nanofibers, nanotubes or nanowires of carbon, GaAs, ZnO, InP, GaN, InGaN, InGaAs, Si, or other materials. Nanostructure may also be formed by deriving nanostructure from alloys e.g. carbide derived carbon from TiC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A nanostructure energy storage device comprising: a first electrode provided on an electrically insulating surface portion of a substrate; a plurality of conductive nanostructures provided on the first electrode; a conduction controlling material conformally coating each nanostructure in the plurality of conductive nanostructures; and a second electrode covering the conduction controlling material, wherein the first electrode and the second electrode are configured to allow electrical connection of the nanostructure energy storage device to an integrated circuit.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an interposer device for arrangement between an electronic device and a device substrate to interconnect the first electronic device and the device substrate through said interposer device. The present invention also relates to a method of manufacturing such an interposer device.
  • BACKGROUND OF THE INVENTION
  • Electronic devices need electrical energy to operate. In a portable electronic device, a battery is typically provided, and electrical energy is drawn from the battery to power integrated circuits comprised in the electronic device. Moreover, a number of driving factors that are continuously improving the system level performance including but not limited to smaller form-factor with higher data transfer rate, signal integrity, memory bandwidth, power and thermal management capability etc. It is of highest importance that the today's integrated and portable products are continuously striving to improve at least those metrics. The maturity of the Through Silicon Via (TSV) technology has opened up enormous possibilities for homogenous and heterogeneous integration of logic, analog, sensors and memory co-located closely together in a small form-factor assembly. Moreover, TSV technology breakthrough and maturity has enabled exploiting the possibilities of advancing the interposer packaging technology to the next level. Some good examples of interposers including TSV are disclosed in patent U.S. Pat. Nos. 8,426,961B2, 8,928,132B2, 8,426,961B2, 8,263,434B2. Adaptation of interposer technology is steadily increasing in the semiconductor industry. Interposer technology brings multiples of benefits including enabling heterogeneous die packaging, shorter interconnect lines by means of TSVs, integrated passive devices (IPD), vertical package integration etc. Such integration enables to gain high density I/O so that different types of dies can be located near to each other on a TSV interposer e.g. logic and memory. Such technology is also known as 2.5D packaging technology. Moreover, silicon dies can be stacked tier-to-tier on top of each other, which reduces the physical area for defined components. Such tier-to-tier stacking is called 3D packaging technology.
  • However, integration of such densely populated dies may come with a price. Many low-power, high speed integrated circuits are extremely sensitive to electrical noise generated by the continuous switching of the transistors located in the circuit blocks. A known solution to this problem is to connect the circuit with a so called decoupling capacitor to minimize the power fluctuation induced noise. A decoupling capacitor essentially stores charge locally, which can then give out required energy to compensate for any sudden fluctuations or voltage variations during transistor switching stages and thereby minimize any voltage noise so that the circuit can continue functioning smoothly, and thereby enhanced performance is achieved.
  • It is also known that the impact of the inductance becomes more crucial as the frequency of the circuit goes up. Hence, an important improvement is to have such decoupling capacitor as close as possible to the intended circuit, for which it should serve to reduce the parasitic inductance corning from the interconnect lines. Many approaches have been made to produce integrated decoupling capacitor, e.g. exploiting part of gate dielectric layer, exploiting the spaces between the metal layers of the circuit, multi-layer dissimilar materials stacked capacitor structures, etc. Such approaches however suffer from either the need for a substantial footprint of active silicon area, dielectric leakage, parasitic resistance, or are limited by the fundamental limitations in increasing in capacitance per unit area defined by the parallel plate area or from processing complexity or cost. A good example of different approaches is disclosed in the patent U.S. Pat. No. 7,416,954B2.
  • Advantages of having an integrated silicon based capacitor on an interposer are explained in the patent U.S. Pat. No. 7,518,881B2. Such integration enables to reduce voltage noise on an integrated (IC) circuit device that may be connected to the capacitor integrated interposer. The main advancement of the disclosure was that the capacitor was brought closer to the IC by having it integrated at the surface of the interposer where the IC will be connected. A variation of such an approach is disclosed in U.S. Pat. No. 7,488,624B2 where it is described how to configure multiples of silicon based integrated capacitors in an interposer. Yet another example of an integrated capacitor is disclosed in U.S. Pat. No. 8,618,651B1, where silicon capacitors are formed within blind TSV vias. Another example of silicon trench based capacitor is disclosed in U.S. Pat. No. 9,236,442B2, where high aspect ratio silicon trenches are used to manufacture capacitor devices. A variation of a trench capacitor manufacturing method is disclosed in U.S. Pat. No. 9,257,383B2.
  • Hence, traditional silicon based embedded high aspect ratio trench capacitor technology has matured to be used for volume production and may be found in today's smartphone packaging. However, given the trend in miniaturization, the potential of the silicon based capacitor technology is limited by the ability to tailor the capacitor density per unit area, undesired parasitic resistances, increased film stress in the silicon substrate during processing, escalated manufacturing complexity and economy of costs per functions.
  • Furthermore, for many integrated circuits, it would be desirable to also store energy locally. However, local energy storage in an integrated circuit requires the use of valuable space and/or processing that either may not be compatible with standard so called front end manufacturing processes or may not be economically advantageous or combination thereof.
  • Hence, there are apparently a number of avenues where the interposer assembly technology can further be improved and the present described invention disclosures intends to contribute to enable a smarter, better and cost effective interposer with reduced film stress, and added functionality to be used as an assembly platform.
  • SUMMARY
  • In view of the above-mentioned and other drawbacks of the prior art, it is an object of the present invention to provide for local energy storage and/or decoupling without having to modify the integrated circuit itself.
  • According to a first aspect of the present invention, it is therefore provided an interposer device for arrangement between an integrated circuit and a device substrate to interconnect the first integrated circuit and the device substrate through the interposer device, the interposer comprising: an interposer substrate having an electrically insulating surface portion; a plurality of conducting vias extending through the interposer substrate; a conductor pattern provided on the electrically insulating surface portion of the interposer substrate, the conductor pattern being conductively connected to the vias and defining connection locations for connection with at least one of the integrated circuit and the device substrate, and a nanostructure energy storage device comprising: at least a first plurality of conductive nanostructures provided on the electrically insulating surface portion of the interposer substrate; a conduction controlling material embedding each nanostructure in the first plurality of conductive nanostructures; a first electrode connected to each nanostructure in the first plurality of nanostructures; and a second electrode separated from each nanostructure in the first plurality of nanostructures by the conduction controlling material, wherein the first electrode and the second electrode are configured to allow electrical connection of the nanostructure energy storage device to the integrated circuit.
  • The first electrode may be conductively connected to the nanostructures, so that DC-current can flow from the first electrode to the nanostructures.
  • The interposer substrate may be made of an insulating material or material composition. Alternatively, the interposer substrate may comprise a conducting or semi-conducting base and an insulating coating to form an insulating surface portion of the interposer substrate at least where the nanostructures are provided. In embodiments, the insulating surface portion may be the entire surface of the interposer substrate. For example, the base material of the interposer substrate may be Si/doped Si, GaAs, SiC or InP, and the insulating coating may, for example, be an oxide, a nitride or an insulating polymer. In embodiments with a conducting or semiconducting substrate base, the insulating dielectric layer serves to isolate different metal vias and redistributions lines or layers from each other (and possibly also from the conducting or semiconducting base) to avoid any unwanted short circuits or electrical leakage. The dielectric layer in such cases may advantageously be plasma CVD deposited or ALD deposited or spin on glass coated or may be grown through oxidation or nitridation from the substrate using standard oxidation or nitridation processes used in the standard semiconductor processing schemes. In embodiments where the interposer substrate is made entirely of an insulating material, suitable materials include glass, various polyimides, alumina, and epoxy-based materials, such as SU-8. The conducting vias through the interposer substrate may advantageously be provided with a layer of diffusion barrier or dielectric barrier to stop diffusion of the metal to the interposer substrate.
  • By conduction controlling material should be understood any material that controls, such as prevents, electrical conduction between the second electrode and the nanostructures in the first plurality of nanostructures to allow for energy storage.
  • The present invention is based upon the realization that local energy storage and/or efficient and compact decoupling can conveniently be provided using an interposer device comprising a nanostructure energy storage device. In this way, considerable energy storage capability can be provided without the need for expensive and space consuming external components. Additionally, the local energy storage capability can be provided to already existing integrated circuits. Furthermore, the interposer device can be processed at higher temperatures than typical integrated circuits, allowing more freedom in the configuration of the nanostructures and/or a more cost-efficient processing.
  • In embodiments, the present invention thus contemplates to enable integrated capacitor interposer devices that may be tailored to be energy storage devices fulfilling both the capacitor and the energy storing requirements. Embodiments of the interposer device according to the present invention are also contemplated to be suitable to tailor the capacitance energy density needed for a given circuit need or the assembly requirements. Hence, embodiments of the present invention enable freedom of design and geometrical profile, cost effective processing and industrially scalability. In embodiments, the present invention also allows for controlling the growth of nanostructures as electrode materials to influence the electrode properties, crucial effective surface area enhancement and control over geometrical profile of charge storage devices.
  • According to various embodiments, the conductive nanostructures in the first plurality of conductive nanostructures may be vertical nanostructures grown on the interposer substrate. The use of grown nanostructures allows extensive tailoring of the properties of the nanostructures. For instance, the growth conditions may be selected to achieve a morphology giving a large surface area of each nanostructure, which may in turn increase the energy storage capacity of the nanostructure energy storage device.
  • The nanostructures may advantageously be carbon nanostructures, such as carbon nanofibers, carbon nanotubes or carbide-derived carbon nanostructures.
  • According to various embodiments, the first electrode may be arranged between the interposer substrate and each nanostructure in the first plurality of conductive nanostructures. In these embodiments, the nanostructures in the first plurality of nanostructures may be grown from the first electrode, that is, from a conductive material.
  • According to embodiments, the conduction controlling material may advantageously be arranged as a conformal coating on each nanostructure in the first plurality of conductive nanostructures.
  • According to embodiments, the second electrode may cover the conduction controlling material.
  • In some embodiments the first electrode may be a continuous electrode layer between the nanostructures in the first plurality of nanostructures and the insulating surface portion of the interposer substrate and the second electrode may be a continuous electrode layer covering the conduction controlling material such that the second electrode is separated from the first plurality of nanostructures by the conduction controlling material. In these embodiments, the conduction controlling material may advantageously be substantially conformal with the nanostructures, to provide for a very large total area of the second electrode.
  • According to various embodiments, moreover, the nanostructure energy storage device may further comprise a second plurality of conductive nanostructures embedded in the conduction controlling material. As for the nanostructures in the first plurality of nanostructures, the nanostructures in the second plurality of nanostructures may advantageously be grown on the interposer substrate.
  • In such embodiments, the second electrode may be conductively connected to each nanostructure in the second plurality of nanostructures.
  • In some embodiments, the second electrode may be arranged between the interposer substrate and each nanostructure in the second plurality of conductive nanostructures.
  • Each nanostructure in the second plurality of conductive nanostructures may advantageously be grown from the second electrode.
  • The second electrode, or a portion of the second electrode, may instead be connected to the tip of nanostructures in the second plurality of nanostructures. In such embodiments, the nanostructures may be grown, embedded in the conduction controlling material, and the tips of the nanostructures then be exposed by removal of conduction controlling material, for example through dry or wet etching or polishing.
  • According to further embodiments, the first electrode, or a portion of the first electrode, may also be connected to the tip of nanostructures in the first plurality of nanostructures. In such embodiments, the nanostructures may be grown, embedded in the conduction controlling material, and the tips of the nanostructures then be exposed by removal of conduction controlling material, for example through dry or wet etching or polishing. Accordingly, both the first electrode and the second electrode may be provided after growth of the nanostructures.
  • According to various embodiments, the nanostructure energy storage device may be a nanostructure capacitor, and the conduction controlling material may be a dielectric material. In a nanostructure capacitor, the conduction controlling material provides for energy storage by preventing electrical conduction from the conductive nanostructures in the first plurality of nanostructures to the second electrode. Hereby, energy can be stored through accumulation of charge at the nanostructure—dielectric interface. The dielectric may advantageously be a so-called high-k dielectric. The high k-dielectric materials e.g. be HfOx, TiOx, TaOx or other well-known high k dielectrics. Alternatively, the dielectric can be polymer based e.g. polypropylene, polystyrene, poly(p-xylylene), parylene etc. Other well-known dielectric materials, such as SiOx or SiNx, etc may also be used as the conduction controlling layer. Any other suitable conduction controlling materials may appropriately be used. The conduction controlling materials may be deposited via CVD, thermal processes, ALD or spin coating or spray coating or any other suitable method used in the industry.
  • According to other embodiments, the nanostructure energy storage device may be a nanostructure battery, and the conduction controlling material may be a solid electrolyte. In a nanostructure battery, the conduction controlling material provides for energy storage by allowing transport of ions through the solid electrolyte. Solid electrolytes may be chosen forms of solid crystals, ceramic, garnet or polymers or gel to act as electrolyte e.g. strontium titanate, yttria-stabilized zirconia, PMMA, KOH etc.
  • The interposer device according to various embodiments of the present invention may be configured to store a relatively large amount of energy to allow the nanostructure energy providing device to provide energy for operation of the integrated circuit connected to the interposer device. According to other embodiments, the nanostructure energy providing device may be configured to store a relatively small amount of energy needed to, for instance, allow the nanostructure energy providing device to function as a de-coupling capacitor to act as an electrical short for RF frequency, limiting the disturbance on the DC lines from voltage harmonic(s) or transient variations. According to yet further embodiments, the interposer device may include a plurality of nanostructure energy providing devices, which may provide mutually different functionalities.
  • Moreover, the interposer device according to various embodiments of the present invention may advantageously be included in an electronic component, further comprising an integrated circuit electrically connected to the conducting vias and/or the conductor pattern of the interposer device.
  • The electronic component may be comprised in an electronic device, such as a handheld electronic device.
  • According to a further aspect of the invention, it is provided an energy storage device comprising a substrate having an electrically insulating surface portion; at least a first plurality of conductive nanostructures provided on the electrically insulating surface portion of the interposer substrate; a conduction controlling material embedding each nanostructure in the first plurality of conductive nanostructures; a first electrode connected to each nanostructure in the first plurality of nanostructures; and a second electrode separated from each nanostructure in the first plurality of nanostructures by the conduction controlling material, wherein the first electrode and the second electrode are configured to allow electrical connection of the energy storage device to an external device.
  • In embodiments, the energy storage device (or the above-mentioned interposer device) may be comprised in an energy supply system of an electronic device (smart phone, laptop, sensor or any other handheld battery driven device). The energy storage device (or interposer device) may be directly connected to a battery of the electronic device, and/or be included in an energy management system of the electronic device, in such a way that the energy storage device can receive and store electrical energy, and supply the stored electrical energy to the electronic device when required. In particular, such stored energy can be used to either extend the regular batter life time, and/or improve the power management systems and/or tackle any unwanted power surge or ripples (voltage noise) such that extra power needed can be provided instantaneously.
  • According to a second aspect of the present invention, it is provided a method of manufacturing an interposer device for arrangement between an integrated circuit and a device substrate to interconnect the first integrated circuit and the device substrate through the interposer, the method comprising the steps of: providing an interposer substrate having an electrically insulating surface portion with a plurality of conducting vias extending through the interposer substrate, and a conductor pattern on the electrically insulating surface portion of the interposer substrate, the conductor pattern being conductively connected to the vias and defining connection locations for connection with at least one of the integrated circuit and the device substrate; forming at least a first plurality of conductive nanostructures on the electrically insulating surface portion of the interposer substrate; embedding each nanostructure in the first plurality of conductive nanostructures in a conduction controlling material; providing a first electrode in such a way that the first electrode is electrically connected to each nanostructure in the first plurality of nanostructures, and the first electrode is configured to allow connection thereof to the integrated circuit; and providing a second electrode in such a way that the second electrode is separated from each nanostructure in the first plurality of nanostructures by the conduction controlling material, and the second electrode is configured to allow connection thereof to the integrated circuit.
  • It should be noted that the steps of the method according to various embodiments of the present invention need not necessarily be carried out in any particular order, for instance, the nanostructures can be formed before the first and second electrodes are provided. Alternatively, one or both of the first and second electrodes may be provided before formation of the nanostructures.
  • The electrodes may be provided in any suitable manner, such as through photo-lithography, sputtering, evaporation, electroforming, silicidation etc.
  • According to embodiments, the step of forming the at least first plurality of conductive nanostructures may comprise the steps of: providing a patterned catalyst layer on the interposer substrate; and growing each nanostructure in the first plurality of conductive nanostructures from the catalyst layer. According to some embodiments, the electrodes may be the same material as the catalyst layer. According to some embodiments, the catalyst layer conveniently be thick enough to utilize the upper part of the catalyst layer as catalyst to grow nanostructures from and the bottom part to be used as electrodes.
  • Further embodiments of, and effects obtained through this second aspect of the present invention are largely analogous to those described above for the first aspect of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing an example embodiment of the invention, wherein:
  • FIG. 1 schematically illustrates an application for an interposer device according to an example embodiment of the present invention, in the form of an electronic assembly;
  • FIGS. 2A-B schematically show two embodiments of the nanostructure energy storage device comprised in the interposer device according to the present invention;
  • FIG. 3 schematically shows a further embodiment of the nanostructure energy storage device comprised in the interposer device according to the present invention; and
  • FIGS. 4 to 9 schematically illustrate different embodiments of the interposer device in FIG. 1.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • In the present detailed description, various embodiments of the energy storing interposer device is mainly described with reference to an energy storing interposer device comprising a nanostructure energy storage device in the form of a nanostructure capacitor.
  • It should be noted that this by no means limits the scope of the present invention, which equally well includes, for example, an interposer device comprising a nanostructure battery or a nanostructure capacitor and a nanostructure battery. Furthermore, the interposer substrate may comprise a semiconducting or conducting substrate base, and an insulating surface coating at least partly covering the substrate base.
  • FIG. 1 schematically illustrates an electronic assembly 1 comprising a device substrate, here in the form of a simplified printed circuit board (PCB) 2, an integrated circuit (IC) 3, and an energy storing interposer device 4 according to an example embodiment of the present invention.
  • The PCB includes PCB connection pads 6 formed on a PCB-substrate 7, and the IC 3 includes IC connection pads 9. As is schematically indicated in FIG. 1, the spacing between the IC connection pads 9 is considerably smaller than the spacing between the PCB connection pads 6.
  • The interposer device 1 in FIG. 1 comprises an interposer substrate 11, which is here provided as a substrate made of an electrically insulating material, a plurality of vias 12 extending through the interposer substrate 11, a conductor pattern 13, and a nanostructure energy storage device 14.
  • The conductor pattern 13 is conductively connected to the vias 12 and configured to define connection locations for connection with the IC 3 and with the PCB 2. In FIG. 1, this is exemplified by conductors extending from a first set of bumps 15 for connection to the IC connection pads 9 to the vias 12, with the vias here being directly connected through the interposer substrate 11 with a second set of bumps 17 for connection to the PCB connection pads 6.
  • The nanostructure energy storage device 14 comprises at least a first plurality of conductive nanostructures and a conduction controlling material embedding the nanostructures. These structures are not explicitly shown in FIG. 1, but will be described in greater detail below with reference to FIGS. 2A-B and FIG. 3.
  • In addition to the above-mentioned conductive nanostructures and conduction controlling material, the nanostructure energy storage device 14 comprises a first electrode 19 and a second electrode 20. In the example of FIG. 1, the first electrode 19 and the second electrode 20 are provided between the interposer substrate 11 and the nanostructures. Further, the first 19 and second 20 electrodes are interdigitated. In addition, the first 19 and second 20 electrodes are configured to allow electrical connection of the nanostructure energy storage device 14 to both the PCB connection pads 6 and the IC connection pads 9. Hereby, the nanostructure energy storage device 14 can, for example, be charged by electrical energy provided from the PCB connection pads, and discharged to the IC 3 through the IC connection pads 9. Thus, the interposer device 4 can function as a charge reservoir for the IC 3 connected to it.
  • It should be noted that many other electrode configurations are possible and may be advantageous depending on the particular application. It should also be noted that the configuration of the first and second electrodes to allow electrical connection to both the integrated circuit and to the device substrate may be advantageous regardless of the electrode configuration.
  • FIG. 2A is a schematic top view of the nanostructure energy storage device 14 in FIG. 1, with the conduction controlling material partly removed to expose some of the nanostructures comprised in the nanostructure energy storage device 14.
  • Referring to FIG. 2A, the nanostructure energy storage device 14 comprises a first plurality of conductive nanostructures 25 formed on the first electrode 19, and a second plurality of conductive nanostructure 27 formed on the second electrode 20. All nanostructures are embedded in conduction controlling material 29. In this example, the nanostructure energy storage device 14 may be a nanostructure capacitor, in which case the conduction controlling material 29 may be a dielectric material, such as a so-called high-k dielectric. As is schematically indicated in FIG. 2A, the first electrode 19 is connectable to a first PCB connection pad 6 a and to a first IC connection pad 9 a, and the second electrode 20 is connectable to a second PCB connection pad 6 b and to a second IC connection pad 9 b.
  • FIG. 2B is a cross-section view from the side schematically showing another embodiment of the nanostructure energy storage device 14 in FIG. 2A comprising a first plurality 25 and second plurality 27 of nanostructures grown from an electrically insulating surface portion of the interposer substrate 11. In particular, the nanostructures may have been grown as film/forest from an unpatterned (such as uniform) catalyst layer, or from a patterned catalyst layer 31 as is schematically indicated in FIG. 2B.
  • The nanostructures are embedded in a conduction controlling material 29, but the tips of the nanostructures have been exposed, for example through polishing or etching of the conducting controlling material 29. On top of the tips 33 of the nanostructures 25 in the first plurality of nanostructures, the first electrode 19 has been provided to achieve electrical contact between the first electrode 19 and each conductive nanostructure 25 in the first plurality of nanostructures. On top of the tips 35 of the nanostructures 27 in the second plurality of nanostructures, the second electrode 20 has been provided to achieve electrical contact between the second electrode 20 and each conductive nanostructure 27 in the second plurality of nanostructures.
  • FIG. 3 is a cross-section view from the side schematically showing another embodiment of the nanostructure energy storage device 14 in FIG. 1. In the embodiment in FIG. 3, there is no second plurality of nanostructures, but all of the nanostructures 25 belong to the above-mentioned first plurality of nanostructures formed on the first electrode 19. Further, the conduction controlling material 29 is provided as a conformal coating on the nanostructures 25, and the second electrode 20 is formed as a conformal coating on the conduction controlling material 29.
  • FIGS. 4 to 9 are schematic cross-section views of various embodiments of the energy storing interposer device 4 in FIG. 1 mainly intended to illustrate different possible locations and connections of the nanostructure energy storage device 14.
  • Referring first to FIG. 4, the nanostructure-conduction controlling material assembly 30 is embedded in the interposer substrate 11, and the first electrode 19 comprises a via connection through the interposer substrate 11.
  • In FIG. 5, the nanostructure-conduction controlling material assembly 30 is again embedded in the interposer substrate 11. Here, however, the first electrode 19 and the second electrode 20 are both at least partly provided on top of the nanostructure-conduction controlling material assembly 30.
  • In FIG. 6, the nanostructure-conduction controlling material assembly 30 is arranged on the side of the interposer 4 facing the PCB 2.
  • FIG. 7 schematically shows a variation of the interposer 4 in FIG. 5, where the first 19 and second electrodes 20 are partly on the nanostructure-conduction controlling material assembly 30 and partly directly on the interposer substrate 11.
  • FIG. 8 and FIG. 9 show other variations of the interposer, where the nanostructure-conduction controlling material assembly 30 is arranged on one side of the interposer 4 and the first 19 and second 20 electrodes are both routed through the interposer substrate 11 to the other side of the interposer 4. In these figures, the connection locations 15 are at least partly formed by conductive nanostructures.
  • Any of the previously described embodiments are suitable to be fabricated at a wafer level processes and panel level processes used in the industry. They may conveniently address as wafer level interposer processing and panel level interposer processing respectively. In wafer level processing typically a circular shaped substrate is used, size ranging from 2 inch to 12 inch wafers. In the panel level processing, the size is defined by the machine capacity and can be circular or rectangular or square ranging larger sizes typically but not limited to 12 to 100 inches. Panel level processing is typically used in producing smart televisions. Hence the size can be as the size of a television or larger. The larger the interposer substrate size, the cost effective it becomes for individual interposer substrate to be used in the semiconductor industry for assembly. In an aspect for wafer level processes, the at least one of the embodiment described above is processed at a wafer level in a semiconductor processing foundry. In another aspect, for panel level processes, the at least one of the embodiments described above is processed using panel level processing. Depending on the design requirements, after processing, the interposer wafer or panel level wafer is cut into smaller pieces utilizing standard dicing, plasma dicing or laser cutting. In another aspect, the dicing, plasma dicing or laser cutting is done after the chips/dies are assembled on the interposer at a wafer or panel level. Such singulation process step can be configured through dicing or plasma dicing or laser cutting to tailor the shape and size of the interposer is formed according to the need.
  • In an aspect of the use of any one of the above mentioned interposer embodiments, the energy storing interposer may conveniently be connected with the battery and/or power management unit in devices for example, smart phone, laptop, sensors or any other handheld battery driven devices such that the interposer according to the present invention can store energy. Such stored energy can be used either to extend the regular batter life time, and/or to improve the power management systems and/or to tackle any unwanted power surge or ripples (voltage noise) such that extra power needed can be provided instantaneously.
  • In addition, the following information is provided:
  • In one aspect, fabricated capacitor may be used as decoupling capacitor which will then have the role to act as an electrical short for RF frequency, limiting the disturbance on the DC lines from voltage harmonic(s) or transient variations.
  • The decoupling capacitors are best used when connected a DC lines to the ground as close as possible from the device. Hence in the present invention, one of the aspects is to position or manufacture such capacitor between two redistribution connecting lines on the surface of the interposer. in another aspect, the capacitor may be positioned or manufactured within the thickness of the interposer or in a recessed format of the interposer or at the bottom surface of the interposer.
  • In another aspect of using capacitor as a filtering capacitor (similarly to a DC block) should be located in series connection with a RF line and can be integrated within the via of the interposer or on one of the surfaces.
  • In one aspect of the filtering or de-coupling capacitors, they may be fully solid state devices. Therefore the device should be made of nanostructures connected or grown on the bottom electrode, before an insulating layer is deposited by means of PVD, CVD, ALD, before the top electrode is formed either using PVD, CVD, ALD or plating.
  • In another aspect for using the capacitor as storing devices, liquid, polymeric or Gel can be used as electrolyte joining two electrodes, located on the top of each other or simply interdigitated.
  • In another aspect of the present invention, an interposer device for arrangement between an integrated circuit and a device substrate to interconnect the first integrated circuit and the device substrate through said interposer device, said interposer comprising: an interposer substrate; a plurality of conducting vias extending through said interposer substrate; a conductor pattern on said interposer substrate, said conductor pattern being conductively connected to said vias and defining connection locations for connection with at least one of said integrated circuit and said device substrate, and a plurality of nanostructure formed on at least one of the micro-bumps, wherein the said micro-bumps are configured to allow electrical connection of said integrated circuit and a device substrate.
  • In some implementation, a thick layer of catalyst is used to grow the nanostructures as well as to be used as connecting electrodes. In such implementation, the catalyst can be thick layer of nickel, iron, platinum, palladium, nickel-silicide, cobalt, molybdenum, Au or alloys thereof, or can be combined with other materials from periodic table.
  • In one aspect of the present invention, the method for making one or more nanostructures includes: depositing a conducting helplayer on an upper surface of a substrate; depositing a patterned layer of catalyst on the conducting helplayer; growing the one or more nanostructures on the layer of catalyst; and selectively removing the conducting helplayer between and around the one or more nanostructures. In some implementations, the layer of catalyst is patterned after it is deposited. In some implementations, the substrate additionally comprises a metal underlayer, co-extensive with its upper surface, and which is covered by the conducting helplayer. In some implementations, the metal underlayer is patterned. In some implementations, the metal underlayer comprises one or more metals selected from: Cu, Ti, W, Mo, Co, Pt, Al, Au, Pd, P, Ni, silicide and Fe. In some implementations, the metal underlayer comprises one or more conducting alloys selected from: TiC, TiN, WN, and AlN. In some implementations, the metal underlayer comprises one or more conducting polymers.
  • The technology described herein can be utilized with a number of different materials as the helplayer. It is important to select helplayer materials and etching parameters so that the nanostructures can be used as a self-aligned mask layer during the etching of the helplayer. The choice of the helplayer material can depend on the material lying beneath the help layer.
  • The helplayer can also be a catalyst, as the selective removal process can also be used to remove any unwanted catalyst residuals between the grown nanostructures.
  • The catalyst can be nickel, iron, platinum, palladium, nickel-silicide, cobalt, molybdenum, Au or alloys thereof, or can be combined with other materials (e.g., silicon). The catalyst can be optional, as the technology described herein can also be applied in a catalyst-free growth process for nanostructures. Catalyst can also be deposited through spin coating of catalyst particles.
  • In some implementation, a layer of catalyst is used to grow the nanostructures as well as to be used as connecting electrodes. In such implementation, the catalyst can be a thick layer of nickel, iron, platinum, palladium, nickel-silicide, cobalt, molybdenum, Au or alloys thereof, or can be combined with other materials from periodic table.
  • In some implementations, any of the depositing is carried out by a method selected from: evaporating, plating, sputtering, molecular beam epitaxy, pulsed laser depositing, CVD, ALD, spin-coating or spray coating. In some implementations, the one or more nanostructures comprises carbon, GaAs, ZnO, InP, InGaAs, GaN, InGaN, or Si. In some implementations, the one or more nanostructures include nanofibers, nanotubes, or nanowires. In some implementations, the conducting helplayer comprises a material selected from: a semiconductor, a conducting polymer, and an alloy. In some implementations, the conducting helplayer is from 1 nm to 100 microns thick. In some implementations, the one or more nanostructures are grown in a plasma.
  • In some implementations, the one or more nanostructures are carbide derived carbon. In some implementations, the selective removal of the conducting helplayer is accomplished by etching. In some implementations, the etching is plasma dry etching. In some implementations, the etching is an electrochemical etching. In some implementations, the etching is photo chemical pyrolysis etching. In some implementations, the etching is pyrolysis etching. In some implementations, the method further includes depositing an additional layer between the conducting help layer and the layer of catalyst.
  • According to an aspect, growing a plurality of nanostructures was carried out using the method comprising: depositing a catalyst layer on the electrodes, the catalyst layer comprising grains having an average grain size different from the average grain size of the electrodes, thereby forming a stack of layers comprising the bottom layer and the catalyst layer; heating the stack of layers to a temperature where nanostructures can form and providing a gas comprising a reactant such that the reactant comes into contact with the catalyst layer.
  • In some implementation, chlorination process is used to derive carbon nanostructures from metal carbide layer e.g. forming carbon nanostructures from TiC.
  • In some implementation, growing of nanostructure may be carried out using the method comprising: depositing a stack of layers and crowing nanostructures on said stack of layers, wherein said stack of layers comprises materials permitting interdiffusion of said layers. Wherein, the interdiffused layers may conveniently be present in the nanostructures. The stack of layers may be combination of different metals, catalyst metals or metal alloys.
  • In one aspect, such integration of capacitor is suitable by means of controlling the profile size, height and energy density of the capacitor and/or energy storing devices. In one aspect, such integration is suitable by means of controlling the morphology of the grown nanostructures through growth processes suitably enable high surface area per unit area of the nanostructures.
  • In another aspect of the present invention, such capacitor and or energy storage structures fabricated utilizing any one of the above mentioned methods and processes may be implemented directly on a substrate in combination with other integrated circuits included with active devices. Such active substrate for example be a logic circuit, a microprocessor, a graphic processor, ASIC, CMOS devices, FPGA, analog RF circuits, sensors etc. As an example, an integrated circuit may comprise apart from standard circuit elements, at least one capacitor and/or energy storing device fabricated according to any one of the methods described above. In such embodiments, the capacitor and/or energy storage device is connected directly to the main circuit as per circuit requirements.
  • In one aspect, such integration of capacitor is suitable by means of controlling the profile size, height and energy density of the capacitor and/or energy storing devices. In one aspect, such integration is suitable by means of controlling the morphology of the grown nanostructures through growth processes suitably enable high surface area per unit area of the nanostructures.
  • With the method described herein, it is possible to manufacture individual nanostructures, arrays of nanostructures or “forests” of nanostructures.
  • “Nanostructure” is a structure that has at least one dimension in the order of nanometers.
  • Nanostructures can include nanofibers, nanotubes or nanowires of carbon, GaAs, ZnO, InP, GaN, InGaN, InGaAs, Si, or other materials. Nanostructure may also be formed by deriving nanostructure from alloys e.g. carbide derived carbon from TiC.
  • The person skilled in the art realizes that the present invention by no means is limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims.
  • In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. A computer program may be stored/distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. Any reference signs in the claims should not be construed as limiting the scope.

Claims (21)

    What is claimed is:
  1. 32. A nanostructure energy storage device comprising:
    a first electrode provided on an electrically insulating surface portion of a substrate;
    a plurality of conductive nanostructures provided on the first electrode;
    a conduction controlling material conformally coating each nanostructure in said plurality of conductive nanostructures; and
    a second electrode covering said conduction controlling material,
    wherein said first electrode and said second electrode are configured to allow electrical connection of said nanostructure energy storage device to an integrated circuit.
  2. 33. The nanostructure energy storage device according to claim 32, wherein said first electrode is included in a conductor pattern on said substrate.
  3. 34. The nanostructure energy storage device according to claim 32, wherein the substrate includes redistribution lines and/or layers and/or vias.
  4. 35. The nanostructure energy storage device according to claim 32, wherein said conductive nanostructures are vertical nanostructures grown on the first electrode.
  5. 36. The nanostructure energy storage device according to claim 35, further comprising a catalyst layer between said first electrode and said conductive nanostructures.
  6. 37. The nanostructure energy storage device according to claim 32, wherein the plurality of conductive nanostructures includes nanofibers, nanotubes or nanowires.
  7. 38. The nanostructure energy storage device according to claim 32, wherein said conductive nanostructures are carbon nanostructures.
  8. 39. The nanostructure energy storage device according to claim 32, wherein said nanostructure energy storage device is a nanostructure capacitor, and said conduction controlling material is a dielectric material.
  9. 40. The nanostructure energy storage device according to claim 32, wherein said nanostructure energy storage device is a nanostructure battery, and said conduction controlling material is a solid electrolyte.
  10. 41. The nanostructure energy storage device according to claim 32, further comprising a conductive helplayer arranged between the nanostructures and the electrically insulating surface portion of the substrate, the conductive helplayer being selectively removed between and around the nanostructures.
  11. 42. The nanostructure energy storage device according to claim 32, wherein each of the nanostructures is formed on a stack of layers comprising materials permitting interdiffusion of the layers of materials, wherein the interdiffused materials are present in the nanostructure.
  12. 43. An electronic device comprising:
    an integrated circuit; and
    the nanostructure energy storage device according to claim 32 coupled to the integrated circuit.
  13. 44. An electronic device comprising:
    a nanostructure energy storage device comprising:
    a first electrode provided on an electrically insulating surface portion of a substrate including redistribution lines and/or layers and/or vias;
    a plurality of conductive nanostructures provided on the first electrode;
    a conduction controlling material conformally coating each nanostructure in said plurality of conductive nanostructures; and
    a second electrode covering said conduction controlling material,
    wherein said first electrode and said second electrode are configured to allow electrical connection of said nanostructure energy storage device to an integrated circuit; and
    an integrated circuit coupled to at least one of the first electrode and the second electrode of the nanostructure energy storage device through the redistribution lines and/or layers and/or vias.
  14. 45. An interposer device for arrangement between an integrated circuit and a device substrate to interconnect the integrated circuit and the device substrate through said interposer device, said interposer device comprising:
    an interposer substrate having an electrically insulating surface portion;
    a plurality of conducting vias extending through said interposer substrate;
    a conductor pattern provided on said electrically insulating surface portion of the interposer substrate, said conductor pattern being conductively connected to said vias and defining connection locations for connection with at least one of said integrated circuit and said device substrate, and
    a nanostructure energy storage device comprising:
    a first electrode provided on the electrically insulating surface portion of the interposer substrate;
    a plurality of conductive nanostructures provided on the first electrode;
    a conduction controlling material conformally coating each nanostructure in said plurality of conductive nanostructures; and
    a second electrode covering said conduction controlling material,
    wherein said first electrode and said second electrode are configured to allow electrical connection of said nanostructure energy storage device to said integrated circuit.
  15. 46. The interposer device according to claim 45, wherein:
    the nanostructure energy storage device is at least partly embedded in the interposer substrate; and
    at least one of the conducting vias is connected to the first electrode.
  16. 47. The interposer device according to claim 45, wherein:
    the nanostructure energy storage device is at least partly embedded in the interposer substrate; and
    at least one of the conducting vias is connected to the second electrode.
  17. 48. The interposer device according to claim 45, wherein:
    the nanostructure energy storage device is at least partly embedded in the interposer substrate;
    at least one of the conducting vias is connected to the first electrode; and
    at least one of the conducting vias is connected to the second electrode.
  18. 49. The interposer device according to claim 45, wherein:
    the nanostructure energy storage device is at least partly embedded in the interposer substrate; and
    each of the first electrode and the second electrode is at least partly provided on top of the nanostructure energy storage device.
  19. 50. The interposer device according to claim 45, wherein:
    the nanostructure energy storage device is at least partly embedded in the interposer substrate; and
    at least one of the first electrode and the second electrode is partly on the nanostructure energy storage device and partly directly on the interposer substrate.
  20. 51. An electronic device, comprising:
    a device substrate;
    an integrated circuit; and
    an interposer device arranged between the integrated circuit and the device substrate to interconnect the integrated circuit and the device substrate through said interposer device, said interposer device comprising:
    an interposer substrate having an electrically insulating surface portion;
    a plurality of conducting vias extending through said interposer substrate;
    a conductor pattern provided on said electrically insulating surface portion of the interposer substrate, said conductor pattern being conductively connected to said vias and defining connection locations for connection with at least one of said integrated circuit and said device substrate, and
    a nanostructure energy storage device comprising:
    a first electrode provided on the electrically insulating surface portion of the interposer substrate;
    a plurality of conductive nanostructures provided on the first electrode;
    a conduction controlling material conformally coating each nanostructure in said plurality of conductive nanostructures; and
    a second electrode covering said conduction controlling material,
    wherein said first electrode and said second electrode are configured to allow electrical connection of said nanostructure energy storage device to said integrated circuit.
  21. 52. The electronic device according to claim 51, further comprising a battery and/or power management unit, wherein the interposer device is electrically connected to the battery and/or power management unit to allow the nanostructure energy storage device of the interposer device to receive energy from the battery and/or power management unit.
US16/986,679 2016-02-29 2020-08-06 Nanostructure energy storage and electronic device Abandoned US20200365502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/986,679 US20200365502A1 (en) 2016-02-29 2020-08-06 Nanostructure energy storage and electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
SE1650263 2016-02-29
SE1650263-5 2016-02-29
PCT/SE2017/050177 WO2017151040A1 (en) 2016-02-29 2017-02-24 Interposer with a nanostructure energy storage device
US201816078331A 2018-08-21 2018-08-21
US16/550,706 US10741485B2 (en) 2016-02-29 2019-08-26 Nanostructure energy storage and electronic device
US16/986,679 US20200365502A1 (en) 2016-02-29 2020-08-06 Nanostructure energy storage and electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/550,706 Continuation US10741485B2 (en) 2016-02-29 2019-08-26 Nanostructure energy storage and electronic device

Publications (1)

Publication Number Publication Date
US20200365502A1 true US20200365502A1 (en) 2020-11-19

Family

ID=59744295

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/078,331 Active US10438880B2 (en) 2016-02-29 2017-02-24 Interposer with a nanostructure energy storage device
US16/550,706 Active US10741485B2 (en) 2016-02-29 2019-08-26 Nanostructure energy storage and electronic device
US16/986,679 Abandoned US20200365502A1 (en) 2016-02-29 2020-08-06 Nanostructure energy storage and electronic device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/078,331 Active US10438880B2 (en) 2016-02-29 2017-02-24 Interposer with a nanostructure energy storage device
US16/550,706 Active US10741485B2 (en) 2016-02-29 2019-08-26 Nanostructure energy storage and electronic device

Country Status (7)

Country Link
US (3) US10438880B2 (en)
EP (1) EP3424078A4 (en)
JP (1) JP7007285B2 (en)
KR (2) KR102085789B1 (en)
CN (1) CN108701672B (en)
TW (2) TWI710082B (en)
WO (1) WO2017151040A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766072B (en) * 2017-08-29 2022-06-01 瑞典商斯莫勒科技公司 Energy storing interposer device, electronic device and manufacturing method
CN112823403B (en) 2018-10-18 2023-05-02 斯莫特克有限公司 Discrete metal-insulator-metal (MIM) energy storage component and method of manufacture
CN111682003B (en) * 2019-03-11 2024-04-19 奥特斯奥地利科技与系统技术有限公司 Component carrier comprising a component with a vertical through connection
US11038011B2 (en) * 2019-10-29 2021-06-15 Globalfoundries U.S. Inc. Metal-insulator-metal capacitors including nanofibers
US11477856B2 (en) 2020-01-21 2022-10-18 Goodrich Corporation Abraded bus bar area of CNT resistive element
WO2021158158A1 (en) * 2020-02-06 2021-08-12 Smoltek Ab Electronic system with power distribution network including capacitor coupled to component pads
TW202141805A (en) * 2020-04-17 2021-11-01 瑞典商斯莫勒科技公司 Metal-insulator-metal (mim) energy storage device with layered stack and manufacturing method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211210B2 (en) * 2000-09-08 2009-01-21 日本電気株式会社 Capacitor, mounting structure thereof, manufacturing method thereof, semiconductor device and manufacturing method thereof
KR20030064783A (en) 2000-11-09 2003-08-02 에프오씨 프랑켄버그 오일 컴패니 이에스티. A supercapacitor and a method of manufacturing such a supercapacitor
US6737699B2 (en) 2002-06-27 2004-05-18 Intel Corporation Enhanced on-chip decoupling capacitors and method of making same
US7030481B2 (en) 2002-12-09 2006-04-18 Internation Business Machines Corporation High density chip carrier with integrated passive devices
JP4293437B2 (en) 2003-09-18 2009-07-08 パナソニック株式会社 Capacitor-embedded substrate and electronic circuit capacitor
US7268419B2 (en) 2004-06-17 2007-09-11 Apple Inc. Interposer containing bypass capacitors for reducing voltage noise in an IC device
JP2006073651A (en) * 2004-08-31 2006-03-16 Fujitsu Ltd Semiconductor device
JP4823213B2 (en) * 2005-03-17 2011-11-24 富士通株式会社 Semiconductor package and manufacturing method thereof
US7126207B2 (en) * 2005-03-24 2006-10-24 Intel Corporation Capacitor with carbon nanotubes
US7435627B2 (en) 2005-08-11 2008-10-14 International Business Machines Corporation Techniques for providing decoupling capacitance
US7428138B2 (en) * 2005-10-06 2008-09-23 Intel Corporation Forming carbon nanotube capacitors
KR100836131B1 (en) 2006-10-19 2008-06-09 삼성전기주식회사 Nano-wire capacitor and manufacturing method thereof
US8385046B2 (en) * 2006-11-01 2013-02-26 The Arizona Board Regents Nano scale digitated capacitor
KR101543486B1 (en) * 2007-12-12 2015-08-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
WO2009123666A2 (en) 2007-12-19 2009-10-08 University Of Maryland College Park High-powered electrochemical energy storage devices and methods for their fabrication
US8546930B2 (en) * 2008-05-28 2013-10-01 Georgia Tech Research Corporation 3-D ICs equipped with double sided power, coolant, and data features
US8263434B2 (en) 2009-07-31 2012-09-11 Stats Chippac, Ltd. Semiconductor device and method of mounting die with TSV in cavity of substrate for electrical interconnect of Fi-PoP
JP5577670B2 (en) 2009-10-23 2014-08-27 富士通セミコンダクター株式会社 Method for manufacturing electronic circuit element
US8987896B2 (en) 2009-12-16 2015-03-24 Intel Corporation High-density inter-package connections for ultra-thin package-on-package structures, and processes of forming same
US8426961B2 (en) 2010-06-25 2013-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Embedded 3D interposer structure
KR101817159B1 (en) 2011-02-17 2018-02-22 삼성전자 주식회사 Semiconductor package having TSV interposer and method of manufacturing the same
US8896521B2 (en) * 2012-04-24 2014-11-25 Qualcomm Mems Technologies, Inc. Metal-insulator-metal capacitors on glass substrates
US8618651B1 (en) * 2012-11-01 2013-12-31 Nvidia Corporation Buried TSVs used for decaps
US9236442B2 (en) * 2012-11-26 2016-01-12 Broadcom Corporation Integration of chips and silicon-based trench capacitors using low parasitic silicon-level connections
US10115844B2 (en) * 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
US9396883B2 (en) * 2013-04-26 2016-07-19 Intel Corporation Faradaic energy storage device structures and associated techniques and configurations
KR20160026978A (en) 2013-07-03 2016-03-09 캘리포니아 인스티튜트 오브 테크놀로지 Carbon nanotubes-graphene hybrid structures for separator free silicon-sulfur batteries
US9257383B2 (en) 2014-01-15 2016-02-09 Globalfoundries Inc. Method and device for an integrated trench capacitor
US9510454B2 (en) * 2014-02-28 2016-11-29 Qualcomm Incorporated Integrated interposer with embedded active devices
US9165793B1 (en) 2014-05-02 2015-10-20 Invensas Corporation Making electrical components in handle wafers of integrated circuit packages
US10586651B2 (en) * 2014-06-26 2020-03-10 Cnm Technologies Gmbh Method of manufacture of a multilayer structure
US10586909B2 (en) * 2016-10-11 2020-03-10 Massachusetts Institute Of Technology Cryogenic electronic packages and assemblies
US11037737B2 (en) * 2017-06-27 2021-06-15 Uchicago Argonne, Llc Energy storage technology with extreme high energy density capability
TWI766072B (en) * 2017-08-29 2022-06-01 瑞典商斯莫勒科技公司 Energy storing interposer device, electronic device and manufacturing method

Also Published As

Publication number Publication date
TW202111901A (en) 2021-03-16
KR20180115693A (en) 2018-10-23
KR20200047546A (en) 2020-05-07
KR102085789B1 (en) 2020-03-06
TW201742220A (en) 2017-12-01
US20190051591A1 (en) 2019-02-14
WO2017151040A1 (en) 2017-09-08
KR102614960B1 (en) 2023-12-19
TWI710082B (en) 2020-11-11
CN108701672B (en) 2021-07-13
JP7007285B2 (en) 2022-02-10
EP3424078A1 (en) 2019-01-09
EP3424078A4 (en) 2019-05-01
US10438880B2 (en) 2019-10-08
US10741485B2 (en) 2020-08-11
CN108701672A (en) 2018-10-23
JP2019512871A (en) 2019-05-16
TWI757931B (en) 2022-03-11
US20190385943A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US10741485B2 (en) Nanostructure energy storage and electronic device
US11901281B2 (en) Bonded structures with integrated passive component
US10991652B2 (en) Energy storage interposer device with conductive nanostructures
US9793340B2 (en) Capacitor structure
US7741231B2 (en) Techniques for providing decoupling capacitance
TWI832909B (en) Discrete metal-insulator-metal (mim) energy storage component and manufacturing method
US20160087030A1 (en) Capacitor cell and method for manufacturing same
US20220392702A1 (en) Method for manufacturing high-k mim capacitor to improve electrical characteristics

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION