TW202035128A - 透明導電膜 - Google Patents

透明導電膜 Download PDF

Info

Publication number
TW202035128A
TW202035128A TW109101481A TW109101481A TW202035128A TW 202035128 A TW202035128 A TW 202035128A TW 109101481 A TW109101481 A TW 109101481A TW 109101481 A TW109101481 A TW 109101481A TW 202035128 A TW202035128 A TW 202035128A
Authority
TW
Taiwan
Prior art keywords
transparent conductive
layer
conductive layer
less
conductive film
Prior art date
Application number
TW109101481A
Other languages
English (en)
Inventor
梶原大輔
藤野望
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW202035128A publication Critical patent/TW202035128A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本發明之課題在於提供一種低溫下且短時間內可結晶轉化之透明導電膜。 透明導電膜1具備透明基材2及非晶質透明導電層5,透明基材2含有環烯烴系樹脂,非晶質透明導電層5可向結晶質轉化,非晶質透明導電層5之霍爾遷移率超過25.0(cm2 /V・s),使非晶質透明導電層5結晶轉化之後之結晶質透明導電層6之霍爾遷移率大於非晶質透明導電層5之霍爾遷移率。

Description

透明導電膜
本發明係關於一種透明導電膜,詳細而言,係關於一種適合用於光學用途之透明導電膜。
先前,係將具備包含銦錫複合氧化物之透明導電層之透明導電膜用於圖像顯示裝置內之觸控面板用基材等。
例如,專利文獻1中揭示有一種具備高分子膜及包含銦-錫複合氧化物之非晶質透明導電層之透明導電膜。專利文獻1之透明導電膜中,使用耐熱性及機械強度優異之聚對苯二甲酸乙二酯(PET)膜作為高分子膜基材。並且,利用150℃、60分鐘之高溫處理使非晶質透明導電層結晶轉化而提昇透明導電膜之導電性。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2017-71850號公報
[發明所欲解決之問題]
且說,近年來,因透明性高且雙折射率低,故將聚環烯烴(COP)膜用於透明基材之透明導電膜之需求高漲。
然而,COP膜與PET膜相比,耐熱性低且容易熱膨脹。因此,若實施150℃之高溫且60分鐘之長時間下之加熱處理,則COP膜存在產生熔解等熱損傷、或因COP膜之熱膨脹故而配置於其上側之ITO產生裂痕之情形。因此,要求於使非晶質透明導電層結晶轉化時儘可能於低溫下且短時間內進行加熱處理。
本發明提供一種低溫且短時間內可結晶轉化之透明導電膜。 [解決問題之技術手段]
本發明[1]包含如下一種透明導電膜:其具備透明基材及配置於透明基材之厚度方向一側之非晶質透明導電層,上述透明基材含有環烯烴系樹脂,上述非晶質透明導電層可向結晶質轉化,上述非晶質透明導電層之霍爾遷移率超過25.0(cm2 /V・s),使上述非晶質透明導電層結晶轉化之後之結晶質透明導電層之霍爾遷移率大於上述非晶質透明導電層之霍爾遷移率。
本發明[2]包含如[1]所記載之透明導電膜,其中上述結晶質透明導電層之載子密度未達90.0×1019 (/cm3 )。
本發明[3]包含如[1]或[2]所記載之透明導電膜,其中上述非晶質透明導電層含有銦系無機氧化物。
本發明[4]包含如[3]所記載之透明導電膜,其中上述非晶質透明導電層於厚度方向上具備雜質無機元素相對於銦之質量比為0.05以上之第1區域及雜質無機元素相對於銦之質量比未達0.05之第2區域。 [發明之效果]
根據本發明之透明導電膜,可於低溫下且短時間內使非晶質透明導電層結晶轉化。
<一實施形態> 參照圖1~圖2說明本發明之透明導電膜1之一實施形態。
於圖1中,紙面上下方向為上下方向(厚度方向、第1方向),紙面上側為上側(厚度方向一側、第1方向一側),紙面下側為下側(厚度方向另一側、第1方向另一側)。又,紙面左右方向及深度方向為與上下方向正交之面方向。具體而言,依照各圖之方向箭頭。
1.透明導電膜 透明導電膜1具有有特定厚度之膜狀(包含片狀),於與厚度方向正交之特定方向(面方向)上延伸,具有平坦的上表面及平坦的下表面。透明導電膜1例如為圖像顯示裝置所具備之觸控面板用基材等一零件,即,並非圖像顯示裝置。即,透明導電膜1係用於製作圖像顯示裝置等之零件,不包含LCD模組等圖像顯示元件,而包含後文中敍述之透明基材2、硬塗層3、光學調整層4及非晶質透明導電層5,且可作為零件單獨流通,係可於工業上利用之器件。
具體而言,如圖1所示,透明導電膜1具備透明基材2、配置於透明基材2之上表面(厚度方向一方面)之硬塗層3、配置於硬塗層3之上表面之光學調整層4及配置於光學調整層4之上表面之非晶質透明導電層5。更具體而言,透明導電膜1依序具備透明基材2、硬塗層3、光學調整層4及透明導電層5。透明導電膜1較佳為包含透明基材2、硬塗層3、光學調整層4及透明導電層5。又,透明導電膜1為透光性導電膜。
2.透明基材 透明基材2係用於確保透明導電膜1之機械強度之透明的基材。即,透明基材2與硬塗層3及光學調整層4一同支持非晶質透明導電層5。
透明基材2係透明導電膜1之最下層,具有膜狀。透明基材2以與硬塗層3之下表面接觸之方式配置於硬塗層3之下表面整面。
透明基材2含有環烯烴系樹脂。較佳為透明基材2係由環烯烴系樹脂形成之環烯烴系膜。藉此,可提高透明導電膜1之透明性,且可降低雙折射率。此外,環烯烴系膜中使結晶轉化之速度變慢之雜質(水分等)之量少,故與聚對苯二甲酸乙二酯系膜等其他透明基材相比,可於短時間內使非晶質透明導電層5結晶轉化。
環烯烴系樹脂係使環烯烴單體聚合而獲得,且係主鏈之重複單元中具有脂環結構之高分子。環烯烴系樹脂較佳為非晶質環烯烴系樹脂。
作為環烯烴系樹脂,例如可列舉:包含環烯烴單體之環烯烴均聚物(COP)、包含環烯烴單體與乙烯等烯烴等之共聚物之環烯烴共聚物(COC)等。
作為環烯烴單體,可列舉:例如降𦯉烯、甲基降𦯉烯、二甲基降𦯉烯、亞乙基降𦯉烯、丁基降𦯉烯、二環戊二烯、二氫二環戊二烯、四環十二烯、三環戊二烯等多環式烯烴,例如環丁烯、環戊烯、環辛二烯、環辛三烯等單環式烯烴等。該等環烯烴可單獨使用或併用2種以上。
透明基材2之全光線透過率(JIS K 7375-2008)例如為80%以上,較佳為85%以上。
就機械強度、將透明導電膜1作為觸控面板用膜時之觸點特性等觀點而言,透明基材2之厚度例如為2 μm以上,較佳為20 μm以上,又,例如為300 μm以下,較佳為150 μm以下。透明基材2之厚度例如可使用微計測器式厚度計進行測定。
3.硬塗層 硬塗層3係用於抑制當製造透明導電膜1時透明基材2上產生傷痕之保護層。又,係用於抑制當使複數層透明導電膜1積層之情形時非晶質透明導電層5上產生擦傷之耐擦傷層。
硬塗層3具有膜狀。硬塗層3以與透明基材2之上表面接觸之方式配置於透明基材2之上表面整面。更具體而言,硬塗層3以與透明基材2之上表面及光學調整層4之下表面接觸之方式配置於透明基材2與光學調整層4之間。
硬塗層3由硬塗組合物形成。硬塗組合物含有樹脂,較佳為由樹脂構成。
作為樹脂,例如可列舉硬化性樹脂、熱塑性樹脂(例如聚烯烴樹脂)等,較佳可列舉硬化性樹脂。
作為硬化性樹脂,可列舉例如藉由活性能量線(具體而言,紫外線、電子束等)之照射而硬化之活性能量線硬化性樹脂,例如藉由加熱而硬化之熱硬化性樹脂等,較佳可列舉活性能量線硬化性樹脂。
活性能量線硬化性樹脂例如可列舉具有分子中具有聚合性碳-碳雙鍵之官能基之聚合物。作為此種官能基,例如可列舉:乙烯基、(甲基)丙烯醯基(甲基丙烯醯基及/或丙烯醯基)等。
作為活性能量線硬化性樹脂,具體而言,例如可列舉丙烯酸胺基甲酸酯、環氧丙烯酸酯等(甲基)丙烯酸系紫外線硬化性樹脂。
又,作為除活性能量線硬化性樹脂以外之硬化性樹脂,例如可列舉:胺基甲酸酯樹脂、三聚氰胺樹脂、醇酸樹脂、矽氧烷系聚合物、有機矽烷縮合物等熱硬化性樹脂。
樹脂可單獨使用或併用2種以上。
硬塗組合物亦可含有粒子。藉此,可將硬塗層3設為具有耐結塊特性之抗結塊層。
作為粒子,可列舉無機粒子、有機粒子等。作為無機粒子,可列舉:例如氧化矽粒子、例如包含氧化鋯、氧化鈦、氧化鋅、氧化錫等之金屬氧化物粒子、例如碳酸鈣等碳酸鹽粒子等。作為有機粒子,例如可列舉交聯丙烯酸樹脂粒子等。粒子可單獨使用或併用2種以上。
硬塗組合物可進而含有調平劑、觸變劑、抗靜電劑等公知之添加劑。
就耐擦傷性之觀點而言,硬塗層3之厚度例如為0.1 μm以上,較佳為0.5 μm以上,又,例如為10 μm以下,較佳為3 μm以下。硬塗層3之厚度例如可使用穿透式電子顯微鏡藉由剖面觀察而測定。
4.光學調整層 光學調整層4係調整透明導電膜1之光學物性(例如折射率)以一面抑制非晶質透明導電層5之圖案之視認一面確保透明導電膜1優異之透明性的層。
光學調整層4具有膜狀,以與硬塗層3之上表面接觸之方式配置於硬塗層3之上表面整面。更具體而言,光學調整層4以與硬塗層3之上表面及非晶質透明導電層5之下表面接觸之方式配置於硬塗層3與非晶質透明導電層5之間。
光學調整層4由光學調節組合物形成。光學調節組合物含有樹脂,較佳為含有樹脂及粒子。
作為樹脂,並無特別限制,例如可列舉硬塗組合物中例示之樹脂。較佳可列舉硬化性樹脂,更佳可列舉活性能量線硬化性樹脂,進而較佳可列舉 (甲基)丙烯酸系紫外線硬化性樹脂。
樹脂之含有比率相對於光學調節組合物例如為10質量%以上,較佳為25質量%以上,又,例如為95質量%以下,較佳為60質量%以下。
作為粒子,可根據光學調整層所要求之折射率選擇合適之材料,例如可列舉硬塗組合物中例示之粒子。就折射率之觀點而言,較佳可列舉無機粒子,更佳可列舉金屬氧化物粒子,進而較佳可列舉氧化鋯粒子(ZrO2 )。
粒子之含有比率相對於光學調節組合物例如為5質量%以上,較佳為40質量%以上,又,例如為90質量%以下,較佳為75質量%以下。
光學調節組合物可進而含有調平劑、觸變劑、抗靜電劑等公知之添加劑。
光學調整層4之折射率例如為1.40以上,較佳為1.55以上,又,例如為1.80以下,較佳為1.70以下。折射率例如可根據阿貝折射率計而測定。
光學調整層4之厚度例如為5 nm以上,較佳為10 nm以上,又,例如為200 nm以下,較佳為100 nm以下。光學調整層4之厚度例如可使用穿透式電子顯微鏡藉由剖面觀察而測定。
5.非晶質透明導電層 非晶質透明導電層5係視需要進行結晶化並藉由圖案化而形成為所需之圖案(例如電極圖案或配線圖案)之透明的導電層。
非晶質透明導電層5為透明導電膜1之最上層,具有膜狀。非晶質透明導電層5以與光學調整層4之上表面接觸之方式配置於光學調整層4之上表面整面。
作為非晶質透明導電層5之材料,例如可列舉銦系無機氧化物、銻系無機氧化物等,較佳可列舉銦系無機氧化物。
非晶質透明導電層5之材料中較佳包含有(摻雜有)選自由Sn、Zn、Ga、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr所組成之群中之至少1種雜質無機元素。作為雜質無機元素,較佳可列舉Sn。
作為含有雜質無機元素之無機氧化物,例如於銦系無機氧化物之情形時,可列舉銦錫複合氧化物(ITO),例如於銻系無機氧化物之情形時,可列舉銻錫複合氧化物(ATO)。較佳可列舉ITO。
於非晶質透明導電層5由ITO形成之情形時,於非晶質透明導電層5整體中,氧化錫(SnO2 )含量相對於氧化錫及氧化銦(In2 O3 )之合計量,例如為0.5質量%以上,較佳為3質量%以上,又,例如為15質量%以下,較佳為13質量%以下。
非晶質透明導電層5可由單層構成,或可由複數層(厚度方向區域)構成。層數並不限定,例如可列舉2層以上5層以下,較佳可列舉2層。
較佳為非晶質透明導電層5由複數層構成。
具體而言,如圖1之假想線所示,例如非晶質透明導電層5具備第1層(第1區域之一例)5a及配置於第1層5a之上側之第2層(第2區域之一例)5b。
第1層5a及第2層5b較佳為均由含有雜質無機元素之無機氧化物形成,較佳為均由含有雜質無機元素之銦系無機氧化物形成,進而較佳為均由ITO形成。
又,於該情形時,距離透明基材2最遠之層(即第2層5b)之雜質無機元素(較佳為Sn)相對於銦之質量比較佳為於構成非晶質透明導電層5之複數層(即,第1層5a及第2層5b)之中非最大,更佳為最小。即,於非晶質透明導電層5包含第1層5a及第2層5b之情形時,第2層5b之雜質無機元素相對於銦之質量比小於第1層5a之雜質無機元素相對於銦之質量比。
具體而言,第1層5a較佳為雜質無機元素相對於銦之質量比為0.05以上,第2層5b較佳為雜質無機元素相對於銦之質量比未達0.05。藉此,可更確實地於低溫且短時間內實現非晶質透明導電層5之結晶轉化。
更具體而言,於第1層5a由ITO形成之情形時,於第1層5a中,氧化錫(SnO2 )含量相對於氧化錫及氧化銦(In2 O3 )之合計量,例如為3質量%以上,較佳為8質量%以上,又,例如為15質量%以下,較佳為13質量%以下。第1層5a之氧化錫之含量可提昇透明性或表面電阻之穩定性。
於第2層5b由ITO形成之情形時,於第2層5b中,氧化錫(SnO2 )含量相對於氧化錫及氧化銦(In2 O3 )之合計量,例如為0.1質量%以上,較佳為2質量%以上,又,例如為未達8質量%,較佳為未達5質量%。只要第2層5b之氧化錫之含量為上述範圍內,則可使非晶質透明導電層5容易結晶轉化。
非晶質透明導電層5中之第1層5a之厚度方向之比率例如為40%以上,較佳為50%以上,更佳為60%以上,又,例如為99%以下,較佳為95%以下,更佳為90%以下,進而較佳為80%以下。具體而言,第1層5a之厚度例如為5 nm以上,較佳為10 nm以上,更佳為20 nm以上,又,例如為285 nm以下,較佳為180 nm以下,更佳為100 nm以下,進而較佳為38 nm以下。
非晶質透明導電層5中之第2層5b之厚度方向之比率例如為1%以上,較佳為3%以上,更佳為5%以上,進而較佳為10%以上,尤佳為20%以上,又,例如為60%以下,較佳為50%以下,更佳為40%以下。具體而言,第2層5b之厚度例如為1 nm以上,較佳為3 nm以上,又,例如為40 nm以下,較佳為20 nm以下,更佳為10 nm以下。
非晶質透明導電層5之總厚度例如為10 nm以上,較佳為15 nm以上,又,例如為300 nm以下,較佳為180 nm以下,更佳為100 nm以下,進而較佳為60 nm以下,尤佳為未達40 nm。非晶質透明導電層5之厚度例如可使用穿透式電子顯微鏡藉由剖面觀察而測定。
非晶質透明導電層5為非晶質。
關於透明導電層為非結晶質還是結晶質,可藉由如下方式判斷:例如,於透明導電層為ITO層之情形時,浸漬於20℃之鹽酸(濃度5質量%)15分鐘之後,進行水洗、乾燥,並測定15 mm左右之間之端子間電阻。於本說明書中,於向鹽酸(20℃、濃度:5質量%)浸漬、水洗、乾燥之後,15 mm間之端子間電阻超過10 kΩ之情形時,將ITO層判斷為非晶質,於15 mm間之端子間電阻為10 kΩ以下之情形時,將ITO層判斷為結晶質。
6.透明導電膜之製造方法 其次,說明製造透明導電膜1之方法。為了製造透明導電膜1,例如於透明基材2之上表面(厚度方向一面)依序設置硬塗層3、光學調整層4及非晶質透明導電層5。以下詳細敍述。
首先,準備公知或市售之透明基材2。
其後,就透明基材2與硬塗層3之密接性之觀點而言,例如可視需要對透明基材2實施濺鍍、電暈放電、火焰、紫外線照射、電子束照射、化學轉化、氧化等蝕刻處理或底塗處理。又,可藉由溶劑洗淨、超音波洗淨等對透明基材2進行除塵、淨化。
其次,於透明基材2之上表面設置硬塗層3。例如藉由於透明基材2之上表面濕式塗佈硬塗組合物,而於透明基材2之上表面上形成硬塗層3。
具體而言,例如製備利用溶劑使硬塗組合物稀釋後之溶液(清漆),繼而,將硬塗組合物溶液塗佈於透明基材2之上表面並進行乾燥。
作為溶劑,例如可列舉有機溶劑、水系溶劑(具體而言水)等,較佳可列舉有機溶劑。作為有機溶劑,可列舉:例如甲醇、乙醇、異丙醇等醇化合物、例如丙酮、甲基乙基酮、甲基異丁基酮等酮化合物、例如乙酸乙酯、乙酸丁酯等酯化合物、丙二醇單甲醚等醚化合物、例如甲苯、二甲苯等芳香族化合物等。該等溶劑可單獨使用或併用2種以上。
硬塗組合物溶液中之固形物成分濃度例如為1質量%以上,較佳為10質量%以上,又,例如為30質量%以下,較佳為20質量%以下。
塗佈方法可根據硬塗組合物溶液及透明基材2而適當選擇。作為塗佈方法,例如可列舉:浸漬塗佈法、氣刀塗佈法、淋幕式塗佈法、滾筒塗佈法、線棒塗佈法、凹版塗佈法、擠壓塗佈法等。
乾燥溫度例如為50℃以上,較佳為70℃以上,例如為200℃以下,較佳為100℃以下。
乾燥時間例如為0.5分鐘以上,較佳為1分鐘以上,例如為60分鐘以下,較佳為20分鐘以下。
其後,於硬塗組合物含有活性能量線硬化性樹脂之情形時,藉由於硬塗組合物溶液乾燥後照射活性能量線而使活性能量線硬化性樹脂硬化。
再者,於硬塗組合物含有熱硬化性樹脂之情形時,可藉由該乾燥步驟,而與溶劑乾燥同時使熱硬化性樹脂熱硬化。
其次,於硬塗層3之上表面設置光學調整層4。例如藉由於硬塗層3之上表面濕式塗佈光學調節組合物,而於硬塗層3之上表面上形成光學調整層4。
具體而言,例如製備利用溶劑使光學調節組合物稀釋後之溶液(清漆),繼而,將光學調節組合物溶液塗佈於硬塗層3之上表面並進行乾燥。
光學調節組合物之製備、塗佈、乾燥等條件可設為與硬塗組合物中例示之製備、塗佈、乾燥等條件相同。
又,於光學調節組合物含有活性能量線硬化性樹脂之情形時,藉由於光學調節組合物溶液乾燥後照射活性能量線,而使活性能量線硬化性樹脂硬化。
再者,於光學調節組合物含有熱硬化性樹脂之情形時,可藉由該乾燥步驟而與溶劑乾燥同時使熱硬化性樹脂熱硬化。
其次,於光學調整層4之上表面設置非晶質透明導電層5。例如藉由乾式方法而於光學調整層4之上表面形成非晶質透明導電層5。
作為乾式方法,例如可列舉:真空蒸鍍法、濺鍍法、離子鍍覆法等。較佳可列舉濺鍍法。可藉由該方法而形成薄膜之非晶質透明導電層5。
作為濺鍍法,例如可列舉:2極濺鍍法、ECR(電子回旋共振)濺鍍法、磁控濺鍍法、離子束濺鍍法等。較佳可列舉磁控濺鍍法。
濺鍍法中使用之電源例如可為直流(DC)電源、交流中頻(AC/MF)電源、高頻(RF)電源、直流電源疊加而成之高頻電源之任一者。
於採用濺鍍法之情形時,作為靶材,可列舉構成非晶質透明導電層5之上述無機物,較佳可列舉ITO。就ITO層之耐久性、結晶化等觀點而言,ITO之氧化錫濃度例如為0.5質量%以上,較佳為3質量%以上,又,例如為15質量%以下,較佳為13質量%以下。
作為濺鍍氣體,例如可列舉Ar等惰性氣體。又,較佳為併用氧氣等反應性氣體。於併用反應性氣體之情形時,反應性氣體相對於惰性氣體之流量比例如為0.0010以上0.0100以下。
濺鍍法係於真空下實施。具體而言,就抑制濺鍍速率之降低、放電穩定性等觀點而言,濺鍍時之氣壓例如為1 Pa以下,較佳為0.7 Pa以下,又,例如為0.1 Pa以上。
就提昇結晶轉化之速度之觀點而言,水之分壓例如為10×10-4 Pa以下,較佳為5×10-4 Pa以下。
又,為了形成所需之非晶質透明導電層5,可適當設定靶材或濺鍍之條件等實施複數次濺鍍。
尤其,本發明中,例如,可藉由使用含有環烯烴系樹脂之基材作為透明基材,並調整氧之導入量且以複數層(較佳為第1層5a及第2層5b)形成非晶質透明導電層5,而較佳地製造具備所需之非晶質透明導電層5之透明導電膜1。
詳細而言,若將藉由濺鍍法形成ITO層作為非晶質透明導電層5之情形作為一例列舉,則一般而言,藉由濺鍍法而獲得之ITO層作為非晶質ITO層成膜。並且,藉由減少成膜氛圍之氧量使ITO層產生氧缺陷部,而獲得可藉由加熱而結晶轉化之ITO層。此時,使氧量略微不足至ITO層可結晶之程度。又,藉由於透明基材2中使用環烯烴系樹脂,而與聚對苯二甲酸乙二酯系樹脂相比,減少阻礙結晶轉化之水分之產生。又,藉由以複數層(例如第1層5a及第2層5b)構成非晶質透明導電層5,而於露出表面(最上表面)上設置易結晶轉化之層(第2層5b)。藉此,可形成於低溫下且短時間內可結晶轉化之非晶質透明導電層5。
更具體而言,例如於使用環烯烴系膜作為透明基材2,將水平磁場強度設為50 mT以上200 mT以下(較佳為80 mT以上120 mT以下)之高磁場強度,並採用直流電源之情形時,係如以下所述。於形成第1層5a時,使用氧化錫濃度高之ITO靶,將氧氣相對於Ar氣之流量比(O2 /Ar)例如設定為0.0065以上0.0100以下(較佳為0.0070以上0.0085以下)。於形成第2層5b時,使用氧化錫濃度低之ITO靶,將氧氣相對於Ar氣之流量比(O2 /Ar)例如設定為0.0015以上0.0050以下(較佳為0.0020以上0.0040以下)。
再者,是否於ITO成膜環境下以氧適合之比率(略微不足之氧量)導入,例如可將氧供給量(sccm)(X軸)及依據該氧供給量而獲得之ITO之表面電阻(Ω/□)(Y軸)繪製為曲線圖,並根據曲線圖而判斷。即,該曲線圖之極小附近區域(底部區域)之表面電阻最小,且ITO成為化學計量組成,故可判斷較該極小附近區域略接近於原點側之X軸之值為用於製作本發明中之透明導電層5適合之氧供給量。
藉此,獲得具備透明基材2、硬塗層3、光學調整層4及非晶質透明導電層5之透明導電膜1(非晶質透明導電膜)。
再者,上述製造方法中,可一面以卷對卷式方式搬送透明基材2,一面於該透明基材2上形成硬塗層3、光學調整層4及非晶質透明導電層5,又,可以分批方式(逐片方式)形成該等層之一部分或全部。就生產性之觀點而言,較佳為以卷對卷式方式一面搬送透明基材2,一面於透明基材2上形成各層。
以此方式獲得之透明導電膜1具備以下特性。
非晶質透明導電層5中之載子密度(Xa×1019 /cm3 )例如為20.0×1019 /cm3 以上,較佳為35.0×1019 /cm3 以上,又,例如為80.0×1019 /cm3 以下,較佳為60.0×1019 /cm3 以下。
非晶質透明導電層5中之霍爾遷移率(Ya cm2 /V・s)超過25.0 cm2 /V・s。較佳為25.5 cm2 /V・s以上,更佳為26.5 cm2 /V・s以上。又,例如為未達40.0 cm2 /V・s,較佳為35.0 cm2 /V・s以下,更佳為28.0 cm2 /V・s以下。只要上述霍爾遷移率為上述範圍,則可於低溫且短時間內使非晶質透明導電層5結晶轉化。又,不僅非晶質透明導電層5,結晶質透明導電層6之導電性亦優異。
非晶質透明導電層5之上表面8上之表面粗糙度Ra例如為0.01 nm以上,較佳為0.1 nm以上,又,例如為3.0 nm以下,較佳為2.0 nm以下,更佳為1.5 nm以下。只要上述表面粗糙度Ra為上述下限以上,則可抑制常溫環境下之不希望之結晶轉化。又,只要上述表面粗糙度Ra為上述上限以下,則可於低溫下且短時間內結晶轉化。
表面粗糙度Ra例如可藉由AFM觀察而測定。具體而言,可使用Seiko Instruments公司製造之掃描式探針顯微鏡(SPI3800),於接觸模式、Si3 N4 製短針(彈簧常數0.09 N/m)、掃描尺寸1 μm□之條件下進行測定。
非晶質透明導電層5之表面電阻例如為1 Ω/□以上,較佳為10 Ω/□以上,又,例如為500 Ω/□以下,較佳為200 Ω/□以下。表面電阻可藉由四端子法而測定。
透明導電膜1之全光線透過率(JIS K 7375-2008)例如為80%以上,較佳為85%以上。
透明導電膜1之厚度例如為2 μm以上,較佳為20 μm以上,又,例如為100 μm以下,較佳為50 μm以下。
透明導電膜1之非晶質透明導電層5可向結晶質轉化。藉此,非晶質透明導電層5得以結晶轉化而成為結晶質透明導電層6,導電性進一步提昇。
具體而言,於大氣下對透明導電膜1實施加熱處理。
加熱處理例如可使用紅外線加熱器、烘箱等實施。
加熱溫度例如為80℃以上,較佳為90℃以上,又,例如為130℃以下,較佳為120℃以下,更佳為110℃以下,進而較佳為100℃以下。藉由於加熱溫度成為130℃以下之低溫(較佳為100℃以下)下進行加熱,可抑制含有環烯烴系樹脂之透明基材2之熱膨脹,可抑制形成於其上表面上之結晶質透明導電層6之裂痕。又,可確實地抑制含有環烯烴系樹脂之透明基材2 之熱破損(熔解)。
加熱時間根據加熱溫度適當決定,例如為3分鐘以上,較佳為5分鐘以上,又,例如為30分鐘以下,較佳為15分鐘以下。
藉由於加熱時間成為30分鐘以下之短時間內加熱,可抑制含有環烯烴系樹脂之透明基材2之熱膨脹,抑制形成於其上表面上之結晶質透明導電層6之裂痕。又,可確實地抑制含有環烯烴系樹脂之透明基材2之熱破損(熔解)。
藉此,獲得於厚度方向上依序具備透明基材2、硬塗層3、光學調整層4及結晶質透明導電層6之結晶質透明導電膜7。
結晶質透明導電層6之載子密度(Xc×1019 /cm3 )例如為30.0×1019 /cm3 以上,較佳為70.0×1019 /cm3 以上,又,例如為100.0×1019 /cm3 以下,較佳為未達100.0×1019 /cm3 ,更佳為未達90.0×1019 /cm3 。只要上述載子密度為上述上限以下,則可於更短之時間內使非晶質透明導電層5結晶轉化。又,只要上述載子密度為上述下限以上,則晶質透明導電層6之導電性優異。
結晶質透明導電層6之霍爾遷移率(Yc cm2 /V・s)大於非晶質透明導電層5之霍爾遷移率(Yc cm2 /V・s)。又,結晶質透明導電層6之霍爾遷移率與非晶質透明導電層5之霍爾遷移率(Yc cm2 /V・s)之差例如、例如為1.0 cm2 /V・s以上,較佳為2.0 cm2 /V・s以上,又,例如為20.0 cm2 /V・s以下,較佳為10.0 cm2 /V・s以下,更佳為5.0 cm2 /V・s以下。只要上述差為上述下限以上,則結晶質透明導電層6之導電性優異。又,只要上述差為上述上限以下,則可於更短之時間內使非晶質透明導電層5結晶轉化。
結晶質透明導電層6之霍爾遷移率(Yc cm2 /V・s)例如為27.0 cm2 /V・s以上,較佳為28.5 cm2 /V・s以上,又,例如為60.0 cm2 /V・s以下,較佳為50.0 cm2 /V・s以下。只要上述霍爾遷移率為範圍內,則結晶質透明導電層6之導電性優異。
遷移距離L為55.0以下,較佳為未達50.0,又,例如為10.0以上,較佳為40.0以上。只要遷移距離L為上述上限以下,則可於低溫下且短時間內更確實地使非晶質透明導電層5結晶轉化。
再者,遷移距離L藉由下式而算出。
L={(Xc-Xa)2 +(Yc-Ya)21/2 結晶質透明導電層6之表面電阻例如為1 Ω/□以上,較佳為10 Ω/□以上,又,例如為150 Ω/□以下,較佳為100 Ω/□以下。
可視需要藉由公知之蝕刻使結晶質透明導電膜7圖案化。
結晶質透明導電層6之圖案係根據應用透明導電膜1或結晶質透明導電膜7之用途適當決定,例如可列舉具有條紋形狀之電極圖案或配線圖案等。
關於蝕刻,例如以與圖案部及非圖案部對應之方式將被覆部(遮蔽帶等)配置於結晶質透明導電層6之上,使用蝕刻液蝕刻自被覆部露出之結晶質透明導電層6(非圖案部)。作為蝕刻液,例如可列舉:鹽酸、硫酸、硝酸、乙酸、草酸、磷酸及該等之混酸等酸。其後,例如藉由剝離等方式將被覆部自結晶質透明導電層6之上表面去除。
藉此,可列舉結晶質透明導電層6得以圖案化之圖案化透明導電膜。
透明導電膜1及結晶質透明導電膜7例如設於光學裝置中。作為光學裝置,例如可列舉:圖像顯示裝置、調光裝置等,較佳可列舉圖像顯示裝置。於圖像顯示裝置(具體而言,具有LCD模組等圖像顯示元件之圖像顯示裝置)中具備透明導電膜1及結晶質透明導電膜7之情形時,透明導電膜1例如用作觸控面板用基材。作為觸控面板之形式,可列舉:光學方式、超音波方式、靜電容量方式、電阻膜方式等各種方式,尤其適合用於靜電容量方式之觸控面板。
並且,該透明導電膜1具備含有環烯烴系樹脂之透明基材2及非晶質透明導電層5。因此,明導電膜1之光學特性(透明性、低雙折射性)優異。
又,透明導電膜1中,非晶質透明導電層5之霍爾遷移率超過25.0(cm2 /V・s),且結晶質透明導電層6之霍爾遷移率Yc大於非晶質透明導電層5之霍爾遷移率Ya。因此,可於低溫(例如120℃以下)下且短時間(例如30分鐘以下,較佳為15分鐘以下)內使非晶質透明導電層5結晶轉化。其結果為,於獲得之結晶質透明導電膜7中,可抑制透明基材2之熱損傷、抑制由透明基材2之熱膨脹導致之結晶質透明導電層6之裂痕。
<變化例> 上述一實施形態中,透明導電膜1具備透明基材2、硬塗層3、光學調整層4及非晶質透明導電層5,但透明導電膜1可進而具備除該等以外之層。
例如,一實施形態中,雖透明基材2之下表面露出,但例如透明導電膜1可於透明基材2之下表面進而具備抗結塊層等其他功能層。
又,一實施形態之透明導電膜1雖具備透明基材2、硬塗層3、光學調整層4及非晶質透明導電層5,但例如亦可具備硬塗層3及光學調整層4之至少一者。就耐擦傷性、透明導電層中之圖案之視認抑制性等觀點而言,較佳為具備硬塗層3及光學調整層4。 [實施例]
以下展示實施例及比較例,進一步具體地說明本發明。再者,本發明並不限定於任何實施例及比較例。又,於以下記載中使用之調配比率(含有比率)、物性值、參數等具體的數值可代替為於上述「實施方式」中記載之與該等對應之調配比率(含有比率)、物性值、參數等該記載之上限值(作為「以下」、「未達」定義之數值)或下限值(作為「以上」、「超過」定義之數值)。
實施例1 作為透明基材,準備環烯烴聚合物(COP)膜(瑞翁公司製造、商品名「ZEONOR」、厚度40 μm)。於透明基材之上表面塗佈包含丙烯酸樹脂之紫外線硬化性樹脂組合物,照射紫外線,形成硬塗層(厚度1 μm)。繼而,於硬塗層之上表面塗佈含氧化鋯粒子之紫外線硬化型組合物,照射紫外線,形成光學調整層(厚度90 nm、折射率1.62)。藉此,獲得具備透明基材、硬塗層及光學調整層之積層體。
使用真空濺鍍裝置,於積層體之光學調整層之上表面形成包含銦錫複合氧化物層之第1層(厚度17 nm)。具體而言,使真空濺鍍裝置內排氣直至水之分壓成為2.0×10-4 Pa以下,其後,導入氬氣與氧氣之混合氣體(流量比:O2 /Ar=0.0074),於壓力0.4 Pa之氛圍下,對積層體實施DC磁控濺鍍法。作為靶,使用氧化錫10質量%/氧化銦90質量%之燒結體。又,將靶表面之水平磁場設定為100 mT。
繼而,將靶改變為氧化錫3質量%/氧化銦97質量%之燒結體,將氬氣與氧氣之混合氣體之流量比設為O2 /Ar=0.0021,除此以外,以與上述相同之方式進一步實施濺鍍,於第1層之上表面形成第2層(厚度8 nm)。藉此,於光學調整層之上表面上形成非晶質透明導電層(總厚度25 nm)。
以此方式製造實施例1之透明導電膜。
實施例2 形成第1層時,將氬氣與氧氣之混合氣體之流量比改變為O2 /Ar=0.0077,除此以外,以與實施例1相同之方式製造透明導電膜。
實施例3 形成第1層時,將氬氣與氧氣之混合氣體之流量比改變為O2 /Ar=0.00721,且於形成第2層時,將氬氣與氧氣之混合氣體之流量比改變為O2 /Ar=0.00201,除此以外,以與實施例1相同之方式製造透明導電膜。
比較例1 作為透明基材,準備聚對苯二甲酸乙二酯(PET)膜(三菱樹脂製造、商品名「DIAFOIL」、厚度50 μm)。繼而,於透明基材之上表面上塗佈以質量比2:2:1包含三聚氰胺樹脂:醇酸樹脂:有機矽烷縮合物之熱硬化型樹脂的熱硬化樹脂組合物,進行加熱,形成硬塗層(厚度35 nm)。藉此,獲得具備透明基材及硬塗層之積層體。
使用真空濺鍍裝置,於積層體之硬塗層之上表面上形成包含銦錫複合氧化物層之第1層(厚度21 nm)。具體而言,使真空濺鍍裝置內排氣,直至水之分壓成為2.0×10-4 Pa以下,其後,導入氬氣與氧氣之混合氣體(流量比:O2 /Ar=0.0110),於壓力0.4 Pa之氛圍下對積層體實施DC磁控濺鍍法。作為靶,使用氧化錫10質量%/氧化銦90質量%之燒結體。又,將靶表面之水平磁場設定為30 mT。
繼而,於O2 /Ar=0.0110之狀態下將靶改變為氧化錫3質量%/氧化銦97質量%之燒結體,除此以外,以與上述相同之方式進一步實施濺鍍,於第1層之上表面上形成第2層(厚度4 nm)。藉此,於光學調整層之上表面上形成非晶質透明導電層(總厚度25 nm)。
以此方式製造比較例1之透明導電膜。
比較例2 於形成第1層及第2層時,將靶表面之水平磁場改變為100 mT,除此以外,以與比較例1相同之方式製造透明導電膜。
比較例3 於形成第1層時,將氬氣與氧氣之混合氣體之流量比改變為O2 /Ar=0.0101,將水平磁場改變為100 mT,實施RF疊加DC磁控濺鍍法(RF頻數:13.56 MHz、RF功率相對於DC功率之比(RF/DC):0.8),形成第1層(厚度25 nm)。另一方面,未形成第2層。除該等以外,以與比較例1相同之方式製造透明導電膜。
比較例4 將氬氣與氧氣之混合氣體之流量比改變為O2 /Ar=0.0074,將RF功率相對於DC功率之比(RF/DC)改變為0.2,將非晶質透明導電層之總厚度改變為30 nm。除該等以外,以與比較例3相同之方式製造透明導電膜。
(1)厚度之測定 使用穿透式電子顯微鏡(日立製作所公司製造、「H-7650」)藉由剖面觀察測定硬塗層、光學調整層、第1層及第2層之厚度。
使用膜厚計(Peacock公司製造、「數位度盤規DG-205」)測定透明基材之厚度。
(2)載子密度及霍爾遷移率之測定 使用霍耳效應測定系統(Bio-Rad公司製造、「HL5500PC」)測定透明導電層之霍爾遷移率(Ya cm2 /V・s)。載子密度(Xa×1019 /cm3 )係使用上述(1)中測定之透明導電層之總厚度而算出。
其次,於100℃下對各實施例之透明導電膜加熱15分鐘,使非晶質透明導電層轉化為結晶質透明導電層。之後,以與上述相同之方式算出霍爾遷移率(Yc cm2 /V・s)及載子密度(Xc×1019 /cm3 )。另一方面,於140℃下對各比較例之透明導電膜加熱60分鐘,使非晶質透明導電層轉化為結晶質透明導電層。之後,以與上述相同之方式算出霍爾遷移率(Yc cm2 /V・s)及載子密度(Xc×1019 /cm3 )。
使用利用上述非晶質透明導電層及結晶質透明導電層之霍爾遷移率及載子密度獲得之Ya、Yc、Xa、Xc,藉由下述式算出遷移距離L。 L={(Xc-Xa)2 +(Yc-Ya)21/2 將該等結果示於表1。
(3)結晶轉化之評價 利用100℃之熱風烘箱對各實施例及各比較例之透明導電膜加熱特定時間,製作樣品。將經加熱之透明導電膜之樣品浸漬於濃度5 wt%、20℃之鹽酸15分鐘之後,進行水洗、乾燥,測定15 mm間之端子間電阻。
此時,於端子間電阻為10 kΩ以下之情形時,判斷為ITO層之結晶轉化結束,藉由以下判定基準實施結晶化速度之評價。將結果示於表1。
〇:直至結晶化結束所需之時間為15分鐘以下。
△:直至結晶化結束所需之時間為超過15分鐘且為30分鐘以下。
×:直至結晶化結束所需之時間為超過30分鐘。
[表1]
   透明基材 霍爾遷移率 載子密度 結晶轉化
非晶質透明導電層Ya(cm2 /V·s) 結晶質透明導電層Yc(cm2 /V·s) 非晶質透明導電層Xa(×1019 /cm3 ) 結晶質透明導電層Xc(×1019 /cm3 )
實施例1 COP 26.5 30.0 55.8 88.2
實施例2 COP 27.4 29.7 39.8 87.7
實施例3 COP 25.9 28.2 40.4 91.4
比較例1 PET 18.8 24.9 32.2 83.1 ×
比較例2 PET 17.5 28.7 33.5 90.4 ×
比較例3 PET 23.0 33.9 47.8 124.5 ×
比較例4 PET 27.9 27.7 44.3 89.5 ×
1:透明導電膜 2:透明基材 3:硬塗層 4:光學調整層 5:非晶質透明導電層 5a:第1層 5b:第2層 6:結晶質透明導電層 7:結晶質透明導電膜 8:上表面
圖1表示本發明之透明導電膜之一實施形態之剖視圖。 圖2表示使圖1所示之透明導電膜結晶轉化後之結晶質透明導電膜之剖視圖。
1:透明導電膜
2:透明基材
3:硬塗層
4:光學調整層
5:非晶質透明導電層
5a:第1層
5b:第2層
8:上表面

Claims (4)

  1. 一種透明導電膜,其特徵在於:其具備透明基材及配置於透明基材之厚度方向一側之非晶質透明導電層, 上述透明基材含有環烯烴系樹脂, 上述非晶質透明導電層可向結晶質轉化, 上述非晶質透明導電層之霍爾遷移率超過25.0(cm2 /V・s), 使上述非晶質透明導電層結晶轉化之後之結晶質透明導電層之霍爾遷移率大於上述非晶質透明導電層之霍爾遷移率。
  2. 如請求項1之透明導電膜,其中上述結晶質透明導電層之載子密度未達90.0×1019 (/cm3 )。
  3. 如請求項1或2之透明導電膜,其中上述非晶質透明導電層含有銦系無機氧化物。
  4. 如請求項3之透明導電膜,其中上述非晶質透明導電層於厚度方向上具備雜質無機元素相對於銦之質量比為0.05以上之第1區域及雜質無機元素相對於銦之質量比未達0.05之第2區域。
TW109101481A 2019-01-30 2020-01-16 透明導電膜 TW202035128A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019014235A JP7198097B2 (ja) 2019-01-30 2019-01-30 透明導電性フィルム
JP2019-014235 2019-01-30

Publications (1)

Publication Number Publication Date
TW202035128A true TW202035128A (zh) 2020-10-01

Family

ID=71875760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109101481A TW202035128A (zh) 2019-01-30 2020-01-16 透明導電膜

Country Status (4)

Country Link
JP (1) JP7198097B2 (zh)
KR (1) KR20200094647A (zh)
CN (1) CN111508641A (zh)
TW (1) TW202035128A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341821B2 (ja) * 2019-09-25 2023-09-11 日東電工株式会社 透明導電性フィルムおよびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190554B1 (ja) * 2011-10-05 2013-04-24 日東電工株式会社 透明導電性フィルム
JP5812417B2 (ja) * 2011-12-28 2015-11-11 大日本印刷株式会社 アニール方法、膜製造方法、アニール装置および膜製造装置
JP6066154B2 (ja) * 2014-05-20 2017-01-25 日東電工株式会社 透明導電性フィルムの製造方法
JP6661335B2 (ja) * 2014-12-22 2020-03-11 日東電工株式会社 透明導電性フィルム
JP6159490B1 (ja) * 2015-09-30 2017-07-05 積水化学工業株式会社 光透過性導電フィルム、及び、アニール処理された光透過性導電フィルムの製造方法
JP6654865B2 (ja) * 2015-11-12 2020-02-26 日東電工株式会社 非晶質透明導電性フィルム、ならびに、結晶質透明導電性フィルムおよびその製造方法

Also Published As

Publication number Publication date
CN111508641A (zh) 2020-08-07
JP2020123476A (ja) 2020-08-13
JP7198097B2 (ja) 2022-12-28
KR20200094647A (ko) 2020-08-07

Similar Documents

Publication Publication Date Title
JP5543907B2 (ja) 透明導電性フィルムおよびその製造方法
CN115298763A (zh) 透明导电性薄膜和透明导电性薄膜的制造方法
WO2021060139A1 (ja) 透明導電性フィルムおよびその製造方法
TW202035128A (zh) 透明導電膜
JP7287802B2 (ja) 光透過性導電フィルム
JP7198096B2 (ja) 透明導電性フィルム
JP7378938B2 (ja) 光透過性導電フィルム
JP7378937B2 (ja) 光透過性導電フィルム
JP7466269B2 (ja) 透明導電性フィルムおよび結晶性透明導電性フィルム
TW202042254A (zh) 透光性導電膜
KR20190143371A (ko) 하지층 부착 필름, 투명 도전성 필름, 투명 도전성 필름 적층체 및 화상 표시 장치
JP6097117B2 (ja) 積層体およびフイルム