TW202025425A - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TW202025425A
TW202025425A TW108128035A TW108128035A TW202025425A TW 202025425 A TW202025425 A TW 202025425A TW 108128035 A TW108128035 A TW 108128035A TW 108128035 A TW108128035 A TW 108128035A TW 202025425 A TW202025425 A TW 202025425A
Authority
TW
Taiwan
Prior art keywords
semiconductor
layer
wiring
floating
semiconductor device
Prior art date
Application number
TW108128035A
Other languages
English (en)
Other versions
TWI729449B (zh
Inventor
末山敬雄
松川尚弘
金田圭子
Original Assignee
日商東芝記憶體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東芝記憶體股份有限公司 filed Critical 日商東芝記憶體股份有限公司
Publication of TW202025425A publication Critical patent/TW202025425A/zh
Application granted granted Critical
Publication of TWI729449B publication Critical patent/TWI729449B/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5228Resistive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本發明之實施形態係關於一種半導體裝置。 實施形態之半導體配線係於Poly配線與P基板對向之區域之間,於P基板內形成不作為電路元件利用、且不進行信號之輸入輸出之電性浮動之雜質層之N井層。半導體配線用於被用作高電壓信號之傳輸路徑且傳輸半導體記憶裝置之記憶胞陣列中之資訊之寫入信號之配線。

Description

半導體裝置
本發明之實施形態係關於一種半導體裝置。
於半導體裝置中,設置有將電路元件間連接之半導體配線。
實施形態提供一種具有抑制高電壓信號傳輸時產生之電阻值增加之半導體配線之半導體裝置。
實施形態之半導體裝置具有半導體配線,上述半導體配線包含:第1導電型之第1半導體區域;絕緣層,其形成於上述第1半導體區域上;半導體配線層,其介隔上述絕緣層與上述第1半導體區域對向,形成為電路元件間之電流通路;以及浮動層,其設置於介隔上述絕緣層與上述半導體配線層對向之上述第1半導體區域內,包含第2導電型之雜質,且不與電路元件連接而電性浮動。
以下,參照圖式對實施形態進行說明。
實施形態例示用以將發明之技術思想具體化之裝置或方法。圖式係模式性或概念性者,各圖式之尺寸及比率等未必與實際相同。又,並非由構成要素之形狀、構造、配置等指定本發明之技術思想。再者,以下說明中,對具有大致相同之功能及構成之構成要素標註相同符號,並省略詳細說明。
本實施形態適用於供配置因雜質之導入處理等而低電阻化之半導體配線、例如由包含多結晶矽、即多晶矽(Poly silicon)之半導體材料形成之Poly配線之區域。該Poly配線係將電路元件間電性連接之Poly配線、或用作電路元件中之電阻器元件之Poly配線等。此處,以將電路元件間電性連接之Poly配線為例進行說明。Poly配線亦可藉由導入雜質來調整配線電阻值。本實施形態抑制當Poly配線傳輸高電壓信號、例如升壓至20 V以上之寫入信號Vpgm時對配線等造成影響之熱電子之產生。本實施形態中,此處產生之熱電子係自P型半導體基板釋放者,因此稱為基板熱電子(Substrate Hot Electron:SHE)。
該基板熱電子(SHE)係例如當對形成於P型半導體基板(或P型井層)上之ploy配線施加高電壓信號時,半導體基板之表面成為深耗盡(deep depletion)狀態(深空乏化之狀態)而產生。產生如下現象:該處產生之基板熱電子跳入至Poly配線中而使配線電阻上升。推測配線電阻之上升受以熱電子為原因之一之多晶矽內之氫之脫附影響。因該基板熱電子之產生所引起之配線電阻之上升,導致正在傳輸之信號之電壓值較所設定之電壓值下降,而有可能發生誤動作。又,作為該電壓降之對策,若提昇輸出時之電壓,則由電阻值之增加量所產生之耗電量增加,進而亦成為發熱之原因之一,並且使SHE增加,使電阻值之上升速度加快,而成為半導體裝置之壽命縮短之原因之一。
參照圖1至圖3A、圖3B,對設置於本實施形態之半導體裝置之半導體配線進行說明。圖1表示形成於半導體基板上之配線之截面構造,圖2表示配線與浮動層之關係。
於圖1所示之例子中,於P型半導體基板(以下稱為P基板)31上,介隔包含例如氧化矽膜之絕緣層32而形成包含多晶矽配線層之Poly配線層33。本實施形態係於Poly配線層33與P基板31對向之區域之間,於與絕緣層32相接之P基板31內形成不用作電路元件且不進行信號之輸入輸出之電性浮動之雜質層。該雜質層例如形成作為N型半導體層之N型層或N井(well)層34。即,於圖1中,於P基板(P井層)上形成有具有N井層34-絕緣層32-Poly配線層33之一體積層構造之半導體配線(或下述半導體電阻器層)。再者,該半導體配線並不限定於在水平方向上被牽引且各層於深度方向(或高度方向)上積層之構造,亦可為半導體配線於與水平方向交叉之方向上被牽引且各層於側方(或水平方向)排列之構造。此處,以N井層作為一例進行說明,但即便為N型層,亦發揮同等之作用效果。
於以下說明中,由於不與其他電路元件連接而電性浮動,故而將N井層34稱為浮動(Floating)N井層34。再者,關於P型半導體及N型半導體,稱為第1導電型之半導體及第2導電型之半導體。P型半導體及N型半導體只要導電型相互相反,則可為任意者。即,若P型半導體為第1導電型,則N型半導體為第2導電型。反之,若P型半導體為第2導電型,則N型半導體為第1導電型。本實施形態中,示出有於P基板內形成作為N型浮動層之浮動N井層之例子,但反之亦可為於N基板內形成作為P型浮動層之浮動P井層之構造。再者,將N型浮動層或P型浮動層設為浮動層。
浮動N井層34例如利用離子注入製程而導入五價元素、例如磷(P)或砷(As)等雜質。當然,雜質導入方法並不限定於離子注入法,亦可使用其他公知製程。浮動N井層34之雜質濃度係於電路元件設計時適當設定,但例如亦可為與構成通常之電晶體之源極、汲極等電路元件同等之濃度。浮動N井層34亦可於電晶體等其他電路元件之N井層之形成步驟中以相同之製程同時形成。
浮動N井層34藉由介隔絕緣層32與poly配線層33之電容耦合,被升壓成高電壓,如下述圖3B所示,大致消除位於poly配線層33正下方之半導體基板之絕緣層32附近之能帶之彎曲,而抑制基板熱電子之產生,並且大致消除能帶彎曲而使電子難以越過電位障壁。此處,傳輸至Poly配線層33之高電壓之信號係假定如時鐘信號之脈衝信號,例如有傳輸至字元線WL之寫入信號Vpgm等。
浮動N井層34之寬度W2較理想為與Poly配線層33之寬度W1相同寬度或大致相等。但是,若寬度大,則效果會變小,但效果不會消失。又,使寬度變窄能夠增大效果。再者,如圖2所示,即便浮動N井層34之寬度W2小於Poly配線層33之寬度W1,只要浮動N井層34之寬度W2加上浮動N井層34之周圍所產生之空乏層35之寬度而得之寬度W3為與Poly配線層33之寬度W1同等以上,則亦發揮相同之作用效果。又,本實施形態中,對在1個Poly配線層33之下層成對形成1個浮動N井層34之構成例進行了說明,但於緊密地形成複數個Poly配線層33之情形時,亦可形成寬度包含該等複數個Poly配線層33在內之1個浮動N井層34。又,當對Poly配線層33施加高電壓之信號時,浮動N井層34可期望藉由縮小與P基板31之電容來使電位上升,因此較理想為於具有抑制基板熱電子(SHE)之釋放之效果之範圍內,層厚較薄。
又,絕緣層32之層厚係根據對於傳輸至Poly配線層33之信號之大小(電壓值及電流值)之耐壓及浮動N井層34之雜質濃度或電容值而適當設定。絕緣層32於電場為5~6 MV/cm以上之情形時,流經絕緣層32內之穿隧電流成為問題。因此,需要如電場不超過5~6 MV/cm之絕緣層32之厚度。若為高電壓為24 V之例子,則6 MV相當於40 nm。因此,絕緣層32之層厚需要40 nm以上之厚度。
又,本實施形態中係將浮動N井層34形成於P基板內之例子,但並不限定於基板。若配線之形成對象為積層電路元件之構造、例如積層記憶胞陣列11之構造,則於積層構造中,亦可於配置於與所要形成之配線對向之位置之P型半導體層(或P型半導體區域)內形成浮動N層或浮動N井層34。
進而,本實施形態中,對僅於Poly配線層33之一面(與P基板之對向面)側形成有浮動N井層34之例子進行了說明,但並不限定於此。例如,將圖1所示之浮動N井層34之形成位置假定為矩形截面形狀之Poly配線層33之下方。只要Poly配線層33為介隔絕緣層由P型半導體層覆蓋之構造,則可於在矩形之側方相接之P型半導體層內形成浮動N井層34,亦可於在矩形之上方相接之P型半導體層內形成浮動N井層34。又,浮動N井層34並不限定於對向配置於Poly配線層33之一面側,亦可於上下表面等一面以上以對向之方式設置。又,Poly配線層33並不限定於矩形截面形狀,例如亦可形成為圓形狀或橢圓形狀。於該情形時,例如亦可以包圍半周或1/3周左右之方式介隔絕緣層而形成浮動N井層34。
參照圖3A、圖3B所示之能帶,對基板熱電子之產生、及本實施形態之具有浮動N井層34之P基板31上所設置之Poly配線層33之特性進行說明。圖3A係概念性地表示與被施加高電壓之配線及基板熱電子相關之能帶之圖,圖3B係概念性地表示與被施加高電壓之配線及浮動N井層相關之能帶之圖。
圖3A所示之能帶B表示對未設置浮動N井層34之Poly配線層施加高電壓時之配線之特性。能帶B之上限表示傳導體底之能量之特性,下限表示荷電子帶頂。能帶B於與絕緣層相接之P基板之界面附近,具有能量eV之電平急劇減少之能帶彎曲。如能帶B所示,於能帶彎曲陡峭之情形時,電子(SHE)自P基板31內越過由絕緣層32形成之電位障壁,跳入至Poly配線層中。已知熱電子(SHE)會對所跳入之Poly層之特性造成影響而使電阻值變高。即,Poly配線層之電阻值變高。
圖3B所示之對本實施形態之Poly配線層33施加了高電壓時之能帶A藉由浮動N井層34,而自P基板31至浮動N井層34之界面,具有能量eV減少之能帶彎曲。關於能量eV之能帶彎曲,彎曲之斜率因浮動N井層34之雜質濃度而發生變化。浮動N井層34之雜質濃度變得越濃,則如圖3B所示,能量eV之能帶彎曲之平坦性變得越大。進而,於浮動N井層34內,能量eV大致無增減,於絕緣層32之界面之電位障壁(上限)以下平行地推移,與絕緣層32之界面之電位障壁相接。因此,即便對Poly配線層施加高電壓之信號,由於能量eV之能帶彎曲已平坦化,因此可抑制因能帶彎曲而導致自P基板31經由N井層34向Poly配線層33釋放基板熱電子(SHE)。
根據以上內容,本實施形態之配線能夠藉由抑制基板熱電子之產生,而防止Poly配線之配線電阻增加,防止所傳輸之高電壓之信號之低壓化,從而對電路元件傳輸預先設定之電壓值之信號。又,亦可抑制用於應對配線之高電阻化之電壓上升所引起之耗電量之增加或發熱之增加,且能夠防止因電壓上升導致SHE增加並使電阻值之上升速度加快之情況。
<第1應用例> 以下,作為本實施形態之設置半導體配線之半導體裝置之一例,列舉半導體記憶裝置進行說明。
首先,就半導體記憶裝置1之整體構成進行說明。
圖4表示半導體記憶裝置1之整體構成之一例。該半導體記憶裝置1例如係由外部之記憶體控制器2控制,且能夠非揮發地記憶資料之NAND型快閃記憶體。該半導體記憶裝置1例如包含記憶胞陣列11及周邊電路。周邊電路例如包含列解碼器12、感測放大器13、定序器14及升壓電路15。
首先,記憶胞陣列11包含下述複數個區塊BLK0~BLKn(n為1以上之整數)。區塊BLK係非揮發性記憶胞之組,例如用作資料之擦除單位。於記憶胞陣列11呈矩陣狀設置有多條位元線及多條字元線。1個記憶胞係與1條位元線及1條字元線建立關聯。
列解碼器12基於半導體記憶裝置1自記憶體控制器2接收到之位址資訊ADD,而選擇1個區塊BLK。然後,列解碼器12對例如所選擇之字元線WL及非選擇之字元線WL分別施加預先設定之電壓、例如中間通路電壓Vpass(寫入禁止信號)、高電壓之寫入電壓Vpgm(寫入信號)。
感測放大器13於寫入動作中保持半導體記憶裝置1自記憶體控制器2接收到之寫入資料DAT,並基於寫入資料DAT對位元線施加設定電壓之寫入信號。又,感測放大器13於讀出動作中,基於位元線之電壓判定記憶胞中所記憶之資料,並將基於判定結果之讀出資料DAT輸出至記憶體控制器2。
定序器14基於半導體記憶裝置1自記憶體控制器2接收到之指令CMD來控制半導體記憶裝置1整體之動作。半導體記憶裝置1與記憶體控制器2之間之通信例如支持NAND介面標準。例如於半導體記憶裝置1與記憶體控制器2之間之通信中,使用指令鎖存賦能信號CLE、位址鎖存賦能信號ALE、寫入使能信號WEn、讀取使能信號REn、就緒/忙碌信號RBn、及輸入輸出信號I/O。輸入輸出信號I/O例如為8位元之信號,包含指令CMD、位址資訊ADD、及資料DAT等。
指令鎖存賦能信號CLE係表示半導體記憶裝置1所接收到之輸入輸出信號I/O為指令CMD之信號。位址鎖存賦能信號ALE係表示半導體記憶裝置1所接收到之信號I/O為位址資訊ADD之信號。寫入使能信號WEn係以將輸入輸出信號I/O輸入之方式命令半導體記憶裝置1之信號。讀取使能信號REn係以將輸入輸出信號I/O輸出之方式命令半導體記憶裝置1之信號。就緒/忙碌信號RBn係向記憶體控制器2通知半導體記憶裝置1為受理來自記憶體控制器2之命令之就緒狀態抑或未受理命令之忙碌狀態之信號。
升壓電路15係將自配置於前段之振盪電路輸出之時鐘信號(脈衝信號)
Figure 02_image001
或/
Figure 02_image001
(
Figure 02_image001
之反轉信號)等升壓至各構成要素中所設定之電壓值後供給之電路。此處,基於來自定序器14之指令,對記憶胞陣列11、列解碼器12及感測放大器13供給升壓後之電壓信號。該升壓電路15如下所述可於輸出側之一部分使用本實施形態之配線。
以上所說明之半導體記憶裝置1及記憶體控制器2亦可藉由其等之組合而構成1個半導體記憶裝置。作為此種半導體記憶裝置,例如可列舉如SDTM (secure digital,安全數位)卡(註冊商標)之記憶卡、或SSD(Solid State Drive,固態驅動器)等。
接下來,對半導體記憶裝置1之記憶胞陣列11進行說明。
圖5示出記憶胞陣列11中所包含之複數個區塊BLK中之1個區塊BLK之電路構成作為圖4所示之記憶胞陣列11之電路構成之一例。
如圖5所示,區塊BLK0包含例如4個串單元SU(SU0~SU3)。而且,各串單元SU包含複數個NAND串NS。NAND串NS分別包含例如64個記憶胞電晶體MT0~MT63、5個虛設記憶胞電晶體MTDD0a、MTDD0b、MTDD1、MTDS0、及MTDS1、以及選擇電晶體ST1及ST2。
以下,於不限定記憶胞電晶體MT0~MT63之情形時,表述為記憶胞電晶體MT。又,於不限定虛設記憶胞電晶體MTDD0a、MTDD0b、MTDD1、MTDS0、及MTDS1之情形時,表述為虛設記憶胞電晶體MTD。
記憶胞電晶體MT及虛設記憶胞電晶體MTD具備控制閘極及電荷蓄積層。記憶胞電晶體MT非揮發性地保持資料。虛設記憶胞電晶體MTD之構成與記憶胞電晶體MT相同,但作為虛設使用,並不用於資料之保持。
再者,記憶胞電晶體MT及虛設記憶胞電晶體MTD可為於電荷蓄積層使用絕緣層之MONOS(Metal Oxide Nitride Oxide Silicon,金屬氧化氮氧化矽)型,亦可為於電荷蓄積層使用導電層之FG(Floating Gate,浮閘)型。以下,本實施形態中,以MONOS型為例進行說明。又,記憶胞電晶體MT之個數亦可為8個或16個、32個、96個、128個等,其數量並無限定。又,虛設記憶胞電晶體MTD以及選擇電晶體ST1及ST2之個數為任意。選擇電晶體ST1及ST2分別只要有1個以上即可。
記憶胞電晶體MT及虛設記憶胞電晶體MTD串聯連接於選擇電晶體ST1之源極與選擇電晶體ST2之汲極之間。更具體而言,虛設記憶胞電晶體MTDS0及MTDS1、記憶胞電晶體MT0~MT63、以及虛設記憶胞電晶體MTDD1、MTDD0b、及MTDD0a之電流路徑被串聯連接。而且,虛設記憶胞電晶體MTDD0a之汲極連接於選擇電晶體ST1之源極,虛設記憶胞電晶體MTDS0之源極連接於選擇電晶體ST2之汲極。
串單元SU0~SU3各者之選擇電晶體ST1之閘極分別連接於選擇閘極線SGD0~SGD3。串單元SU0~SU3各者之選擇電晶體ST2之閘極共通地連接於選擇閘極線SGS。以下,於不限定選擇閘極線SGD0~SGD3之情形時,表述為選擇閘極線SGD。再者,串單元SU0~SU3各者之選擇電晶體ST2之閘極亦可分別連接於不同之選擇閘極線SGS0~SGS3。
位於區塊BLK內之記憶胞電晶體MT0~MT63之控制閘極分別共通連接於字元線WL0~WL63。配置於區塊BLK內之虛設記憶胞電晶體MTDD0a及MTDD0b之控制閘極共通地連接於虛設字元線DD0。配置於區塊BLK內之虛設記憶胞電晶體MTDD1、MTDS0、及MTDS1之控制閘極分別共通連接於虛設字元線DD1、DS0、及DS1。
以下說明中,於不限定字元線WL0~WL63中之任一者之情形時,統稱為字元線WL。於不限定虛設字元線DD0及DD1中之任一者之情形時,統稱為虛設字元線DD,於不限定虛設字元線DS0及DS1中之任一者之情形時,同樣地稱為虛設字元線DS。進而,於不限定虛設記憶胞電晶體MTDD0a及MTDD0b中之任一者之情形時,統稱為虛設記憶胞電晶體MTDD0。
位於串單元SU內之各NAND串NS之選擇電晶體ST1之汲極分別連接於不同之位元線BL0~BL(N-1,其中N為2以上之整數)。以下,於不限定位元線BL0~BL(N-1)之情形時,表述為位元線BL。各位元線BL於複數個區塊BLK間將位於各串單元SU內之1個NAND串NS共通地連接。進而,複數個選擇電晶體ST2之源極共通地連接於源極線SL。即,串單元SU係連接於不同之位元線BL且連接於同一選擇閘極線SGD之NAND串NS之集合體。又,區塊BLK係使字元線WL共通之複數個串單元SU之集合體。而且,記憶胞陣列10係使位元線BL共通之複數個區塊BLK之組。
資料之寫入動作及讀出動作係對任一串單元SU中之任一字元線WL所連接之記憶胞電晶體MT統一進行。
接下來,對設置本實施形態之半導體配線之升壓電路15進行說明。
圖6係表示升壓電路15之一例之構成例之圖。升壓電路15與電荷泵電路同等。升壓電路15使所輸入之脈衝信號等升壓至大於所供給之外部電壓Vcc之正電壓,而產生高電壓之信號VP。此處,以產生正電壓之升壓電路15為例進行說明,但對於圖6所示之二極體D,藉由將陽極與陰極反向配置,亦可產生小於外部電壓Vcc之負電壓。又,本實施形態中,例示有二極體D作為電路元件,但亦可取而代之使用MOS(metal oxide semiconductor,金屬氧化物半導體)電晶體。於使用該MOS電晶體之情形時,可藉由將閘極連接於汲極,使汲極作為陰極發揮功能,使源極作為陽極發揮功能來實現。因此,可不追加用以製作二極體之製造步驟,而藉由變更作為電晶體形成之電路元件之連接來製作二極體。
升壓電路15之二極體D1~Dn以將前段之二極體、例如二極體D1之陰極連接於後段之二極體D2之陽極之方式串聯連接。第1段二極體D1之陽極連接於供給端子21,被供給外部電壓Vcc。又,成為最終段之二極體Dn之輸出端之陰極連接於輸出端子22。進而,經由電容器元件C1、C3、…對奇數段之二極體D1、D3、…之陰極輸入時鐘信號
Figure 02_image001
。又,經由電容器元件C2、C4、…對偶數段之二極體D2、D4、…之陰極輸入反轉時鐘信號/
Figure 02_image001
於此種電路構成中,藉由利用時鐘信號(
Figure 02_image001
、/
Figure 02_image001
)交替地啟動各電容器元件C1~Cn-1之兩端電壓,而自最終段之二極體Dn之陰極輸出被升壓至較外部電壓Vcc高電壓之正電壓信號Vp。
於升壓電路15內,本實施形態之配線即具有浮動N井層34之Poly配線層33,係應用於將最終段之二極體Dn之陰極與輸出端子22連接之以粗實線圖示之配線。
於半導體記憶裝置1中,升壓電路15對記憶胞陣列11、列解碼器12及感測放大器13,輸出升壓至針對每一供給對象分別設定之任意電壓值之信號VP。例如,於列解碼器12中,接收信號VP,對字元線WL輸出成為20 V以上之寫入信號Vpgm。作為驅動例,例如選擇字元線WL62,施加24 V左右之高電壓之寫入信號Vpgm,對非選擇之字元線WL0、WL1、…、WL61、W63分別施加例如10 V中間電壓之通路電壓信號Vpass。因此,對該等字元線WL0~WL63,應用本實施形態之具有浮動N井層34之半導體配線層33。
又,於自升壓電路15(例如第1電路)連接電路元件,例如列解碼器12(例如第2電路)之配線中,於為包含連接上層與下層之層間連接等牽引距離較長之配線之情形時,亦併用金屬配線。關於本實施形態中之Poly配線層33,於自配線整體觀察將複數個電路間連接或用作電路元件周圍之配線時,有局部使用或作為短線使用之情形。
如上所述,本實施形態之半導體配線可應用於二維地展開之記憶胞陣列、或將其等分層地積層而成之分層構造之記憶胞各層之字元線WL。藉由將該半導體配線用於字元線WL,能夠抑制因寫入信號Vpgm等高電壓信號所引起之基板熱電子(SHE),防止電壓值上升或耗電增大,且亦可排除發熱之原因之一。
<變化例> 參照圖7,就本實施形態之半導體配線即具有浮動N井層34之Poly配線層33之變化例進行說明。圖7表示成為變化例之具有孤立N井層36之Poly配線層33之截面構成。
於該變化例中,顯示去除圖1所示之P基板31上之絕緣層32之一部分,而使露出於浮動N井層34(或N型層)之窗32a開口,且連接外部端子Vapp之N井層36。關於該N井層36,亦不作為電路元件利用,且不進行信號(資訊信號、控制信號等)之輸入輸出,為孤立(island)狀態。因此,N井層36於通常時為浮動電位之雜質層。該N井層36藉由自外部端子Vapp被施加任意電壓VM而成為電充電之狀態。於以下說明中,將對浮動N井層34施加電壓而成者稱為孤立N井層36[孤立雜質層]。又,孤立N井層36只要於Poly配線層33被施加高電壓時為充電狀態即可。因此,對孤立N井層36施加任意電壓只要至少於Poly配線層33被施加了高電壓時施加即可,無需始終對孤立N井層36施加任意電壓。
圖8係將藉由外部端子Vapp自外部對孤立N井層36施加例如18 V左右之中間電壓VM時之能帶與上述圖3B所示之能帶一併表示之圖。
如圖8所示,被施加了中間電壓VM之孤立N井層36之能量電平上升,並且由絕緣層32所形成之禁止帶之能量電平亦上升。假定對Poly配線層33施加例如24 V左右之高電壓之情形時,施加至絕緣層32之電壓成為24 V-18 V=6 V。如上所述,若為高電壓為24 V之例子,則絕緣層32之厚度適宜為40 nm以上。
作為此時之電場,成為6 V/40 nm=1.5 MV/cm,因此於絕緣層32中幾乎不流動電流(FN穿隧電流),電子不會跳入至Poly配線層33中。因此,能夠使電子難以越過電位障壁,從而抑制基板熱電子之產生。
再者,對孤立N井層36之電位VN井進行說明。若將絕緣層32之電容設為Cox、將N井/P基板間電容設為Cpn,則VN井=24 V*Cox/(Cox+Cpn)。此處,若P基板31之濃度較低,即,若P基板31之濃度<<孤立N井層36之濃度,則Cox>>Cpn。因此,電位VF-N井≒24 V,與Poly配線層33之24 V大致無電壓差,因此幾乎不會對絕緣層32施加電壓。但是,若使孤立N井層36之層厚或濃度超出需要地變大,則電容Cpn變大,即,Cox/(Cox+Cnp)變得小於1,因此電位VF-N井亦降低,從而效果亦會減少。
<第2應用例> 第2應用例係將本實施形態之半導體配線用作電阻器元件。圖9表示進行反饋控制之輸出控制電路之一例。
本實施形態之半導體配線可藉由適當設定雜質之濃度、電阻器元件之電流流動之方向之長度及元件截面面積等來獲得所需之電阻值。本應用例中,將半導體配線用作電阻器元件。電阻器元件對於所傳輸之信號產生與電阻值對應之電壓降。電阻器元件例如可設定為數十kΩ之電阻值。第2應用例係將半導體配線作為電阻器元件而用於電阻R1、R2之例子。
該輸出控制電路具備:電阻R1、R2,其等將升壓電路15之輸出進行分支後獲取,檢測監視器電位;以及運算放大器M1,其以消除所檢測出之監視器電位與基準電位之差之方式進行控制。
輸出控制電路之電阻R1、R2被串聯連接,檢測施加於電阻R1與電阻R2之連接點之電壓作為監視器電位。該例中,以監視器電位成為與基準電位相同之電位之方式設定電阻R1、R2之分壓比。
升壓電路15如上所述輸出例如24 V之高電壓之輸出信號。因此,與傳輸升壓電位之輸出信號之輸出線一起,亦對分壓電阻線施加相同之輸出信號。因此,於包含電阻R1、R2之分壓電阻線中,當使用先前構造之半導體配線(Poly配線)時,亦會產生上述基板熱電子,電阻R1、2之電阻值分別包含不同之上升而發生變動。該電阻值之變動使電阻R1、2之分壓比亦發生變動,因此亦會對監視器電位產生影響。於監視器電位不適當地變動之情形時,會使升壓電路15之輸出不穩定。因此,對電阻R1、2,使用半導體配線(Poly層+絕緣層+浮動N型層)作為電阻器元件,以使電阻值不因基板熱電子之產生而發生變動。於使用Poly層作為電阻器之情形時,由於在該層內會產生電壓降,故而存在高電壓之區域至低電壓之區域。當浮動N型層僅位於電壓高之區域之正下方時,效果提昇。又,即便將電壓高之區域之浮動N型層與電壓低之區域之浮動N型層分離,亦可獲得相同之效果。
為了將此種半導體配線用作電阻器元件,如上所述,需要施加至絕緣層之電場不超過5~6 MV/cm之厚度。例如,若高電壓為24 V,則絕緣層之層厚設定為40 nm以上之厚度。又,浮動N型層適宜為P基板之10倍以上之雜質濃度,當被施加了最大電壓時,空乏層具有未達絕緣層之厚度。
根據第2應用例,藉由將包含浮動N型層之半導體配線用作電阻器元件,而於施加高電壓時,藉由防止基板熱電子之產生而抑制電阻值之變動。藉由抑制用作電路元件之電阻器元件之電阻值之變動,可防止電路元件之動作或特性變差,從而維持所需之性能。又,可防止伴隨電阻值變動之耗電之增加,且防止發熱之一個原因。
進而,不僅能夠將作為第2應用例所說明之本實施形態之半導體配線用作電阻器元件,而且亦適於施加高電壓之電路元件及配線,例如可應用於NOR(NOT OR,反或)型記憶電路或CMOS(complementary metal oxide semiconductor,互補金屬氧化物半導體)電路。
以上所說明之本發明之若干實施形態及變化例並無限定。於實施階段,可於不脫離其主旨之範圍內進行各種變化。進而,上述實施形態中包含各種階段之發明,藉由將公開之複數個構成要件適當組合而提取各種發明。又,即便自實施形態所例示之所有構成要件中刪除若干構成要件,亦可解決發明所欲解決之問題一欄中所述之問題,且可獲得發明效果一欄中所述之效果,於該情形時,提取刪除了該構成要件後之構成作為發明。
[相關申請案] 本申請案享有以日本專利申請案2018-237033號(申請日:2018年12月19日)作為基礎申請案之優先權。本申請案藉由參照該基礎申請案而包含基礎申請案之全部內容。
1:半導體記憶裝置 2:記憶體控制器 11:記憶胞陣列 12:列解碼器 13:感測放大器 14:定序器 15:升壓電路 21:供給端子 22:輸出端子 31:P型半導體基板 32:絕緣層 32a:窗 33:Poly配線層 34:N井層 35:空乏層 36:N井層 A:能帶 B:能帶 BL0~BL(N-1):位元線 BLK0~BLKn:區塊 C:電容器元件 C1~Cn-1:電容器元件 D:二極體 D1~Dn:二極體 DD0:虛設字元線 DD1:虛設字元線 DS0:虛設字元線 DS1:虛設字元線 M1:運算放大器 MT0~MT63:記憶胞電晶體 MTDD0a:虛設記憶胞電晶體 MTDD0b:虛設記憶胞電晶體 MTDD1:虛設記憶胞電晶體 MTDS0:虛設記憶胞電晶體 MTDS1:虛設記憶胞電晶體 NS:NAND串 R1:電阻 R2:電阻 SGD0~SGD3:選擇閘極線 SGS:選擇閘極線 SHE:基板熱電子 SL:源極線 ST1:選擇電晶體 ST2:選擇電晶體 SU:串單元 W1:寬度 W2:寬度 W3:寬度 WL0~WL63:字元線
圖1係表示設置於實施形態之半導體裝置之半導體配線之截面構造之圖。 圖2係表示Poly配線與浮動N井層之配置關係之圖。 圖3A係概念性地表示與被施加高電壓之Poly配線及基板熱電子相關之能帶之圖。 圖3B係概念性地表示與被施加高電壓之Poly配線及浮動N井層相關之能帶之圖。 圖4係表示實施形態之半導體記憶裝置之整體構成之一例之方塊圖。 圖5係表示半導體記憶裝置之記憶胞陣列之電路構成之一例之方塊圖。 圖6係表示升壓電路之構成例之圖。 圖7係表示對浮動N井層施加外加電壓之半導體配線之變化例之剖視圖。 圖8係將施加中間電壓VM時之能帶和與被施加高電壓之Poly配線及浮動N井層相關之能帶一併表示之圖。 圖9係表示進行反饋控制之輸出控制電路之一例之圖。
31:P型半導體基板
32:絕緣層
33:Poly配線層
34:N井層
35:空乏層
W1:寬度
W2:寬度
W3:寬度

Claims (12)

  1. 一種半導體裝置,其包含半導體配線,上述半導體配線包含: 第1導電型之第1半導體區域; 絕緣層,其形成於上述第1半導體區域上; 半導體配線層,其介隔上述絕緣層與上述第1半導體區域對向,作為電路元件間之電流通路而形成;及 浮動層,其設置於介隔上述絕緣層與上述半導體配線層對向之上述第1半導體區域內,包含第2導電型之雜質,不與電路元件連接且電性浮動。
  2. 如請求項1之半導體裝置,其中於上述第1導電型為P型時,上述浮動層為第2導電型之N型半導體層或N井層。
  3. 如請求項1之半導體裝置,其中上述浮動層之寬度,具有上述半導體配線層之寬度以下之寬度。
  4. 如請求項1之半導體裝置,其中上述浮動層於具有矩形截面形狀時,相對於上述半導體配線層,與至少1面對向地形成。
  5. 如請求項1之半導體裝置,其中上述半導體配線層由包含多晶矽之半導體材料形成。
  6. 如請求項1之半導體裝置,其中上述半導體配線包含傳輸以下信號之配線:在電路元件間傳輸之信號係使自上述第1半導體區域跳入至上述半導體配線層之基板熱電子產生之電壓值以上之信號。
  7. 如請求項1之半導體裝置,其中上述半導體配線包含傳輸記憶胞陣列中之資訊之寫入信號之配線。
  8. 如請求項1之半導體裝置,其中上述半導體配線係任意設定之電阻值之電阻器元件。
  9. 如請求項1之半導體裝置,其中上述半導體配線之包含上述雜質之上述浮動層,藉由自外部對浮動電位施加任意電壓,而形成經充電狀態之孤立雜質層。
  10. 如請求項1之半導體裝置,其中上述半導體配線導入含有磷(P)或砷(As)之五價元素之雜質。
  11. 如請求項1之半導體裝置,其中上述絕緣層具有使因施加至上述半導體配線之信號而產生之電場不超過5~6 MV/cm,抑制穿隧電流之厚度。
  12. 如請求項1之半導體裝置,其中上述半導體配線於連接第1電路與第2電路之情形時,與金屬配線並用。
TW108128035A 2018-12-19 2019-08-07 半導體裝置 TWI729449B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018237033A JP7242285B2 (ja) 2018-12-19 2018-12-19 半導体装置
JP2018-237033 2018-12-19

Publications (2)

Publication Number Publication Date
TW202025425A true TW202025425A (zh) 2020-07-01
TWI729449B TWI729449B (zh) 2021-06-01

Family

ID=71098731

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108128035A TWI729449B (zh) 2018-12-19 2019-08-07 半導體裝置

Country Status (4)

Country Link
US (2) US20200203529A1 (zh)
JP (1) JP7242285B2 (zh)
CN (1) CN111341756B (zh)
TW (1) TWI729449B (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU461729B2 (en) * 1971-01-14 1975-06-05 Rca Corporation Charge coupled circuits
JP3204666B2 (ja) * 1990-11-21 2001-09-04 株式会社東芝 不揮発性半導体記憶装置
JPH05121664A (ja) * 1991-10-25 1993-05-18 Nec Corp 半導体装置
JP3344598B2 (ja) * 1993-11-25 2002-11-11 株式会社デンソー 半導体不揮発メモリ装置
JP2000252426A (ja) * 1999-02-25 2000-09-14 Hitachi Ltd 半導体装置及びその製造方法
US7226830B2 (en) * 2005-04-29 2007-06-05 Texas Instruments Incorporated Semiconductor CMOS devices and methods with NMOS high-k dielectric formed prior to core PMOS dielectric formation
WO2007119626A1 (ja) * 2006-03-31 2007-10-25 National University Corporation Shizuoka University 半導体測距素子及び固体撮像装置
WO2010007769A1 (ja) * 2008-07-14 2010-01-21 凸版印刷株式会社 不揮発性半導体メモリ素子、不揮発性半導体メモリセルおよび不揮発性半導体メモリ装置
JP6009139B2 (ja) * 2010-06-22 2016-10-19 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
US20120313692A1 (en) * 2011-06-08 2012-12-13 Sehat Sutardja Super-high-voltage resistor on silicon
US8987107B2 (en) * 2013-02-19 2015-03-24 Fairchild Semiconductor Corporation Production of high-performance passive devices using existing operations of a semiconductor process
US9236449B2 (en) * 2013-07-11 2016-01-12 Globalfoundries Inc. High voltage laterally diffused metal oxide semiconductor
KR102163596B1 (ko) * 2014-12-22 2020-10-12 매그나칩 반도체 유한회사 초고전압 레지스터 및 제조방법, 그 반도체 소자

Also Published As

Publication number Publication date
CN111341756B (zh) 2024-04-09
JP7242285B2 (ja) 2023-03-20
TWI729449B (zh) 2021-06-01
JP2020098878A (ja) 2020-06-25
US20200203529A1 (en) 2020-06-25
US20230282747A1 (en) 2023-09-07
CN111341756A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
US10181341B1 (en) Memory device including current generator plate
JP5491741B2 (ja) 半導体記憶装置
JP3947135B2 (ja) 不揮発性半導体記憶装置
US9362302B1 (en) Source line formation in 3D vertical channel and memory
US8724391B2 (en) Semiconductor memory device
USRE49175E1 (en) Semiconductor device including three voltage generator circuits and two transistors configured to short-circuit respective different combinations of the voltage generator circuits
US9117526B2 (en) Substrate connection of three dimensional NAND for improving erase performance
JP2013021202A (ja) 半導体記憶装置
TWI713038B (zh) 半導體記憶裝置
JP2009271966A (ja) 不揮発性半導体記憶装置
JP2013196731A (ja) 不揮発性半導体記憶装置
US20110075489A1 (en) Non-volatile semiconductor memory device
US20210408024A1 (en) Hole pre-charge scheme using gate induced drain leakage generation
EP4300497A1 (en) Nonvolatile memory device and method of controlling read operation of the same
JP5483826B2 (ja) 不揮発性半導体記憶装置及びその書き込み方法
US11894080B2 (en) Time-tagging read levels of multiple wordlines for open block data retention
TWI729449B (zh) 半導體裝置
US11562797B2 (en) Non-linear temperature compensation for wider range operation temperature products
US11972801B2 (en) Program voltage dependent program source levels
US20230253049A1 (en) Celsrc voltage separation between slc and xlc for slc program average icc reduction
US20230386580A1 (en) Method to optimize first read versus second read margin by switching boost timing
US20240087650A1 (en) Sub-block status dependent device operation
US20240071527A1 (en) Adaptive negative word line voltage
US20240192873A1 (en) Multi-tier sub-block mode operation
US20240105269A1 (en) Bit line modulation to compensate for cell source variation