US20210408024A1 - Hole pre-charge scheme using gate induced drain leakage generation - Google Patents
Hole pre-charge scheme using gate induced drain leakage generation Download PDFInfo
- Publication number
- US20210408024A1 US20210408024A1 US16/916,186 US202016916186A US2021408024A1 US 20210408024 A1 US20210408024 A1 US 20210408024A1 US 202016916186 A US202016916186 A US 202016916186A US 2021408024 A1 US2021408024 A1 US 2021408024A1
- Authority
- US
- United States
- Prior art keywords
- memory
- gate
- select
- select transistor
- line connected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015654 memory Effects 0.000 claims abstract description 327
- 239000000758 substrate Substances 0.000 description 34
- 238000007667 floating Methods 0.000 description 23
- 238000013459 approach Methods 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- 238000009826 distribution Methods 0.000 description 15
- 101100186130 Arabidopsis thaliana NAC052 gene Proteins 0.000 description 14
- 101100529509 Arabidopsis thaliana RECQL4A gene Proteins 0.000 description 14
- 101100203168 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SGS1 gene Proteins 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 101000578349 Homo sapiens Nucleolar MIF4G domain-containing protein 1 Proteins 0.000 description 9
- 102100027969 Nucleolar MIF4G domain-containing protein 1 Human genes 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 229920005591 polysilicon Polymers 0.000 description 9
- 238000003491 array Methods 0.000 description 7
- 230000005641 tunneling Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- BBHJTCADCKZYSO-UHFFFAOYSA-N 4-(4-ethylcyclohexyl)benzonitrile Chemical compound C1CC(CC)CCC1C1=CC=C(C#N)C=C1 BBHJTCADCKZYSO-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 101710190981 50S ribosomal protein L6 Proteins 0.000 description 1
- 101710190962 50S ribosomal protein L9 Proteins 0.000 description 1
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 101100481702 Arabidopsis thaliana TMK1 gene Proteins 0.000 description 1
- 101100481703 Arabidopsis thaliana TMK2 gene Proteins 0.000 description 1
- 101100481704 Arabidopsis thaliana TMK3 gene Proteins 0.000 description 1
- 108700019909 BL 19 Proteins 0.000 description 1
- 101000751000 Bacillus subtilis (strain 168) 50S ribosomal protein L1 Proteins 0.000 description 1
- 101000574917 Bacillus subtilis (strain 168) 50S ribosomal protein L10 Proteins 0.000 description 1
- 101000575029 Bacillus subtilis (strain 168) 50S ribosomal protein L11 Proteins 0.000 description 1
- 101001105315 Bacillus subtilis (strain 168) 50S ribosomal protein L17 Proteins 0.000 description 1
- 101000682328 Bacillus subtilis (strain 168) 50S ribosomal protein L18 Proteins 0.000 description 1
- 101001101476 Bacillus subtilis (strain 168) 50S ribosomal protein L21 Proteins 0.000 description 1
- 101000592939 Bacillus subtilis (strain 168) 50S ribosomal protein L24 Proteins 0.000 description 1
- 101000712130 Bacillus subtilis (strain 168) 50S ribosomal protein L7/L12 Proteins 0.000 description 1
- 101000935024 Bungarus multicinctus Beta-bungarotoxin B chain-like Proteins 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 101001070329 Geobacillus stearothermophilus 50S ribosomal protein L18 Proteins 0.000 description 1
- 101001110617 Geobacillus stearothermophilus 50S ribosomal protein L5 Proteins 0.000 description 1
- 101001093025 Geobacillus stearothermophilus 50S ribosomal protein L7/L12 Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- -1 SGD0 Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H01L27/11556—
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5628—Programming or writing circuits; Data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3404—Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
- G11C16/3413—Circuits or methods to recover overprogrammed nonvolatile memory cells detected during program verification, usually by means of a "soft" erasing step
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0483—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/08—Address circuits; Decoders; Word-line control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
- G11C16/12—Programming voltage switching circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/24—Bit-line control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/32—Timing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
- G11C5/025—Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/18—Bit line organisation; Bit line lay-out
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/14—Word line organisation; Word line lay-out
-
- H01L27/11582—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0638—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
- H10B43/35—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/12—Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
Definitions
- This application relates to non-volatile memory apparatuses and the operation of non-volatile memory apparatuses.
- Non-volatile semiconductor memory apparatuses have become more popular for use in various electronic devices.
- non-volatile semiconductor memory is used in cellular telephones, digital cameras, personal digital assistants, mobile computing devices, non-mobile computing devices and other devices.
- a charge-storing material such as a floating gate or a charge-trapping material can be used in such memory apparatuses to store a charge which represents a data state.
- a charge-trapping material can be arranged vertically in a three-dimensional (3D) stacked memory structure, or horizontally in a two-dimensional (2D) memory structure.
- 3D memory structure is the Bit Cost Scalable (BiCS) architecture which comprises a stack of alternating conductive and dielectric layers.
- An object of the present disclosure is to provide a memory apparatus and a method of operation of the memory apparatus that address and overcome shortcomings described herein.
- a memory device disclosed herein comprises: a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series; a bit line connected to one end of the first select transistor; a source line connected to one end of the second select transistor; a first select line connected to a gate of the first select transistor; a word line connected to a gate of the memory cell transistor; a second select line connected to a gate of the second select transistor; and a control circuit configured to perform, before a program operation, a pre-charge operation comprising: applying a voltage to the second select line connected to the gate of the second select transistor to cause gate-induced drain leakage from the second select transistor.
- a memory device disclosed herein.
- the memory device comprises: a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series; a bit line connected to one end of the first select transistor; a source line connected to one end of the second select transistor; a first select line connected to a gate of the first select transistor; a word line connected to a gate of the memory cell transistor; a second select line connected to a gate of the second select transistor; and a control circuit configured to perform, before a program operation, a pre-charge operation comprising: applying a voltage to the source line connected to one end of the second select transistor to cause the gate-induced drain leakage from the second select transistor.
- a memory device disclosed herein.
- the memory device comprises: a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series; a bit line connected to one end of the first select transistor; a source line connected to one end of the second select transistor; a first select line connected to a gate of the first select transistor; a word line connected to a gate of the memory cell transistor; a second select line connected to a gate of the second select transistor; and a control circuit configured to perform, before a program operation, a pre-charge operation comprising: applying a voltage to the first select line connected to the gate of the first select transistor to cause gate-induced drain leakage from the first select transistor.
- FIG. 1A is a block diagram of an example memory device
- FIG. 1B is a block diagram of an example control circuit which comprises a programming circuit, a counting circuit, and a determination circuit;
- FIG. 2 depicts blocks of memory cells in an example two-dimensional configuration of the memory array of FIG. 1 ;
- FIG. 3A depicts a cross-sectional view of example floating gate memory cells in NAND strings
- FIG. 3B depicts a cross-sectional view of the structure of FIG. 3A along line 329 ;
- FIG. 4A depicts a cross-sectional view of example charge-trapping memory cells in NAND strings
- FIG. 4B depicts a cross-sectional view of the structure of FIG. 4A along line 429 ;
- FIG. 5A depicts an example block diagram of the sense block SB 1 of FIG. 1 ;
- FIG. 5B depicts another example block diagram of the sense block SB 1 of FIG. 1 ;
- FIG. 6A is a perspective view of a set of blocks in an example three-dimensional configuration of the memory array of FIG. 1 ;
- FIG. 6B depicts an example cross-sectional view of a portion of one of the blocks of FIG. 6A ;
- FIG. 6C depicts a plot of memory hole diameter in the stack of FIG. 6B ;
- FIG. 6D depicts a close-up view of the region 622 of the stack of FIG. 6B ;
- FIG. 7A depicts a top view of an example word line layer WLL 0 of the stack of FIG. 6B ;
- FIG. 7B depicts a top view of an example top dielectric layer DL 19 of the stack of FIG. 6B ;
- FIG. 8A depicts example NAND strings in the sub-blocks SBa-SBd of FIG. 7A ;
- FIG. 8B depicts another example view of NAND strings in sub-blocks
- FIG. 8C depicts a top view of example word line layers of a stack
- FIG. 9 depicts the Vth distributions of memory cells in an example one-pass programming operation with four data states
- FIG. 10 depicts the Vth distributions of memory cells in an example one-pass programming operation with eight data states
- FIG. 11 depicts the Vth distributions of memory cells in an example one-pass programming operation with sixteen data states
- FIG. 12 is a flowchart of an example programming operation in a memory device
- FIGS. 13A and 13B depict the Vth distributions of memory cells
- FIGS. 14A and 14B depicts an example BiCS structure
- FIGS. 15A-15D provide different plots illustrating the implementation of hole pre-charge scheme using gate induced drain leakage generation, in accordance with embodiments described herein.
- the present disclosure relates to non-volatile memory apparatuses of the type well-suited for use in many applications.
- the non-volatile memory apparatus and associated methods of forming of this disclosure will be described in conjunction with one or more example embodiments.
- the specific example embodiments disclosed are merely provided to describe the inventive concepts, features, advantages and objectives with sufficient clarity to permit those skilled in this art to understand and practice the disclosure.
- the example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure.
- a layer or element when a layer or element is referred to as being “on” another layer or substrate, in can be directly on the other layer of substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being “under” another layer, it can be directly under, and one or more intervening layers may also be present. Furthermore, when a layer is referred to as “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
- non-volatile memory systems are a type of memory that retains stored information without requiring an external power source.
- Non-volatile memory is widely used in various electronic devices and in stand-alone memory devices.
- non-volatile memory can be found in laptops, digital audio player, digital cameras, smart phones, video games, scientific instruments, industrial robots, medical electronics, solid-state drives, USB drives, memory cards, and the like.
- Non-volatile memory can be electronically programmed/reprogrammed and erased.
- non-volatile memory systems include flash memory, such as NAND flash or NOR flash.
- NAND flash memory structures typically arrange multiple memory cell transistors (e.g., floating-gate transistors or charge trap transistors) in series with and between two select gates (e.g., a drain-side select gate and a source-side select gate). The memory cell transistors in series and the select gates may be referred to as a NAND string.
- NAND flash memory may be scaled in order to reduce cost per bit.
- a programming operation for a set of memory cells of a memory device typically involves applying a series of program voltages to the memory cells after the memory cells are provided in an erased state.
- Each program voltage is provided in a program loop, also referred to as a program-verify iteration.
- the program voltage may be applied to a word line which is connected to control gates of the memory cells.
- incremental step pulse programming is performed, where the program voltage is increased by a step size in each program loop. Verify operations may be performed after each program voltage to determine whether the memory cells have completed programming. When programming is completed for a memory cell, it can be locked out from further programming while programming continues for other memory cells in subsequent program loops.
- Each memory cell may be associated with a data state according to write data in a program command. Based on its data state, a memory cell will either remain in the erased state or be programmed to a data state (a programmed data state) different from the erased state. For example, in a one-bit per cell memory device (single-level cell (SLC)), there are two data states including the erased state and one higher data state. In a two-bit per cell memory device (multi-level cell (MLC)), there are four data states including the erased state and three higher data states referred to as the A, B and C data states (see FIG. 9 ).
- SLC single-level cell
- MLC multi-level cell
- TLC triple-level cell
- QLC quad-level cell
- Er, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F data states see FIG. 11 .
- Each memory cell may store a data state (e.g., a binary value) and is programmed to a threshold voltage state corresponding to the data state. Each state represents a different value and is assigned a voltage window including a range of possible threshold voltages.
- the write data is stored in latches associated with the memory cells.
- the latches of a memory cell can be read to determine the data state to which the cell is to be programmed.
- Each programmed data state is associated with a verify voltage such that a memory cell with a given data state is considered to have completed programming when a sensing operation determines its threshold voltage (Vth) is above the associated verify voltage.
- Vth threshold voltage
- a sensing operation can determine whether a memory cell has a Vth above the associated verify voltage by applying the associated verify voltage to the control gate and sensing a current through the memory cell. If the current is relatively high, this indicates the memory cell is in a conductive state, such that the Vth is less than the control gate voltage. If the current is relatively low, this indicates the memory cell is in a non-conductive state, such that the Vth is above the control gate voltage.
- the verify voltage which is used to determine that a memory cell has completed programming may be referred to as a final or lockout verify voltage.
- an additional verify voltage may be used to determine that a memory cell is close to completion of the programming.
- This additional verify voltage may be referred to as an offset verify voltage, and may be lower than the final verify voltage.
- the programming speed of the memory cell may be reduced such as by elevating a voltage of a respective bit line during one or more subsequent program voltages.
- a memory cell which is to be programmed to the A data state may be subject to verify tests at VvAL, an offset verify voltage of the A data state, and VvA, a final verify voltage of the A data state.
- a programming operation may include a pre-charge phase.
- a channel of a NAND string in a 3D stacked memory device may be prepared for programming.
- CPWELL precharge technique may be used to improve reverse order program (ROP) erase upper tail by suppling holes into the channel.
- ROP reverse order program
- CUA BiCS CMOS under array
- Embodiments described herein provide alternate techniques for boost potential improvement in ROP for BiCS CUA architecture. More specifically, embodiments described herein are directed to pre-charge schemes using gate induced drain leakage (GIDL) generation.
- GIDL gate induced drain leakage
- FIG. 1A is a block diagram of an example memory device.
- the memory device 100 may include one or more memory die 108 .
- the memory die 108 includes a memory structure 126 of memory cells, such as an array of memory cells, control circuitry 110 , and read/write circuits 128 .
- the memory structure 126 is addressable by word lines via a row decoder 124 and by bit lines via a column decoder 132 .
- the read/write circuits 128 include multiple sense blocks SB 1 , SB 2 , . . . , SBp (sensing circuitry) and allow a page of memory cells to be read or programmed in parallel.
- a controller 122 is included in the same memory device 100 (e.g., a removable storage card) as the one or more memory die 108 . Commands and data are transferred between the host 140 and controller 122 via a data bus 120 , and between the controller and the one or more memory die 108 via lines 118 .
- the memory structure can be 2D or 3D.
- the memory structure may comprise one or more array of memory cells including a 3D array.
- the memory structure may comprise a monolithic three dimensional memory structure in which multiple memory levels are formed above (and not in) a single substrate, such as a wafer, with no intervening substrates.
- the memory structure may comprise any type of non-volatile memory that is monolithically formed in one or more physical levels of arrays of memory cells having an active area disposed above a silicon substrate.
- the memory structure may be in a non-volatile memory device having circuitry associated with the operation of the memory cells, whether the associated circuitry is above or within the substrate.
- the control circuitry 110 cooperates with the read/write circuits 128 to perform memory operations on the memory structure 126 , and includes a state machine 112 , an on-chip address decoder 114 , and a power control module 116 .
- the state machine 112 provides chip-level control of memory operations.
- a storage region 113 may be provided, e.g., for verify parameters as described herein.
- the on-chip address decoder 114 provides an address interface between that used by the host or a memory controller to the hardware address used by the decoders 124 and 132 .
- the power control module 116 controls the power and voltages supplied to the word lines and bit lines during memory operations. It can include drivers for word lines, SGS and SGD transistors and source lines.
- the sense blocks can include bit line drivers, in one approach.
- An SGS transistor is a select gate transistor at a source end of a NAND string
- an SGD transistor is a select gate transistor at a drain end of a NAND string.
- a control circuit may include any one of, or a combination of, control circuitry 110 , state machine 112 , decoders 114 / 132 , power control module 116 , sense blocks SBb, SB 2 , . . . , SBp, read/write circuits 128 , controller 122 , and so forth.
- the control circuits can include a programming circuit configured to program memory cells of a word line of a block and verify the set of the memory cells.
- the control circuits can also include a counting circuit configured to determine a number of memory cells that are verified to be in a data state.
- the control circuits can also include a determination circuit configured to determine, based on the number, whether the block is faulty.
- FIG. 1B is a block diagram of an example control circuit 150 which comprises a programming circuit 151 , a counting circuit 152 and a determination circuit 153 .
- the programming circuit may include software, firmware and/or hardware which implements, e.g., steps 1202 and 1204 of FIG. 12 .
- the counting circuit may include software, firmware and/or hardware which implements, e.g., step 1206 of FIG. 12 .
- the determination circuit may include software, firmware and/or hardware which implements, e.g., step 1208 of FIG. 12 .
- the off-chip controller 122 may comprise a processor 122 c , storage devices (memory) such as ROM 122 a and RAM 122 b and an error-correction code (ECC) engine 245 .
- the ECC engine can correct a number of read errors which are caused when the upper tail of a Vth distribution becomes too high. However, uncorrectable errors may exist in some cases. The techniques provided herein reduce the likelihood of uncorrectable errors.
- the storage device comprises code such as a set of instructions, and the processor is operable to execute the set of instructions to provide the functionality described herein.
- the processor can access code from a storage device 126 a of the memory structure, such as a reserved area of memory cells in one or more word lines.
- code can be used by the controller 122 to access the memory structure such as for programming, read and erase operations.
- the code can include boot code and control code (e.g., set of instructions).
- the boot code is software that initializes the controller during a booting or startup process and enables the controller to access the memory structure.
- the code can be used by the controller to control one or more memory structures.
- the processor 122 c fetches the boot code from the ROM 122 a or storage device 126 a for execution, and the boot code initializes the system components and loads the control code into the RAM 122 b . Once the control code is loaded into the RAM, it is executed by the processor.
- the control code includes drivers to perform basic tasks such as controlling and allocating memory, prioritizing the processing of instructions, and controlling input and output ports.
- the host is a computing device (e.g., laptop, desktop, smartphone, tablet, digital camera) that includes one or more processors, one or more processor readable storage devices (RAM, ROM, flash memory, hard disk drive, solid state memory) that store processor readable code (e.g., software) for programming the one or more processors to perform the methods described herein.
- the host may also include additional system memory, one or more input/output interfaces and/or one or more input/output devices in communication with the one or more processors.
- non-volatile memory in addition to NAND flash memory can also be used.
- Semiconductor memory devices include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information.
- volatile memory devices such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices
- non-volatile memory devices such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information.
- ReRAM resistive random access memory
- EEPROM electrically erasable
- the memory devices can be formed from passive and/or active elements, in any combinations.
- passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse or phase change material, and optionally a steering element, such as a diode or transistor.
- active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
- NAND memory typically contain memory elements connected in series.
- a NAND string is an example of a set of series-connected transistors comprising memory cells and SG transistors.
- a NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group.
- memory elements may be configured so that each element is individually accessible, e.g., a NOR memory array.
- NAND and NOR memory configurations are examples, and memory elements may be otherwise configured.
- the semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure.
- the semiconductor memory elements are arranged in a single plane or a single memory device level.
- memory elements are arranged in a plane (e.g., in an x-y direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements.
- the substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed.
- the substrate may include a semiconductor such as silicon.
- the memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations.
- the memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
- a three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the z direction is substantially perpendicular and the x and y directions are substantially parallel to the major surface of the substrate).
- a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels.
- a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements.
- the columns may be arranged in a two dimensional configuration, e.g., in an x-y plane, resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes.
- Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
- the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-y) memory device level.
- the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels.
- Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels.
- Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
- a monolithic three dimensional memory array typically, one or more memory device levels are formed above a single substrate.
- the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate.
- the substrate may include a semiconductor such as silicon.
- the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array.
- layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
- non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
- Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements.
- memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading.
- This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate.
- a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
- FIG. 2 depicts blocks of memory cells in an example two-dimensional configuration of the memory array 126 of FIG. 1 .
- the memory array can include many blocks.
- Each example block 200 , 210 includes a number of NAND strings and respective bit lines, e.g., BL 0 , BL 1 , . . . which are shared among the blocks.
- Each NAND string is connected at one end to a drain select gate (SGD), and the control gates of the drain select gates are connected via a common SGD line.
- the NAND strings are connected at their other end to a source select gate which, in turn, is connected to a common source line 220 .
- Sixteen word lines, for example, WL 0 -WL 15 extend between the source select gates and the drain select gates.
- dummy word lines which contain no user data, can also be used in the memory array adjacent to the select gate transistors. Such dummy word lines can shield the edge data word line from certain edge effects.
- non-volatile memory which may be provided in the memory array is a floating gate memory. See FIGS. 3A and 3B .
- Other types of non-volatile memory can also be used.
- a charge-trapping memory cell uses a non-conductive dielectric material in place of a conductive floating gate to store charge in a non-volatile manner. See FIGS. 4A and 4B .
- a triple layer dielectric formed of silicon oxide, silicon nitride and silicon oxide (“ONO”) is sandwiched between a conductive control gate and a surface of a semi-conductive substrate above the memory cell channel. The cell is programmed by injecting electrons from the cell channel into the nitride, where they are trapped and stored in a limited region.
- This stored charge then changes the threshold voltage of a portion of the channel of the cell in a manner that is detectable.
- the cell is erased by injecting hot holes into the nitride.
- a similar cell can be provided in a split-gate configuration where a doped polysilicon gate extends over a portion of the memory cell channel to form a separate select transistor.
- NROM cells are used. Two bits, for example, are stored in each NROM cell, where an ONO dielectric layer extends across the channel between source and drain diffusions. The charge for one data bit is localized in the dielectric layer adjacent to the drain, and the charge for the other data bit localized in the dielectric layer adjacent to the source. Multi-state data storage is obtained by separately reading binary states of the spatially separated charge storage regions within the dielectric. Other types of non-volatile memory are also known.
- FIG. 3A depicts a cross-sectional view of example floating gate memory cells in NAND strings.
- a bit line or NAND string direction goes into the page, and a word line direction goes from left to right.
- word line 324 extends across NAND strings which include respective channel regions 306 , 316 and 326 .
- the memory cell 300 includes a control gate 302 , a floating gate 304 , a tunnel oxide layer 305 and the channel region 306 .
- the memory cell 310 includes a control gate 312 , a floating gate 314 , a tunnel oxide layer 315 and the channel region 316 .
- the memory cell 320 includes a control gate 322 , a floating gate 321 , a tunnel oxide layer 325 and the channel region 326 .
- Each memory cell is in a different respective NAND string.
- An inter-poly dielectric (IPD) layer 328 is also depicted.
- the control gates are portions of the word line.
- control gate wraps around the floating gate, increasing the surface contact area between the control gate and floating gate. This results in higher IPD capacitance, leading to a higher coupling ratio which makes programming and erase easier.
- the spacing between neighboring cells becomes smaller so there is almost no space for the control gate and the IPD between two adjacent floating gates.
- the flat or planar memory cell has been developed in which the control gate is flat or planar; that is, it does not wrap around the floating gate, and its only contact with the charge storage layer is from above it. In this case, there is no advantage in having a tall floating gate. Instead, the floating gate is made much thinner. Further, the floating gate can be used to store charge, or a thin charge trap layer can be used to trap charge. This approach can avoid the issue of ballistic electron transport, where an electron can travel through the floating gate after tunneling through the tunnel oxide during programming.
- FIG. 3B depicts a cross-sectional view of the structure of FIG. 3A along line 329 .
- the NAND string 330 includes an SGS transistor 331 , example memory cells 300 , 333 , . . . , 334 and 335 , and an SGD transistor 336 .
- the memory cell 300 includes the control gate 302 , the IPD layer 328 , the floating gate 304 and the tunnel oxide layer 305 , consistent with FIG. 3A . Passageways in the IPD layer in the SGS and SGD transistors allow the control gate layers and floating gate layers to communicate.
- the control gate and floating gate layers may be polysilicon and the tunnel oxide layer may be silicon oxide, for instance.
- the IPD layer can be a stack of nitrides (N) and oxides (O) such as in a N—O—N—O—N configuration.
- the NAND string may be formed on a substrate which comprises a p-type substrate region 355 , an n-type well 356 and a p-type well 357 .
- N-type source/drain diffusion regions sd 1 , sd 2 , sd 3 , sd 4 , sd 5 , sd 6 and sd 7 are formed in the p-type well.
- a channel voltage, Vch may be applied directly to the channel region of the substrate.
- FIG. 4A depicts a cross-sectional view of example charge-trapping memory cells in NAND strings.
- the view is in a word line direction of memory cells comprising a flat control gate and charge-trapping regions as a 2D example of memory cells in the memory cell array 126 of FIG. 1 .
- Charge-trapping memory can be used in NOR and NAND flash memory device. This technology uses an insulator such as a SiN film to store electrons, in contrast to a floating-gate MOSFET technology which uses a conductor such as doped polycrystalline silicon to store electrons.
- a word line (WL) 424 extends across NAND strings which include respective channel regions 406 , 416 and 426 .
- Portions of the word line provide control gates 402 , 412 and 422 .
- IPD layer 428 Below the word line is an IPD layer 428 , charge-trapping layers 404 , 414 and 421 , polysilicon layers 405 , 415 and 425 and tunneling layer layers 409 , 407 and 408 .
- Each charge-trapping layer extends continuously in a respective NAND string.
- a memory cell 400 includes the control gate 402 , the charge-trapping layer 404 , the polysilicon layer 405 and a portion of the channel region 406 .
- a memory cell 410 includes the control gate 412 , the charge-trapping layer 414 , a polysilicon layer 415 and a portion of the channel region 416 .
- a memory cell 420 includes the control gate 422 , the charge-trapping layer 421 , the polysilicon layer 425 and a portion of the channel region 426 .
- a flat control gate is used here instead of a control gate that wraps around a floating gate.
- One advantage is that the charge-trapping layer can be made thinner than a floating gate. Additionally, the memory cells can be placed closer together.
- FIG. 4B depicts a cross-sectional view of the structure of FIG. 4A along line 429 .
- the view shows a NAND string 430 having a flat control gate and a charge-trapping layer.
- the NAND string 430 includes an SGS transistor 431 , example memory cells 400 , 433 , . . . , 434 and 435 , and an SGD transistor 435 .
- the NAND string may be formed on a substrate which comprises a p-type substrate region 455 , an n-type well 456 and a p-type well 457 .
- N-type source/drain diffusion regions sd 1 , sd 2 , sd 3 , sd 4 , sd 5 , sd 6 and sd 7 are formed in the p-type well 457 .
- a channel voltage, Vch may be applied directly to the channel region of the substrate.
- the memory cell 400 includes the control gate 402 and the IPD layer 428 above the charge-trapping layer 404 , the polysilicon layer 405 , the tunneling layer 409 and the channel region 406 .
- the control gate layer may be polysilicon and the tunneling layer may be silicon oxide, for instance.
- the IPD layer can be a stack of high-k dielectrics such as AlOx or HfOx which help increase the coupling ratio between the control gate layer and the charge-trapping or charge storing layer.
- the charge-trapping layer can be a mix of silicon nitride and oxide, for instance.
- the SGD and SGS transistors have the same configuration as the memory cells but with a longer channel length to ensure that current is cutoff in an inhibited NAND string.
- the layers 404 , 405 and 409 extend continuously in the NAND string.
- portions of the layers 404 , 405 and 409 which are between the control gates 402 , 412 and 422 can be removed, exposing a top surface of the channel 406 .
- FIG. 5A depicts an example block diagram of the sense block SB 1 of FIG. 1 .
- a sense block comprises multiple sense circuits. Each sense circuit is associated with data latches.
- the example sense circuits 550 a , 551 a , 552 a and 553 a are associated with the data latches 550 b , 551 b , 552 b and 553 b , respectively.
- different subsets of bit lines can be sensed using different respective sense blocks. This allows the processing load which is associated with the sense circuits to be divided up and handled by a respective processor in each sense block.
- a sense circuit controller 560 in SB 1 can communicate with the set of sense circuits and latches.
- the sense circuit controller may include a pre-charge circuit 561 which provides a voltage to each sense circuit for setting a pre-charge voltage.
- the voltage is provided to each sense circuit independently, e.g., via the data base 503 and a local bus such as LBUS 1 or LBUS 2 in FIG. 5B .
- a common voltage is provided to each sense circuit concurrently, e.g., via the line 505 in FIG. 5B .
- the sense circuit controller may also include a memory 562 and a processor 563 .
- the memory 562 may store code which is executable by the processor to perform the functions described herein.
- These functions can include reading latches which are associated with the sense circuits, setting bit values in the latches and providing voltages for setting pre-charge levels in sense nodes of the sense circuits. Further example details of the sense circuit controller and the sense circuits 550 a and 551 a are provided below.
- FIG. 5B depicts another example block diagram of the sense block SB 1 of FIG. 1 .
- the sense circuit controller 560 communicates with multiple sense circuits including example sense circuits 550 a and 551 a , also shown in FIG. 5A .
- the sense circuit 550 a includes latches 550 b , including a trip latch 526 , an offset verify latch 527 and data state latches 528 .
- the sense circuit further includes a voltage clamp 521 such as a transistor which sets a pre-charge voltage at a sense node 522 .
- a sense node to bit line (BL) switch 523 selectively allows the sense node to communicate with a bit line 525 , e.g., the sense node is electrically connected to the bit line so that the sense node voltage can decay.
- the bit line 525 is connected to one or more memory cells such as a memory cell MC 1 .
- a voltage clamp 524 can set a voltage on the bit line, such as during a sensing operation or during a program voltage.
- a local bus, LBUS 1 allows the sense circuit controller to communicate with components in the sense circuit, such as the latches 550 b and the voltage clamp in some cases.
- the sense circuit controller To communicate with the sense circuit 550 a , the sense circuit controller provides a voltage via a line 502 to a transistor 504 to connect LBUS 1 with a data bus DBUS, 503 .
- the communicating can include sending data to the sense circuit and/or receive data from the sense circuit.
- the sense circuit controller can communicate with different sense circuits in a time-multiplexed manner, for instance.
- a line 505 may be connected to the voltage clamp in each sense circuit, in one approach.
- the sense circuit 551 a includes latches 551 b , including a trip latch 546 , an offset verify latch 547 and data state latches 548 .
- a voltage clamp 541 may be used to set a pre-charge voltage at a sense node 542 .
- a sense node to bit line (BL) switch 543 selectively allows the sense node to communicate with a bit line 545 , and a voltage clamp 544 can set a voltage on the bit line.
- the bit line 545 is connected to one or more memory cells such as a memory cell MC 2 .
- a local bus, LBUS 2 allows the sense circuit controller to communicate with components in the sense circuit, such as the latches 551 b and the voltage clamp in some cases.
- the sense circuit controller provides a voltage via a line 501 to a transistor 506 to connect LBUS 2 with DBUS.
- the sense circuit 550 a may be a first sense circuit which comprises a first trip latch 526 and the sense circuit 551 a may be a second sense circuit which comprises a second trip latch 546 .
- the sense circuit 550 a is an example of a first sense circuit comprising a first sense node 522 , where the first sense circuit is associated with a first memory cell MC 1 and a first bit line 525 .
- the sense circuit 551 a is an example of a second sense circuit comprising a second sense node 542 , where the second sense circuit is associated with a second memory cell MC 2 and a second bit line 545 .
- FIG. 6A is a perspective view of a set of blocks 600 in an example three-dimensional configuration of the memory array 126 of FIG. 1 .
- the circuitry can include voltage drivers 605 which can be connected to control gate layers of the blocks. In one approach, control gate layers at a common height in the blocks are commonly driven.
- the substrate 601 can also carry circuitry under the blocks, along with one or more lower metal layers which are patterned in conductive paths to carry signals of the circuitry.
- the blocks are formed in an intermediate region 602 of the memory device.
- each block comprises a stacked area of memory cells, where alternating levels of the stack represent word lines.
- each block has opposing tiered sides from which vertical contacts extend upward to an upper metal layer to form connections to conductive paths. While four blocks are depicted as an example, two or more blocks can be used, extending in the x- and/or y-directions.
- the length of the plane, in the x-direction represents a direction in which signal paths to word lines extend in the one or more upper metal layers (a word line or SGD line direction)
- the width of the plane, in the y-direction represents a direction in which signal paths to bit lines extend in the one or more upper metal layers (a bit line direction).
- the z-direction represents a height of the memory device.
- FIG. 6B depicts an example cross-sectional view of a portion of one of the blocks of FIG. 6A .
- the block comprises a stack 610 of alternating conductive and dielectric layers.
- the conductive layers comprise two SGD layers, two SGS layers and four dummy word line layers DWLDO 0 , DWLD 1 , DWLS 0 , and DWLS 1 , in addition to data word line layers (word lines) WLL 0 -WLL 10 .
- the dielectric layers are labelled as DL 0 -DL 19 .
- regions of the stack which comprise NAND strings NS 1 and NS 2 are depicted. Each NAND string encompasses a memory hole 618 or 619 which is filled with materials which form memory cells adjacent to the word lines.
- a region 622 of the stack is shown in greater detail in FIG. 6D .
- the stack includes a substrate 611 , an insulating film 612 on the substrate, and a portion of a source line SL.
- NS 1 has a source-end 613 at a bottom 614 of the stack and a drain-end 615 at a top 616 of the stack.
- Metal-filled slits 617 and 620 may be provided periodically across the stack as interconnects which extend through the stack, such as to connect the source line to a line above the stack. The slits may be used during the formation of the word lines and subsequently filled with metal.
- a portion of a bit line BL 0 is also depicted.
- a conductive via 621 connects the drain-end 615 to BL 0 .
- FIG. 6C depicts a plot of memory hole diameter in the stack of FIG. 6B .
- the vertical axis is aligned with the stack of FIG. 6B and depicts a width (wMH), e.g., diameter, of the memory holes 618 and 619 .
- the word line layers WLL 0 -WLL 10 of FIG. 6A are repeated as an example and are at respective heights z 0 -z 10 in the stack.
- the memory holes which are etched through the stack have a very high aspect ratio. For example, a depth-to-diameter ratio of about 25-30 is common.
- the memory holes may have a circular cross-section. Due to the etching process, the memory hole width can vary along the length of the hole.
- the diameter becomes progressively smaller from the top to the bottom of the memory hole. That is, the memory holes are tapered, narrowing at the bottom of the stack. In some cases, a slight narrowing occurs at the top of the hole near the select gate so that the diameter becomes slight wider before becoming progressively smaller from the top to the bottom of the memory hole.
- the programming speed including the program slope and erase speed of the memory cells can vary based on their position along the memory hole, e.g., based on their height in the stack. With a smaller diameter memory hole, the electric field across the tunnel oxide is relatively stronger, so that the programming and erase speed is relatively higher.
- One approach is to define groups of adjacent word lines for which the memory hole diameter is similar, e.g., within a defined range of diameter, and to apply an optimized verify scheme for each word line in a group. Different groups can have different optimized verify schemes.
- FIG. 6D depicts a close-up view of the region 622 of the stack of FIG. 6B .
- Memory cells are formed at the different levels of the stack at the intersection of a word line layer and a memory hole.
- SGD transistors 680 and 681 are provided above dummy memory cells 682 and 683 and a data memory cell MC.
- a number of layers can be deposited along the sidewall (SW) of the memory hole 630 and/or within each word line layer, e.g., using atomic layer deposition.
- each column (e.g., the pillar which is formed by the materials within a memory hole) can include a charge-trapping layer or film 663 such as SiN or other nitride, a tunneling layer 664 , a polysilicon body or channel 665 , and a dielectric core 666 .
- a word line layer can include a blocking oxide/block high-k material 660 , a metal barrier 661 , and a conductive metal 662 such as Tungsten as a control gate.
- control gates 690 , 691 , 692 , 693 and 694 are provided. In this example, all of the layers except the metal are provided in the memory hole. In other approaches, some of the layers can be in the control gate layer. Additional pillars are similarly formed in the different memory holes.
- a pillar can form a columnar active area (AA) of a NAND string.
- Each of the memory holes can be filled with a plurality of annular layers comprising a blocking oxide layer, a charge trapping layer, a tunneling layer and a channel layer.
- a core region of each of the memory holes is filled with a body material, and the plurality of annular layers are between the core region and the word line in each of the memory holes.
- the NAND string can be considered to have a floating body channel because the length of the channel is not formed on a substrate. Further, the NAND string is provided by a plurality of word line layers above one another in a stack, and separated from one another by dielectric layers.
- FIG. 7A depicts a top view of an example word line layer WLL 0 of the stack of FIG. 6B .
- a 3D memory device can comprise a stack of alternating conductive and dielectric layers.
- the conductive layers provide the control gates of the SG transistors and memory cells.
- the layers used for the SG transistors are SG layers and the layers used for the memory cells are word line layers.
- memory holes are formed in the stack and filled with a charge-trapping material and a channel material.
- Source lines are connected to the NAND strings below the stack and bit lines are connected to the NAND strings above the stack.
- a block BLK in a 3D memory device can be divided into sub-blocks, where each sub-block comprises a set of NAND string which have a common SGD control line.
- each sub-block comprises a set of NAND string which have a common SGD control line.
- SGD lines/control gates SGD 0 , SGD 1 , SGD 2 and SGD 3 in the sub-blocks SBa, SBb, SBc and SBd, respectively.
- the sub-blocks SBa, SBb, SBc and SBd may also be referred herein as a string of memory cells of a word line.
- a string of memory cells of a word line may include a plurality of memory cells that are part of the same sub-block, and that are also disposed in the same word line layer and/or that are configured to have their control gates biased by the same word line and/or with the same word line voltage.
- a word line layer in a block can be divided into regions. Each region is in a respective sub-block are can extend between slits which are formed periodically in the stack to process the word line layers during the fabrication process of the memory device. This processing can include replacing a sacrificial material of the word line layers with metal.
- the distance between slits should be relatively small to account for a limit in the distance that an etchant can travel laterally to remove the sacrificial material, and that the metal can travel to fill a void which is created by the removal of the sacrificial material.
- the distance between slits may allow for a few rows of memory holes between adjacent slits.
- the layout of the memory holes and slits should also account for a limit in the number of bit lines which can extend across the region while each bit line is connected to a different memory cell.
- the slits can optionally be filed with metal to provide an interconnect through the stack.
- a row here is a group of memory holes which are aligned in the x-direction. Moreover, the rows of memory holes are in a staggered pattern to increase the density of the memory holes.
- the word line layer or word line is divided into regions WLL 0 a, WLL 0 b, WLL 0 c and WLL 0 d which are each connected by a connector 713 .
- the last region of a word line layer in a block can be connected to a first region of a word line layer in a next block, in one approach.
- the connector is connected to a voltage driver for the word line layer.
- the region WLL 0 a has example memory holes 710 and 711 along a line 712 .
- the region WLL 0 b has example memory holes 714 and 715 .
- the region WLL 0 c has example memory holes 716 and 717 .
- the region WLL 0 d has example memory holes 718 and 719 .
- the memory holes are also shown in FIG. 7B .
- Each memory hole can be part of a respective NAND string.
- the memory holes 710 , 714 , 716 and 718 can be part of NAND strings NS 0 _SBa, NS 0 _SBb, NS 0 _SBc and NS 0 _SBd, respectively.
- Each circle represents the cross-section of a memory hole at a word line layer or SG layer.
- Example circles shown with dashed lines represent memory cells which are provided by the materials in the memory hole and by the adjacent word line layer.
- memory cells 720 and 721 are in WLL 0 a
- memory cells 724 and 725 are in WLL 0 b
- memory cells 726 and 727 are in WLL 0 c
- memory cells 728 and 729 are in WLL 0 d.
- These memory cells are at a common height in the stack.
- Metal-filled slits 701 , 702 , 703 and 704 may be located between and adjacent to the edges of the regions WLL 0 a-WLL 0 d.
- the metal-filled slits provide a conductive path from the bottom of the stack to the top of the stack.
- a source line at the bottom of the stack may be connected to a conductive line above the stack, where the conductive line is connected to a voltage driver in a peripheral region of the memory device. See also FIG. 8A for further details of the sub-blocks SBa-SBd of FIG. 7A .
- FIG. 7B depicts a top view of an example top dielectric layer DL 19 of the stack of FIG. 6B .
- the dielectric layer is divided into regions DL 19 a, DL 19 b, DL 19 c and DL 19 d.
- Each region can be connected to a respective voltage driver. This allows a set of memory cells in one region of a word line layer to be programmed concurrently, with each memory cell being in a respective NAND string which is connected to a respective bit line.
- a voltage can be set on each bit line to allow or inhibit programming during each program voltage.
- the region DL 19 a has the example memory holes 710 and 711 along a line 712 a which is coincident with a bit line BL 0 .
- a number of bit lines extend above the memory holes and are connected to the memory holes as indicated by the “X” symbols.
- BL 0 is connected to a set of memory holes which includes the memory holes 711 , 715 , 717 and 719 .
- Another example bit line BL 1 is connected to a set of memory holes which includes the memory holes 710 , 714 , 716 and 718 .
- the metal-filled slits 701 , 702 , 703 and 704 from FIG. 7A are also depicted, as they extend vertically through the stack.
- the bit lines can be numbered in a sequence BL 0 -BL 23 across the DL 19 layer in the ⁇ x direction.
- bit lines are connected to cells in different rows.
- BL 0 , BL 4 , BL 8 , BL 12 , BL 16 and BL 20 are connected to cells in a first row of cells at the right hand edge of each region.
- BL 2 , BL 6 , BL 10 , BL 14 , BL 18 and BL 22 are connected to cells in an adjacent row of cells, adjacent to the first row at the right hand edge.
- BL 3 , BL 7 , BL 11 , BL 15 , BL 19 and BL 23 are connected to cells in a first row of cells at the left hand edge of each region.
- BL 1 , BL 5 , BL 9 , BL 13 , BL 17 and BL 21 are connected to cells in an adjacent row of cells, adjacent to the first row at the left hand edge.
- FIG. 8A depicts example NAND strings in the sub-blocks SBa-SBd of FIG. 7A .
- the sub-blocks are consistent with the structure of FIG. 6B .
- the conductive layers in the stack are depicted for reference at the left hand side.
- Each sub-block includes multiple NAND strings, where one example NAND string is depicted.
- SBa comprises an example NAND string NS 0 _SBa
- SBb comprises an example NAND string NS 0 _SBb
- SBc comprises an example NAND string NS 0 _SBc
- SBd comprises an example NAND string NS 0 _SBd.
- NS 0 _SBa include SGS transistors 800 and 801 , dummy memory cells 802 and 803 , data memory cells 804 , 805 , 806 , 807 , 808 , 809 , 810 , 811 , 812 , 813 and 814 , dummy memory cells 815 and 816 , and SGD transistors 817 and 818 .
- NS 0 _SBb include SGS transistors 820 and 821 , dummy memory cells 822 and 823 , data memory cells 824 , 825 , 826 , 827 , 828 , 829 , 830 , 831 , 832 , 833 and 834 , dummy memory cells 835 and 836 , and SGD transistors 837 and 838 .
- NS 0 _SBc include SGS transistors 840 and 841 , dummy memory cells 842 and 843 , data memory cells 844 , 845 , 846 , 847 , 848 , 849 , 850 , 851 , 852 , 853 and 854 , dummy memory cells 855 and 856 , and SGD transistors 857 and 858 .
- NS 0 _SBd include SGS transistors 860 and 861 , dummy memory cells 862 and 863 , data memory cells 864 , 865 , 866 , 867 , 868 , 869 , 870 , 871 , 872 , 873 and 874 , dummy memory cells 875 and 876 , and SGD transistors 877 and 878 .
- a set of memory cells in each sub-block are at a common height.
- one set of memory cells (including the memory cell 804 ) is among a plurality of memory cells formed along tapered memory holes in a stack of alternating conductive and dielectric layers.
- the one set of memory cells is at a particular height z 0 in the stack.
- Another set of memory cells (including the memory cell 824 ) connected to the one word line (WLL 0 ) are also at the particular height.
- the set of memory cells e.g., including the memory cell 812
- another word line e.g., WLL 8
- FIG. 8B depicts another example view of NAND strings in sub-blocks.
- the NAND strings includes NS 0 _SBa, NS 0 _SBb, NS 0 _SBc and NS 0 _SBd, which have 48 word lines, WL 0 -WL 47 , in this example.
- Each sub-block comprises a set of NAND strings which extend in the x direction and which have a common SGD line, e.g., SGD 0 , SGD 1 , SGD 2 or SGD 3 .
- the NAND strings NS 0 _SBa, NS 0 _SBb, NS 0 _SBc and NS 0 _SBd are in sub-blocks SBa, SBb, SBc and SBd, respectively. Further, example, groups of word lines G 0 , G 1 and G 2 are depicted.
- FIG. 8C generally illustrates a schematic view of three versions of staggered string architecture 101 , 103 , 105 for BiCS memory, e.g., NAND.
- the strings are shown in rows 107 - 0 through 107 - 7 in architecture 101 . Each row is shown with four ends to the strings.
- a string may be connected to an adjacent string at an end (not visible beneath this view).
- a first group of rows 107 - 0 through 107 - 3 are shown on a left side of a dummy row 108 .
- a second group of rows 107 - 4 through 107 - 7 are shown on a right side of the dummy row 108 .
- the dummy row 108 separates the two groups of rows in the staggered eight rows.
- a source line 109 is positioned at an edge of the first group and is remote from the dummy row 108 .
- a source line 110 is positioned at an edge of the second group and is remote from the dummy row 108 and source line 109 .
- the staggered string architectures 103 , 105 for BiCS memory are similar to that of architecture 101 except additional groups are added.
- Architecture 103 is double the size of architecture 101 and includes sixteen rows of strings with each group of four rows separated by a dummy row.
- Architecture 105 is larger than both the architecture 101 and the architecture 103 .
- Architecture 105 includes twenty rows of strings with each group of four rows separated by a dummy row 108 .
- These architectures 101 , 103 , 105 can include a chip under array structure, e.g., the control circuitry is under the memory array that can include the groups of memory strings. With the chip under array structure, the strings may include a direct strap contact for the source line for read and erase operations.
- FIG. 12 depicts a waveform of an example programming operation.
- the horizontal axis depicts a program loop number and the vertical axis depicts control gate or word line voltage.
- a programming operation can involve applying a pulse train to a selected word line, where the pulse train includes multiple program loops or program-verify (PV) iterations.
- the program portion of the program-verify iteration comprises a program voltage
- the verify portion of the program-verify iteration comprises one or more verify voltages.
- ISPP Incremental Step Pulse Programming
- a pulse train typically includes program voltages which increase stepwise in amplitude in each program-verify iteration using a fixed of varying step size.
- a new pulse train can be applied in each programming stage of a multi-stage programming operation, starting at an initial Vpgm level and ending at a final Vpgm level which does not exceed a maximum allowed level.
- the initial Vpgm levels can be the same or different in different programming stages.
- the final Vpgm levels can also be the same or different in different programming stages.
- the step size can be the same or different in the different programming stages. In some cases, a smaller step size is used in a final programming stage to reduce Vth distribution widths.
- the pulse train 900 includes a series of program voltages 901 , 902 , 903 , 904 , 905 , 906 , 907 , 908 , 909 , 910 , 911 , 912 , 913 , 914 and 915 that are applied to a word line selected for programming, and an associated set of non-volatile memory cells.
- One, two or three verify voltages are provided after each program voltage as an example, based on the target data states which are being verified. 0 V may be applied to the selected word line between the program and verify voltages.
- an A-state verify voltage of VvA (e.g., waveform or programming signal 916 ) may be applied after each of the first, second and third program voltages 901 , 902 and 903 , respectively.
- A- and B-state verify voltages of VvA and VvB (e.g., programming signal 917 ) may be applied after each of the fourth, fifth and sixth program voltages 904 , 905 and 906 , respectively.
- A-, B- and C-state verify voltages of VvA, VvB and VvC (e.g., programming signal 918 ) may be applied after each of the seventh and eighth program voltages 907 and 908 , respectively.
- VvB and VvC may be applied after each of the ninth, tenth and eleventh program voltages 909 , 910 and 911 , respectively.
- a C-state verify voltage of VvC e.g., programming signal 1020
- FIGS. 13A and 13B show threshold voltage (Vth) distributions of memory cells in an example two-stage programming operation. Specifically, the memory cells are initially in the erased state (bits 11 ) as represented by the Vth distribution 1100 shown in FIG. 13A .
- FIG. 13B depicts Vth distributions of memory cells after a first programming stage and a second programming stage of the example two-stage programming operation with four data states. While two programming stages and four data states are shown, it should be appreciated that any number of programming stages may be utilized (e.g., three or four programming stages) and any number of data states are contemplated.
- the first programming stage causes the Vth of the A, B and C state cells to reach the Vth distributions 1002 a , 1004 a and 1006 a , using first verify voltages of VvAf, VvBf and VvCf, respectively.
- This first programming stage can be a rough programming which uses a relatively large step size, for instance, so that the Vth distributions 1002 a , 1004 a and 1006 a are relatively wide.
- the second programming stage may use a smaller step size and causes the Vth distributions 1002 a , 1004 a and 1006 a to transition to the final Vth distributions 1002 , 1004 and 1006 (e.g., narrower than Vth distributions 1002 a , 1004 a and 1006 a ), using second verify voltages of VvA, VvB, and VvC, respectively.
- This two-stage programming operation can achieve relatively narrow Vth distributions.
- a small number of A, B and C state cells (e.g., smaller than a predetermined number of the plurality of memory cells) may have a Vth which is below VvA, VvB or VvC, respectively, due to a bit ignore criteria.
- a programming operation may also include a pre-charge phase.
- a channel of a NAND string in a 3D stacked memory device may be prepared for programming.
- CPWELL precharge technique may be used to improve reverse order program (ROP) erase upper tail by suppling holes into the channel.
- ROP reverse order program
- a typical architecture for a memory device using a NAND flash memory structure includes a plurality of NAND strings within a memory block. In some cases, the NAND strings within a memory block may share a common well (e.g., a p-well).
- BiCS cell next to array (CNA) structure includes a p-well under a vertical memory hole or pillar.
- the memory hole extends vertically in the stack and includes memory cells, such as in a vertical NAND string.
- a positive voltage e.g., 2.2V
- holes are pushed into the channel helping pre-charge the channel, improving boosting potential.
- FIG. 14B provides an exemplary embodiment of a BiCS CMOS under array (CUA) structure.
- a NAND string is connected to a common source line by its source-side select transistor SGS 1 (e.g., controlled by select line SGS 1 ) and connected to its associated bit line by its drain-side select transistor SGD 1 (e.g., controlled by select line SGD 1 ).
- the BiCS CMOS CUA structure in FIG. 14B is shown to include select gates SGS 0 , SGS 1 , SGD 0 , and SGD 1 .
- the BiCS CMOS CUA structure may in any number of select gates.
- BiCS CUA structure does not include a p-well for supplying holes. As such, the CPWELL pre-charge technique cannot be implemented on the BiCS CUA structure.
- Embodiments described herein provide alternate techniques for boost potential improvement in ROP for BiCS CUA architecture. More specifically, embodiments described herein are directed to pre-charge schemes using gate induced drain leakage (GIDL) generation. For example, a select gate transistor of an NAND string may be used to generate hole current by GIDL during a pre-charge period of the programming operation.
- GIDL gate induced drain leakage
- a negative bias (e.g., ⁇ Ve) may be applied on a gate of select transistor SGS 1 of the NAND string to generate GIDL during the pre-charge phase of the program operation.
- SDS/WLDS of the NAND string are biased to ground.
- a more positive voltage may be applied to the source line connected to an end of select gate transistor SGS 1 to generate GIDL.
- a negative bias may be applied to a gate of select gate transistor SGD 1 of the NAND string to generate GIDL.
- This pre-charge scheme achieves a gate-to-source voltage difference that can induce GIDL current at the drain side of the SGD 1 transistor.
- control circuitry 110 in FIG. 1A may be configured to perform, before a program operation, a pre-charge operation comprising applying a voltage to a select line connected to the gate of select transistor SGS 1 to generate GIDL.
- control circuitry 110 in FIG. 1A may be configured to perform a pre-charge operation comprising applying a voltage to a source line connected to one end of select transistor SGS 1 to generate GIDL.
- control circuitry 110 in FIG. 1A may be configured to perform a pre-charge operation comprising applying a voltage to a gate of select transistor SGD 1 to generate GIDL.
- FIGS. 15A, 15B, 15C, and 15D are signal timing diagrams for example implementations of the hole pre-charge schemes using GIDL generation for BiCS CUA architecture described above.
- FIG. 15A shows hole pre-charge (also referred to as “SGS 1 GIDL”) following a conventional CELSRC pre-charge.
- SGS 1 GIDL hole pre-charge
- CELSRC pre-charge occurs from P 5 to P 7
- hole pre-charge occurs from P 8 to P 9 (by biasing the gate of SGS 1 to ⁇ Ve).
- hole pre-charge occurs after CELSRC pre-charging by turning the select line connected to the gate of select transistor SGS 1 to a negative bias.
- FIG. 15A shows hole pre-charge (also referred to as “SGS 1 GIDL”) following a conventional CELSRC pre-charge.
- SGS 1 GIDL hole pre-charge
- FIG. 15A shows hole pre-charge (also referred to as “SGS 1 GIDL”) following a conventional CELSRC pre
- CELSRC pre-charge does not occur and hole pre-charge occurs from P 4 to P 9 (by biasing the gate of SGS 1 to ⁇ Ve).
- a longer time is provided for generating hole GIDL current, thereby improving the boosting potential.
- a similar scheme may be implemented using select transistor SGD 1 in FIG. 14A and FIG. 14B .
- CELSRC pre-charge occurs from P 5 to P 7 and hole pre-charge occurs from P 8 to P 9 (by applying PROGSRC_PCH 2 at P 8 to the source line connected to the source-side of SGS 1 where PROGSRC_PCH 2 >PROGSRC_PCH 1 .
- FIG. 15D CELSRC pre-charge does not occur and hole pre-charge occurs from P 4 to P 9 (by applying PROGSRC_PCH 2 at P 5 to the source line connected to the source-side of SGS 1 ).
- FIGS. 15A-15D are provided merely for illustration purposes. In some embodiments, hole pre-charge may occur at other times during a pre-charging phase of a program operation.
- GIDL current can be generated by applying a negative bias on a gate of a select transistor of a NAND string or by applying a more positive source voltage to the source line connected to the source-side of a select transistor of a NAND string.
- Higher GIDL current lowers channel electron density post pre-charge and improves boosting potential under the channel.
- a longer pre-charge time may be used (as shown in FIGS. 15B and 15D ).
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Read Only Memory (AREA)
Abstract
A memory device disclosed herein. The memory device comprises: a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series; a bit line connected to one end of the first select transistor; a source line connected to one end of the second select transistor; a first select line connected to a gate of the first select transistor; a word line connected to a gate of the memory cell transistor; a second select line connected to a gate of the second select transistor; and a control circuit configured to perform, before a program operation, a pre-charge operation comprising: applying a voltage to the second select line connected to the gate of the second select transistor to cause gate-induced drain leakage from the second select transistor.
Description
- This application relates to non-volatile memory apparatuses and the operation of non-volatile memory apparatuses.
- This section provides background information related to the technology associated with the present disclosure and, as such, is not necessarily prior art.
- Semiconductor memory apparatuses have become more popular for use in various electronic devices. For example, non-volatile semiconductor memory is used in cellular telephones, digital cameras, personal digital assistants, mobile computing devices, non-mobile computing devices and other devices.
- A charge-storing material such as a floating gate or a charge-trapping material can be used in such memory apparatuses to store a charge which represents a data state. A charge-trapping material can be arranged vertically in a three-dimensional (3D) stacked memory structure, or horizontally in a two-dimensional (2D) memory structure. One example of a 3D memory structure is the Bit Cost Scalable (BiCS) architecture which comprises a stack of alternating conductive and dielectric layers.
- This section provides a general summary of the present disclosure and is not a comprehensive disclosure of its full scope or all of its features and advantages.
- An object of the present disclosure is to provide a memory apparatus and a method of operation of the memory apparatus that address and overcome shortcomings described herein.
- A memory device disclosed herein. The memory device comprises: a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series; a bit line connected to one end of the first select transistor; a source line connected to one end of the second select transistor; a first select line connected to a gate of the first select transistor; a word line connected to a gate of the memory cell transistor; a second select line connected to a gate of the second select transistor; and a control circuit configured to perform, before a program operation, a pre-charge operation comprising: applying a voltage to the second select line connected to the gate of the second select transistor to cause gate-induced drain leakage from the second select transistor.
- Further, a memory device disclosed herein. The memory device comprises: a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series; a bit line connected to one end of the first select transistor; a source line connected to one end of the second select transistor; a first select line connected to a gate of the first select transistor; a word line connected to a gate of the memory cell transistor; a second select line connected to a gate of the second select transistor; and a control circuit configured to perform, before a program operation, a pre-charge operation comprising: applying a voltage to the source line connected to one end of the second select transistor to cause the gate-induced drain leakage from the second select transistor.
- In addition, a memory device disclosed herein. The memory device comprises: a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series; a bit line connected to one end of the first select transistor; a source line connected to one end of the second select transistor; a first select line connected to a gate of the first select transistor; a word line connected to a gate of the memory cell transistor; a second select line connected to a gate of the second select transistor; and a control circuit configured to perform, before a program operation, a pre-charge operation comprising: applying a voltage to the first select line connected to the gate of the first select transistor to cause gate-induced drain leakage from the first select transistor.
- Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
- For a detailed description of example embodiments, reference will now be made to the accompanying drawings in which:
-
FIG. 1A is a block diagram of an example memory device; -
FIG. 1B is a block diagram of an example control circuit which comprises a programming circuit, a counting circuit, and a determination circuit; -
FIG. 2 depicts blocks of memory cells in an example two-dimensional configuration of the memory array ofFIG. 1 ; -
FIG. 3A depicts a cross-sectional view of example floating gate memory cells in NAND strings; -
FIG. 3B depicts a cross-sectional view of the structure ofFIG. 3A alongline 329; -
FIG. 4A depicts a cross-sectional view of example charge-trapping memory cells in NAND strings; -
FIG. 4B depicts a cross-sectional view of the structure ofFIG. 4A alongline 429; -
FIG. 5A depicts an example block diagram of the sense block SB1 ofFIG. 1 ; -
FIG. 5B depicts another example block diagram of the sense block SB1 ofFIG. 1 ; -
FIG. 6A is a perspective view of a set of blocks in an example three-dimensional configuration of the memory array ofFIG. 1 ; -
FIG. 6B depicts an example cross-sectional view of a portion of one of the blocks ofFIG. 6A ; -
FIG. 6C depicts a plot of memory hole diameter in the stack ofFIG. 6B ; -
FIG. 6D depicts a close-up view of theregion 622 of the stack ofFIG. 6B ; -
FIG. 7A depicts a top view of an example word line layer WLL0 of the stack ofFIG. 6B ; -
FIG. 7B depicts a top view of an example top dielectric layer DL19 of the stack ofFIG. 6B ; -
FIG. 8A depicts example NAND strings in the sub-blocks SBa-SBd ofFIG. 7A ; -
FIG. 8B depicts another example view of NAND strings in sub-blocks; -
FIG. 8C depicts a top view of example word line layers of a stack; -
FIG. 9 depicts the Vth distributions of memory cells in an example one-pass programming operation with four data states; -
FIG. 10 depicts the Vth distributions of memory cells in an example one-pass programming operation with eight data states; -
FIG. 11 depicts the Vth distributions of memory cells in an example one-pass programming operation with sixteen data states; -
FIG. 12 is a flowchart of an example programming operation in a memory device; -
FIGS. 13A and 13B depict the Vth distributions of memory cells; -
FIGS. 14A and 14B depicts an example BiCS structure; -
FIGS. 15A-15D provide different plots illustrating the implementation of hole pre-charge scheme using gate induced drain leakage generation, in accordance with embodiments described herein. - In the following description, details are set forth to provide an understanding of the present disclosure. In some instances, certain circuits, structures and techniques have not been described or shown in detail in order not to obscure the disclosure.
- In general, the present disclosure relates to non-volatile memory apparatuses of the type well-suited for use in many applications. The non-volatile memory apparatus and associated methods of forming of this disclosure will be described in conjunction with one or more example embodiments. However, the specific example embodiments disclosed are merely provided to describe the inventive concepts, features, advantages and objectives with sufficient clarity to permit those skilled in this art to understand and practice the disclosure. Specifically, the example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
- Various terms are used to refer to particular system components. Different companies may refer to a component by different names—this document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.
- Additionally, when a layer or element is referred to as being “on” another layer or substrate, in can be directly on the other layer of substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being “under” another layer, it can be directly under, and one or more intervening layers may also be present. Furthermore, when a layer is referred to as “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
- As described, non-volatile memory systems are a type of memory that retains stored information without requiring an external power source. Non-volatile memory is widely used in various electronic devices and in stand-alone memory devices. For example, non-volatile memory can be found in laptops, digital audio player, digital cameras, smart phones, video games, scientific instruments, industrial robots, medical electronics, solid-state drives, USB drives, memory cards, and the like. Non-volatile memory can be electronically programmed/reprogrammed and erased.
- Examples of non-volatile memory systems include flash memory, such as NAND flash or NOR flash. NAND flash memory structures typically arrange multiple memory cell transistors (e.g., floating-gate transistors or charge trap transistors) in series with and between two select gates (e.g., a drain-side select gate and a source-side select gate). The memory cell transistors in series and the select gates may be referred to as a NAND string. NAND flash memory may be scaled in order to reduce cost per bit.
- A programming operation for a set of memory cells of a memory device typically involves applying a series of program voltages to the memory cells after the memory cells are provided in an erased state. Each program voltage is provided in a program loop, also referred to as a program-verify iteration. For example, the program voltage may be applied to a word line which is connected to control gates of the memory cells. In one approach, incremental step pulse programming is performed, where the program voltage is increased by a step size in each program loop. Verify operations may be performed after each program voltage to determine whether the memory cells have completed programming. When programming is completed for a memory cell, it can be locked out from further programming while programming continues for other memory cells in subsequent program loops.
- Each memory cell may be associated with a data state according to write data in a program command. Based on its data state, a memory cell will either remain in the erased state or be programmed to a data state (a programmed data state) different from the erased state. For example, in a one-bit per cell memory device (single-level cell (SLC)), there are two data states including the erased state and one higher data state. In a two-bit per cell memory device (multi-level cell (MLC)), there are four data states including the erased state and three higher data states referred to as the A, B and C data states (see
FIG. 9 ). In a three-bit per cell memory device (triple-level cell (TLC)), there are eight data states including the erased state and seven higher data states referred to as the A, B, C, D, E, F and G data states (seeFIG. 10 ). In a four-bit per cell memory device (quad-level cell (QLC)), there are sixteen data states including the erased state and fifteen higher data states referred to as the Er, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F data states (seeFIG. 11 ). Each memory cell may store a data state (e.g., a binary value) and is programmed to a threshold voltage state corresponding to the data state. Each state represents a different value and is assigned a voltage window including a range of possible threshold voltages. - When a program command is issued, the write data is stored in latches associated with the memory cells. During programming, the latches of a memory cell can be read to determine the data state to which the cell is to be programmed. Each programmed data state is associated with a verify voltage such that a memory cell with a given data state is considered to have completed programming when a sensing operation determines its threshold voltage (Vth) is above the associated verify voltage. A sensing operation can determine whether a memory cell has a Vth above the associated verify voltage by applying the associated verify voltage to the control gate and sensing a current through the memory cell. If the current is relatively high, this indicates the memory cell is in a conductive state, such that the Vth is less than the control gate voltage. If the current is relatively low, this indicates the memory cell is in a non-conductive state, such that the Vth is above the control gate voltage.
- The verify voltage which is used to determine that a memory cell has completed programming may be referred to as a final or lockout verify voltage. In some cases, an additional verify voltage may be used to determine that a memory cell is close to completion of the programming. This additional verify voltage may be referred to as an offset verify voltage, and may be lower than the final verify voltage. When a memory cell is close to completion of programming, the programming speed of the memory cell may be reduced such as by elevating a voltage of a respective bit line during one or more subsequent program voltages. For example, in
FIG. 9 , a memory cell which is to be programmed to the A data state may be subject to verify tests at VvAL, an offset verify voltage of the A data state, and VvA, a final verify voltage of the A data state. - A programming operation may include a pre-charge phase. During the pre-charge phase, a channel of a NAND string in a 3D stacked memory device may be prepared for programming. For example, CPWELL precharge technique may be used to improve reverse order program (ROP) erase upper tail by suppling holes into the channel. However, this technique cannot be implemented on BiCS CMOS under array (CUA) architecture. Embodiments described herein provide alternate techniques for boost potential improvement in ROP for BiCS CUA architecture. More specifically, embodiments described herein are directed to pre-charge schemes using gate induced drain leakage (GIDL) generation.
- To help further illustrate the foregoing,
FIG. 1A will now be described.FIG. 1A is a block diagram of an example memory device. Thememory device 100 may include one or more memory die 108. The memory die 108 includes amemory structure 126 of memory cells, such as an array of memory cells,control circuitry 110, and read/write circuits 128. Thememory structure 126 is addressable by word lines via arow decoder 124 and by bit lines via acolumn decoder 132. The read/write circuits 128 include multiple sense blocks SB1, SB2, . . . , SBp (sensing circuitry) and allow a page of memory cells to be read or programmed in parallel. Typically acontroller 122 is included in the same memory device 100 (e.g., a removable storage card) as the one or more memory die 108. Commands and data are transferred between thehost 140 andcontroller 122 via adata bus 120, and between the controller and the one or more memory die 108 vialines 118. - The memory structure can be 2D or 3D. The memory structure may comprise one or more array of memory cells including a 3D array. The memory structure may comprise a monolithic three dimensional memory structure in which multiple memory levels are formed above (and not in) a single substrate, such as a wafer, with no intervening substrates. The memory structure may comprise any type of non-volatile memory that is monolithically formed in one or more physical levels of arrays of memory cells having an active area disposed above a silicon substrate. The memory structure may be in a non-volatile memory device having circuitry associated with the operation of the memory cells, whether the associated circuitry is above or within the substrate.
- The
control circuitry 110 cooperates with the read/write circuits 128 to perform memory operations on thememory structure 126, and includes astate machine 112, an on-chip address decoder 114, and apower control module 116. Thestate machine 112 provides chip-level control of memory operations. Astorage region 113 may be provided, e.g., for verify parameters as described herein. - The on-
chip address decoder 114 provides an address interface between that used by the host or a memory controller to the hardware address used by thedecoders power control module 116 controls the power and voltages supplied to the word lines and bit lines during memory operations. It can include drivers for word lines, SGS and SGD transistors and source lines. The sense blocks can include bit line drivers, in one approach. An SGS transistor is a select gate transistor at a source end of a NAND string, and an SGD transistor is a select gate transistor at a drain end of a NAND string. - In some implementations, some of the components can be combined. In various designs, one or more of the components (alone or in combination), other than
memory structure 126, can be thought of as at least one control circuit which is configured to perform the actions described herein. For example, a control circuit may include any one of, or a combination of,control circuitry 110,state machine 112,decoders 114/132,power control module 116, sense blocks SBb, SB2, . . . , SBp, read/writecircuits 128,controller 122, and so forth. - The control circuits can include a programming circuit configured to program memory cells of a word line of a block and verify the set of the memory cells. The control circuits can also include a counting circuit configured to determine a number of memory cells that are verified to be in a data state. The control circuits can also include a determination circuit configured to determine, based on the number, whether the block is faulty.
- For example,
FIG. 1B is a block diagram of anexample control circuit 150 which comprises aprogramming circuit 151, acounting circuit 152 and a determination circuit 153. The programming circuit may include software, firmware and/or hardware which implements, e.g., steps 1202 and 1204 ofFIG. 12 . The counting circuit may include software, firmware and/or hardware which implements, e.g., step 1206 ofFIG. 12 . The determination circuit may include software, firmware and/or hardware which implements, e.g., step 1208 ofFIG. 12 . - The off-
chip controller 122 may comprise aprocessor 122 c, storage devices (memory) such asROM 122 a andRAM 122 b and an error-correction code (ECC)engine 245. The ECC engine can correct a number of read errors which are caused when the upper tail of a Vth distribution becomes too high. However, uncorrectable errors may exist in some cases. The techniques provided herein reduce the likelihood of uncorrectable errors. - The storage device comprises code such as a set of instructions, and the processor is operable to execute the set of instructions to provide the functionality described herein. Alternatively or additionally, the processor can access code from a
storage device 126 a of the memory structure, such as a reserved area of memory cells in one or more word lines. - For example, code can be used by the
controller 122 to access the memory structure such as for programming, read and erase operations. The code can include boot code and control code (e.g., set of instructions). The boot code is software that initializes the controller during a booting or startup process and enables the controller to access the memory structure. The code can be used by the controller to control one or more memory structures. Upon being powered up, theprocessor 122 c fetches the boot code from theROM 122 a orstorage device 126 a for execution, and the boot code initializes the system components and loads the control code into theRAM 122 b. Once the control code is loaded into the RAM, it is executed by the processor. The control code includes drivers to perform basic tasks such as controlling and allocating memory, prioritizing the processing of instructions, and controlling input and output ports. - In one embodiment, the host is a computing device (e.g., laptop, desktop, smartphone, tablet, digital camera) that includes one or more processors, one or more processor readable storage devices (RAM, ROM, flash memory, hard disk drive, solid state memory) that store processor readable code (e.g., software) for programming the one or more processors to perform the methods described herein. The host may also include additional system memory, one or more input/output interfaces and/or one or more input/output devices in communication with the one or more processors.
- Other types of non-volatile memory in addition to NAND flash memory can also be used.
- Semiconductor memory devices include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magnetoresistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
- The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse or phase change material, and optionally a steering element, such as a diode or transistor. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
- Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND string is an example of a set of series-connected transistors comprising memory cells and SG transistors.
- A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible, e.g., a NOR memory array. NAND and NOR memory configurations are examples, and memory elements may be otherwise configured.
- The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure.
- In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-y direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
- The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
- A three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the z direction is substantially perpendicular and the x and y directions are substantially parallel to the major surface of the substrate).
- As a non-limiting example, a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements. The columns may be arranged in a two dimensional configuration, e.g., in an x-y plane, resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
- By way of non-limiting example, in a three dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-y) memory device level. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
- Typically, in a monolithic three dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
- Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
- Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
- One of skill in the art will recognize that this technology is not limited to the two dimensional and three dimensional exemplary structures described but covers all relevant memory structures within the spirit and scope of the technology as described herein and as understood by one of skill in the art.
-
FIG. 2 depicts blocks of memory cells in an example two-dimensional configuration of thememory array 126 ofFIG. 1 . The memory array can include many blocks. Eachexample block common source line 220. Sixteen word lines, for example, WL0-WL15, extend between the source select gates and the drain select gates. In some cases, dummy word lines, which contain no user data, can also be used in the memory array adjacent to the select gate transistors. Such dummy word lines can shield the edge data word line from certain edge effects. - One type of non-volatile memory which may be provided in the memory array is a floating gate memory. See
FIGS. 3A and 3B . Other types of non-volatile memory can also be used. For example, a charge-trapping memory cell uses a non-conductive dielectric material in place of a conductive floating gate to store charge in a non-volatile manner. SeeFIGS. 4A and 4B . A triple layer dielectric formed of silicon oxide, silicon nitride and silicon oxide (“ONO”) is sandwiched between a conductive control gate and a surface of a semi-conductive substrate above the memory cell channel. The cell is programmed by injecting electrons from the cell channel into the nitride, where they are trapped and stored in a limited region. This stored charge then changes the threshold voltage of a portion of the channel of the cell in a manner that is detectable. The cell is erased by injecting hot holes into the nitride. A similar cell can be provided in a split-gate configuration where a doped polysilicon gate extends over a portion of the memory cell channel to form a separate select transistor. - In another approach, NROM cells are used. Two bits, for example, are stored in each NROM cell, where an ONO dielectric layer extends across the channel between source and drain diffusions. The charge for one data bit is localized in the dielectric layer adjacent to the drain, and the charge for the other data bit localized in the dielectric layer adjacent to the source. Multi-state data storage is obtained by separately reading binary states of the spatially separated charge storage regions within the dielectric. Other types of non-volatile memory are also known.
-
FIG. 3A depicts a cross-sectional view of example floating gate memory cells in NAND strings. A bit line or NAND string direction goes into the page, and a word line direction goes from left to right. As an example,word line 324 extends across NAND strings which includerespective channel regions memory cell 300 includes acontrol gate 302, a floatinggate 304, atunnel oxide layer 305 and thechannel region 306. Thememory cell 310 includes acontrol gate 312, a floatinggate 314, atunnel oxide layer 315 and thechannel region 316. Thememory cell 320 includes acontrol gate 322, a floatinggate 321, atunnel oxide layer 325 and thechannel region 326. Each memory cell is in a different respective NAND string. An inter-poly dielectric (IPD)layer 328 is also depicted. The control gates are portions of the word line. A cross-sectional view alongline 329 is provided inFIG. 3B . - The control gate wraps around the floating gate, increasing the surface contact area between the control gate and floating gate. This results in higher IPD capacitance, leading to a higher coupling ratio which makes programming and erase easier. However, as NAND memory devices are scaled down, the spacing between neighboring cells becomes smaller so there is almost no space for the control gate and the IPD between two adjacent floating gates. As an alternative, as shown in
FIGS. 4A and 4B , the flat or planar memory cell has been developed in which the control gate is flat or planar; that is, it does not wrap around the floating gate, and its only contact with the charge storage layer is from above it. In this case, there is no advantage in having a tall floating gate. Instead, the floating gate is made much thinner. Further, the floating gate can be used to store charge, or a thin charge trap layer can be used to trap charge. This approach can avoid the issue of ballistic electron transport, where an electron can travel through the floating gate after tunneling through the tunnel oxide during programming. -
FIG. 3B depicts a cross-sectional view of the structure ofFIG. 3A alongline 329. TheNAND string 330 includes anSGS transistor 331,example memory cells SGD transistor 336. Thememory cell 300, as an example of each memory cell, includes thecontrol gate 302, theIPD layer 328, the floatinggate 304 and thetunnel oxide layer 305, consistent withFIG. 3A . Passageways in the IPD layer in the SGS and SGD transistors allow the control gate layers and floating gate layers to communicate. The control gate and floating gate layers may be polysilicon and the tunnel oxide layer may be silicon oxide, for instance. The IPD layer can be a stack of nitrides (N) and oxides (O) such as in a N—O—N—O—N configuration. - The NAND string may be formed on a substrate which comprises a p-
type substrate region 355, an n-type well 356 and a p-type well 357. N-type source/drain diffusion regions sd1, sd2, sd3, sd4, sd5, sd6 and sd7 are formed in the p-type well. A channel voltage, Vch, may be applied directly to the channel region of the substrate. -
FIG. 4A depicts a cross-sectional view of example charge-trapping memory cells in NAND strings. The view is in a word line direction of memory cells comprising a flat control gate and charge-trapping regions as a 2D example of memory cells in thememory cell array 126 ofFIG. 1 . Charge-trapping memory can be used in NOR and NAND flash memory device. This technology uses an insulator such as a SiN film to store electrons, in contrast to a floating-gate MOSFET technology which uses a conductor such as doped polycrystalline silicon to store electrons. As an example, a word line (WL) 424 extends across NAND strings which includerespective channel regions control gates IPD layer 428, charge-trappinglayers - A
memory cell 400 includes thecontrol gate 402, the charge-trapping layer 404, thepolysilicon layer 405 and a portion of thechannel region 406. Amemory cell 410 includes thecontrol gate 412, the charge-trapping layer 414, apolysilicon layer 415 and a portion of thechannel region 416. Amemory cell 420 includes thecontrol gate 422, the charge-trapping layer 421, thepolysilicon layer 425 and a portion of thechannel region 426. - A flat control gate is used here instead of a control gate that wraps around a floating gate. One advantage is that the charge-trapping layer can be made thinner than a floating gate. Additionally, the memory cells can be placed closer together.
-
FIG. 4B depicts a cross-sectional view of the structure ofFIG. 4A alongline 429. The view shows aNAND string 430 having a flat control gate and a charge-trapping layer. TheNAND string 430 includes anSGS transistor 431,example memory cells SGD transistor 435. - The NAND string may be formed on a substrate which comprises a p-
type substrate region 455, an n-type well 456 and a p-type well 457. N-type source/drain diffusion regions sd1, sd2, sd3, sd4, sd5, sd6 and sd7 are formed in the p-type well 457. A channel voltage, Vch, may be applied directly to the channel region of the substrate. Thememory cell 400 includes thecontrol gate 402 and theIPD layer 428 above the charge-trapping layer 404, thepolysilicon layer 405, thetunneling layer 409 and thechannel region 406. - The control gate layer may be polysilicon and the tunneling layer may be silicon oxide, for instance. The IPD layer can be a stack of high-k dielectrics such as AlOx or HfOx which help increase the coupling ratio between the control gate layer and the charge-trapping or charge storing layer. The charge-trapping layer can be a mix of silicon nitride and oxide, for instance.
- The SGD and SGS transistors have the same configuration as the memory cells but with a longer channel length to ensure that current is cutoff in an inhibited NAND string.
- In this example, the
layers layers control gates channel 406. -
FIG. 5A depicts an example block diagram of the sense block SB1 ofFIG. 1 . In one approach, a sense block comprises multiple sense circuits. Each sense circuit is associated with data latches. For example, theexample sense circuits sense circuit controller 560 in SB1 can communicate with the set of sense circuits and latches. The sense circuit controller may include apre-charge circuit 561 which provides a voltage to each sense circuit for setting a pre-charge voltage. In one possible approach, the voltage is provided to each sense circuit independently, e.g., via the data base 503 and a local bus such as LBUS1 or LBUS2 inFIG. 5B . In another possible approach, a common voltage is provided to each sense circuit concurrently, e.g., via the line 505 inFIG. 5B . The sense circuit controller may also include amemory 562 and aprocessor 563. As mentioned also in connection withFIG. 2 , thememory 562 may store code which is executable by the processor to perform the functions described herein. These functions can include reading latches which are associated with the sense circuits, setting bit values in the latches and providing voltages for setting pre-charge levels in sense nodes of the sense circuits. Further example details of the sense circuit controller and thesense circuits -
FIG. 5B depicts another example block diagram of the sense block SB1 ofFIG. 1 . Thesense circuit controller 560 communicates with multiple sense circuits includingexample sense circuits FIG. 5A . Thesense circuit 550 a includeslatches 550 b, including atrip latch 526, an offset verifylatch 527 and data state latches 528. The sense circuit further includes a voltage clamp 521 such as a transistor which sets a pre-charge voltage at asense node 522. A sense node to bit line (BL)switch 523 selectively allows the sense node to communicate with abit line 525, e.g., the sense node is electrically connected to the bit line so that the sense node voltage can decay. Thebit line 525 is connected to one or more memory cells such as a memory cell MC1. Avoltage clamp 524 can set a voltage on the bit line, such as during a sensing operation or during a program voltage. A local bus, LBUS1, allows the sense circuit controller to communicate with components in the sense circuit, such as thelatches 550 b and the voltage clamp in some cases. To communicate with thesense circuit 550 a, the sense circuit controller provides a voltage via aline 502 to atransistor 504 to connect LBUS1 with a data bus DBUS, 503. The communicating can include sending data to the sense circuit and/or receive data from the sense circuit. - The sense circuit controller can communicate with different sense circuits in a time-multiplexed manner, for instance. A line 505 may be connected to the voltage clamp in each sense circuit, in one approach.
- The
sense circuit 551 a includeslatches 551 b, including atrip latch 546, an offset verifylatch 547 and data state latches 548. Avoltage clamp 541 may be used to set a pre-charge voltage at asense node 542. A sense node to bit line (BL) switch 543 selectively allows the sense node to communicate with abit line 545, and avoltage clamp 544 can set a voltage on the bit line. Thebit line 545 is connected to one or more memory cells such as a memory cell MC2. A local bus, LBUS2, allows the sense circuit controller to communicate with components in the sense circuit, such as thelatches 551 b and the voltage clamp in some cases. To communicate with thesense circuit 551 a, the sense circuit controller provides a voltage via aline 501 to atransistor 506 to connect LBUS2 with DBUS. - The
sense circuit 550 a may be a first sense circuit which comprises afirst trip latch 526 and thesense circuit 551 a may be a second sense circuit which comprises asecond trip latch 546. - The
sense circuit 550 a is an example of a first sense circuit comprising afirst sense node 522, where the first sense circuit is associated with a first memory cell MC1 and afirst bit line 525. Thesense circuit 551 a is an example of a second sense circuit comprising asecond sense node 542, where the second sense circuit is associated with a second memory cell MC2 and asecond bit line 545. -
FIG. 6A is a perspective view of a set of blocks 600 in an example three-dimensional configuration of thememory array 126 ofFIG. 1 . On the substrate are example blocks BLK0, BLK1, BLK2 and BLK3 of memory cells (storage elements) and aperipheral area 604 with circuitry for use by the blocks. For example, the circuitry can include voltage drivers 605 which can be connected to control gate layers of the blocks. In one approach, control gate layers at a common height in the blocks are commonly driven. Thesubstrate 601 can also carry circuitry under the blocks, along with one or more lower metal layers which are patterned in conductive paths to carry signals of the circuitry. The blocks are formed in anintermediate region 602 of the memory device. In anupper region 603 of the memory device, one or more upper metal layers are patterned in conductive paths to carry signals of the circuitry. Each block comprises a stacked area of memory cells, where alternating levels of the stack represent word lines. In one possible approach, each block has opposing tiered sides from which vertical contacts extend upward to an upper metal layer to form connections to conductive paths. While four blocks are depicted as an example, two or more blocks can be used, extending in the x- and/or y-directions. - In one possible approach, the length of the plane, in the x-direction, represents a direction in which signal paths to word lines extend in the one or more upper metal layers (a word line or SGD line direction), and the width of the plane, in the y-direction, represents a direction in which signal paths to bit lines extend in the one or more upper metal layers (a bit line direction). The z-direction represents a height of the memory device.
-
FIG. 6B depicts an example cross-sectional view of a portion of one of the blocks ofFIG. 6A . The block comprises astack 610 of alternating conductive and dielectric layers. In this example, the conductive layers comprise two SGD layers, two SGS layers and four dummy word line layers DWLDO0, DWLD1, DWLS0, and DWLS1, in addition to data word line layers (word lines) WLL0-WLL10. The dielectric layers are labelled as DL0-DL19. Further, regions of the stack which comprise NAND strings NS1 and NS2 are depicted. Each NAND string encompasses amemory hole region 622 of the stack is shown in greater detail inFIG. 6D . - The stack includes a
substrate 611, an insulatingfilm 612 on the substrate, and a portion of a source line SL. NS1 has a source-end 613 at a bottom 614 of the stack and a drain-end 615 at a top 616 of the stack. Metal-filledslits end 615 to BL0. -
FIG. 6C depicts a plot of memory hole diameter in the stack ofFIG. 6B . The vertical axis is aligned with the stack ofFIG. 6B and depicts a width (wMH), e.g., diameter, of thememory holes FIG. 6A are repeated as an example and are at respective heights z0-z10 in the stack. In such a memory device, the memory holes which are etched through the stack have a very high aspect ratio. For example, a depth-to-diameter ratio of about 25-30 is common. The memory holes may have a circular cross-section. Due to the etching process, the memory hole width can vary along the length of the hole. Typically, the diameter becomes progressively smaller from the top to the bottom of the memory hole. That is, the memory holes are tapered, narrowing at the bottom of the stack. In some cases, a slight narrowing occurs at the top of the hole near the select gate so that the diameter becomes slight wider before becoming progressively smaller from the top to the bottom of the memory hole. - Due to the non-uniformity in the width of the memory hole, the programming speed, including the program slope and erase speed of the memory cells can vary based on their position along the memory hole, e.g., based on their height in the stack. With a smaller diameter memory hole, the electric field across the tunnel oxide is relatively stronger, so that the programming and erase speed is relatively higher. One approach is to define groups of adjacent word lines for which the memory hole diameter is similar, e.g., within a defined range of diameter, and to apply an optimized verify scheme for each word line in a group. Different groups can have different optimized verify schemes.
-
FIG. 6D depicts a close-up view of theregion 622 of the stack ofFIG. 6B . Memory cells are formed at the different levels of the stack at the intersection of a word line layer and a memory hole. In this example,SGD transistors dummy memory cells memory hole 630 and/or within each word line layer, e.g., using atomic layer deposition. For example, each column (e.g., the pillar which is formed by the materials within a memory hole) can include a charge-trapping layer orfilm 663 such as SiN or other nitride, atunneling layer 664, a polysilicon body orchannel 665, and adielectric core 666. A word line layer can include a blocking oxide/block high-k material 660, ametal barrier 661, and aconductive metal 662 such as Tungsten as a control gate. For example,control gates - When a memory cell is programmed, electrons are stored in a portion of the charge-trapping layer which is associated with the memory cell. These electrons are drawn into the charge-trapping layer from the channel, and through the tunneling layer. The Vth of a memory cell is increased in proportion to the amount of stored charge. During an erase operation, the electrons return to the channel.
- Each of the memory holes can be filled with a plurality of annular layers comprising a blocking oxide layer, a charge trapping layer, a tunneling layer and a channel layer. A core region of each of the memory holes is filled with a body material, and the plurality of annular layers are between the core region and the word line in each of the memory holes.
- The NAND string can be considered to have a floating body channel because the length of the channel is not formed on a substrate. Further, the NAND string is provided by a plurality of word line layers above one another in a stack, and separated from one another by dielectric layers.
-
FIG. 7A depicts a top view of an example word line layer WLL0 of the stack ofFIG. 6B . As mentioned, a 3D memory device can comprise a stack of alternating conductive and dielectric layers. The conductive layers provide the control gates of the SG transistors and memory cells. The layers used for the SG transistors are SG layers and the layers used for the memory cells are word line layers. Further, memory holes are formed in the stack and filled with a charge-trapping material and a channel material. As a result, a vertical NAND string is formed. Source lines are connected to the NAND strings below the stack and bit lines are connected to the NAND strings above the stack. - A block BLK in a 3D memory device can be divided into sub-blocks, where each sub-block comprises a set of NAND string which have a common SGD control line. For example, see the SGD lines/control gates SGD0, SGD1, SGD2 and SGD3 in the sub-blocks SBa, SBb, SBc and SBd, respectively. The sub-blocks SBa, SBb, SBc and SBd may also be referred herein as a string of memory cells of a word line. As described, a string of memory cells of a word line may include a plurality of memory cells that are part of the same sub-block, and that are also disposed in the same word line layer and/or that are configured to have their control gates biased by the same word line and/or with the same word line voltage.
- Further, a word line layer in a block can be divided into regions. Each region is in a respective sub-block are can extend between slits which are formed periodically in the stack to process the word line layers during the fabrication process of the memory device. This processing can include replacing a sacrificial material of the word line layers with metal. Generally, the distance between slits should be relatively small to account for a limit in the distance that an etchant can travel laterally to remove the sacrificial material, and that the metal can travel to fill a void which is created by the removal of the sacrificial material. For example, the distance between slits may allow for a few rows of memory holes between adjacent slits. The layout of the memory holes and slits should also account for a limit in the number of bit lines which can extend across the region while each bit line is connected to a different memory cell. After processing the word line layers, the slits can optionally be filed with metal to provide an interconnect through the stack.
- This figure and other are not necessarily to scale. In practice, the regions can be much longer in the x-direction relative to the y-direction than is depicted to accommodate additional memory holes.
- In this example, there are four rows of memory holes between adjacent slits. A row here is a group of memory holes which are aligned in the x-direction. Moreover, the rows of memory holes are in a staggered pattern to increase the density of the memory holes. The word line layer or word line is divided into regions WLL0 a, WLL0 b, WLL0 c and WLL0 d which are each connected by a
connector 713. The last region of a word line layer in a block can be connected to a first region of a word line layer in a next block, in one approach. The connector, in turn, is connected to a voltage driver for the word line layer. The region WLL0 a hasexample memory holes line 712. The region WLL0 b hasexample memory holes example memory holes example memory holes FIG. 7B . Each memory hole can be part of a respective NAND string. For example, thememory holes - Each circle represents the cross-section of a memory hole at a word line layer or SG layer. Example circles shown with dashed lines represent memory cells which are provided by the materials in the memory hole and by the adjacent word line layer. For example,
memory cells memory cells memory cells memory cells - Metal-filled
slits FIG. 8A for further details of the sub-blocks SBa-SBd ofFIG. 7A . -
FIG. 7B depicts a top view of an example top dielectric layer DL19 of the stack ofFIG. 6B . The dielectric layer is divided into regions DL19 a, DL19 b, DL19 c and DL19 d. Each region can be connected to a respective voltage driver. This allows a set of memory cells in one region of a word line layer to be programmed concurrently, with each memory cell being in a respective NAND string which is connected to a respective bit line. A voltage can be set on each bit line to allow or inhibit programming during each program voltage. - The region DL19 a has the
example memory holes line 712 a which is coincident with a bit line BL0. A number of bit lines extend above the memory holes and are connected to the memory holes as indicated by the “X” symbols. BL0 is connected to a set of memory holes which includes thememory holes memory holes slits FIG. 7A are also depicted, as they extend vertically through the stack. The bit lines can be numbered in a sequence BL0-BL23 across the DL19 layer in the −x direction. - Different subsets of bit lines are connected to cells in different rows. For example, BL0, BL4, BL8, BL12, BL16 and BL20 are connected to cells in a first row of cells at the right hand edge of each region. BL2, BL6, BL10, BL14, BL18 and BL22 are connected to cells in an adjacent row of cells, adjacent to the first row at the right hand edge. BL3, BL7, BL11, BL15, BL19 and BL23 are connected to cells in a first row of cells at the left hand edge of each region. BL1, BL5, BL9, BL13, BL17 and BL21 are connected to cells in an adjacent row of cells, adjacent to the first row at the left hand edge.
-
FIG. 8A depicts example NAND strings in the sub-blocks SBa-SBd ofFIG. 7A . The sub-blocks are consistent with the structure ofFIG. 6B . The conductive layers in the stack are depicted for reference at the left hand side. Each sub-block includes multiple NAND strings, where one example NAND string is depicted. For example, SBa comprises an example NAND string NS0_SBa, SBb comprises an example NAND string NS0_SBb, SBc comprises an example NAND string NS0_SBc, and SBd comprises an example NAND string NS0_SBd. - Additionally, NS0_SBa include SGS transistors 800 and 801,
dummy memory cells data memory cells dummy memory cells 815 and 816, andSGD transistors - NS0_SBb include
SGS transistors dummy memory cells data memory cells dummy memory cells SGD transistors - NS0_SBc include
SGS transistors dummy memory cells data memory cells dummy memory cells SGD transistors - NS0_SBd include
SGS transistors dummy memory cells data memory cells dummy memory cells SGD transistors - At a given height in the block, a set of memory cells in each sub-block are at a common height. For example, one set of memory cells (including the memory cell 804) is among a plurality of memory cells formed along tapered memory holes in a stack of alternating conductive and dielectric layers. The one set of memory cells is at a particular height z0 in the stack. Another set of memory cells (including the memory cell 824) connected to the one word line (WLL0) are also at the particular height. In another approach, the set of memory cells (e.g., including the memory cell 812) connected to another word line (e.g., WLL8) are at another height (z8) in the stack.
-
FIG. 8B depicts another example view of NAND strings in sub-blocks. The NAND strings includes NS0_SBa, NS0_SBb, NS0_SBc and NS0_SBd, which have 48 word lines, WL0-WL47, in this example. Each sub-block comprises a set of NAND strings which extend in the x direction and which have a common SGD line, e.g., SGD0, SGD1, SGD2 or SGD3. In this simplified example, there is only one SGD transistor and one SGS transistor in each NAND string. The NAND strings NS0_SBa, NS0_SBb, NS0_SBc and NS0_SBd are in sub-blocks SBa, SBb, SBc and SBd, respectively. Further, example, groups of word lines G0, G1 and G2 are depicted. -
FIG. 8C generally illustrates a schematic view of three versions of staggeredstring architecture string architecture 101, the strings are shown in rows 107-0 through 107-7 inarchitecture 101. Each row is shown with four ends to the strings. A string may be connected to an adjacent string at an end (not visible beneath this view). A first group of rows 107-0 through 107-3 are shown on a left side of adummy row 108. A second group of rows 107-4 through 107-7 are shown on a right side of thedummy row 108. Thedummy row 108 separates the two groups of rows in the staggered eight rows. Asource line 109 is positioned at an edge of the first group and is remote from thedummy row 108. Asource line 110 is positioned at an edge of the second group and is remote from thedummy row 108 andsource line 109. - The
staggered string architectures 103, 105 for BiCS memory are similar to that ofarchitecture 101 except additional groups are added.Architecture 103 is double the size ofarchitecture 101 and includes sixteen rows of strings with each group of four rows separated by a dummy row. Architecture 105 is larger than both thearchitecture 101 and thearchitecture 103. Architecture 105 includes twenty rows of strings with each group of four rows separated by adummy row 108. - These
architectures -
FIG. 12 depicts a waveform of an example programming operation. The horizontal axis depicts a program loop number and the vertical axis depicts control gate or word line voltage. Generally, a programming operation can involve applying a pulse train to a selected word line, where the pulse train includes multiple program loops or program-verify (PV) iterations. The program portion of the program-verify iteration comprises a program voltage, and the verify portion of the program-verify iteration comprises one or more verify voltages. - For each program voltage, a square waveform is depicted for simplicity, although other shapes are possible such as a multilevel shape or a ramped shape. Further, Incremental Step Pulse Programming (ISPP) is used in this example, in which the program voltage steps up in each successive program loop. This example uses ISPP in a single programming stage in which the programming is completed. ISPP can also be used in each programming stage of a multi-stage operation.
- A pulse train typically includes program voltages which increase stepwise in amplitude in each program-verify iteration using a fixed of varying step size. A new pulse train can be applied in each programming stage of a multi-stage programming operation, starting at an initial Vpgm level and ending at a final Vpgm level which does not exceed a maximum allowed level. The initial Vpgm levels can be the same or different in different programming stages. The final Vpgm levels can also be the same or different in different programming stages. The step size can be the same or different in the different programming stages. In some cases, a smaller step size is used in a final programming stage to reduce Vth distribution widths.
- The
pulse train 900 includes a series ofprogram voltages third program voltages sixth program voltages eighth program voltages eleventh program voltages fifteenth program voltages -
FIGS. 13A and 13B show threshold voltage (Vth) distributions of memory cells in an example two-stage programming operation. Specifically, the memory cells are initially in the erased state (bits 11) as represented by the Vth distribution 1100 shown inFIG. 13A .FIG. 13B depicts Vth distributions of memory cells after a first programming stage and a second programming stage of the example two-stage programming operation with four data states. While two programming stages and four data states are shown, it should be appreciated that any number of programming stages may be utilized (e.g., three or four programming stages) and any number of data states are contemplated. - In the example, the first programming stage causes the Vth of the A, B and C state cells to reach the
Vth distributions Vth distributions Vth distributions final Vth distributions Vth distributions - Further, a programming operation may also include a pre-charge phase. During the pre-charge phase, a channel of a NAND string in a 3D stacked memory device may be prepared for programming. For example, CPWELL precharge technique may be used to improve reverse order program (ROP) erase upper tail by suppling holes into the channel. To illustrate, a typical architecture for a memory device using a NAND flash memory structure includes a plurality of NAND strings within a memory block. In some cases, the NAND strings within a memory block may share a common well (e.g., a p-well). As shown in
FIG. 14A , BiCS cell next to array (CNA) structure includes a p-well under a vertical memory hole or pillar. The memory hole extends vertically in the stack and includes memory cells, such as in a vertical NAND string. As depicted inFIG. 14A , by applying a positive voltage (e.g., 2.2V) on the p-well, holes are pushed into the channel helping pre-charge the channel, improving boosting potential. -
FIG. 14B provides an exemplary embodiment of a BiCS CMOS under array (CUA) structure. InFIG. 14B , a NAND string is connected to a common source line by its source-side select transistor SGS1 (e.g., controlled by select line SGS1) and connected to its associated bit line by its drain-side select transistor SGD1 (e.g., controlled by select line SGD1). For illustration purposes, the BiCS CMOS CUA structure inFIG. 14B is shown to include select gates SGS0, SGS1, SGD0, and SGD1. However, in accordance with embodiments described herein, the BiCS CMOS CUA structure may in any number of select gates. - As further shown in
FIG. 14B , BiCS CUA structure does not include a p-well for supplying holes. As such, the CPWELL pre-charge technique cannot be implemented on the BiCS CUA structure. - Embodiments described herein provide alternate techniques for boost potential improvement in ROP for BiCS CUA architecture. More specifically, embodiments described herein are directed to pre-charge schemes using gate induced drain leakage (GIDL) generation. For example, a select gate transistor of an NAND string may be used to generate hole current by GIDL during a pre-charge period of the programming operation.
- In some embodiments, as depicted in
FIG. 14B , a negative bias (e.g., −Ve) may be applied on a gate of select transistor SGS1 of the NAND string to generate GIDL during the pre-charge phase of the program operation. In some embodiments, SDS/WLDS of the NAND string are biased to ground. Moreover, in some embodiments, and with continued reference toFIG. 14B , a more positive voltage may be applied to the source line connected to an end of select gate transistor SGS1 to generate GIDL. These pre-charge schemes achieve a gate-to-source voltage difference that can induce GIDL current at the drain side of the SGS1 transistor. Still yet, in some embodiments, and with continued reference toFIG. 14B , a negative bias may be applied to a gate of select gate transistor SGD1 of the NAND string to generate GIDL. This pre-charge scheme achieves a gate-to-source voltage difference that can induce GIDL current at the drain side of the SGD1 transistor. - In some embodiments, the foregoing may be implemented by a controller, control circuitry, a processor, and/or the like, as described elsewhere herein. For example,
control circuitry 110 inFIG. 1A may be configured to perform, before a program operation, a pre-charge operation comprising applying a voltage to a select line connected to the gate of select transistor SGS1 to generate GIDL. As another example,control circuitry 110 inFIG. 1A may be configured to perform a pre-charge operation comprising applying a voltage to a source line connected to one end of select transistor SGS1 to generate GIDL. In another example,control circuitry 110 inFIG. 1A may be configured to perform a pre-charge operation comprising applying a voltage to a gate of select transistor SGD1 to generate GIDL. - To explore this further,
FIGS. 15A-15D will now be described.FIGS. 15A, 15B, 15C, and 15D are signal timing diagrams for example implementations of the hole pre-charge schemes using GIDL generation for BiCS CUA architecture described above. For example,FIG. 15A shows hole pre-charge (also referred to as “SGS1 GIDL”) following a conventional CELSRC pre-charge. As shown inFIG. 15A , CELSRC pre-charge occurs from P5 to P7 and hole pre-charge occurs from P8 to P9 (by biasing the gate of SGS1 to −Ve). For example, hole pre-charge occurs after CELSRC pre-charging by turning the select line connected to the gate of select transistor SGS1 to a negative bias. In contrast, inFIG. 15B , CELSRC pre-charge does not occur and hole pre-charge occurs from P4 to P9 (by biasing the gate of SGS1 to −Ve). In this particular embodiment, a longer time is provided for generating hole GIDL current, thereby improving the boosting potential. A similar scheme may be implemented using select transistor SGD1 inFIG. 14A andFIG. 14B . - In
FIG. 15C , CELSRC pre-charge occurs from P5 to P7 and hole pre-charge occurs from P8 to P9 (by applying PROGSRC_PCH2 at P8 to the source line connected to the source-side of SGS1 where PROGSRC_PCH2>PROGSRC_PCH1. In contrast, inFIG. 15D , CELSRC pre-charge does not occur and hole pre-charge occurs from P4 to P9 (by applying PROGSRC_PCH2 at P5 to the source line connected to the source-side of SGS1).FIGS. 15A-15D are provided merely for illustration purposes. In some embodiments, hole pre-charge may occur at other times during a pre-charging phase of a program operation. - As described, GIDL current can be generated by applying a negative bias on a gate of a select transistor of a NAND string or by applying a more positive source voltage to the source line connected to the source-side of a select transistor of a NAND string. Higher GIDL current lowers channel electron density post pre-charge and improves boosting potential under the channel. However, to lower a GIDL requirement a longer pre-charge time may be used (as shown in
FIGS. 15B and 15D ). - The foregoing detailed description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teachings. The described embodiments were chosen in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
Claims (18)
1. A memory device, comprising:
a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series;
a bit line connected to one end of the first select transistor;
a source line connected to one end of the second select transistor;
a first select line connected to a gate of the first select transistor;
a word line connected to a gate of the memory cell transistor;
a second select line connected to a gate of the second select transistor; and
a control circuit configured to perform, before a program operation, a pre-charge operation comprising:
applying a negative voltage to the second select line connected to the gate of the second select transistor to cause gate-induced drain leakage from the second select transistor.
2-3. (canceled)
4. The memory device of claim 1 , wherein the pre-charge operation further comprises:
applying a positive voltage to the source line connected to one end of the second select transistor.
5. The memory device of claim 1 , wherein the pre-charge operation further comprises:
biasing the word line connected to the gate of the memory cell transistor to ground.
6. The memory device of claim 1 , wherein the pre-charge operation further comprises:
applying a voltage to the first select line connected to the gate of the first select transistor to cause gate-induced drain leakage from the first select transistor.
7. The memory device of claim 6 , wherein the voltage applied to the first select line connected to the gate of the first select transistor is negative.
8. A memory device, comprising:
a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series;
a bit line connected to one end of the first select transistor;
a source line connected to one end of the second select transistor;
a first select line connected to a gate of the first select transistor;
a word line connected to a gate of the memory Dcell transistor;
a second select line connected to a gate of the second select transistor; and
a control circuit configured to perform, before a program operation, a pre-charge operation comprising:
applying a positive voltage to the source line connected to one end of the second select transistor to cause gate-induced drain leakage from the second select transistor, wherein the positive voltage has a value more positive than a voltage previously applied to the source line and a voltage applied to the second select line connected to the gate of the second select transistor.
9. (canceled)
10. The memory device of claim 8 , wherein the pre-charge operation further comprises:
applying a voltage to the first select line connected to the gate of the first select transistor to cause gate-induced drain leakage from the first select transistor.
11. The memory device of claim 10 , wherein the voltage applied to the first select line connected to the gate of the first select transistor is negative.
12. (canceled)
13. The memory device of claim 8 , wherein the pre-charge operation further comprises:
biasing the word line connected to the gate of the memory cell transistor to ground.
14. A memory device, comprising:
a memory string including a first select transistor, a memory cell transistor, and a second select transistor connected in series;
a bit line connected to one end of the first select transistor;
a source line connected to one end of the second select transistor;
a first select line connected to a gate of the first select transistor;
a word line connected to a gate of the memory cell transistor;
a second select line connected to a gate of the second select transistor; and
a control circuit configured to perform, before a program operation, a pre-charge operation comprising:
applying a negative voltage to the first select line connected to the gate of the first select transistor to cause gate-induced drain leakage from the first select transistor.
15-16. (canceled)
17. The memory device of claim 14 , wherein the pre-charge operation further comprises:
biasing the word line connected to the gate of the memory cell transistor to ground.
18. The memory device of claim 14 , wherein the pre-charge operation further comprises:
applying a voltage to the second select line connected to the gate of the second select transistor to cause gate-induced drain leakage from the second select transistor.
19. The memory device of claim 18 , wherein the voltage applied to the second select line connected to the gate of the second select transistor is negative.
20. The memory device of claim 18 , wherein the pre-charge operation further comprises:
applying a positive voltage to the source line connected to one end of the second select transistor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/916,186 US11211392B1 (en) | 2020-06-30 | 2020-06-30 | Hole pre-charge scheme using gate induced drain leakage generation |
CN202110276241.9A CN113870935A (en) | 2020-06-30 | 2021-03-15 | Hole precharge scheme using gate induced drain leakage generation |
DE102021106907.6A DE102021106907A1 (en) | 2020-06-30 | 2021-03-19 | HOLE PRE-CHARGING SCHEME WITH GATE-INDUCED DRAIN LEAKAGE GENERATION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/916,186 US11211392B1 (en) | 2020-06-30 | 2020-06-30 | Hole pre-charge scheme using gate induced drain leakage generation |
Publications (2)
Publication Number | Publication Date |
---|---|
US11211392B1 US11211392B1 (en) | 2021-12-28 |
US20210408024A1 true US20210408024A1 (en) | 2021-12-30 |
Family
ID=78827171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/916,186 Active US11211392B1 (en) | 2020-06-30 | 2020-06-30 | Hole pre-charge scheme using gate induced drain leakage generation |
Country Status (3)
Country | Link |
---|---|
US (1) | US11211392B1 (en) |
CN (1) | CN113870935A (en) |
DE (1) | DE102021106907A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230253049A1 (en) * | 2022-02-08 | 2023-08-10 | Sandisk Technologies Llc | Celsrc voltage separation between slc and xlc for slc program average icc reduction |
WO2024137026A1 (en) * | 2022-12-20 | 2024-06-27 | Sandisk Technologies Llc | Non-volatile memory with hole pre-charge and isolated signal lines |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220037633A (en) * | 2020-09-18 | 2022-03-25 | 에스케이하이닉스 주식회사 | Memory device and manufacturing method thereof |
KR20220037636A (en) | 2020-09-18 | 2022-03-25 | 에스케이하이닉스 주식회사 | Memory device and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7672169B2 (en) * | 2007-02-20 | 2010-03-02 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory and driving method thereof |
US20190333592A1 (en) * | 2018-04-25 | 2019-10-31 | SK Hynix Inc. | Memory device and operating method of the memory device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5748538A (en) * | 1996-06-17 | 1998-05-05 | Aplus Integrated Circuits, Inc. | OR-plane memory cell array for flash memory with bit-based write capability, and methods for programming and erasing the memory cell array |
US8908435B2 (en) * | 2011-12-21 | 2014-12-09 | Sandisk Technologies Inc. | Erase operation with controlled select gate voltage for 3D non-volatile memory |
US9019775B2 (en) * | 2012-04-18 | 2015-04-28 | Sandisk Technologies Inc. | Erase operation for 3D non-volatile memory with controllable gate-induced drain leakage current |
US8908444B2 (en) * | 2012-08-13 | 2014-12-09 | Sandisk Technologies Inc. | Erase for 3D non-volatile memory with sequential selection of word lines |
US8988937B2 (en) * | 2012-10-24 | 2015-03-24 | Sandisk Technologies Inc. | Pre-charge during programming for 3D memory using gate-induced drain leakage |
JP6470146B2 (en) * | 2015-08-27 | 2019-02-13 | 東芝メモリ株式会社 | Semiconductor memory device |
WO2019041082A1 (en) * | 2017-08-28 | 2019-03-07 | Micron Technology, Inc. | Memory architecture and operation |
-
2020
- 2020-06-30 US US16/916,186 patent/US11211392B1/en active Active
-
2021
- 2021-03-15 CN CN202110276241.9A patent/CN113870935A/en active Pending
- 2021-03-19 DE DE102021106907.6A patent/DE102021106907A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7672169B2 (en) * | 2007-02-20 | 2010-03-02 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory and driving method thereof |
US20190333592A1 (en) * | 2018-04-25 | 2019-10-31 | SK Hynix Inc. | Memory device and operating method of the memory device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230253049A1 (en) * | 2022-02-08 | 2023-08-10 | Sandisk Technologies Llc | Celsrc voltage separation between slc and xlc for slc program average icc reduction |
WO2024137026A1 (en) * | 2022-12-20 | 2024-06-27 | Sandisk Technologies Llc | Non-volatile memory with hole pre-charge and isolated signal lines |
Also Published As
Publication number | Publication date |
---|---|
DE102021106907A1 (en) | 2021-12-30 |
CN113870935A (en) | 2021-12-31 |
US11211392B1 (en) | 2021-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10014063B2 (en) | Smart skip verify mode for programming a memory device | |
US11211392B1 (en) | Hole pre-charge scheme using gate induced drain leakage generation | |
US11769560B2 (en) | String based erase inhibit | |
US12057168B2 (en) | Neighbor aware multi-bias programming in scaled BICS | |
US11211132B2 (en) | Detection of a last programming loop for system performance gain | |
US12051467B2 (en) | Programming of memory cells using a memory string dependent program voltage | |
US11244734B2 (en) | Modified verify scheme for programming a memory apparatus | |
US12046297B2 (en) | Method to optimize first read versus second read margin by switching boost timing | |
US12057157B2 (en) | Low power mode with read sequence adjustment | |
US11894080B2 (en) | Time-tagging read levels of multiple wordlines for open block data retention | |
US11222694B1 (en) | Reference current generator control scheme for sense amplifier in NAND design | |
US11562797B2 (en) | Non-linear temperature compensation for wider range operation temperature products | |
US11211127B1 (en) | Loop dependent plane skew methodology for program operation | |
US11475958B2 (en) | Negative bit line biasing during quick pass write programming | |
US11475967B1 (en) | Modified verify in a memory device | |
US11322213B2 (en) | Enhanced multistate verify techniques in a memory device | |
US11139031B1 (en) | Neighbor word line compensation full sequence program scheme | |
US11972801B2 (en) | Program voltage dependent program source levels | |
US12046289B2 (en) | Sub-block status dependent device operation | |
US20230253049A1 (en) | Celsrc voltage separation between slc and xlc for slc program average icc reduction | |
US20240192873A1 (en) | Multi-tier sub-block mode operation | |
US20240105269A1 (en) | Bit line modulation to compensate for cell source variation | |
US20230410923A1 (en) | Hybrid precharge select scheme to save program icc | |
US20230368844A1 (en) | Pre-read cycle timing shrink by sgd bias control and page and wordline control | |
US11398280B1 (en) | Lockout mode for reverse order read operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |