TW202022868A - 靜態隨機存取記憶體電路及其操作方法 - Google Patents

靜態隨機存取記憶體電路及其操作方法 Download PDF

Info

Publication number
TW202022868A
TW202022868A TW108124707A TW108124707A TW202022868A TW 202022868 A TW202022868 A TW 202022868A TW 108124707 A TW108124707 A TW 108124707A TW 108124707 A TW108124707 A TW 108124707A TW 202022868 A TW202022868 A TW 202022868A
Authority
TW
Taiwan
Prior art keywords
memory cell
memory
word line
access transistor
operatively connected
Prior art date
Application number
TW108124707A
Other languages
English (en)
Other versions
TWI778279B (zh
Inventor
藤原英弘
戴承雋
林志宇
陳炎輝
野口紘希
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202022868A publication Critical patent/TW202022868A/zh
Application granted granted Critical
Publication of TWI778279B publication Critical patent/TWI778279B/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/418Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/12Group selection circuits, e.g. for memory block selection, chip selection, array selection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/14Word line organisation; Word line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/16Multiple access memory array, e.g. addressing one storage element via at least two independent addressing line groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Static Random-Access Memory (AREA)
  • Dram (AREA)

Abstract

一種靜態隨機存取記憶體電路,其可將記憶陣列中的行位元線分組為位元線子集,且為每一位元線子集提供y位址訊號輸入。另外或替代地,記憶胞陣列中的每一列可操作地連接至多個字元線。

Description

靜態隨機存取記憶體電路及其操作方法
不同類型的記憶體電路用於各種目的的電子元件中。唯讀記憶體(Read only memory;ROM)及隨機存取記憶體(random access memory;RAM)為兩種此類型的記憶體電路。ROM電路准許自ROM電路讀取資料而非將資料寫入至ROM電路,且當電源斷開時保留其儲存的資料。因此,ROM電路通常用於儲存當電子元件開啟時執行的程式。
不同於ROM電路,RAM電路允許將資料寫入至RAM電路中的所選擇記憶胞及自所述所選擇記憶胞讀取資料。一種類型的RAM電路為靜態隨機存取記憶體(static random access memory;SRAM)電路。典型的SRAM電路包含以行及列配置的可定址記憶胞陣列。在一些情形下,列中的記憶胞可比行中的記憶胞更快地存取。舉例而言,可僅需要一個存取週期以存取列中的記憶胞,因為一個字元線經啟用或激活以存取記憶胞。然而,可需要大量存取週期以存取行中的記憶胞,因為必須激活多個字元線以存取記憶胞。當存取陣列中的記憶胞矩陣(例如,8×8矩陣)且矩陣中的資料定位於記憶陣列的不同列中時,亦可能需要多個存取週期。
此外,在一些電子元件中,記憶體電路的設計及操作可不利地影響計算系統的通量。隨著時間推移,處理器速度已顯著提高,而記憶體傳輸速率的提高更為有限。因此,處理器可耗費空閒時間等待自記憶體中擷取資料。
以下揭露內容提供用於實施所提供標的的不同特徵的諸多不同實施例或實例。下文描述組件及配置的具體實例以簡化本揭露內容。當然,此等組件及配置僅為實例且不意欲為限制性的。舉例而言,在以下描述中,第一特徵在第二特徵上方或第二特徵上形成可包含第一特徵與第二特徵直接接觸地形成的實施例,且亦可包含額外特徵可在第一特徵與第二特徵之間形成使得第一特徵與第二特徵可不直接接觸的實施例。另外,本揭露內容可在各種實例中重複附圖標號及/或字母。此重複是出於簡單及清楚的目的,且自身並不指示所論述的各種實施例及/或組態之間的關係。
此外,為易於描述,本文中可使用諸如「在……之下(beneath)」、「在......下方(below)」、「下部(lower)」、「在......之上(above)」、「上部(upper)」以及類似術語的空間相對術語以描述如圖式中所示出的一個構件或特徵與另一構件或特徵的關係。除圖式中所描繪的定向以外,空間相對術語意欲涵蓋元件在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或處於其他定向)且本文中所使用的空間相對描述詞可同樣相應地進行解釋。
本文所描述的實施例揭露一種靜態隨機存取記憶體(SRAM)電路,所述電路提供字元線的同時獨立激活及/或位元線的同時獨立激活。此允許同時選擇多列及多行中的記憶胞以用於讀取及/或寫入操作。SRAM電路包含針對記憶胞陣列中的行的兩個或大於兩個子集(例如,兩個或大於兩個記憶胞區塊)的y位址訊號輸入。在一些實施例中,每2n 個位元線提供y位址訊號輸入,其中n等於或大於一。舉例而言,可為2個位元線、4個位元線、8個位元線、16個位元線、32個位元線或64個位元線提供y位址訊號輸入。
另外或替代地,SRAM電路包含可操作地連接至SRAM電路中的每一列記憶胞的多個字元線。舉例而言,一對字元線可連接至每一列。每一記憶胞中的存取電晶體與第一字元線及第二字元線之間的連接在每一列內變化。舉例而言,一列中的一個記憶胞中的第一存取電晶體及第二存取電晶體可連接至一個字元線,且所述列中的另一記憶胞中的第一存取電晶體及第二存取電晶體可連接至另一字元線。替代地,在一列中的一個記憶胞中,第一存取電晶體可連接至第一字元線且所述記憶胞中的第二存取電晶體可連接至第二字元線。在所述列中的另一記憶胞中,第一存取電晶體與第二存取電晶體之間的連接可相反。第一存取電晶體可連接至第二字元線且第二存取電晶體可連接至第一字元線。
SRAM電路的實施例支援區段自由資料存取。另外,記憶胞可藉由列(例如,水平方向)及藉由行(例如,豎直方向)存取。在一些情形下,此彈性資料存取可減小處理器空閒及等待自記憶體中擷取資料的時間量。另外,彈性資料存取可用於各種應用中,所述應用包含但不限於包含卷積神經網路(convolution neural network)的成像製程應用。
圖1示出根據一些實施例的靜態隨機存取記憶體電路的一部分的方塊圖。在所示出的實施例中,SRAM電路100包含以列及行配置的記憶胞102以形成記憶陣列104。SRAM電路100可包含任何合適數目的列及行。舉例而言,SRAM電路包含R 數目個列及C 數目個行,其中R 為大於或等於或一的整數且C 為大於或等於二的數。
記憶胞102可邏輯地及/或實體地組織成記憶胞102的M 個區塊106A、區塊106B……區塊106M(統稱為區塊106),其中M 大於或等於一。區塊106中包含任何合適數目的記憶胞102。在一些情形下,區塊106中的記憶胞102的數目由2i 判定,其中i 為大於或等於1的數。舉例而言,區塊106可經實施為8×8記憶胞區塊(例如,其中n=6且26 =64個記憶胞以八個列及八個行配置)或16×16記憶胞區塊(例如,其中n=8且28 =256個記憶胞以十六個列及十六個行配置)。儘管圖1描繪記憶胞102的三個區塊106,但實施例可包含任何合適數目的記憶胞102區塊106、任何合適數目的記憶胞102以及每一區塊106中的任何合適數目的記憶胞102。
每一區塊106可操作地連接至行選擇電路108A、行選擇電路108B……行選擇電路108M(統稱為行選擇電路108)。行選擇電路108的一個實例為多工器。每一行選擇電路108可操作地連接至y解碼器電路110A、y解碼器電路110B……y解碼器電路110M(統稱為y解碼器電路110)。每一y解碼器電路110接收y位址訊號112A、y位址訊號112B……y位址訊號112M,且針對各別行選擇電路108產生y選擇訊號114A、y選擇訊號114B……y選擇訊號114M(統稱為y位址訊號112及y選擇訊號114)。每一行選擇電路108基於y選擇訊號114及數位線對訊號118A、數位線對訊號118B……數位線對訊號118M(示出性位元線由116指示)來選擇區塊中的行(「位元線」)。
在所示出的實施例中,記憶陣列104中的每一列記憶胞可操作地連接至第一字元線及第二字元線(第一字元線統稱為120且第二字元線統稱為122)。第一字元線的數目對應於R ,列數。類似地,第二字元線的數目對應於R 。因此,在一個非限制性實例中,可操作地連接至記憶陣列的字元線的總數目可對應於2×R 。在其他實施例中,一列中的記憶胞可以可操作地連接至三個或大於三個字元線。
x解碼器電路124可操作地連接至第一字元線120及第二字元線122。儘管圖1中僅繪示一個x解碼器電路,但其他實施例可包含多個x解碼器電路,其中每一x解碼器電路可操作地連接至字元線的子集。因此,x解碼器電路124表示一或多個x解碼器電路。
x解碼器電路124接收第一x位址訊號126,且在所選擇第一字元線120上產生第一x選擇訊號。x解碼器電路124接收第二x位址訊號128,且在所選擇第二字元線122上產生第二x選擇訊號。對於每一所選擇第一字元線120及對應的所選擇位元線116而言,區塊106中的第一記憶胞102經選擇用於存取(例如,讀取或寫入操作)。類似地,對於每一所選擇第二字元線122及對應的所選擇位元線116而言,區塊106中的第二記憶胞102經選擇用於存取(例如,讀取或寫入操作)。第二記憶胞102可與第一記憶胞102在相同區塊(例如,區塊106A、區塊106B……區塊106M)中或在不同區塊中。
在一些態樣中,SRAM電路100包含針對記憶陣列中的行的子集或位元線的子集的y位址訊號輸入。舉例而言,在圖1中,為各別區塊106A、區塊106B……區塊106M提供y位址訊號線112A、y位址訊號線112B……y位址訊號線112B,其中每一區塊106A、區塊106B……區塊106M包含位元線116的子集。在一些實施例中,每一區塊包含2n 個位元線,其中n等於或大於一。此允許獨立且同時選擇及激活多個位元線116。
另外,SRAM電路100中的每一列可操作地連接至多個字元線(例如,字元線120、字元線122)。字元線120、字元線122可獨立且同時經選擇及激活。當與多個位元線116的獨立及同時激活結合時,記憶陣列104中的多個記憶胞102可經存取用於寫入操作或讀取操作(多個記憶胞102可在相同或不同區塊(例如,區塊106A、區塊106B......區塊106M)中)。
圖2描繪根據一些實施例的適合用於圖1中所繪示的SRAM電路的兩個記憶胞的第一實例的示意圖。每一記憶胞200、記憶胞202經繪示為六電晶體(six-transistor;6T)記憶胞,但其他實施例不限於此組態。舉例而言,每一記憶胞200、記憶胞202可為四電晶體(four-transistor;4T)記憶胞。在所示出的實施例中,第一字元線WL[0]及第二字元線WL[1]對應於圖1中的第一字元線120及第二字元線122,記憶胞200、記憶胞202對應於記憶胞120,且位元線210、位元線216、位元線222、位元線228對應於圖1中的位元線116。
每一記憶胞200、記憶胞202包含可操作地連接至第二交叉耦接反向器206的第一交叉耦接反向器204。第一交叉耦接反向器204連接至第一存取電晶體T0且第二交叉耦接反向器206連接至第二存取電晶體T1。在所示出的實施例中,每一交叉耦接反向器204、交叉耦接反向器206包含可操作地連接至NMOS電晶體(例如,NMOS電晶體N0及NMOS電晶體N1)的P型金屬氧化物半導體(p-type metal oxide semiconductor;PMOS)電晶體(例如,P型金屬氧化物半導體電晶體P0及P型金屬氧化物半導體電晶體P1)。PMOS電晶體的源極端可操作地連接至供電電壓且PMOS電晶體的汲極端可操作地連接至NMOS電晶體的汲極端。NMOS電晶體的源極端可操作地連接至參考電壓。PMOS電晶體P1的閘極端可操作地連接至NMOS電晶體N0的汲極端。類似地,PMOS電晶體P0的閘極端可操作地連接至NMOS電晶體N0的汲極端。交叉耦接反向器204、交叉耦接反向器206形成具有用於指示0及1的兩種穩定狀態的儲存單元。
存取電晶體T0、存取電晶體T1在讀取及寫入操作期間控制對儲存單元的存取。兩個存取電晶體T0、存取電晶體T1能夠自記憶胞200、記憶胞202讀取位元或將位元寫入至所述記憶胞。此類型的SRAM記憶胞稱為單埠記憶胞,且SRAM電路稱為單埠SRAM電路。其他實施例不限於此實施方案。舉例而言,記憶胞200、記憶胞202可為雙埠SRAM記憶胞。
在所示出的實施例中,存取電晶體T0、存取電晶體T1為NMOS電晶體。在第一記憶胞200中,第一存取電晶體T0的閘極在節點208處可操作地連接至第二字元線WL[1]。第一存取電晶體T0的源極在節點212處可操作地連接至位元線210,且第一存取電晶體T0的汲極可操作地連接至NMOS電晶體N0的汲極。相對於第一記憶胞200中的第二存取電晶體T1,第二存取電晶體T1的閘極在節點214處可操作地連接至第一字元線WL[0]。第二存取電晶體T1的汲極可操作地連接至NMOS電晶體N1的汲極,且第二存取電晶體T1的源極在節點218處可操作地連接至位元線216。
在第二記憶胞202中,第一存取電晶體T0的閘極在節點220處可操作地連接至第一字元線WL[0]。第一存取電晶體T0的源極在節點224處可操作地連接至位元線222,且第一存取電晶體T0的汲極可操作地連接至NMOS電晶體N0的汲極。相對於第二記憶胞202中的第二存取電晶體T1,第二存取電晶體T1的閘極在節點226處可操作地連接至第二字元線WL[1]。第二存取電晶體T1的汲極可操作地連接至NMOS電晶體N1的汲極,且第二存取電晶體T1的源極在節點230處可操作地連接至位元線228。
在圖2的實施例中,每一記憶胞200、記憶胞202中的存取電晶體T0、存取電晶體T1的閘極選擇性地連接至第一字元線WL[0]或第二字元線WL[1]。在區塊或記憶陣列(例如,圖1中的區塊106或記憶陣列104)中的每一列中,記憶胞200中的第一存取電晶體T0的閘極連接至第二字元線WL[1],且在緊鄰的記憶胞202中,第一存取電晶體T0的閘極連接至第一字元線WL[0]。類似地,在相同列中,第一記憶胞200中的第二存取電晶體T1的閘極連接至第一字元線WL[0],且第二記憶胞202中的第二存取電晶體T1的閘極連接至第二字元線WL[1]。在一個實施例中,記憶胞200在偶數行中且記憶胞202在奇數行中。在另一實施例中,記憶胞200在奇數行中且記憶胞202在偶數行中。
圖3示出針對圖2中所繪示的實施例的在兩個字元線與一列記憶胞之間的實例第一字元線連接模式。列300為區塊中或記憶陣列(例如,圖1中的區塊106或記憶陣列104)中的列。記憶胞220、記憶胞202中的第一存取電晶體T0及第二存取電晶體T1與第一字元線WL[0]及第二字元線WL[1]之間的連接在記憶胞200、記憶胞202的列300內變化。
在圖3的非限制性實例中,列300包含八個記憶胞200、記憶胞202。在列300中,記憶胞200中的第一組第二存取電晶體T1的閘極連接至第一字元線WL[0],且相同記憶胞200中的第一組第一存取電晶體T0的閘極連接至第二字元線WL[1]。在緊鄰記憶胞200的記憶胞202(例如,記憶胞202插入於記憶胞200之間)中,第二組第二存取電晶體T1的閘極連接至第二字元線WL[1],且相同記憶胞202中的第二組第一存取電晶體T0的閘極連接至第一字元線WL[0]。
因此,在第一字元線連接模式中,記憶胞中的一個存取電晶體的閘極連接至一個字元線,且相同記憶胞中的另一存取電晶體的閘極連接至另一字元線,且字元線連接在列300中每隔一個記憶胞200、記憶胞202交替。第一字元線連接模式可延伸穿過整個列300,或至少一個區塊(例如,圖1中的區塊106)中的列300可具有不同字元線連接模式。舉例而言,一個區塊中的列300可具有圖2中所繪示的第一字元線連接模式,而另一區塊中的字元線連接模式的不同可在於記憶胞200中的第一組第二存取電晶體T1的閘極可連接至第二字元線WL[1],相同記憶胞200中的第一組第一存取電晶體T0的閘極可連接至第一字元線WL[0],記憶胞202中的第二組第二存取電晶體T1的閘極連接至第一字元線WL[0],且相同記憶胞202中的第二組第一存取電晶體T0的閘極可連接至第二字元線WL[1]。
另外或替代地,記憶陣列中的每一列可具有第一字元線連接模式,或對於記憶陣列中的至少一個列而言字元線連接模式可以不同。舉例而言,記憶陣列中的一個列可具有圖2中所繪示的第一字元線連接模式。記憶陣列中的另一列可具有不同字元線連接模式。在非限制性實例中,不同字元線連接模式可使記憶胞200中的第一組第二存取電晶體T1的閘極連接至第二字元線WL[1],使相同記憶胞200中的第一組第一存取電晶體T0的閘極連接至第一字元線WL[0],使記憶胞202中的第二組第二存取電晶體T1的閘極連接至第一字元線WL[0],且使相同記憶胞202中的第二組第一存取電晶體T0的閘極連接至第二字元線WL[1]。
圖4描繪根據一些實施例的適合用於圖1中所繪示的SRAM電路的兩個記憶胞的第二實例的示意圖。每一記憶胞400、記憶胞402經繪示為六電晶體(6T)記憶胞,但其他實施例不限於此組態。在所示出的實施例中,第一字元線WL[0]及第二字元線WL[1]對應於圖1中的第一字元線120及第二字元線122,且記憶胞400、記憶胞402對應於記憶胞120。
除第一字元線WL[0]及第二字元線WL[1]與第一存取電晶體T0及第二存取電晶體T1的閘極之間的連接之外,第一記憶胞400及第二記憶胞402與圖2中的第一記憶胞200及第二記憶胞202相同。在第一記憶胞400中,第一存取電晶體T0及第二存取電晶體T1的閘極分別在節點404、節點406處可操作地連接至第一字元線WL[0]。在緊鄰的第二記憶胞402中,第一存取電晶體T0及第二存取電晶體T1的閘極分別在節點408、節點410處可操作地連接至第二字元線WL[1]。在一個實施例中,記憶胞400在偶數行中且記憶胞402在奇數行中。在另一實施例中,記憶胞400在奇數行中且記憶胞402在偶數行中。
圖5示出針對圖4中所繪示的實施例的在兩個字元線與一列記憶胞之間的實例第二字元線連接模式。列500為區塊中或記憶陣列(例如,圖1中的區塊106或記憶陣列104)中的列。在記憶胞400、記憶胞402中的第一存取電晶體T0及第二存取電晶體T1與第一字元線WL[0]及第二字元線WL[1]之間的連接在記憶胞400、記憶胞402的列500內變化。
在圖5的非限制性實例中,列500包含八個記憶胞。在列500中,記憶胞400中的第一組第一存取電晶體T0的閘極及第一組第二存取電晶體T1的閘極連接至第一字元線WL[0]。在緊鄰記憶胞400的記憶胞402(記憶胞402插入於記憶胞400之間)中,第二組第一存取電晶體T0的閘極及第二組第二存取電晶體T1的閘極連接至第二字元線WL[1]。因此,在第二字元線連接模式中,記憶胞400中的存取電晶體T0、存取電晶體T1兩者的閘極連接至一個字元線(相同字元線),且記憶胞402中的存取電晶體T0、存取電晶體T1兩者的閘極連接至另一字元線。在記憶胞400、記憶胞402中的存取電晶體T0、存取電晶體T1與字元線WL[0]、字元線WL[1]之間的連接在列500中每隔一個記憶胞400、記憶胞402交替。
第二字元線連接模式可延伸穿過整個列500,或在至少一個區塊(例如,圖1中的區塊106)中的記憶胞可具有不同連接模式。舉例而言,第二字元線連接模式可在與列500相關聯的第一區塊中實施,而不同字元線連接模式用於與列500相關聯的第二區塊中。舉例而言,字元線連接模式在第二區塊中的不同可在於字元線連接模式相反(例如,第一記憶胞400中的存取電晶體兩者的閘極連接至第二字元線WL[1],且第二記憶胞402中的存取電晶體兩者的閘極連接至第一字元線WL[0])。替代地,根據第一字元線連接模式,第二區塊(例如,圖1中的區塊106)中的存取電晶體的閘極可連接至字元線WL[0]、字元線WL[1]。
另外或替代地,記憶陣列中的每一列可具有第二字元線連接模式,或對於記憶陣列中的至少一個列而言連接模式可以不同。舉例而言,記憶陣列中的一個列可具有第二字元線連接模式(圖4),且記憶陣列中的另一列可具有不同字元線連接模式(例如,圖2中所繪示的第一字元線連接模式)。
其他字元線連接模式可用於其他實施例中。舉例而言,可修改圖2中所繪示的第一字元線連接模式,使得在存取電晶體T0、存取電晶體T1的閘極與字元線WL[0]、字元線WL[1]之間的連接可每兩個記憶胞交替。在另一實例中,可修改圖4中所繪示的第二字元線連接模式,使得在存取電晶體T0、存取電晶體T1的閘極與字元線WL[0]、字元線WL[1]之間的連接可每兩個記憶胞交替。可使用改變整個列上的字元線與存取電晶體之間的連接且啟用獨立存取記憶胞的任何字元線連接模式。
圖6描繪根據一些實施例的SRAM電路的第三實例的示意圖。圖6類似於圖1,但更詳細地示出記憶胞與字元線之間的連接。在所示出的實施例中,字元線AWL[0]及字元線AWL[1]對應於圖1中的第二字元線122,且字元線BWL[0]及字元線BWL[1]對應於第一字元線120。
SRAM電路600描繪有記憶陣列104中的記憶胞102的M 個區塊106A、區塊106B......區塊106M(統稱為區塊106)。記憶陣列104包含任何合適數目的列及行。在所示出的實施例中,每一區塊106包含記憶胞102的兩個列602、列604及記憶胞102的四個行606、行608、行610、行612,每一區塊106中總共八個記憶胞102。
x解碼器電路124可操作地連接至字元線AWL[0]、字元線BWL[0]、字元線AWL[1]、字元線BWL[1]。第一對字元線AWL[0]、字元線BWL[0]可操作地連接列602且第二對字元線AWL[1]、字元線BWL[1]可操作地連接列604。相對於列602,第一對字元線AWL[0]、字元線BWL[0]可操作地連接至交替記憶胞。舉例而言,字元線AWL[0]可操作地連接至記憶胞614、記憶胞616且字元線BWL[0]可操作地連接至記憶胞618、記憶胞622。
相對於列604,第二對字元線AWL[1]、字元線BWL[1]可操作地連接至交替記憶胞。舉例而言,字元線AWL[1]可操作地連接至記憶胞622、記憶胞624且字元線BWL[1]可操作地連接至記憶胞626、記憶胞628。在非限制性實施例中,根據圖4中所繪示的第二字元線連接模式,第一對字元線AWL[0]、字元線BWL[0]及第二對字元線AWL[1]、字元線BWL[1]可操作地連接至記憶胞614、記憶胞616、記憶胞618、記憶胞620、記憶胞622、記憶胞624、記憶胞626、記憶胞628。
由於圖6中的字元線連接對應於圖4中所繪示的第二字元線模式,故激活可操作地連接至一列的一個字元線(例如,字元線AWL[0])啟用或激活所述列中的第一記憶胞102子集中的第一存取電晶體及第二存取電晶體(例如,圖4及圖5中的第一存取電晶體T0及第二存取電晶體T1)的閘極。舉例而言,當字元線AWL[0]經激活時,記憶胞614、記憶胞616經選擇,而激活可操作地連接至相同列(例如,列602)的另一字元線(例如,字元線BWL[0])激活相同列中的第二記憶胞102子集中的第一存取電晶體及第二存取電晶體的閘極。當組合時,第一記憶胞子集及第二記憶胞子集包括列(例如,列602)中的所有記憶胞。替代地,激活可操作地連接至第一列(例如,列602)的一個字元線激活第一列中的記憶胞子集中的第一存取電晶體及第二存取電晶體的閘極,而激活可操作地連接至第二列(例如,列604)的第二字元線激活第二列中的記憶胞子集中的第一存取電晶體及第二存取電晶體的閘極。
現在描述記憶陣列104中的存取選擇記憶胞102的實例實施例。在圖6中,字元線及位元線的激活由加粗字元線及位元線表示。藉由x解碼器電路124接收第一x位址訊號以激活字元線BWL[0]且藉由x解碼器電路124接收第二x位址訊號以激活字元線AWL[1]。藉由y解碼器電路110A接收第一y位址訊號以在線114A上產生第一y選擇訊號。行選擇電路108A基於y選擇訊號114A及數位線對訊號118A來激活位元線630。基於字元線AWL[1]及位元線630的激活來為讀取或寫入操作選擇及存取記憶胞622。
繼續非限制性實例,藉由y解碼器電路110B接收第二y位址訊號以在線114B上產生第二y選擇訊號。行選擇電路108B基於y選擇訊號114B及數位線對訊號118B來激活第二位元線632。基於字元線BWL[0]及位元線632的激活來為讀取或寫入操作選擇及存取記憶胞634。
可藉由y解碼器電路110M接收第三y位址訊號以在線114M上產生第三y選擇訊號。行選擇電路108M基於y選擇訊號114M及數位線對訊號118M來激活位元線636。基於字元線BWL[0]及位元線636的激活來為讀取或寫入操作選擇及存取記憶胞638。
在圖6中,可藉由獨立激活選擇字元線及位元線來選擇及存取額外或不同的記憶胞102。舉例而言,基於字元線AWL[0]及位元線642的激活來為讀取或寫入操作選擇及存取記憶胞640。
本文所描述的實施例可基於哪些字元線經激活來選擇不同的記憶胞子集。舉例而言,在圖6中,當字元線AWL[0]經激活時,記憶胞614、記憶胞616、記憶胞640、記憶胞644、記憶胞646、記憶胞648經選擇且形成所選擇記憶胞的子集。另外或替代地,當字元線BWL[1]經斷言時,記憶胞626、記憶胞628、記憶胞650、記憶胞652、記憶胞654、記憶胞656經選擇且構成所選擇記憶胞的子集。因此,取決於哪些字元線經激活,可選擇所選擇記憶胞的多個子集,其中子集駐存於相同列或不同列中。
另外,當一或多個字元線經激活時,實施例可基於哪些位元線經斷言來存取用於讀取或寫入操作的不同的記憶胞子集。舉例而言,在圖6中,當字元線AWL[0]經激活且位元線630、位元線658經斷言時,記憶胞614、記憶胞648經存取用於讀取或寫入操作,且記憶胞614、記憶胞648形成經存取記憶胞的子集。另外,當字元線BWL[1]經斷言且位元線630、位元線632經斷言時,記憶胞622、記憶胞628經存取用於讀取或寫入操作。記憶胞622、記憶胞652構成經存取記憶胞的子集。
替代地,當字元線BWL[1]經斷言且位元線658、位元線660經斷言時,記憶胞626、記憶胞628經存取用於讀取或寫入操作,且形成經存取記憶胞的子集。因此,取決於哪些字元線及哪些位元線經激活,經存取記憶胞的子集為:(1)在相同列中且可操作地連接至相同組的行輸出電路(例如,與行選擇電路108A相關聯的行輸出電路);(2)在相同列中且可操作地連接至不同組的行輸出電路(例如,與行選擇電路108A及行選擇電路108B相關聯的行輸出電路);(3)在不同列中且可操作地連接至相同組的行輸出電路;及/或(4)在不同列中且可操作地連接至不同組的行輸出電路。當一或多個位元線經斷言且隨後一或多個字元線經激活時,亦可進行對經存取記憶胞的一或多個子集的獨立存取以用於讀取或寫入操作。
圖7示出根據一些實施例的操作SRAM電路的實例方法的流程圖。初始地,如方塊700中所繪示,多個字元線經獨立地激活。多個字元線可以可操作地連接至記憶陣列中的相同列或不同列。
隨後,如方塊702中所繪示,多個位元線經獨立地激活。位元線可與相同或與不同的記憶胞區塊(例如,圖1中的區塊106)相關聯。基於多個字元線及多個位元線的激活,在方塊704處選擇及存取記憶陣列中的某些記憶胞以用於讀取或寫入操作。
本文揭露的實施例提供SRAM電路,所述SRAM電路可藉由同時及獨立地激活選擇字元線以及同時及獨立地激活選擇位元線來存取相同及/或不同記憶胞區塊中的記憶胞。選擇記憶胞在不同行中且可在相同列或不同列中。此產生在定址及存取記憶胞中更具彈性的SRAM電路。在一些情形下,其減小存取多個記憶胞所需要的時間量。
儘管圖7中所繪示的方塊以特定順序繪示,但在其他實施例中區塊的順序可不同地配置。舉例而言,方塊704及方塊706可在方塊700及方塊702之前進行。替代地,方塊700及方塊704可在方塊702及方塊706之前進行。
前文概述若干實施例的特徵以使得所屬技術領域具有通常知識者可更佳地理解本揭露內容的態樣。所屬技術領域具有通常知識者應理解,其可易於使用本揭露內容作為設計或修改用於實現本文中所引入的實施例的相同目的及/或達成相同優點的其他方法及結構的基礎。所屬技術領域具有通常知識者亦應認識到,此類等效構造並不脫離本揭露內容的精神及範圍,且所屬技術領域具有通常知識者可在不脫離本揭露內容的精神及範圍的情況下在本文中作出各種改變、替代及更改。
一種靜態隨機存取記憶體(SRAM)電路,包含記憶陣列中一列記憶胞,其中所述列包含多個記憶胞。第一字元線可操作地連接至多個記憶胞中的第一記憶胞子集。第二字元線可操作地連接至多個記憶胞中的第二不同記憶胞子集。在一個實施例中,第一記憶胞子集及第二記憶胞子集包含列中的所有記憶胞。
一種靜態隨機存取記憶體(SRAM)電路,包含:多個記憶胞,以列及行配置,且分組為多個記憶胞區塊,其中每一區塊包含記憶胞的子集。在一些態樣中,每一記憶胞的子集包含一或多個列及兩個或大於兩個行。SRAM電路更包含多個行選擇電路,其中每一行選擇電路可操作地連接至各別記憶胞區塊。SRAM電路亦包含多個y解碼器電路,其中每一y解碼器電路可操作地連接至各別行選擇電路,且第一字元線及第二字元線可操作地連接至每一列。
一種靜態隨機存取記憶體(SRAM)電路,可包含記憶胞陣列,所述記憶胞陣列具有可操作地連接至陣列中的每一列的第一字元線及第二字元線以及可操作地連接至記憶胞陣列的多個位元線。一種操作SRAM電路的方法,包含:激活可操作地連接至陣列中的第一列記憶胞的第一字元線以僅選擇第一列記憶胞中的所選擇記憶胞的子集,以及激活多個位元線中的位元線以存取所選擇記憶胞的子集中的記憶胞。隨後對在所選擇記憶胞的子集中存取的記憶胞進行讀取操作或寫入操作。
100、600:SRAM電路 102、200、202、400、402、614、616、618、620、622、624、626、628、634、638、640、644、646、648、650、652、654、656:記憶胞 104:記憶陣列 106A、106B......106M:區塊 108A、108B......108M:行選擇電路 110A、110B......110M:y解碼器電路 112A、112B......112M:y位址訊號 114A、114B......114M:y選擇訊號 116、210、216、222、228、630、632、636、642、658、660、662:位元線 118A、118B......118M:數位線對訊號 120、WL[0]:第一字元線/字元線 122、WL[1]:第二字元線/字元線 124:x解碼器電路 126:第一x位址訊號 128:第二x位址訊號 204:第一交叉耦接反向器 206:第二交叉耦接反向器 208、212、214、218、220、224、226、230、404、406、408、410:節點 300、500、602、604:列 606、608、610、612:行 700、702、704:方塊 AWL[0]、AWL[1]、BWL[0]、BWL[1]:字元線 N0、N1:NMOS電晶體 P0、P1:P型金屬氧化物半導體(PMOS)電晶體 T0:第一存取電晶體/存取電晶體 T1:第二存取電晶體/存取電晶體
當結合隨附圖式閱讀時,自以下實施方式最佳地理解本揭露內容的態樣。應注意,根據業界中的標準慣例,各種特徵未按比例繪製。事實上,可出於論述清楚起見而任意地增大或減小各種特徵的尺寸。 圖1示出根據一些實施例的靜態隨機存取記憶體電路的一部分的方塊圖。 圖2描繪根據一些實施例的適合用於圖1中所繪示的SRAM電路的兩個記憶胞的第一實例的示意圖。 圖3示出針對圖2中所繪示的實施例的在兩個字元線與一列記憶胞之間的實例第一字元線連接模式。 圖4描繪根據一些實施例的適合用於圖1中所繪示的SRAM電路的兩個記憶胞的第二實例的示意圖。 圖5示出針對圖4中所繪示的實施例的在兩個字元線與一列記憶胞之間的實例第二字元線連接模式。 圖6描繪根據一些實施例的SRAM電路的第三實例的示意圖。 圖7示出根據一些實施例的操作SRAM電路的實例方法的流程圖。
100:SRAM電路
102:記憶胞
104:記憶陣列
106A、106B......106M:區塊
108A、108B......108M:行選擇電路
110A、110B......110M:y解碼器電路
112A、112B......112M:y位址訊號
114A、114B......114M:y選擇訊號
116:位元線
118A、118B......118M:數位線對訊號
120:第一字元線/字元線
122:第二字元線/字元線
124:x解碼器電路
126:第一x位址訊號
128:第二x位址訊號

Claims (20)

  1. 一種靜態隨機存取記憶體電路,包括: 一列記憶胞,位於記憶陣列中,所述列包括多個記憶胞; 第一字元線,可操作地連接至所述多個記憶胞中的第一記憶胞子集;以及 第二字元線,可操作地連接至所述多個所述記憶胞中的第二不同記憶胞子集。
  2. 如申請專利範圍第1項所述的靜態隨機存取記憶體電路,其中所述第一記憶胞子集及所述第二不同記憶胞子集包括所述多個記憶胞中的所有記憶胞。
  3. 如申請專利範圍第1項所述的靜態隨機存取記憶體電路,其中所述第一組記憶胞中的記憶胞插入於所述第二不同記憶胞子集中的記憶胞之間。
  4. 如申請專利範圍第3項所述的靜態隨機存取記憶體電路,其中: 所述第一記憶胞子集包含第一記憶胞; 所述第二記憶胞子集包含緊鄰所述第一記憶胞的第二記憶胞; 所述第一記憶胞中的第一存取電晶體可操作地連接至所述第一字元線; 所述第一記憶胞中的第二存取電晶體可操作地連接至所述第二字元線; 所述第二記憶胞中的第一存取電晶體可操作地連接至所述第二字元線;以及 所述第二記憶胞中的第二存取電晶體可操作地連接至所述第一字元線。
  5. 如申請專利範圍第3項所述的靜態隨機存取記憶體電路,其中: 所述第一記憶胞子集包含第一記憶胞; 所述第二記憶胞子集包含緊鄰所述第一記憶胞的第二記憶胞; 所述第一記憶胞中的第一存取電晶體可操作地連接至所述第一字元線; 所述第一記憶胞中的第二存取電晶體可操作地連接至所述第一字元線; 所述第二記憶胞中的第一存取電晶體可操作地連接至所述第二字元線;以及 所述第二記憶胞中的第二存取電晶體可操作地連接至所述第二字元線。
  6. 如申請專利範圍第1項所述的靜態隨機存取記憶體電路,更包括: 至少一個x解碼器電路,可操作地連接至所述第一字元線及所述第二字元線;以及 行選擇電路,可操作地連接至所述列中的記憶胞的一部分。
  7. 如申請專利範圍第1項所述的靜態隨機存取記憶體電路,其中每一記憶胞包括六電晶體記憶胞。
  8. 如申請專利範圍第1項所述的靜態隨機存取記憶體電路,其中所述靜態隨機存取記憶體電路包括單埠靜態隨機存取記憶體電路。
  9. 一種靜態隨機存取記憶體電路,包括: 多個記憶胞,以列及行配置,且組織成多個記憶胞區塊,其中每一區塊包括所述記憶胞的子集,每一所述記憶胞的子集包括所述列中的一或多者及所述行中的兩者或大於兩者; 多個行選擇電路,其中所述多個行選擇電路中的每一行選擇電路可操作地連接至各別記憶胞區塊; 多個y解碼器電路,其中所述多個y解碼器電路中的每一y解碼器電路可操作地連接至各別行選擇電路; 第一字元線,可操作地連接至每一列;以及 第二字元線,可操作地連接至每一列。
  10. 如申請專利範圍第9項所述的靜態隨機存取記憶體電路,更包括可操作地連接至所述第一字元線及所述第二字元線的一或多個x解碼器電路。
  11. 如申請專利範圍第9項所述的靜態隨機存取記憶體電路,其中位於所述第一字元線及所述第二字元線與各別列中的所述記憶胞之間的連接沿所述各別列變化。
  12. 如申請專利範圍第11項所述的靜態隨機存取記憶體電路,其中每一列包括第一記憶胞及緊鄰所述第一記憶胞的第二記憶胞。
  13. 如申請專利範圍第12項所述的靜態隨機存取記憶體電路,其中所述第一記憶胞及所述第二記憶胞各自包括第一存取電晶體及第二存取電晶體且: 所述第一記憶胞中的所述第一存取電晶體可操作地連接至所述第一字元線; 所述第一記憶胞中的所述第二存取電晶體可操作地連接至所述第二字元線; 所述第二記憶胞中的所述第一存取電晶體可操作地連接至所述第二字元線;以及 所述第二記憶胞中的所述第二存取電晶體可操作地連接至所述第一字元線。
  14. 如申請專利範圍第12項所述的靜態隨機存取記憶體電路,其中所述第一記憶胞及所述第二記憶胞各自包括第一存取電晶體及第二存取電晶體且: 所述第一記憶胞中的所述第一存取電晶體可操作地連接至所述第一字元線; 所述第一記憶胞中的所述第二存取電晶體可操作地連接至所述第一字元線; 所述第二記憶胞中的所述第一存取電晶體可操作地連接至所述第二字元線;以及 所述第二記憶胞中的所述第二存取電晶體可操作地連接至所述第二字元線。
  15. 如申請專利範圍第10項所述的靜態隨機存取記憶體電路,其中每一記憶胞包括六電晶體記憶胞。
  16. 如申請專利範圍第10項所述的靜態隨機存取記憶體電路,其中所述靜態隨機存取記憶體電路包括單埠靜態隨機存取記憶體電路。
  17. 一種操作靜態隨機存取記憶體電路的方法,所述靜態隨機存取記憶體電路包括記憶胞陣列,所述記憶胞陣列具有可操作地連接至所述陣列中的每一列的第一字元線及第二字元線,以及可操作地連接至所述記憶胞陣列的多個位元線,所述方法包括: 激活可操作地連接至所述陣列中的第一列記憶胞的所述第一字元線以僅選擇所述第一列記憶胞中的所選擇記憶胞的子集; 激活所述多個位元線中的位元線以存取所述所選擇記憶胞的子集中的記憶胞;以及 對在所述所選擇記憶胞的子集中存取的所述記憶胞進行讀取操作或寫入操作。
  18. 如申請專利範圍第17項所述的方法,其中: 所述位元線包括第一位元線; 在所述所選擇記憶胞的子集中存取的所述記憶胞包括在所述所選擇記憶胞的子集中存取的第一記憶胞;以及 所述方法更包括: 激活所述多個位元線中的第二位元線以存取所述所選擇記憶胞的子集中的第二記憶胞;以及 對所述第二記憶胞進行讀取操作或寫入操作。
  19. 如申請專利範圍第18項所述的方法,其中所述第一記憶胞及所述第二記憶胞各自包括第一存取電晶體及第二存取電晶體且: 激活所述第一字元線激活所述第一記憶胞中的所述第一存取電晶體的第一閘極及所述第二存取電晶體的第二閘極;以及 激活所述第二字元線激活所述第二記憶胞中的所述第一存取電晶體的所述第一閘極及所述第二存取電晶體的所述第二閘極。
  20. 如申請專利範圍第18項所述的方法,其中所述第一記憶胞及所述第二記憶胞各自包括第一存取電晶體及第二存取電晶體且: 激活所述第一字元線激活所述第一記憶胞中的所述第一存取電晶體的第一閘極及所述第二記憶胞中的所述第二存取電晶體的第二閘極;以及 激活所述第二字元線激活所述第一記憶胞中的所述第二存取電晶體的所述第二閘極及所述第二記憶胞中的所述第一存取電晶體的所述第一閘極。
TW108124707A 2018-07-16 2019-07-12 靜態隨機存取記憶體電路及其操作方法 TWI778279B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862698649P 2018-07-16 2018-07-16
US62/698,649 2018-07-16
US16/507,917 US11152057B2 (en) 2018-07-16 2019-07-10 SRAM memory
US16/507,917 2019-07-10

Publications (2)

Publication Number Publication Date
TW202022868A true TW202022868A (zh) 2020-06-16
TWI778279B TWI778279B (zh) 2022-09-21

Family

ID=69139644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108124707A TWI778279B (zh) 2018-07-16 2019-07-12 靜態隨機存取記憶體電路及其操作方法

Country Status (5)

Country Link
US (1) US11152057B2 (zh)
KR (2) KR20200008521A (zh)
CN (1) CN110729007B (zh)
DE (1) DE102019118782A1 (zh)
TW (1) TWI778279B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360667B2 (en) * 2019-09-09 2022-06-14 Stmicroelectronics S.R.L. Tagged memory operated at lower vmin in error tolerant system
US11393831B2 (en) 2020-07-31 2022-07-19 Taiwan Semiconductor Manufacturing Company Limited Optimized static random access memory
US11398274B2 (en) * 2020-08-25 2022-07-26 Qualcomm Incorporated Pseudo-triple-port SRAM
US11361817B2 (en) 2020-08-25 2022-06-14 Qualcomm Incorporated Pseudo-triple-port SRAM bitcell architecture
US11302388B2 (en) 2020-08-25 2022-04-12 Qualcomm Incorporated Decoding for pseudo-triple-port SRAM
KR102478655B1 (ko) * 2020-12-29 2022-12-16 연세대학교 산학협력단 뉴럴 네트워크 연산 장치
CN112765926B (zh) * 2021-01-25 2024-07-09 中国科学院微电子研究所 一种sram的版图布局方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3086757B2 (ja) 1992-09-28 2000-09-11 三菱電機株式会社 スタティックランダムアクセスメモリ
US5894434A (en) 1995-12-22 1999-04-13 Texas Instruments Incorporated MOS static memory array
US6404670B2 (en) 1996-05-24 2002-06-11 Uniram Technology, Inc. Multiple ports memory-cell structure
JP3366216B2 (ja) * 1997-04-15 2003-01-14 日本電気株式会社 半導体記憶装置
US6567329B2 (en) 2001-08-28 2003-05-20 Intel Corporation Multiple word-line accessing and accessor
JP4416428B2 (ja) 2003-04-30 2010-02-17 株式会社ルネサステクノロジ 半導体記憶装置
JP4731152B2 (ja) 2004-10-29 2011-07-20 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP5578706B2 (ja) * 2010-03-31 2014-08-27 ルネサスエレクトロニクス株式会社 半導体記憶装置
TWI463493B (zh) * 2011-03-08 2014-12-01 Univ Nat Chiao Tung 靜態隨機存取記憶體胞元及其操作方法
US20130083591A1 (en) * 2011-09-29 2013-04-04 John J. Wuu Alternating Wordline Connection in 8T Cells for Improving Resiliency to Multi-Bit SER Upsets
US20130141992A1 (en) * 2011-12-06 2013-06-06 International Business Machines Corporation Volatile memory access via shared bitlines
US9806083B2 (en) 2014-12-03 2017-10-31 Qualcomm Incorporated Static random access memory (SRAM) bit cells with wordlines on separate metal layers for increased performance, and related methods
CN105261391B (zh) 2015-09-30 2018-08-10 展讯通信(上海)有限公司 一种sram存储阵列
US9886996B2 (en) 2015-10-19 2018-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. SRAM cell for interleaved wordline scheme
US10468093B2 (en) 2016-03-03 2019-11-05 Nvidia Corporation Systems and methods for dynamic random access memory (DRAM) sub-channels
CN107591178B (zh) * 2016-07-06 2021-01-15 展讯通信(上海)有限公司 静态随机存储器阵列的字线抬升方法及装置

Also Published As

Publication number Publication date
KR102353068B1 (ko) 2022-01-19
TWI778279B (zh) 2022-09-21
CN110729007B (zh) 2022-08-16
CN110729007A (zh) 2020-01-24
KR20200008521A (ko) 2020-01-28
DE102019118782A1 (de) 2020-01-16
US20200020390A1 (en) 2020-01-16
KR20210096586A (ko) 2021-08-05
US11152057B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
TWI778279B (zh) 靜態隨機存取記憶體電路及其操作方法
US9543015B1 (en) Memory array and coupled TCAM architecture for improved access time during search operation
JP2013114731A (ja) 半導体記憶装置
TWI771090B (zh) 記憶體裝置、記憶體輸入/輸出以及形成記憶體裝置的方法
TWI476769B (zh) 記憶體元件以及記憶體元件存取之方法
TWI737502B (zh) 記憶體元件以及鎖存訊號的方法
US10892008B2 (en) Multi word line assertion
US10740188B2 (en) Volatile memory device and method for efficient bulk data movement, backup operation in the volatile memory device
US11189341B2 (en) Memory device with fly word line
US11361817B2 (en) Pseudo-triple-port SRAM bitcell architecture
US20220068371A1 (en) Pseudo-triple-port sram
JP2022533622A (ja) シフト可能メモリ、およびシフト可能メモリを動作させる方法
TWI714325B (zh) 正交雙埠隨機存取記憶體裝置及其操作方法
US5365480A (en) Memory cells and a memory apparatus using them
KR20190081885A (ko) 전치 읽기를 지원하는 sram 구조
CN112687309B (zh) 存储器器件及其复位方法
CN112581998A (zh) 存储器器件及其操作方法
JP2002074965A (ja) 半導体メモリ
JPH04344399A (ja) 半導体記憶装置
JPH0554644A (ja) 半導体記憶装置
JPH04286797A (ja) 半導体記憶装置
JP2004030825A (ja) Dramおよびそのリフレッシュ方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent