TW202013843A - 電壓施加裝置及放電裝置 - Google Patents

電壓施加裝置及放電裝置 Download PDF

Info

Publication number
TW202013843A
TW202013843A TW108127898A TW108127898A TW202013843A TW 202013843 A TW202013843 A TW 202013843A TW 108127898 A TW108127898 A TW 108127898A TW 108127898 A TW108127898 A TW 108127898A TW 202013843 A TW202013843 A TW 202013843A
Authority
TW
Taiwan
Prior art keywords
discharge
voltage
liquid
electrode
discharge electrode
Prior art date
Application number
TW108127898A
Other languages
English (en)
Other versions
TWI801642B (zh
Inventor
石上陽平
清水加奈
大森崇史
中野祐花里
青野哲典
大江純平
Original Assignee
日商松下知識產權經營股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商松下知識產權經營股份有限公司 filed Critical 日商松下知識產權經營股份有限公司
Publication of TW202013843A publication Critical patent/TW202013843A/zh
Application granted granted Critical
Publication of TWI801642B publication Critical patent/TWI801642B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/06Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for effecting pulsating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/007Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus during spraying operation being periodical or in time, e.g. sinusoidal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • B05B5/0535Electrodes specially adapted therefor; Arrangements of electrodes at least two electrodes having different potentials being held on the discharge apparatus, one of them being a charging electrode of the corona type located in the spray or close to it, and another being of the non-corona type located outside of the path for the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/471Pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Seal Device For Vehicle (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一種電壓施加裝置,具備電壓施加電路。電壓施加電路是藉由對包含保持液體的放電電極的負載施加施加電壓,而於放電電極產生放電。電壓施加電路是使施加電壓的大小週期地變動而間歇地產生放電。電壓施加電路是在產生放電後到下次產生放電以前的間歇期間中,對負載除了施加施加電壓以外,還施加用於抑制液體之收縮的持續電壓。

Description

電壓施加裝置及放電裝置
發明領域 本揭示一般而言是有關於一種電壓施加裝置及放電裝置,更詳細地說,是有關於一種藉由對包含放電電極的負載施加電壓來產生放電之電壓施加裝置及放電裝置。
發明背景 在日本專利特開2018-22574號公報中已記載有一種具備放電電極、對向電極以及電壓施加部的放電裝置。對向電極是位在與放電電極相對向的位置。電壓施加部是對放電電極施加電壓,而在放電電極產生從電暈放電進一步發展而成的放電。在此構成中,放電裝置的放電是在放電電極與對向電極之間,以可連接兩者的方式於已經受到絕緣破壞的放電路徑中斷斷續續地產生的放電。
又,在日本專利特開2018-22574號公報中所記載的放電裝置中,是藉由液體供給部對放電電極供給液體。因此,可藉由放電將液體靜電霧化,而在內部生成含有自由基的奈米尺寸的帶電微粒子液。
在日本專利特開2018-22574號公報中所記載的放電裝置的放電形態中,因為相較於電暈放電而以較大的能量來生成有效成分(自由基及包含此自由基的帶電微粒子液),所以與電暈放電相比較,可生成大量的有效成分。而且,可將生成臭氧之量抑制在與電暈放電的情況相同的程度。
發明概要 但是,在日本專利特開2018-22574號公報中所記載的放電裝置中,會因使用環境等而例如讓供給到放電電極的液體於靜電霧化時機械性地進行振動,而有導致聲音的產生的可能性。
本揭示提供一種可以將起因於液體的振動的聲音降低之電壓施加裝置及放電裝置。
本揭示之一態樣的電壓施加裝置具備電壓施加電路。電壓施加電路是藉由對包含保持液體的放電電極的負載施加施加電壓,而於放電電極產生放電。電壓施加電路是使施加電壓的大小週期地變動而間歇地產生放電。電壓施加電路是在產生放電後到下次產生放電以前的間歇期間中,對負載除了施加施加電壓以外,還施加用於抑制液體之收縮的持續電壓。
本揭示之一態樣的放電裝置具備放電電極、及電壓施加電路。放電電極會保持液體。電壓施加電路是藉由對包含放電電極的負載施加施加電壓,而於放電電極產生放電。電壓施加電路是使施加電壓的大小週期地變動而間歇地產生放電。電壓施加電路是在產生放電後到下次產生放電以前的間歇期間中,對負載除了施加施加電壓以外,還施加用於抑制液體之收縮的持續電壓。
根據本揭示,具有以下之優點:可以將起因於液體的振動的聲音降低。
用以實施發明之形態 (第1實施形態) (1)概要 如圖1所示,本實施形態之電壓施加裝置1具備有電壓施加電路2及控制電路3。電壓施加裝置1是藉由對包含放電電極41的負載4施加電壓,而於放電電極41產生放電。
又,如圖1所示,本實施形態之放電裝置10具備有電壓施加裝置1、負載4及液體供給部5。負載4具有放電電極41及對向電極42。對向電極42是配置成和放電電極41隔著間隙而配置之電極。負載4會因為在放電電極41與對向電極42之間施加電壓,而在放電電極41與對向電極42之間產生放電。液體供給部5具有對放電電極41供給液體50的功能。亦即,放電裝置10在構成要件中包含電壓施加電路2、控制電路3、液體供給部5、放電電極41及對向電極42。但是,放電裝置10只要包含電壓施加裝置1及放電電極41來作為最低限度的構成要件即可,對向電極42及液體供給部5的每一個亦可不包含在放電裝置10的構成要件中。
本實施形態之放電裝置10是例如以藉由於放電電極41之表面附著液體50並將液體50保持在放電電極41的狀態,來從電壓施加電路2對包含放電電極41的負載4施加電壓。藉此,至少在放電電極41產生放電,並將已保持在放電電極41的液體50藉由放電而靜電霧化。亦即,本實施形態之放電裝置10構成所謂的靜電霧化裝置。在本揭示中,亦將保持在放電電極41的液體50,即成為靜電霧化的對象之液體50簡稱為「液體50」。
電壓施加電路2是藉由對負載4施加施加電壓,而至少於放電電極41產生放電。特別是在本實施形態中,電壓施加電路2是藉由使施加電壓的大小週期地變動,而間歇地產生放電。藉由施加電壓為週期地變動,而對液體50產生機械性的振動。在本揭示中所謂的「施加電壓」意指為了產生放電而讓電壓施加電路2對負載4施加的電壓。在本揭示中,是將用於產生放電的「施加電壓」,和後述的「持續電壓」區別來說明。在本實施形態中,由於電壓施加電路2是受到控制電路3所控制,因此如上述之施加電壓的大小的調整是藉由控制電路3來實施。
詳細內容將在後面敍述,藉由對負載4施加電壓(施加電壓),保持在放電電極41的液體50是如圖2A所示,接受由電場所形成之力而構成稱為泰勒錐(Taylor cone)之圓錐狀的形狀。並且,藉由電場集中在泰勒錐的前端部(頂點部)而產生放電。此時,泰勒錐的前端部越尖,即圓錐的頂角變得越小(越銳角),在絕緣破壞上所需要的電場強度即變得越小,而變得容易產生放電。保持在放電電極41的液體50是伴隨於機械性的振動,而交互地變形成圖2A所示之形狀及圖2B所示之形狀。其結果,因為週期地形成如上述之泰勒錐,所以形成為如下之情形:配合形成如圖2A所示之泰勒錐的時間點,而間歇地產生放電。
但是,在本實施形態之電壓施加裝置1中,電壓施加電路2是藉由在配置成互相隔著間隙而對向的放電電極41與對向電極42之間施加施加電壓V1(參照圖5A)而產生放電。如圖5A所示,電壓施加裝置1是在放電的產生時,在放電電極41與對向電極42之間形成部分地受到絕緣破壞的放電路徑L1。放電路徑L1包含第1絕緣破壞區域R1及第2絕緣破壞區域R2。第1絕緣破壞區域R1是在放電電極41的周圍生成。第2絕緣破壞區域R2是在對向電極42的周圍生成。
亦即,可在放電電極41與對向電極42之間形成並非整體而是部分(局部)地受到絕緣破壞的放電路徑L1。本揭示中所謂的「絕緣破壞」意指破壞在導體間隔離的絕緣體(包含氣體)的電絕緣性,而變得無法保持絕緣狀態之情形。氣體的絕緣破壞是因為例如將已離子化的分子藉由電場來加速而與其他的氣體分子衝撞並進行離子化,使離子濃度急遽增加來引發氣體放電而產生。總而言之,在由本實施形態之電壓施加裝置1所進行的放電的產生時,是形成為如下之情形:在存在於連結放電電極41與對向電極42的路徑上的氣體(空氣)中,部分地,即只有一部分,產生絕緣破壞。像這樣,形成在放電電極41與對向電極42之間的放電路徑L1是尚未到全路絕緣破壞,而是部分地受到絕緣破壞之路徑。
並且,放電路徑L1包含有在放電電極41之周圍所生成的第1絕緣破壞區域R1、以及在對向電極42之周圍所生成的第2絕緣破壞區域R2。亦即,第1絕緣破壞區域R1是放電電極41之周圍的經絕緣破壞的區域,第2絕緣破壞區域R2是對向電極42之周圍的經絕緣破壞的區域。這些第1絕緣破壞區域R1及第2絕緣破壞區域R2是分開成互相不接觸而存在。因此,放電路徑L1是至少在第1絕緣破壞區域R1與第2絕緣破壞區域R2之間,包含有未受到絕緣破壞的區域(絕緣區域)。據此,放電電極41與對向電極42之間的放電路徑L1是以在至少一部分殘留絕緣區域並且部分地產生絕緣破壞的方式來形成為電絕緣性下降的狀態。
根據如以上所說明之電壓施加裝置1及放電裝置10,在放電電極41與對向電極42之間,形成有並非整體地而是部分地受到絕緣破壞的放電路徑L1。像這樣,即使是產生有部分的絕緣破壞的放電路徑L1,換言之,即一部分並未受到絕緣破壞的放電路徑L1,在放電電極41與對向電極42之間仍然可通過放電路徑L1而讓電流流動,並產生放電。像這樣,在以下是將形成部分地受到絕緣破壞的放電路徑L1之形態的放電稱為「部分破壞放電」。關於部分破壞放電,詳細內容將在「(2.4)放電形態」的分段中說明。
在像這樣的部分破壞放電中,和電暈放電相比較可用較大的能量來生成自由基,且和電暈放電相比較可生成2~10倍左右之大量的自由基。像這樣所生成的自由基是成為以下的基礎:不限於除菌、除臭、保濕、保鮮、病毒的滅能作用,而是在各種場合下都發揮有用的效果。在此,藉由部分破壞放電而生成自由基時,也產生臭氧。但是,在部分破壞放電中,是相對於和電暈放電相比較可生成2~10倍左右的自由基,而將臭氧的產生量抑制在和電暈放電之情況相同的程度。
又,與部分破壞放電不同而有以下之形態的放電:間歇地重複從電暈放電發展到絕緣破壞(全路絕緣破壞)之現象。在以下,將像這樣的形態的放電稱為「全路絕緣破壞放電」。在全路絕緣破壞放電中,是重複以下之現象:當從電暈放電發展到絕緣破壞(全路絕緣破壞)時即瞬間流動比較大的放電電流,並於之後緊接著讓施加電壓下降而遮斷放電電流,再讓施加電壓上升並到達絕緣破壞。在全路絕緣破壞放電中,是和部分破壞放電同樣,和電暈放電相比較可用較大的能量來生成自由基,且和電暈放電相比較可生成2~10倍左右之大量的自由基。但是,全路絕緣破壞放電的能量比起部分破壞放電的能量更大。因此,藉由在能量等級為「中」的狀態下,臭氧消失而自由基增加,即使已大量地產生自由基,仍然會由於在之後的反應路徑中能量等級成為「高」,而有使一部分的自由基消失的可能性。
換言之,在全路絕緣破壞放電中,因為其放電之能量過高,而有以下的可能性:所生成之自由基等的有效成分(空氣離子、自由基及包含其之帶電微粒子液等)的一部分消失,導致有效成分之生成效率下降。結果,根據採用了部分破壞放電之本實施形態的電壓施加裝置1及放電裝置10,即使和全路絕緣破壞放電相比較,仍然可以謀求有效成分之生成效率的提升。從而,在本實施形態之電壓施加裝置1及放電裝置10中,即使和電暈放電及全路絕緣破壞放電的任一種放電形態相比較,仍然具有以下之優點:可以謀求自由基等的有效成分的生成效率之提升。
但是,在本實施形態之電壓施加裝置1中,電壓施加電路2是藉由對包含保持液體50的放電電極41的負載4施加施加電壓V1(參照圖5A),而於放電電極41產生放電。電壓施加電路2是使施加電壓V1的大小週期地變動而間歇地產生放電。電壓施加電路2在產生放電後到下次產生放電以前的間歇期間T2(參照圖6)中,對負載4除了施加施加電壓V1以外,還施加用於抑制液體50之收縮的持續電壓V2(參照圖6)。
亦即,在本實施形態中,藉由電壓施加電路2使施加電壓V1的大小週期地變動,而間歇地產生放電。藉此,保持在放電電極41的液體50會週期地伸縮(參照圖2A及圖2B),而在液體50產生機械性的振動。在像這樣的液體50的機械性的振動時,若放電產生後之液體50之收縮變得過度時,會使液體50的機械性的振動的振幅變得過大,而有起因於液體50的振動的聲音變大的可能性。
並且,在間歇期間T2中,為了產生放電,除了電壓施加電路2對負載4施加的施加電壓V1以外,還藉由對負載4施加持續電壓V2,而將對負載4所施加之電壓依持續電壓V2的量有多少就提高多少。其結果,是使用持續電壓V2來抑制像這樣的放電產生後之液體50的過度的收縮的產生,結果,變得難以產生起因於液體50的振動的聲音。從而,根據本實施形態之電壓施加裝置1及放電裝置10,具有以下之優點:可以將起因於液體50之振動的聲音降低。 (2)詳細內容
以下,更詳細地說明本實施形態之電壓施加裝置1及放電裝置10。 (2.1)整體構成
如圖1所示,本實施形態之放電裝置10具備有電壓施加電路2、控制電路3、負載4以及液體供給部5。負載4具有放電電極41及對向電極42。液體供給部5是對放電電極41供給液體50。在圖1中,是示意地表示放電電極41及對向電極42的形狀。
放電電極41是棒狀的電極。放電電極41是在長度方向的一端部具有前端部411(參照圖3B),在長度方向之另一端部(與前端部為相反側的端部)具有基端部412(參照圖3B)。放電電極41是至少將前端部411形成為頭細形狀的針電極。在此所謂的「頭細形狀」並不受限於前端為銳利地削尖的形狀,包含如圖2A等所示,前端帶有圓角的形狀。
對向電極42是配置成和放電電極41的前端部對向。對向電極42是例如板狀,且於中央部具有開口部421。開口部421是朝對向電極42的厚度方向貫穿對向電極42。在此,對向電極42的厚度方向(開口部421的貫穿方向)與放電電極41的長度方向一致,且將對向電極42與放電電極41的位置關係決定為放電電極41的前端部位於對向電極42之開口部421的中心附近。亦即,在對向電極42與放電電極41之間,可至少藉由對向電極42的開口部421來確保間隙(空間)。換言之,對向電極42是配置成對放電電極41隔著間隙而對向,且與放電電極41電絕緣。
更詳細地,作為一例,放電電極41及對向電極42是形成為如圖3A及圖3B所示之形狀。亦即,對向電極42具有支撐部422及複數個(在此是4個)突出部423。複數個突出部423的每一個是從支撐部422朝向放電電極41突出。放電電極41及對向電極42是保持在具有電絕緣性之合成樹脂製的殼體40。支撐部422是平板狀,並且形成有開口成圓形狀的開口部421。在圖3A中,以假想線(二點鏈線)顯示開口部421的內周緣。再者,在後述之圖4A及圖4B中,亦以假想線(二點鏈線)顯示開口部421。
4個突出部423是在開口部421的周方向上以等間隔的方式來配置。各突出部423是從支撐部422中的開口部421的內周緣朝向開口部421的中心突出。各突出部423在長度方向的前端部(開口部421之中心側的端部)具有頭細形狀的伸出部424。在本實施形態中,對向電極42是將支撐部422及複數個突出部423作為整體而形成為平板狀。亦即,各突出部423是以不超過在平板狀的支撐部422的厚度方向的兩面間的方式,從形成在支撐部422之開口部421的內周緣並在朝支撐部422的厚度方向沒有傾斜的情形下朝向開口部421的中心筆直地突出。藉由各突出部423形成為這樣的形狀,而變得容易在各突出部423的伸出部424產生電場集中。其結果,變得容易在各突出部423的伸出部424與放電電極41的前端部411之間安定地產生部分破壞放電。
此外,如圖3A所示,放電電極41在平面視角下,即從放電電極41之長度方向的一邊來看,是位於開口部421的中心。換言之,放電電極41在平面視角下,是位於開口部421之內周緣的中心點上。此外,如圖3B所示,放電電極41與對向電極42在放電電極41之長度方向(對向電極42的厚度方向)上,亦存在有互相遠離的位置關係。亦即,在放電電極41之長度方向上,前端部411位於基端部412與對向電極42之間。
關於放電電極41及對向電極42之更具體性的形狀,將在「(2.3)電極形狀」之分段中說明。
液體供給部5是對放電電極41供給靜電霧化用的液體50。作為一例,液體供給部5是使用冷卻裝置51來實現,前述冷卻裝置51是將放電電極41冷卻而於放電電極41產生結露水。具體而言,如圖3B所示,液體供給部5即冷卻裝置51是作為一例而具備有一對帕耳帖元件511以及一對散熱板512。一對帕耳帖元件511是被一對散熱板512所保持。冷卻裝置51是藉由對一對帕耳帖元件511的通電來將放電電極41冷卻。可藉由將各散熱板512的一部分埋入殼體40的構成,而將一對散熱板512保持在殼體40。一對散熱板512之中,至少保持帕耳帖元件511的部位是露出於殼體40。
一對帕耳帖元件511是藉由例如焊料而以機械性且以電性的方式來對放電電極41的基端部412連接。一對帕耳帖元件511是藉由例如焊料而以機械性且以電性的方式來對一對散熱板512連接。對一對帕耳帖元件511之通電是透過一對散熱板512以及放電電極41來進行。從而,構成液體供給部5的冷卻裝置51是通過基端部412來將放電電極41的整體冷卻。藉此,讓空氣中的水分凝結而在放電電極41的表面附著為結露水。亦即,液體供給部5是構成為將放電電極41冷卻且在放電電極41的表面生成作為液體50的結露水。在此構成中,因為液體供給部5可以利用空氣中的水分來對放電電極41供給液體50(結露水),所以變得毋須進行對放電裝置10之液體的供給及補給。
如圖1所示,電壓施加電路2具有驅動電路21及電壓產生電路22。驅動電路21是驅動電壓產生電路22之電路。電壓產生電路22是接受來自輸入部6的電力供給,而生成施加於負載4的電壓(施加電壓及持續電壓)之電路。輸入部6是產生數V~十幾V左右之直流電壓之電源電路。在本實施形態中,雖然是設成輸入部6並未包含在電壓施加裝置1之構成要件中來進行說明,但輸入部6亦可包含在電壓施加裝置1的構成要件中。
電壓施加電路2是例如絕緣型的DC/DC轉換器,且是將來自輸入部6的輸入電壓Vin(例如13.8V)升壓,並將升壓後的電壓作為輸出電壓而輸出。電壓施加電路2的輸出電壓是作為施加電壓及持續電壓的至少一種電壓來對負載4(放電電極41及對向電極42)施加。
電壓施加電路2是對負載4(放電電極41及對向電極42)電連接。電壓施加電路2是對負載4施加高電壓。在此,電壓施加電路2是構成為將放電電極41設為負極(接地(ground))、將對向電極42設為正極(正(plus)),而在放電電極41與對向電極42之間施加高電壓。換言之,在從電壓施加電路2對負載4施加高電壓的狀態下,是形成為:在放電電極41與對向電極42之間產生將對向電極42側設為高電位,並將放電電極41側設為低電位之電位差。在此所謂的「高電壓」只要是可設定成在放電電極41產生部分破壞放電的電壓即可,作為一例,為尖峰值成為5.0kV左右的電壓。但是,從電壓施加電路2對負載4施加的高電壓並非受限於5.0kV左右,且可例如因應於放電電極41及對向電極42的形狀、或者放電電極41與對向電極42之間的距離等而適當設定。
在此,電壓施加電路2的動作模式包含有第1模式及第2模式之2種模式。第1模式是用於使施加電壓V1伴隨於時間經過而上升,並從電暈放電發展來形成部分地受到絕緣破壞的放電路徑L1而產生放電電流的模式。第2模式是用於將負載4設為過電流狀態並藉由控制電路3等遮斷放電電流的模式。在本揭示中所謂的「放電電流」意指通過放電路徑L1而流動之比較大的電流,且不包含在形成放電路徑L1前的電暈放電中所產生之數μA左右的微小電流。在本揭示中所謂的「過電流狀態」意指藉由放電使負載下降,而讓預期值以上的電流於負載4流動之狀態。
在本實施形態中,控制電路3是進行電壓施加電路2的控制。控制電路3是在電壓施加裝置1被驅動的驅動期間,將電壓施加電路2控制成電壓施加電路2交互地重複第1模式及第2模式。在此,控制電路3是藉由驅動頻率而進行第1模式及第2模式的切換,以使從電壓施加電路2對負載4所施加的施加電壓V1的大小以驅動頻率來週期地變動。在本揭示中所謂的「驅動期間」是驅動電壓施加裝置1以於放電電極41產生放電的期間。
亦即,電壓施加電路2並非將對包含放電電極41之負載4施加之電壓的大小保持在一定值,而是以預定範圍內的驅動頻率來使其週期地變動。電壓施加電路2是藉由使施加電壓V1的大小週期地變動,而間歇地產生放電。亦即,可配合施加電壓V1的變動週期,而週期地形成放電路徑L1,並週期地產生放電。在以下,亦將產生放電(部分破壞放電)的週期稱為「放電週期」。藉此,成為作用在保持於放電電極41之液體50的電能量的大小藉由驅動頻率而週期地變動之情形,結果,保持在放電電極41的液體50藉由驅動頻率而機械性地振動。
在此,欲將液體50的變形量設得較大,宜將施加電壓V1之變動的頻率即驅動頻率設定在包含保持在放電電極41之液體50的共振頻率(固有頻率)的預定範圍內,亦即液體50之共振頻率附近的值。在本揭示中所謂的「預定範圍」是在以該頻率使施加在液體50之力(能量)振動時,可將液體50之機械性的振動放大之類的頻率的範圍,且是將液體50的共振頻率作為基準來規定下限值及上限值之範圍。亦即,驅動頻率是設定成液體50的共振頻率附近的值。在此情況下,伴隨於施加電壓V1的大小進行變動之液體50的機械性的振動的振幅變得比較大,結果,伴隨於液體50的機械性的振動之液體50的變形量變大。液體50的共振頻率是取決於例如液體50的體積(量)、表面張力及黏度等。
亦即,在本實施形態之放電裝置10中,因為液體50是藉由以其共振頻率附近的驅動頻率來機械性地振動而以比較大的振幅來振動,所以在電場作用時所產生的泰勒錐的前端部(頂點部)形成為更尖(銳角)的形狀。從而,相較於液體50以偏離其共振頻率的頻率而機械性地振動之情況,在形成有泰勒錐的狀態下對絕緣破壞所需要的電場強度變得較小,而變得容易產生放電。據此,即使有例如從電壓施加電路2對負載4所施加之電壓(施加電壓V1)的大小的偏差、放電電極41之形狀的偏差、或者是對放電電極41所供給之液體50的量(體積)的偏差等,亦可安定地產生放電(部分破壞放電)。 又,電壓施加電路2可以將對包含放電電極41的負載4施加之電壓的大小抑制得較低。因此,可以將用於放電電極41周邊中的絕緣對策的構造簡化、或者降低使用於電壓施加電路2等之零件的耐壓。
但是,在本實施形態中,電壓施加電路2在產生放電後到下次產生放電以前的間歇期間T2(參照圖6)中,對負載4除了施加施加電壓V1以外,還施加用於抑制液體50之收縮的持續電壓V2(參照圖6)。亦即,在本實施形態中,藉由電壓施加電路2使施加電壓V1的大小週期地變動,而間歇地產生放電。因此,在產生放電後到下次產生放電以前之期間,會產生間歇期間T2,前述間歇期間T2是不形成放電路徑L1,而放電電流不流動之期間。在此,作為一例而將放電週期T1(參照圖6)之中電壓施加電路2以第2模式動作的期間設為間歇期間T2。亦即,在間歇期間T2中,為了產生放電,除了電壓施加電路2對負載4施加的施加電壓V1以外,還藉由對負載4施加持續電壓V2,而將對負載4所施加之電壓依持續電壓V2的量有多少就提高多少。換言之,形成為對負載4施加有施加電壓V1及持續電壓V2的合計電壓(V1+V2)。藉此,在間歇期間T2中,雖然施加於負載4的電壓是伴隨於時間經過而逐漸下降,但會形成為持續電壓V2的量有多少就將下降幅度縮小多少之情形。
其結果,根據本實施形態之電壓施加裝置1及放電裝置10,可以將起因於液體50之振動的聲音減低。關於使用了持續電壓V2的聲音對策,詳細內容將在「(2.5)聲音對策」的分段中說明。
如上述,藉由電壓施加電路2對負載4除了施加電壓V1以外還施加用於抑制液體50之收縮的持續電壓V2之作法,而在表觀上,使從電壓施加電路2對負載4所施加的電壓變大。因此,持續電壓V2的施加可藉由來自電壓施加電路2之輸出電壓的變更而實現。具體而言,可藉由控制電路3(電壓控制電路31)、驅動電路21及電壓產生電路22的電路常數(電阻值或者電容值等)的調整,而變更來自電壓施加電路2的輸出電壓,並實現持續電壓V2的施加。又,並非受限於使電路常數變化的構成,亦可藉由例如在包含於控制電路3之微電腦所使用的參數等的調整,而變更來自電壓施加電路2的輸出電壓,並實現持續電壓V2的施加。
在本實施形態中,控制電路3是依據監視對象來控制電壓施加電路2。在此所謂的「監視對象」是由電壓施加電路2的輸出電流及輸出電壓之中的至少一種所形成。
在此,控制電路3具有電壓控制電路31及電流控制電路32。電壓控制電路31是依據由電壓施加電路2之輸出電壓所形成之監視對象,來控制電壓施加電路2的驅動電路21。控制電路3是對驅動電路21輸出控制訊號Si1(參照圖1),並且藉由控制訊號Si1控制驅動電路21。電流控制電路32是依據由電壓施加電路2之輸出電流所形成的監視對象,來控制電壓施加電路2的驅動電路21。亦即,在本實施形態中,控制電路3是將電壓施加電路2的輸出電流以及輸出電壓之雙方作為監視對象,而進行電壓施加電路2的控制。但是,由於電壓施加電路2的輸出電壓(二次側電壓)與電壓施加電路2的一次側電壓之間具有相關關係,因此電壓控制電路31亦可從電壓施加電路2的一次側電壓間接地檢測電壓施加電路2的輸出電壓。同樣地,由於電壓施加電路2的輸出電流(二次側電流)與電壓施加電路2的輸入電流(一次側電流)之間具有相關關係,因此電流控制電路32亦可從電壓施加電路2的輸入電流間接地檢測電壓施加電路2的輸出電流。
控制電路3是構成為若監視對象的大小小於閾值,就使電壓施加電路2以第1模式動作,且當監視對象的大小成為閾值以上時,是使電壓施加電路2以第2模式動作。亦即,在監視對象的大小到達閾值以前,電壓施加電路2是以第1模式動作,且施加電壓V1伴隨於時間經過而上升。此時,在放電電極41中,成為以下之情況:從電暈放電發展而形成部分地受到絕緣破壞的放電路徑L1並產生放電電流。當監視對象的大小到達閾值時,電壓施加電路2是以第2模式動作,且施加電壓V1下降。此時,形成為以下之情形:負載4成為過電流狀態,並且藉由控制電路3等遮斷放電電流。換言之,控制電路3等透過電壓施加電路2來檢測負載4的過電流狀態,並且藉由使施加電壓下降而使放電電流消失(中斷)。
藉此,在驅動期間中,電壓施加電路2是動作成將第1模式與第2模式交互地重複,並藉由驅動頻率週期地變動施加電壓V1的大小。其結果,在放電電極41中,產生以下之形態的放電(部分破壞放電):間歇地重複所謂的從電暈放電發展而形成部分地受到絕緣破壞的放電路徑L1之現象。亦即,在放電裝置10中,藉由部分破壞放電,而在放電電極41的周圍間歇地形成放電路徑L1,並重複產生脈衝狀的放電電流。
又,本實施形態之放電裝置10是在對放電電極41供給有(保持有)液體50(結露水)的狀態下,從電壓施加電路2對負載4施加電壓。藉此,在負載4中,藉由放電電極41與對向電極42之間的電位差,在放電電極41與對向電極42之間產生放電(部分破壞放電)。此時,可將保持在放電電極41的液體50藉由放電而靜電霧化。其結果,在放電裝置10中,可生成含有自由基之奈米尺寸的帶電微粒子液。所生成的帶電微粒子液是例如通過對向電極42的開口部421而朝放電裝置10的周圍放出。 (2.2)動作
以上所說明之構成的放電裝置10是藉由控制電路3如以下地動作,而在放電電極41與對向電極42之間產生部分破壞放電。
亦即,控制電路3是在形成放電路徑L1(參照圖5A)以前的期間中,將電壓施加電路2的輸出電壓作為監視對象,當監視對象(輸出電壓)成為最大值α(參照圖6)以上時,即藉由電壓控制電路31使投入電壓產生電路22的能量減少。另一方面,在放電路徑L1的形成後,控制電路3是將電壓施加電路2的輸出電流作為監視對象,當監視對象(輸出電流)成為閾值以上時,即藉由電流控制電路32使投入電壓產生電路22的能量減少。藉此,使對負載4所施加的電壓下降,而以將負載4設為過電流狀態並遮斷放電電流的第2模式來讓電壓施加電路2動作。亦即,電壓施加電路2的動作模式是成為從第1模式切換成第2模式。
此時,因為電壓施加電路2的輸出電壓及輸出電流一起下降,所以控制電路3會再度開始驅動電路21的動作。藉此,對負載4所施加的電壓伴隨於時間經過而上升,並從電暈放電發展而形成部分地受到絕緣破壞的放電路徑L1。
在這之中,電流控制電路32已作動之後,可藉由電流控制電路32的影響,來決定電壓施加電路2的輸出電壓的上升率。總而言之,在圖6之例中,放電週期T1中的每單位時間之電壓施加電路2的輸出電壓的變化量,是藉由電流控制電路32中的積分電路的時間常數等而決定。由於最大值α是固定值,因此換言之,放電週期T1是藉由電流控制電路32的電路常數等而決定。
在驅動期間,藉由控制電路3重複上述之動作,電壓施加電路2是動作成交互地重複第1模式及第2模式。藉此,成為作用在保持於放電電極41之液體50的電能量的大小藉由驅動頻率而週期地變動之情形,且液體50是藉由驅動頻率而機械性地振動。
總而言之,藉由從電壓施加電路2對包含放電電極41之負載4施加電壓,而讓由電場所形成之力作用在保持於放電電極41的液體50,並使液體50變形。此時,作用在保持於放電電極41的液體50之力F1是藉由包含在液體50之電荷q1與電場E1的乘積來表示(F1=q1×E1)。特別是在本實施形態中,由於在和放電電極41之前端部411對向的對向電極42與放電電極41之間施加電壓,因此藉由電場而被拉往對向電極42側的方向之力作用在液體50。其結果,如圖2A所示,保持在放電電極41之前端部411的液體50是接受由電場所形成之力,而在放電電極41與對向電極42的對向方向中朝對向電極42側伸長,形成稱為泰勒錐之圓錐狀的形狀。從圖2A所示之狀態,若對負載4所施加的電壓變得越小,因電場之影響而作用在液體50之力也變得越小,而使液體50變形。其結果,如圖2B所示,保持在放電電極41之前端部411的液體50是在放電電極41與對向電極42之對向方向中形成為收縮之情形。
並且,藉由對負載4所施加之電壓的大小藉由驅動頻率而週期地變動,保持在放電電極41的液體50會交互地變形成圖2A所示之形狀與圖2B所示之形狀。由於是藉由電場集中在泰勒錐的前端部(頂點部)而產生放電,因此如圖2A所示,以泰勒錐的前端部為削尖的狀態來產生絕緣破壞。從而,配合驅動頻率而間歇地產生放電(部分破壞放電)。
但是,當驅動頻率變高,即放電週期T1變短時,會有以下之可能性:在藉由部分破壞放電而生成自由基時產生之臭氧的產生量增加。亦即,當驅動頻率變高時,會有以下之情形:產生放電之時間間隔變短,每單位時間(例如1秒)之放電的產生次數增加,而增加每單位時間之自由基及臭氧的產生量。作為用於抑制伴隨於驅動頻率變高之每單位時間的臭氧的產生量增加之手段,而具有以下之2種手段。
第1種手段是將施加電壓V1的最大值α降低之作法。亦即,將驅動期間中之施加電壓的最大值α調整成規定電壓值以下,以使在驅動期間於放電電極41產生之放電所造成的每單位時間之臭氧的產生量成為規定值以下。藉由將施加電壓V1的最大值α降低到規定電壓值以下,藉由部分破壞放電來生成自由基時所產生的臭氧的產生量即受到抑制。藉此,可抑制伴隨於驅動頻率變高之臭氧的產生量的增加。
第2種手段是將保持在放電電極41之液體50的體積增加之作法。亦即,將驅動期間中之液體50的體積調整成規定體積以上,以使在驅動期間於放電電極41產生之放電所造成的每單位時間之臭氧的產生量成為規定值以下。藉由保持在放電電極41之液體50的體積增加,藉由部分破壞放電來生成自由基時所產生的臭氧的產生量即受到抑制。藉此,可抑制伴隨於驅動頻率變高之臭氧的產生量的增加。
在本實施形態之放電裝置10中,是藉由第1種手段即將驅動期間中之施加電壓的最大值α降低,而抑制每單位時間之臭氧的產生量的增加。藉此,在放電裝置10中,可做到例如將臭氧濃度抑制在0.02ppm左右。但是,放電裝置10亦可採用第2種手段,又亦可採用第1種手段及第2種手段之雙方。 (2.3)電極形狀
接著,關於在本實施形態之放電裝置10中所使用之電極即放電電極41及對向電極42之更詳細的形狀,參照圖4A~圖4C來說明。在圖4A~圖4C中,是示意地顯示構成負載4之放電電極41及對向電極42的主要部位,關於放電電極41及對向電極42以外的構成則適當省略圖示。
亦即,在本實施形態中,是如上述,對向電極42具有支撐部422以及從支撐部422朝向放電電極41突出之1個以上(在此是4個)的突出部423。在此,較佳的是,如圖4A所示,從支撐部422之突出部423的突出量D1是比放電電極41與對向電極42之間的距離D2小。更佳的是,進一步使突出部423的突出量D1為放電電極41與對向電極42之間的距離D2的2/3以下。亦即,宜滿足「D1≦D2×2/3」的關係式。在此所謂的「突出量D1」意指從突出部423之長度方向中的開口部421的內周緣到突出部423之前端的距離當中的最長距離(參照圖4B)。又,在此所謂的「距離D2」意指從放電電極41之前端部411到對向電極42之突出部423的距離當中的最短距離(空間距離)。換言之,「距離D2」是從突出部423的伸出部424到放電電極41的最短距離。
作為一例,在放電電極41與對向電極42之間的距離D2為3.0mm以上且小於4.0mm的情況下,只要從支撐部422的突出部423的突出量D1為2.0mm以下,即形成為滿足上述之關係式的情形。像這樣,藉由相較於放電電極41與對向電極42之間的距離D2,突出部423的突出量D1相對地較小,可以緩和在突出部423之電場的集中,而變得容易產生部分破壞放電。
在本實施形態中,突出量D1及距離D2之每一個在複數個(在此為4個)突出部423的全部中都是相等的。亦即,複數個突出部423當中的1個突出部423,與其他3個當中的任一個突出部423,突出量D1都是相同的。又,複數個突出部423當中的1個突出部423,與其他3個當中的任一個突出部423,到放電電極41的距離D2都是相同的。亦即,從各突出部423到放電電極41的距離在複數個突出部423中為相等。
又,如圖4B所示,突出部423的前端面包含有曲面。在本實施形態中,如上述,由於突出部423具有頭細形狀的伸出部424,因此伸出部424的前端面,亦即面向開口部421的中心側之面包含有曲面。在此,突出部423的前端面在平面視角下,是形成為從突出部423的側面連續地銜接的半圓弧狀,且不包含角。亦即,突出部423的前端面是整體為曲面(彎曲面)。
另一方面,如圖4C所示,放電電極41的前端面也包含有曲面。在本實施形態中,如上述,由於放電電極41具有頭細形狀的前端部411,因此前端部411的前端面,即面向對向電極42的開口部421之側的面包含有曲面。在此,放電電極41的前端面是將包含放電電極41之中心軸的截面形狀形成為從前端部411的側面連續地銜接之弧形,且不包含角。亦即,放電電極41的前端面是整體為曲面(彎曲面)。
作為一例,較佳的是放電電極41之前端面的曲率半徑r2(參照圖4C)為0.2mm以上。像這樣,藉由放電電極41的前端部411具有圓弧形狀,相較於放電電極41的前端部411為削尖的情況,可以緩和在放電電極41的前端部411之電場的集中,而變得容易產生部分破壞放電。
在此,較佳的是,對向電極42之突出部423的前端面中的曲率半徑r1(參照圖4B)是放電電極41之前端面的曲率半徑r2(參照圖4C)的1/2以上。亦即,宜滿足「r1≧r2×1/2」的關係式。在此所謂的「曲率半徑」,在突出部423的前端面及放電電極41的前端面的任一個,均意指為最小值之曲率半徑(亦即曲率變得最大的部位之曲率半徑)。但是,在圖4B與圖4C中因為比例尺並不相同,所以圖4B中的「r1」與圖4C中的「r2」並不是直接表示「r1」與「r2」之比例。
作為一例,在放電電極41之前端面的曲率半徑r2為0.6mm的情況下,只要突出部423之前端面的曲率半徑r1為0.3mm以上,即形成為滿足上述之關係式的情形。更佳的是,進一步讓突出部423之前端面的曲率半徑r1比放電電極41之前端面的曲率半徑r2更大。像這樣,藉由相較於放電電極41之前端面的曲率半徑r2,突出部423之前端面的曲率半徑r1相對地較大,而變得容易產生部分破壞放電。 (2.4)放電形態
以下,關於在放電電極41與對向電極42之間已施加有施加電壓V1的情況產生之放電形態的詳細內容,參照圖5A~圖5C來說明。圖5A~圖5C是用於說明放電形態的概念圖,在圖5A~圖5C中,是示意地表示放電電極41及對向電極42。又,在本實施形態之放電裝置10中,實際上,在放電電極41保持有液體50,並在此液體50與對向電極42之間產生放電,但在圖5A~圖5C中是省略液體50的圖示。又,在以下,是設想在放電電極41之前端部411(參照圖4C)沒有液體50之情況來進行說明,但在有液體50的情況下,關於放電的產生部位等,只要將「放電電極41的前端部411」替換成「保持在放電電極41的液體50」之說法即可。
在此,首先,參照圖5A來說明在本實施形態之電壓施加裝置1及放電裝置10中所採用的部分破壞放電。
亦即,放電裝置10首先是使放電電極41的前端部411產生局部的電暈放電。在本實施形態中,因為放電電極41是負極(接地(ground))側,所以在放電電極41的前端部411所產生的電暈放電是負極性電暈。放電裝置10是使在放電電極41的前端部411所產生的電暈放電進一步發展到高能量的放電。藉由此高能量的放電,可在放電電極41與對向電極42之間形成部分地受到絕緣破壞的放電路徑L1。
又,雖然部分破壞放電是伴隨於在一對電極(放電電極41及對向電極42)之間的部分的絕緣破壞,但絕緣破壞並非持續地產生,絕緣破壞為間歇地產生的放電。因此,關於在一對電極(放電電極41及對向電極42)間所產生的放電電流也是間歇地產生。亦即,在電源(電壓施加電路2)不具有在維持放電路徑L1上所需要的電流容量的情況等中,當一從電暈放電發展到部分破壞放電時,施加在一對電極間的電壓即下降,而中斷放電路徑L1並使放電停止。在此所謂的「電流容量」是單位時間可放出之電流的容量。藉由重複像這樣的放電的產生以及停止,而形成為放電電流間歇地流動之情形。像這樣,部分破壞放電在重複放電能量較高的狀態與放電能量較低的狀態之點上,與絕緣破壞為持續地產生(亦即放電電流為持續地產生)的輝光放電及電弧放電不同。
更詳細地,電壓施加裝置1是藉由在配置成互相隔著間隙而對向的放電電極41與對向電極42之間施加電壓V1,而在放電電極41與對向電極42之間產生放電。並且,在放電的產生時,在放電電極41與對向電極42之間,可形成部分地受到絕緣破壞的放電路徑L1。如圖5A所示,此時所形成的放電路徑L1包含有在放電電極41之周圍所生成的第1絕緣破壞區域R1、以及在對向電極42之周圍所生成的第2絕緣破壞區域R2。
亦即,可在放電電極41與對向電極42之間形成並非整體而是部分(局部)地受到絕緣破壞的放電路徑L1。像這樣,在部分破壞放電中,在放電電極41與對向電極42之間所形成的放電路徑L1是尚未到全路絕緣破壞,而是部分地受到絕緣破壞的路徑。
如也在「(2.3)電極形狀」之分段中所說明地,關於放電電極41之前端部411的形狀(圓弧形狀)以及突出部423的突出量D1,是藉由恰當地設定成適度地緩和電場的集中,而變得容易實現部分破壞放電。亦即,可以藉由將前端部411的形狀及突出量D1(參照圖4A),與放電電極41的長度及施加電壓V1等其他因子一起恰當地設定成緩和電場的集中,來適度地緩和電場的集中。其結果,在放電電極41與對向電極42之間施加電壓時,不至於到如全路絕緣破壞放電的全路絕緣破壞,而可以止於產生部分的絕緣破壞為止。其結果,可以實現部分破壞放電。
在此,放電路徑L1包含有在放電電極41之周圍所生成的第1絕緣破壞區域R1、以及在對向電極42之周圍所生成的第2絕緣破壞區域R2。亦即,第1絕緣破壞區域R1是放電電極41之周圍的經絕緣破壞的區域,第2絕緣破壞區域R2是對向電極42之周圍的經絕緣破壞的區域。在此,在放電電極41保持有液體50,且在液體50與對向電極42之間施加有施加電壓V1的情況下,第1絕緣破壞區域R1是在放電電極41的周圍當中特別是液體50的周圍所生成。
這些第1絕緣破壞區域R1及第2絕緣破壞區域R2是分開成互相不接觸而存在。換言之,放電路徑L1是至少在第1絕緣破壞區域R1與第2絕緣破壞區域R2之間,包含有未受到絕緣破壞的區域(絕緣區域)。因此,在部分破壞放電中,是形成為以下之情形:針對放電電極41與對向電極42之間的空間,以尚未到全路絕緣破壞而是到部分地受到絕緣破壞的狀態,來通過放電路徑L1讓放電電流流動。總而言之,即使是產生有部分的絕緣破壞的放電路徑L1,換言之,即一部分並未受到絕緣破壞的放電路徑L1,在放電電極41與對向電極42之間仍然可通過放電路徑L1來讓放電電流流動,並產生放電。
在此之中,基本上,第2絕緣破壞區域R2是在對向電極42當中在到放電電極41之距離(空間距離)成為最短之部位的周圍產生。在本實施形態中,如圖4A所示,由於對向電極42是在形成於突出部423的前端部之頭細形狀的伸出部424中,到放電電極41之距離D2成為最短,因此第2絕緣破壞區域R2是在伸出部424的周圍生成。亦即,圖5A所示之對向電極42實際上是相當於圖4A所示之突出部423的伸出部424。
又,在本實施形態中,是如上述,對向電極42具有複數個(在此為4個)突出部423,且從各突出部423到放電電極41的距離D2(參照圖4A)在複數個突出部423中為相等。因此,形成為以下之情形:第2絕緣破壞區域R2可在複數個突出部423當中任一個1個突出部423的伸出部424之周圍生成。在此,可生成第2絕緣破壞區域R2的突出部423並不限定於特定的突出部423,而是形成為在複數個突出部423之中隨機地決定。
但是,在部分破壞放電中,如圖5A所示,放電電極41之周圍的第1絕緣破壞區域R1是從放電電極41朝向成為對象之對向電極42而延伸。對向電極42之周圍的第2絕緣破壞區域R2是從對向電極42朝向成為對象之放電電極41而延伸。換言之,第1絕緣破壞區域R1及第2絕緣破壞區域R2是各自從放電電極41及對向電極42朝互相拉近的方向延伸。因此,第1絕緣破壞區域R1及第2絕緣破壞區域R2的每一個是形成為具有沿著放電路徑L1的長度。像這樣,在部分破壞放電中,部分地受到絕緣破壞的區域(第1絕緣破壞區域R1及第2絕緣破壞區域R2的每一個)具有朝特定之方向拉長地延伸的形狀。
接著,關於電暈放電,參照圖5B來說明。
一般而言,當在一對電極間投入能量而產生放電後,是因應於所投入的能量之量,而使放電形態從電暈放電往輝光放電、或電弧放電而發展。
輝光放電及電弧放電是伴隨於在一對電極間之絕緣破壞的放電。在輝光放電及電弧放電中,在一對電極間投入能量之期間,是維持藉由絕緣破壞所形成的放電路徑,而在一對電極間持續地產生放電電流。相對於此,如圖5B所示,電暈放電是在一邊的電極(放電電極41)局部地產生的放電,而非伴隨於一對電極(放電電極41及對向電極42)間的絕緣破壞的放電。總而言之,藉由在放電電極41與對向電極42之間施加施加電壓V1,而在放電電極41的前端部411產生局部的電暈放電。在此,因為放電電極41是負極(接地(ground))側,所以在放電電極41的前端部411所產生的電暈放電是負極性電暈。此時,在放電電極41之前端部411的周圍,可能產生局部地受到絕緣破壞的區域R3。此區域R3是如部分破壞放電中的第1絕緣破壞區域R1及第2絕緣破壞區域R2的每一個,且並非朝特定方向拉長地延伸的形狀,而是成為點狀(或者球狀)。
在此,只要從電源(電壓施加電路2)相對於一對電極間讓每單位時間可放出的電流容量充分地大,就可將一度形成的放電路徑在不中斷的情形下維持,並如上述,從電暈放電往輝光放電或電弧放電發展。
接著,參照圖5C來說明全路絕緣破壞放電。
如圖5C所示,全路絕緣破壞放電是以下之放電形態:間歇地重複所謂的從電暈放電發展到一對電極(放電電極41及對向電極42)間的全路絕緣破壞之現象。亦即,在全路絕緣破壞放電中,在放電電極41與對向電極42之間,是在放電電極41與對向電極42之間產生整體地受到絕緣破壞的放電路徑。此時,能夠在放電電極41的前端部411與對向電極42(如圖4A所示之任一個突出部423的伸出部424)之間,產生整體地受到絕緣破壞的區域R4。此區域R4並非如部分破壞放電中的第1絕緣破壞區域R1及第2絕緣破壞區域R2的每一個區域為部分地產生之區域,而是以銜接放電電極41的前端部411與對向電極42之間的方式產生。
又,雖然全路絕緣破壞放電是伴隨於在一對電極(放電電極41及對向電極42)間的絕緣破壞(全路絕緣破壞),但絕緣破壞並非持續地產生,絕緣破壞為間歇地產生的放電。因此,關於在一對電極(放電電極41及對向電極42)間所產生的放電電流也是間歇地產生。亦即,如上述,在電源(電壓施加電路2)不具有用於維持放電路徑所需要的電流容量的情況等中,當一從電暈放電發展到全路絕緣破壞時,施加在一對電極間的電壓即下降,而中斷放電路徑並使放電停止。藉由重複像這樣的放電的產生以及停止,而形成為放電電流間歇地流動之情形。像這樣,全路絕緣破壞放電在重複放電能量較高的狀態與放電能量較低的狀態之點上,與絕緣破壞為持續地產生(亦即放電電流為持續地產生)的輝光放電及電弧放電不同。
並且,在部分破壞放電(參照圖5A)中,是和電暈放電(參照圖5B)相比較可用較大的能量來生成自由基,且和電暈放電相比較可生成2~10倍左右之大量的自由基。像這樣所生成的自由基是成為不限於除菌、除臭、保濕、保鮮、病毒的滅能作用,而是在各種場合下都可發揮有用的效果之基礎。在此,藉由部分破壞放電而生成自由基時,也產生臭氧。但是,在部分破壞放電中,是相對於和電暈放電相比較可生成2~10倍左右的自由基,而將臭氧的產生量抑制在和電暈放電之情況相同的程度。
又,在圖5A所示之部分破壞放電中,即使和圖5C所示之全路絕緣破壞放電相比較,也可以抑制由過大的能量所造成的自由基的消失,且即使和全路絕緣破壞放電相比較,也可以謀求自由基之生成效率的提升。亦即,在全路絕緣破壞放電中,因為其放電之能量過高,而有以下的可能性:所生成之自由基的一部分消失,導致有效成分之生成效率的下降。相對於此,在部分破壞放電中,因為和全路絕緣破壞放電相比較可將放電之能量抑制得較小,所以可以將因暴露於過大的能量所造成之自由基的消失量降低,而謀求自由基之生成效率的提升。
結果,根據採用了部分破壞放電之本實施形態的電壓施加裝置1及放電裝置10,和電暈放電及全路絕緣破壞放電相比較,具有以下之優點:可以謀求有效成分(空氣離子、自由基以及包含其之帶電微粒子液等)之生成效率的提升。
此外,在部分破壞放電中,相較於全路絕緣破壞放電,可緩和電場的集中。因此,在全路絕緣破壞放電中,是通過已受到全路絕緣破壞的放電路徑而在放電電極41與對向電極42之間瞬間地流動有較大的放電電流,這時候的電阻會變得非常小。相對於此,在部分破壞放電中,是藉由緩和電場的集中,而在部分地受到絕緣破壞的放電路徑L1的形成時,將在放電電極41與對向電極42之間瞬間地流動之電流的最大值抑制得比全路絕緣破壞放電小。藉此,在部分破壞放電中,相較於全路絕緣破壞放電,可抑制氮氧化物(NOx)的產生,進而可將電雜訊抑制得較小。 (2.5)聲音對策
接著,關於使用了持續電壓V2之聲音對策,詳細內容將參照圖6及圖7來說明。圖6是將橫軸設為時間軸,並在縱軸顯示電壓施加電路2的輸出電壓(施加於負載4的電壓)的圖表。圖7是將橫軸設為頻率軸,並在縱軸顯示從放電裝置10發出之聲音的大小(聲壓)的圖表。
如上述,在本實施形態中,是如圖6所示,電壓施加電路2是使施加電壓V1的大小週期地變動,而間歇地產生放電。亦即,形成為以下之情形:在將施加電壓V1的變動週期設為放電週期T1的情況下,以放電週期T1來產生放電(部分破壞放電)。在此,將產生放電的時間點定義為第1時間點t1。
並且,如圖6所示,電壓施加電路2是在產生放電後到下次產生放電以前的間歇期間T2中,對負載4除了施加施加電壓V1以外,還施加用於抑制液體50之收縮的持續電壓V2。在本實施形態中,作為一例而將放電週期T1當中電壓施加電路2以第2模式動作的期間設為間歇期間T2。
亦即,在間歇期間T2中,為了產生放電,除了電壓施加電路2對負載4施加施加電壓V1以外,還藉由對負載4施加持續電壓V2,而將對負載4所施加之電壓依持續電壓V2的量有多少就提高多少。換言之,形成為對負載4施加有施加電壓V1及持續電壓V2的合計電壓(V1+V2)。因此,若相較於如圖6中以虛線所示,未施加有持續電壓V2的情況(亦即只有施加有施加電壓V1的情況),可將在放電的產生之第1時間點t1後對負載4所施加的電壓的下跌狀況降低。藉此,在間歇期間T2中,雖然施加於負載4的電壓是伴隨於時間經過而逐漸下降,但會形成為持續電壓V2的量有多少就將下降幅度縮小多少之情形。
在此,如上述,由於在放電電極41與對向電極42之間施加電壓,因此藉由電場而被拉往對向電極42側的方向之力作用在保持於放電電極41的液體50。此時,保持在放電電極41的液體50是接受由電場所形成之力,而在放電電極41與對向電極42之對向方向中被朝對向電極42側拉伸,形成稱為泰勒錐之圓錐狀的形狀。並且,藉由在液體50伸長而泰勒錐的前端部為削尖的狀態下,電場集中在泰勒錐的前端部(頂點部)來產生放電。當在第1時間點t1開始放電時,由於電場的影響變得較小,因此對泰勒錐(液體50)進行拉伸的方向之力減少,泰勒錐(液體50)即收縮。當從第1時間點t1經過一段時間後電場變強時,泰勒錐(液體50)即再度受到拉伸。像這樣,藉由對負載4所施加之電壓的大小為藉由驅動頻率而週期地變動之情形,保持在放電電極41的液體50會週期地伸縮(參照圖2A及圖2B),而在液體50產生機械性的振動。
但是,在像這樣的液體50的機械性的振動時,若放電產生後之液體50之收縮形變得過度時,會使液體50的機械性的振動的振幅變得過大,而有起因於液體50的振動的聲音變大的可能性。例如,如圖6中以虛線所示,在未施加持續電壓V2的情況下,於放電的產生的第1時間點t1後,電場的影響變得過小,而有泰勒錐(液體50)因液體50的表面張力等而急速地收縮的可能性。在像這樣的情況下,液體50的機械性的振動之振幅變得過大,而有起因於液體50的振動的聲音變大的可能性。
在本實施形態之電壓施加裝置1及放電裝置10中,是使用持續電壓V2來抑制像這樣的放電產生後之液體50的過度的收縮的產生,結果,變得難以產生起因於液體50的振動的聲音。亦即,在電壓施加裝置1及放電裝置10中,在產生放電後到下次產生放電以前的間歇期間T2中,對負載4除了施加有施加電壓V1以外還施加有持續電壓V2。藉由加上持續電壓V2,可在電壓施加裝置1及放電裝置10中,在放電的產生時間點(第1時間點t1)後仍維持讓由液體50之表面張力等所形成之泰勒錐(液體50)的收縮延遲之程度的電場。其結果,可以抑制液體50的機械性的振動的振幅變得過大之情形,結果,可降低起因於液體50的振動的聲音。
更詳細地,液體50是因應於放電之週期(放電週期T1)而機械性地進行振動,亦即重複伸縮。在此,較佳的是,在液體50已伸長完之後緊接的第2時間點t2(參照圖6)對負載4所施加之電壓的大小β,為產生放電的第1時間點t1對負載4所施加之電壓的大小(最大值α)的2/3以上。此外,在第2時間點t2對負載4所施加之電壓的大小β是在第1時間點t1對負載4所施加之電壓的大小α以下。亦即,宜滿足「α≧β≧α×2/3」的關係式。在此所謂的「之後緊接」包含在液體50已伸長完的時間點以後,且已伸長完之液體50開始收縮不久的期間。但是,更佳的是,「之後緊接」是在液體50已伸長完的時間點以後,且已伸長完之液體50往收縮之方向加速的期間。又,更佳的是,「之後緊接」是在液體50已伸長完的時間點以後,且已伸長完的液體50開始收縮以前的期間。
亦即,由於在液體50進行機械性的振動的期間也有慣性力作用在液體50,因此即使在產生放電的第1時間點t1電場對液體50的影響變小,在第1時間點t1後不久仍然會繼續液體50被拉伸之方向的變形。並且,在拉伸液體50之方向的慣性力與使液體50收縮之方向的表面張力等取得平衡的時間點上,液體50是形成為伸長完之情形,且之後,液體50是藉由表面張力等而收縮。在像這樣的液體50已伸長完之後緊接的第2時間點t2中之電壓的大小β,為相對於在第1時間點t1中之電壓的大小α相對地具有某程度的大小,藉此,可以使由表面張力等所形成之泰勒錐(液體50)的收縮延遲。
作為一例,在第1時間點t1對負載4所施加之電壓的大小α為6.0kV的情況下,只要在第2時間點t2對負載4所施加之電壓的大小β為4.0kV以上,即形成為滿足上述之關係式,亦即「α≧β≧α×2/3」。在圖6之例中,在未施加持續電壓V2的情況(即僅施加有施加電壓V1的情況)下,在第2時間點t2對負載4所施加之電壓的大小γ是小於在第1時間點t1對負載4所施加之電壓的大小α的2/3。亦即,藉由施加持續電壓V2,而形成為至少在第2時間點t2將對負載4所施加之電壓的大小提高相當於「β-γ」的量,且可以使由表面張力等所形成之泰勒錐(液體50)的收縮延遲。
又,較佳的是,放電電極41的放電的頻率為600Hz以上且5000Hz以下。在此情況下,施加電壓V1的變動的頻率(驅動頻率)亦成為600Hz以上且5000Hz以下。若放電的頻率為500Hz則放電週期T1是成為0.002秒,若放電的頻率為5000Hz則放電週期T1是成為0.0002秒。
又,較佳的是,第2時間點t2是從第1時間點t1經過放電之週期的1/10的時間之時間點。亦即,較佳的是,從第1時間點t1到第2時間點t2的時間是設定成放電週期T1的1/10的時間。特別是如上述,在放電之頻率(驅動頻率)存在於600Hz以上且5000Hz以下的範圍的情況下,大多以從第1時間點t1到經過放電週期T1的1/10左右的時間來使液體50伸長完。因此,更佳的是,第2時間點t2是從第1時間點t1經過放電之週期的1/10的時間之時間點。
如以上所說明,本實施形態之電壓施加裝置1及放電裝置10是藉由對負載4除了施加電壓V1以外還施加用於抑制液體50之收縮的持續電壓V2,而可以如圖7所示,降低從放電裝置10所發出之聲音的大小(聲壓)。在圖7中,曲線W1是對負載4除了施加電壓V1以外還施加有持續電壓V2之情況的圖形,曲線W2是未施加持續電壓V2之情況(即僅施加有施加電壓V1之情況)的圖形。
如從圖7中所清楚看出地,根據電壓施加裝置1及放電裝置10,可以藉由對負載4除了施加電壓V1以外還施加持續電壓V2之作法,而在聽域(20Hz~20000Hz)之大致整個區域中,降低從放電裝置10所發出之聲音的大小(聲壓)。在圖7之例中,針對相對較容易被耳朵聽到之1000Hz~2000Hz的頻帶,也已將聲壓降低。在此,較佳的是,電壓施加裝置1是藉由對負載4施加持續電壓V2,來使得伴隨於液體50的機械性的振動的聲壓下降1dB以上。亦即,較佳的是,相較於未施加持續電壓V2的情況(亦即僅施加有施加電壓V1的情況),在對負載4除了施加電壓V1以外還施加有持續電壓V2的情況下,從放電裝置10所發出之聲音是下降1dB以上。1dB以上之聲壓的下降只要可在聽域(20Hz~20000Hz)之至少一部分的頻帶實現即可。
又,藉由對負載4除了施加電壓V1以外還施加有用於抑制液體50之收縮的持續電壓V2,而有除了聲音的降低以外,還有例如能量利用效率的提升來作為所期待的效果。亦即,當施加持續電壓V2時,相較於未施加持續電壓V2的情況(即僅施加有施加電壓V1的情況),會在放電之產生的第1時間點t1後,將對負載4所施加之電壓的下跌狀況降低。藉此,可抑制蓄積於已被拉伸之泰勒錐(液體50)之電荷的消失,且將此電荷有效地利用在下一次的放電,藉此形成為可以將已賦與到負載4的能量有效地利用在放電上。 (3)變形例
第1實施形態只不過是本揭示之各式各樣的實施形態的一種。只要能達成本揭示的目的,第1實施形態可因應於設計等進行各種變更。又,在本揭示所參照的圖式均為示意之圖,圖中的各構成要件的大小及厚度各自的比例並未必反映出實際的尺寸比例。以下,列舉第1實施形態的變形例。以下說明之變形例可適當組合來適用。 (3.1)第1變形例
在第1變形例中,是如圖8A~圖8D所示,對向電極42的形狀與第1實施形態不同。圖8A~圖8D是放電裝置10之包含對向電極的主要部位的平面圖。
在圖8A之例中,對向電極42A是各突出部423A的形狀為大致三角形狀。在此突出部423A中,三角形的頂點朝向開口部421的中心。藉此,突出部423A的前端部形成為削尖的(銳角的)形狀。在圖8B之例中,對向電極42B具有從支撐部422突出之2個突出部423B。2個突出部423B是各自朝向開口部421的中心突出。並且,2個突出部423B是以等間隔的方式配置在開口部421。
在圖8C之例中,對向電極42C具有從支撐部422突出之3個突出部423C。3個突出部423C各自朝向開口部421的中心突出。並且,3個突出部423C是以等間隔的方式配置在開口部421。像這樣,突出部423C亦可設置有奇數個。在圖8D之例中,對向電極42D具有從支撐部422突出之8個突出部423D。8個突出部423D是各自朝向開口部421的中心側突出。並且,8個突出部423D是以等間隔的方式配置在開口部421。
此外,並不受限於圖8A~圖8D之例,對向電極42及放電電極41的每一個的形狀是可適當變更的。例如對向電極42所具有的突出部423的個數並不受限於2~4個、8個,亦可為例如1個或5個以上。此外,複數個突出部423在開口部421的周方向上以等間隔的方式配置之情形並非是必要的構成,複數個突出部423亦可在開口部421的周方向上以適當的間隔來配置。
又,關於對向電極42之支撐部422的形狀,亦不受限於平板狀,亦可為例如在與放電電極41之對向面的至少一部分包含有凹曲面或者凸曲面。只要根據對向電極42中的和放電電極41的對向面的形狀,即可以將在放電電極41之前端部411的電場均勻地提高。此外,支撐部422亦可形成為如覆蓋放電電極41的圓頂狀。 (3.2)其他的變形例
放電裝置10亦可省略用於生成帶電微粒子液的液體供給部5。在此情況下,放電裝置10是藉由在放電電極41與對向電極42之間所產生的部分破壞放電,而生成空氣離子。
又,液體供給部5並非受限於如第1實施形態地將放電電極41冷卻而於放電電極41產生結露水之構成。液體供給部5亦可是以下之構成:使用例如毛細管現象或泵等的供給機構,而從槽對放電電極41供給液體50。此外,液體50並非受限於水(包含結露水),亦可以是水以外的液體。
又,電壓施加電路2亦可構成為將放電電極41設為正極(正(plus))、將對向電極42設為負極(接地(ground)),而在放電電極41與對向電極42之間施加高電壓。此外,由於只要在放電電極41與對向電極42之間產生電位差(電壓)即可,因此亦可藉由電壓施加電路2將高電位側的電極(正極)設為接地,並將低電位側的電極(負極)設為負電位,而對負載4施加負的電壓。亦即,電壓施加電路2亦可將放電電極41設為接地,並將對向電極42設為負電位,或者將放電電極41設為負電位,並將對向電極42設為接地。
又,電壓施加裝置1亦可在電壓施加電路2、及負載4中的放電電極41或對向電極42之間具備有限流電阻。限流電阻是在部分破壞放電中,用於限制在絕緣破壞後所流動之放電電流的峰值的電阻器。限流電阻是電連接在例如電壓施加電路2與放電電極41之間,或電壓施加電路2與對向電極42之間。
又,電壓施加裝置1之具體的電路構成可適當變更。例如,電壓施加電路2並不受限於自激式的轉換器,亦可是他激式的轉換器。又,電壓產生電路22亦可藉由具有壓電元件的變壓器(壓電變壓器)來實現。
又,電壓施加裝置1及放電裝置10所採用的放電形態,並不受限於在第1實施形態中所說明的形態。例如,電壓施加裝置1及放電裝置10亦可採用間歇地重複所謂的從電暈放電發展到絕緣破壞之現象的形態之放電,亦即「全路絕緣破壞放電」。在此情況下,在放電裝置10中,是形成為重複以下之現象:當從電暈放電發展到絕緣破壞時即瞬間流動比較大的放電電流,並於之後緊接著讓施加電壓下降而遮斷放電電流,再讓施加電壓上升到絕緣破壞。
又,對向電極42中的支撐部422及複數個突出部423作為整體而形成為平板狀之情形並非必要的構成,亦可例如支撐部422具有朝支撐部422的厚度方向突出的凸部等,而將支撐部422以立體的方式形成。又,各突出部423亦可例如從開口部421的內周緣傾斜地突出,以使前端部(伸出部424)側附近,到放電電極41之長度方向中的放電電極41的距離變小。
又,電壓施加電路2只要在產生放電後到下次產生放電以前的期間,除了施加電壓V1以外還對負載4施加用於抑制液體50之收縮的持續電壓V2即可,且對負載4所施加之電壓波形並不受限於圖6之例。例如,如圖9A所示,對負載4所施加的電壓亦可是藉由持續電壓V2而被提高成伴隨於時間經過而分階段地下降。在此情況下,對負載4所施加的電壓波形是成為如圖9A所示之階梯狀的波形。又,作為其他例,如圖9B所示,對負載4所施加的電壓亦可藉由持續電壓V2而被提高成伴隨於時間經過而直線地下降即以大致線形的方式變化。在此情況下,施加在負載4的電壓波形是成為如圖9B所示之三角波狀的波形。
又,放電裝置10亦可省略對向電極42。在此情況下,全路絕緣破壞放電是形成為在放電電極41、及存在於放電電極41之周圍的例如殼體等的構件之間產生。此外,放電裝置10亦可省略液體供給部5及對向電極42之雙方。
又,和第1實施形態之電壓施加裝置1同樣的功能,亦可藉電壓施加電路2的控制方法、電腦程式、或記錄有電腦程式之記錄媒體等而被具體化。亦即,亦可將對應於控制電路3之功能以電壓施加電路2的控制方法、電腦程式、或記錄有電腦程式之記錄媒體等來具體化。
又,在二個值之間的比較中,設為「以上」時是包含二個值相等的情況、以及二個值的其中一個超過另一個的情況之雙方。但是,並非受限於此,在此所謂的「以上」亦可與只包含二個值的其中一個超過另一個的情況之「大於」為同義。亦即,是否包含二個值為相等的情況,由於可以視閾值等之設定而任意地變更,因此在「以上」或「大於」上並沒有技術上的差異。同樣地,在「小於」中亦可和「以下」為同義。 (第2實施形態)
如圖10所示,本實施形態之放電裝置10A是在更具備測量溫度及濕度之至少一項的感測器7之點上,和第1實施形態之放電裝置10不同。以下,針對與第1實施形態同樣的構成,是附加共通的符號而適當省略說明。
感測器7是檢測放電電極41之周圍的狀態的感測器。感測器7是檢測與包含至少溫度及濕度(相對濕度)之至少一項的放電電極41之周圍的環境(狀態)相關連的資訊。成為感測器7之檢測對象的放電電極41之周圍的環境(狀態)除了溫度及濕度之外,還可包含例如臭氧指數、照度以及人之在場/不在場等。在本實施形態中,雖然是設成電壓施加裝置1A是以將感測器7包含在構成要件之情況來說明,但感測器7亦可不包含在電壓施加裝置1A的構成要件中。
本實施形態之放電裝置10A更具備有供給量調節部8。供給量調節部8是依據感測器7的輸出來調節在液體供給部5之液體50(結露水)的供給量。在本實施形態中,雖然是設成電壓施加裝置1A是以將供給量調節部8包含在構成要件之情況來說明,但供給量調節部8亦可不包含在電壓施加裝置1A的構成要件中。
如在第1實施形態中所說明地,由於液體供給部5是藉由冷卻裝置51(參照圖3B)來冷卻放電電極41,而於放電電極41產生液體50(結露水),因此若放電電極41之周圍的溫度或者濕度變化,液體50的生成量亦會變化。從而,藉由依據溫度及濕度的至少一項,來調整在液體供給部5之液體50的生成量的至少一項,而變得無論是溫度及濕度,均可容易使液體50的生成量維持為一定。
具體而言,電壓施加裝置1A具備有微電腦,供給量調節部8是藉由此微電腦來實現。亦即,作為供給量調節部8的微電腦,是取得感測器7的輸出(以下,亦稱為「感測器輸出」),並且因應於感測器輸出來調整在液體供給部5之液體50的生成量。
此供給量調節部8是依據感測器7的輸出來調整在液體供給部5之液體50(結露水)的生成量。供給量調節部8是例如在放電電極41之周圍的溫度變得越高或濕度變得越高時,即讓在液體供給部5之液體50(結露水)的生成量變得越少。藉此,即變得容易在例如濕度變高且液體50(結露水)的生成量增加之類的狀況下,藉由抑制在液體供給部5之液體50(結露水)的生成量,來使液體50的生成量維持為一定。在液體供給部5之液體50(結露水)的生成量的調整,是藉由例如以對一對帕耳帖元件511之通電量(電流值)使冷卻裝置51的設定溫度變化來實現。
又,如第2實施形態,供給量調節部8依據感測器7的輸出而調節在液體供給部5之液體50的供給量的作法,對於放電裝置10A並非必要的構成。亦即,供給量調節部8只要具有調節在液體供給部5之液體50的供給量的功能即可。
在第2實施形態所說明的構成(包含變形例)可與在第1實施形態所說明的構成(包含變形例)適當組合而適用。 (總結)
如以上所說明,第1態樣之電壓施加裝置(1、1A)具備電壓施加電路(2)。電壓施加電路(2)是藉由對包含保持液體(50)的放電電極(41)的負載(4)施加施加電壓(V1),而於放電電極(41)產生放電。電壓施加電路(2)是使施加電壓(V1)的大小週期地變動而間歇地產生放電。電壓施加電路(2)是在產生放電後到下次產生放電以前的間歇期間(T2)中,對負載(4)除了施加施加電壓(V1)以外,還施加用於抑制液體(50)之收縮的持續電壓(V2)。
根據此態樣,在間歇期間(T2)中,對負載(4)除了施加電壓(V1)以外,還施加有持續電壓(V2),藉此將對負載(4)所施加之電壓依持續電壓(V2)的量有多少就提高多少。其結果,是使用持續電壓(V2)來抑制放電產生後之液體(50)的過度的收縮的產生,結果,變得難以產生起因於液體(50)的振動的聲音。從而,根據電壓施加裝置(1、1A),具有以下之優點:可以將起因於液體(50)之振動的聲音降低。
在第2態樣的電壓施加裝置(1、1A)中,亦可為:在第1態樣中,液體(50)是因應於放電之週期而機械性地振動。亦可為:在液體(50)已伸長完之後緊接的第2時間點(t2)對負載(4)所施加之電壓的大小(β),為產生放電的第1時間點(t1)對負載(4)所施加之電壓的大小(α)的2/3以上。
根據此態樣,在第2時間點(t2)中之電壓的大小(β),為相對於在第1時間點(t1)中之電壓的大小(α)相對地具有某程度的大小,藉此,可以使由表面張力等所形成之液體(50)的收縮延遲。
在第3態樣的電壓施加裝置(1、1A)中,亦可為:在第2態樣中,放電電極(41)的放電的頻率為600Hz以上且5000Hz以下。
根據此態樣,可以謀求起因於液體(50)的振動的聲音當中特別是聽域的聲音的降低。
在第4態樣的電壓施加裝置(1、1A)中,亦可為:在第2或第3中的任一個態樣中,第2時間點(t2)是從第1時間點(t1)經過放電之週期(T1)的1/10的時間之時間點。根據此態樣,即使不監視液體(50)之伸縮,也可以在液體(50)已伸長完之後緊接地設定第2時間點(t2)。
第5態樣的電壓施加裝置(1、1A)亦可在在第1~第4中的任一個態樣中,藉由對負載(4)施加持續電壓(V2),來使伴隨於液體(50)的機械性的振動的聲壓下降1dB以上。
根據此態樣,可以讓伴隨於液體(50)的機械性的振動的聲壓充分地下降。
第6態樣之電壓施加裝置(1、1A)亦可在第1~第5中的任一個態樣中,藉由放電將液體(50)靜電霧化。
根據此態樣,可生成含有自由基之帶電微粒子液。從而,相較於自由基以單體釋放到空氣中的情況,可以謀求自由基的長壽命。此外,可以藉由帶電微粒子液為例如奈米尺寸,而使帶電微粒子液懸浮於比較廣的範圍。
第7態樣之放電裝置(10、10A)具備放電電極(41)、及電壓施加電路(2)。放電電極(41)會保持液體(50)。電壓施加電路(2)是藉由對包含放電電極(41)的負載(4)施加施加電壓(V1),而於放電電極(41)產生放電。電壓施加電路(2)是使施加電壓(V1)的大小週期地變動而間歇地產生放電。電壓施加電路(2)是在產生放電後到下次產生放電以前的間歇期間(T2)中,對負載(4)除了施加施加電壓(V1)以外,還施加用於抑制液體(50)之收縮的持續電壓(V2)。
根據此態樣,在間歇期間(T2)中,對負載(4)除了施加電壓(V1)以外,還施加有持續電壓(V2),藉此將對負載(4)所施加之電壓依持續電壓(V2)的量有多少就提高多少。其結果,是使用持續電壓(V2)來抑制放電產生後之液體(50)的過度的收縮的產生,結果,變得難以產生起因於液體(50)的振動的聲音。從而,根據放電裝置(10、10A),具有以下之優點:可以將起因於液體(50)之振動的聲音降低。
第8態樣之放電裝置(10、10A)亦可為:在第7態樣中更具備對放電電極(41)供給液體(50)的液體供給部(5)。
根據此態樣,由於可藉由液體供給部(5)自動地對放電電極(41)供給液體(50),因此不需要對放電電極(41)供給液體(50)的作業。
第9態樣之放電裝置(10、10A)亦可為:在第8態樣中更具備調節在液體供給部(5)之液體(50)的供給量的供給量調節部(8)。
根據此態樣,由於可以恰當地調節供給到放電電極(41)的液體(50)之量,因此可以抑制源自於保持在放電電極(41)的液體(50)之量變得不當之情形所造成的聲壓的增大。
第10態樣之放電裝置(10、10A)亦可為:在第7~第9中的任一個態樣中,更具備配置成和放電電極(41)隔著間隙而對向的對向電極(42、42A、42B、42C、42D)。亦可藉由在放電電極(41)與對向電極(42、42A、42B、42C、42D)之間施加電壓,而在放電電極(41)與對向電極(42、42A、42B、42C、42D)之間產生放電。
根據此態樣,可以在放電電極(41)與對向電極(42、42A、42B、42C、42D)之間安定地產生供放電電流流動的放電路徑。
關於第2~第6態樣的構成,並非是在電壓施加裝置(1、1A)上所必要的構成,且可適當省略。關於第8~第10態樣的構成,並非是在放電裝置(10、10A)上所必要的構成,且可適當省略。
電壓施加裝置及放電裝置可以適用在冰箱、洗衣機、吹風機、空氣調節機、電風扇、空氣清淨機、加濕器、美顏器以及汽車等多樣的用途。
1、1A:電壓施加裝置 2:電壓施加電路 3:控制電路 4、4A :負載 5:液體供給部 6:輸入部 7:感測器 8:供給量調節部 10、10A:放電裝置 21:驅動電路 22:電壓產生電路 31:電壓控制電路 32:電流控制電路 40:殼體 41:放電電極 42、42A、42B、42C、42D:對向電極 50:液體 51:冷卻裝置 411:前端部 412:基端部 421:開口部 422:支撐部 423、423A、423B、423C、423D:突出部 424:伸出部 511:帕耳帖元件 512:散熱板 D1:突出量 D2:距離 L1:放電路徑 R1:第1絕緣破壞區域 R2:第2絕緣破壞區域 R3、R4:區域 r1、r2:曲率半徑 Si1:控制訊號 T1:放電之週期(放電週期) T2:間歇期間 t1:第1時間點 t2:第2時間點 V1:施加電壓 V2:持續電壓 W1、W2:曲線 α、β:電壓的大小
圖1是第1實施形態之放電裝置的方塊圖。
圖2A是顯示保持在第1實施形態之放電裝置中的放電電極的液體為伸長之狀態的示意圖。
圖2B是顯示保持在第1放電裝置中的放電電極的液體為收縮之狀態的示意圖。
圖3A是顯示第1實施形態之放電裝置中之放電電極及對向電極的具體例的平面圖。
圖3B是圖3A的3B-3B線截面圖。
圖4A是示意地顯示第1實施形態之放電裝置中的放電電極及對向電極的主要部位之經局部破斷的立體圖。
圖4B是示意地顯示第1實施形態之放電裝置中的對向電極的主要部位的平面圖。
圖4C是示意地顯示第1實施形態之放電裝置中的放電電極的主要部位的正面圖。
圖5A是顯示部分破壞放電的放電形態的示意圖。
圖5B是顯示電暈放電的放電形態的示意圖。
圖5C是顯示先導放電的放電形態的示意圖。
圖6是概略地顯示第1實施形態之放電裝置中的電壓施加裝置的輸出電壓的波形圖。
圖7是概略地顯示從第1實施形態之放電裝置所發出之聲音的頻率特性的圖表。
圖8A是第1實施形態之第1變形例的放電裝置中的放電電極及對向電極的平面圖。
圖8B是第1實施形態之第1變形例的放電裝置中的放電電極及對向電極的平面圖。
圖8C是第1實施形態之第1變形例的放電裝置中的放電電極及對向電極的平面圖。
圖8D是第1實施形態之第1變形例的放電裝置中的放電電極及對向電極的平面圖。
圖9A是概略地顯示第1實施形態之變形例的放電裝置中的電壓施加裝置的輸出電壓的波形圖。
圖9B是概略地顯示第1實施形態之變形例的放電裝置中的電壓施加裝置的輸出電壓的波形圖。
圖10是第2實施形態之放電裝置的方塊圖。
2:電壓施加電路
3:控制電路
4:負載
6:輸入部
10:放電裝置
21:驅動電路
22:電壓產生電路
31:電壓控制電路
32:電流控制電路
41:放電電極
42:對向電極
50:液體
421:開口部
423:突出部
Si1:控制訊號

Claims (10)

  1. 一種電壓施加裝置,具備: 電壓施加電路,藉由對包含保持液體的放電電極的負載施加施加電壓,而於前述放電電極產生放電, 前述電壓施加電路是進行: 使前述施加電壓的大小週期地變動而間歇地產生放電, 且在產生放電後到下次產生放電以前的間歇期間中,對前述負載除了施加前述施加電壓以外,還施加用於抑制前述液體之收縮的持續電壓。
  2. 如請求項1之電壓施加裝置,其中前述液體是因應於放電之週期而機械性地振動,且在前述液體已伸長完之後緊接的第2時間點對前述負載所施加之電壓的大小,為產生放電的第1時間點對前述負載所施加之電壓的大小的2/3以上。
  3. 如請求項2之電壓施加裝置,其中前述放電電極的放電的頻率為600Hz以上且5000Hz以下。
  4. 如請求項2之電壓施加裝置,其中前述第2時間點是從前述第1時間點經過放電之週期的1/10的時間之時間點。
  5. 如請求項1之電壓施加裝置,其是藉由對前述負載施加前述持續電壓,而使得伴隨於前述液體的機械性的振動的聲壓下降1dB以上。
  6. 如請求項1之電壓施加裝置,其是藉由放電將前述液體靜電霧化。
  7. 一種放電裝置,具備: 放電電極,保持液體;及 電壓施加電路,藉由對包含前述放電電極的負載施加施加電壓,而於前述放電電極產生放電, 前述電壓施加電路是進行: 使前述施加電壓的大小週期地變動而間歇地產生放電, 且在產生放電後到下次產生放電以前的間歇期間中,對前述負載除了施加前述施加電壓以外,還施加用於抑制前述液體之收縮的持續電壓。
  8. 如請求項7之放電裝置,其更具備對前述放電電極供給前述液體的液體供給部。
  9. 如請求項8之放電裝置,其更具備調節在前述液體供給部之前述液體的供給量的供給量調節部。
  10. 如請求項7之放電裝置,其更具備對向電極,前述對向電極是配置成和前述放電電極隔著間隙而對向, 又,藉由在前述放電電極與前述對向電極之間施加施加電壓,而在前述放電電極與前述對向電極之間產生放電。
TW108127898A 2018-08-29 2019-08-06 電壓施加裝置及放電裝置 TWI801642B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160762A JP6902721B2 (ja) 2018-08-29 2018-08-29 電圧印加装置及び放電装置
JP2018-160762 2018-08-29

Publications (2)

Publication Number Publication Date
TW202013843A true TW202013843A (zh) 2020-04-01
TWI801642B TWI801642B (zh) 2023-05-11

Family

ID=69644349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127898A TWI801642B (zh) 2018-08-29 2019-08-06 電壓施加裝置及放電裝置

Country Status (6)

Country Link
US (1) US20210268524A1 (zh)
EP (1) EP3845312B1 (zh)
JP (1) JP6902721B2 (zh)
CN (1) CN112584935B (zh)
TW (1) TWI801642B (zh)
WO (1) WO2020044889A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7519629B2 (ja) 2020-12-04 2024-07-22 パナソニックIpマネジメント株式会社 放電装置
WO2024209620A1 (ja) * 2023-04-06 2024-10-10 パナソニックIpマネジメント株式会社 放電装置及びヘアケア装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321435B2 (ja) * 2004-10-26 2009-08-26 パナソニック電工株式会社 静電霧化装置
JP2007167758A (ja) * 2005-12-21 2007-07-05 Matsushita Electric Works Ltd 静電霧化装置
WO2007111121A1 (ja) * 2006-03-29 2007-10-04 Matsushita Electric Works, Ltd. 静電霧化装置
GB0709517D0 (en) * 2007-05-17 2007-06-27 Queen Mary & Westfield College An electrostatic spraying device and a method of electrostatic spraying
JP2009072717A (ja) * 2007-09-21 2009-04-09 Panasonic Electric Works Co Ltd 静電霧化装置及びそれを備えた加熱送風装置
JP5149095B2 (ja) * 2008-07-28 2013-02-20 パナソニック株式会社 静電霧化装置およびそれを用いる空気調和機
JP5234762B2 (ja) * 2008-08-22 2013-07-10 シャープ株式会社 イオン発生装置および電気機器
JP2010227808A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 静電霧化装置
JP5887530B2 (ja) * 2011-09-05 2016-03-16 パナソニックIpマネジメント株式会社 静電霧化装置
JP2013075265A (ja) * 2011-09-30 2013-04-25 Panasonic Corp 静電霧化装置
JP2013116444A (ja) * 2011-12-02 2013-06-13 Panasonic Corp 静電霧化装置
JP2014089857A (ja) * 2012-10-30 2014-05-15 Sharp Corp イオン発生装置及び電気機器
US20160031708A1 (en) * 2013-03-11 2016-02-04 Panasonic Intellectual Property Management Co., Ltd. Active ingredient generator
JP6241745B2 (ja) * 2014-07-11 2017-12-06 パナソニックIpマネジメント株式会社 静電霧化装置及び静電霧化方法
JP2016143482A (ja) * 2015-01-30 2016-08-08 キヤノン株式会社 イオン化装置、それを有する質量分析装置及び画像作成システム
JP6598074B2 (ja) * 2016-08-01 2019-10-30 パナソニックIpマネジメント株式会社 放電装置およびこれの製造方法
JP6528333B2 (ja) * 2016-08-01 2019-06-12 パナソニックIpマネジメント株式会社 静電霧化装置
US11351556B2 (en) * 2016-08-31 2022-06-07 Selfrag Ag Method for operating a high-voltage pulse system
JP6587189B2 (ja) * 2016-09-08 2019-10-09 パナソニックIpマネジメント株式会社 電圧印加装置、及び放電装置
JP6709961B2 (ja) * 2017-08-31 2020-06-17 パナソニックIpマネジメント株式会社 電圧印加装置、及び放電装置

Also Published As

Publication number Publication date
EP3845312A1 (en) 2021-07-07
WO2020044889A1 (ja) 2020-03-05
US20210268524A1 (en) 2021-09-02
TWI801642B (zh) 2023-05-11
EP3845312B1 (en) 2024-09-04
EP3845312A4 (en) 2021-10-27
JP6902721B2 (ja) 2021-07-14
JP2020032357A (ja) 2020-03-05
CN112584935B (zh) 2022-07-19
CN112584935A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
TW202017273A (zh) 電壓施加裝置及放電裝置
TWI780188B (zh) 電壓施加裝置、及放電裝置
CN111613973B (zh) 电极装置、放电装置以及静电雾化系统
TW202013843A (zh) 電壓施加裝置及放電裝置
US12107397B2 (en) Electric discharge device and electrode device
US20240266807A1 (en) Discharge device
WO2023007884A1 (ja) 放電装置