WO2023007884A1 - 放電装置 - Google Patents

放電装置 Download PDF

Info

Publication number
WO2023007884A1
WO2023007884A1 PCT/JP2022/018465 JP2022018465W WO2023007884A1 WO 2023007884 A1 WO2023007884 A1 WO 2023007884A1 JP 2022018465 W JP2022018465 W JP 2022018465W WO 2023007884 A1 WO2023007884 A1 WO 2023007884A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
electrode
tip
discharge electrode
counter electrode
Prior art date
Application number
PCT/JP2022/018465
Other languages
English (en)
French (fr)
Inventor
秀敏 秦
陽平 石上
慎 今井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280049773.1A priority Critical patent/CN117642948A/zh
Priority to EP22848967.0A priority patent/EP4379978A1/en
Publication of WO2023007884A1 publication Critical patent/WO2023007884A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present disclosure relates generally to a discharge device, and more particularly to a discharge device comprising a discharge electrode and a counter electrode.
  • Patent Document 1 describes a discharge device that includes a discharge electrode, a counter electrode, and a voltage application section.
  • the counter electrode is positioned to face the discharge electrode.
  • the voltage application unit applies a voltage to the discharge electrode to cause the discharge electrode to generate a higher energy discharge than the corona discharge.
  • the high-energy discharge in the discharge device described in Patent Literature 1 is a discharge that intermittently generates a discharge path between the discharge electrode and the counter electrode, the dielectric breakdown of which connects the two.
  • the liquid is supplied to the discharge electrode by the liquid supply section. Therefore, the liquid is electrostatically atomized by the discharge, and nanometer-sized electrically charged fine particle liquid containing radicals is generated.
  • the active ingredient (radicals or charged fine particle liquid containing the same) is generated with larger energy than corona discharge. components are generated. Furthermore, the amount of ozone produced is reduced to the same extent as in the case of corona discharge.
  • the present disclosure has been made in view of the above reasons, and aims to provide a discharge device capable of increasing the amount of active ingredients produced.
  • a discharge device includes a discharge electrode, a counter electrode, and a voltage application device.
  • the discharge electrode has a tip.
  • the counter electrode is arranged so as to face the tip portion of the discharge electrode with a gap therebetween.
  • the voltage application device generates a discharge between the discharge electrode and the counter electrode by applying a voltage between the discharge electrode and the counter electrode.
  • the discharge electrode protrudes toward the counter electrode.
  • the counter electrode has a discharge portion where the discharge occurs between the tip portion of the discharge electrode. The discharge portion extends along a circumference around the tip portion of the discharge electrode.
  • FIG. 1 is a block diagram of a discharge device according to an embodiment.
  • FIG. 2A is a schematic diagram showing a state in which the liquid held by the discharge electrode in the same discharge device is stretched.
  • FIG. 2B is a schematic diagram showing a state in which the liquid held by the discharge electrode is shrunk.
  • FIG. 3A is a top view showing a load in the same discharge device.
  • FIG. 3B is a cross-sectional view taken along line X1-X1 of FIG. 3A.
  • FIG. 4A is a schematic diagram in which a part of the main part of the load is broken.
  • FIG. 4B is a cross-sectional view of a main part of the same load.
  • FIG. 4C is a front view of the same discharge electrode.
  • FIG. 5A is a schematic diagram showing the form of partial breakdown discharge.
  • FIG. 5B is a schematic diagram showing the discharge form of corona discharge.
  • FIG. 5C is a schematic diagram showing a discharge form of all-path breakdown discharge.
  • FIG. 6A is a cross-sectional view of a main part of a load in a discharge device according to Modification 1.
  • FIG. 6B is a cross-sectional view of the main part of the load in the discharge device according to the second modification.
  • FIG. 1 is a block diagram of a discharge device 10 according to an embodiment.
  • FIG. 2A is a schematic diagram showing a state in which the liquid held by the discharge electrode 41 in the discharge device 10 is stretched.
  • FIG. 2B is a schematic diagram showing a state in which the liquid held by the discharge electrode 41 has shrunk.
  • FIG. 3A is a top view showing the load 4 in the discharge device 41.
  • FIG. 3B is a cross-sectional view taken along line X1-X1 of FIG. 3A.
  • FIG. 4A is a schematic diagram of a partially cutaway main part of the load 4.
  • FIG. 1 is a block diagram of a discharge device 10 according to an embodiment.
  • FIG. 2A is a schematic diagram showing a state in which the liquid held by the discharge electrode 41 in the discharge device 10 is stretched.
  • FIG. 2B is a schematic diagram showing a state in which the liquid held by the discharge electrode 41 has shrunk.
  • FIG. 3A is a top view showing the load 4
  • the discharge device 10 includes a voltage application device 1, a load 4 (electrode device), and a liquid supply section 5.
  • the load 4 has a discharge electrode 41 and a counter electrode 42.
  • the load 4 is a device that causes discharge between the discharge electrode 41 and the counter electrode 42 by applying a voltage between the discharge electrode 41 and the counter electrode 42 .
  • the direction in which the discharge electrode 41 and the counter electrode 42 face each other is defined as the vertical direction.
  • the direction from the discharge electrode 41 side to the counter electrode 42 side is defined as upward, and the direction from the counter electrode 42 side to the discharge electrode 41 side is defined as downward.
  • the discharge electrode 41 protrudes (upward) toward the counter electrode 42 . Further, the discharge electrode 41 has a tip portion 411 (see FIG. 2A). The tip portion 411 is formed at the tip (upper end) of the discharge electrode 41 in the direction in which the discharge electrode 41 protrudes. Also, the tip portion 411 holds the liquid 50 (see FIG. 2A). In the following description, the direction in which the discharge electrode 41 protrudes (upward) may be referred to as "the direction in which the discharge electrode 41 protrudes”.
  • the counter electrode 42 is arranged so as to face the tip portion 411 of the discharge electrode 41 with a gap therebetween.
  • the counter electrode 42 has a discharge portion 420 in which discharge occurs between the tip portion 411 of the discharge electrode 41 and the discharge portion 420 .
  • the discharge portion 420 extends along the circumference around the tip portion 411 of the discharge electrode 41 . In other words, the discharge portion 420 linearly extends along the circumference around the tip portion 411 of the discharge electrode 41 in a plan view seen from the axial direction of the discharge electrode 41 .
  • the liquid supply unit 5 supplies the liquid 50 to the tip 411 of the discharge electrode 41 .
  • the voltage application device 1 is a device that generates discharge between the discharge electrode 41 and the counter electrode 42 by applying a voltage between the discharge electrode 41 and the counter electrode 42 . In other words, the voltage application device 1 applies a voltage between the discharge electrode 41 and the counter electrode 42 to cause a partial dielectric breakdown between the tip 411 of the discharge electrode 41 and the counter electrode 42 .
  • a path L1 (see FIG. 4A) is formed.
  • the term “dielectric breakdown” as used in the present disclosure means that the electrical insulation of an insulator (including gas) separating conductors is broken and the insulation state cannot be maintained. Gas dielectric breakdown occurs, for example, because ionized molecules are accelerated by an electric field, collide with other gas molecules, ionize, and the ion concentration increases rapidly to cause gas discharge.
  • the voltage application device 1 of the present embodiment applies voltage from the voltage application circuit 2 to the load 4 including the discharge electrode 41 in a state where the discharge electrode 41 holds the liquid 50 .
  • discharge occurs at least in the discharge electrode 41, and the liquid 50 held in the discharge electrode 41 is electrostatically atomized by the discharge.
  • the discharge device 10 generates radicals by generating discharge between the discharge electrode 41 of the load 4 and the counter electrode 42 and electrostatically atomizes the liquid 50 held by the discharge electrode 41 .
  • the discharge device 10 generates a nanometer-sized charged fine particle liquid containing radicals in the fine droplets of the electrostatically atomized liquid 50 .
  • the discharge device 10 functions as a charged particulate liquid generation device (electrostatic atomization device).
  • Radicals are the basis for producing useful effects in various situations, not limited to sterilization, deodorization, moisturizing, freshness preservation, and virus inactivation.
  • radicals, charged microparticle liquid, and the like may be collectively referred to as active ingredients. Active ingredients also include air ions.
  • the discharge device 10 can extend the life of the radicals compared to the case where the radicals are released into the air by themselves. Furthermore, since the charged microparticle liquid is, for example, nanometer-sized, the charged microparticle liquid can be suspended over a relatively wide range.
  • the counter electrode 42 of the discharge device 10 of this embodiment has the discharge portion 420 .
  • the discharge portion 420 is a portion that generates discharge with the tip portion 411 of the discharge electrode 41 .
  • a conventional load (counter electrode) having a needle-shaped discharge portion can be used.
  • the discharge path L1 whose apex is the tip 411 of the discharge electrode 41 is widened. By widening the discharge path L1, it is possible to increase the amount of effective components (including radicals, etc.) generated by the discharge.
  • FIG. 4B is a cross-sectional view of a main part of load 4 in discharge device 41.
  • FIG. 4C is a front view of the discharge electrode 41 in the discharge device 10.
  • FIG. 5A is a schematic diagram showing the form of partial breakdown discharge.
  • FIG. 5B is a schematic diagram showing the discharge form of corona discharge.
  • FIG. 5C is a schematic diagram showing a discharge form of all-path breakdown discharge.
  • a discharge device 10 includes a voltage application device 1 , a load 4 and a liquid supply section 5 .
  • the liquid supply portion 5 supplies the liquid 50 for electrostatic atomization to the discharge electrode 41 .
  • the liquid supply unit 5 is implemented, as an example, using a cooling device 51 shown in FIG. 3B.
  • the cooling device 51 cools the discharge electrode 41 to generate condensed water on the discharge electrode 41 as a liquid 50 (see FIG. 2A).
  • the cooling device 51 includes a pair of Peltier elements 511 and a pair of radiator plates 512 .
  • a pair of Peltier elements 511 are held by a pair of radiator plates 512 .
  • the cooling device 51 cools the discharge electrode 41 by energizing the pair of Peltier elements 511 .
  • the pair of heat sinks 512 are held in the housing 40 by partially embedding each of the pair of heat sinks 512 in the housing 40 of the load 4, which will be described later. At least a portion of the pair of heat sinks 512 that holds the Peltier element 511 is exposed from the housing 40 .
  • the pair of Peltier elements 511 are mechanically and electrically connected to the later-described base end portion 41b of the discharge electrode 41 by soldering, for example. Also, the pair of Peltier elements 511 are mechanically and electrically connected to the pair of radiator plates 512 by soldering, for example. The pair of Peltier elements 511 is energized through the pair of radiator plates 512 and the discharge electrodes 41 . Therefore, the cooling device 51 that constitutes the liquid supply portion 5 cools the entire discharge electrode 41 through the base end portion 41b. As a result, moisture in the air condenses and adheres to the surface of the discharge electrode 41 as condensed water. This condensed water is retained on the discharge electrode 41 as the liquid 50 .
  • the liquid supply unit 5 is configured to cool the discharge electrode 41 and generate condensed water as the liquid 50 on the surface of the discharge electrode 41 .
  • the liquid supply unit 5 can supply the liquid 50 (condensed water) to the discharge electrode 41 using the moisture in the air, so it is unnecessary to supply and replenish the liquid to the discharge device 10 .
  • the voltage application device 1 of this embodiment includes a voltage application circuit 2 and a control circuit 3 .
  • the voltage application circuit 2 has a drive circuit 21 and a voltage generation circuit 22 .
  • the drive circuit 21 is a circuit that drives the voltage generation circuit 22 .
  • the voltage generation circuit 22 is a circuit that receives power supply from the power supply section 6 (input section) and generates an applied voltage V1 (see FIG. 5A) to be applied to the load 4 .
  • the “applied voltage” referred to in the present disclosure means the voltage applied to the load 4 by the voltage application circuit 2 to cause discharge.
  • the power supply unit 6 is a power supply circuit that generates a DC voltage of several volts to several tens of volts. Although the power supply unit 6 is not included in the voltage application device 1 in this embodiment, the power supply unit 6 may be included in the voltage application device 1 .
  • the voltage application circuit 2 is, for example, an insulated DC/DC converter, boosts the input voltage (eg, 13.8 V) from the power supply unit 6, and outputs the boosted voltage as the applied voltage V1.
  • the applied voltage V1 of the voltage application circuit 2 is applied to the load 4 (discharge electrode 41 and counter electrode 42).
  • the voltage application circuit 2 is electrically connected to the load 4 .
  • a voltage application circuit 2 applies a high voltage to a load 4 .
  • the voltage application circuit 2 is configured to apply a high voltage between the discharge electrode 41 and the counter electrode 42 with the discharge electrode 41 as the negative electrode (ground) and the counter electrode 42 as the positive electrode (plus). .
  • the “high voltage” referred to here may be any voltage set to cause discharge between the discharge electrode 41 and the counter electrode 42 .
  • discharge between the discharge electrode 41 and the counter electrode 42 in the present disclosure means that a partially dielectrically broken discharge path L1 is formed between the discharge electrode 41 and the counter electrode 42, as shown in FIG. 5A. Including discharges that are formed.
  • Such a discharge in which a discharge path L1 is partially broken down is hereinafter referred to as a "partial breakdown discharge”.
  • the partial breakdown discharge forms a partially dielectrically broken discharge path L1 between the discharge electrode 41 and the counter electrode 42 (between the pair of electrodes). Details of the partial breakdown discharge will be described in the section "(3) Discharge form".
  • the “discharge between the discharge electrode 41 and the counter electrode 42 ” referred to in the present disclosure is a dielectric breakdown that occurs as a whole between the discharge electrode 41 and the counter electrode 42 , as shown in FIG. 5C . It contains the discharge in which region R4 is formed. Such a discharge in which a dielectric breakdown region R4 is formed in which the dielectric breakdown occurs entirely is hereinafter referred to as "all-path breakdown discharge".
  • the all-path breakdown discharge is a discharge path (from one electrode to the other electrode) in which continuous dielectric breakdown occurs between the discharge electrode 41 and the counter electrode 42 (between the pair of electrodes). A discharge path with dielectric breakdown) is formed.
  • the full-path breakdown discharge will be described in detail in the section "(3) Discharge form".
  • the voltage application circuit 2 of the present embodiment intermittently (intermittently) causes discharge by periodically varying the magnitude of the applied voltage V1.
  • the applied voltage V1 alternately repeats a period in which the applied voltage V1 rises to a high voltage and a period in which the applied voltage V1 falls to a low voltage.
  • the liquid 50 vibrates due to the periodic variation in the magnitude of the applied voltage V1.
  • the “high voltage” referred to here may be any voltage that is set so as to generate discharge in the discharge electrode 41, and is, for example, a voltage with a peak of about 7.0 kV.
  • the voltage value of the applied voltage V1 is not limited to about 7.0 kV.
  • the "low voltage” may be any voltage set so that discharge does not occur in the discharge electrode 41, and is a voltage lower than the above-described "high voltage”.
  • “periodically fluctuating the magnitude of the applied voltage V1” may be referred to as “periodically fluctuating the applied voltage V1".
  • the liquid 50 held by the discharge electrode 41 is subjected to the force due to the electric field during the period when the applied voltage V1 is high, as shown in FIG. 2A. It receives and forms a conical shape called a Taylor cone. At least part of the distal end portion 411 of the discharge electrode 41 enters the Taylor cone-shaped liquid 50 . Electric discharge is generated by concentration of the electric field at the tip (apex) of the Taylor cone. At this time, the sharper the tip of the Taylor cone, that is, the smaller the apex angle of the cone (the sharper the angle), the smaller the electric field strength required for dielectric breakdown, and the more likely discharge occurs.
  • the liquid 50 held by the discharge electrode 41 assumes a substantially spherical shape due to a decrease in the force due to the electric field, as shown in FIG. 2B.
  • the liquid 50 held by the discharge electrode 41 alternately deforms between the shape shown in FIG. 2A and the shape shown in FIG. 2B.
  • the Taylor cones as described above are formed periodically, so that the discharge is intermittently generated in accordance with the timing at which the Taylor cones as shown in FIG. 2A are formed. 2A and 2B, the liquid 50 is dot-hatched so that the tip 411 and the liquid 50 can be easily distinguished.
  • the discharge that occurs intermittently (intermittently) between the discharge electrode 41 and the counter electrode 42 in response to periodic fluctuations in the applied voltage V1 is sometimes referred to as "leader discharge".
  • the leader discharge intermittently forms a discharge path between the discharge electrode 41 and the counter electrode 42 (between the pair of electrodes) to intermittently and repeatedly generate a discharge current (output current). That is, the “leader discharge” includes partial breakdown discharge and full path breakdown discharge that occur intermittently (intermittently) between the discharge electrode 41 and the counter electrode 42 in accordance with the periodic fluctuation of the applied voltage V1.
  • the leader discharge consists of spark discharge instantaneously (single-shot) generated between the discharge electrode 41 and the counter electrode 42, and glow discharge and arc discharge continuously generated between the discharge electrode 41 and the counter electrode 42. are different.
  • the control circuit 3 controls the voltage application circuit 2 .
  • the control circuit 3 performs control to periodically vary the magnitude of the applied voltage V1 during the drive period in which the voltage application device 1 is driven.
  • a “driving period” as used in the present disclosure is a period during which the voltage applying device 1 is driven so as to cause the discharge electrode 41 to discharge.
  • the control circuit 3 of this embodiment controls the voltage application circuit 2 based on the monitored object.
  • the “monitored object” here is composed of at least one of the output current and the output voltage of the voltage applying circuit 2 .
  • the control circuit 3 of this embodiment has a voltage control circuit 31 and a current control circuit 32 .
  • the voltage control circuit 31 controls the drive circuit 21 of the voltage application circuit 2 based on the monitored object consisting of the output voltage of the voltage application circuit 2 .
  • the voltage control circuit 31 outputs a control signal Si1 to the drive circuit 21 and controls the drive circuit 21 with the control signal Si1.
  • the current control circuit 32 controls the drive circuit 21 of the voltage application circuit 2 based on the monitored object consisting of the output current of the voltage application circuit 2 .
  • the current control circuit 32 outputs a control signal Si2 to the drive circuit 21, and controls the drive circuit 21 with the control signal Si2.
  • the voltage control circuit 31 controls the primary voltage of the voltage application circuit 2.
  • the output voltage of the voltage applying circuit 2 may be detected indirectly from the .
  • the current control circuit 32 controls the voltage application circuit
  • the output current of the voltage application circuit 2 may be detected indirectly from the input current of the voltage application circuit 2.
  • the load 4 of this embodiment has a housing 40, a discharge electrode 41, and a counter electrode .
  • the housing 40 is formed in a rectangular box shape with an opening on the top surface (the surface on the side that holds the counter electrode 42).
  • the housing 40 is made of an electrically insulating material such as synthetic resin.
  • a housing 40 holds a discharge electrode 41 and a counter electrode 42 . More specifically, the housing 40 holds the discharge electrode 41 and the counter electrode 42 so that the discharge electrode 41 and the counter electrode 42 face each other with a gap therebetween in the vertical direction.
  • the discharge electrode 41 is a rod-shaped electrode.
  • the discharge electrode 41 is arranged on the lower side (lower surface) in the internal space of the housing 40 and protrudes upward.
  • the longitudinal direction of the discharge electrode 41 of this embodiment extends along the vertical direction.
  • the discharge electrode 41 has a shaft portion 41a and a base end portion 41b.
  • the shaft portion 41a is formed in a bar shape with a circular cross section.
  • the shaft portion 41a has the tip portion 411 described above.
  • a base end portion 41b having a flat plate shape is formed continuously and integrally with a first longitudinal end of the shaft portion 41a (an end portion opposite to the tip portion 411 or a lower end).
  • the tip portion 411 is formed at the second longitudinal end (upper end or tip) of the shaft portion 41a.
  • the tip portion 411 has a tapered shape in which the cross-sectional area becomes smaller as it approaches the tip of the shaft portion 41a.
  • the discharge electrode 41 is a needle electrode having a tapered tip portion 411 .
  • the term “tapered shape” as used herein is not limited to a shape with a sharply pointed tip, but includes a shape with a rounded tip as shown in FIGS. 2A and 2B.
  • the shape of the tip portion 411 of the discharge electrode 41 is, for example, a shape including a conical portion.
  • the shape of the portion of the distal end portion 411 facing the counter electrode 42 (here, the shape of the tip or upper end of the conical portion) is, for example, an R shape (R shape).
  • R shape as used in the present disclosure may include that the surface of a certain member is rounded (has roundness).
  • the distal end surface of the distal end portion 411 of the present embodiment includes a curved surface that is upwardly convex and rounded.
  • the tip surface of the discharge electrode 41 of the present embodiment has a cross-sectional shape including the central axis of the discharge electrode 41 that is formed in an arc shape that is continuously connected from the side surface of the tip portion 411 and does not include corners. That is, the entire tip surface of the discharge electrode 41 is a curved surface (curved surface).
  • the radius of curvature r2 (see FIG. 4C) of the tip surface of the discharge electrode 41 is preferably 0.2 mm or more.
  • the counter electrode 42 is arranged on the upper side (upper surface) of the internal space of the housing 40 .
  • the counter electrode 42 is arranged so as to face the tip portion 411 of the discharge electrode 41 with a gap therebetween in the vertical direction.
  • the counter electrode 42 is spatially separated from the discharge electrode 41, and the counter electrode 42 and the discharge electrode 41 are electrically insulated.
  • the counter electrode 42 has a discharge portion 420 , a support portion 422 , a concave portion 421 , a bottom portion 4211 and a cylindrical portion 423 .
  • the concave portion 421, the bottom portion 4211, and the cylindrical portion 423 are formed in an annular shape centered on the tip portion 411 of the discharge electrode 41 in a plan view (top view) when the load 4 is viewed from above. It is That is, the recessed portion 421, the bottom portion 4211, and the cylindrical portion 423 are formed in concentric annular shapes when the load 4 is viewed from above.
  • a cylindrical portion 423 , a bottom portion 4211 , a concave portion 421 , and a support portion 422 are arranged in order from the inside centering on the tip portion 411 of the discharge electrode 41 .
  • the support portion 422 is held by the housing 40 . As shown in FIG. 3B, the support portion 422 is formed in a flat plate shape whose thickness direction extends along the vertical direction.
  • the recessed portion 421 is recessed from the support portion 422 toward the discharge electrode 41 . That is, the recess 421 is formed so as to be recessed downward from the support portion 422 . In other words, the recess 421 protrudes downward from the support 422 . As shown in FIG. 3A, the recess 421 has a circular shape when the load 4 is viewed from above. Further, the concave portion 421 has a cylindrical shape whose diameter becomes smaller as it is concaved downward (progressing downward).
  • the bottom portion 4211 protrudes from the lower end of the recessed portion 421 toward the tip portion 411 of the discharge electrode 41 when the load 4 is viewed from above.
  • the bottom portion 4211 is formed in a flat plate shape with a thickness direction along the up-down direction and in an annular shape.
  • the tubular portion 423 protrudes upward from the inner peripheral end of the bottom portion 4211 . That is, the cylindrical portion 423 extends along the projecting direction of the discharge electrode 41 .
  • the cylindrical portion 423 of this embodiment has a cylindrical shape whose diameter decreases as it progresses upward. In other words, the cylindrical portion 423 protrudes away from the discharge electrode 41 and has a truncated cone shape. Cylindrical portion 423 is formed in a dome shape to cover discharge electrode 41 above discharge electrode 41 .
  • the cylindrical portion 423 has a first opening 4231 and a second opening 4232 .
  • the first opening 4231 and the second opening 4232 are arranged in the vertical direction. In other words, the first opening 4231 and the second opening 4232 are arranged along the projecting direction (upward) of the discharge electrode 41 .
  • the first opening 4231 is arranged below the second opening 4232 . That is, the first opening 4231 is arranged closer to the discharge electrode 41 than the second opening 4232 is.
  • the first opening 4231 and the second opening 4232 are circular openings centered on the tip 411 of the discharge electrode 41 when the load 4 is viewed from above. As shown in FIG. 4B, the opening diameter D3 of the second opening 4232 of this embodiment is smaller than the opening diameter D4 of the first opening 4231 .
  • the tubular portion 423 of this embodiment further has an edge portion 424 .
  • the edge portion 424 is a portion of the edge of the first opening 4231 and a portion continuous with the bottom portion 4211 .
  • Edge portion 424 is a portion including line L2 where the distance between tip portion 411 of discharge electrode 41 and counter electrode 42 is the shortest.
  • the distance between the portion other than edge portion 424 and tip portion 411 of discharge electrode 41 is greater than the distance between edge portion 424 and tip portion 411 of discharge electrode 41 . That is, the edge portion 424 is a portion where electric field concentration is likely to occur.
  • the distance between the edge portion 424 and the tip portion 411 of the discharge electrode 41 and the distance between the portion of the cylindrical portion 423 other than the edge portion 424 and the tip portion 411 of the discharge electrode 41 are set so that the electric field concentrates on the edge portion 424. That's enough.
  • the edge portion 424 of the cylindrical portion 423 can be used as a discharge portion.
  • the line L2 in this embodiment is a virtual line.
  • the line L2 is an annular line centered on the tip portion 411 of the discharge electrode 41
  • the edge portion 424 is an annular shape including the line L2.
  • a distance D1 between the annular line L2 and the tip portion 411 of the discharge electrode 41 is the same over the entire circumference of the line L2.
  • the line L2 of the present embodiment forms an imaginary right cone with the length of the generatrix equal to the distance D1 with the tip 411 of the discharge electrode 41 as the apex. Note that the distance D1 between the line L2 and the tip 411 of the discharge electrode 41 is smaller than the distance D2 between the edge of the second opening 4232 and the tip 411 of the discharge electrode 41 .
  • the edge 424 of this embodiment has a curved surface.
  • the edge portion 424 has a rounded shape that protrudes toward the tip portion 411 of the discharge electrode 41 .
  • the edge portion 424 is formed in a semicircular arc shape continuously connected from the bottom portion 4211 in its cross section and does not include corners. That is, the entire surface of the edge portion 424 of the cylindrical portion 423 is a curved surface (curved surface).
  • the curvature radius r1 of the edge portion 424 is preferably 1/2 or more of the curvature radius r2 of the tip portion 411 of the discharge electrode 41 (see FIG. 4C). That is, it is preferable to satisfy the relational expression "r1 ⁇ r2 ⁇ 1/2". As an example, when the curvature radius r2 of the tip portion 411 of the discharge electrode 41 is 0.6 mm, the curvature radius r1 of the edge portion 424 is preferably 0.3 mm or more.
  • the term “curvature radius” as used herein means the minimum value, that is, the radius of curvature of the portion where the curvature is maximum for both the edge portion 424 and the tip portion 411 of the discharge electrode 41 . However, since the scales of FIG. 4B and FIG. 4C are different, "r1" in FIG. 4B and “r2" in FIG. 4C do not immediately represent the ratio between "r1" and "r2". .
  • the curvature radius r1 of the edge portion 424 is larger than the curvature radius r2 of the tip portion 411 of the discharge electrode 41 .
  • the curvature radius r1 of the edge portion 424 of this embodiment is larger than the curvature radius r2 of the tip portion 411 of the discharge electrode 41 .
  • a discharge portion 420 shown in FIG. 4A is a portion where discharge occurs with the tip portion 411 of the discharge electrode 41 .
  • the discharge portion 420 linearly extends along the circumference centering on the tip portion 411 of the discharge electrode 41 .
  • the discharge portion 420 of this embodiment is formed in the edge portion 424 . In other words, the discharge part 420 is formed at the edge of the first opening 4231 .
  • the discharge portion 420 of the present embodiment is a portion (strip-shaped surface) including the line L2 where the distance between the tip portion 411 of the discharge electrode 41 and the counter electrode 42 is the shortest. Since the discharge portion 420 includes the line L2, discharge is more likely to occur between the discharge portion 420 and the tip portion 411 of the discharge electrode 41, and the amount of active ingredients produced can be increased.
  • the discharge portion 420 of the present embodiment is formed in an annular shape along the circumference centering on the tip portion 411 of the discharge electrode 41 .
  • the discharge portion 420 is formed in an annular shape along the circumference centered on the tip portion 411 of the discharge electrode 41 in a plan view seen from the axial direction of the discharge electrode 41 .
  • the discharge portion 420 of this embodiment is formed in an annular shape including the line L2.
  • a dotted line in FIGS. 4A and 4B indicates the discharge path L1 between the discharge portion 420 and the tip portion 411 of the discharge electrode 41. As shown in FIG.
  • the discharge path L ⁇ b>1 of the present embodiment is formed along the generatrix of an imaginary right cone formed by the tip portion 411 of the discharge electrode 41 and the discharge portion 420 .
  • the discharge path L1 is formed along the side surface of the cone formed by the tip portion 411 of the discharge electrode 41 and the discharge portion 420 .
  • a discharge that occurs in a conical side surface shape with the tip 411 of the discharge electrode 41 as the apex is referred to as a “round discharge”.
  • the round discharge forms a discharge path extending like a conical side connecting between the discharge electrode 41 and the counter electrode 42 (between the pair of electrodes).
  • the discharge portion 420 of the present embodiment is formed at the edge portion 424, the discharge portion 420 has a curved surface. Since the discharge portion 420 has a curved surface, it is possible to suppress an excessive increase in electric field concentration. By suppressing an excessive increase in electric field concentration, it is possible to suppress a decrease in the amount of active ingredient produced due to the progress of the discharge form.
  • the curvature radius r1 of the discharge portion 420 of the present embodiment is larger than the curvature radius r2 of the tip portion 411 of the discharge electrode 41 .
  • the curvature radius r1 of the curved surface of the discharge portion 420 is larger than the curvature radius r2 of the tip portion 411 of the discharge electrode 41 .
  • the active ingredient generated around the edge of the first opening 4231 (edge 424 ) due to the discharge passes through the inner space of the cylindrical portion 423 and is released from the second opening 4232 . That is, the tubular portion 423 of the present embodiment serves as a release route for the active ingredient. Cylindrical portion 423 serves as a release path for the active ingredient, so that the active ingredient can be released efficiently.
  • the opening diameter D3 of the second opening 4232 of this embodiment is smaller than the opening diameter D4 of the first opening 4231 . Since the opening diameter D3 is smaller than the opening diameter D4, the cylindrical portion 423 functions as a nozzle that releases the active ingredient. Therefore, the flow rate of the active ingredient released from the second opening 4232 through the inner space of the cylindrical portion 423 increases, and the active ingredient can be released more efficiently.
  • FIGS. 5A to 5C are conceptual diagrams for explaining the form of discharge, and in FIGS. 5A to 5C, the discharge electrode 41 and the counter electrode 42 are schematically shown. Further, in the discharge device 10 according to the present embodiment, the discharge electrode 41 actually holds the liquid 50, and discharge occurs between the liquid 50 and the counter electrode 42. However, FIGS. 5A to 5C The illustration of the liquid 50 is omitted here. In the following description, it is assumed that there is no liquid 50 at the tip 411 of the discharge electrode 41. However, in the case where the liquid 50 is present, the "tip 411 of the discharge electrode 41" is used as the discharge generation location. It can be read as "the liquid 50 held by the discharge electrode 41".
  • the discharge device 10 first generates a local corona discharge at the tip 411 of the discharge electrode 41 .
  • the discharge electrode 41 is on the negative (ground) side, so the corona discharge generated at the tip 411 of the discharge electrode 41 is negative corona.
  • the discharge device 10 develops the corona discharge generated at the tip 411 of the discharge electrode 41 into a higher-energy discharge. Due to this high-energy discharge, a partially dielectrically broken discharge path L1 is formed between the discharge electrode 41 and the counter electrode 42 .
  • partial breakdown discharge is one aspect of reader discharge. That is, the partial breakdown discharge is accompanied by partial dielectric breakdown between a pair of electrodes (discharge electrode 41 and counter electrode 42), but the dielectric breakdown does not occur continuously, but occurs intermittently. Discharge. Therefore, the discharge current generated between the pair of electrodes is also generated intermittently. That is, when the power source (voltage application circuit 2) does not have the current capacity required to maintain the discharge path L1, the voltage is applied between the pair of electrodes as soon as the corona discharge progresses to the partial breakdown discharge. The voltage applied to the capacitor drops, the discharge path L1 is interrupted, and the discharge stops.
  • the "current capacity” referred to here is the capacity of current that can be discharged per unit time.
  • partial breakdown discharge is different from spark discharge in which dielectric breakdown occurs instantaneously (single-shot) in that a state of high discharge energy and a state of low discharge energy are repeated.
  • partial breakdown discharge is different from glow discharge and arc discharge in which insulation breakdown occurs continuously (that is, discharge current is continuously generated) in that a state of high discharge energy and a state of low discharge energy are repeated. differ.
  • the voltage application device 1 applies an applied voltage V1 between the discharge electrode 41 and the counter electrode 42, which are arranged to face each other with a gap therebetween, thereby increasing the voltage between the discharge electrode 41 and the counter electrode 42. cause a discharge between Then, when a discharge occurs, a discharge path L1 is formed between the discharge electrode 41 and the counter electrode 42 with a partial dielectric breakdown. As shown in FIG. 5A, the discharge path L1 formed at this time includes a first dielectric breakdown region R1 generated around the discharge electrode 41 and a second dielectric breakdown region R2 generated around the counter electrode 42. and are included.
  • a discharge path L1 is formed between the discharge electrode 41 and the counter electrode 42 not entirely but partially (locally) with dielectric breakdown.
  • the discharge path L1 formed between the discharge electrode 41 and the counter electrode 42 is a path where the insulation is partially broken down without reaching the full path breakdown.
  • the shape (R shape) of the tip portion 411 of the discharge electrode 41 and the edge portion 424 of the cylindrical portion 423 are appropriately set so as to moderately relax the concentration of the electric field, thereby generating a partial breakdown discharge. easier to implement. That is, the shape of the tip portion 411 and the radius of curvature r1 of the edge portion 424, along with other factors such as the length of the discharge electrode 41 and the applied voltage V1, are appropriately set so as to loosen the concentration of the electric field. You can moderately relax your concentration.
  • the discharge path L1 includes a first dielectric breakdown region R1 generated around the discharge electrode 41 and a second dielectric breakdown region R2 generated around the counter electrode . That is, the first dielectric breakdown region R1 is a dielectrically broken region around the discharge electrode 41, and the second dielectric breakdown region R2 is a dielectrically broken region around the counter electrode .
  • the first dielectric breakdown region R1 is formed around the discharge electrode 41. generated around the liquid 50 in particular.
  • the first dielectric breakdown region R1 and the second dielectric breakdown region R2 are separated from each other so as not to contact each other.
  • the discharge path L1 includes a region (insulation region) where dielectric breakdown does not occur at least between the first dielectric breakdown region R1 and the second dielectric breakdown region R2. Therefore, in the partial breakdown discharge, the space between the discharge electrode 41 and the counter electrode 42 does not completely break down, but is partially broken down, and the discharge current flows through the discharge path L1. Become. In short, even if the discharge path L1 has a partial dielectric breakdown, in other words, even if the discharge path L1 is partially unbroken, the discharge path L1 will flow between the discharge electrode 41 and the counter electrode 42. A discharge current flows and discharge occurs.
  • the second dielectric breakdown region R2 basically occurs around the portion of the counter electrode 42 where the distance (spatial distance) to the discharge electrode 41 is the shortest.
  • the counter electrode 42 has the shortest distance D1 (see FIG. 4A) to the discharge electrode 41 at the curved edge portion 424 (discharge portion 420) of the cylindrical portion 423.
  • a breakdown region R2 is created around edge 424 . That is, the counter electrode 42 shown in FIG. 5A actually corresponds to the edge portion 424 of the tubular portion 423 .
  • the discharge portion 420 is a portion including an annular line L2 where the distance between the tip portion 411 of the discharge electrode 41 and the counter electrode 42 is the shortest. Therefore, the second dielectric breakdown region R2 is generated around this annular line L2.
  • the region of the discharge portion 420 where the second dielectric breakdown region R2 is generated is not limited to a specific region, and is randomly determined around the ring-shaped line L2.
  • the first dielectric breakdown region R1 around the discharge electrode 41 extends from the discharge electrode 41 toward the opposing counter electrode 42 .
  • a second dielectric breakdown region R2 around the counter electrode 42 extends from the counter electrode 42 toward the discharge electrode 41 which is the counterpart.
  • the first dielectric breakdown region R1 and the second dielectric breakdown region R2 extend toward each other from the discharge electrode 41 and the counter electrode 42, respectively. Therefore, each of the first dielectric breakdown region R1 and the second dielectric breakdown region R2 has a length along the discharge path L1.
  • the partially dielectrically broken regions (each of the first dielectric breakdown region R1 and the second dielectric breakdown region R2) have a shape elongated in a specific direction.
  • radicals are generated with greater energy than corona discharge (see FIG. 5B), and a large amount of radicals about 2 to 10 times greater than corona discharge are generated.
  • the radicals thus generated are the basis for producing useful effects in various situations, not limited to sterilization, deodorization, moisturizing, freshness preservation, and virus inactivation.
  • ozone is also generated.
  • the amount of radicals generated is about 2 to 10 times that of the corona discharge, whereas the amount of ozone generated is suppressed to the same level as in the case of the corona discharge.
  • Spark discharge, glow discharge and arc discharge are discharges accompanied by dielectric breakdown between a pair of electrodes.
  • a spark discharge is a discharge in which a discharge path is formed instantaneously (single-shot).
  • glow discharge and arc discharge while energy is applied between a pair of electrodes, a discharge path formed by dielectric breakdown is maintained, and discharge current is continuously generated between the pair of electrodes.
  • corona discharge is a discharge that is locally generated at one electrode (discharge electrode 41), and a dielectric breakdown between a pair of electrodes (discharge electrode 41 and counter electrode 42) occurs.
  • a local corona discharge is generated at the tip portion 411 of the discharge electrode 41 .
  • the discharge electrode 41 is on the negative (ground) side, the corona discharge generated at the tip portion 411 of the discharge electrode 41 is negative corona.
  • a local dielectric breakdown region R3 may occur around the tip 411 of the discharge electrode 41 .
  • This dielectric breakdown region R3 does not have a shape elongated in a specific direction like each of the first dielectric breakdown region R1 and the second dielectric breakdown region R2 in the partial breakdown discharge, but has a dot shape (or spherical shape).
  • the discharge path once formed is maintained without interruption, as described above. It develops from corona discharge and spark discharge to glow discharge and arc discharge.
  • the all-path breakdown discharge is a form of discharge in which the phenomenon of progressing from corona discharge to all-path breakdown between a pair of electrodes is intermittently repeated. That is, in the all-path breakdown discharge, a discharge path is generated between the discharge electrode 41 and the counter electrode 42 where the insulation is totally broken down. At this time, a dielectric breakdown region R4 may occur between the tip 411 of the discharge electrode 41 and the counter electrode 42 (discharge section 420). This dielectric breakdown region R4 does not occur partially like the first dielectric breakdown region R1 and the second dielectric breakdown region R2 in the partial breakdown discharge. It occurs so as to connect continuously between
  • the all-path breakdown discharge is one aspect of the leader discharge. That is, the all-path breakdown discharge is accompanied by dielectric breakdown (all-path breakdown) between a pair of electrodes (discharge electrode 41 and counter electrode 42), but the dielectric breakdown does not occur continuously, but is intermittent. This is the discharge that occurs at Therefore, the discharge current generated between the pair of electrodes (the discharge electrode 41 and the counter electrode 42) also occurs intermittently. That is, in the case where the power supply (voltage application circuit 2) does not have the current capacity required to maintain the discharge path L1 as described above, the pair of electrodes The voltage applied between them drops, the discharge path L1 is interrupted, and the discharge stops. A discharge current flows intermittently by repeating the generation and termination of such a discharge.
  • all-path breakdown discharge is different from spark discharge in which dielectric breakdown occurs instantaneously (single-shot) in that a state of high discharge energy and a state of low discharge energy are repeated.
  • all-path breakdown discharge is different from glow discharge and arc discharge in which insulation breakdown occurs continuously (that is, discharge current is continuously generated) in that a state of high discharge energy and a state of low discharge energy are repeated. are different.
  • the partial breakdown discharge (see FIG. 5A) generated by the discharge device 10 of the present embodiment
  • loss of radicals due to excessive energy can be suppressed compared to the full path breakdown discharge (see FIG. 5C). It is possible to improve the efficiency of generating radicals even when compared with all-path breakdown discharge. That is, in the all-path breakdown discharge, since the energy involved in the discharge is too high, some of the generated radicals may disappear, leading to a decrease in the efficiency of generating active ingredients.
  • the energy involved in the discharge is kept small compared to the full path breakdown discharge, so the amount of radicals lost due to exposure to excessive energy is reduced, and the radical generation efficiency is improved. can be achieved.
  • the concentration of the electric field is relaxed compared to the full path breakdown discharge. Therefore, in the all-path breakdown discharge, a large discharge current instantaneously flows between the discharge electrode 41 and the counter electrode 42 through the all-path breakdown discharge path, and the electrical resistance at that time is extremely small.
  • the concentration of the electric field is relaxed, so that the maximum value of the current instantaneously flowing between the discharge electrode 41 and the counter electrode 42 when the discharge path L1 is partially broken down is formed. is suppressed to be smaller than that of all-path breakdown discharge.
  • the generation of nitrided oxide (NOx) is suppressed, and the electrical noise is suppressed to a low level.
  • the discharge generated by the discharge device 10 of this embodiment is a round discharge in which the discharge path L1 is formed along the side surface of the cone formed by the tip 411 of the discharge electrode 41 and the discharge portion 420 . Since the discharge portion 420 can have the maximum length along the circumference by making the discharge portion 420 annular, the discharge between the discharge electrode 41 and the discharge portion 420 with the tip portion 411 of the discharge electrode 41 as the vertex The path L1 becomes wider. That is, the space in which the discharge occurs is expanded. By widening the discharge path L1, it is possible to further increase the amount of active ingredients produced.
  • the discharge generated by the discharge device 10 of the present embodiment is a "round leader discharge" that is a leader discharge and a round discharge.
  • the round leader discharge intermittently forms a discharge path extending like a conical side connecting the discharge electrode 41 and the counter electrode 42 (between the pair of electrodes), and intermittently and repeatedly generates a discharge current (output current).
  • Round leader discharge has the advantages of leader discharge and round discharge. In the round leader discharge, by widening the discharge path L1 into a conical side surface, the electric field concentration can be prevented from growing rapidly and developing into a full-path breakdown discharge, and the partial breakdown discharge can be spread spatially. In other words, in the round leader discharge, it is possible to increase the amount of active ingredients generated as compared with the conventional leader discharge.
  • FIG. 6A is a cross-sectional view of a main part including the counter electrode 42 of the load 4 in the discharge device according to the first modification.
  • the shape of the opposing electrode 42 is different from that of the above embodiment.
  • the discharge electrode 41 actually holds the liquid 50, and discharge occurs between the liquid 50 and the counter electrode 42, but the illustration of the liquid 50 is omitted in FIG. 6A. .
  • the "tip 411 of the discharge electrode 41" is used as the discharge generation location. It can be read as "the liquid 50 held by the discharge electrode 41".
  • the counter electrode 42 of the first modified example has a cylindrical portion 423a instead of the cylindrical portion 423 of the above embodiment.
  • the cylindrical portion 423a has a stepped portion 4233. As shown in FIG. In other words, the cylindrical portion 423a has at least one stepped portion 4233. As shown in FIG.
  • the step portion 4233 is formed between the first opening portion 4231 and the second opening portion 4232 on the inner periphery of the cylindrical portion 423a.
  • the stepped portion 4233 has an annular shape. More specifically, the stepped portion 4233 has an annular shape around the tip portion 411 of the discharge electrode 41 when the load 4 is viewed from above.
  • the inner diameter D5 of the stepped portion 4233 is smaller than the opening diameter D4 of the first opening 4231 (see FIG. 4B) and larger than the opening diameter D3 of the second opening 4232 (see FIG. 4B). That is, the stepped portion 4233 is a portion where the inner diameter of the cylindrical portion 423a becomes smaller in a plan view (bottom view) of the load 4 viewed from below.
  • the inner diameter of the cylindrical portion 423a from the first opening 4231 to the stepped portion 4233 is equal to the opening diameter D4 of the first opening 4231.
  • the inner diameter of the cylindrical portion 423a from the stepped portion 4233 to the lower end of the second opening 4232 is equal to the inner diameter D5 of the stepped portion 4233 .
  • the stepped portion 4233 of this modified example has a curved surface.
  • the stepped portion 4233 has a roundness that protrudes toward the tip portion 411 of the discharge electrode 41 .
  • the curvature radius r3 of the stepped portion 4233 is preferably 1/2 or more of the curvature radius r2 of the tip portion 411 of the discharge electrode 41 (see FIG. 4C).
  • the curvature radius r3 of the stepped portion 4233 of this modified example is larger than the curvature radius r2 of the tip portion 411 of the discharge electrode 41 .
  • the dashed-dotted line in FIG. 6A indicates the range where the distance between the tip 411 of the discharge electrode 41 and the counter electrode 42 is the shortest.
  • a distance D1a between the step portion 4233 and the tip portion 411 of the discharge electrode 41 in this modified example is equal to the distance D1 between the line L2 of the edge portion 424 (see FIG. 4A) and the tip portion 411 of the discharge electrode 41 . That is, the distance D1a between the step portion 4233 and the tip portion 411 of the discharge electrode 41 is the shortest distance between the discharge electrode 41 and the counter electrode .
  • the counter electrode 42 of this modified example has a plurality of (two in the example of FIG. 6A) discharge portions 420 .
  • One of the two discharge parts 420 is formed at the edge 424 of the first opening 4231 as in the above embodiment. That is, the discharge portion 420 formed at the edge portion 424 is one of the plurality of discharge portions 420 . Also, the other of the two discharge portions 420 is formed in the step portion 4233 .
  • the discharge portion 420 formed in the stepped portion 4233 also generates round leader discharge in the same way as the discharge portion 420 formed in the edge portion 424 . Since the counter electrode 42 has a plurality of discharge portions 420 , it is possible to suppress excessive increase in electric field concentration in each discharge portion 420 .
  • the cylindrical portion 423a may have two or more (a plurality of) stepped portions.
  • a discharge portion 420 is formed in each of the two or more stepped portions.
  • FIG. 6B is a cross-sectional view of a main part including the counter electrode 42 of the load 4 in the discharge device according to the second modification.
  • the counter electrode 42 of the second modified example has a tubular portion 423b instead of the tubular portion 423a of the above embodiment.
  • the cylindrical portion 423b has a plurality of (two in the example of FIG. 6B) stepped portions 4234 and 4235.
  • the stepped portion 4234 is arranged below the stepped portion 4235 . In other words, the stepped portion 4234 is arranged closer to the first opening 4231 than the stepped portion 4235 .
  • the inner diameters of the plurality of stepped portions 4234 and 4235 are smaller than the opening diameter D4 of the first opening 4231 (see FIG. 4B) and larger than the opening diameter D3 of the second opening 4232 (see FIG. 4B).
  • the inner diameter of the stepped portion 4234 is larger than the inner diameter of the stepped portion 4235 arranged on the stepped portion 4234 . That is, among the plurality of stepped portions arranged in the vertical direction, the inner diameter of the stepped portion arranged on the lower side is larger than the inner diameter of the stepped portion arranged on the upper side.
  • the two stepped portions 4234 and 4235 are portions where the inner diameter of the tubular portion 423b is reduced in the bottom view of the load 4 . Other shapes of the two stepped portions 4234 and 4235 are the same as the stepped portion 4233 described in the first modified example.
  • the dashed-dotted line in FIG. 6B indicates the range where the distance between the tip portion 411 of the discharge electrode 41 and the counter electrode 42 is the shortest.
  • the distance D1b between the stepped portion 4234 and the tip 411 of the discharge electrode 41 in this modification is equal to the distance D1 between the line L2 of the edge 424 (see FIG. 4A) and the tip 411 of the discharge electrode 41 .
  • a distance D1c between the step portion 4235 and the tip portion 411 of the discharge electrode 41 in this modified example is equal to the distance D1 between the line L2 of the edge portion 424 and the tip portion 411 of the discharge electrode 41 .
  • the distance D1b between the stepped portion 4234 and the tip portion 411 of the discharge electrode 41 and the distance D1c between the stepped portion 4235 and the tip portion 411 of the discharge electrode 41 are the shortest distances between the discharge electrode 41 and the counter electrode 42. .
  • the counter electrode 42 of this modified example has a plurality of (three in the example of FIG. 6B) discharge portions 420 .
  • One of the three discharge parts 420 is formed at the edge 424 of the first opening 4231 as in the above embodiment. Also, one of the three discharge portions 420 is formed in the stepped portion 4234 . Also, one of the three discharge portions 420 is formed in the stepped portion 4235 .
  • the discharge portions 420 formed on the two stepped portions 4234 and 4235 also generate round leader discharge, like the discharge portion 420 formed on the edge portion 424 . Since the counter electrode 42 has a plurality of discharge portions 420 , it is possible to suppress excessive increase in electric field concentration in each discharge portion 420 .
  • each of the counter electrode 42 and the discharge electrode 41 can be appropriately changed without being limited to the examples of FIGS. 6A and 6B.
  • the tubular portion 423b may have three or more stepped portions.
  • the distance from the tip portion 411 of the discharge electrode 41 to the stepped portion is the shortest distance (distance D1).
  • the distance from the tip portion 411 of the discharge electrode 41 to the stepped portion depends on the curvature radius r1 of the edge portion 424, the curvature radius of each of the plurality of stepped portions, and the form of discharge generated near the edge portion 424 and the stepped portion. can be set as appropriate.
  • the discharge device 10 may omit the liquid supply section 5 for generating the charged particulate liquid.
  • the discharge device 10 generates air ions by partial breakdown discharge generated between the discharge electrode 41 and the counter electrode 42 . That is, the discharge device 10 may be an ion generator or the like other than the electrostatic atomizer.
  • the configuration of the liquid supply unit 5 is not limited to cooling the discharge electrode 41 to generate condensed water on the discharge electrode 41 as in the above embodiment.
  • the liquid supply unit 5 may be configured to supply the liquid 50 from the tank to the discharge electrode 41 using, for example, capillary action or a supply mechanism such as a pump.
  • the liquid 50 is not limited to water (including condensed water), and may be liquid other than water.
  • the voltage application circuit 2 may be configured to apply a high voltage between the discharge electrode 41 and the counter electrode 42 with the discharge electrode 41 as a positive electrode (plus) and the counter electrode 42 as a negative electrode (ground). good. Furthermore, since it is sufficient that a potential difference (voltage) is generated between the discharge electrode 41 and the counter electrode 42, the voltage application circuit 2 grounds the electrode on the high potential side (positive electrode) and grounds the electrode on the low potential side (negative electrode). is a negative potential, a negative voltage may be applied to the load 4 . That is, the voltage applying circuit 2 may have the discharge electrode 41 grounded and the counter electrode 42 at a negative potential, or may have the discharge electrode 41 at a negative potential and the counter electrode 42 grounded.
  • the voltage application device 1 may include a limiting resistor between the voltage application circuit 2 and the discharge electrode 41 or the counter electrode 42 of the load 4 .
  • the limiting resistor is a resistor for limiting the peak value of the discharge current that flows after dielectric breakdown in partial breakdown discharge.
  • the limiting resistor is electrically connected between the voltage application circuit 2 and the discharge electrode 41 or between the voltage application circuit 2 and the counter electrode 42, for example.
  • the voltage application circuit 2 may be a self-excited converter or a separately-excited converter. Also, the voltage generation circuit 22 may be realized by a transformer (piezoelectric transformer) having a piezoelectric element.
  • the discharge form adopted by the discharge device 10 is not limited to the form described in the above embodiment.
  • the discharge device 10 uses a form of discharge in which the phenomenon of progressing from corona discharge to dielectric breakdown between a pair of electrodes is intermittently repeated, that is, "all-path breakdown discharge" as one mode of round discharge.
  • all-path breakdown discharge as one mode of round discharge.
  • the discharge device 10 when the corona discharge progresses to the dielectric breakdown between the pair of electrodes, a relatively large discharge current flows instantaneously, and immediately after that, the applied voltage drops and the discharge current is interrupted.
  • the phenomenon that the applied voltage rises and leads to dielectric breakdown is repeated.
  • each of the leader discharge, the round discharge, and the round leader discharge may be either a partial breakdown discharge or a full path breakdown discharge.
  • the discharge device 10 may employ spark discharge, arc discharge, or glow discharge, which is an advanced form of corona discharge, as one form of round discharge. It is the same as the round leader discharge in that it is possible to increase the amount of active ingredients generated by the discharge by widening the discharge path.
  • the shape of the counter electrode 42 is not limited to the uneven shape shown in FIG. 3B. That is, the counter electrode 42 does not have to have the concave portion 421, the cylindrical portion 423, and the like.
  • the counter electrode 42 may be formed in a flat plate shape whose thickness direction is along the vertical direction. The counter electrode 42 should just have the discharge part 420 at least.
  • the shape of the discharge portion 420 is not limited to an annular shape.
  • the shape of the discharge portion 420 may be linearly extending along the circumference centered on the tip portion 411 of the discharge electrode 41 .
  • the shape of the discharge portion 420 may be an annular shape with at least a part missing.
  • functions similar to those of the voltage application device 1 according to the above embodiment may be embodied by a control method for the voltage application circuit 2, a computer program, or a recording medium recording the computer program. That is, the function corresponding to the control circuit 3 may be embodied by a control method for the voltage application circuit 2, a computer program, or a recording medium recording the computer program.
  • the discharge device (10) includes the discharge electrode (41), the counter electrode (42), and the voltage application device (1).
  • the discharge electrode (41) has a tip (411).
  • the counter electrode (42) is arranged to face the tip (411) of the discharge electrode (41) with a gap therebetween.
  • a voltage application device (1) generates a discharge between a discharge electrode (41) and a counter electrode (42) by applying a voltage between the discharge electrode (41) and the counter electrode (42).
  • the discharge electrode (41) protrudes (upward) toward the counter electrode (42).
  • the counter electrode (42) has a discharge part (420) in which discharge occurs between it and the tip (411) of the discharge electrode (41).
  • the discharge portion (420) linearly extends along a circumference (line L2) centered on the tip (411) of the discharge electrode (41).
  • the discharge part (420) linearly extends along the circumference (line L2) centering on the tip (411) of the discharge electrode (41), the discharge part (420) is formed in a needle shape.
  • the discharge path (L1) with the tip (411) of the discharge electrode (41) as the apex is widened. By widening the discharge path (L1), it is possible to increase the amount of active ingredients (including radicals, etc.) generated by the discharge.
  • the discharge part (420) has a distance (D1) between the tip (411) of the discharge electrode (41) and the counter electrode (42). This is the portion including the shortest line (L2).
  • the discharge portion (420) includes the line (L2) with the shortest distance (D1) from the tip (411) of the discharge electrode (41). Discharge is more likely to occur between the tip (411), and the amount of active ingredients produced can be increased.
  • the discharge part (420) is a circle along the circumference centered on the tip (411) of the discharge electrode (41). It is formed in an annular shape.
  • the discharge part (420) can be made to have the maximum length along the circumference by making the discharge part (420) circular, the tip part (411) of the discharge electrode (41) can be positioned at the apex.
  • the discharge path (L1) of . By widening the discharge path (L1), it is possible to further increase the amount of active ingredient produced.
  • the discharge part (420) has a curved surface.
  • the radius of curvature (r1) of the curved surface of the discharge part (420) is the radius of curvature (r1) of the tip (411) of the discharge electrode (41) r2) is greater.
  • the electric field concentration is prevented from excessively increasing. can be suppressed.
  • the counter electrode (42) further has a cylindrical portion (423).
  • the cylindrical portion (423) extends along the direction (upward) in which the discharge electrode (41) protrudes.
  • the tubular portion (423) has a first opening (4231) and a second opening (4232).
  • the first opening (4231) and the second opening (4232) are arranged along the projecting direction.
  • the first opening (4231) is formed closer to the discharge electrode (41) than the second opening (4232).
  • the discharge part (420) is formed at the edge (edge part 424) of the first opening (4231).
  • the effective ingredient can be efficiently released by the cylindrical part (423) serving as a release path for the active ingredient.
  • the cylindrical portion (423) further has at least one stepped portion (4233; 4234; 4235).
  • the stepped portions (4233; 4234; 4235) are formed between the first opening (4231) and the second opening (4232) on the inner circumference of the cylindrical portion (423).
  • the stepped portions (4233; 4234; 4235) are formed in an annular shape.
  • the discharge section (420) is one of a plurality of discharge sections (420). At least one discharge portion (420) among the plurality of discharge portions (420) is formed in at least one stepped portion (4233; 4234; 4235).
  • the edge (edge 424) of the first opening (4231) is the tip (411) of the discharge electrode (41). This is the portion including the line (L2) with the shortest distance (D1) to the counter electrode (42).
  • the opening diameter (D3) of the second opening (4232) is smaller than the opening diameter (D4) of the first opening (4231).
  • the discharge portion (420) is formed at the edge (424) including the line (L2) where the distance (D1) from the tip (411) of the discharge electrode (41) is the shortest. , discharge is more likely to occur between the tip portion (411) of the discharge electrode (41) and the discharge portion (420), and the amount of active ingredient produced can be increased.
  • the opening diameter (D3) of the second opening (4232) is smaller than the opening diameter (D4) of the first opening (4231), the active ingredient is more efficiently released from the second opening (4232). easier.
  • the tip (411) of the discharge electrode (41) holds the liquid (50).
  • the liquid (50) is electrostatically atomized by electrical discharge.
  • charged fine particle liquid containing radicals is generated. Therefore, compared with the case where the radicals are released into the air by themselves, it is possible to extend the life of the radicals. Furthermore, since the charged microparticle liquid is, for example, nanometer-sized, the charged microparticle liquid can be suspended over a relatively wide range.
  • the discharge device (10) according to the tenth aspect, in the ninth aspect, further comprises a liquid supply section (5).
  • a liquid supply section (5) supplies a liquid (50) to the discharge electrode (41).
  • the liquid (50) is automatically supplied to the discharge electrode (41) by the liquid supply section (5), so there is no need to supply the liquid (50) to the discharge electrode (41).
  • Configurations other than the first aspect are not essential configurations for the discharge device (10), and can be omitted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

放電装置は、放電電極(41)と、対向電極(42)と、電圧印加装置を備える。放電電極(41)は先端部(411)を有する。対向電極(42)は、放電電極(41)の先端部(411)と隙間を介して対向するように配置されている。電圧印加装置は、放電電極(41)と対向電極(42)との間に電圧を印加することにより放電電極(41)と対向電極(42)との間に放電を生じさせる。放電電極(41)は対向電極(42)に向かって突出している。対向電極(42)は、放電電極(41)の先端部(411)との間で放電が生じる放電部(420)を有している。放電部(420)は、放電電極(41)の先端部(411)を中心とする円周に沿って延びている。

Description

放電装置
 本開示は、一般に放電装置に関し、より詳細には、放電電極及び対向電極を備える放電装置に関する。
 特許文献1には、放電電極と、対向電極と、電圧印加部と、を備える放電装置が記載されている。対向電極は、放電電極と対向して位置する。電圧印加部は、放電電極に電圧を印加し、コロナ放電より高エネルギーの放電を放電電極に生じさせる。特許文献1に記載された放電装置における高エネルギーの放電は、放電電極と対向電極との間で両者をつなぐように絶縁破壊された放電経路を、断続的に発生させる放電である。
 また、特許文献1に記載された放電装置では、液体供給部によって放電電極に液体が供給される。そのため、放電によって、液体が静電霧化され、内部にラジカルを含有するナノメータサイズの帯電微粒子液が生成される。
 特許文献1に記載された放電装置における放電形態では、コロナ放電に比較して大きなエネルギーで有効成分(ラジカルあるいはこれを含む帯電微粒子液)が生成されるため、コロナ放電と比較して大量の有効成分が生成される。さらに、オゾンが生成される量は、コロナ放電の場合と同程度に抑えられる。
特開2018-22574号公報
 特許文献1に記載された放電装置では、放電による有効成分の生成量を更に増大させることが望まれている。
 本開示は、上記事由に鑑みてなされており、有効成分の生成量の増大を図ることができる放電装置を提供することを目的とする。
 本開示の一態様に係る放電装置は、放電電極と、対向電極と、電圧印加装置とを備える。前記放電電極は先端部を有する。前記対向電極は、前記放電電極の前記先端部と隙間を介して対向するように配置されている。前記電圧印加装置は、前記放電電極と前記対向電極との間に電圧を印加することにより前記放電電極と前記対向電極との間に放電を生じさせる。前記放電電極は前記対向電極に向かって突出している。前記対向電極は、前記放電電極の前記先端部との間で前記放電が生じる放電部を有している。前記放電部は、前記放電電極の前記先端部を中心とする円周に沿って延びている。
 本開示の上記態様に係る放電装置によれば、有効成分の生成量の増大を図ることができる。
図1は、実施形態に係る放電装置のブロック図である。 図2Aは、同上の放電装置における放電電極に保持されている液体が伸びた状態を示す模式図である。 図2Bは、同上の放電電極に保持されている液体が縮んだ状態を示す模式図である。 図3Aは、同上の放電装置における負荷を示す上面図である。 図3Bは、図3AのX1-X1線断面図である。 図4Aは、同上の負荷の要部を一部破断した模式図である。 図4Bは、同上の負荷の要部の断面図である。 図4Cは、同上の放電電極の正面図である。 図5Aは、部分破壊放電の放電形態を示す模式図である。 図5Bは、コロナ放電の放電形態を示す模式図である。 図5Cは、全路破壊放電の放電形態を示す模式図である。 図6Aは、第1変形例に係る放電装置における負荷の要部の断面図である。 図6Bは、第2変形例に係る放電装置における負荷の要部の断面図である。
 以下、本開示に関する好ましい実施形態について図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態において互いに共通する要素には同一符号を付しており、共通する要素についての重複する説明は省略する場合がある。以下の実施形態は、本開示の様々な実施形態の一つに過ぎない。実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。本開示において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さのそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。なお、図面中の各向きを示す矢印は一例であり、放電装置10の使用時の向きを規定する趣旨ではない。また、図面中の各向きを示す矢印は説明のために表記しているに過ぎず、実体を伴わない。
 (1)概要
 まず、本実施形態に係る放電装置10の概要について、図1~図4Aを参照して説明する。図1は、実施形態に係る放電装置10のブロック図である。図2Aは、放電装置10における放電電極41に保持されている液体が伸びた状態を示す模式図である。図2Bは、放電電極41に保持されている液体が縮んだ状態を示す模式図である。図3Aは、放電装置41における負荷4を示す上面図である。図3Bは、図3AのX1-X1線断面図である。図4Aは、負荷4の要部を一部破断した模式図である。
 図1に示すように、本実施形態に係る放電装置10は、電圧印加装置1と、負荷4(電極装置)と、液体供給部5と、を備えている。
 図3Bに示すように、負荷4は、放電電極41及び対向電極42を有している。負荷4は、放電電極41と対向電極42との間に電圧が印加されることにより放電電極41と対向電極42との間に放電を生じさせる装置である。なお、以下の説明において、放電電極41と対向電極42とが対向する方向を上下方向と規定する。放電電極41側から対向電極42側への向きを上向きと規定し、対向電極42側から放電電極41側への向きを下向きと規定する。
 放電電極41は対向電極42に向かって(上向きに)突出している。また、放電電極41は先端部411(図2A参照)を有している。先端部411は、放電電極41が突出する向きにおける放電電極41の先端(上端)に形成されている。また、先端部411は、液体50(図2A参照)を保持する。なお、以下の説明において、放電電極41が突出する向き(上向き)のことを、「放電電極41の突出向き」ということがある。
 対向電極42は、放電電極41の先端部411と隙間を介して対向するように配置されている。対向電極42は、放電電極41の先端部411との間で放電が生じる放電部420を有している。放電部420は、放電電極41の先端部411を中心とする円周に沿って延びている。言い換えると、放電部420は、放電電極41の軸方向から見た平面視において、放電電極41の先端部411を中心とする円周に沿って線状に延びている。
 液体供給部5は、放電電極41の先端部411に液体50を供給する。
 電圧印加装置1は、放電電極41と対向電極42との間に電圧を印加することで、放電電極41と対向電極42との間に放電を生じさせる装置である。言い換えると、電圧印加装置1は、放電電極41と対向電極42との間に電圧を印加することで、放電電極41の先端部411と対向電極42との間に部分的に絶縁破壊された放電経路L1(図4A参照)を形成する。本開示でいう「絶縁破壊」は、導体間を隔離している絶縁体(気体を含む)の電気絶縁性が破壊され、絶縁状態が保てなくなることを意味する。気体の絶縁破壊は、例えば、イオン化された分子が電場により加速されて他の気体分子に衝突してイオン化し、イオン濃度が急増して気体放電を起こすために生じる。
 また、本実施形態の電圧印加装置1は、放電電極41に液体50が保持されている状態において、放電電極41を含む負荷4に電圧印加回路2から電圧を印加する。これにより、少なくとも放電電極41にて放電が生じ、放電電極41に保持されている液体50が、放電によって静電霧化される。
 放電装置10は、負荷4の放電電極41と対向電極42との間に放電を生じさせることによって、ラジカルを生成し、かつ、放電電極41に保持されている液体50を静電霧化する。言い換えると、放電装置10は、静電霧化された液体50の微細液滴中にラジカルを含有しているナノメータサイズの帯電微粒子液を生成する。つまり、放電装置10は、帯電微粒子液生成装置(静電霧化装置)として機能する。ラジカルは、除菌、脱臭、保湿、保鮮、ウイルスの不活性化にとどまらず、様々な場面で有用な効果を奏する基となる。以降、ラジカル、及び帯電微粒子液などを有効成分と総称することがある。また、有効成分には、空気イオンも含まれる。
 放電装置10は、ラジカルを含有する帯電微粒子液を生成することによって、ラジカルが単体で空気中に放出される場合に比べて、ラジカルの長寿命化を図ることができる。さらに、帯電微粒子液が例えばナノメータサイズであることで、比較的広範囲に帯電微粒子液を浮遊させることができる。
 上述のように、本実施形態の放電装置10の対向電極42は放電部420を有している。放電部420は、放電電極41の先端部411との間で放電を生じさせる部分である。そして、上述のように放電部420が放電電極41の先端部411を中心とする円周に沿って線状に延びているため、針状に形成された放電部を有する従来の負荷(対向電極)と比較して、放電電極41の先端部411を頂点とする放電経路L1が広がる。放電経路L1が広がることで、放電によって発生される有効成分(ラジカル等を含む)の生成量の増大を図ることができる。
 (2)詳細
 以下、本実施形態に係る放電装置10について、図1~図5Cを参照して説明する。図4Bは、放電装置41における負荷4の要部の断面図である。図4Cは、放電装置10における放電電極41の正面図である。図5Aは、部分破壊放電の放電形態を示す模式図である。図5Bは、コロナ放電の放電形態を示す模式図である。図5Cは、全路破壊放電の放電形態を示す模式図である。
 (2.1)放電装置の構成
 図1に示すように、本実施形態に係る放電装置10は、電圧印加装置1と、負荷4と、液体供給部5と、を備えている。
 (2.2)液体供給部の構成
 液体供給部5は、放電電極41に対して静電霧化用の液体50を供給する。液体供給部5は、一例として、図3Bに示す冷却装置51を用いて実現される。冷却装置51は、放電電極41を冷却して、放電電極41に液体50(図2A参照)として結露水を発生させる。具体的には、冷却装置51は、一対のペルチェ素子511、及び一対の放熱板512を備えている。一対のペルチェ素子511は、一対の放熱板512に保持されている。冷却装置51は、一対のペルチェ素子511への通電によって放電電極41を冷却する。一対の放熱板512は、一対の放熱板512の各々における一部が負荷4の後述するハウジング40に埋め込まれることにより、ハウジング40に保持されている。一対の放熱板512のうち、少なくともペルチェ素子511を保持する部位は、ハウジング40から露出している。
 一対のペルチェ素子511は、放電電極41の後述する基端部41bに対して、例えば、半田により機械的かつ電気的に接続されている。また、一対のペルチェ素子511は、一対の放熱板512に対して、例えば、半田により機械的かつ電気的に接続されている。一対のペルチェ素子511への通電は、一対の放熱板512及び放電電極41を通じて行われる。したがって、液体供給部5を構成する冷却装置51は、基端部41bを通じて放電電極41の全体を冷却する。これにより、空気中の水分が凝結して放電電極41の表面に結露水として付着する。この結露水が、液体50として放電電極41に保持される。すなわち、液体供給部5は、放電電極41を冷却して放電電極41の表面に液体50としての結露水を生成するように構成されている。この構成では、液体供給部5は、空気中の水分を利用して、放電電極41に液体50(結露水)を供給できるため、放電装置10への液体の供給、及び補給が不要になる。
 (2.3)電圧印加装置の構成
 図1に示すように、本実施形態の電圧印加装置1は、電圧印加回路2と、制御回路3とを備えている。
 電圧印加回路2は、駆動回路21と、電圧発生回路22と、を有している。駆動回路21は、電圧発生回路22を駆動する回路である。電圧発生回路22は、電源部6(入力部)からの電力供給を受けて、負荷4に印加する印加電圧V1(図5A参照)を生成する回路である。本開示でいう「印加電圧」は、放電を生じさせるために電圧印加回路2が負荷4に印加する電圧を意味する。電源部6は、数V~十数V程度の直流電圧を発生する電源回路である。本実施形態では、電源部6は電圧印加装置1の構成要素に含まないこととして説明するが、電源部6は電圧印加装置1の構成要素に含まれていてもよい。
 電圧印加回路2は、例えば、絶縁型のDC/DCコンバータであって、電源部6からの入力電圧(例えば13.8V)を昇圧し、昇圧後の電圧を印加電圧V1として出力する。電圧印加回路2の印加電圧V1は、負荷4(放電電極41及び対向電極42)に印加される。
 電圧印加回路2は、負荷4に対して電気的に接続されている。電圧印加回路2は、負荷4に対して高電圧を印加する。ここでは、電圧印加回路2は、放電電極41を負極(グランド)、対向電極42を正極(プラス)として、放電電極41と対向電極42との間に高電圧を印加するように構成されている。言い換えれば、電圧印加回路2から負荷4に高電圧が印加された状態では、放電電極41と対向電極42との間に、対向電極42側を高電位、放電電極41側を低電位とする電位差が生じることになる。ここでいう「高電圧」とは、放電電極41と対向電極42との間に放電を生じさせるように設定された電圧であればよい。
 本開示でいう「放電電極41と対向電極42との間の放電」は、図5Aに示すように、放電電極41と対向電極42との間に、部分的に絶縁破壊された放電経路L1が形成される放電を含む。このように、部分的に絶縁破壊された放電経路L1が形成される形態の放電を、以下では「部分破壊放電」という。言い換えると、部分破壊放電は、放電電極41と対向電極42との間(一対の電極間)に、部分的に絶縁破壊された放電経路L1を形成する。部分破壊放電について詳しくは、「(3)放電形態」の欄で説明する。
 また、本開示でいう「放電電極41と対向電極42との間の放電」は、図5Cに示すように、放電電極41と対向電極42との間に、全体的に絶縁破壊された絶縁破壊領域R4が形成される放電を含む。このように、全体的に絶縁破壊された絶縁破壊領域R4が形成される形態の放電を、以下では「全路破壊放電」という。言い換えると、全路破壊放電は、放電電極41と対向電極42との間(一対の電極間)に、連続した絶縁破壊が生じた放電経路(一方の電極から他方の電極に至るまで連続して絶縁破壊されている放電経路)を形成する。全路破壊放電について詳しくは、「(3)放電形態」の欄で説明する。
 本実施形態の電圧印加回路2は、印加電圧V1の大きさを周期的に変動させることにより、放電を間欠的(断続的)に生じさせる。印加電圧V1は、印加電圧V1が上昇して高電圧となる期間と、印加電圧V1が低下して低電圧となる期間と、を交互に繰り返す。図2A及び図2Bに示すように、印加電圧V1の大きさが周期的に変動することで、液体50には振動が生じる。なお、ここでいう「高電圧」とは、放電電極41に放電が生じるように設定された電圧であればよく、一例として、ピークが7.0kV程度となる電圧である。ただし、印加電圧V1の電圧値は、7.0kV程度に限らず、例えば、放電電極41及び対向電極42の形状、又は放電電極41及び対向電極42間の距離等に応じて適宜設定される。また、「低電圧」とは、放電電極41に放電が生じないように設定された電圧であればよく、上述の「高電圧」より低い電圧である。なお、以降では、「印加電圧V1の大きさが周期的に変動する」ことを、「印加電圧V1が周期的に変動する」ということがある。
 具体的に、負荷4に印加電圧V1が印加されると、印加電圧V1が高電圧となる期間では、放電電極41に保持されている液体50は、図2Aに示すように、電界による力を受けてテイラーコーン(Taylor cone)と呼ばれる円錐状の形状を成す。なお、放電電極41の先端部411の少なくとも一部は、テイラーコーン形状の液体50内に入り込んでいる。テイラーコーンの先端部(頂点部)に電界が集中することで、放電が発生する。このとき、テイラーコーンの先端部が尖っている程、つまり円錐の頂角が小さく(鋭角に)なる程に、絶縁破壊に必要な電界強度が小さくなり、放電が生じやすくなる。
 また、印加電圧V1が低電圧となる期間では、放電電極41に保持されている液体50は、図2Bに示すように、電界による力が低下することで略球状の形状を成す。
 印加電圧V1が周期的に変動することで、放電電極41に保持されている液体50は、図2Aに示す形状と図2Bに示す形状とに交互に変形する。その結果、上述したようなテイラーコーンが周期的に形成されるため、図2Aに示すようなテイラーコーンが形成されるタイミングに合わせて、放電が間欠的に発生することになる。なお、図2A及び図2Bでは、先端部411と液体50とを区別しやすいように、液体50に対してドットハッチングを施している。
 本開示では、印加電圧V1の周期的な変動に応じて、放電電極41と対向電極42との間に間欠的(断続的)に発生する放電のことを「リーダ放電」ということがある。リーダ放電は、放電電極41と対向電極42との間に(一対の電極間に)放電経路を間欠的に形成し、放電電流(出力電流)を間欠的に繰り返し発生させる。すなわち、「リーダ放電」は、印加電圧V1の周期的な変動に応じて、放電電極41と対向電極42との間に間欠的(断続的)に発生する部分破壊放電及び全路破壊放電を含む。リーダ放電は、放電電極41と対向電極42との間において瞬間的(単発的)に発生する火花放電と、放電電極41と対向電極42との間において継続的に発生するグロー放電及びアーク放電とは相違する。
 制御回路3は、電圧印加回路2の制御を行う。制御回路3は、電圧印加装置1が駆動される駆動期間において、印加電圧V1の大きさを周期的に変動させる制御を行う。本開示でいう「駆動期間」は、放電電極41に放電を生じさせるように電圧印加装置1が駆動される期間である。
 本実施形態の制御回路3は、監視対象に基づいて電圧印加回路2を制御する。ここでいう「監視対象」は、電圧印加回路2の出力電流及び出力電圧の少なくとも一方からなる。本実施形態の制御回路3は、電圧制御回路31と、電流制御回路32と、を有している。
 電圧制御回路31は、電圧印加回路2の出力電圧からなる監視対象に基づいて、電圧印加回路2の駆動回路21を制御する。電圧制御回路31は、駆動回路21に対して制御信号Si1を出力しており、制御信号Si1によって駆動回路21を制御する。
 電流制御回路32は、電圧印加回路2の出力電流からなる監視対象に基づいて、電圧印加回路2の駆動回路21を制御する。電流制御回路32は、駆動回路21に対して制御信号Si2を出力しており、制御信号Si2によって駆動回路21を制御する。
 なお、電圧印加回路2の出力電圧(二次側電圧)と、電圧印加回路2の一次側電圧との間には相関関係があるので、電圧制御回路31は、電圧印加回路2の一次側電圧から間接的に電圧印加回路2の出力電圧を検出してもよい。同様に、電圧印加回路2の出力電流(二次側電流)と、電圧印加回路2の入力電流(一次側電流)との間には相関関係があるので、電流制御回路32は、電圧印加回路2の入力電流から間接的に電圧印加回路2の出力電流を検出してもよい。
 (2.4)負荷の構成
 図3Bに示すように、本実施形態の負荷4は、ハウジング40と、放電電極41と、対向電極42と、を有している。
 (2.4.1)ハウジングの構成
 図3Bに示すように、ハウジング40は、上面(対向電極42を保持する側の面)が開口である、矩形箱状に形成されている。ハウジング40は、例えば合成樹脂等の電気絶縁性を有する部材で形成されている。ハウジング40は、放電電極41と、対向電極42と、を保持している。より具体的には、ハウジング40は、放電電極41と対向電極42とが上下方向において隙間を介して対向するように、放電電極41及び対向電極42を保持している。
 (2.4.2)放電電極の構成
 図3Bに示すように、放電電極41は、棒状の電極である。本実施形態では、放電電極41は、ハウジング40の内部空間における下側(下面)に配置されており、上向きに突出している。言い換えると、本実施形態の放電電極41の長手方向は上下方向に沿っている。
 放電電極41は、軸部41a、及び基端部41bを有する。軸部41aは、円形断面の棒状に形成されている。軸部41aは上述の先端部411を有している。軸部41aの長手方向の第1端(先端部411とは反対側の端部又は下端)には、平板形状の基端部41bが連続一体に形成されている。
 先端部411は、軸部41aの長手方向の第2端(上端又は先端)に形成されている。先端部411は、軸部41aの先端に近付くにつれて断面積が小さくなる先細り形状である。すなわち、放電電極41は、先端部411が先細り形状に形成された針電極である。ここでいう「先細り形状」とは、先端が鋭く尖っている形状に限らず、図2A及び図2Bに示すように、先端が丸みを帯びた形状を含む。
 放電電極41の先端部411の形状は、例えば、円錐部を含んだ形状である。先端部411のうち対向電極42との対向部分の形状(ここでは円錐部の先端又は上端の形状)は、例えばR形状(アール形状)である。本開示でいう「R形状」とは、ある部材の表面が丸みを帯びている(丸みを有している)ことを含み得る。本実施形態の先端部411の先端面は、上向きに凸の丸みを有する曲面を含んでいる。本実施形態の放電電極41の先端面は、放電電極41の中心軸を含む断面形状が、先端部411の側面から連続的につながる弧状に形成されており、角を含まない。つまり、放電電極41の先端面は全体が曲面(湾曲面)である。
 一例として、放電電極41の先端面の曲率半径r2(図4C参照)は、0.2mm以上であることが好ましい。このように、放電電極41の先端部411がR形状を有することで、放電電極41の先端部411が尖っている場合に比べて、放電電極41の先端部411での電界の過度な集中を緩めることができ、部分破壊放電が生じやすくなる。
 (2.4.3)対向電極の構成
 図3Bに示すように、対向電極42は、ハウジング40の内部空間における上側(上面)に配置されている。対向電極42は、上下方向において、放電電極41の先端部411と隙間を介して対向するように配置されている。言い換えると、対向電極42は放電電極41と空間的に離れており、対向電極42と放電電極41とは電気的に絶縁されている。対向電極42は、放電部420と、支持部422と、凹部421と、底部4211と、筒部423と、を有している。
 図3Aに示すように、凹部421、底部4211、及び、筒部423は、負荷4を上側から見た平面視(上面視)において、放電電極41の先端部411を中心とする円環状に形成されている。すなわち、凹部421、底部4211、及び、筒部423は、負荷4の上面視において、同心の円環状に形成されている。負荷4の上面視において、放電電極41の先端部411を中心として、内側から順に筒部423、底部4211、凹部421、及び、支持部422が配置されている。
 支持部422は、ハウジング40に保持されている。図3Bに示すように、支持部422は、厚み方向が上下方向に沿った平板状に形成されている。
 凹部421は、支持部422から放電電極41に向かって凹んでいる。すなわち、凹部421は、支持部422から下向きに凹むように形成されている。言い換えると、凹部421は、支持部422から下向きに突出している。図3Aに示すように、凹部421は、負荷4の上面視において、円形状である。また、凹部421は、下向きに凹むにつれて(下方に進むにつれて)径が小さくなる円筒状である。
 底部4211は、負荷4の上面視において、凹部421の下端から放電電極41の先端部411に向けて突出している。底部4211は、厚み方向が上下方向に沿った平板状、かつ、円環状に形成されている。
 図3Bに示すように、筒部423は、底部4211の内周端から上向きに突出している。すなわち、筒部423は、放電電極41の突出向きに沿って延びている。本実施形態の筒部423は、上方に進むにつれて径が小さくなる円筒状である。言い換えると、筒部423は放電電極41から遠ざかる向きに突出しており、筒部423の外形は円錐台状である。筒部423は、放電電極41の上方において放電電極41を覆うようなドーム形状に形成されている。筒部423は、第1開口部4231と、第2開口部4232と、を有している。
 第1開口部4231及び第2開口部4232は、上下方向に沿って並んでいる。言い換えると、第1開口部4231及び第2開口部4232は、放電電極41の突出向き(上向き)に沿って並んでいる。第1開口部4231は第2開口部4232より下方に配置されている。すなわち、第1開口部4231は、第2開口部4232より放電電極41の近くに配置されている。第1開口部4231及び第2開口部4232は、負荷4の上面視において、放電電極41の先端部411を中心とする円状の開口である。図4Bに示すように、本実施形態の第2開口部4232の開口径D3は、第1開口部4231の開口径D4より小さい。
 図4Aに示すように、本実施形態の筒部423は、縁部424を更に有している。縁部424は、第1開口部4231の縁の部分であり、底部4211と連続する部分である。また、縁部424は、放電電極41の先端部411と対向電極42との距離が最短となる線L2を含む部分である。筒部423において、縁部424以外の部分と放電電極41の先端部411との距離は、縁部424と放電電極41の先端部411との距離よりも遠い。すなわち、縁部424は、電界集中が生じやすい部分である。縁部424と放電電極41の先端部411との距離と、筒部423における縁部424以外の部分と放電電極41の先端部411との距離は、縁部424に電界が集中するように設定すれば足りる。これにより、筒部423のうち縁部424を放電部とすることができる。なお、本実施形態における線L2は仮想線である。負荷4の上面視において、線L2は放電電極41の先端部411を中心とする円環状の線であり、縁部424は線L2を含む円環状である。円環状の線L2と放電電極41の先端部411との間の距離D1は、線L2の全周に亘って等しい。本実施形態の線L2は、放電電極41の先端部411を頂点として、母線の長さが距離D1と等しい仮想の直円錐を形成している。なお、線L2と放電電極41の先端部411との間の距離D1は、第2開口部4232の縁と放電電極41の先端部411との間の距離D2より小さい。
 本実施形態の縁部424は、曲面を有している。言い換えると、縁部424は、図4Bに示すように、放電電極41の先端部411に向かって凸となる丸みを有している。より具体的には、縁部424は、その断面において、底部4211から連続的につながる半円弧状に形成されており、角を含まない。つまり筒部423の縁部424の表面は全体が曲面(湾曲面)である。
 縁部424の曲率半径r1は、放電電極41の先端部411の曲率半径r2(図4C参照)の1/2以上であることが好ましい。つまり、「r1≧r2×1/2」の関係式を満たすことが好ましい。一例として、放電電極41の先端部411の曲率半径r2が0.6mmである場合、縁部424の曲率半径r1は0.3mm以上であることが好ましい。ここでいう「曲率半径」は、縁部424及び放電電極41の先端部411のいずれについても、最小値、つまり曲率が最大となる部位の曲率半径を意味する。ただし、図4Bと図4Cとでは縮尺が異なっているため、図4B中の「r1」と図4C中の「r2」とが、直ちに「r1」と「r2」との比を表す訳ではない。
 さらに、縁部424の曲率半径r1は、放電電極41の先端部411の曲率半径r2よりも大きいことがより好ましい。本実施形態の縁部424の曲率半径r1は、放電電極41の先端部411の曲率半径r2より大きい。
 図4Aに示す放電部420は、放電電極41の先端部411との間で放電が生じる部分である。放電部420は、放電電極41の先端部411を中心とする円周に沿って線状に延びている。本実施形態の放電部420は、縁部424に形成されている。言い換えると、放電部420は、第1開口部4231の縁に形成されている。
 本実施形態の放電部420は、放電電極41の先端部411と対向電極42との距離が最短となる線L2を含む部分(帯状の面)である。放電部420が線L2を含む部分であることで、放電部420と放電電極41の先端部411との間で放電がより発生しやすく、有効成分の生成量の増大をより図ることができる。
 また、本実施形態の放電部420は、放電電極41の先端部411を中心とする円周に沿った円環状に形成されている。言い換えると、放電部420は、放電電極41の軸方向から見た平面視において、放電電極41の先端部411を中心とする円周に沿った円環状に形成されている。より具体的には、本実施形態の放電部420は、線L2を含む円環状に形成されている。図4A及び図4B中の点線は、放電部420と放電電極41の先端部411との間の放電経路L1を示している。本実施形態の放電経路L1は、放電電極41の先端部411と放電部420とが形成する仮想の直円錐の母線に沿って形成される。言い換えると、放電経路L1は、放電電極41の先端部411と放電部420とが形成する円錐の側面部に沿って形成される。本開示では、放電電極41の先端部411を頂点として円錐側面状に発生する放電を「ラウンド放電」という。言い換えると、ラウンド放電は、放電電極41と対向電極42との間(一対の電極間)を結ぶ円錐側面状に広がる放電経路を形成する。
 また、本実施形態の放電部420は、縁部424に形成されているため、放電部420は曲面である。放電部420が曲面であることで、電界集中が過度に高まることを抑制できる。電界集中が過度に高まることを抑制することで、放電形態が進展して有効成分の生成量が減少することを抑制することができる。
 また本実施形態の放電部420の曲率半径r1は、放電電極41の先端部411の曲率半径r2より大きい。言い換えると、放電部420が有する曲面の曲率半径r1は、放電電極41の先端部411の曲率半径r2より大きい。放電部420の曲率半径r1を放電電極41の先端部411における曲率半径r2より大きくすることで、電界集中が過度に高まることをより抑制でき、部分破壊放電を発生させやすい。
 また、放電によって第1開口部4231の縁(縁部424)の周辺に発生した有効成分は、筒部423の内部空間を通って第2開口部4232から放出される。すなわち、本実施形態の筒部423は、有効成分の放出経路となる。筒部423が有効成分の放出経路となることで、有効成分を効率よく放出することができる。
 さらに、本実施形態の第2開口部4232の開口径D3は第1開口部4231の開口径D4より小さい。開口径D3が開口径D4より小さいことで、筒部423が有効成分を放出するノズルとして機能する。したがって、筒部423の内部空間を通って第2開口部4232から放出される有効成分の流速が増大し、より効率よく有効成分を放出することができる。
 (3)放電形態
 以下、放電電極41及び対向電極42間に印加電圧V1を印加した場合に発生する放電形態の詳細について、図5A~図5Cを参照して説明する。図5A~図5Cは、放電形態を説明するための概念図であって、図5A~図5Cでは、放電電極41及び対向電極42を模式的に表している。また、本実施形態に係る放電装置10では、実際には、放電電極41には液体50が保持されており、この液体50と対向電極42との間で放電が生じるが、図5A~図5Cでは、液体50の図示を省略する。また、以下では、放電電極41の先端部411に液体50が無い場合を想定して説明するが、液体50が有る場合には、放電の発生箇所等について「放電電極41の先端部411」を「放電電極41に保持された液体50」に読み替えればよい。
 ここではまず、本実施形態に係る放電装置10で採用されている部分破壊放電について、図5Aを参照して説明する。放電装置10は、まず放電電極41の先端部411で局所的なコロナ放電を生じさせる。本実施形態では、放電電極41は負極(グランド)側であるから、放電電極41の先端部411に生じるコロナ放電は負極性コロナである。放電装置10は、放電電極41の先端部411に生じたコロナ放電を、更に高エネルギーの放電にまで進展させる。この高エネルギーの放電により、放電電極41と対向電極42との間には、部分的に絶縁破壊された放電経路L1が形成される。
 また、部分破壊放電はリーダ放電の一態様である。すなわち、部分破壊放電は、一対の電極(放電電極41及び対向電極42)間での部分的な絶縁破壊を伴うものの、絶縁破壊が継続的に生じるのではなく、絶縁破壊が間欠的に発生する放電である。そのため、一対の電極間に生じる放電電流についても、間欠的に発生する。すなわち、放電経路L1を維持するのに必要な電流容量を電源(電圧印加回路2)が有さない場合等においては、コロナ放電から部分破壊放電に進展した途端に一対の電極間に印加される電圧が低下し、放電経路L1が途切れて放電が停止する。ここでいう「電流容量」は、単位時間に放出可能な電流の容量である。このような放電の発生、及び停止が繰り返されることにより、放電電流が間欠的に流れることになる。このように、部分破壊放電は、放電エネルギーの高い状態と放電エネルギーの低い状態とを繰り返す点において、絶縁破壊が瞬間的(単発的)に発生する火花放電とは相違する。また、部分破壊放電は、放電エネルギーの高い状態と放電エネルギーの低い状態とを繰り返す点において、絶縁破壊が継続的に発生する(つまり放電電流が継続的に発生する)グロー放電及びアーク放電とは相違する。
 より詳細には、電圧印加装置1は、互いに隙間を介して対向するように配置される放電電極41及び対向電極42間に印加電圧V1を印加することにより、放電電極41と対向電極42との間に放電を生じさせる。そして、放電の発生時には、放電電極41と対向電極42との間には、部分的に絶縁破壊された放電経路L1が形成される。このとき形成される放電経路L1には、図5Aに示すように、放電電極41の周囲に生成される第1絶縁破壊領域R1と、対向電極42の周囲に生成される第2絶縁破壊領域R2と、が含まれている。
 すなわち、放電電極41と対向電極42との間には、全体的にではなく部分的(局所的)に、絶縁破壊された放電経路L1が形成される。このように、部分破壊放電においては、放電電極41と対向電極42との間に形成される放電経路L1は、全路破壊には至らず、部分的に絶縁破壊された経路である。
 上述のように、放電電極41の先端部411の形状(R形状)、及び筒部423の縁部424について、電界の集中を適度に緩めるように適切に設定されることで、部分破壊放電を実現しやすくなる。つまり、先端部411の形状及び縁部424の曲率半径r1が、放電電極41の長さ及び印加電圧V1等の他の因子と共に、電界の集中を緩めるように適切に設定されることで、電界の集中を適度に緩めることができる。その結果、放電電極41及び対向電極42間に電圧が印加されたときに、全路破壊放電のような全路破壊には至らず、部分的な絶縁破壊が生じるまでにとどめることができる。その結果、部分破壊放電を実現することができる。
 ここで、放電経路L1は、放電電極41の周囲に生成される第1絶縁破壊領域R1と、対向電極42の周囲に生成される第2絶縁破壊領域R2と、を含んでいる。つまり、第1絶縁破壊領域R1は、放電電極41の周囲の絶縁破壊された領域であって、第2絶縁破壊領域R2は、対向電極42の周囲の絶縁破壊された領域である。ここで、放電電極41に液体50が保持されており、液体50と対向電極42との間に印加電圧V1が印加されている場合には、第1絶縁破壊領域R1は、放電電極41の周囲のうち特に液体50の周囲に生成される。
 これら第1絶縁破壊領域R1及び第2絶縁破壊領域R2は、互いに接触しないように離れて存在している。言い換えれば、放電経路L1は、少なくとも第1絶縁破壊領域R1と第2絶縁破壊領域R2との間において、絶縁破壊されていない領域(絶縁領域)を含んでいる。そのため、部分破壊放電においては、放電電極41と対向電極42との間の空間について、全路破壊には至らず、部分的に絶縁破壊された状態で、放電経路L1を通して放電電流が流れることになる。要するに、部分的な絶縁破壊が生じた放電経路L1、言い換えれば、一部は絶縁破壊されていない放電経路L1であっても、放電電極41と対向電極42との間には、放電経路L1を通して放電電流が流れ、放電が生じる。
 ここにおいて、第2絶縁破壊領域R2は、基本的には、対向電極42のうち、放電電極41までの距離(空間距離)が最短となる部位の周囲に生じる。本実施形態では、対向電極42は、筒部423に曲面状に形成された縁部424(放電部420)において、放電電極41までの距離D1(図4A参照)が最短となるので、第2絶縁破壊領域R2は縁部424の周囲に生成される。つまり、図5Aに示す対向電極42は、実際には筒部423の縁部424に相当する。
 また、図4Aに示すように、放電部420は、放電電極41の先端部411と対向電極42との距離が最短となる円環状の線L2を含む部分である。そのため、第2絶縁破壊領域R2は、この円環状の線L2の周囲に生成されることになる。ここで、第2絶縁破壊領域R2が生成される放電部420の領域は、特定の領域には限定されず、円環状の線L2を中心としてランダムに決まることになる。
 ところで、部分破壊放電においては、図5Aに示すように、放電電極41の周囲の第1絶縁破壊領域R1は、放電電極41から相手方となる対向電極42に向けて延びている。対向電極42の周囲の第2絶縁破壊領域R2は、対向電極42から相手方となる放電電極41に向けて延びている。言い換えれば、第1絶縁破壊領域R1及び第2絶縁破壊領域R2は、それぞれ放電電極41及び対向電極42から、互いに近付く向きに延びている。そのため、第1絶縁破壊領域R1及び第2絶縁破壊領域R2の各々は、放電経路L1に沿った長さを有することになる。このように、部分破壊放電においては、部分的に絶縁破壊された領域(第1絶縁破壊領域R1及び第2絶縁破壊領域R2の各々)は、特定の方向に長く延びた形状を有する。
 部分破壊放電においては、コロナ放電(図5B参照)と比較して大きなエネルギーでラジカルが生成され、コロナ放電と比較して2~10倍程度の大量のラジカルが生成される。このようにして生成されるラジカルは、除菌、脱臭、保湿、保鮮、ウイルスの不活化にとどまらず、様々な場面で有用な効果を奏する基となる。ここで、部分破壊放電によってラジカルが生成される際には、オゾンも発生する。ただし、部分破壊放電では、コロナ放電と比較して2~10倍程度のラジカルが生成されるのに対して、オゾンの発生量はコロナ放電の場合と同程度に抑えられる。
 次に、コロナ放電について、図5Bを参照して説明する。
 一般的には、一対の電極間にエネルギーを投入して放電を生じさせると、投入したエネルギーの量に応じて、放電形態がコロナ放電から、火花放電、グロー放電、アーク放電へと進展する。
 火花放電、グロー放電及びアーク放電は、一対の電極間での絶縁破壊を伴う放電である。火花放電は、瞬間的(単発的)に放電経路が形成される放電である。グロー放電及びアーク放電においては、一対の電極間にエネルギーが投入されている間は、絶縁破壊によって形成される放電経路が維持され、一対の電極間に放電電流が継続的に発生する。これに対して、コロナ放電は、図5Bに示すように、一方の電極(放電電極41)で局所的に発生する放電であり、一対の電極(放電電極41及び対向電極42)間の絶縁破壊を伴わない放電である。要するに、放電電極41及び対向電極42間に印加電圧V1が印加されることで、放電電極41の先端部411で局所的なコロナ放電が発生する。ここで、放電電極41は負極(グランド)側であるから、放電電極41の先端部411に生じるコロナ放電は負極性コロナである。このとき、放電電極41の先端部411の周囲には、局所的に絶縁破壊された絶縁破壊領域R3が生じ得る。この絶縁破壊領域R3は、部分破壊放電における第1絶縁破壊領域R1及び第2絶縁破壊領域R2の各々のように、特定の方向に長く延びた形状ではなく、点状(又は球状)となる。
 ここで、電源(電圧印加回路2)から一対の電極間に対して単位時間当たりに放出可能な電流容量が十分に大きければ、一度形成された放電経路は途切れることなく維持され、上述のようにコロナ放電、火花放電から、グロー放電、アーク放電へと進展する。
 次に、全路破壊放電について、図5Cを参照して説明する。
 全路破壊放電は、図5Cに示すように、コロナ放電から進展して一対の電極間の全路破壊に至る、という現象が間欠的に繰り返される放電形態である。つまり、全路破壊放電においては、放電電極41と対向電極42との間には、全体的に絶縁破壊された放電経路が生じる。このとき、放電電極41の先端部411と、対向電極42(放電部420)との間には、全体的に絶縁破壊された絶縁破壊領域R4が生じ得る。この絶縁破壊領域R4は、部分破壊放電における第1絶縁破壊領域R1及び第2絶縁破壊領域R2の各々のように、部分的に生じるのではなく、放電電極41の先端部411と対向電極42との間を連続してつなぐように生じる。
 また、全路破壊放電は、リーダ放電の一態様である。すなわち、全路破壊放電は、一対の電極(放電電極41及び対向電極42)間での絶縁破壊(全路破壊)を伴うものの、絶縁破壊が継続的に生じるのではなく、絶縁破壊が間欠的に発生する放電である。そのため、一対の電極(放電電極41及び対向電極42)間に生じる放電電流についても、間欠的に発生する。すなわち、上述したように放電経路L1を維持するのに必要な電流容量を電源(電圧印加回路2)が有さない場合等においては、コロナ放電から全路破壊に進展した途端に一対の電極間に印加される電圧が低下し、放電経路L1が途切れて放電が停止する。このような放電の発生、及び停止が繰り返されることにより、放電電流が間欠的に流れることになる。このように、全路破壊放電は、放電エネルギーの高い状態と放電エネルギーの低い状態とを繰り返す点において、絶縁破壊が瞬間的(単発的)に発生する火花放電とは相違する。また、全路破壊放電は、放電エネルギーの高い状態と放電エネルギーの低い状態とを繰り返す点において、絶縁破壊が継続的に発生する(つまり放電電流が継続的に発生する)グロー放電及びアーク放電とは相違する。
 全路破壊放電においては、部分破壊放電と同様に、コロナ放電と比較して大きなエネルギーでラジカルが生成され、コロナ放電と比較して2~10倍程度の大量のラジカルが生成される。ただし、全路破壊放電のエネルギーは、部分破壊放電のエネルギーに比べても更に大きい。そのため、エネルギー準位が「中」の状態で、オゾンが消失しラジカルが増加することによって、ラジカルが大量に発生したとしても、その後の反応経路においてエネルギー準位が「高」となることで、ラジカルの一部が消失する可能性がある。言い換えれば、全路破壊放電では、その放電に係るエネルギーが高すぎるが故に、生成されたラジカル等の有効成分(空気イオン、ラジカル及びこれを含む帯電微粒子液等)の一部が消失して、有効成分の生成効率の低下につながる可能性がある。
 ここで、本実施形態の放電装置10が発生させる部分破壊放電(図5A参照)においては、全路破壊放電(図5C参照)と比較しても、過大なエネルギーによるラジカルの消失を抑制でき、全路破壊放電と比較してもラジカルの生成効率の向上を図ることができる。すなわち、全路破壊放電では、その放電に係るエネルギーが高すぎるが故に、生成されたラジカルの一部が消失して、有効成分の生成効率の低下につながる可能性がある。これに対して、部分破壊放電では、全路破壊放電と比較して放電に係るエネルギーが小さく抑えられるため、過大なエネルギーに晒されることによるラジカルの消失量を低減し、ラジカルの生成効率の向上を図ることができる。結果的に、部分破壊放電を採用した本実施形態に係る放電装置10によれば、コロナ放電及び全路破壊放電と比較して、有効成分(空気イオン、ラジカル及びこれを含む帯電微粒子液等)の生成効率の向上を図ることができる。
 さらに、部分破壊放電では、全路破壊放電に比較して電界の集中が緩められる。そのため、全路破壊放電では、全路破壊された放電経路を通じて放電電極41及び対向電極42間には、瞬間的に大きな放電電流が流れ、その際の電気抵抗は非常に小さくなっている。これに対して、部分破壊放電では、電界の集中が緩められることで、部分的に絶縁破壊された放電経路L1の形成時に、放電電極41及び対向電極42間に瞬間的に流れる電流の最大値が、全路破壊放電に比べて小さく抑えられる。これにより、部分破壊放電では、全路破壊放電に比較して、窒化酸化物(NOx)の発生が抑制され、さらに電気ノイズが小さく抑えられる。
 本実施形態の放電装置10が発生させる放電は、放電経路L1が放電電極41の先端部411と放電部420とが形成する円錐の側面部に沿って形成されるラウンド放電である。放電部420を円環状とすることで放電部420を円周に沿った最大の長さにできるため、放電電極41の先端部411を頂点とする放電電極41と放電部420との間の放電経路L1がより広がる。すなわち、放電が発生する空間が広がる。放電経路L1がより広がることで、有効成分の生成量の増大をより図ることができる。なお、本実施形態の放電装置10が発生させる放電は、リーダ放電かつラウンド放電である「ラウンドリーダ放電」である。ラウンドリーダ放電は、放電電極41と対向電極42との間(一対の電極間)を結ぶ円錐側面状に広がる放電経路を間欠的に形成し、放電電流(出力電流)を間欠的に繰り返し発生させる。ラウンドリーダ放電は、リーダ放電及びラウンド放電の利点を有している。ラウンドリーダ放電では、放電経路L1を円錐側面状に広げることで電界集中が急激に成長し全路破壊放電へ進展することを防ぎ、部分破壊放電を空間的に広げることができる。すなわち、ラウンドリーダ放電では、従来のリーダ放電と比べて、有効成分の生成量の増大をより図ることができる。
 (4)変形例
 上記実施形態は、本開示の様々な実施形態の一つに過ぎない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 (4.1)第1変形例
 図6Aは、第1変形例に係る放電装置における負荷4の対向電極42を含む要部の断面図である。第1変形例の負荷4では、図6Aに示すように、対向電極42の形状が上記実施形態と相違する。また、負荷4では、実際には、放電電極41には液体50が保持されており、この液体50と対向電極42との間で放電が生じるが、図6Aでは、液体50の図示を省略する。また、以下では、放電電極41の先端部411に液体50が無い場合を想定して説明するが、液体50が有る場合には、放電の発生箇所等について「放電電極41の先端部411」を「放電電極41に保持された液体50」に読み替えればよい。
 第1変形例の対向電極42は、上記実施形態の筒部423に代えて筒部423aを有している。筒部423aは、段差部4233を有している。言い換えると、筒部423aは少なくとも1つの段差部4233を有している。段差部4233は、筒部423aの内周において第1開口部4231及び第2開口部4232の間に形成されている。段差部4233は、円環状である。より具体的には、段差部4233は、負荷4の上面視において放電電極41の先端部411を中心とする円環状である。
 段差部4233の内径D5は、第1開口部4231の開口径D4(図4B参照)より小さく、第2開口部4232の開口径D3(図4B参照)より大きい。つまり、段差部4233は、負荷4を下側から見た平面視(底面視)において、筒部423aの内径が小さくなる部分である。なお、第1開口部4231から段差部4233までの筒部423aの内径は、第1開口部4231の開口径D4と等しい。また、段差部4233から第2開口部4232の下端までの筒部423aの内径は、段差部4233の内径D5と等しい。
 本変形例の段差部4233は、曲面を有している。言い換えると、段差部4233は、放電電極41の先端部411に向かって凸となる丸みを有している。段差部4233の曲率半径r3は、放電電極41の先端部411の曲率半径r2(図4C参照)の1/2以上であることが好ましい。本変形例の段差部4233の曲率半径r3は、放電電極41の先端部411の曲率半径r2より大きい。
 図6A中の一点鎖線は、放電電極41の先端部411と対向電極42との距離が最短となる範囲を示している。本変形例の段差部4233と放電電極41の先端部411との距離D1aは、縁部424の線L2(図4A参照)と放電電極41の先端部411との距離D1と等しい。すなわち、段差部4233と放電電極41の先端部411との距離D1aは、放電電極41と対向電極42との最短距離である。
 そして、本変形例の対向電極42は、複数(図6Aの例では2つ)の放電部420を有している。2つの放電部420のうちの一方は、上記実施形態と同様に第1開口部4231の縁部424に形成されている。すなわち、縁部424に形成された放電部420は、複数の放電部420のうちの1つである。また、2つの放電部420のうちの他方は、段差部4233に形成されている。
 段差部4233に形成された放電部420も、縁部424に形成された放電部420と同様に、ラウンドリーダ放電を発生させる。対向電極42が複数の放電部420を有することで、各々の放電部420で電界集中が過度に高まることを抑制することができる。
 なお、第2変形例で後述するように、筒部423aは、2以上(複数)の段差部を有していてもよい。そして、2以上の段差部のそれぞれには、放電部420が形成される。
 (4.2)第2変形例
 図6Bは、第2変形例に係る放電装置における負荷4の対向電極42を含む要部の断面図である。図6Bに示すように、第2変形例の対向電極42は、上記実施形態の筒部423aに代えて筒部423bを有している。筒部423bは、複数(図6Bの例では2つ)の段差部4234,4235を有している。段差部4234は段差部4235の下に配置されている。言い換えると、段差部4234は、段差部4235より第1開口部4231に近い部分に配置されている。
 複数の段差部4234,4235の内径は、第1開口部4231の開口径D4(図4B参照)より小さく、第2開口部4232の開口径D3(図4B参照)より大きい。そして、段差部4234の内径は、段差部4234の上に配置されている段差部4235の内径より大きい。つまり、上下方向において並ぶ複数の段差部においては、下側に配置された段差部の内径の方が上側に配置された段差部の内径より大きい。2つの段差部4234,4235は、負荷4の底面視において、筒部423bの内径が小さくなる部分である。2つの段差部4234,4235のその他の形状は、第1変形例で説明した段差部4233と同様である。
 また、図6B中の一点鎖線は、放電電極41の先端部411と対向電極42との距離が最短となる範囲を示している。本変形例の段差部4234と放電電極41の先端部411との距離D1bは、縁部424の線L2(図4A参照)と放電電極41の先端部411との距離D1と等しい。そして、本変形例の段差部4235と放電電極41の先端部411との距離D1cは、縁部424の線L2と放電電極41の先端部411との距離D1と等しい。すなわち、段差部4234と放電電極41の先端部411との距離D1b、及び、段差部4235と放電電極41の先端部411との距離D1cは、放電電極41と対向電極42との最短距離である。
 そして、本変形例の対向電極42は、複数(図6Bの例では3つ)の放電部420を有している。3つの放電部420のうちの1つは、上記実施形態と同様に第1開口部4231の縁部424に形成されている。また、3つの放電部420のうちの1つは、段差部4234に形成されている。また、3つの放電部420のうちの1つは、段差部4235に形成されている。
 2つの段差部4234,4235に形成された放電部420も、縁部424に形成された放電部420と同様に、ラウンドリーダ放電を発生させる。対向電極42が複数の放電部420を有することで、各々の放電部420で電界集中が過度に高まることを抑制することができる。
 なお、図6A及び図6Bの例に限らず、対向電極42及び放電電極41の各々の形状は適宜変更可能である。例えば、筒部423bは、3以上の段差部を有していてもよい。さらに、放電電極41の先端部411から段差部までの距離が最短距離(距離D1)であることは必須の構成ではない。放電電極41の先端部411から段差部までの距離は、縁部424の曲率半径r1及び複数の段差部のそれぞれの曲率半径、並びに、縁部424と段差部付近に生じる放電の形態、に応じて適宜設定されればよい。
 (4.3)その他の変形例
 放電装置10は、帯電微粒子液を生成するための液体供給部5が省略されていてもよい。この場合、放電装置10は、放電電極41、及び対向電極42間に生じる部分破壊放電によって、空気イオンを生成する。すなわち、放電装置10は、静電霧化装置以外に、イオン発生装置などであってもよい。
 また、液体供給部5は、上記実施形態のように放電電極41を冷却して放電電極41に結露水を発生させる構成に限らない。液体供給部5は、例えば、毛細管現象、又はポンプ等の供給機構を用いて、タンクから放電電極41に液体50を供給する構成であってもよい。さらに、液体50は、水(結露水を含む)に限らず、水以外の液体であってもよい。
 また、電圧印加回路2は、放電電極41を正極(プラス)、対向電極42を負極(グランド)として、放電電極41と対向電極42との間に高電圧を印加するように構成されていてもよい。さらに、放電電極41と対向電極42との間に電位差(電圧)が生じればよいので、電圧印加回路2は、高電位側の電極(正極)をグランドとし、低電位側の電極(負極)をマイナス電位とすることで、負荷4にマイナスの電圧を印加してもよい。すなわち、電圧印加回路2は、放電電極41をグランドとし、対向電極42をマイナス電位としもよいし、又は放電電極41をマイナス電位とし、対向電極42をグランドとしてもよい。
 また、電圧印加装置1は、電圧印加回路2と、負荷4における放電電極41又は対向電極42との間に、制限抵抗を備えていてもよい。制限抵抗は、部分破壊放電において、絶縁破壊後に流れる放電電流のピーク値を制限するための抵抗器である。制限抵抗は、例えば、電圧印加回路2と放電電極41との間、又は電圧印加回路2と対向電極42との間に電気的に接続される。
 電圧印加回路2は、自励式のコンバータであってもよいし、他励式のコンバータであってもよい。また、電圧発生回路22は、圧電素子を有する変圧器(圧電トランス)にて実現されてもよい。
 また、放電装置10が採用する放電形態は、上記実施形態で説明した形態に限らない。例えば、放電装置10は、コロナ放電から進展して一対の電極間での絶縁破壊に至る、という現象が間欠的に繰り返される形態の放電、つまり「全路破壊放電」をラウンド放電の一態様として採用してもよい。この場合、放電装置10においては、コロナ放電から進展して一対の電極間での絶縁破壊に至ると比較的大きな放電電流が瞬間的に流れ、その直後に印加電圧が低下して放電電流が遮断され、また印加電圧が上昇して絶縁破壊に至る、という現象が繰り返されることになる。
 また、リーダ放電、ラウンド放電、及びラウンドリーダ放電のそれぞれは、部分破壊放電及び全路破壊放電のいずれであってもよい。
 また、放電装置10は、コロナ放電を進展させた火花放電、アーク放電、グロー放電をラウンド放電の一形態として採用してもよい。放電経路が広がることで、放電によって発生される有効成分の生成量の増大を図ることができる点は、ラウンドリーダ放電と同じである。
 また、対向電極42の形状についても、図3Bに示すような凹凸を有する形状に限られない。すなわち、対向電極42は、凹部421及び筒部423等を有していなくともよい。例えば対向電極42は、厚み方向が上下方向に沿った平板状に形成されていてもよい。対向電極42は、少なくとも放電部420を有していればよい。
 また、放電部420の形状は円環状に限られない。放電部420の形状は、放電電極41の先端部411を中心とする円周に沿って線状に延びていればよい。例えば放電部420の形状は、少なくとも一部が欠けた円環状であってもよい。
 また、上記実施形態に係る電圧印加装置1と同様の機能は、電圧印加回路2の制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した記録媒体等で具現化されてもよい。すなわち、制御回路3に対応する機能を、電圧印加回路2の制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した記録媒体等で具現化してもよい。
 (まとめ)
 以上説明したように、第1の態様に係る放電装置(10)は、放電電極(41)と、対向電極(42)と電圧印加装置(1)とを備える。放電電極(41)は先端部(411)を有する。対向電極(42)は、放電電極(41)の先端部(411)と隙間を介して対向するように配置されている。電圧印加装置(1)は、放電電極(41)と対向電極(42)との間に電圧を印加することにより放電電極(41)と対向電極(42)との間に放電を生じさせる。放電電極(41)は対向電極(42)に向かって(上向き)に突出している。対向電極(42)は、放電電極(41)の先端部(411)との間で放電が生じる放電部(420)を有している。放電部(420)は、放電電極(41)の先端部(411)を中心とする円周(線L2)に沿って線状に延びている。
 この態様によれば、放電部(420)が放電電極(41)の先端部(411)を中心とする円周(線L2)に沿って線状に延びているため、針状に形成された放電部(420)を有する従来の放電装置(10)と比較して、放電電極(41)の先端部(411)を頂点とする放電経路(L1)が広がる。放電経路(L1)が広がることで、放電によって発生される有効成分(ラジカル等を含む)の生成量の増大を図ることができる。
 第2の態様に係る放電装置(10)では、第1の態様において、放電部(420)は、放電電極(41)の先端部(411)と対向電極(42)との距離(D1)が最短となる線(L2)を含む部分である。
 この態様によれば、放電部(420)は放電電極(41)の先端部(411)からの距離(D1)が最短となる線(L2)を含む部分であるため、放電電極(41)の先端部(411)との間で放電がより発生しやすく、有効成分の生成量の増大をより図ることができる。
 第3の態様に係る放電装置(10)では、第1又は第2の態様において、放電部(420)は、放電電極(41)の先端部(411)を中心とする円周に沿った円環状に形成されている。
 この態様によれば、放電部(420)を円環状とすることで放電部(420)を円周に沿った最大の長さにできるため、放電電極(41)の先端部(411)を頂点とする放電経路(L1)がより広がる。放電経路(L1)がより広がることで、有効成分の生成量の増大をより図ることができる。
 第4の態様に係る放電装置(10)では、第1から第3のいずれかの態様において、放電部(420)は、曲面を有している。
 この態様によれば、放電部(420)が曲面に形成されることにより電界集中が過度に高まることを抑制できる。電界集中が過度に高まることを抑制することで、放電形態が進展して有効成分の生成量が減少することを抑制することができる。
 第5の態様に係る放電装置(10)では、第4の態様において、放電部(420)が有する曲面の曲率半径(r1)は、放電電極(41)の先端部(411)の曲率半径(r2)より大きい。
 この態様によれば、放電部(420)の曲率半径(r1)を放電電極(41)の先端部(411)における曲率半径(r2)より大きくすることで、電界集中が過度に高まることをより抑制できる。
 第6の態様に係る放電装置(10)では、第1から第5のいずれかの態様において、対向電極(42)は筒部(423)を更に有する。筒部(423)は、放電電極(41)が突出する向き(上向き)に沿って延びている。筒部(423)は、第1開口部(4231)及び第2開口部(4232)を有している。第1開口部(4231)及び第2開口部(4232)は、上記突出する向きに沿って並んでいる。第1開口部(4231)は、第2開口部(4232)より放電電極(41)の近くに形成されている。放電部(420)は、第1開口部(4231)の縁(縁部424)に形成されている。
 この態様によれば、筒部(423)が有効成分の放出経路となることで、有効成分を効率よく放出することができる。
 第7の態様に係る放電装置(10)では、第6の態様において、筒部(423)は、少なくとも1つの段差部(4233;4234;4235)を更に有する。段差部(4233;4234;4235)は、筒部(423)の内周において第1開口部(4231)及び第2開口部(4232)の間に形成されている。段差部(4233;4234;4235)は円環状に形成されている。放電部(420)は、複数の放電部(420)の1つである。複数の放電部(420)のうちの少なくとも1つの放電部(420)は、少なくとも1つの段差部(4233;4234;4235)に形成されている。
 この態様によれば、複数の放電部(420)を有することで、各々の放電部(420)で電界集中が過度に高まることを抑制することができる。
 第8の態様に係る放電装置(10)では、第6又は第7の態様において、第1開口部(4231)の縁(縁部424)は、放電電極(41)の先端部(411)と対向電極(42)との距離(D1)が最短となる線(L2)を含む部分である。第2開口部(4232)の開口径(D3)は、第1開口部(4231)の開口径(D4)より小さい。
 この態様によれば、放電電極(41)の先端部(411)からの距離(D1)が最短となる線(L2)を含む縁部(424)に放電部(420)が形成されているため、放電電極(41)の先端部(411)と放電部(420)との間で放電がより発生しやすく、有効成分の生成量の増大をより図ることができる。また、第2開口部(4232)の開口径(D3)が第1開口部(4231)の開口径(D4)より小さいことから、第2開口部(4232)からより効率よく有効成分が放出されやすくなる。
 第9の態様に係る放電装置(10)では、第1から第8のいずれかの態様において、放電電極(41)の先端部(411)は液体(50)を保持する。液体(50)は、放電によって静電霧化される。
 この態様によれば、ラジカルを含有する帯電微粒子液が生成される。したがって、ラジカルが単体で空気中に放出される場合に比べて、ラジカルの長寿命化を図ることができる。さらに、帯電微粒子液が例えばナノメータサイズであることで、比較的広範囲に帯電微粒子液を浮遊させることができる。
 第10の態様に係る放電装置(10)は、第9の態様において、液体供給部(5)、を更に備える。液体供給部(5)は、放電電極(41)に液体(50)を供給する。
 この態様によれば、放電電極(41)に対して液体供給部(5)により液体(50)が自動的に供給されるので、放電電極(41)に液体(50)を供給する作業を不要とすることができる。
 第1の態様以外の構成については、放電装置(10)に必須の構成ではなく、適宜省略可能である。
 10 放電装置
 41 放電電極
 411 先端部
 42 対向電極
 420 放電部
 423 筒部
 4231 第1開口部
 4232 第2開口部
 4233,4234,4235 段差部
 424 縁部(第1開口部の縁)
 5 液体供給部
 50 液体
 D1 距離
 D3 開口径
 D4 開口径
 L1 放電経路
 L2 線
 r1 曲率半径
 r2 曲率半径

Claims (11)

  1.  先端部を有する放電電極と、
     前記放電電極の前記先端部と隙間を介して対向するように配置されている対向電極と、
     前記放電電極と前記対向電極との間に電圧を印加することにより前記放電電極と前記対向電極との間に放電を生じさせる電圧印加装置と、
     を備え、
     前記放電電極は前記対向電極に向かって突出しており、
     前記対向電極は、前記放電電極の前記先端部との間で前記放電が生じる放電部を有し、
     前記放電部は、前記放電電極の前記先端部を中心とする円周に沿って延びている、
     放電装置。
  2.  前記放電部は、前記放電電極の前記先端部と前記対向電極との距離が最短となる線を含む部分である、
     請求項1に記載の放電装置。
  3.  前記放電部は、前記放電電極の前記先端部を中心とする前記円周に沿った円環状に形成されている、
     請求項1又は2に記載の放電装置。
  4.  前記放電部は、曲面を有している、
     請求項1から3のいずれか1項に記載の放電装置。
  5.  前記放電部が有する前記曲面の曲率半径は、前記放電電極の前記先端部の曲率半径より大きい、
     請求項4に記載の放電装置。
  6.  前記対向電極は、前記放電電極が突出する向きに沿って延びている筒部を更に有し、
     前記筒部は、前記突出する向きに沿って並んでいる第1開口部及び第2開口部を有し、
     前記第1開口部は、前記第2開口部より前記放電電極の近くに形成されており、
     前記放電部は、前記第1開口部の縁に形成されている、
     請求項1から5のいずれか1項に記載の放電装置。
  7.  前記筒部は、前記筒部の内周において前記第1開口部及び前記第2開口部の間に形成されている少なくとも1つの円環状の段差部を更に有し、
     前記放電部は、複数の放電部の1つであって、
     前記複数の放電部のうちの少なくとも1つの放電部は、前記少なくとも1つの前記段差部に形成されている、
     請求項6に記載の放電装置。
  8.  前記第1開口部の前記縁は、前記放電電極の前記先端部と前記対向電極との距離が最短となる線を含む部分であり、
     前記第2開口部の開口径は、前記第1開口部の開口径より小さい、
     請求項6又は7に記載の放電装置。
  9.  前記放電電極の前記先端部は液体を保持し、
     前記液体は、前記放電によって静電霧化される、
     請求項1から8のいずれか1項に記載の放電装置。
  10.  前記放電電極に前記液体を供給する液体供給部、を更に備える、
     請求項9に記載の放電装置。
  11.  前記放電電極の先端部と前記対向電極の放電部との間の放電経路は、放電電極の先端部と放電部420とが形成する仮想の直円錐の母線に沿って形成される、
     請求項1から10のいずれか1項に記載の放電装置。
PCT/JP2022/018465 2021-07-30 2022-04-21 放電装置 WO2023007884A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280049773.1A CN117642948A (zh) 2021-07-30 2022-04-21 放电装置
EP22848967.0A EP4379978A1 (en) 2021-07-30 2022-04-21 Discharge device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-125194 2021-07-30
JP2021125194A JP2023020046A (ja) 2021-07-30 2021-07-30 放電装置

Publications (1)

Publication Number Publication Date
WO2023007884A1 true WO2023007884A1 (ja) 2023-02-02

Family

ID=85086485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018465 WO2023007884A1 (ja) 2021-07-30 2022-04-21 放電装置

Country Status (5)

Country Link
EP (1) EP4379978A1 (ja)
JP (1) JP2023020046A (ja)
CN (1) CN117642948A (ja)
TW (1) TW202306270A (ja)
WO (1) WO2023007884A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216286A (ja) * 2008-03-10 2009-09-24 Panasonic Corp 空気調和機
WO2010021332A1 (ja) * 2008-08-19 2010-02-25 パナソニック電工株式会社 静電霧化装置
JP2018022574A (ja) 2016-08-01 2018-02-08 パナソニックIpマネジメント株式会社 放電装置およびこれの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216286A (ja) * 2008-03-10 2009-09-24 Panasonic Corp 空気調和機
WO2010021332A1 (ja) * 2008-08-19 2010-02-25 パナソニック電工株式会社 静電霧化装置
JP2018022574A (ja) 2016-08-01 2018-02-08 パナソニックIpマネジメント株式会社 放電装置およびこれの製造方法

Also Published As

Publication number Publication date
EP4379978A1 (en) 2024-06-05
CN117642948A (zh) 2024-03-01
JP2023020046A (ja) 2023-02-09
TW202306270A (zh) 2023-02-01

Similar Documents

Publication Publication Date Title
JP7142243B2 (ja) 電極装置、放電装置及び静電霧化システム
JP7145424B2 (ja) 放電装置
WO2019044272A1 (ja) 電圧印加装置、及び放電装置
WO2023007884A1 (ja) 放電装置
WO2023007885A1 (ja) 放電装置
JP7228764B2 (ja) 放電装置及び電極装置
TWI801642B (zh) 電壓施加裝置及放電裝置
JP7190681B2 (ja) ヘアケア装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280049773.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401000461

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022848967

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848967

Country of ref document: EP

Effective date: 20240229