TW202006836A - Semiconductor die pickup system - Google Patents

Semiconductor die pickup system Download PDF

Info

Publication number
TW202006836A
TW202006836A TW108123670A TW108123670A TW202006836A TW 202006836 A TW202006836 A TW 202006836A TW 108123670 A TW108123670 A TW 108123670A TW 108123670 A TW108123670 A TW 108123670A TW 202006836 A TW202006836 A TW 202006836A
Authority
TW
Taiwan
Prior art keywords
semiconductor die
pressure
time
suction
peeling
Prior art date
Application number
TW108123670A
Other languages
Chinese (zh)
Other versions
TWI745710B (en
Inventor
馬詰邦彦
Original Assignee
日商新川股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商新川股份有限公司 filed Critical 日商新川股份有限公司
Publication of TW202006836A publication Critical patent/TW202006836A/en
Application granted granted Critical
Publication of TWI745710B publication Critical patent/TWI745710B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Die Bonding (AREA)

Abstract

A semiconductor die pickup system (500) that picks up a semiconductor die (15) comprises: a control unit (150) that controls a release action for releasing the semiconductor die (15) from a dicing sheet (12) during pickup; and a storage unit (152) that stores associative relationships (level table (159), parameter table (160)) in which each semiconductor die (15) of a single wafer and one of a previously stipulated plurality of types of release actions are associated. The control unit (150) reads the associative relationships from the storage unit (152), and during pickup of each semiconductor die (15) of the single wafer, performs pickup by releasing each semiconductor die (15) from the dicing sheet (12) according to the release action associated with said semiconductor die (15). Thus, semiconductor die pickup can be performed applying the appropriate release action for each semiconductor die of a single wafer.

Description

半導體晶粒的拾取系統Semiconductor die picking system

本發明是有關於一種用於接合裝置(接合系統(bonding system))的半導體晶粒的拾取(pickup)系統。The present invention relates to a pickup system for a semiconductor die used in a bonding apparatus (bonding system).

半導體晶粒是將6吋(inch)或8吋大小的晶圓(wafer)切斷成規定的大小而製造。在切斷時,在背面貼附切割片材(dicing sheet),並自表面側藉由切割鋸等來切斷晶圓,以免切斷後的半導體晶粒七零八落。此時,貼附於背面的切割片材成為被稍許切入但未被切斷且保持著各半導體晶粒的狀態。然後,被切斷的各半導體晶粒被逐個自切割片材拾取而送往晶粒接合(die bonding)等下個步驟。The semiconductor die is manufactured by cutting a 6-inch (inch) or 8-inch wafer into a prescribed size. During dicing, a dicing sheet is attached to the back, and the wafer is diced by a dicing saw or the like from the front side, so as to avoid the scattered semiconductor die. At this time, the dicing sheet attached to the back surface is in a state of being slightly cut but not cut and holding each semiconductor crystal grain. Then, the cut semiconductor die are picked up one by one from the dicing sheet and sent to the next step such as die bonding.

作為自切割片材拾取半導體晶粒的方法,提出有下述方法:在使切割片材吸附於圓板狀的吸附板的表面,並使半導體晶粒吸附於吸頭(collet)的狀態下,利用配置於吸附板中央部的頂塊(block)來頂起半導體晶粒,並且使吸頭上升,從而自切割片材拾取半導體晶粒(例如參照專利文獻1的圖9至圖23)。在使半導體晶粒自切割片材剝離時,有效的做法是,首先使半導體晶粒的周邊部剝離,接下來使半導體晶粒的中央部剝離,因此在專利文獻1所記載的現有技術中,採用下述方法,即:將頂塊分為頂起半導體晶粒的周圍部分的塊、頂起半導體晶粒的中央的塊、與頂起半導體晶粒的中間的塊這3個塊,首先使3個塊上升至規定高度後,使中間與中央的塊上升得高於周邊的塊,最後使中央的塊上升得高於中間的塊。As a method of picking up semiconductor crystal grains from a dicing sheet, there has been proposed a method in which the dicing sheet is adsorbed on the surface of a disk-shaped adsorption plate and the semiconductor crystal grains are adsorbed on a collet. The semiconductor crystal grains are lifted by a block arranged at the center of the suction plate, and the suction head is raised to pick up the semiconductor crystal grains from the dicing sheet (see, for example, FIGS. 9 to 23 of Patent Document 1). When peeling the semiconductor crystal grain from the dicing sheet, it is effective to first peel off the peripheral portion of the semiconductor crystal grain and then peel off the central portion of the semiconductor crystal grain. Therefore, in the prior art described in Patent Document 1, The following method is adopted, that is, the top block is divided into three blocks that block the surrounding portion of the semiconductor die, a block that blocks the center of the semiconductor die, and a block that blocks the middle of the semiconductor die, and first After the three blocks rise to the prescribed height, the middle and center blocks are raised higher than the surrounding blocks, and finally the center block is raised higher than the middle block.

另外,亦提出有下述方法:在使切割片材吸附於圓板狀的頂帽(ejector cap)的表面,並使半導體晶粒吸附於吸頭的狀態下,使吸頭以及周邊、中間、中央的各頂塊上升至高於頂帽的表面的規定高度後,使吸頭的高度仍保持該高度,並使頂塊依照周圍的頂塊、中間的頂塊的順序下降至頂帽表面之下的位置,從而自半導體晶粒剝離切割片材(例如參照專利文獻2)。In addition, there is also proposed a method of adsorbing the dicing sheet to the surface of a disc-shaped ejector cap and adsorbing the semiconductor crystal grains to the suction head, and then making the suction head and its periphery, middle, After each top block in the center rises above the specified height of the top cap surface, the height of the suction head is maintained at this height, and the top block is lowered below the top cap surface in the order of the surrounding top block and the middle top block To peel off the dicing sheet from the semiconductor crystal grain (see Patent Document 2, for example).

在利用專利文獻1、專利文獻2中記載的方法來使切割片材自半導體晶粒剝離的情況下,如專利文獻1的圖40、圖42、圖44,專利文獻2的圖4A至圖4D、圖5A至圖5D所記載般,在半導體晶粒剝離之前,半導體晶粒有時會在仍貼附於切割片材的狀態下與切割片材一同彎曲變形。若在半導體晶粒發生彎曲變形的狀態下繼續進行切割片材的剝離動作,則半導體晶粒有時會發生破損,因此提出有下述方法:如專利文獻1的圖31所記載般,根據來自吸頭的抽吸空氣的流量變化來檢測半導體晶粒的彎曲,並如專利文獻1的圖43所記載般,在檢測到吸氣流量時,判斷為半導體晶粒已發生變形而使頂塊暫時下降後,再次使頂塊上升。再者,在專利文獻3中亦揭示了根據來自吸頭的抽吸空氣的流量的變化來檢測(判別)半導體晶粒的彎曲(撓曲)。 [現有技術文獻] [專利文獻]When the dicing sheet is peeled from the semiconductor crystal grains by the method described in Patent Literature 1 and Patent Literature 2, as shown in FIGS. 40, 42 and 44 of Patent Literature 1, FIGS. 4A to 4D of Patent Literature 2 As shown in FIGS. 5A to 5D, before the semiconductor die is peeled off, the semiconductor die may be bent and deformed together with the dicing sheet while still attached to the dicing sheet. If the peeling operation of the dicing sheet is continued while the semiconductor crystal grains are bent and deformed, the semiconductor crystal grains may be damaged. Therefore, the following method has been proposed: as described in FIG. 31 of Patent Document 1, according to The flow rate of the suction air of the suction head changes to detect the bending of the semiconductor die, and as described in FIG. 43 of Patent Document 1, when the suction flow rate is detected, it is determined that the semiconductor die has been deformed and the top block is temporarily After falling, the top block is raised again. Furthermore, Patent Document 3 also discloses that the bending (deflection) of the semiconductor crystal grain is detected (discriminated) based on the change in the flow rate of the suction air from the suction head. [Prior Art Literature] [Patent Literature]

[專利文獻1]日本專利第4945339號公報 [專利文獻2]美國專利第8092645號說明書 [專利文獻3]日本專利第5813432號公報[Patent Document 1] Japanese Patent No. 4945339 [Patent Document 2] US Patent No. 8092645 Specification [Patent Document 3] Japanese Patent No. 5813432

[發明所欲解決之課題][Problems to be solved by the invention]

近年來,半導體晶粒變得非常薄,例如亦有20 μm左右的半導體晶粒。另一方面,切割片材的厚度為100 μm左右,因此切割片材的厚度亦達到半導體晶粒的厚度的4倍~5倍。若欲使此種薄的半導體晶粒自切割片材剝離,則容易更明顯地產生追隨於切割片材的變形的半導體晶粒的變形。根據專利文獻1,對半導體晶粒的彎曲進行檢測並變更剝離動作,因此在自切割片材拾取半導體晶粒時,有能夠抑制半導體晶粒的損傷的可能性。In recent years, semiconductor crystal grains have become very thin, for example, there are also semiconductor crystal grains of about 20 μm. On the other hand, the thickness of the dicing sheet is about 100 μm, so the thickness of the dicing sheet also reaches 4 to 5 times the thickness of the semiconductor crystal grains. If such thin semiconductor crystal grains are to be peeled off from the dicing sheet, deformation of the semiconductor crystal grains following the deformation of the dicing sheet is more likely to occur more clearly. According to Patent Document 1, the bending of the semiconductor crystal grain is detected and the peeling operation is changed. Therefore, when the semiconductor crystal grain is picked up from the dicing sheet, there is a possibility that the damage of the semiconductor crystal grain can be suppressed.

但是,由於一邊檢測正在進行拾取的半導體晶粒的彎曲一邊變更剝離動作(即時變更),因此拾取的控制變得非常複雜。由於多次重覆進行半導體晶粒的彎曲的檢測、根據檢測結果來判定是否變更剝離動作、根據判定結果來變更剝離動作或者不進行變更而使動作前進這一系列的處理,因此亦擔心剝離動作花費的時間變長。因此,實際上,在很多情況下不進行此種即時的剝離動作的變更,而是將假定了最難剝離的半導體晶粒時的剝離動作一律應用於所有的半導體晶粒。但是,在該情況下,對於原本可應用簡化的短時間的剝離動作的容易剝離的半導體晶粒,亦應用長時間的剝離動作,拾取變得低速。希望應用適合於各個半導體晶粒的剝離動作,對於每個半導體晶粒,使半導體晶粒的損傷抑制與半導體晶粒的拾取高速化的平衡適當。However, since the peeling operation (instant change) is changed while detecting the bending of the semiconductor die being picked up, the control of picking becomes very complicated. A series of processes of repeatedly detecting the bending of the semiconductor die, judging whether to change the peeling operation based on the detection result, changing the peeling operation based on the judgment result, or advancing the operation without change, so there is also concern about the peeling operation The time it takes becomes longer. Therefore, in fact, in many cases, such an immediate peeling operation is not changed, but the peeling operation when the semiconductor die which is the most difficult to peel is assumed is uniformly applied to all semiconductor die. However, in this case, even for a semiconductor die that can be easily peeled to which a simplified short-time peeling operation can be applied, a long-time peeling operation is also applied, and the pickup speed becomes low. It is desirable to apply a peeling operation suitable for each semiconductor die, and for each semiconductor die, it is appropriate to balance the suppression of damage to the semiconductor die and the speeding up of the semiconductor die.

此外,根據晶圓中的半導體晶粒的位置,有時半導體晶粒自切割片材的剝離性會發生變化。例如,自晶圓中的中心附近的半導體晶粒向外周附近的半導體晶粒,剝離性(易剝離性或難剝離性)有時會緩緩變化。或者,例如有晶圓中的特定區域的半導體晶粒的剝離性與其他區域的半導體晶粒的剝離性大不相同的情況。關於此種與晶圓的半導體晶粒的位置對應的剝離性的傾向,在連續進行拾取的多個晶圓中多數情況下為相同的。在連續拾取多個晶圓的半導體晶粒時,藉由對處於容易剝離的位置的半導體晶粒應用短時間的剝離動作,能夠使拾取高速化。根據半導體晶粒的各個位置的剝離性來應用適合於各個半導體晶粒的剝離動作,能夠使半導體晶粒的損傷抑制與半導體晶粒的拾取高速化的平衡適當。為了實現所述情況,需要一種用來把握與晶圓的各半導體晶粒的位置對應的各半導體晶粒的剝離性的結構。另外,在把握了與晶圓的各半導體晶粒的位置對應的各半導體晶粒的剝離性之後、或者在能夠事先把握的情況下,需要一種用來應用適合於晶圓的各個半導體晶粒的剝離動作的結構。In addition, depending on the position of the semiconductor die in the wafer, the peelability of the semiconductor die from the dicing sheet may change. For example, from the semiconductor crystal grains near the center in the wafer to the semiconductor crystal grains near the outer circumference, the peelability (easy peelability or hard peelability) sometimes changes slowly. Or, for example, the peelability of the semiconductor crystal grains in a specific region of the wafer may be significantly different from the peelability of the semiconductor crystal grains in other regions. This tendency for peelability according to the position of the semiconductor crystal grains of the wafer is the same in many wafers that are continuously picked up. When continuously picking up semiconductor wafers of a plurality of wafers, it is possible to speed up the pickup by applying a short-time peeling operation to the semiconductor wafers in a position where they are easily peeled. Applying a peeling operation suitable for each semiconductor die according to the peelability of each position of the semiconductor die can appropriately balance the damage suppression of the semiconductor die and the speeding up of the semiconductor die. In order to realize the above situation, a structure for grasping the peelability of each semiconductor die corresponding to the position of each semiconductor die of the wafer is required. In addition, after grasping the peelability of each semiconductor die corresponding to the position of each semiconductor die of the wafer, or if it can be grasped in advance, a method for applying each semiconductor die suitable for the wafer is required The structure of the stripping action.

本發明的目的在於使得能夠應用適合於各半導體晶粒的剝離動作(拾取動作)來進行各半導體晶粒的拾取。或者,本發明的目的在於把握與晶圓的各半導體晶粒的位置對應的各半導體晶粒的剝離性。 [解決課題之手段]An object of the present invention is to enable pick-up of each semiconductor die by applying a peeling operation (pick-up operation) suitable for each semiconductor die. Alternatively, the present invention aims to grasp the peelability of each semiconductor crystal grain corresponding to the position of each semiconductor crystal grain of the wafer. [Means to solve the problem]

本發明的半導體晶粒的拾取系統是將對晶圓進行切割而成的半導體晶粒自切割片材剝離並加以拾取的拾取系統,其特徵在於包括:控制單元,基於用以自切割片材拾取半導體晶粒的拾取條件,對拾取動作進行控制;以及生成單元,生成將多個拾取條件中的任意一個拾取條件與半導體晶粒的個別資訊建立了對應關係的對應資訊,控制單元在拾取半導體晶粒時,依照與每個半導體晶粒建立了對應關係的所述對應資訊,進行自切割片材拾取半導體晶粒的控制。The semiconductor die picking system of the present invention is a picking system that peels and picks up the semiconductor die cut from a wafer from a dicing sheet, and is characterized in that it includes a control unit based on picking up from the dicing sheet The pickup condition of the semiconductor die controls the pickup action; and the generation unit generates corresponding information that establishes a correspondence between any of the multiple pickup conditions and the individual information of the semiconductor die. The control unit picks up the semiconductor die At the time of graining, the control of picking up semiconductor grains from the dicing sheet is performed according to the corresponding information that establishes a corresponding relationship with each semiconductor grain.

在本發明的半導體晶粒的拾取系統中,亦較佳設為生成單元生成:等級表,將一片晶圓中的各半導體晶粒與作為多個拾取條件的辨識符的等級值建立了對應關係;以及條件表,將多個等級值的任意一個與拾取條件的任意一個建立了對應關係,所述對應資訊由等級表及條件表確定。In the semiconductor die picking system of the present invention, it is also preferable for the generating unit to generate: a rank table that associates each semiconductor die in a wafer with rank values that are identifiers of multiple picking conditions And a condition table, which establishes a correspondence between any one of a plurality of grade values and any one of the pickup conditions, and the corresponding information is determined by the grade table and the condition table.

在本發明的半導體晶粒的拾取系統中,亦較佳設為:多個等級值是表示拾取所需時間的長短的值。In the pickup system of the semiconductor die of the present invention, it is also preferable that the plurality of gradation values indicate the length of time required for pickup.

在本發明的半導體晶粒的拾取系統中,亦較佳設為包括:顯示部,顯示畫面;以及顯示控制單元,顯示控制單元在顯示部上顯示模仿一片晶圓的各半導體晶粒而得的映射圖像,在映射圖像中,對與等級值建立了對應關係的半導體晶粒所對應的半導體晶粒圖像,附加與等級值對應的顏色、圖案、文字、數字及記號的至少一種。In the semiconductor die picking system of the present invention, it is also preferably provided that it includes: a display unit, a display screen; and a display control unit that displays each semiconductor die imitating a wafer on the display unit A map image. In the map image, at least one of colors, patterns, characters, numbers, and marks corresponding to the grade value is added to the semiconductor die image corresponding to the semiconductor die that has a corresponding relationship with the grade value.

在本發明的半導體晶粒的拾取系統中,亦較佳設為包括:輸入部,輸入資訊,生成單元自輸入部接受映射圖像上的一個或多個半導體晶粒圖像的選擇、以及自多個等級值中的一個等級值的選擇,並使所選擇的等級值與對應於所選擇的半導體晶粒圖像的半導體晶粒建立對應關係,來生成或更新等級表。In the semiconductor die picking system of the present invention, it is also preferable to include: an input unit, input information, and the generating unit accepts the selection of one or more semiconductor die images on the map image from the input unit, and The selection of one of the plurality of grade values and the correspondence between the selected grade value and the semiconductor die corresponding to the selected semiconductor die image are used to generate or update the grade table.

在本發明的半導體晶粒的拾取系統中,亦較佳設為包括:吸頭,吸附半導體晶粒;抽吸機構,與吸頭連接,自吸頭的表面抽吸空氣;流量感測器,檢測抽吸機構的抽吸空氣流量;以及儲存部,儲存有期待流量資訊,所述期待流量資訊表示半導體晶粒自切割片材的剝離良好的情況下的、所述半導體晶粒的拾取時的流量感測器檢測出的抽吸空氣流量的時間變化,生成單元獲取實際流量資訊,所述實際流量資訊表示在拾取一片晶圓中的各半導體晶粒時流量感測器檢測出的抽吸空氣流量的時間變化,所述生成單元求出多個半導體晶粒各自的實際流量資訊與期待流量資訊的相關值,並基於多個相關值各者,使等級值與多個半導體晶粒各者建立對應關係,來生成或更新等級表。In the pickup system of the semiconductor die of the present invention, it is also preferably provided that it includes: a suction head to adsorb the semiconductor die; a suction mechanism connected to the suction head to suck air from the surface of the suction head; a flow sensor, Detecting the suction air flow rate of the suction mechanism; and the storage section storing expected flow rate information indicating that when the semiconductor die is peeled off from the dicing sheet well, when the semiconductor die is picked up The time change of the suction air flow detected by the flow sensor, the generating unit obtains actual flow information, which represents the suction air detected by the flow sensor when picking up each semiconductor die in a wafer With the time change of the flow rate, the generating unit obtains the correlation values of the actual flow rate information and the expected flow rate information of each of the plurality of semiconductor dies, and based on each of the plurality of related values, establishes the level value and each of the plurality of semiconductor dies Correspondence relationship to generate or update the level table.

在本發明的半導體晶粒的拾取系統中,亦較佳設為:顯示控制單元在顯示部的映射圖像中,在各半導體晶粒圖像或各半導體晶粒圖像的附近顯示與各半導體晶粒圖像對應的各半導體晶粒的相關值,或者在顯示部中,在畫面上的規定位置顯示與特定的半導體晶粒圖像對應的半導體晶粒的相關值。In the semiconductor die picking system of the present invention, it is also preferable that the display control unit displays each semiconductor die image or each semiconductor die image in the vicinity of each semiconductor die image in the mapped image of the display unit. The correlation value of each semiconductor die corresponding to the die image or the correlation value of the semiconductor die corresponding to the specific semiconductor die image is displayed at a predetermined position on the screen in the display unit.

在本發明的半導體晶粒的拾取系統中,亦較佳設為:在等級表中,隨著自一片晶圓的外周側朝向內周側,使拾取所需時間更短的等級值與各半導體晶粒建立了對應關係。In the semiconductor die picking system of the present invention, it is also preferable to set the rank value and each semiconductor with a shorter time required for picking up from the outer peripheral side toward the inner peripheral side of one wafer in the rank table The grains establish a corresponding relationship.

在本發明的半導體晶粒的拾取系統中,亦較佳設為包括:平台,包含吸附切割片材的背面的吸附面;以及開口壓力切換機構,在接近真空的第一壓力與接近大氣壓的第二壓力之間切換設置於平台的吸附面的開口的開口壓力,控制單元在拾取半導體晶粒時,進行在第一壓力與第二壓力之間切換所述開口壓力的控制,拾取條件的種類中包括在第一壓力與第二壓力之間切換所述開口壓力的切換次數。In the pickup system of the semiconductor die of the present invention, it is also preferably provided that it includes: a platform including an adsorption surface that adsorbs the back surface of the cut sheet; and an opening pressure switching mechanism between the first pressure close to vacuum and the first pressure close to atmospheric pressure. The opening pressure of the opening provided on the suction surface of the platform is switched between the two pressures, and the control unit performs control to switch the opening pressure between the first pressure and the second pressure when picking up the semiconductor die. Among the types of pickup conditions It includes the number of times to switch the opening pressure between the first pressure and the second pressure.

在本發明的半導體晶粒的拾取系統中,亦較佳設為:拾取條件的種類中包括將所述開口壓力保持於第一壓力的保持時間。In the pickup system of the semiconductor die of the present invention, it is also preferable that the type of pickup condition includes a holding time for holding the opening pressure at the first pressure.

在本發明的半導體晶粒的拾取系統中,亦較佳設為:包括階差面形成機構,所述階差面形成機構包含多個移動元件,所述多個移動元件配置於所述開口中,且前端面在比吸附面高的第一位置與比第一位置低的第二位置之間移動,所述階差面形成機構形成相對於吸附面的階差面,在拾取半導體晶粒時,控制單元進行使多個移動元件分別以規定時間的間隔依次自第一位置移動至第二位置、或者以規定的移動元件的組合同時自第一位置移動至第二位置的控制,拾取條件的種類中包括所述規定時間。In the pickup system of the semiconductor die of the present invention, it is also preferably provided that it includes a stepped surface forming mechanism including a plurality of moving elements, and the plurality of moving elements are disposed in the opening , And the front end surface moves between a first position higher than the suction surface and a second position lower than the first position, the step surface forming mechanism forms a step surface relative to the suction surface, when picking up semiconductor die , The control unit performs control to move the plurality of moving elements sequentially from the first position to the second position at predetermined time intervals, or to move from the first position to the second position at the same time with a combination of predetermined moving elements. The category includes the prescribed time.

在本發明的半導體晶粒的拾取系統中,亦較佳設為:拾取條件的種類中包括同時自第一位置移動至第二位置的所述移動元件的數量。In the pickup system of the semiconductor die of the present invention, it is also preferable that the type of pickup condition includes the number of the moving elements that simultaneously move from the first position to the second position.

在本發明的半導體晶粒的拾取系統中,亦較佳設為:包括吸附半導體晶粒的吸頭,拾取條件的種類中包括自吸頭著落於半導體晶粒起至開始所述半導體晶粒的抬起為止的待機時間。In the pickup system of the semiconductor die of the present invention, it is also preferable to include a suction head that adsorbs the semiconductor die, and the types of pickup conditions include the period from when the suction head falls on the semiconductor die to the beginning of the semiconductor die Standby time until lifted.

本發明的半導體晶粒的拾取系統是拾取貼附於切割片材的表面的半導體晶粒的半導體晶粒的拾取系統,其特徵在於包括:吸頭,吸附半導體晶粒;抽吸機構,與吸頭連接,自吸頭的表面抽吸空氣;流量感測器,檢測抽吸機構的抽吸空氣流量;控制部,在拾取時,對用以自切割片材剝離半導體晶粒的剝離動作進行控制;以及顯示部,顯示畫面,控制部獲取實際流量變化,所述實際流量變化是在拾取一片晶圓中的各半導體晶粒時,流量感測器檢測出的抽吸空氣流量的時間變化,所述控制部基於多個半導體晶粒各自的實際流量變化,求出多個半導體晶粒各自的自切割片材的剝離容易度或剝離困難度即剝離度,並在顯示部上顯示模仿一片晶圓的各半導體晶粒而得的映射圖像,且在映射圖像中,對與求出了剝離度的半導體晶粒對應的半導體晶粒圖像附加與所述半導體晶粒的剝離度對應的顏色、圖案、文字、數字及記號的至少一種。 [發明的效果]The semiconductor die picking system of the present invention is a picking system for picking up semiconductor die attached to the surface of a dicing sheet, and is characterized in that it includes: a suction head that attracts semiconductor die; a suction mechanism, and a suction mechanism The head is connected to suck air from the surface of the suction head; the flow sensor detects the suction air flow of the suction mechanism; the control part controls the peeling operation for peeling the semiconductor die from the dicing sheet during pickup ; And the display section, the display screen, the control section obtains the actual flow rate change, the actual flow rate change is the time change of the suction air flow rate detected by the flow rate sensor when picking up each semiconductor die in a wafer, so The control unit determines the peeling easiness or the peeling difficulty, ie the peeling degree, of the self-cut sheets of the plurality of semiconductor dies based on the actual flow rate changes of the plurality of semiconductor dies, and displays on the display unit imitating a wafer Map image of each semiconductor die of the semiconductor chip, and in the map image, a color corresponding to the peeling degree of the semiconductor die is added to the semiconductor die image corresponding to the semiconductor die having obtained the peeling degree , Patterns, characters, numbers and signs. [Effect of invention]

本發明具有如下效果:能夠應用適合於各半導體晶粒的剝離動作(拾取動作)來拾取各半導體晶粒。或者,本發明具有如下效果:能夠把握與一片晶圓的各半導體晶粒的位置對應的各半導體晶粒的剝離性。The present invention has the effect that each semiconductor die can be picked up by applying a peeling operation (pickup operation) suitable for each semiconductor die. Alternatively, the present invention has the effect of being able to grasp the peelability of each semiconductor die corresponding to the position of each semiconductor die of one wafer.

<構成> 以下,參照圖式對本發明實施方式的半導體晶粒的拾取系統進行說明。如圖1所示,本實施方式的半導體晶粒的拾取系統500包括:晶圓固持器10,保持切割片材12,且沿水平方向移動,所述切割片材12在表面12a貼附有半導體晶粒15;平台20,配置於晶圓固持器10的下表面,且包含吸附面22,所述吸附面22吸附切割片材12的背面12b;多個移動元件30,配置在設置於平台20的吸附面22的開口23中;階差面形成機構300,形成相對於吸附面22的階差面;階差面形成機構驅動部400,驅動階差面形成機構300;吸頭18,拾取半導體晶粒15;開口壓力切換機構80,切換平台20的開口23的壓力;吸附壓力切換機構90,切換平台20的吸附面22的吸附壓力;抽吸機構100,自吸頭18的表面18a抽吸空氣;真空裝置(VAC)140;晶圓固持器水平方向驅動部110,沿水平方向驅動晶圓固持器10;平台上下方向驅動部120,沿上下方向驅動平台20;吸頭驅動部130,沿上下左右方向驅動吸頭18;控制部150,進行半導體晶粒的拾取系統500的控制;輸入部410,其為輸入資訊的鍵盤或滑鼠等;以及顯示部450,其為顯示畫面的顯示器。<Composition> Hereinafter, the pickup system of the semiconductor die according to the embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the semiconductor die picking system 500 of this embodiment includes a wafer holder 10 that holds a dicing sheet 12 and moves in a horizontal direction. The dicing sheet 12 has a semiconductor attached to a surface 12a Die 15; platform 20, which is arranged on the lower surface of the wafer holder 10, and includes an adsorption surface 22 which adsorbs the back surface 12b of the dicing sheet 12; a plurality of moving elements 30 are arranged on the platform 20 In the opening 23 of the suction surface 22; the step surface forming mechanism 300 forms a step surface relative to the suction surface 22; the step surface forming mechanism driving part 400 drives the step surface forming mechanism 300; the suction head 18 picks up the semiconductor Die 15; opening pressure switching mechanism 80, switching the pressure of the opening 23 of the platform 20; suction pressure switching mechanism 90, switching the suction pressure of the suction surface 22 of the platform 20; suction mechanism 100, sucking from the surface 18a of the suction head 18 Air; Vacuum device (VAC) 140; wafer holder horizontal drive unit 110 to drive the wafer holder 10 in the horizontal direction; platform up-down drive unit 120 to drive the platform 20 in the up-down direction; tip drive unit 130 along The suction head 18 is driven in the up, down, left, and right directions; the control unit 150 controls the pickup system 500 of the semiconductor die; the input unit 410, which is a keyboard or mouse for inputting information; and the display unit 450, which is a display that displays a screen.

階差面形成機構300與階差面形成機構驅動部400收納於平台20的基體部24中。階差面形成機構300位於平台20的上部,階差面形成機構驅動部400位於平台20的下部。階差面形成機構300包括沿上下方向移動的多個移動元件30。藉由階差面形成機構驅動部400,多個移動元件30的各前端面如圖1所示的箭頭a般向下側移動。之後將說明移動元件30的詳情。The level difference surface forming mechanism 300 and the level difference surface forming mechanism driving unit 400 are accommodated in the base portion 24 of the platform 20. The step surface forming mechanism 300 is located at the upper part of the platform 20, and the step surface forming mechanism driving part 400 is located at the lower part of the platform 20. The level difference surface forming mechanism 300 includes a plurality of moving elements 30 that move in the up-down direction. With the stepped surface forming mechanism driving section 400, each front end surface of the plurality of moving elements 30 moves downward as shown by arrow a shown in FIG. The details of the moving element 30 will be explained later.

對平台20的開口23的壓力進行切換的開口壓力切換機構80包括三通閥81以及進行三通閥81的開閉驅動的驅動部82。三通閥81具有3個埠(port),第一埠利用配管83而連接於與平台20的開口23連通的基體部24,第二埠利用配管84而連接於真空裝置140,第三埠連接於向大氣開放的配管85。驅動部82使第一埠與第二埠連通而阻斷第三埠,以將開口23的壓力設為接近真空的第一壓力P1 ,或者使第一埠與第三埠連通而阻斷第二埠,以將開口23的壓力設為接近大氣壓的第二壓力P2 ,藉此,在第一壓力P1 與第二壓力P2 之間切換開口23的壓力。The opening pressure switching mechanism 80 that switches the pressure of the opening 23 of the platform 20 includes a three-way valve 81 and a driving unit 82 that drives the opening and closing of the three-way valve 81. The three-way valve 81 has three ports. The first port is connected to the base portion 24 communicating with the opening 23 of the platform 20 by a pipe 83, the second port is connected to the vacuum device 140 by a pipe 84, and the third port is connected For the piping 85 that is open to the atmosphere. The driving section 82 connects the first port and the second port to block the third port, so as to set the pressure of the opening 23 to the first pressure P 1 close to vacuum, or connects the first port to the third port to block the third port The two ports set the pressure of the opening 23 to the second pressure P 2 near atmospheric pressure, thereby switching the pressure of the opening 23 between the first pressure P 1 and the second pressure P 2 .

對平台20的吸附面22的吸附壓力進行切換的吸附壓力切換機構90是與開口壓力切換機構80同樣地,包括具有3個埠的三通閥91以及進行三通閥91的開閉驅動的驅動部92,第一埠利用配管93而連接於與平台20的槽26連通的吸附孔27,第二埠利用配管94而連接於真空裝置140,第三埠連接於向大氣開放的配管95。驅動部92使第一埠與第二埠連通而阻斷第三埠,以將槽26或吸附面22的壓力設為接近真空的第三壓力P3 ,或者使第一埠與第三埠連通而阻斷第二埠,從而將槽26或吸附面22的壓力設為接近大氣壓的第四壓力P4 ,藉此,在第三壓力P3 與第四壓力P4 之間切換槽26或吸附面22的壓力。The suction pressure switching mechanism 90 that switches the suction pressure of the suction surface 22 of the stage 20 is similar to the opening pressure switching mechanism 80 and includes a three-way valve 91 having three ports and a drive unit that drives the three-way valve 91 to open and close. 92. The first port is connected to the suction hole 27 communicating with the groove 26 of the platform 20 by the pipe 93, the second port is connected to the vacuum device 140 by the pipe 94, and the third port is connected to the pipe 95 open to the atmosphere. The driving section 92 connects the first port and the second port to block the third port, so as to set the pressure of the tank 26 or the suction surface 22 to a third pressure P 3 close to vacuum, or connect the first port to the third port The second port is blocked, so that the pressure of the tank 26 or the suction surface 22 is set to the fourth pressure P 4 near atmospheric pressure, thereby switching the tank 26 or the suction between the third pressure P 3 and the fourth pressure P 4 Face 22 pressure.

自吸頭18的表面18a抽吸空氣的抽吸機構100是與開口壓力切換機構80同樣地,包括具有3個埠的三通閥101以及進行三通閥101的開閉驅動的驅動部102,第一埠利用配管103而連接於與吸頭18的表面18a連通的抽吸孔19,第二埠利用配管104而連接於真空裝置140,第三埠連接於向大氣開放的配管105。驅動部102使第一埠與第二埠連通而阻斷第三埠,並自吸頭18的表面18a抽吸空氣以將吸頭18的表面18a的壓力設為接近真空的壓力,或者使第一埠與第三埠連通而阻斷第二埠,從而將吸頭18的表面18a的壓力設為接近大氣壓的壓力。在將吸頭18的抽吸孔19與三通閥101之間予以連接的配管103中,安裝有流量感測器106,所述流量感測器106對自吸頭18的表面18a抽吸至真空裝置140的空氣流量(抽吸空氣流量)進行檢測。The suction mechanism 100 that sucks air from the surface 18a of the suction head 18 is similar to the opening pressure switching mechanism 80, and includes a three-way valve 101 having three ports and a driving unit 102 that drives the three-way valve 101 to open and close. One port is connected to the suction hole 19 communicating with the surface 18a of the suction head 18 by the piping 103, the second port is connected to the vacuum device 140 by the piping 104, and the third port is connected to the piping 105 open to the atmosphere. The driving section 102 connects the first port and the second port to block the third port, and sucks air from the surface 18a of the suction head 18 to set the pressure of the surface 18a of the suction head 18 to a pressure close to vacuum, or to make the first One port communicates with the third port to block the second port, thereby setting the pressure of the surface 18a of the suction head 18 to a pressure close to atmospheric pressure. In the piping 103 connecting the suction hole 19 of the suction head 18 and the three-way valve 101, a flow sensor 106 is installed, which sucks the surface 18a from the suction head 18 to The air flow rate (suction air flow rate) of the vacuum device 140 is detected.

晶圓固持器水平方向驅動部110、平台上下方向驅動部120、吸頭驅動部130例如藉由設置於內部的馬達與齒輪(gear),來沿水平方向或上下方向等驅動晶圓固持器10、平台20、吸頭18。The wafer holder horizontal driving unit 110, the platform up-down driving unit 120, and the tip driving unit 130 drive the wafer holder 10 in the horizontal direction or the vertical direction by, for example, a motor and a gear provided inside. 、平台20、吸头18。 The platform 20, suction head 18.

控制部150是包含進行各種運算處理或控制處理的中央處理單元(Central Processing Unit,CPU)151、儲存部152以及設備/感測器介面(interface)153,且CPU 151、儲存部152與設備/感測器介面153利用資料匯流排(data bus)154而連接的電腦(computer)。在儲存部152中保存有:控制程式155,用以進行半導體晶粒15的拾取控制;設定顯示程式156,用以使拾取時的剝離動作與一片晶圓的各半導體晶粒15建立對應關係;等級表159(參照圖23),將一片晶圓的各半導體晶粒15與剝離動作的等級值建立了對應關係;參數表160(參照圖19),將等級值與各種剝離參數的參數值建立了對應關係;期待流量變化157,其為半導體晶粒15自切割片材12的剝離良好的情況下的拾取時的、流量感測器106所檢測出的抽吸空氣流量的時間變化;實際流量變化158,其為拾取時流量感測器106所實際檢測出的抽吸空氣流量的時間變化。圖36是控制部150的功能塊圖。控制部150藉由執行控制程式155,作為拾取控制單元600(控制單元)發揮功能。另外,控制部150藉由執行設定顯示程式156,作為後述的生成單元602及顯示控制單元604發揮功能。The control unit 150 includes a central processing unit (CPU) 151 that performs various arithmetic processing or control processing, a storage unit 152, and a device/sensor interface 153, and the CPU 151, the storage unit 152 and the device/ The sensor interface 153 is connected to a computer using a data bus 154. The storage section 152 stores: a control program 155 for picking control of the semiconductor die 15; a setting display program 156 for making the peeling action during picking correspond to each semiconductor die 15 of a wafer; The level table 159 (refer to FIG. 23) establishes a correspondence between each semiconductor die 15 of a wafer and the level value of the stripping operation; the parameter table 160 (refer to FIG. 19) establishes the level value and the parameter values of various stripping parameters Corresponding relationship; Expected flow rate 157, which is the time change of the suction air flow rate detected by the flow sensor 106 when the semiconductor die 15 is peeled from the dicing sheet 12 well, and the actual flow rate Variation 158, which is the time variation of the suction air flow actually detected by the flow sensor 106 during pickup. 36 is a functional block diagram of the control unit 150. The control unit 150 functions as a pickup control unit 600 (control unit) by executing the control program 155. In addition, the control unit 150 functions as a generation unit 602 and a display control unit 604 described later by executing the setting display program 156.

如圖1所示,開口壓力切換機構80、吸附壓力切換機構90、抽吸機構100的各三通閥81、三通閥91、三通閥101的各驅動部82、驅動部92、驅動部102及階差面形成機構驅動部400、晶圓固持器水平方向驅動部110、平台上下方向驅動部120、吸頭驅動部130、真空裝置140分別連接於設備/感測器介面153,根據控制部150的指令而受到驅動。另外,流量感測器106連接於設備/感測器介面153,檢測訊號被導入至控制部150中進行處理。另外,輸入部410及顯示部450亦連接於設備/感測器介面153,來自輸入部410的輸入資訊被導入至控制部150,來自控制部150的輸出圖像資訊被送往顯示部450。As shown in FIG. 1, the opening pressure switching mechanism 80, the suction pressure switching mechanism 90, the three-way valve 81, the three-way valve 91 of the suction mechanism 100, the respective driving parts 82, driving parts 92, and driving parts of the three-way valve 101 102 and the stepped surface forming mechanism driving part 400, the wafer holder horizontal driving part 110, the platform vertical driving part 120, the tip driving part 130, and the vacuum device 140 are respectively connected to the device/sensor interface 153 according to the control The command of the unit 150 is driven. In addition, the flow sensor 106 is connected to the device/sensor interface 153, and the detection signal is introduced into the control unit 150 for processing. In addition, the input unit 410 and the display unit 450 are also connected to the device/sensor interface 153, the input information from the input unit 410 is imported to the control unit 150, and the output image information from the control unit 150 is sent to the display unit 450.

接下來,對平台20的吸附面22與移動元件30的詳情進行說明。如圖2所示,平台20為圓筒形,且在上表面形成有平面狀的吸附面22。在吸附面22的中央,設置有四方的開口23,在開口23中,安裝有移動元件30。如圖6所示,在開口23的內表面23a與移動元件30的外周面33之間設置有間隙d。如圖2所示,在開口23的周圍,以圍繞開口23的方式設置有槽26。在各槽26中設置有吸附孔27,各吸附孔27連接於吸附壓力切換機構90。Next, the details of the suction surface 22 of the platform 20 and the moving element 30 will be described. As shown in FIG. 2, the platform 20 is cylindrical, and a planar suction surface 22 is formed on the upper surface. In the center of the suction surface 22, a square opening 23 is provided, and in the opening 23, a moving element 30 is mounted. As shown in FIG. 6, a gap d is provided between the inner surface 23 a of the opening 23 and the outer peripheral surface 33 of the moving element 30. As shown in FIG. 2, around the opening 23, a groove 26 is provided so as to surround the opening 23. Each groove 26 is provided with suction holes 27, and each suction hole 27 is connected to a suction pressure switching mechanism 90.

如圖2所示,移動元件30包含配置於中央的柱狀移動元件45;配置於柱狀移動元件45周圍的兩個中間環狀移動元件40、中間環狀移動元件41;以及配置於中間環狀移動元件40周圍從而配置于最外周的周邊環狀移動元件31。再者,此處中間環狀移動元件的數量為兩個,但中間環狀移動元件的數量亦可為一個或三個以上。在圖6及其以後的圖式中,為了簡化說明,中間環狀移動元件40的數量為一個。如圖6所示,柱狀移動元件45、中間環狀移動元件40、周邊環狀移動元件31各自的前端面47、前端面38b、前端面38a位於自平台20的吸附面22突出了高度H0 的第一位置,且構成了同一面(相對於吸附面22的階差面)。在拾取半導體晶粒15時,按照周邊環狀移動元件31、中間環狀移動元件40、柱狀移動元件45的順序,以規定時間的間隔自第一位置移動至比第一位置低的第二位置。或者,以規定的移動元件的組合同時自第一位置移動至第二位置。As shown in FIG. 2, the moving element 30 includes a columnar moving element 45 arranged at the center; two middle ring-shaped moving elements 40 and a middle ring-shaped moving element 41 arranged around the columnar moving element 45; and a middle ring The ring-shaped moving element 31 is arranged around the moving element 40 in the outermost periphery. Furthermore, the number of intermediate ring-shaped moving elements here is two, but the number of intermediate ring-shaped moving elements can also be one or more than three. In the drawings of FIG. 6 and later, in order to simplify the description, the number of intermediate ring-shaped moving elements 40 is one. As shown in FIG. 6, the front end surface 47, the front end surface 38 b, and the front end surface 38 a of the columnar moving element 45, the intermediate annular moving element 40, and the peripheral annular moving element 31 are located at a height H that protrudes from the suction surface 22 of the platform 20. The first position of 0 , and constitute the same surface (step difference surface relative to the adsorption surface 22). When picking up the semiconductor die 15, the peripheral ring-shaped moving element 31, the middle ring-shaped moving element 40, and the columnar moving element 45 are moved from the first position to the second position lower than the first position at predetermined time intervals. position. Alternatively, it can move from the first position to the second position simultaneously with a predetermined combination of moving elements.

<切割片材的設置(set)步驟> 此處,對將貼附有半導體晶粒15的切割片材12設置於晶圓固持器10的步驟進行說明。如圖3所示,晶圓11的背面貼附有黏接性的切割片材12,切割片材12被安裝於金屬製的環(ring)13。晶圓11在如此般經由切割片材12而安裝於金屬製的環13的狀態下受到處理(handling)。而且,如圖4所示,晶圓11在切斷步驟中自表面側被切割鋸等切斷而成為各半導體晶粒15。在各半導體晶粒15之間,形成在切割時所形成的切入間隙14。切入間隙14的深度是自半導體晶粒15到達切割片材12的一部分為止,但切割片材12未被切斷,各半導體晶粒15由切割片材12予以保持。<Setting procedure of cut sheet> Here, the procedure for installing the dicing sheet 12 to which the semiconductor die 15 is attached to the wafer holder 10 will be described. As shown in FIG. 3, an adhesive dicing sheet 12 is attached to the back of the wafer 11, and the dicing sheet 12 is attached to a metal ring 13. The wafer 11 is handled in such a state that it is mounted on the metal ring 13 via the dicing sheet 12. In addition, as shown in FIG. 4, the wafer 11 is cut from the surface side by a dicing saw or the like in the cutting step to become each semiconductor die 15. Between each semiconductor die 15, a cut-in gap 14 formed during dicing is formed. The depth of the cut-in gap 14 is from the semiconductor die 15 to a part of the dicing sheet 12, but the dicing sheet 12 is not cut, and each semiconductor die 15 is held by the dicing sheet 12.

如此,安裝有切割片材12與環13的半導體晶粒15如圖5A、圖5B所示,被安裝於晶圓固持器10。晶圓固持器10包括:圓環狀的擴展環(expand ring)16,具有凸緣部;以及環按壓件17,將環13固定於擴展環16的凸緣上。環按壓件17藉由未圖示的環按壓件驅動部,在朝向擴展環16的凸緣進退的方向上予以驅動。擴展環16的內徑比配置有半導體晶粒15的晶圓的直徑大,擴展環16具備規定的厚度,凸緣位於擴展環16的外側,且以朝外側突出的方式安裝於離開切割片材12的方向的端面側。另外,擴展環16的切割片材12側的外周呈曲面構成,以使得在將切割片材12安裝於擴展環16時,可順利地拉延切割片材12。如圖5B所示,貼附有半導體晶粒15的切割片材12在被設置於擴展環16之前呈大致平面狀態。In this way, as shown in FIGS. 5A and 5B, the semiconductor die 15 mounted with the dicing sheet 12 and the ring 13 is mounted on the wafer holder 10. The wafer holder 10 includes: an annular expansion ring 16 having a flange portion; and a ring pressing member 17 that fixes the ring 13 to the flange of the expansion ring 16. The ring pressing member 17 is driven by a ring pressing member driving part (not shown) in the direction of advancing and retracting toward the flange of the expansion ring 16. The inner diameter of the expansion ring 16 is larger than the diameter of the wafer on which the semiconductor die 15 is arranged, the expansion ring 16 has a predetermined thickness, the flange is located on the outside of the expansion ring 16, and is attached to the dicing sheet so as to protrude outward The end face side in the direction of 12. In addition, the outer circumference of the expansion ring 16 on the side of the cutting sheet 12 is formed into a curved surface, so that when the cutting sheet 12 is attached to the expansion ring 16, the cutting sheet 12 can be smoothly drawn. As shown in FIG. 5B, the dicing sheet 12 to which the semiconductor die 15 is attached is in a substantially planar state before being placed on the expansion ring 16.

如圖1所示,切割片材12在被設置於擴展環16時,沿著擴展環上部的曲面而被拉延擴展環16的上表面與凸緣面的階差量,因此在被固定於擴展環16上的切割片材12,作用有自切割片材12的中心朝向周圍的拉伸力。另外,切割片材12因該拉伸力而延伸,因此貼附於切割片材12上的各半導體晶粒15間的間隙14擴大。As shown in FIG. 1, when the cutting sheet 12 is provided on the expansion ring 16, it is drawn along the curved surface at the top of the expansion ring 16 by the amount of step difference between the upper surface of the expansion ring 16 and the flange surface. The cutting sheet 12 on the expansion ring 16 acts as a stretching force from the center of the cutting sheet 12 toward the surroundings. In addition, the dicing sheet 12 is extended by this tensile force, and therefore the gap 14 between the semiconductor die 15 attached to the dicing sheet 12 is enlarged.

<拾取動作> 接下來,對半導體晶粒15的拾取動作進行說明。根據一片晶圓中的各半導體晶粒15的位置,各半導體晶粒15自切割片材12的剝離性有時發生變化。例如,自晶圓中的外周附近的半導體晶粒15向中心附近的半導體晶粒15,剝離容易度(易剝離性)有時緩緩變高。認為其原因在於:在將切割片材12設置於晶圓固持器10的擴展環16時,切割片材12的中心附近與外周附近相比受到更大拉伸,因此晶圓中心附近的半導體晶粒15的剝離容易度進一步提高。關於此種與晶圓的半導體晶粒15的位置對應的剝離性的傾向,在連續進行拾取的多個晶圓中多數情況下為相同的。在連續拾取多個晶圓的半導體晶粒15時,藉由對處於容易剝離的位置的半導體晶粒15應用簡化的短時間的剝離動作(拾取動作),能夠使拾取高速化,另一方面,藉由對處於難以剝離的位置的半導體晶粒15應用長時間的剝離動作(拾取動作),能夠抑制半導體晶粒15的損傷或拾取錯誤。因此,本實施方式的半導體晶粒的拾取系統500能夠按照一片晶圓中的半導體晶粒15來變更拾取時的剝離動作。<Pickup action> Next, the pickup operation of the semiconductor die 15 will be described. Depending on the position of each semiconductor die 15 in one wafer, the peelability of each semiconductor die 15 from the dicing sheet 12 may sometimes change. For example, from the semiconductor die 15 in the vicinity of the outer periphery of the wafer to the semiconductor die 15 in the vicinity of the center, the ease of peeling (easiness of peeling) may gradually increase. It is considered that the reason is that when the dicing sheet 12 is provided in the expansion ring 16 of the wafer holder 10, the vicinity of the center of the dicing sheet 12 is stretched more than the vicinity of the outer periphery, so the semiconductor crystal near the center of the wafer The ease of peeling of the particles 15 is further improved. This tendency for peelability corresponding to the position of the semiconductor die 15 of the wafer is the same in many wafers that are continuously picked up. When successively picking up the semiconductor die 15 of a plurality of wafers, by applying a simplified short-time peeling operation (pickup operation) to the semiconductor die 15 in a position that is easily peeled off, it is possible to speed up picking. On the other hand, By applying a long-time peeling operation (pickup operation) to the semiconductor die 15 in a position where peeling is difficult, it is possible to suppress damage to the semiconductor die 15 or a pickup error. Therefore, the semiconductor die picking system 500 of the present embodiment can change the peeling operation at the time of picking up according to the semiconductor die 15 in one wafer.

在儲存部152中保存有:如圖23所示的等級表159,將依照一片晶圓中的各半導體晶粒15的位置而附加的各半導體晶粒15的辨識編號(亦稱為晶粒辨識編號或個別資訊)與等級值建立了對應關係;以及如圖19所示的參數表160(條件表),將各等級值與多種剝離參數的參數值(亦稱為拾取條件)建立了對應關係。藉由等級表159及參數表160,使所應用的剝離動作(剝離參數的參數值)與一片晶圓中的各半導體晶粒15建立了對應關係。在本實施方式中,等級值規定了自剝離動作所需時間(拾取時間)最短的等級1至剝離動作所需時間(拾取時間)最長的等級8。在拾取動作前,操作者等考慮與晶圓中的各半導體晶粒15的位置對應的各半導體晶粒15的剝離性,經由後述的設定顯示畫面460(參照圖25)使等級值與各半導體晶粒15建立對應關係,生成等級表159。在進行拾取動作時,參照等級表159,對一片晶圓中的每個半導體晶粒15,根據建立了對應關係的等級值進行剝離動作(拾取動作)。以下,以應用參數表160的等級4的剝離動作來進行的半導體晶粒15的拾取為例,對拾取的動作進行說明。再者,關於參數表160的各種剝離參數及設定顯示畫面460,將在之後進行詳細說明。In the storage unit 152, there is stored a rank table 159 as shown in FIG. 23, and the identification number of each semiconductor die 15 (also called die identification) added according to the position of each semiconductor die 15 in a wafer Number or individual information) and the level value; and the parameter table 160 (condition table) shown in FIG. 19, each level value is associated with a variety of stripping parameter parameter values (also called picking conditions) . With the level table 159 and the parameter table 160, the applied peeling action (parameter value of the peeling parameter) is associated with each semiconductor die 15 in one wafer. In this embodiment, the level value specifies the level 1 from the shortest time required for the peeling operation (pickup time) to the level 8 longest required time for the peeling operation (pickup time). Before the pick-up operation, the operator, etc. considers the peelability of each semiconductor die 15 corresponding to the position of each semiconductor die 15 in the wafer, and adjusts the level value to each semiconductor via the setting display screen 460 (refer to FIG. 25) described later. The dies 15 establish a corresponding relationship and generate a grade table 159. When performing the pickup operation, referring to the rank table 159, for each semiconductor die 15 in one wafer, a peeling operation (pick-up operation) is performed according to the rank value for which the correspondence relationship is established. Hereinafter, the pickup operation of the semiconductor die 15 by applying the peeling operation at level 4 of the parameter table 160 will be described as an example, and the pickup operation will be described. In addition, the various peeling parameters of the parameter table 160 and the setting display screen 460 will be described in detail later.

控制部150藉由執行圖1所示的控制程式155,作為拾取控制單元發揮功能來進行半導體晶粒15的拾取動作的控制。控制部150對作為拾取動作的一部分的、用以將半導體晶粒15自切割片材12剝離的剝離動作進行控制。控制部150最先藉由晶圓固持器水平方向驅動部110來使晶圓固持器10沿水平方向移動至平台20的待機位置之上為止。然後,控制部150在使晶圓固持器10移動至平台20的待機位置之上的規定位置後,暫時停止晶圓固持器10的水平方向的移動。如之前所述,在初始狀態下,各移動元件45、移動元件40、移動元件31的各前端面47、前端面38b、前端面38a處於自平台20的吸附面22突出了高度H0 的第一位置,因此控制部150藉由平台上下方向驅動部120來使平台20上升,直至各移動元件45、移動元件40、移動元件31的各前端面47、前端面38b、前端面38a密接至切割片材12的背面12b,且吸附面22的自開口23稍許離開的區域密接至切割片材12的背面12b為止。而且,在各移動元件45、移動元件40、移動元件31的各前端面47、前端面38b、前端面38a及吸附面22的自開口23稍許離開的區域密接至切割片材12的背面12b後,控制部150停止平台20的上升。然後,控制部150再次藉由晶圓固持器水平方向驅動部110來調整水平位置,以使欲拾取的半導體晶粒15來到自平台20的吸附面22稍許突出的移動元件30的前端面(階差面)的正上方。The control unit 150 executes the control program 155 shown in FIG. 1 and functions as a pickup control unit to control the pickup operation of the semiconductor die 15. The control unit 150 controls the peeling operation for peeling the semiconductor die 15 from the dicing sheet 12 as a part of the picking operation. The control unit 150 first moves the wafer holder 10 horizontally to the standby position of the platform 20 by the wafer holder horizontal driving unit 110. Then, the control unit 150 temporarily stops the horizontal movement of the wafer holder 10 after moving the wafer holder 10 to a predetermined position above the standby position of the stage 20. As described above, in the initial state, each of the front end surface 47, the front end surface 38b, and the front end surface 38a of the moving element 45, the moving element 40, and the moving element 31 is located at a position that protrudes from the suction surface 22 of the platform 20 by a height H 0 At one position, the control unit 150 raises the platform 20 by the platform up-down direction driving unit 120 until each front end surface 47, front end surface 38b, and front end surface 38a of each moving element 45, moving element 40, and moving element 31 are in close contact with the cutting The back surface 12b of the sheet 12 and the area of the suction surface 22 slightly separated from the opening 23 are in close contact with the back surface 12b of the cut sheet 12. Furthermore, after the front end surface 47, front end surface 38b, front end surface 38a, and suction surface 22 of the moving element 45, the moving element 40, and the moving element 31 are slightly separated from the opening 23, they are in close contact with the back surface 12b of the cut sheet 12 , The control unit 150 stops the ascent of the platform 20. Then, the control unit 150 adjusts the horizontal position again by the wafer holder horizontal driving unit 110 so that the semiconductor die 15 to be picked up comes to the front end surface of the moving element 30 slightly protruding from the suction surface 22 of the stage 20 ( Directly above the level difference plane).

如圖6所示,半導體晶粒15的大小比平台20的開口23小,且比移動元件30的寬度或者縱深大,因此當平台20的位置調整結束時,半導體晶粒15的外周端處於平台20的開口23的內表面23a與移動元件30的外周面33之間、即處於開口23的內表面23a與移動元件30的外周面33之間的間隙d的正上方。在初始狀態下,平台20的槽26或者吸附面22的壓力為大氣壓,開口23的壓力亦成為大氣壓。在初始狀態下,各移動元件45、移動元件40、移動元件31的各前端面47、前端面38b、前端面38a處於自平台20的吸附面22突出了高度H0 的第一位置,因此與各前端面47、前端面38b、前端面38a接觸的切割片材12的背面12b的高度亦處於自吸附面22突出了高度H0 的第一位置。另外,在開口23的周緣,切割片材12的背面12b自吸附面22稍許浮起,而在離開開口23的區域,成為密接於吸附面22的狀態。當水平方向的位置調整結束後,控制部150藉由圖1所示的吸頭驅動部130來使吸頭18下降至半導體晶粒15上,使吸頭18的表面18a著落於半導體晶粒15上。As shown in FIG. 6, the size of the semiconductor die 15 is smaller than the opening 23 of the platform 20 and greater than the width or depth of the moving element 30, so when the position adjustment of the platform 20 is completed, the outer peripheral end of the semiconductor die 15 is on the platform The inner surface 23a of the opening 23 of the 20 and the outer peripheral surface 33 of the moving element 30, that is, directly above the gap d between the inner surface 23a of the opening 23 and the outer peripheral surface 33 of the moving element 30. In the initial state, the pressure of the groove 26 or the suction surface 22 of the platform 20 is atmospheric pressure, and the pressure of the opening 23 also becomes atmospheric pressure. In the initial state, the front end surface 47, the front end surface 38b, and the front end surface 38a of the moving element 45, the moving element 40, and the moving element 31 are in the first position that protrudes from the suction surface 22 of the platform 20 by a height H 0 , and therefore The height of the back surface 12b of the cutting sheet 12 contacting the front end surface 47, the front end surface 38b, and the front end surface 38a is also at the first position protruding from the suction surface 22 by the height H 0 . In addition, at the peripheral edge of the opening 23, the back surface 12 b of the dicing sheet 12 slightly floats from the suction surface 22, and is in a state of being in close contact with the suction surface 22 in a region away from the opening 23. After the position adjustment in the horizontal direction is completed, the control unit 150 uses the tip driving unit 130 shown in FIG. 1 to lower the tip 18 onto the semiconductor die 15 so that the surface 18a of the tip 18 falls on the semiconductor die 15 on.

圖18中的(a)~(f)是表示等級4的剝離動作(拾取動作)時的吸頭18的高度、柱狀移動元件45的位置、中間環狀移動元件40的位置、周邊環狀移動元件31的位置、開口23的開口壓力、以及吸頭18的空氣洩漏量的時間變化的圖。在圖18中的(a)中示出了吸頭18的表面18a的高度,且示出了在自時刻t=0起經過少許的時刻至時刻t2使吸頭18移動的狀態。控制部150在使吸頭18移動的期間的時刻t1,藉由抽吸機構100的驅動部102將三通閥101切換成使吸頭18的抽吸孔19與真空裝置140連通的方向。藉此,抽吸孔19成為負壓,空氣自吸頭18的表面18a流入抽吸孔19中,因此,如圖18中的(f)所示,流量感測器106檢測出的抽吸空氣流量(空氣洩漏量)自時刻t1至時刻t2逐漸增加。在時刻t2,當吸頭18著落於半導體晶粒15時,半導體晶粒15被吸附固定於表面18a,無法自表面18a流入空氣。藉此,在時刻t2,流量感測器106檢測出的空氣洩漏量轉為減少。吸頭18著落於半導體晶粒15時的吸頭18的表面18a的高度如圖6所示,成為將各移動元件45、移動元件40、移動元件31的各前端面47、前端面38b、前端面38a的高度(自吸附面22算起的高度H0 )加上切割片材12的厚度與半導體晶粒15的厚度所得的高度Hc。18 (a) to (f) are the height of the tip 18, the position of the columnar moving element 45, the position of the intermediate ring-shaped moving element 40, and the peripheral ring shape during the level 4 peeling operation (pickup operation) A graph of the temporal change of the position of the moving element 31, the opening pressure of the opening 23, and the air leakage amount of the suction head 18. In (a) of FIG. 18, the height of the surface 18 a of the suction head 18 is shown, and the state in which the suction head 18 is moved after a little time from time t=0 to time t2 is shown. The control unit 150 switches the three-way valve 101 to the direction in which the suction hole 19 of the suction head 18 communicates with the vacuum device 140 by the driving unit 102 of the suction mechanism 100 at time t1 during the movement of the suction head 18. As a result, the suction hole 19 becomes a negative pressure, and air flows into the suction hole 19 from the surface 18a of the suction head 18. Therefore, as shown in (f) in FIG. 18, the suction air detected by the flow sensor 106 The flow rate (air leakage amount) gradually increases from time t1 to time t2. At time t2, when the suction head 18 is landed on the semiconductor die 15, the semiconductor die 15 is adsorbed and fixed to the surface 18a and cannot flow into the air from the surface 18a. As a result, at time t2, the amount of air leakage detected by the flow sensor 106 is reduced. As shown in FIG. 6, the height of the surface 18 a of the tip 18 when the tip 18 falls on the semiconductor die 15 becomes the front end surface 47, front end surface 38 b, and front end of each moving element 45, moving element 40, and moving element 31. The height Hc of the height of the surface 38a (the height H 0 from the adsorption surface 22) is added to the thickness of the dicing sheet 12 and the thickness of the semiconductor crystal grain 15.

接下來,控制部150在圖18中的(a)~(f)所示的時刻t2,輸出將平台20的吸附面22的吸附壓力(未圖示)自接近大氣壓的第四壓力P4 切換為接近真空的第三壓力P3 的指令。根據該指令,吸附壓力切換機構90的驅動部92將三通閥91切換成使吸附孔27與真空裝置140連通的方向。於是,如圖7的箭頭201所示,槽26的空氣通過吸附孔27被吸出至真空裝置140,吸附壓力成為接近真空的第三壓力P3 。而且,開口23周緣的切割片材12的背面12b如圖7的箭頭202所示,被真空吸附至吸附面22的表面。各移動元件45、移動元件40、移動元件31的各前端面47、前端面38b、前端面38a處於自平台20的吸附面22突出了高度H0 的第一位置,因此對切割片材12施加朝斜下的拉伸力F1 。該拉伸力F1 可分解為朝橫方向拉伸切割片材12的拉伸力F2 與朝下方向拉伸切割片材12的拉伸力F3 。橫方向的拉伸力F2 使半導體晶粒15與切割片材12的表面12a之間產生剪切應力τ。因該剪切應力τ,在半導體晶粒15的外周部分或周邊部分與切割片材12的表面12a之間發生偏離。該偏離成為切割片材12與半導體晶粒15的外周部分或周邊部分的剝離的契機。Next, the control unit 150 outputs the fourth pressure P 4 that switches the suction pressure (not shown) of the suction surface 22 of the platform 20 from the atmospheric pressure at time t2 shown in (a) to (f) in FIG. 18. It is the command of the third pressure P 3 close to vacuum. According to this instruction, the driving portion 92 of the suction pressure switching mechanism 90 switches the three-way valve 91 to the direction in which the suction hole 27 communicates with the vacuum device 140. Then, as shown by arrow 201 in FIG. 7, the air in the tank 26 is sucked out to the vacuum device 140 through the suction hole 27, and the suction pressure becomes the third pressure P 3 that is close to vacuum. Further, the back surface 12 b of the cut sheet 12 at the periphery of the opening 23 is vacuum-sucked to the surface of the suction surface 22 as shown by arrow 202 in FIG. 7. Each of the front end surface 47, the front end surface 38b, and the front end surface 38a of the moving element 45, the moving element 40, and the moving element 31 is in the first position that protrudes from the suction surface 22 of the platform 20 by a height H 0 , and thus is applied to the cutting sheet 12 Tensile force F 1 downward. The stretching force F 1 can be decomposed into a stretching force F 2 that stretches the cutting sheet 12 in the lateral direction and a stretching force F 3 that stretches the cutting sheet 12 in the downward direction. The transverse tensile force F 2 causes a shear stress τ between the semiconductor crystal grain 15 and the surface 12 a of the dicing sheet 12. Due to the shear stress τ, a deviation occurs between the outer peripheral portion or peripheral portion of the semiconductor crystal grain 15 and the surface 12a of the dicing sheet 12. This deviation becomes an opportunity for peeling off the outer peripheral portion or peripheral portion of the dicing sheet 12 and the semiconductor die 15.

如圖18中的(e)所示,控制部150在時刻t3輸出將開口壓力自接近大氣壓的第二壓力P2 切換為接近真空的第一壓力P1 的指令。根據該指令,開口壓力切換機構80的驅動部82將三通閥81切換成使開口23與真空裝置140連通的方向。於是,如圖8的箭頭206所示,開口23的空氣被抽吸至真空裝置140,如圖18中的(e)所示,在時刻t4,開口壓力成為接近真空的第一壓力P1 。藉此,如圖8的箭頭203所示,位於開口23的內表面23a與移動元件30的外周面33的間隙d正上方的切割片材12朝下側受到拉伸。另外,位於間隙d正上方的半導體晶粒15的周邊部被切割片材12拉伸,從而如箭頭204所示般朝下彎曲變形。藉此,半導體晶粒15的周邊部離開吸頭18的表面18a。當吸附壓力成為接近真空的第三壓力P3 時,由於在半導體晶粒15的外周部分與切割片材12的表面12a之間發生的偏離,在半導體晶粒15的周邊部形成了自切割片材12的表面12a剝離的契機,因此半導體晶粒15的周邊部如圖8的箭頭204所示一邊發生彎曲變形,一邊自切割片材12的表面12a開始剝離。As shown in (e) in FIG. 18, the control unit 150 outputs an instruction to switch the opening pressure from the second pressure P 2 near atmospheric pressure to the first pressure P 1 near vacuum at time t3. According to this instruction, the driving portion 82 of the opening pressure switching mechanism 80 switches the three-way valve 81 to the direction in which the opening 23 communicates with the vacuum device 140. Then, as shown by arrow 206 in FIG. 8, the air in the opening 23 is sucked into the vacuum device 140, and as shown in (e) in FIG. 18, at time t4, the opening pressure becomes the first pressure P 1 that is close to vacuum. Thereby, as shown by an arrow 203 in FIG. 8, the cutting sheet 12 located directly above the gap d between the inner surface 23 a of the opening 23 and the outer peripheral surface 33 of the moving element 30 is stretched downward. In addition, the peripheral portion of the semiconductor die 15 positioned directly above the gap d is stretched by the dicing sheet 12 to be bent and deformed downward as indicated by arrow 204. As a result, the peripheral portion of the semiconductor die 15 is separated from the surface 18 a of the suction head 18. When the suction pressure becomes the third pressure P 3 that is close to vacuum, due to the deviation that occurs between the outer peripheral portion of the semiconductor die 15 and the surface 12a of the dicing sheet 12, a self-cut sheet is formed in the peripheral portion of the semiconductor die 15 As a result of the peeling of the surface 12a of the material 12, the peripheral portion of the semiconductor die 15 is bent and deformed as shown by an arrow 204 in FIG. 8 and starts to peel from the surface 12a of the dicing sheet 12.

如圖8所示,當半導體晶粒15的周邊部離開吸頭18的表面18a時,如圖8的箭頭205所示,空氣流入吸頭18的抽吸孔19中。流入的空氣流量(空氣洩漏量)由流量感測器106予以檢測。藉此,如圖18中的(f)所示,在時刻t2轉為減少並持續減少的空氣洩漏量在時刻t3再次開始增加。具體而言,自時刻t3朝向時刻t4,隨著開口壓力自接近大氣壓的第二壓力P2 下降至接近真空的第一壓力P1 ,半導體晶粒15與切割片材12一同朝下方向受到拉伸而彎曲變形,因此,流入吸頭18的抽吸孔19內的空氣洩漏量自時刻t3朝向時刻t4而逐漸增加。As shown in FIG. 8, when the peripheral portion of the semiconductor die 15 leaves the surface 18 a of the suction head 18, as shown by arrow 205 of FIG. 8, air flows into the suction hole 19 of the suction head 18. The inflowing air flow (air leakage amount) is detected by the flow sensor 106. As a result, as shown in (f) in FIG. 18, the amount of air leakage that has decreased and continued to decrease at time t2 begins to increase again at time t3. Specifically, from time t3 to time t4, as the opening pressure decreases from the second pressure P 2 near atmospheric pressure to the first pressure P 1 near vacuum, the semiconductor die 15 is pulled downward along with the dicing sheet 12 Since it bends and deforms, the amount of air leakage flowing into the suction hole 19 of the suction head 18 gradually increases from time t3 toward time t4.

然後,如圖18中的(e)所示,控制部150在時刻t4至時刻t5的期間(時間HT4),將平台20的開口23保持於接近真空的第一壓力P1 。該時間HT4是圖19的參數表160中所規定的等級4的「第一壓力的保持時間」。在圖19的例子中,HT4為130 ms。在保持於第一壓力P1 的期間,如圖9的箭頭207所示,半導體晶粒15的周邊部因吸頭18的抽吸孔19的真空與半導體晶粒15的彈性而逐漸返回吸頭18的表面18a。藉此,在圖18中的(f)的時刻t4,空氣洩漏量轉為減少並持續減少,當半導體晶粒15被真空吸附於吸頭18的表面18a時,在時刻t5的稍早前空氣洩漏量大致成為零。此時,半導體晶粒15的周邊部自位於間隙d正上方的切割片材12的表面12a剝離(初始剝離)。然後,如圖18中的(e)所示,控制部150輸出在時刻t5將開口壓力自接近真空的第一壓力P1 切換為接近大氣壓的第二壓力P2 的指令。根據該指令,開口壓力切換機構80的驅動部82將三通閥81切換成將向大氣開放的配管85與開口23連通。藉此,如圖10所示的箭頭210般,空氣流入開口23,因此,如圖18中的(e)所示,自時刻t5朝向時刻t6,開口壓力自接近真空的第一壓力P1 上升至接近大氣壓的第二壓力P2Then, as shown in (e) in FIG. 18, the control unit 150 maintains the opening 23 of the stage 20 at the first pressure P 1 close to vacuum during the period from time t4 to time t5 (time HT4). This time HT4 is the "first pressure holding time" of level 4 defined in the parameter table 160 of FIG. 19. In the example of FIG. 19, HT4 is 130 ms. While maintaining the first pressure P 1 , as shown by arrow 207 in FIG. 9, the peripheral portion of the semiconductor die 15 gradually returns to the suction head due to the vacuum of the suction hole 19 of the suction head 18 and the elasticity of the semiconductor die 15 18的面18a。 18 surface 18a. By this, at time t4 in (f) of FIG. 18, the amount of air leakage turns to decrease and continues to decrease. When the semiconductor die 15 is vacuum-adsorbed on the surface 18a of the suction head 18, the air earlier in time t5 The amount of leakage becomes almost zero. At this time, the peripheral portion of the semiconductor die 15 is peeled from the surface 12 a of the dicing sheet 12 located immediately above the gap d (initial peeling). Then, as shown in (e) in FIG. 18, the control unit 150 outputs an instruction to switch the opening pressure from the first pressure P 1 near vacuum to the second pressure P 2 near atmospheric pressure at time t5. According to this instruction, the drive unit 82 of the opening pressure switching mechanism 80 switches the three-way valve 81 to communicate the piping 85 open to the atmosphere with the opening 23. By this, as shown by the arrow 210 shown in FIG. 10, the air flows into the opening 23, and therefore, as shown in (e) in FIG. 18, the opening pressure rises from the first pressure P 1 close to the vacuum from the time t5 toward the time t6 To a second pressure P 2 close to atmospheric pressure.

圖18中的(a)~(f)的時刻t1~時刻t6是初始剝離。在半導體晶粒15與切割片材12的剝離性差(剝離容易度低)的情況下,在如圖8的箭頭204般半導體晶粒15的周邊部被切割片材12拉伸後,至如圖9的箭頭207般半導體晶粒15的周邊部返回吸頭18的表面18a為止花費大量的時間。對於此種半導體晶粒15,應用將開口壓力保持於第一壓力P1 的時間(圖18中的(e)的時刻t4~時刻t5的時間)長、或者在接近真空的第一壓力P1 與接近大氣壓的第二壓力P2 之間切換開口壓力的次數多的剝離動作(等級值),來促進半導體晶粒15的周邊部與切割片材12的剝離。The time t1 to time t6 in (a) to (f) in FIG. 18 are the initial peeling. When the peelability of the semiconductor die 15 and the dicing sheet 12 is poor (the ease of peeling is low), the peripheral portion of the semiconductor die 15 is stretched by the dicing sheet 12 as shown by an arrow 204 in FIG. The arrow 207 of 9 takes a lot of time until the peripheral portion of the semiconductor die 15 returns to the surface 18a of the suction head 18. For such a semiconductor die 15, the time to maintain the opening pressure at the first pressure P 1 (the time from time t4 to time t5 in (e) in FIG. 18) is long, or the first pressure P 1 that is close to vacuum The peeling operation (gradation value) which switches the opening pressure many times from the second pressure P 2 close to the atmospheric pressure promotes peeling of the peripheral portion of the semiconductor die 15 from the dicing sheet 12.

另一方面,在半導體晶粒15與切割片材12的剝離性良好(剝離容易度高)的情況下,在如圖8的箭頭204般半導體晶粒15的周邊部被切割片材12拉伸後,至如圖9的箭頭207般半導體晶粒15的周邊部返回吸頭18的表面18a為止的時間短。對於此種半導體晶粒15,應用將開口壓力保持於第一壓力P1 的時間短、或者在接近真空的第一壓力P1 與接近大氣壓的第二壓力P2 之間切換開口壓力的次數少的剝離動作(等級值),使拾取高速化。再者,在圖18中的(a)~(f)的等級4的例子中,初始剝離時的開口壓力的切換次數為1次(自第二壓力P2 切換為第一壓力P1 、其後自第一壓力P1 切換為第二壓力P2 計數為1次的情況)。此為圖19的參數表160中所規定的等級4的「初始剝離時的開口壓力的切換次數」(FSN4)。On the other hand, when the peelability of the semiconductor die 15 and the dicing sheet 12 is good (the ease of peeling is high), the peripheral portion of the semiconductor die 15 is stretched by the dicing sheet 12 as indicated by the arrow 204 in FIG. 8. After that, the time until the peripheral portion of the semiconductor die 15 returns to the surface 18 a of the tip 18 as shown by the arrow 207 in FIG. 9 is short. For such a semiconductor die 15, the time to maintain the opening pressure at the first pressure P 1 is short, or the number of times the opening pressure is switched between the first pressure P 1 close to vacuum and the second pressure P 2 close to atmospheric pressure is few The peeling action (level value) speeds up the pickup. In addition, in the example of level 4 in (a) to (f) in FIG. 18, the number of switching of the opening pressure at the time of initial peeling is once (from the second pressure P 2 to the first pressure P 1 , which Then, when the first pressure P 1 is switched to the second pressure P 2, the count is once). This is the "number of switching of the opening pressure during initial peeling" (FSN4) of level 4 defined in the parameter table 160 of FIG. 19.

另外,如上所述,根據半導體晶粒15的剝離容易度,自半導體晶粒15的周邊部被切割片材12拉伸後至半導體晶粒15的周邊部返回吸頭18的表面18a為止的時間發生變化,因此流量感測器106檢測出的空氣洩漏量的時間變化(實際流量變化)亦發生變化。因此,如之後所詳細說明般,能夠基於實際流量變化來判斷半導體晶粒15自切割片材12的剝離容易度。In addition, as described above, according to the ease of peeling of the semiconductor die 15, the time from when the peripheral portion of the semiconductor die 15 is stretched by the dicing sheet 12 until the peripheral portion of the semiconductor die 15 returns to the surface 18 a of the suction head 18 As a result of the change, the temporal change (actual flow change) of the air leakage amount detected by the flow sensor 106 also changes. Therefore, as will be described in detail later, the ease of peeling of the semiconductor die 15 from the dicing sheet 12 can be determined based on the actual flow rate change.

繼續進行拾取動作的說明。在圖18中的(a)~(f)的t6中,當開口壓力上升至接近大氣壓的第二壓力P2 時,因真空而朝下方向被拉伸的位於間隙d正上方的切割片材12如圖10的箭頭212所示,因在固定於晶圓固持器10時施加的拉伸力而朝上方向返回。另外,開口23周緣的切割片材12因所述拉伸力而成為自吸附面22稍許浮起的狀態。Continue with the description of the pickup action. In t6 of (a) to (f) in FIG. 18, when the opening pressure rises to the second pressure P 2 close to atmospheric pressure, the cutting sheet that is stretched downward by the vacuum and located directly above the gap d 12, as indicated by arrow 212 in FIG. 10, returns upward due to the tensile force applied when it is fixed to the wafer holder 10. In addition, the dicing sheet 12 on the periphery of the opening 23 is slightly floating from the suction surface 22 due to the tensile force.

當如圖18中的(e)所示在時刻t6開口壓力成為接近大氣壓的第二壓力P2 後,如圖18中的(d)所示,控制部150輸出下述指令,該指令是將周邊環狀移動元件31的前端面38a的高度設為自第一位置(自吸附面22算起的高度為H0 的初始位置)低了高度H1 的第二位置。根據該指令,圖1所示的階差面形成機構驅動部400進行驅動,如圖11的箭頭214所示使周邊環狀移動元件31下降。周邊環狀移動元件31的前端面38a移動至距第一位置(初始位置)為高度H1 的下側且比吸附面22稍低的第二位置(自吸附面22低了高度(H1 -H0 )的位置)。When the opening pressure becomes the second pressure P 2 close to the atmospheric pressure at time t6 as shown in (e) in FIG. 18, as shown in (d) in FIG. 18, the control unit 150 outputs the following command. The height of the front end surface 38 a of the peripheral ring-shaped moving element 31 is set to the second position lower than the height H 1 from the first position (the height from the suction surface 22 is the initial position of H 0 ). According to this instruction, the step surface forming mechanism driving unit 400 shown in FIG. 1 is driven to lower the peripheral ring-shaped moving element 31 as shown by an arrow 214 in FIG. 11. The front end surface 38a of the peripheral ring-shaped moving element 31 moves to a second position that is below the height H 1 from the first position (initial position) and slightly lower than the suction surface 22 (the self suction surface 22 is lower in height (H 1 − H 0 )).

接下來,如圖18中的(a)~(f)所示,控制部150自時刻t6至時刻t7保持狀態。此時,開口23的壓力成為接近大氣壓的第二壓力P2 ,因此,如圖11所示,在位於間隙d正上方的切割片材12的背面12b與周邊環狀移動元件31的前端面38a之間空出間隙。Next, as shown in (a) to (f) in FIG. 18, the control unit 150 maintains the state from time t6 to time t7. At this time, the pressure of the opening 23 becomes the second pressure P 2 close to atmospheric pressure. Therefore, as shown in FIG. 11, on the back surface 12 b of the cutting sheet 12 and the front end surface 38 a of the peripheral ring-shaped moving element 31 located directly above the gap d There is a gap between them.

如圖18中的(e)所示,控制部150在時刻t7輸出將開口壓力自接近大氣壓的第二壓力P2 切換為接近真空的第一壓力P1 的指令。根據該指令,開口壓力切換機構80的驅動部82將三通閥81切換成使開口23與真空裝置140連通。藉此,如圖12的箭頭215所示,開口23中的空氣被抽吸至真空裝置140,在時刻t8,開口壓力成為接近真空的第一壓力P1 。當開口壓力自接近大氣壓的第二壓力P2 下降至接近真空的第一壓力P1 時,位於周邊環狀移動元件31的前端面38a正上方(相向)的切割片材12如圖12的箭頭216所示,朝下側受到拉伸,以使背面12b與前端面38a接觸。藉此,如圖12的箭頭217所示,半導體晶粒15中的位於前端面38a正上方的半導體晶粒15的一部分朝下方向彎曲變形而離開吸頭18的表面18a,空氣流入至吸頭18的抽吸孔19中。流入至抽吸孔19的空氣洩漏量是由流量感測器106予以檢測。空氣洩漏量如圖18中的(f)所示,在開口壓力下降的時刻t7至時刻t8的期間內增加。然後,在開口壓力達到第一壓力P1 的時刻t8附近,與前端面38a相向的區域的半導體晶粒15如圖13所示的箭頭224般朝向吸頭18的表面18a返回。藉此,在圖18中的(f)的時刻t8附近,空氣洩漏量轉為減少,當如圖13所示半導體晶粒15被真空吸附至吸頭18的表面18a時,空氣洩漏量又大致成為零。此時,半導體晶粒15的與前端面38a相向的區域自切割片材12的表面12a剝離。再者,在如圖12的箭頭217般半導體晶粒15的與前端面38a相向的區域被切割片材12拉伸後、至如圖13的箭頭224般返回吸頭18的表面18a為止的時間根據半導體晶粒15與切割片材12的剝離性而變化。As shown in (e) in FIG. 18, the control unit 150 outputs an instruction to switch the opening pressure from the second pressure P 2 near atmospheric pressure to the first pressure P 1 near vacuum at time t7. According to this instruction, the drive unit 82 of the opening pressure switching mechanism 80 switches the three-way valve 81 so that the opening 23 communicates with the vacuum device 140. Thereby, as shown by arrow 215 of FIG. 12, the air in the opening 23 is sucked to the vacuum device 140, and at time t8, the opening pressure becomes the first pressure P 1 that is close to vacuum. When the opening pressure drops from the second pressure P 2 near atmospheric pressure to the first pressure P 1 near vacuum, the cutting sheet 12 located directly above (facing) the front end surface 38 a of the peripheral ring-shaped moving element 31 as shown by the arrow in FIG. 12 As shown at 216, the downward side is stretched so that the back surface 12b contacts the front end surface 38a. As a result, as shown by arrow 217 in FIG. 12, a part of the semiconductor die 15 located directly above the front end face 38 a of the semiconductor die 15 is bent and deformed downward to leave the surface 18 a of the suction head 18, and air flows into the suction head 18 in the suction hole 19. The amount of air leakage flowing into the suction hole 19 is detected by the flow sensor 106. As shown in (f) in FIG. 18, the air leakage amount increases during the period from time t7 to time t8 at which the opening pressure decreases. Then, in the vicinity of the opening pressure reaches a first time point t8 when a pressure P, the surface facing the tip of arrow 224 as shown in FIG. 13 18a 18 returns the semiconductor die regions 38a and opposing the front end surface 15 of FIG. As a result, the air leakage amount decreases around time t8 in (f) in FIG. 18, and when the semiconductor die 15 is vacuum-adsorbed to the surface 18a of the suction head 18 as shown in FIG. 13, the air leakage amount is approximately Become zero. At this time, the region of the semiconductor die 15 facing the front end surface 38 a is peeled from the surface 12 a of the dicing sheet 12. In addition, the time until the region facing the front end surface 38a of the semiconductor die 15 as shown by the arrow 217 of FIG. 12 is stretched by the dicing sheet 12 and returns to the surface 18a of the tip 18 as shown by the arrow 224 of FIG. 13 It changes according to the peelability of the semiconductor die 15 and the dicing sheet 12.

接下來,如圖18中的(e)所示,控制部150在到達時刻t9時,輸出使開口壓力自接近真空的第一壓力P1 上升至接近大氣壓的第二壓力P2 的指令。根據該指令,開口壓力切換機構80的驅動部82將三通閥81切換成使開口23與向大氣開放的配管85連通。藉此,如圖13的箭頭220所示,空氣流入開口23內,在時刻t10,開口23的壓力上升至接近大氣壓的第二壓力P2 。藉此,如圖13的箭頭223所示,間隙d正上方的切割片材12離開周邊環狀移動元件31的前端面38a而朝上方向移位。Next, as shown in (e) of FIG. 18, the control unit 150 outputs an instruction to increase the opening pressure from the first pressure P 1 close to vacuum to the second pressure P 2 close to atmospheric pressure when the time t9 is reached. According to this instruction, the drive unit 82 of the opening pressure switching mechanism 80 switches the three-way valve 81 so that the opening 23 communicates with the pipe 85 that is open to the atmosphere. Thereby, as shown by arrow 220 in FIG. 13, air flows into the opening 23, and at time t10, the pressure of the opening 23 rises to the second pressure P 2 near atmospheric pressure. As a result, as shown by arrow 223 in FIG. 13, the cutting sheet 12 directly above the gap d is displaced upward from the front end surface 38 a of the peripheral ring-shaped moving element 31.

在圖18中的(a)~(f)的時刻t10,控制部150輸出下述指令,該指令是將中間環狀移動元件40的前端面38b移動至自第一位置(自吸附面22算起的高度為H0 的位置)低了高度H1 的第二位置、以及將位於第二位置的周邊環狀移動元件31的前端面38a移動至自第一位置(初始位置)低了高度H2 的第三位置(自吸附面22低了H2 -H0 的位置)。根據該指令,圖1所示的階差面形成機構驅動部400進行驅動,如圖14的箭頭227所示使中間環狀移動元件40下降,且如箭頭226所示使周邊環狀移動元件31下降。中間環狀移動元件40的前端面38b移動至自第一位置(自吸附面高了高度H0 的位置)低了高度H1 的第二位置(自吸附面22低了H1 -H0 的位置),且周邊環狀移動元件31的前端面38a移動至自第一位置(初始位置)低了高度H2 的第三位置(自吸附面22低了H2 -H0 的位置)。藉此,如圖14所示,前端面38a、前端面38b、前端面47為彼此存在階差的階差面,與此同時為相對於吸附面22的階差面。At time t10 in (a) to (f) in FIG. 18, the control unit 150 outputs an instruction to move the front end surface 38b of the intermediate ring-shaped moving element 40 from the first position (calculated from the self-adsorption surface 22) The height from the position H 0 ) the second position lowered by the height H 1 and the front end surface 38a of the peripheral ring-shaped moving element 31 located at the second position lowered by the height H from the first position (initial position) The third position of 2 (the position where the self-adsorption surface 22 is lowered by H 2 -H 0 ). According to this instruction, the stepped surface forming mechanism driving unit 400 shown in FIG. 1 is driven to lower the intermediate ring-shaped moving element 40 as shown by arrow 227 in FIG. 14 and the peripheral ring-shaped moving element 31 as shown by arrow 226 decline. The front end surface 38b of the intermediate ring-shaped moving element 40 moves from the first position (the position where the self-adsorption surface is higher than the height H 0 ) to the second position which is lower than the height H 1 (the self-adsorption surface 22 is lower than H 1 -H 0 ) Position), and the front end surface 38a of the peripheral ring-shaped moving element 31 moves to a third position (a position where the self-adsorption surface 22 is lowered by H 2 -H 0 ) from the first position (initial position) by a height H 2 . Thereby, as shown in FIG. 14, the front end surface 38 a, the front end surface 38 b, and the front end surface 47 are step surfaces having a step difference from each other, and at the same time, they are step surfaces relative to the suction surface 22.

接下來,如圖18中的(a)~(f)所示,控制部150自時刻t10至時刻t11保持狀態。然後,控制部150在圖18中的(e)的時刻t11輸出將開口壓力自接近大氣壓的第二壓力P2 切換為接近真空的第一壓力P1 的指定。根據該指令,開口壓力切換機構80的驅動部82將三通閥81切換成使開口23與真空裝置140連通。藉此,如圖15的箭頭228所示,開口23的空氣被抽吸至真空裝置140,在時刻t12,開口壓力成為接近真空的第一壓力P1 。於是,如圖15所示的箭頭229、箭頭230般,切割片材12朝向下降至第三位置的周邊環狀移動元件31的前端面38a、下降至第二位置的中間環狀移動元件40的前端面38b受到拉伸,而朝下方向移位。伴隨於此,半導體晶粒15的與前端面38a、前端面38b相向的區域亦如圖15的箭頭231所示,自吸頭18的表面18a離開而朝下方向彎曲變形。於是,如圖15的箭頭232所示,空氣自吸頭18的表面18a與半導體晶粒15之間流入至抽吸孔19。流入至抽吸孔19的空氣洩漏量是由流量感測器106予以檢測。空氣洩漏量如圖18中的(f)所示,在開口壓力逐漸下降的時刻t11至時刻t12的期間內逐漸增加。然後,在開口壓力達到第一壓力P1 的時刻t12附近,與前端面38a、前端面38b相向的區域的半導體晶粒15如圖16所示的箭頭244般朝向吸頭18的表面18a返回。藉此,在圖18中的(f)的時刻t12附近,空氣洩漏量轉為減少,當如圖16所示半導體晶粒15被真空吸附至吸頭18的表面18a時,空氣洩漏量大致成為零。再者,至朝向該吸頭18的表面18a返回為止的時間根據半導體晶粒15與切割片材12的剝離性而變化。Next, as shown in (a) to (f) in FIG. 18, the control unit 150 maintains the state from time t10 to time t11. Then, at time t11 in (e) in FIG. 18, the control unit 150 outputs a designation to switch the opening pressure from the second pressure P 2 near atmospheric pressure to the first pressure P 1 near vacuum. According to this instruction, the drive unit 82 of the opening pressure switching mechanism 80 switches the three-way valve 81 so that the opening 23 communicates with the vacuum device 140. Thereby, as shown by the arrow 228 of FIG. 15, the air in the opening 23 is sucked to the vacuum device 140, and at time t12, the opening pressure becomes the first pressure P 1 that is close to vacuum. Then, as shown by arrows 229 and 230 shown in FIG. 15, the cutting sheet 12 faces the front end surface 38 a of the peripheral annular moving element 31 descending to the third position and the intermediate annular moving element 40 descending to the second position The front end surface 38b is stretched and displaced downward. Along with this, the area of the semiconductor die 15 facing the front end surface 38a and the front end surface 38b is also shown in the arrow 231 of FIG. 15, and is bent away from the surface 18a of the suction head 18 and deformed downward. Then, as shown by arrow 232 in FIG. 15, air flows into the suction hole 19 from between the surface 18 a of the suction head 18 and the semiconductor die 15. The amount of air leakage flowing into the suction hole 19 is detected by the flow sensor 106. As shown in (f) in FIG. 18, the air leakage amount gradually increases from the time t11 to the time t12 when the opening pressure gradually decreases. Then, the pressure reaches the vicinity of the opening timing t12, a first pressure P, the arrow 244 as shown in FIG 16 toward the tip surface 18 of the front end surface 18a returns 38a, semiconductor die regions 38b facing the front end face 15 as shown in FIG. By this, the air leakage amount becomes reduced near time t12 in (f) in FIG. 18, and when the semiconductor die 15 is vacuum-adsorbed to the surface 18a of the suction head 18 as shown in FIG. 16, the air leakage amount becomes approximately zero. In addition, the time until returning to the surface 18 a of the suction head 18 changes according to the peelability of the semiconductor crystal grain 15 and the dicing sheet 12.

接下來,如圖18中的(e)所示,控制部150在時刻t13輸出將開口壓力自接近真空的第一壓力P1 切換為接近大氣壓的第二壓力P2 的指令。根據該指令,開口壓力切換機構80的驅動部82將三通閥81切換成使開口23與向大氣開放的配管85連通。於是,如圖16的箭頭241所示,空氣流入至開口23,開口壓力上升,因此切割片材12如圖16所示的箭頭243所示,朝上方向移位。如圖18中的(e)所示,在時刻t14,開口壓力成為接近大氣的第二壓力P2 。在該狀態下,如圖16所示,雖然與柱狀移動元件45的前端面47對應的區域的半導體晶粒15貼附於切割片材12,但半導體晶粒15的大部分區域成為自切割片材12剝離的狀態。Next, as shown in (e) in FIG. 18, the control unit 150 outputs an instruction to switch the opening pressure from the first pressure P 1 near vacuum to the second pressure P 2 near atmospheric pressure at time t13. According to this instruction, the drive unit 82 of the opening pressure switching mechanism 80 switches the three-way valve 81 so that the opening 23 communicates with the pipe 85 that is open to the atmosphere. Then, as shown by arrow 241 in FIG. 16, air flows into the opening 23 and the opening pressure rises, so the cutting sheet 12 is displaced upward as shown by arrow 243 in FIG. 16. As shown in (e) in FIG. 18, at time t14, the opening pressure becomes the second pressure P 2 close to the atmosphere. In this state, as shown in FIG. 16, although the semiconductor die 15 in the region corresponding to the front end face 47 of the columnar moving element 45 is attached to the dicing sheet 12, most of the semiconductor die 15 becomes self-cut The sheet 12 is peeled off.

接下來,在圖18中的(a)~(f)的時刻t14,控制部150輸出下述指令,該指令是將柱狀移動元件45的前端面47移動至自第一位置(自吸附面22算起的高度為H0 的位置)低了高度H1 的第二位置、以及將位於第二位置的中間環狀移動元件40的前端面38b移動至自第一位置(初始位置)低了高度H2 的第三位置(自吸附面22低了H2 -H0 的位置)。根據該指令,圖1所示的階差面形成機構驅動部400進行驅動,如圖17的箭頭260所示使柱狀移動元件45下降,且如箭頭246所示使中間環狀移動元件40下降。柱狀移動元件45的前端面47移動至自第一位置(自吸附面高了高度H0 的位置)低了高度H1 的第二位置,且中間環狀移動元件40的前端面38b移動至自第一位置(初始位置)低了高度H2 的第三位置。藉此,如圖17所示,半導體晶粒15成為自切割片材12剝離的狀態。Next, at time t14 in (a) to (f) in FIG. 18, the control unit 150 outputs an instruction to move the front end surface 47 of the columnar moving element 45 from the first position (self-adsorption surface 22) The height calculated from H 0 is the second position where the height H 1 is lower, and the front end surface 38b of the intermediate ring-shaped moving element 40 located at the second position is lowered from the first position (initial position) The third position of the height H 2 (position where the self-adsorption surface 22 is lowered by H 2 -H 0 ). According to this instruction, the step surface forming mechanism driving unit 400 shown in FIG. 1 is driven to lower the columnar moving element 45 as shown by arrow 260 in FIG. 17 and lower the intermediate ring-shaped moving element 40 as shown by arrow 246 . The front end surface 47 of the columnar moving element 45 moves to the second position lower than the height H 1 from the first position (the position where the self-adsorption surface is higher than the height H 0 ), and the front end surface 38 b of the intermediate ring-shaped moving element 40 moves to A third position that is lower in height H 2 from the first position (initial position). Thereby, as shown in FIG. 17, the semiconductor crystal grains 15 are in a state of being peeled off from the dicing sheet 12.

控制部150在圖18中的(a)~(f)的時刻t15輸出使吸頭18上升的指令。根據該指令,圖1所示的吸頭驅動部130驅動馬達,如圖17所示般使吸頭18上升。當吸頭18上升時,半導體晶粒15在由吸頭18吸附的狀態下被拾取。The control unit 150 outputs a command to raise the suction head 18 at time t15 in (a) to (f) in FIG. 18. In accordance with this instruction, the tip driving unit 130 shown in FIG. 1 drives the motor to raise the tip 18 as shown in FIG. 17. When the suction head 18 rises, the semiconductor die 15 is picked up in a state of being sucked by the suction head 18.

在拾取了半導體晶粒15後,控制部150在時刻t16使各移動元件31、移動元件40、移動元件45的各前端面38a、前端面38b、前端面47返回第一位置,藉由吸附壓力切換機構90將平台20的吸附面22的吸附壓力自接近真空的第三壓力P3 切換為接近大氣壓的第四壓力P4 。至此,拾取結束。After picking up the semiconductor die 15, the control unit 150 returns the respective front end surfaces 38a, 38b, and 47 of the moving element 31, the moving element 40, and the moving element 45 to the first position at time t16, by suction pressure The switching mechanism 90 switches the adsorption pressure of the adsorption surface 22 of the platform 20 from the third pressure P 3 near vacuum to the fourth pressure P 4 near atmospheric pressure. At this point, the picking ends.

以上所說明的圖18中的(a)~(f)的時刻t6~時刻t16為正式剝離。在正式剝離中,自外側的移動元件30向內側的移動元件30依次使前端面自第一位置移動至第二位置,在第一壓力P1 與第二壓力P2 間切換開口壓力,藉此將半導體晶粒15的比周邊部靠內側的區域自切割片材12的表面12a剝離。再者,在以上所說明的正式剝離中,在第一壓力P1 與第二壓力P2 之間切換開口壓力,但亦可在將開口壓力保持於接近真空的第一壓力的狀態下,使各移動元件30依次移動。The time t6 to time t16 in (a) to (f) in FIG. 18 described above are the formal peeling. In the formal peeling, the moving element 30 from the outer side to the inner moving element 30 sequentially moves the front end surface from the first position to the second position, and switches the opening pressure between the first pressure P 1 and the second pressure P 2 , thereby The region inside the semiconductor die 15 that is closer to the peripheral portion is peeled from the surface 12 a of the dicing sheet 12. Furthermore, in the formal peeling described above, the opening pressure is switched between the first pressure P 1 and the second pressure P 2 , but it is also possible to keep the opening pressure at a first pressure close to vacuum. Each moving element 30 moves sequentially.

此處,對以上所說明的圖18中的(a)~(f)的剝離動作的剝離參數進行確認。以上所說明的圖18中的(a)~(f)的剝離動作是應用圖19的參數表160的等級4中所規定的各剝離參數的參數值來進行。具體而言,應用了以下剝離參數的參數值。「初始剝離時的開口壓力的切換次數(自第二壓力P2 切換為第一壓力P1 、其後自第一壓力P1 切換為第二壓力P2 計數為1次的情況,以下相同)」設為FSN4=1次。「正式剝離時的開口壓力的切換次數」設為SSN4=2次。將開口壓力保持於第一壓力P1 的時間即「第一壓力的保持時間」設為HT4=130 ms。「同時下降的移動元件的數量」設為DN4=0個。使各移動元件30的前端面依次自第一位置下降至第二位置時的「移動元件間的下降時間間隔」設為IT4=240 ms。另外,自吸頭18著落於半導體晶粒15起至開始抬起半導體晶粒15為止的時間即「吸頭待機時間」設為WT4=710 ms。而且,「拾取時間」為PT4=820 ms。Here, the peeling parameters of the peeling operations in (a) to (f) in FIG. 18 described above are confirmed. The peeling operations in (a) to (f) in FIG. 18 described above are performed by applying the parameter values of the respective peeling parameters defined in level 4 of the parameter table 160 in FIG. 19. Specifically, the parameter values of the following peeling parameters are applied. "The number of switching of the opening pressure at the initial peeling (when switching from the second pressure P 2 to the first pressure P 1 and thereafter switching from the first pressure P 1 to the second pressure P 2 counts once, the same below) ”Set FSN4=1 times. The "number of switching of the opening pressure at the time of formal peeling" is set to SSN4=2 times. The opening pressure is maintained at a first pressure P 1, that time "the first time to keep the pressure" is set HT4 = 130 ms. "Number of moving elements falling simultaneously" is set to DN4=0. The "fall time interval between moving elements" when the front end surface of each moving element 30 is sequentially lowered from the first position to the second position is set to IT4=240 ms. In addition, the time from when the tip 18 is landed on the semiconductor die 15 to when the semiconductor die 15 starts to be lifted, that is, the "tip standby time" is set to WT4=710 ms. Moreover, the "pickup time" is PT4=820 ms.

<參數表> 此處,對圖19的參數表160更詳細地進行說明。參數表160的各剝離參數的參數值與等級值的變化對應地具有如下傾向。如圖19所示,自等級1向等級8,「初始剝離時的開口壓力的切換次數」增加了數量。但是,此並不意味著每當等級值變化時切換次數必定會增加,有相鄰的多個等級值中切換次數相同的情況。其他剝離參數亦同樣如此,所述情況並不意味著每當等級值變化時參數值均會變化,有相鄰的多個等級值中參數值相同的情況。自等級1向等級8,「正式剝離時的開口壓力的切換次數」增加了數量。另外,自等級1向等級8,「第一壓力的保持時間」延長了時間。自等級1向等級8,「移動元件間的下降時間間隔」延長了時間間隔。另外,自等級1向等級8,「吸頭待機時間」延長了時間。每當等級值變化時,「拾取時間」均會變化,且自等級1向等級8變長。再者,「拾取時間」與「吸頭待機時間」類似,但不僅為吸頭待機時間,亦包含使吸頭18自規定位置下降而著落於半導體晶粒15為止的時間、以及自開始半導體晶粒15的抬起至上升至規定位置為止的時間。再者,圖19的參數表160亦可稱為「條件表」,剝離參數亦可稱為「拾取參數」。圖19中所示出的具體的各參數值僅為一例,當然亦可為其他值。<parameter table> Here, the parameter table 160 of FIG. 19 will be described in more detail. The parameter value of each peeling parameter of the parameter table 160 has the following tendency according to the change in the rank value. As shown in FIG. 19, from level 1 to level 8, "the number of times the opening pressure is switched during initial peeling" has increased. However, this does not mean that the number of handovers will necessarily increase every time the level value changes, and there may be cases where the number of handovers is the same among adjacent multiple level values. The same is true for other stripping parameters. The situation does not mean that the parameter value will change every time the level value changes. There may be cases where the parameter value is the same among multiple adjacent level values. From level 1 to level 8, the number of "switching of the opening pressure at the time of formal peeling" has increased. In addition, from level 1 to level 8, the "first pressure holding time" has been extended. From level 1 to level 8, the "fall time interval between moving elements" has been extended. In addition, from level 1 to level 8, the "tip standby time" has been extended. Each time the level value changes, the "Pickup Time" will change, and it will become longer from level 1 to level 8. Furthermore, the “pickup time” is similar to the “tip standby time”, but it is not only the tip standby time, but also includes the time until the tip 18 falls from a predetermined position to land on the semiconductor die 15 and the time since the start of the semiconductor crystal The time until the grain 15 is lifted up to the predetermined position. In addition, the parameter table 160 of FIG. 19 may also be referred to as a "condition table", and the stripping parameter may also be referred to as a "pickup parameter". The specific parameter values shown in FIG. 19 are only examples, and of course other values may be used.

此處,作為所述等級4的剝離動作以外的剝離動作的例子,對等級1與等級8的剝離動作進行說明。首先,對等級8的剝離動作進行說明。等級8是應與非常難以剝離的半導體晶粒15建立對應關係的等級值。圖20中的(a)~(e)是表示等級8的剝離動作時的吸頭18的高度、柱狀移動元件45的位置、中間環狀移動元件40的位置、周邊環狀移動元件31的位置、以及開口23的開口壓力的圖。比較圖20中的(a)~(e)的等級8的剝離動作與圖18中的(a)~(f)的等級4的剝離動作,可知以下情況。Here, as an example of the peeling operation other than the above-mentioned peeling operation at level 4, the peeling operations at level 1 and level 8 will be described. First, the peeling operation at level 8 will be described. Rank 8 is a rank value that should be associated with the semiconductor die 15 that is very difficult to peel. (A) to (e) in FIG. 20 show the height of the tip 18 during the peeling operation at level 8, the position of the columnar moving element 45, the position of the intermediate ring-shaped moving element 40, and the peripheral ring-shaped moving element 31 A diagram of the position and the opening pressure of the opening 23. Comparing the peeling operation at level 8 in (a) to (e) in FIG. 20 with the peeling operation at level 4 in (a) to (f) in FIG. 18, the following is known.

在圖20中的(a)~(e)的等級8的剝離動作中,「初始剝離時的開口壓力的切換次數」增加至4次(FSN8)。藉此,即使在半導體晶粒15的周圍難以自切割片材12剝離的情況下,亦能夠將半導體晶粒15的周圍自切割片材12充分剝離。藉由多次切換開口壓力,是將附著於半導體晶粒15周圍的切割片材12抖落的印象(image),雖然花費時間,但能夠切實地進行剝離。另外,在圖20中的(a)~(e)中,將初始剝離時的「第一壓力的保持時間」(HT8)設為150 ms(參照圖19,以下同樣,關於詳細的參數值,參照該圖)而進行了延長。藉此,能夠促進半導體晶粒15的周圍自然地自切割片材12剝落。再者,在圖19的例子中,關於「第一壓力的保持時間」,在等級4與等級8中並無大的差別,但亦可考慮使差別更大。In the peeling operation at level 8 in (a) to (e) in FIG. 20, the "number of switching of the opening pressure during initial peeling" is increased to 4 times (FSN8). With this, even when it is difficult to peel off the dicing sheet 12 around the semiconductor die 15, the periphery of the semiconductor die 15 can be sufficiently peeled off from the dicing sheet 12. By switching the opening pressure multiple times, it is an image that shakes off the dicing sheet 12 adhering to the periphery of the semiconductor die 15, and although it takes time, it can be reliably peeled off. In addition, in (a) to (e) in FIG. 20, the "holding time of the first pressure" (HT8) at the time of initial peeling is set to 150 ms (refer to FIG. 19, the same is true for detailed parameter values below, Refer to the figure) and extended. Thereby, it is possible to promote the natural peeling of the periphery of the semiconductor die 15 from the dicing sheet 12. Furthermore, in the example of FIG. 19, regarding the "holding time of the first pressure", there is no big difference between level 4 and level 8, but it may be considered to make the difference larger.

另外,在圖20中的(a)~(e)的等級8的剝離動作中,「正式剝離時的開口壓力的切換次數」增至4次(SSN8)。藉此,即使在半導體晶粒15的比周圍靠內側的區域難以自切割片材12剝離的情況下,亦能夠以將附著於半導體晶粒15的切割片材12抖落的方式進行切實剝離。另外,在圖20中的(a)~(e)中,將正式剝離時的「第一壓力的保持時間」(HT8)設為150 ms而進行了延長。藉此,能夠促進半導體晶粒15的比周圍靠內側的區域自然地自切割片材12剝落。再者,在圖19所示的參數表160中,在初始剝離時與正式剝離時,使「第一壓力的保持時間」(HT8)相同,但亦可在參數表160中規定初始剝離時與正式剝離時各自不同的「第一壓力的保持時間」。另外,如圖20中的(a)~(e)所示,當在初始剝離時或正式剝離時多次切換開口壓力故而存在多個保持於第一壓力P1 的時間時,亦可在參數表160中分別規定多個「第一壓力的保持時間」,並使該些的參數值相互不同。例如,按照在剝離動作中的應用順序來排列多個「第一壓力的保持時間」並在參數表160中進行規定。In addition, in the peeling operation at level 8 in (a) to (e) in FIG. 20, the “number of switching of the opening pressure during the main peeling” is increased to 4 times (SSN8). This makes it possible to reliably peel off the dicing sheet 12 attached to the semiconductor die 15 even if it is difficult to peel off the dicing sheet 12 from the area inside the semiconductor die 15 from the periphery. In addition, in (a) to (e) in FIG. 20, the “holding time of the first pressure” (HT8) at the time of formal peeling was extended to 150 ms. This can promote the natural peeling of the region inside the semiconductor die 15 from the periphery of the dicing sheet 12. In addition, in the parameter table 160 shown in FIG. 19, the "holding time of the first pressure" (HT8) is the same in the initial peeling and the formal peeling, but the initial peeling may be specified in the parameter table 160 as The "holding time of the first pressure" is different at the time of the official divestiture. Further, FIG. ~ (E), when peeling or official release times at an initial opening of the pressure switch in the (a) 20 held at the time and therefore there is a plurality of the first pressure P 1 time, also in the parameter In Table 160, a plurality of "first pressure holding times" are respectively defined, and the parameter values are different from each other. For example, a plurality of "holding times of the first pressure" are arranged in the order of application in the peeling operation and specified in the parameter table 160.

另外,在圖20中的(a)~(e)的等級8的剝離動作中,將「移動元件間的下降時間間隔」(IT8)設為450 ms而進行了延長。若延長自使周邊環狀移動元件31的前端面38a自第一位置下降至第二位置、至使中間環狀移動元件40的前端面38b自第一位置下降至第二位置為止的時間,則可促進半導體晶粒15的與周邊環狀移動元件31的前端面38a相向的區域自然地自切割片材12剝落。同樣地,若延長自使中間環狀移動元件40的前端面38b自第一位置下降至第二位置、至使柱狀移動元件45的前端面47自第一位置下降至第二位置為止的時間,則可促進半導體晶粒15的與中間環狀移動元件40的前端面38b相向的區域自然地自切割片材12剝落。再者,亦可使周邊環狀移動元件31與中間環狀移動元件40之間的下降時間間隔、和中間環狀移動元件40與柱狀移動元件45之間的下降時間間隔不同,在該情況下,在參數表160中規定各個下降時間間隔。再者,如圖2所示,中間環狀移動元件40、中間環狀移動元件41的數量有時為兩個以上,在該情況下,在剝離動作中,設為自外周側的中間環狀移動元件40向內周側的中間環狀移動元件41依次下降。在如此般中間環狀移動元件40、中間環狀移動元件41的數量為兩個以上的情況下,亦可在參數表160中規定中間環狀移動元件40與另一中間環狀移動元件41之間的下降時間間隔。再者,例如亦可在參數表160中規定自開始拾取動作的時間點(圖20中的(a)~(e)的時刻t1)、至使周邊環狀移動元件31(最先下降的移動元件30)自第一位置下降至第二位置的時間點為止的時間。In addition, in the peeling operation at level 8 in (a) to (e) in FIG. 20, the “fall time interval between moving elements” (IT8) was extended to 450 ms. If the time from the lowering of the front end surface 38a of the peripheral annular moving element 31 from the first position to the second position to the lowering of the front end surface 38b of the intermediate annular moving element 40 from the first position to the second position is extended, then The region of the semiconductor die 15 facing the front end surface 38 a of the peripheral ring-shaped moving element 31 can be promoted to naturally peel from the dicing sheet 12. Similarly, if the time from lowering the front end surface 38b of the intermediate annular moving element 40 from the first position to the second position to lowering the front end surface 47 of the cylindrical moving element 45 from the first position to the second position is extended Then, the region of the semiconductor die 15 facing the front end surface 38b of the intermediate ring-shaped moving element 40 can be naturally peeled off from the dicing sheet 12. Furthermore, the falling time interval between the peripheral ring-shaped moving element 31 and the middle ring-shaped moving element 40 and the falling time interval between the middle ring-shaped moving element 40 and the cylindrical moving element 45 may also be different. In this case Next, each fall time interval is specified in the parameter table 160. In addition, as shown in FIG. 2, the number of the intermediate ring-shaped moving element 40 and the intermediate ring-shaped moving element 41 may be two or more. In this case, in the peeling operation, it is set as an intermediate ring from the outer peripheral side The moving element 40 sequentially descends toward the middle annular moving element 41 on the inner peripheral side. In such a case where the number of the intermediate ring-shaped moving element 40 and the intermediate ring-shaped moving element 41 is two or more, it is also possible to specify the intermediate ring-shaped moving element 40 and the other intermediate ring-shaped moving element 41 in the parameter table 160 Fall time interval. In addition, for example, the time point from the start of the pickup operation (time t1 in (a) to (e) in FIG. 20) to the movement of the peripheral ring-shaped moving element 31 (the first descending movement) may be specified in the parameter table 160 Element 30) Time from when the first position descends to the second position.

另外,在圖20中的(a)~(e)的等級8的剝離動作中,將「吸頭待機時間」(WT8)設為1590 ms而進行了延長。而且,在圖20中的(a)~(e)中,「拾取時間」(PT8)變為1700 ms而變長。In addition, in the peeling operation at level 8 in (a) to (e) in FIG. 20, the “tip standby time” (WT8) was extended to 1590 ms. Furthermore, in (a) to (e) in FIG. 20, the "pickup time" (PT8) becomes 1700 ms and becomes longer.

接下來,對等級1的剝離動作進行說明。等級1是應與非常容易剝離的半導體晶粒15建立對應關係的等級值。圖21中的(a)~(e)是表示等級1的剝離動作時的吸頭18的高度、柱狀移動元件45的位置、中間環狀移動元件40的位置、周邊環狀移動元件31的位置、以及開口23的開口壓力的圖。比較圖21中的(a)~(e)的等級1的剝離動作與圖18中的(a)~(f)的等級4的剝離動作,可知以下情況。Next, the peeling operation at level 1 will be described. Rank 1 is a rank value that should be associated with the semiconductor die 15 that is very easy to peel. 21 (a) to (e) are the height of the suction head 18, the position of the columnar moving element 45, the position of the intermediate ring-shaped moving element 40, and the peripheral ring-shaped moving element 31 during the level 1 peeling operation A diagram of the position and the opening pressure of the opening 23. Comparing the peeling operation at level 1 in (a) to (e) in FIG. 21 with the peeling operation at level 4 in (a) to (f) in FIG. 18, the following is known.

在圖21中的(a)~(e)的等級1的剝離動作中,將初始剝離時的「第一壓力的保持時間」(HT1)設為100 ms而進行了縮短。在半導體晶粒15容易自切割片材12剝離的情況下,即使縮短「第一壓力的保持時間」,半導體晶粒15的周圍亦自切割片材12充分剝離。藉由如此般縮短「第一壓力的保持時間」,能夠縮短剝離動作所需時間。In the peeling operation at level 1 in (a) to (e) in FIG. 21, the "first pressure holding time" (HT1) at the time of initial peeling was shortened by setting it to 100 ms. In the case where the semiconductor die 15 is easily peeled off from the dicing sheet 12, even if the "holding time of the first pressure" is shortened, the periphery of the semiconductor die 15 is sufficiently peeled off from the dicing sheet 12. By shortening the "holding time of the first pressure" in this way, the time required for the peeling operation can be shortened.

另外,在圖21中的(a)~(e)的等級1的剝離動作中,「正式剝離時的開口壓力的切換次數」減少至1次(SSN1)。在半導體晶粒15容易自切割片材12剝離的情況下,即使「正式剝離時的開口壓力的切換次數」為1次,半導體晶粒15的比周圍靠內側的區域亦自切割片材12充分剝離。另外,在圖21中的(a)~(e)中,使3個移動元件30(周邊環狀移動元件31、中間環狀移動元件40、柱狀移動元件45)的前端面38a、前端面38b、前端面47同時自第一位置下降至第二位置以下,「同時下降的移動元件的數量」增至3個(DN1)。在半導體晶粒15容易自切割片材12剝離的情況下,即使使多個移動元件30同時下降,半導體晶粒15的比周圍靠內側的區域亦會立即自切割片材12剝離。再者,在使周邊環狀移動元件31與中間環狀移動元件40同時下降,並在其規定時間後使柱狀移動元件45下降的情況下,「同時下降的移動元件的數量」變為2個。再者,在圖19的參數表160中,規定了「同時下降的移動元件的數量」與「移動元件間的下降時間間隔」這兩個剝離參數,但可代替該些而規定所述「周邊環狀移動元件31與中間環狀移動元件40之間的下降時間間隔」、「中間環狀移動元件40與柱狀移動元件45之間的下降時間間隔」、「中間環狀移動元件40與另一中間環狀移動元件41之間的下降時間間隔」。在該情況下,為了使多個移動元件30同時下降,可將該些下降時間間隔的一個或兩個以上設定為0。In addition, in the peeling operation at level 1 in (a) to (e) in FIG. 21, the “number of switching of the opening pressure during the main peeling” is reduced to one (SSN1). In the case where the semiconductor die 15 is easily peeled off from the dicing sheet 12, even if the "number of switching of the opening pressure at the time of formal peeling" is once, the area of the semiconductor die 15 that is inside of the periphery is sufficient from the dicing sheet 12 Peel off. In addition, in (a) to (e) of FIG. 21, the front end surface 38a and the front end surface of the three moving elements 30 (peripheral annular moving element 31, intermediate annular moving element 40, and columnar moving element 45) 38b. The front end face 47 is simultaneously lowered from the first position to below the second position, and the "number of simultaneously moving mobile elements" is increased to 3 (DN1). In the case where the semiconductor die 15 is easily peeled off from the dicing sheet 12, even if the plurality of moving elements 30 are simultaneously lowered, the area inside the semiconductor die 15 that is inner than the periphery is immediately peeled off from the dicing sheet 12. Furthermore, when the peripheral ring-shaped moving element 31 and the middle ring-shaped moving element 40 are simultaneously lowered, and the columnar moving element 45 is lowered after a predetermined time, the "number of moving elements that are simultaneously dropped" becomes 2 Pcs. In addition, in the parameter table 160 of FIG. 19, two peeling parameters of "the number of moving elements that simultaneously fall" and "falling time interval between moving elements" are specified, but instead of these, the "periphery Falling time interval between the ring-shaped moving element 31 and the middle ring-shaped moving element 40", "Falling time interval between the middle ring-shaped moving element 40 and the cylindrical moving element 45", "The middle ring-shaped moving element 40 and the other A falling time interval between an intermediate annular moving element 41". In this case, in order to lower the plurality of moving elements 30 at the same time, one or more of these lowering time intervals may be set to zero.

另外,在圖21中的(a)~(e)的等級1的剝離動作中,將「吸頭待機時間」(WT1)設為460 ms而進行了縮短。而且,在圖21中的(a)~(e)中,「拾取時間」(PT1)為570 ms而變短。In addition, in the peeling operation at level 1 in (a) to (e) in FIG. 21, the “tip standby time” (WT1) was shortened by setting it to 460 ms. In addition, in (a) to (e) in FIG. 21, the “pickup time” (PT1) is shorter at 570 ms.

如以上所說明般,根據等級值而使各剝離參數的參數值不同,即,使剝離動作(拾取動作)不同。藉由使接近等級8的等級值與一片晶圓中的處於難以剝離的位置的半導體晶粒15建立對應關係來進行剝離動作,能夠抑制拾取時的半導體晶粒15的破損或拾取錯誤。另一方面,藉由使接近等級1的等級值與一片晶圓中的處於容易剝離的位置的半導體晶粒15建立對應關係來進行剝離動作,能夠在短時間內進行拾取。再者,多個等級值可稱為表示拾取所需時間的長短的值。各剝離參數的參數值可稱為「拾取條件」,相同種類的剝離參數(例如「初始剝離時的開口壓力的切換次數」)的等級1~等級8的參數值是「多個拾取條件」。另外,圖19所示的剝離參數的種類可定義為「拾取條件的種類」。As explained above, the parameter value of each peeling parameter is different according to the rank value, that is, the peeling operation (pickup operation) is different. By performing a peeling operation by associating a rank value close to rank 8 with the semiconductor die 15 in a position where peeling is difficult in one wafer, it is possible to suppress breakage or picking errors of the semiconductor die 15 during picking. On the other hand, by performing a peeling operation by associating a rank value close to rank 1 with the semiconductor die 15 in a position where peeling is easy in one wafer, picking can be performed in a short time. Furthermore, the multiple rank values may be referred to as values indicating the length of time required for pickup. The parameter value of each peeling parameter may be referred to as "pickup condition", and the parameter value of level 1 to level 8 of the same type of peeling parameter (for example, "the number of switching of the opening pressure during initial peeling") is "multiple pickup conditions". In addition, the types of peeling parameters shown in FIG. 19 can be defined as "types of pickup conditions".

<等級表> 接下來,對等級表159進行詳細說明。圖22是一片晶圓的各半導體晶粒15的辨識編號(晶粒辨識編號、個別資訊)的說明圖,圖23是表示等級表159的一例的圖。如圖22所示,包含一片晶圓11的各半導體晶粒15的X方向的位置(X座標)與Y方向的位置(Y座標)的辨識編號與各半導體晶粒15建立了對應關係。例如,處於晶圓11最左上方的半導體晶粒15由於X方向的位置為「1」、Y方向的位置為「9」,故與辨識編號「1-9」建立了對應關係,同樣地,該半導體晶粒15的右鄰的半導體晶粒15由於X方向的位置為「1」、Y方向的位置為「10」,故與辨識編號「1-10」建立了對應關係。<level table> Next, the rank table 159 will be described in detail. FIG. 22 is an explanatory diagram of the identification number (die identification number, individual information) of each semiconductor die 15 of one wafer, and FIG. 23 is a diagram showing an example of the rank table 159. As shown in FIG. 22, the identification numbers of the X-direction position (X coordinate) and the Y-direction position (Y coordinate) of each semiconductor die 15 including one wafer 11 are associated with each semiconductor die 15. For example, the semiconductor die 15 on the upper left of the wafer 11 has a corresponding relationship with the identification number "1-9" because the position in the X direction is "1" and the position in the Y direction is "9". Similarly, The semiconductor die 15 adjacent to the right side of the semiconductor die 15 has a corresponding relationship with the identification number “1-10” because the position in the X direction is “1” and the position in the Y direction is “10”.

如圖23所示,等級表159將各半導體晶粒的辨識編號(晶粒辨識編號、個別資訊)與等級值建立了對應關係。即,等級表159將一片晶圓中的各半導體晶粒與作為剝離參數的參數值(多個拾取條件)的辨識符的等級值建立了對應關係。藉由等級表159與參數表160,使等級值所對應的剝離動作與一片晶圓的各半導體晶粒15建立了對應關係。藉由等級表159與參數表160,確定出將各種剝離參數中的多個拾取條件(等級1~等級8的參數值)中的一個拾取條件(參數值)與半導體晶粒的個別資訊(辨識資訊)建立了對應關係的對應資訊。As shown in FIG. 23, the rank table 159 establishes a correspondence between the identification numbers (die identification numbers, individual information) of each semiconductor die and the rank value. That is, the rank table 159 associates each semiconductor die in one wafer with the rank value of the identifier as the parameter value (a plurality of pickup conditions) as the peeling parameter. With the grade table 159 and the parameter table 160, the peeling operation corresponding to the grade value is associated with each semiconductor die 15 of a wafer. With the level table 159 and the parameter table 160, one picking condition (parameter value) and individual information of the semiconductor die (identification) among the multiple picking conditions (parameter values of level 1 to level 8) among various peeling parameters are determined Information) Corresponding information that establishes a correspondence.

圖24是依照圖23的等級表159,對一片晶圓的各半導體晶粒15附加與各半導體晶粒15建立了對應關係的等級值所對應的濃淡或陰影而成的圖。如上所述,自一片晶圓中的外周附近的半導體晶粒15向中心附近的半導體晶粒15,剝離容易度(易剝離性)有時緩緩變高。在該情況下,如圖24所示,自晶圓中的外周附近的半導體晶粒15向中心附近的半導體晶粒15,使建立對應關係的等級值變低(使剝離動作簡化,以使得剝離動作所需時間變短)。在圖24中,使等級7與最外周的半導體晶粒15e(附加有左側高斜線的陰影的半導體晶粒)建立了對應關係,使等級6與半導體晶粒15e的內周側的半導體晶粒15d(附加有右側高斜線的陰影的半導體晶粒)建立了對應關係,且分別使等級5與半導體晶粒15d的內周側的半導體晶粒15c(附加有深灰色的半導體晶粒)、等級4與半導體晶粒15c的內周側的半導體晶粒15b(附加有淺灰色的半導體晶粒)、等級3與中心附近的半導體晶粒15a(附加有白色的半導體晶粒)建立了對應關係。再者,關於以下說明的圖25~圖27、圖30~圖35中的附加於各半導體晶粒15或各半導體圖像(後述)的與圖24相同的濃淡或陰影,是指與和圖24的各等級值相同的等級值建立了對應關係。如圖24所示,藉由對處於難以剝離的位置的半導體晶粒15應用充分促進剝離的剝離動作(高等級值),能夠抑制拾取時的半導體晶粒的損傷或拾取錯誤,且對處於容易剝離的位置的半導體晶粒15應用簡易的剝離動作(低等級值),能夠以短時間進行拾取。在多個晶圓中,與各半導體晶粒15的位置對應的各半導體晶粒15的剝離性顯示出同樣的傾向,因此使用圖23、圖24般的等級表159,來連續地拾取多個晶圓的半導體晶粒15。FIG. 24 is a diagram obtained by adding the shades or shades corresponding to the grade values corresponding to the semiconductor die 15 to each semiconductor die 15 of one wafer according to the grade table 159 of FIG. 23. As described above, from the semiconductor crystal grains 15 near the outer periphery to the semiconductor crystal grains 15 near the center in one wafer, the ease of peeling (easiness to peel) may gradually increase. In this case, as shown in FIG. 24, from the semiconductor die 15 near the periphery of the wafer to the semiconductor die 15 near the center, the level value that establishes the corresponding relationship becomes lower (simplifying the peeling operation so that the peeling The time required for the action becomes shorter). In FIG. 24, class 7 is associated with the outermost semiconductor die 15e (semiconductor die with a hatched high left diagonal line), and class 6 corresponds to the semiconductor die on the inner periphery of semiconductor die 15e 15d (semiconductor grains with shadow on the right side of the high oblique line) is established, and the rank 5 and the semiconductor grains 15c on the inner peripheral side of the semiconductor grain 15d (with dark gray semiconductor grains added), rank 4 Corresponding to the semiconductor crystal grain 15b (with a light gray semiconductor crystal grain added) on the inner peripheral side of the semiconductor crystal grain 15c, and the grade 3 corresponds to the semiconductor crystal grain 15a (with a white semiconductor crystal grain added) near the center. In addition, the same shades or shades as those in FIG. 24 added to each semiconductor die 15 or each semiconductor image (described later) in FIGS. 25 to 27 and 30 to 35 described below refer to the AND diagram. Corresponding relationship is established between the same level values of 24. As shown in FIG. 24, by applying a peeling operation (high level value) that sufficiently promotes peeling to the semiconductor die 15 in a position where it is difficult to peel, it is possible to suppress damage or picking errors of the semiconductor die during pickup, and it is easy The semiconductor die 15 at the peeled position can be picked up in a short time by applying a simple peeling operation (low level value). Among the plurality of wafers, the peelability of each semiconductor die 15 corresponding to the position of each semiconductor die 15 shows the same tendency, so a plurality of gradation tables 159 as shown in FIGS. 23 and 24 are used to continuously pick up a plurality of Wafer semiconductor die 15.

<設定顯示畫面> 接下來,對用以供操作者等進行等級表159的生成或編輯(更新)的設定顯示畫面460進行說明。圖25~圖27是表示設定顯示畫面460的一例的圖。控制部150藉由執行保存於儲存部152中的設定顯示程式156,在顯示部450(顯示器)上顯示設定顯示畫面460,並接受等級表159的讀出、生成、更新。控制部150作為顯示控制單元發揮功能,藉此在顯示部450上顯示設定顯示畫面460。另外,如後所述,藉由執行設定顯示程式156而接受自動獲取與晶圓的各半導體晶粒15的位置對應的各半導體晶粒15的剝離性的指示。如圖25所示,設定顯示畫面460具有:映射圖像480,模仿一片晶圓的各半導體晶粒而得,且包含多個半導體晶粒圖像482;操作按鈕群組464,包含各種操作用的按鈕468;以及等級值按鈕群組462,包含「等級1」~「等級8」的各按鈕466。<Setting display screen> Next, the setting display screen 460 for the operator or the like to create or edit (update) the level table 159 will be described. 25 to 27 are diagrams showing an example of the setting display screen 460. The control unit 150 executes the setting display program 156 stored in the storage unit 152, displays the setting display screen 460 on the display unit 450 (display), and accepts reading, generating, and updating of the rank table 159. The control unit 150 functions as a display control unit, thereby displaying the setting display screen 460 on the display unit 450. In addition, as will be described later, by executing the setting display program 156, an instruction to automatically obtain the peelability of each semiconductor die 15 corresponding to the position of each semiconductor die 15 of the wafer is accepted. As shown in FIG. 25, the setting display screen 460 has: a mapping image 480, which imitates each semiconductor die of a wafer, and contains a plurality of semiconductor die images 482; an operation button group 464, which contains various operations Button 468; and level value button group 462, including buttons 466 from "level 1" to "level 8".

在如圖23、圖24般等級值已與各半導體晶粒15建立了對應關係的情況下,即已生成了等級表159的情況下,操作者等能夠在設定顯示畫面460的映射圖像480中顯示等級表159所規定的對應關係。具體而言,操作者等藉由滑鼠(輸入部410),如圖25般將處於設定顯示畫面460上的指標478移動至「讀出」的按鈕468的位置,並點選(選擇)該按鈕。藉此,讀出等級表159所規定的對應關係,且該對應關係被顯示於映射圖像480。具體而言,在映射圖像480中,對與各半導體晶粒15對應的各個半導體晶粒圖像482,附加與各半導體晶粒15建立了對應關係的等級值所對應的顏色。在圖25中,示出了已讀出具有圖23、圖24所示的各半導體晶粒15與等級值的對應關係的等級表159的情況。如此,藉由對各半導體晶粒圖像482附加與等級值對應的顏色,操作者等能夠容易地把握哪一等級值與處於各位置的半導體晶粒建立了對應關係。再者,此處設為對各半導體晶粒圖像482附加與等級值對應的顏色,但亦可對映射圖像480的各半導體晶粒圖像482附加與等級值對應的顏色、圖案、文字、數字及記號的至少一種。When a level value has been associated with each semiconductor die 15 as shown in FIGS. 23 and 24, that is, a level table 159 has been generated, the operator or the like can set the map image 480 on the display screen 460 The corresponding relationship specified in the level table 159 is displayed in. Specifically, the operator, etc., moves the pointer 478 on the setting display screen 460 to the position of the button 468 of "readout" as shown in FIG. 25 by the mouse (input unit 410), and clicks (selects) the Button. With this, the correspondence relationship defined in the rank table 159 is read, and the correspondence relationship is displayed on the map image 480. Specifically, in the map image 480, each semiconductor die image 482 corresponding to each semiconductor die 15 is added with a color corresponding to the level value that corresponds to each semiconductor die 15. FIG. 25 shows a case where the rank table 159 having the correspondence relationship between each semiconductor die 15 shown in FIGS. 23 and 24 and the rank value has been read. In this way, by adding a color corresponding to the rank value to each semiconductor die image 482, the operator or the like can easily grasp which rank value corresponds to the semiconductor die at each position. In addition, here, it is assumed that the color corresponding to the rank value is added to each semiconductor die image 482, but it is also possible to add the color, pattern, and text corresponding to the rank value to each semiconductor die image 482 of the map image 480. , At least one of numbers and symbols.

操作者等能夠對設定顯示畫面460的映射圖像480中讀出的等級表159進行編輯。關於該情況,在說明新生成等級表159的方法之後進行說明。再者,在本實施方式中,設為在指標478的移動或按鈕的選擇中使用滑鼠,但亦可使用搖桿等。The operator or the like can edit the level table 159 read out in the map image 480 of the setting display screen 460. This case will be described after explaining the method of generating the rank table 159 newly. In addition, in this embodiment, it is assumed that the mouse is used to move the indicator 478 or to select the button, but a joystick or the like may be used.

圖26是表示新生成等級表159時的設定顯示畫面460的一例的圖。操作者等將指標478移動至「新增」的按鈕468,並點選該按鈕468,藉此,設定顯示畫面460成為等級表159的新增的畫面。此時,製作將預設的等級值與一片晶圓的所有半導體晶粒15建立了對應關係的暫時的等級表159,並對映射圖像480的各半導體晶粒圖像482附加與預設的等級值對應的顏色。在圖26中,預設的等級值為等級3,對各半導體晶粒圖像482附加了與等級3對應的顏色(白色)。操作者等藉由自該狀態,使所期望的等級值與各半導體晶粒圖像482建立對應關係,從而使等級值與各半導體晶粒圖像482所對應的半導體晶粒15建立對應關係。FIG. 26 is a diagram showing an example of the setting display screen 460 when the rank table 159 is newly created. The operator or the like moves the indicator 478 to the button 468 of "addition" and clicks the button 468, whereby the setting display screen 460 becomes the addition screen of the rank table 159. At this time, a temporary rating table 159 that associates the preset rating values with all semiconductor die 15 of a wafer is created, and each semiconductor die image 482 of the mapping image 480 is appended with the preset The color corresponding to the level value. In FIG. 26, the preset level value is level 3, and each semiconductor die image 482 is added with a color (white) corresponding to level 3. From this state, the operator or the like associates the desired gradation value with each semiconductor die image 482, thereby associating the gradation value with the semiconductor die 15 corresponding to each semiconductor die image 482.

具體而言,首先,如圖26所示,使指標478移動至所希望的等級值(在圖26中為等級5)的按鈕466,並藉由點選該按鈕466來選擇等級值。然後,如圖27般使指標478移動至欲與所選擇的等級值建立對應關係的半導體晶粒圖像482b,並點選該半導體晶粒圖像482b。藉此,使所選擇的等級值與對應於所點選的半導體晶粒圖像482b的半導體晶粒建立對應關係。另外,對半導體晶粒圖像482b附加與所選擇的等級值對應的顏色。在圖27中,示出了藉由點選三個半導體晶粒圖像482b,而對該些半導體晶粒圖像482b附加與所選擇的等級5對應的顏色的狀態。操作者等藉由如此般反覆進行等級值的選擇、以及與所選擇的等級值建立對應關係的半導體晶粒圖像(半導體晶粒)的選擇,來製作或編輯等級表159。控制部150作為生成單元發揮功能,接受該等級值的選擇以及半導體晶粒圖像(半導體晶粒)的選擇。Specifically, first, as shown in FIG. 26, the indicator 478 is moved to the button 466 of the desired level value (level 5 in FIG. 26), and the level value is selected by clicking the button 466. Then, as shown in FIG. 27, the indicator 478 is moved to the semiconductor die image 482b to be associated with the selected level value, and the semiconductor die image 482b is clicked. Thereby, the selected gradation value is associated with the semiconductor die corresponding to the selected semiconductor die image 482b. In addition, a color corresponding to the selected gradation value is added to the semiconductor die image 482b. FIG. 27 shows a state in which three semiconductor die images 482b are clicked and colors corresponding to the selected level 5 are added to these semiconductor die images 482b. The operator and the like repeatedly select the level value and select the semiconductor die image (semiconductor die) corresponding to the selected level value to create or edit the level table 159. The control unit 150 functions as a generating unit, and accepts the selection of the rank value and the selection of the semiconductor die image (semiconductor die).

然後,當等級表159的製作或編輯完成時,使指標478移動至「重寫儲存」的按鈕468,並點選(選擇)該按鈕468,藉此結束等級表159的製作(生成)。當點選「重寫儲存」的按鈕468時,控制部150作為生成單元發揮功能,生成等級表159。再者,當存在多個等級表159時,為了辨識各等級表159,可考慮如下形態:對等級表159附加檔案名並保存至儲存部152,在讀出時指定檔案名並自儲存部152讀出等級表159。在該形態的情況下,利用指標478點選「另存新檔」的按鈕468,自輸入部410的鍵盤等附加檔案名,將等級表159保存至儲存部152。再者,在該情況下,當點選「另存新檔」的按鈕468時,控制部150作為生成單元發揮功能,並生成等級表159。然後,當利用指標478點選所述「讀出」的按鈕468時,自多個等級表159中指定欲讀出的等級表159的檔案名,藉此在設定顯示畫面460中讀出所希望的等級表159。Then, when the creation or editing of the rating table 159 is completed, the indicator 478 is moved to the button 468 of "overwrite storage", and the button 468 is clicked (selected), thereby ending the creation (generation) of the rating table 159. When the button 468 of "overwrite storage" is clicked, the control unit 150 functions as a generating unit and generates a rank table 159. In addition, when there are a plurality of rank tables 159, in order to identify each rank table 159, the following form may be considered: add a file name to the rank table 159 and save it to the storage unit 152, and specify the file name when reading out from the storage unit 152 Read the rating table 159. In the case of this form, the button 468 of "save new file" is clicked using the pointer 478, and a file name is added from the keyboard of the input unit 410, etc., and the rank table 159 is saved in the storage unit 152. Furthermore, in this case, when the button 468 of "save as new file" is clicked, the control unit 150 functions as a generating unit and generates a rank table 159. Then, when the button 468 of the "read" is clicked using the index 478, the file name of the level table 159 to be read out is specified from the plurality of level tables 159, thereby reading the desired on the setting display screen 460的级表159.

如所述圖25般,當在設定顯示畫面460的映射圖像480中讀出等級表159後對等級表159進行編輯(更新)時,亦藉由與所述新增的情況相同的方法來進行。即,在圖25中,在利用指標478點選(選擇)所希望的等級值的按鈕466後,利用指標478點選欲變更為所選擇的等級值的半導體晶粒圖像482(半導體晶粒)。藉此,使所選擇的等級值與對應於所點選的半導體晶粒圖像482的半導體晶粒15建立對應關係,並根據等級值對半導體晶粒圖像482附加顏色。As described in FIG. 25, when the level table 159 is edited (updated) after reading the level table 159 in the map image 480 of the setting display screen 460, the same method as in the case of the newly added get on. That is, in FIG. 25, after clicking (selecting) the button 466 of the desired rank value using the index 478, the semiconductor die image 482 (semiconductor die) to be changed to the selected rank value is clicked using the indicator 478 ). Thereby, the selected gradation value is associated with the semiconductor die 15 corresponding to the selected semiconductor die image 482, and the semiconductor die image 482 is colored according to the gradation value.

操作者等於在設定顯示畫面460中讀出了等級表159的狀態、即在對映射圖像480的各半導體晶粒圖像482附加了與等級值對應的顏色的狀態下,藉由按下未圖示的執行拾取的按鈕,而開始半導體晶粒15的拾取。再者,執行拾取的按鈕可為利用輸入部410的滑鼠點選顯示於畫面上的按鈕的形態,或者為操作者等利用手或手指按下物理上存在的按鈕的形態。藉由按下執行拾取的按鈕,控制部150執行儲存部152中所保存的控制程式155,來進行半導體晶粒15的拾取。此時,對於各晶圓的各半導體晶粒15,依照在設定顯示畫面460的映射圖像480中讀出的等級表159來進行剝離動作。The operator is equal to the state in which the level table 159 is read out on the setting display screen 460, that is, in a state where the color corresponding to the level value is added to each semiconductor die image 482 of the map image 480, by pressing the The illustrated button for performing pickup starts pickup of the semiconductor die 15. The button to be picked up may be a form in which a button displayed on the screen is clicked by a mouse of the input unit 410, or a form in which an operator or the like physically presses a button with a hand or finger. By pressing the button to execute pickup, the control unit 150 executes the control program 155 stored in the storage unit 152 to pick up the semiconductor die 15. At this time, for each semiconductor die 15 of each wafer, the peeling operation is performed according to the level table 159 read out in the map image 480 of the setting display screen 460.

<一片晶圓中的各半導體晶粒的剝離性的獲取> 接下來,對一片晶圓的各半導體晶粒15的剝離性的獲取進行說明。操作者等藉由把握與晶圓的各半導體晶粒15的位置對應的各半導體晶粒15的剝離性(易剝離性或難剝離性),能夠使更準確的等級值與各半導體晶粒15建立對應關係。因此,本實施方式的半導體晶粒的拾取系統500能夠自動獲取與晶圓的各半導體晶粒的位置對應的各半導體晶粒的剝離性。以下,對各半導體晶粒15的剝離性的自動獲取進行詳細說明。<Acquisition of peelability of each semiconductor die in one wafer> Next, the acquisition of the peelability of each semiconductor die 15 of one wafer will be described. By grasping the peelability (easy-peelability or hard-peelability) of each semiconductor die 15 corresponding to the position of each semiconductor die 15 of the wafer, the operator can adjust the level of each semiconductor die 15 more accurately Establish correspondence. Therefore, the semiconductor die picking system 500 of the present embodiment can automatically acquire the peelability of each semiconductor die corresponding to the position of each semiconductor die of the wafer. Hereinafter, the automatic acquisition of the peelability of each semiconductor die 15 will be described in detail.

<剝離性的檢測方法> 首先,對半導體晶粒的拾取系統500進行的、半導體晶粒15自切割片材12的剝離性的檢測方法進行說明。能夠根據流量感測器106所檢測出的吸頭18的抽吸空氣流量的時間變化(實際流量變化)來檢測半導體晶粒15自切割片材12的剝離性。<Test method for peelability> First, a method for detecting the peelability of the semiconductor die 15 from the dicing sheet 12 by the semiconductor die picking system 500 will be described. The peelability of the semiconductor die 15 from the dicing sheet 12 can be detected from the temporal change (actual flow change) of the suction air flow of the suction head 18 detected by the flow sensor 106.

圖28是表示初始剝離時的開口壓力與流量感測器106檢測出的吸頭18的空氣洩漏量(抽吸空氣流量)的時間變化的圖,t1、t2、t3、t4的各時刻的含義與圖18中的(a)~(f)所示的所述各時刻的含義相同。圖28的空氣洩漏量的曲線圖中的實線157是半導體晶粒15自切割片材12的剝離良好的情況(剝離容易度非常高的情況)下的空氣洩漏量的時間變化即期待流量變化157,期待流量變化157預先保存於儲存部152中。具體而言,保存於儲存部152中的期待流量變化157可為以規定的採樣週期獲取的多個抽吸空氣流量的集合,且為與多個離散的時刻t建立了對應關係的抽吸空氣流量。圖28的空氣洩漏量的曲線圖中的單點劃線158a與雙點劃線158b是實際自切割片材12拾取半導體晶粒15時檢測出的空氣洩漏量的時間變化即實際流量變化158的例子。實際流量變化158在每次拾取半導體晶粒15時被保存至儲存部152。具體而言,保存至儲存部152的實際流量變化158只要是能夠與期待流量變化157對比的形態即可,例如與期待流量變化157同樣地,可為以規定的採樣週期獲取的多個抽吸空氣流量的集合,且為與多個離散的時刻t建立了對應關係的抽吸空氣流量。再者,可將實際流量變化稱為「實際流量資訊」,可將期待流量變化稱為「期待流量資訊」。FIG. 28 is a graph showing the temporal change of the opening pressure at the time of initial peeling and the air leakage amount (suction air flow rate) of the suction head 18 detected by the flow sensor 106, and the meaning of each time t1, t2, t3, and t4 The meanings at the respective times shown in (a) to (f) in FIG. 18 are the same. The solid line 157 in the graph of the air leakage amount in FIG. 28 is the time change of the air leakage amount, that is, the expected flow rate change, in the case where the semiconductor die 15 is well peeled from the dicing sheet 12 (when the peeling ease is very high). 157, the expected flow rate change 157 is stored in the storage unit 152 in advance. Specifically, the expected flow rate change 157 stored in the storage unit 152 may be a collection of a plurality of suction air flow rates acquired in a predetermined sampling period, and may be a suction air that has a corresponding relationship with a plurality of discrete times t flow. The one-dot chain line 158a and the two-dot chain line 158b in the graph of the air leakage amount in FIG. 28 are the actual flow rate change 158, which is the time change of the air leakage amount detected when the semiconductor die 15 is actually picked up from the dicing sheet 12 example. The actual flow rate change 158 is stored in the storage section 152 every time the semiconductor die 15 is picked up. Specifically, the actual flow rate change 158 stored in the storage unit 152 may be any form that can be compared with the expected flow rate change 157. For example, as with the expected flow rate change 157, it can be a plurality of pumps acquired at a predetermined sampling cycle The set of air flow rates is the suction air flow rate that establishes a corresponding relationship with multiple discrete times t. Furthermore, the actual flow rate change can be called "actual flow rate information", and the expected flow rate change can be called "expected flow rate information".

在半導體晶粒15自切割片材12的剝離良好的情況下,當在時刻t3開口壓力向接近真空的第一壓力P1 開始變化時,半導體晶粒15的周圍自吸頭18的表面18a離開(參照圖8),但半導體晶粒15的周圍立即返回吸頭18的表面18a(參照圖9)。因此,如圖28的期待流量變化157般,空氣洩漏量自時刻t3開始增加,但立即轉為減少(在時刻tr_exp轉為減少)。在期待流量變化157中,增加的空氣洩漏量亦少。In the case where the peeling of the semiconductor die 15 from the dicing sheet 12 is good, when the opening pressure starts to change to the first pressure P 1 close to the vacuum at time t3, the periphery of the semiconductor die 15 is separated from the surface 18a of the suction head 18 (Refer to FIG. 8), but the periphery of the semiconductor die 15 immediately returns to the surface 18a of the tip 18 (refer to FIG. 9). Therefore, as shown in the expected flow rate change 157 of FIG. 28, the air leakage amount increases from time t3, but immediately turns to decrease (at time tr_exp, it decreases). In the expected flow rate change 157, the increased air leakage amount is also small.

另一方面,在半導體晶粒15自切割片材12的剝離性差的情況下(剝離容易度低的情況下),當在時刻t3開口壓力向接近真空的第一壓力P1 開始變化時,半導體晶粒15的周圍自吸頭18的表面18a離開,並在經過一定程度的時間後,半導體晶粒15的周圍返回吸頭18的表面18a。因此,如圖28的實際流量變化158a般,空氣洩漏量自時刻t3開始增加,並在持續增加後,在比時刻tr_exp晚的時刻tr_rel轉為減少。另外,在實際流量變化158a中,增加的空氣洩漏量多。On the other hand, in the case where the peelability of the semiconductor die 15 from the dicing sheet 12 is poor (when the ease of peeling is low), when the opening pressure starts to change to the first pressure P 1 close to vacuum at time t3, the semiconductor The periphery of the die 15 is separated from the surface 18 a of the suction head 18, and after a certain amount of time, the periphery of the semiconductor die 15 returns to the surface 18 a of the suction head 18. Therefore, like the actual flow rate change 158a of FIG. 28, the air leakage amount increases from time t3, and after continuing to increase, tr_rel decreases at a time later than time tr_exp. In addition, in the actual flow rate change 158a, the increased air leakage amount is large.

另外,在半導體晶粒15自切割片材12的剝離性非常差的情況下(剝離容易度非常低的情況下),即使在半導體晶粒15的周圍自吸頭18的表面18a離開後經過一定程度的時間,半導體晶粒15的周圍亦不會返回吸頭18的表面18a。因此,如圖28的實際流量變化158b般,即使在自開口壓力達到接近真空的第一壓力P1 的時刻t4起經過了規定時間的時刻tc_end,空氣洩漏量亦保持大的狀態。In addition, in the case where the peelability of the semiconductor die 15 from the dicing sheet 12 is very poor (when the ease of peeling is very low), even after the semiconductor die 15 is separated from the surface 18a of the suction head 18 after passing The time around the semiconductor die 15 will not return to the surface 18a of the suction head 18. Thus, the actual flow 158b changes as shown in FIG. 28, t4 a predetermined time has elapsed since the time tc_end, even if the amount of air leakage from the opening at the time the pressure reaches a first pressure P 1 of near vacuum also maintaining a large state.

如此,半導體晶粒15自切割片材12的剝離性越差,實際流量變化158越偏離期待流量變化157。因此,將實際流量變化158與期待流量變化157相比,實際流量變化158越與期待流量變化157類似,則判斷為剝離性越良好(剝離容易度越高)。或者,實際流量變化158與期待流量變化157的相關性越強,則判斷為剝離性越良好(剝離容易度越高)。在本實施方式中,將實際流量變化158與期待流量變化157進行比較,求出該些的相關值。相關值是0~1.0的值,在實際流量變化158與期待流量變化157完全一致時設為1.0,且自0越接近1.0,則判斷為剝離容易度越高。再者,在本實施方式中,將相關值取值的範圍設為0~1.0,但當然亦可為除此之外的值。As such, the worse the peelability of the semiconductor die 15 from the dicing sheet 12, the more the actual flow rate change 158 deviates from the expected flow rate change 157. Therefore, comparing the actual flow rate change 158 with the expected flow rate change 157, the more the actual flow rate change 158 is similar to the expected flow rate change 157, the better the peelability (the higher the ease of peeling). Alternatively, the stronger the correlation between the actual flow rate change 158 and the expected flow rate change 157, the better the peelability (the higher the ease of peeling). In the present embodiment, the actual flow rate change 158 and the expected flow rate change 157 are compared to obtain these correlation values. The correlation value is a value of 0 to 1.0, and is set to 1.0 when the actual flow rate change 158 and the expected flow rate change 157 are exactly the same, and the closer to 1.0 from 0, the higher the ease of peeling. In addition, in the present embodiment, the range of the correlation value is set to 0 to 1.0, but of course it may be other values.

關於對實際流量變化158與期待流量變化157進行比較的期間,例如設為作為初始剝離期間的一部分的圖22的時刻t1(自吸頭18的表面18a開始抽吸空氣的時刻)~時刻tc_end(自最先開口壓力達到第一壓力P1 的時刻t4起經過了規定時間的時刻)。或者,進行比較的期間亦可為作為初始剝離期間的一部分的時刻t3(開口壓力開始朝向第一壓力P1 變化的時刻)~tc_end的期間。另外,進行比較的期間亦可為其他期間。The period for comparing the actual flow rate change 158 with the expected flow rate change 157 is, for example, time t1 (time when air suction starts from the surface 18a of the suction head 18) to time tc_end (part of the initial peeling period). since first opening pressure reaches a predetermined time has elapsed time point t4 to time point a first pressure P 1). Alternatively, the period for comparison may be a period from time t3 (time when the opening pressure starts to change toward the first pressure P 1 ) as part of the initial peeling period to tc_end. In addition, the period for comparison may be other periods.

再者,作為半導體晶粒15自切割片材12的剝離性,亦可求出實際流量變化158與期待流量變化157的相關值以外的值。例如,圖28的時刻tc_end處的期待流量變化157的值與該時刻處的實際流量變化158的值之差越小,則亦可判斷為剝離性越良好(剝離容易度越高)。另外,例如,作為期待流量變化157中的空氣洩漏流量自增加轉為減少的時間點的時刻tr_exp與作為實際流量變化158中的空氣洩漏流量自增加轉為減少的時間點的時刻tr_rel之差越小,則亦可判斷為剝離容易度越高。另外,例如,在圖28的時刻t3以後檢測出的期待流量變化157的空氣洩漏流量的最大值與在該時刻以後檢測出的實際流量變化158的空氣洩漏流量的最大值之差越小,則亦可判斷為剝離容易度越高。In addition, as the releasability of the semiconductor die 15 from the dicing sheet 12, values other than the correlation value between the actual flow rate change 158 and the expected flow rate change 157 can also be obtained. For example, the smaller the difference between the value of the expected flow rate change 157 at the time tc_end in FIG. 28 and the value of the actual flow rate change 158 at that time, it can be determined that the peelability is better (the peeling ease is higher). In addition, for example, the difference between the time tr_exp as the time point when the air leakage flow rate in the expected flow rate change 157 changes from increasing to decreasing and the time tr_rel as the time point when the air leakage flow rate in the actual flow rate change 158 changes from increasing to decreasing If it is small, it can be determined that the ease of peeling is higher. In addition, for example, the smaller the difference between the maximum value of the air leakage flow rate of the expected flow rate change 157 detected after time t3 in FIG. 28 and the maximum value of the air leakage flow rate of the actual flow rate change 158 detected after that time, then It can also be determined that the ease of peeling is higher.

另外,亦考慮不使用期待流量變化157而檢測半導體晶粒15自切割片材12的剝離性。例如,圖28的時刻tc_end處的實際流量變化158的值越小,則亦可判斷為剝離性越良好(剝離容易度越高)。再者,亦可將基於實際流量變化158而獲得的、所述相關值或代替所述相關值的表示半導體晶粒15自切割片材12的剝離性的指標值稱為「評價值」。In addition, it is also considered to detect the peelability of the semiconductor die 15 from the dicing sheet 12 without using the expected flow rate change 157. For example, the smaller the value of the actual flow rate change 158 at the time tc_end in FIG. 28, the better the peelability (the higher the peeling ease). Furthermore, the correlation value or the index value indicating the peelability of the semiconductor die 15 from the dicing sheet 12 obtained based on the actual flow rate change 158 may be referred to as an “evaluation value”.

<剝離性在設定顯示畫面上的顯示> 接下來,對將如上所述般檢測出的半導體晶粒15自切割片材12的剝離性顯示於設定顯示畫面460的方法進行說明。操作者等在欲把握一片晶圓的各半導體晶粒15的位置上的各半導體晶粒15的剝離性的情況下,如圖30般,利用指標478點選「自動獲取」的按鈕468。藉此,控制部150執行儲存部152的控制程式155,並以規定的等級值的剝離動作(拾取操作)拾取一片晶圓的各半導體晶粒15。此時,控制部150作為生成單元發揮功能,每當拾取半導體晶粒15時,獲取實際流量變化158,求出實際流量變化158與期待流量變化157之間的相關值,並將實際流量變化158與相關值保存至儲存部152。<Display of peelability on the setting display screen> Next, a method of displaying the peelability of the semiconductor die 15 detected from the dicing sheet 12 as described above on the setting display screen 460 will be described. When the operator or the like wants to grasp the peelability of each semiconductor die 15 at the position of each semiconductor die 15 of one wafer, as shown in FIG. 30, click the button 468 of “automatic acquisition” using the index 478. With this, the control unit 150 executes the control program 155 of the storage unit 152 and picks up the semiconductor die 15 of one wafer with a peeling operation (pickup operation) of a predetermined level value. At this time, the control unit 150 functions as a generating unit, and each time the semiconductor die 15 is picked up, the actual flow rate change 158 is obtained, the correlation value between the actual flow rate change 158 and the expected flow rate change 157 is obtained, and the actual flow rate change 158 The related value is stored in the storage unit 152.

而且,每當拾取半導體晶粒15時,控制部150(生成單元)對相關值與圖29所示的臨限值表161的各等級值的臨限值TH1、臨限值TH2進行比較。圖29是臨限值表161的一例,臨限值表161是預先保存於儲存部152中的表,且是用以基於相關值來決定應對半導體晶粒15應用哪一等級值的表。在臨限值表161中,各等級值的範圍藉由下側臨限值TH1、上側臨限值TH2來設定,等級值越低,則設定越大的臨限值TH1、臨限值TH2。例如,等級4的範圍為0.81(下側臨限值TH1)~0.85(上側臨限值TH2),等級1的範圍為0.96(下側臨限值TH1)以上,等級8的範圍為0.65(上側臨限值TH2)以下。控制部150(生成單元)搜尋所求出的相關值屬於哪一等級值的範圍,獲取相關值所屬的等級值。例如,若求出的相關值為0.78,則獲取等級5(範圍:0.76~0.80)。如此,每當拾取一片晶圓的各半導體晶粒15時,控制部150自臨限值表161獲取相關值所屬的等級值。然後,控制部150使該等級值與求出了相關值的半導體晶粒15(晶粒辨識編號)建立對應關係。即,控制部150(生成單元)逐漸製作等級表159。而且,控制部150基於緩緩製作而成的等級表159,如圖30所示般對映射圖像480的各半導體晶粒圖像482附加與等級值對應的顏色。Each time the semiconductor die 15 is picked up, the control unit 150 (generation unit) compares the correlation value with the threshold value TH1 and the threshold value TH2 of each grade value of the threshold value table 161 shown in FIG. 29. FIG. 29 is an example of the threshold value table 161. The threshold value table 161 is a table stored in the storage unit 152 in advance, and is a table for determining which level value should be applied to the semiconductor die 15 based on the correlation value. In the threshold value table 161, the range of each level value is set by the lower threshold value TH1 and the upper threshold value TH2. The lower the level value, the larger the threshold value TH1 and the threshold value TH2 are set. For example, level 4 ranges from 0.81 (lower threshold TH1) to 0.85 (upper threshold TH2), level 1 ranges from 0.96 (lower threshold TH1) or more, and level 8 ranges from 0.65 (upper threshold) Threshold TH2) below. The control unit 150 (generating means) searches for the range of the rank value to which the obtained correlation value belongs, and obtains the rank value to which the correlation value belongs. For example, if the calculated correlation value is 0.78, the level 5 (range: 0.76 to 0.80) is obtained. In this way, each time the semiconductor die 15 of one wafer is picked up, the control unit 150 obtains the rank value to which the relevant value belongs from the threshold value table 161. Then, the control unit 150 associates the rank value with the semiconductor die 15 (die identification number) whose correlation value is obtained. That is, the control unit 150 (generating means) gradually creates the rank table 159. Further, the control unit 150 adds a color corresponding to the level value to each semiconductor die image 482 of the map image 480 as shown in FIG. 30 based on the level table 159 that is gradually created.

如此,將各半導體晶粒15的相關值(剝離容易度)的大小以等級值階段性地表示於映射圖像480。操作者等藉由觀察圖30般的映射圖像480,便能夠容易地把握哪一位置的半導體晶粒具有何種程度的剝離容易度。另外,由於僅藉由點選「自動獲取」的按鈕468便可製作等級表159,故在拾取以後的多片晶圓的各半導體晶粒時,亦可直接應用該等級表159。另外,操作者等亦能夠對如圖30般自動地使等級值與各半導體晶粒15建立了對應關係的等級表159進行編輯。即,與所述編輯等級表159的情況相同,在圖30的設定顯示畫面460中,在利用指標478選擇了所希望的等級值的按鈕466後,利用指標478選擇映射圖像480中的欲變更等級值的半導體晶粒圖像482即可。再者,此處設為對映射圖像480的各半導體晶粒圖像482附加與等級值對應的顏色,但亦可以對各半導體晶粒圖像482附加根據相關值(剝離容易度)的大小而更細微地變化的顏色、圖案、文字、數字及記號的至少一種。In this way, the magnitude of the correlation value (ease of peeling) of each semiconductor die 15 is gradually displayed in the map image 480 in gradation values. By observing the map image 480 as shown in FIG. 30, the operator or the like can easily grasp which position of the semiconductor die has the easiness of peeling. In addition, since the grade table 159 can be created by simply clicking the button 468 of "Auto Acquire", the grade table 159 can be directly applied when picking up each semiconductor die of a plurality of subsequent wafers. In addition, the operator or the like can edit the rank table 159 that automatically associates the rank values with the semiconductor die 15 as shown in FIG. 30. That is, as in the case of the edit level table 159 described above, in the setting display screen 460 of FIG. 30, after selecting the button 466 of the desired level value using the index 478, the index 478 is used to select the desired image in the map image 480. The semiconductor die image 482 of the grade value may be changed. In addition, here, it is assumed that the color corresponding to the level value is added to each semiconductor die image 482 of the map image 480, but it is also possible to add the size according to the correlation value (ease of peeling) to each semiconductor die image 482 At least one of the colors, patterns, characters, numbers, and symbols that change more finely.

進而,本實施方式的半導體晶粒的拾取系統500具有能夠供操作員等詳細把握一片晶圓的各半導體晶粒15的剝離性的結構。如圖31所示,當使指標478移動至映射圖像480的規定的半導體晶粒圖像482c時,出現氣泡486,在氣泡486中,顯示與指標478所處位置的半導體晶粒圖像482c對應的、半導體晶粒15的實際流量變化的波形以及相關值。在圖31所示的氣泡486中,不僅以實線顯示了實際流量變化,亦以虛線顯示了期待流量變化。如此,在設定顯示畫面460中顯示出各半導體晶粒15的實際流量變化以及相關值,因此操作員等能夠詳細地知悉各半導體晶粒15的剝離性。再者,在映射圖像480中,亦可對各半導體晶粒圖像482附加與各半導體晶粒圖像482對應的各半導體晶粒15的相關值。或者,亦可將與特定的一個或多個半導體晶粒圖像482對應的半導體晶粒15的相關值顯示於設定顯示畫面460上的規定位置。Furthermore, the semiconductor die picking system 500 of this embodiment has a structure that allows an operator or the like to grasp the peelability of each semiconductor die 15 of a wafer in detail. As shown in FIG. 31, when the pointer 478 is moved to the prescribed semiconductor die image 482c of the map image 480, a bubble 486 appears, and in the bubble 486, the semiconductor die image 482c at the position where the pointer 478 is located is displayed Correspondingly, the waveform and related values of the actual flow rate change of the semiconductor die 15. In the bubble 486 shown in FIG. 31, not only the actual flow rate change is shown by a solid line, but also the expected flow rate change is shown by a broken line. In this way, the actual flow rate change and the related value of each semiconductor die 15 are displayed on the setting display screen 460, so that the operator and the like can know the peelability of each semiconductor die 15 in detail. In addition, in the map image 480, the correlation value of each semiconductor die 15 corresponding to each semiconductor die image 482 may be added to each semiconductor die image 482. Alternatively, the related value of the semiconductor die 15 corresponding to the specific one or more semiconductor die images 482 may be displayed at a predetermined position on the setting display screen 460.

<作用效果> 以上所說明的半導體晶粒的拾取系統500在儲存部152中儲存有將一片晶圓中的各半導體晶粒15與各種剝離參數中的多個拾取條件(等級1~等級8的參數值)中的一個拾取條件(參數值)建立了對應關係的對應資訊(等級表159及參數表160)。而且,在拾取一片晶圓的各半導體晶粒15時,參照該對應資訊,依照與每個半導體晶粒15建立了對應關係的剝離動作,將半導體晶粒15自切割片材12剝離並加以拾取。因此,能夠應用適合於一片晶圓中的各半導體晶粒15的剝離動作來進行拾取。另外,根據以上所說明的半導體晶粒的拾取系統500,能夠把握與一片晶圓的各半導體晶粒15的位置對應的各半導體晶粒15的剝離性。<Effects> The semiconductor die picking system 500 described above stores a plurality of picking conditions (parameter values of level 1 to level 8) of each semiconductor die 15 in one wafer and various peeling parameters in the storage unit 152 One of the picking conditions (parameter values) establishes the corresponding information of the corresponding relationship (level table 159 and parameter table 160). Moreover, when picking up each semiconductor die 15 of a wafer, referring to the corresponding information, the semiconductor die 15 is peeled off from the dicing sheet 12 and picked up according to the peeling action that establishes a corresponding relationship with each semiconductor die 15 . Therefore, it is possible to perform picking by applying a peeling operation suitable for each semiconductor die 15 in one wafer. In addition, according to the semiconductor die picking system 500 described above, the peelability of each semiconductor die 15 corresponding to the position of each semiconductor die 15 of one wafer can be grasped.

<其他> 在以上所說明的實施方式中,設定顯示畫面460是用以進行等級表159的製作或更新等的畫面。但是,亦可在設定顯示畫面460中進行參數表160(條件表)的各參數值的設定。例如,如圖32所示,使參數值設定用的視窗490顯示於設定顯示畫面460,以使得能夠進行參數值的設定。具體而言,首先,利用指標478選擇(點選)欲設定參數值的等級值的按鈕466,然後利用指標478點選「詳細設定」的按鈕470。藉此,如圖32般出現所選擇的等級值的剝離參數的參數值設定用的視窗490。然後,利用指標478點選視窗490內的欲進行變更或重新設定的參數值的文字盒492,並自輸入部410的鍵盤輸入參數值。然後,當結束所有參數值的輸入時,利用指標478點選視窗490內的「儲存」的按鈕472。藉此變更或重新設定所選擇的等級值的剝離參數的參數值。該參數值的接受、藉由點選「儲存」的按鈕472而進行的參數表160的更新或生成是由控制部150作為生成單元發揮功能來進行。如此,若能夠在設定顯示畫面460中變更、設定參數表160的各參數值,則能夠非常簡單地調整各等級值的剝離參數的參數值。<Others> In the embodiment described above, the setting display screen 460 is a screen for creating or updating the rank table 159 and the like. However, each parameter value of the parameter table 160 (condition table) may be set on the setting display screen 460. For example, as shown in FIG. 32, a window 490 for parameter value setting is displayed on the setting display screen 460 to enable parameter value setting. Specifically, first, use the indicator 478 to select (click) the button 466 to set the level value of the parameter value, and then use the indicator 478 to click the button 470 of "detailed setting". Thereby, as shown in FIG. 32, a window 490 for setting the parameter value of the peeling parameter of the selected rank value appears. Then, using the pointer 478, click the text box 492 of the parameter value to be changed or reset in the window 490, and input the parameter value from the keyboard of the input unit 410. Then, when the input of all parameter values is completed, the pointer 478 in the window 490 is clicked using the pointer 478. Thereby, the parameter value of the peeling parameter of the selected rank value is changed or reset. The reception of this parameter value and the update or generation of the parameter table 160 by clicking the "save" button 472 are performed by the control unit 150 functioning as a generating unit. In this way, if each parameter value of the parameter table 160 can be changed and set on the setting display screen 460, the parameter value of the peeling parameter of each level value can be adjusted very easily.

另外,在以上所說明的實施方式中,以自晶圓中的外周附近的半導體晶粒15向中心附近的半導體晶粒15而剝離容易度(易剝離性)緩緩變高的情況為例進行了說明。但是,除此之外,亦有各種與晶圓中的各半導體晶粒15的位置對應的各半導體晶粒15的剝離性的樣式。在半導體晶粒15的背面,有時會貼附被稱為晶粒貼合膜(die attachment film,DAF)的膜。DAF在貼附於半導體晶粒15的背面的狀態下與半導體晶粒15一起被拾取後,在將半導體晶粒15晶粒接合於基板時,作為半導體晶粒15與基板之間的黏接劑發揮功能。在半導體晶粒15貼附於切割片材12的狀態下,在半導體晶粒15與切割片材12之間存在DAF。為了使貼附於半導體晶粒15的背面的DAF與切割片材12的剝離性良好,有時在拾取晶圓的各半導體晶粒15之前,對切割片材12照射紫外線。照射紫外線以使切割片材12的黏合力降低。有時該紫外線的照射會產生不均,根據一片晶圓的各半導體晶粒15的位置,各半導體晶粒15的剝離性有時會發生變化。基於此種因素,與晶圓中的各半導體晶粒15的位置對應的各半導體晶粒15的剝離性有各種樣式,操作人員等把握該樣式,使適當的等級值與一片晶圓的各半導體晶粒15建立對應關係。例如,可考慮如圖33般將晶圓在周向上分割成兩個以上(在圖33中為四個),並使不同的等級值與屬於多個分割部分各者的半導體晶粒15a、半導體晶粒15b、半導體晶粒15c、半導體晶粒15d建立對應關係。或者,例如可考慮如圖34般將晶圓在徑向上分割成兩個以上(在圖34中為六個),並使不同的等級值與屬於多個分割部分各者的半導體晶粒15a、半導體晶粒15b、半導體晶粒15c、半導體晶粒15d、半導體晶粒15e、半導體晶粒15f建立對應關係。或者,例如可考慮如圖35般部分地劃分晶圓,並使不同的等級值與分別屬於各部分的半導體晶粒15a、半導體晶粒15b、半導體晶粒15c、半導體晶粒15d建立對應關係。In addition, in the above-described embodiment, the case where the ease of peeling (easy peeling) from the semiconductor die 15 near the periphery of the wafer to the semiconductor die 15 near the center gradually increases is taken as an example. Description. However, in addition to this, there are various patterns of peelability of each semiconductor die 15 corresponding to the position of each semiconductor die 15 in the wafer. On the back surface of the semiconductor die 15, a film called die attachment film (DAF) may be attached. After the DAF is picked up together with the semiconductor die 15 in a state of being attached to the back surface of the semiconductor die 15, when the semiconductor die 15 is bonded to the substrate, it serves as an adhesive between the semiconductor die 15 and the substrate Function. In a state where the semiconductor die 15 is attached to the dicing sheet 12, there is DAF between the semiconductor die 15 and the dicing sheet 12. In order to improve the releasability of the DAF attached to the back surface of the semiconductor die 15 and the dicing sheet 12, the dicing sheet 12 may be irradiated with ultraviolet rays before picking up each semiconductor die 15 of the wafer. The ultraviolet rays are irradiated to reduce the adhesive force of the cutting sheet 12. The irradiation of ultraviolet rays may cause unevenness, and the peelability of each semiconductor die 15 may change depending on the position of each semiconductor die 15 on a wafer. Based on such factors, there are various patterns of peelability of each semiconductor die 15 corresponding to the position of each semiconductor die 15 in the wafer, and the operator can grasp the pattern to make the appropriate level value and each semiconductor of a wafer The die 15 establishes a corresponding relationship. For example, consider dividing the wafer into two or more (four in FIG. 33) in the circumferential direction as shown in FIG. 33, and having different grade values and semiconductor die 15a, semiconductors belonging to each of the multiple divided parts The corresponding relationship is established between the die 15b, the semiconductor die 15c, and the semiconductor die 15d. Alternatively, for example, as shown in FIG. 34, it is possible to divide the wafer into two or more in the radial direction (six in FIG. 34), and make different grade values and the semiconductor die 15a belonging to each of the plurality of divided parts, The semiconductor die 15b, the semiconductor die 15c, the semiconductor die 15d, the semiconductor die 15e, and the semiconductor die 15f establish a corresponding relationship. Alternatively, for example, it may be considered to divide the wafer partially as shown in FIG. 35, and make different rank values correspond to the semiconductor die 15a, the semiconductor die 15b, the semiconductor die 15c, and the semiconductor die 15d belonging to the respective parts.

另外,在以上所說明的實施方式中,作為用以把握半導體晶粒15的剝離性的指標,求出了實際流量變化與期待流量變化的相關值。相關值取0~1.0的值,值越大,表示半導體晶粒15越容易自切割片材12剝離,從而相關值為剝離容易度。另一方面,自1.0減去相關值後的值(1.0-相關值)取0~1.0的值,值越大,表示半導體晶粒15越難以自切割片材12剝離,從而該值為剝離困難度。作為用以把握半導體晶粒15的剝離性的指標,可代替相關值(剝離容易度)而使用剝離困難度。在以上所說明的實施方式中,使用了以相關值(剝離容易度)、與相關值的取值範圍(0~1.0)為前提的圖29的臨限值表161(等級值越低,則設定了越大的臨限值TH1、臨限值TH2的表),來使等級值與各半導體晶粒15建立了對應關係。但是,亦可使用將剝離困難度(1.0-相關值)、與剝離困難度的取值範圍(0~1.0)作為前提的臨限值表161(等級值越低,則設定了越小的臨限值TH1、臨限值TH2的表),來使等級值與各半導體晶粒15建立對應關係。再者,剝離容易度、或剝離困難度亦可稱為剝離度。In addition, in the embodiment described above, as an index for grasping the peelability of the semiconductor crystal grain 15, the correlation value between the actual flow rate change and the expected flow rate change is obtained. The correlation value takes a value of 0 to 1.0. The larger the value, the easier the semiconductor crystal grains 15 are to peel from the dicing sheet 12, so that the correlation value is the ease of peeling. On the other hand, the value obtained by subtracting the correlation value from 1.0 (1.0-correlation value) takes a value from 0 to 1.0. The larger the value, the more difficult it is for the semiconductor die 15 to peel from the dicing sheet 12, and the value is difficult to peel. degree. As an index for grasping the peelability of the semiconductor crystal grain 15, the difficulty of peeling can be used instead of the correlation value (easiness of peeling). In the above-described embodiment, the threshold value table 161 of FIG. 29 (the lower the rank value, the higher the correlation value (releasability to peel) and the range of correlation values (0 to 1.0) is used. The larger threshold value TH1 and the threshold value TH2 are set), so that the rank value is associated with each semiconductor die 15. However, it is also possible to use the threshold table 161 (the lower the level value, the smaller the threshold is set, assuming the peeling difficulty (1.0-correlation value) and the value range of the peeling difficulty (0 to 1.0)). Table of limit values TH1, threshold values TH2) to associate the rank value with each semiconductor die 15. Furthermore, the ease of peeling or the difficulty of peeling may also be referred to as the peeling degree.

另外,在以上所說明的實施方式中,用以求出相關值的將期待流量變化157與實際流量變化158進行對比的期間是初始剝離中的規定期間。但是,將期待流量變化157與實際流量變化158進行對比的期間亦可為初始剝離的整個期間、或者正式剝離的整個期間、或者正式剝離中的規定期間、或者使初始剝離與正式剝離組合的期間。期待流量變化157僅在與實際流量變化158對比的期間預先保存於儲存部152中。In addition, in the embodiment described above, the period for comparing the expected flow rate change 157 with the actual flow rate change 158 to obtain the correlation value is a predetermined period during initial peeling. However, the period in which the expected flow rate change 157 is compared with the actual flow rate change 158 may be the entire period of initial peeling, or the entire period of formal peeling, or a predetermined period in formal peeling, or a period in which initial peeling and formal peeling are combined . The expected flow rate change 157 is stored in the storage unit 152 in advance only during the period compared with the actual flow rate change 158.

另外,在以上所說明的剝離動作中,在初始剝離時及正式剝離時,將平台20的吸附面22的吸附壓力保持於接近真空的第三壓力P3 。但是,在初始剝離時、正式剝離時、或者初始剝離時及正式剝離時,亦可設為在接近真空的第三壓力P3 與接近大氣壓的第四壓力P4 之間切換一次或多次吸附壓力。即,作為參數表160的剝離參數之一,亦可設置在第三壓力P3 與第四壓力P4 之間切換平台20的吸附面22的吸附壓力的次數即「吸附壓力的切換次數」。在參數表160中,以等級值越高,則「吸附壓力的切換次數」越多的方式設定參數值。使高等級值與剝離性差的半導體晶粒15建立對應關係,以使「吸附壓力的切換次數」增加,從而促進半導體晶粒15自切割片材12的剝離。In addition, in the peeling operation described above, the suction pressure of the suction surface 22 of the stage 20 is maintained at the third pressure P 3 close to vacuum in the initial peeling and the main peeling. However, in the initial peeling, the main peeling, or the initial peeling and the main peeling, it may be set to switch between the third pressure P 3 near vacuum and the fourth pressure P 4 near atmospheric pressure for one or more adsorptions. pressure. That is, as one of the peeling parameters of the parameter table 160, the number of times of switching the suction pressure of the suction surface 22 of the stage 20 between the third pressure P 3 and the fourth pressure P 4 , that is, the “number of times of switching the suction pressure”. In the parameter table 160, the parameter value is set so that the higher the level value, the greater the "number of times the suction pressure is switched". The high-grade value is associated with the semiconductor die 15 having poor peelability to increase the “number of switching of the adsorption pressure”, thereby promoting the peeling of the semiconductor die 15 from the dicing sheet 12.

另外,在以上所說明的實施方式中,如圖36所示,一個控制部150作為拾取控制單元600、生成單元602、及顯示控制單元604發揮了功能。但是,半導體晶粒的拾取系統500亦可包括兩個以上的控制部150,且例如一個控制部150作為拾取控制單元600發揮功能,另一控制部150作為生成單元602及顯示控制單元604發揮功能。In addition, in the embodiment described above, as shown in FIG. 36, one control unit 150 functions as a pickup control unit 600, a generation unit 602, and a display control unit 604. However, the pickup system 500 of the semiconductor die may also include more than two control units 150, and for example, one control unit 150 functions as the pickup control unit 600, and the other control unit 150 functions as the generation unit 602 and the display control unit 604 .

半導體晶粒的拾取系統500亦可稱為半導體晶粒的拾取裝置。另外,半導體晶粒的拾取系統500可為接合裝置(接合機、接合系統)、或者晶粒接合裝置(晶粒接合機、晶粒接合系統)的一部分,亦可以該些名稱來稱謂。The semiconductor die picking system 500 may also be referred to as a semiconductor die picking device. In addition, the semiconductor die picking system 500 may be a bonding device (bonding machine, bonding system), or a part of a die bonding device (die bonding machine, die bonding system), and may also be referred to by these names.

<附記> 以上對本發明的實施方式進行了說明,但本發明並不受所述實施方式的任何限定,當然能夠在不脫離本發明的主旨的範圍內以各種方式來實施。<Additional notes> The embodiments of the present invention have been described above, but the present invention is not limited by the above-described embodiments, and can of course be implemented in various ways without departing from the gist of the present invention.

1、2、3、4、5、6、7、8‧‧‧等級 1-9、1-10、1-12、2-7、2-8、3-5、7-9、11-1~11-10、21-14、22-9、22-10、22-11、22-12‧‧‧辨識編號 10‧‧‧晶圓固持器 11‧‧‧晶圓 12‧‧‧切割片材 12a、18a‧‧‧表面 12b‧‧‧背面 13‧‧‧環 14‧‧‧間隙/切入間隙 15、15a、15b、15c、15d、15e、15f‧‧‧半導體晶粒 16‧‧‧擴展環 17‧‧‧環按壓件 18‧‧‧吸頭 19‧‧‧抽吸孔 20‧‧‧平台 22‧‧‧吸附面 23‧‧‧開口 23a‧‧‧內表面 24‧‧‧基體部 26‧‧‧槽 27‧‧‧吸附孔 28‧‧‧上側內部 30‧‧‧移動元件 31‧‧‧移動元件/周邊環狀移動元件 33‧‧‧外周面 38a、38b、47‧‧‧前端面 40‧‧‧移動元件/中間環狀移動元件 41‧‧‧中間環狀移動元件 45‧‧‧移動元件/柱狀移動元件 80‧‧‧開口壓力切換機構 81、91、101‧‧‧三通閥 82、92、102‧‧‧驅動部 83~85、93~95、103~105‧‧‧配管 90‧‧‧吸附壓力切換機構 100‧‧‧抽吸機構 106‧‧‧流量感測器 110‧‧‧晶圓固持器水平方向驅動部 120‧‧‧平台上下方向驅動部 130‧‧‧吸頭驅動部 140‧‧‧真空裝置 150‧‧‧控制部 151‧‧‧CPU 152‧‧‧儲存部 153‧‧‧設備/感測器介面 154‧‧‧資料匯流排 155‧‧‧控制程式 156‧‧‧設定顯示程式 157‧‧‧期待流量變化 158、158a、158b‧‧‧實際流量變化 159‧‧‧等級表 160‧‧‧參數表 161‧‧‧臨限值表 300‧‧‧階差面形成機構 400‧‧‧階差面形成機構驅動部 410‧‧‧輸入部 450‧‧‧顯示部 460‧‧‧設定顯示畫面 462‧‧‧等級值按鈕群組 464‧‧‧操作按鈕群組 466、468、470、472‧‧‧按鈕 478‧‧‧指標 480‧‧‧映射圖像 482、482a、482b、482c‧‧‧半導體晶粒圖像 486‧‧‧氣泡 490‧‧‧視窗 492‧‧‧文字盒 500‧‧‧半導體晶粒的拾取系統 600‧‧‧拾取控制單元(控制單元) 602‧‧‧生成單元 604‧‧‧顯示控制單元 a、201~207、210~218、220、221、223~232、241~246、260、301‧‧‧箭頭 d‧‧‧間隙 DN、DN1、DN4、DN8‧‧‧同時下降的移動元件的數量 F1~F3‧‧‧拉伸力 FSN、FSN1、FSN4、FSN8‧‧‧初始剝離時的開口壓力的切換次數 H0~H2、H1-H0、Hc、Hc1‧‧‧高度 HT、HT1、HT4、HT8‧‧‧第一壓力的保持時間 IT、IT1、IT4、IT8‧‧‧移動元件間的下降時間間隔 P1‧‧‧第一壓力 P2‧‧‧第二壓力 P3‧‧‧第三壓力 P4‧‧‧第四壓力 PT、PT1、PT4、PT8‧‧‧拾取時間 SSN、SSN1、SSN4、SSN8‧‧‧正式剝離時的開口壓力的切換次數 t、t1~t16、ts1、tr_exp、tr_rel、tc_end‧‧‧時刻 TH1‧‧‧臨限值/下側臨限值 TH2‧‧‧臨限值/上側臨限值 WT、WT1、WT4、WT8‧‧‧吸頭待機時間 X、Y‧‧‧方向 τ‧‧‧剪切應力 (a)‧‧‧吸頭高度 (b)‧‧‧柱狀移動元件位置 (c)‧‧‧中間環狀移動元件位置 (d)‧‧‧周邊環狀移動元件位置 (e)‧‧‧開口壓力 (f)‧‧‧吸頭空氣洩漏量1, 2, 3, 4, 5, 6, 7, 8, ‧‧‧ grades 1-9, 1-10, 1-12, 2-7, 2-8, 3-5, 7-9, 11-1 ~11-10、21-14、22-9、22-10、22-11、22-12‧‧‧Identification number 10‧‧‧wafer holder 11‧‧‧wafer 12‧‧‧cut sheet 12a, 18a‧‧‧Surface 12b‧‧‧Back 13‧‧‧Ring 14‧‧‧Gap/cut gap 15, 15a, 15b, 15c, 15d, 15e, 15f‧‧‧Semiconductor die 16‧‧‧Expansion ring 17‧‧‧Ring press 18‧‧‧Suction head 19‧‧‧Suction hole 20‧‧‧Platform 22‧‧‧Suction surface 23‧‧‧Opening 23a‧‧‧Inner surface 24‧‧‧Base part 26‧ ‧‧Slot 27‧‧‧Suction hole 28‧‧‧Upper inner 30‧‧‧Moving element 31‧‧‧Moving element/peripheral ring moving element 33‧‧‧Outer peripheral surface 38a, 38b, 47‧‧‧‧Front surface 40 ‧‧‧Moving element/Intermediate ring-shaped moving element 41‧‧‧Intermediate ring-shaped moving element 45‧‧‧Movement element/Column moving element 80‧‧‧Open pressure switching mechanism 81, 91, 101‧‧‧‧Three-way valve 82, 92, 102 ‧ ‧‧ drive unit 83 ~ 85, 93 ~ 95, 103 ~ 105 ‧ ‧ ‧ piping 90 ‧ ‧ ‧ suction pressure switching mechanism 100 ‧ ‧ ‧ suction mechanism 106 ‧ ‧ ‧ flow sensor 110 ‧ ‧‧Wafer holder horizontal drive unit 120‧‧‧Platform vertical drive unit 130‧‧‧Head drive unit 140‧‧‧Vacuum device 150‧‧‧Control unit 151‧‧‧CPU 152‧‧‧Storage unit 153‧‧‧Equipment/sensor interface 154‧‧‧Data bus 155‧‧‧Control program 156‧‧‧Set display program 157‧‧‧Expected flow rate change 158,158a,158b‧‧‧Actual flow rate change 159‧ ‧‧Level table 160‧‧‧Parameter table 161‧‧‧Threshold value table 300‧‧‧‧Differential surface forming mechanism 400‧‧‧Differential surface forming mechanism driving unit 410‧‧‧Input unit 450‧‧‧Display unit 460‧‧‧Setting display screen 462‧‧‧Level value button group 464‧‧‧Operation button group 466, 468, 470, 472‧‧‧ button 478‧‧‧ index 480‧‧‧ map images 482, 482a , 482b, 482c ‧‧‧ semiconductor die image 486 ‧ ‧ ‧ bubble 490 ‧ ‧ ‧ window 492 ‧ ‧ ‧ text box 500 ‧ ‧ ‧ semiconductor die picking system 600 ‧‧‧Generation unit 604‧‧‧Display control unit a, 201~207, 210~218, 220, 221, 223~232, 241~246, 260, 301‧‧‧arrow d‧‧‧Gap DN, DN1 DN4, DN8 ‧‧‧The number of simultaneously moving components F 1 ~ F 3 ‧‧‧ tensile force FSN, FSN1, FSN4, the switching frequency of the H opening pressure during initial peeling FSN8‧‧‧ 0 ~ H 2, H 1 -H 0, Hc, Hc 1 ‧‧‧ height HT , HT1, HT4, HT8 ‧‧‧ Hold time of the first pressure IT, IT1, IT4, IT8 ‧‧‧ Falling time interval between moving elements P 1 ‧‧‧ First pressure P 2 ‧‧‧ Second pressure P 3 ‧‧‧ Third pressure P 4 ‧‧‧ Fourth pressure PT, PT1, PT4, PT8 ‧‧‧ Pickup time SSN, SSN1, SSN4, SSN8 、 Ts1, tr_exp, tr_rel, tc_end Time X, Y ‧‧‧ Direction τ‧‧‧ Shear stress (a) ‧‧‧ Tip height (b) ‧‧‧ Position of cylindrical moving element (c) ‧‧‧ Position of intermediate ring moving element (d) ‧‧‧Circular moving element position (e) ‧‧‧Opening pressure (f) ‧‧‧Air leakage

圖1是表示本發明實施方式的半導體晶粒的拾取系統的系統構成的說明圖。 圖2是表示本發明實施方式的半導體晶粒的拾取系統的平台的立體圖。 圖3是表示貼附於切割片材的晶圓的說明圖。 圖4是表示貼附於切割片材的半導體晶粒的說明圖。 圖5A、圖5B是表示晶圓固持器的構成的說明圖。 圖6是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖7是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖8是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖9是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖10是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖11是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖12是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖13是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖14是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖15是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖16是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖17是表示本發明實施方式的半導體晶粒的拾取系統在規定等級值下的動作的說明圖。 圖18是表示本發明實施方式的半導體晶粒的拾取系統在規定的等級值下動作時的吸頭高度、柱狀移動元件位置、中間環狀移動元件位置、周邊環狀移動元件位置、開口壓力、以及吸頭的空氣洩漏量的時間變化的圖。 圖19是表示本發明實施方式的參數表的一例的圖。 圖20是表示本發明實施方式的半導體晶粒的拾取系統在另一等級值下動作時的吸頭高度、柱狀移動元件位置、中間環狀移動元件位置、周邊環狀移動元件位置、以及開口壓力的時間變化的圖。 圖21是表示本發明實施方式的半導體晶粒的拾取系統在又一等級值下動作時的吸頭高度、柱狀移動元件位置、中間環狀移動元件位置、周邊環狀移動元件位置、以及開口壓力的時間變化的圖。 圖22是關於本發明實施方式的一片晶圓的各半導體晶粒的辨識編號的說明圖。 圖23是表示本發明實施方式的等級表的一例的圖。 圖24是表示與一片晶圓的各半導體晶粒建立了對應關係的等級值的一例的說明圖。 圖25是表示本發明實施方式的設定顯示畫面的圖。 圖26是表示本發明實施方式的設定顯示畫面的圖。 圖27是表示本發明實施方式的設定顯示畫面的圖。 圖28是表示本發明實施方式的初始剝離的規定期間內的開口壓力的時間變化、以及期待流量變化及實際流量變化的一例的圖。 圖29是表示本發明實施方式的臨限值表的一例的圖。 圖30是表示本發明實施方式的設定顯示畫面的圖。 圖31是表示本發明實施方式的設定顯示畫面的圖。 圖32是表示本發明實施方式的設定顯示畫面的圖。 圖33是表示與一片晶圓的各半導體晶粒建立了對應關係的等級值的另一例的說明圖。 圖34是表示與一片晶圓的各半導體晶粒建立了對應關係的等級值的又一例的說明圖。 圖35是表示與一片晶圓的各半導體晶粒建立了對應關係的等級值的又一例的說明圖。 圖36是本發明實施方式的控制部的功能框圖。FIG. 1 is an explanatory diagram showing a system configuration of a semiconductor die picking system according to an embodiment of the present invention. 2 is a perspective view showing a platform of a semiconductor die picking system according to an embodiment of the present invention. 3 is an explanatory diagram showing a wafer attached to a dicing sheet. 4 is an explanatory diagram showing semiconductor crystal grains attached to a dicing sheet. 5A and 5B are explanatory diagrams showing the structure of a wafer holder. 6 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 7 is an explanatory diagram showing the operation of the pickup system of the semiconductor die according to the embodiment of the present invention at a predetermined level value. 8 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 9 is an explanatory diagram showing the operation of the pickup system of the semiconductor die according to the embodiment of the present invention at a predetermined level value. 10 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 11 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 12 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 13 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 14 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 15 is an explanatory diagram showing the operation of the pickup system of the semiconductor die according to the embodiment of the present invention at a predetermined level value. 16 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 17 is an explanatory diagram showing the operation of the semiconductor die picking system according to the embodiment of the present invention at a predetermined level value. 18 is a diagram showing the height of the tip, the position of the columnar moving element, the position of the intermediate ring-shaped moving element, the position of the peripheral ring-shaped moving element, and the opening pressure when the pickup system of the semiconductor die of the embodiment of the present invention operates at a predetermined level value , And the graph of the time variation of the air leakage of the tip. 19 is a diagram showing an example of a parameter table according to an embodiment of the present invention. FIG. 20 is a diagram showing the height of the tip, the position of the columnar moving element, the position of the intermediate ring-shaped moving element, the position of the peripheral ring-shaped moving element, and the opening when the pickup system of the semiconductor die of the embodiment of the present invention operates at another level value Graph of time variation of pressure. FIG. 21 is a diagram showing the height of the tip, the position of the columnar moving element, the position of the intermediate ring-shaped moving element, the position of the peripheral ring-shaped moving element, and the opening when the pickup system of the semiconductor die of the embodiment of the present invention operates at another level value Graph of time change of pressure. FIG. 22 is an explanatory diagram regarding the identification number of each semiconductor die of a wafer according to an embodiment of the present invention. 23 is a diagram showing an example of a rank table according to an embodiment of the present invention. FIG. 24 is an explanatory diagram showing an example of gradation values associated with each semiconductor die of one wafer. 25 is a diagram showing a setting display screen according to an embodiment of the present invention. 26 is a diagram showing a setting display screen according to an embodiment of the present invention. 27 is a diagram showing a setting display screen according to an embodiment of the present invention. FIG. 28 is a diagram showing an example of the time change of the opening pressure and the expected flow rate change and the actual flow rate change within a predetermined period of initial peeling in the embodiment of the present invention. 29 is a diagram showing an example of a threshold value table according to an embodiment of the present invention. 30 is a diagram showing a setting display screen according to an embodiment of the present invention. 31 is a diagram showing a setting display screen according to an embodiment of the present invention. 32 is a diagram showing a setting display screen according to an embodiment of the present invention. 33 is an explanatory diagram showing another example of a rank value that establishes a correspondence relationship with each semiconductor die of one wafer. FIG. 34 is an explanatory diagram showing still another example of the rank value that corresponds to each semiconductor die of one wafer. FIG. 35 is an explanatory diagram showing still another example of the rank value that corresponds to each semiconductor die of one wafer. 36 is a functional block diagram of a control unit according to an embodiment of the present invention.

10‧‧‧晶圓固持器 10‧‧‧wafer holder

12‧‧‧切割片材 12‧‧‧Cutting sheet

12a、18a‧‧‧表面 12a, 18a‧‧‧surface

12b‧‧‧背面 12b‧‧‧Back

13‧‧‧環 13‧‧‧ ring

14‧‧‧間隙/切入間隙 14‧‧‧Gap/cut gap

15‧‧‧半導體晶粒 15‧‧‧Semiconductor die

16‧‧‧擴展環 16‧‧‧Expansion ring

17‧‧‧環按壓件 17‧‧‧ Ring Press

18‧‧‧吸頭 18‧‧‧Sucker

19‧‧‧抽吸孔 19‧‧‧Suction hole

20‧‧‧平台 20‧‧‧platform

22‧‧‧吸附面 22‧‧‧Adsorption surface

23‧‧‧開口 23‧‧‧ opening

24‧‧‧基體部 24‧‧‧Base

26‧‧‧槽 26‧‧‧slot

27‧‧‧吸附孔 27‧‧‧Adsorption hole

28‧‧‧上側內部 28‧‧‧Upper interior

30‧‧‧移動元件 30‧‧‧Mobile components

80‧‧‧開口壓力切換機構 80‧‧‧Open pressure switching mechanism

81、91、101‧‧‧三通閥 81, 91, 101 ‧‧‧ three-way valve

82、92、102‧‧‧驅動部 82, 92, 102

83~85、93~95、103~105‧‧‧配管 83~85, 93~95, 103~105 ‧‧‧ piping

90‧‧‧吸附壓力切換機構 90‧‧‧Adsorption pressure switching mechanism

100‧‧‧抽吸機構 100‧‧‧Suction mechanism

106‧‧‧流量感測器 106‧‧‧Flow sensor

110‧‧‧晶圓固持器水平方向驅動部 110‧‧‧Horizontal drive of wafer holder

120‧‧‧平台上下方向驅動部 120‧‧‧Platform vertical drive unit

130‧‧‧吸頭驅動部 130‧‧‧ Suction head drive unit

140‧‧‧真空裝置 140‧‧‧Vacuum device

150‧‧‧控制部 150‧‧‧Control Department

151‧‧‧CPU 151‧‧‧CPU

152‧‧‧儲存部 152‧‧‧Storage Department

153‧‧‧設備/感測器介面 153‧‧‧Equipment/sensor interface

154‧‧‧資料匯流排 154‧‧‧Data bus

155‧‧‧控制程式 155‧‧‧Control program

156‧‧‧設定顯示程式 156‧‧‧Set display program

157‧‧‧期待流量變化 157‧‧‧Expect flow changes

158‧‧‧實際流量變化 158‧‧‧ actual flow change

159‧‧‧等級表 159‧‧‧ Grade table

160‧‧‧參數表 160‧‧‧Parameter table

300‧‧‧階差面形成機構 300‧‧‧step difference surface forming mechanism

400‧‧‧階差面形成機構驅動部 400‧‧‧step difference surface forming mechanism driving part

410‧‧‧輸入部 410‧‧‧ Input

450‧‧‧顯示部 450‧‧‧Display

500‧‧‧半導體晶粒的拾取系統 500‧‧‧ Semiconductor die picking system

a‧‧‧箭頭 a‧‧‧arrow

Claims (14)

一種半導體晶粒的拾取系統,將對晶圓進行切割而成的半導體晶粒自切割片材剝離並加以拾取,所述拾取系統的特徵在於包括: 控制單元,基於用以自所述切割片材拾取所述半導體晶粒的拾取條件,對拾取動作進行控制;以及 生成單元,生成將多個所述拾取條件中的任意一個所述拾取條件與所述半導體晶粒的個別資訊建立了對應關係的對應資訊, 所述控制單元在拾取所述半導體晶粒時,依照與每個所述半導體晶粒建立了對應關係的所述對應資訊,進行自所述切割片材拾取所述半導體晶粒的控制。A semiconductor die picking system, which peels and picks up semiconductor die cut from a wafer from a dicing sheet. The picking system is characterized by including: A control unit that controls the pick-up action based on the pick-up conditions to pick up the semiconductor die from the dicing sheet; and A generating unit, generating corresponding information that establishes a correspondence between any of the plurality of pickup conditions and individual information of the semiconductor die, When picking up the semiconductor die, the control unit performs control of picking up the semiconductor die from the dicing sheet according to the correspondence information that establishes a correspondence relationship with each of the semiconductor die. 如申請專利範圍第1項所述的半導體晶粒的拾取系統,其中所述生成單元生成: 等級表,將一片晶圓中的各所述半導體晶粒與作為多個所述拾取條件的辨識符的等級值建立了對應關係;以及 條件表,將多個所述等級值的任意一個與所述拾取條件的任意一個建立了對應關係, 所述對應資訊由所述等級表及所述條件表確定。The semiconductor die picking system as described in item 1 of the patent application scope, wherein the generating unit generates: A ranking table, which establishes a correspondence between each of the semiconductor die in a wafer and the ranking value as an identifier of a plurality of the pickup conditions; and A condition table, which establishes a correspondence between any one of the plurality of level values and any one of the pickup conditions, The corresponding information is determined by the rating table and the condition table. 如申請專利範圍第2項所述的半導體晶粒的拾取系統,其中多個所述等級值是表示拾取所需時間的長短的值。The pickup system of a semiconductor die as described in item 2 of the patent application range, wherein a plurality of the gradation values are values indicating the length of time required for pickup. 如申請專利範圍第2項或第3項所述的半導體晶粒的拾取系統,包括: 顯示部,顯示畫面;以及 顯示控制單元, 所述顯示控制單元在所述顯示部上顯示模仿一片晶圓的各所述半導體晶粒而得的映射圖像, 在所述映射圖像中,對與所述等級值建立了對應關係的所述半導體晶粒所對應的半導體晶粒圖像,附加與所述等級值對應的顏色、圖案、文字、數字及記號的至少一種。The semiconductor die picking system as described in item 2 or item 3 of the scope of patent application includes: Display section, display screen; and Display control unit, The display control unit displays a map image imitating each semiconductor die of a wafer on the display unit, In the map image, the semiconductor die image corresponding to the semiconductor die having a corresponding relationship with the rating value is added with colors, patterns, characters, numbers and symbols corresponding to the rating value At least one. 如申請專利範圍第4項所述的半導體晶粒的拾取系統,包括: 輸入部,輸入資訊, 所述生成單元自所述輸入部接受所述映射圖像上的一個或多個所述半導體晶粒圖像的選擇、以及自多個所述等級值中的一個所述等級值的選擇,並 使所選擇的所述等級值與對應於所選擇的所述半導體晶粒圖像的所述半導體晶粒建立對應關係,來生成或更新所述等級表。The pick-up system of semiconductor die as described in item 4 of the patent application scope includes: Input department, input information, The generating unit accepts the selection of one or more of the semiconductor die images on the map image from the input unit and the selection of the grade value from one of the plurality of grade values, and The selected gradation value is associated with the semiconductor die corresponding to the selected semiconductor die image to generate or update the rating table. 如申請專利範圍第4項或第5項所述的半導體晶粒的拾取系統,包括: 吸頭,吸附所述半導體晶粒; 抽吸機構,與所述吸頭連接,自所述吸頭的表面抽吸空氣; 流量感測器,檢測所述抽吸機構的抽吸空氣流量;以及 儲存部,儲存有期待流量資訊,所述期待流量資訊表示所述半導體晶粒自所述切割片材的剝離良好的情況下的、所述半導體晶粒的拾取時的所述流量感測器檢測出的所述抽吸空氣流量的時間變化, 所述生成單元獲取實際流量資訊,所述實際流量資訊表示在拾取一片晶圓中的各所述半導體晶粒時所述流量感測器檢測出的所述抽吸空氣流量的時間變化, 所述生成單元求出多個所述半導體晶粒各自的所述實際流量資訊與所述期待流量資訊的相關值,並 基於多個所述相關值各者,使所述等級值與多個所述半導體晶粒各者建立對應關係,來生成或更新所述等級表。The semiconductor die picking system as described in item 4 or 5 of the patent application scope includes: A suction head to adsorb the semiconductor crystal grains; A suction mechanism connected to the suction head and sucking air from the surface of the suction head; A flow sensor to detect the suction air flow of the suction mechanism; and The storage unit stores the expected flow rate information indicating that the flow rate sensor detects when the semiconductor die is picked up when the semiconductor die is peeled from the dicing sheet well The temporal change of the suction air flow, The generating unit obtains actual flow information, which indicates the time change of the suction air flow detected by the flow sensor when picking up each semiconductor die in a wafer, The generating unit obtains the correlation values of the actual flow information and the expected flow information of each of the plurality of semiconductor die, and Based on each of the plurality of correlation values, the rank value is associated with each of the plurality of semiconductor die to generate or update the rank table. 如申請專利範圍第6項所述的半導體晶粒的拾取系統,其中所述顯示控制單元在所述顯示部的所述映射圖像中,在各所述半導體晶粒圖像或各所述半導體晶粒圖像的附近顯示與各所述半導體晶粒圖像對應的各所述半導體晶粒的所述相關值,或者 在所述顯示部中,在所述畫面上的規定位置顯示與特定的所述半導體晶粒圖像對應的所述半導體晶粒的所述相關值。The semiconductor die picking system according to item 6 of the patent application range, wherein the display control unit displays the semiconductor die image or each semiconductor in the map image of the display section The correlation value of each semiconductor die corresponding to each semiconductor die image is displayed in the vicinity of the die image, or The display unit displays the correlation value of the semiconductor die corresponding to the specific semiconductor die image at a predetermined position on the screen. 如申請專利範圍第3項所述的半導體晶粒的拾取系統,其中在所述等級表中,隨著自一片晶圓的外周側朝向內周側,使拾取所需時間更短的等級值與各所述半導體晶粒建立了對應關係。The semiconductor die picking system as described in item 3 of the patent application scope, wherein in the rank table, as the rank value from the outer peripheral side toward the inner peripheral side of one wafer is made, the rank value required for shorter picking time is Corresponding relationships are established between the semiconductor die. 如申請專利範圍第2項至第7項中任一項所述的半導體晶粒的拾取系統,包括: 平台,包含吸附所述切割片材的背面的吸附面;以及 開口壓力切換機構,在接近真空的第一壓力與接近大氣壓的第二壓力之間切換設置於所述平台的所述吸附面的開口的開口壓力, 所述控制單元在拾取所述半導體晶粒時,進行在所述第一壓力與所述第二壓力之間切換所述開口壓力的控制, 所述拾取條件的種類中包括在所述第一壓力與所述第二壓力之間切換所述開口壓力的切換次數。The pick-up system of semiconductor die as described in any one of claims 2 to 7 includes: A platform including an adsorption surface that adsorbs the back of the cut sheet; and The opening pressure switching mechanism switches the opening pressure of the opening provided in the adsorption surface of the platform between a first pressure close to vacuum and a second pressure close to atmospheric pressure, The control unit performs control to switch the opening pressure between the first pressure and the second pressure when picking up the semiconductor die, The type of the pickup condition includes the number of times to switch the opening pressure between the first pressure and the second pressure. 如申請專利範圍第9項所述的半導體晶粒的拾取系統,其中所述拾取條件的種類中包括將所述開口壓力保持於所述第一壓力的保持時間。The pickup system for a semiconductor die according to item 9 of the patent application range, wherein the type of the pickup condition includes a holding time for holding the opening pressure at the first pressure. 如申請專利範圍第9項或第10項所述的半導體晶粒的拾取系統,包括: 階差面形成機構,包含多個移動元件,所述多個移動元件配置於所述開口中,且前端面在比所述吸附面高的第一位置與比所述第一位置低的第二位置之間移動,所述階差面形成機構形成相對於所述吸附面的階差面, 在拾取所述半導體晶粒時,所述控制單元進行使多個所述移動元件分別以規定時間的間隔依次自所述第一位置移動至所述第二位置、或者以規定的所述移動元件的組合同時自所述第一位置移動至所述第二位置的控制, 所述拾取條件的種類中包括所述規定時間。The semiconductor die picking system as described in item 9 or item 10 of the patent application scope includes: The step surface forming mechanism includes a plurality of moving elements, the plurality of moving elements are arranged in the opening, and the front end surface is at a first position higher than the suction surface and a second position lower than the first position Moving between positions, the step surface forming mechanism forms a step surface relative to the suction surface, When picking up the semiconductor die, the control unit moves the plurality of moving elements sequentially from the first position to the second position at predetermined time intervals, or at predetermined moving elements The combination of moving from the first position to the second position at the same time, The type of the pickup condition includes the predetermined time. 如申請專利範圍第11項所述的半導體晶粒的拾取系統,其中所述拾取條件的種類中包括同時自所述第一位置移動至所述第二位置的所述移動元件的數量。The pickup system of a semiconductor die according to item 11 of the patent application range, wherein the type of the pickup condition includes the number of the moving elements that move from the first position to the second position at the same time. 如申請專利範圍第2項至第5項中任一項所述的半導體晶粒的拾取系統,包括: 吸頭,吸附所述半導體晶粒, 所述拾取條件的種類中包括自所述吸頭著落於所述半導體晶粒起至開始所述半導體晶粒的抬起為止的待機時間。The pick-up system of semiconductor die as described in any one of claims 2 to 5 includes: A suction head that attracts the semiconductor die, The types of the pickup conditions include a standby time from when the suction head is landed on the semiconductor die to when lifting of the semiconductor die is started. 一種半導體晶粒的拾取系統,拾取貼附於切割片材的表面的半導體晶粒,所述半導體晶粒的拾取系統的特徵在於包括: 吸頭,吸附所述半導體晶粒; 抽吸機構,與所述吸頭連接,自所述吸頭的表面抽吸空氣; 流量感測器,檢測所述抽吸機構的抽吸空氣流量; 控制部,在拾取時,對用以自所述切割片材剝離所述半導體晶粒的剝離動作進行控制;以及 顯示部,顯示畫面, 所述控制部獲取實際流量變化,所述實際流量變化是在拾取一片晶圓中的各所述半導體晶粒時,所述流量感測器檢測出的所述抽吸空氣流量的時間變化, 所述控制部基於多個所述半導體晶粒各自的所述實際流量變化,求出多個所述半導體晶粒各自的自所述切割片材的剝離容易度或剝離困難度即剝離度,並 在所述顯示部上顯示模仿一片晶圓的各所述半導體晶粒而得的映射圖像,且 在所述映射圖像中,對與求出了剝離度的所述半導體晶粒對應的半導體晶粒圖像附加與所述半導體晶粒的剝離度對應的顏色、圖案、文字、數字及記號的至少一種。A semiconductor die picking system picks up semiconductor die attached to the surface of a dicing sheet. The semiconductor die picking system is characterized by comprising: A suction head to adsorb the semiconductor crystal grains; A suction mechanism connected to the suction head and sucking air from the surface of the suction head; A flow sensor to detect the suction air flow of the suction mechanism; The control part, when picking up, controls the peeling operation to peel the semiconductor die from the dicing sheet; and Display, display screen, The control unit acquires an actual flow rate change, which is a time change of the suction air flow rate detected by the flow rate sensor when picking up each semiconductor die in a wafer, Based on the actual flow rate change of each of the plurality of semiconductor crystal grains, the control unit determines the peeling degree or the peeling degree of the peeling degree of the plurality of semiconductor grains from the dicing sheet, and Displaying a map image imitating each semiconductor die of a wafer on the display unit, and In the map image, a color, pattern, character, number, and symbol corresponding to the peeling degree of the semiconductor die are added to the semiconductor die image corresponding to the semiconductor die having the peeling degree determined At least one.
TW108123670A 2018-07-06 2019-07-04 Pickup system for semiconductor die TWI745710B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129334 2018-07-06
JP2018-129334 2018-07-06

Publications (2)

Publication Number Publication Date
TW202006836A true TW202006836A (en) 2020-02-01
TWI745710B TWI745710B (en) 2021-11-11

Family

ID=69060529

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123670A TWI745710B (en) 2018-07-06 2019-07-04 Pickup system for semiconductor die

Country Status (6)

Country Link
JP (1) JP6883369B2 (en)
KR (1) KR102424153B1 (en)
CN (1) CN112368817B (en)
SG (1) SG11202012864QA (en)
TW (1) TWI745710B (en)
WO (1) WO2020009243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821662B (en) * 2020-05-26 2023-11-11 日商佳能股份有限公司 Adsorption mechanism, article manufacturing equipment, semiconductor manufacturing equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421412B2 (en) 2020-05-01 2024-01-24 株式会社Fuji Adsorption device status determination device
CN112599467B (en) * 2020-12-15 2022-08-09 长江存储科技有限责任公司 Die picking method and device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945339B1 (en) 1970-08-12 1974-12-03
JPS5813432B2 (en) 1978-10-11 1983-03-14 日立造船株式会社 Tank yard for offshore storage of flammable liquids
JP3956636B2 (en) 2001-03-30 2007-08-08 松下電器産業株式会社 Microwork transfer device and transfer method
US7235795B2 (en) * 2004-08-12 2007-06-26 Applied Materials, Inc. Semiconductor device manufacturing apparatus and a method of controlling a semiconductor device manufacturing process
TWI463580B (en) * 2007-06-19 2014-12-01 Renesas Electronics Corp Manufacturing method of semiconductor integrated circuit device
US8092645B2 (en) 2010-02-05 2012-01-10 Asm Assembly Automation Ltd Control and monitoring system for thin die detachment and pick-up
JP5348084B2 (en) * 2010-07-20 2013-11-20 パナソニック株式会社 Chip pickup device and chip pickup method
JP5805411B2 (en) * 2011-03-23 2015-11-04 ファスフォードテクノロジ株式会社 Die bonder pickup method and die bonder
JP2013065628A (en) * 2011-09-15 2013-04-11 Hitachi High-Tech Instruments Co Ltd Die bonder and die pickup device and die pickup method
AT512859B1 (en) * 2012-05-11 2018-06-15 Hanmi Semiconductor Co Ltd Semiconductor chip Turning and fastening device
JP6349496B2 (en) * 2014-02-24 2018-07-04 株式会社新川 Semiconductor die pickup apparatus and pickup method
JP5717910B1 (en) * 2014-02-26 2015-05-13 株式会社新川 Semiconductor die pickup apparatus and pickup method
JP6367672B2 (en) * 2014-09-29 2018-08-01 ファスフォードテクノロジ株式会社 Semiconductor or electronic component mounting apparatus and semiconductor or electronic component mounting method
JP5888455B1 (en) * 2015-04-01 2016-03-22 富士ゼロックス株式会社 Semiconductor manufacturing apparatus and semiconductor chip manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821662B (en) * 2020-05-26 2023-11-11 日商佳能股份有限公司 Adsorption mechanism, article manufacturing equipment, semiconductor manufacturing equipment

Also Published As

Publication number Publication date
WO2020009243A1 (en) 2020-01-09
CN112368817A (en) 2021-02-12
JPWO2020009243A1 (en) 2021-02-15
JP6883369B2 (en) 2021-06-09
KR20200124735A (en) 2020-11-03
TWI745710B (en) 2021-11-11
SG11202012864QA (en) 2021-01-28
KR102424153B1 (en) 2022-07-25
CN112368817B (en) 2024-03-12

Similar Documents

Publication Publication Date Title
TW202006836A (en) Semiconductor die pickup system
JP5888455B1 (en) Semiconductor manufacturing apparatus and semiconductor chip manufacturing method
JP4816654B2 (en) Chip peeling device, chip peeling method, and chip pickup device
JP2000353710A (en) Manufacture of pellet pickup device and semiconductor device
TWI716925B (en) Pickup system for semiconductor die
WO2022257618A1 (en) Wafer surface defect detection device and wafer surface defect detection method
US8801352B2 (en) Pick and place tape release for thin semiconductor dies
JP2007103826A (en) Pickup device for semiconductor chip
JP2001196443A (en) Apparatus and method for picking up semiconductor chip
JPH0376139A (en) Upward pushing movement of semiconductor element
CN210325719U (en) Crystal grain sorting mechanism
TWI682492B (en) Chip picking asembly and chip moving method
US20050139525A1 (en) Chip sorting apparatus and method for fabricating the same
JP2010087359A (en) Pickup apparatus
JP2006318972A (en) Apparatus and method for picking up semiconductor chip
JP5214739B2 (en) Chip peeling method, semiconductor device manufacturing method, and chip peeling apparatus
JP5888464B1 (en) Semiconductor manufacturing apparatus and semiconductor chip manufacturing method
JP5924446B1 (en) Semiconductor manufacturing apparatus and semiconductor chip manufacturing method
CN210115259U (en) Wafer expanding ring bearing device for visual inspection of wafers
TW201838056A (en) Apparatus and method for stripping an element
JPH04162445A (en) Pushing-up mechanism for pellet
JPH0144018B2 (en)
JP2016195231A (en) Semiconductor production device and semiconductor chip production method
JP2794666B2 (en) Lighting method of semiconductor chip
JPH10199961A (en) Method and apparatus for peeling chips