TW202003868A - 薄且均勻之銀奈米線、合成方法及由該等奈米線形成之透明導電膜 - Google Patents

薄且均勻之銀奈米線、合成方法及由該等奈米線形成之透明導電膜 Download PDF

Info

Publication number
TW202003868A
TW202003868A TW108136063A TW108136063A TW202003868A TW 202003868 A TW202003868 A TW 202003868A TW 108136063 A TW108136063 A TW 108136063A TW 108136063 A TW108136063 A TW 108136063A TW 202003868 A TW202003868 A TW 202003868A
Authority
TW
Taiwan
Prior art keywords
nanowires
silver
nanometers
diameter
nanowire
Prior art date
Application number
TW108136063A
Other languages
English (en)
Other versions
TWI754841B (zh
Inventor
胡永星
英熙 李
楊希強
景順 洪
亞傑 維爾卡
Original Assignee
美商C3奈米有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66658507&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW202003868(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 美商C3奈米有限公司 filed Critical 美商C3奈米有限公司
Publication of TW202003868A publication Critical patent/TW202003868A/zh
Application granted granted Critical
Publication of TWI754841B publication Critical patent/TWI754841B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0006Apparatus or processes specially adapted for manufacturing conductors or cables for reducing the size of conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/012Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing wire harnesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

本發明描述一種高度均勻且薄的銀奈米線,其具有低於20奈米的平均直徑以及低的直徑標準差。該等銀奈米線具有高的高寬比。該等銀奈米線之特徵可在於:具有大於18奈米之直徑且在稀溶液中具有藍移之窄吸收光譜的少量奈米線。本發明還描述一種可合成窄且均勻之銀奈米線的方法。由薄且均勻之銀奈米線形成的透明導電膜可具有非常低程度的霧度及低的△L*值(漫射發光度),使得該透明導電膜可提供黑色背景之外觀的少量改變。

Description

薄且均勻之銀奈米線、合成方法及由該等奈米線形 成之透明導電膜 [優先權聲明]
本申請案主張共同審查中的美國臨時申請案第62/595,281號、由胡等人提出、標題為「Thin and Uniform Silver Nanowires,Methods of Synthesis and Transparent Conductive Films Formed from the Nanowires」的優先權;以及共同審查中的美國臨時申請案第15/951,758號、由胡等人於2018年4月12日提出、標題為「Thin and Uniform Silver Nanowires,Methods of Synthesis and Transparent Conductive Films Formed from the Nanowires」的優先權。該等相關申請案之揭露全文併於此以供參考。
本發明係關於一種具有非常小的直徑及大的高寬比(aspect ratio)的銀奈米線,該等銀奈米線可以非常均勻的直徑在有用的數量下組裝。本發明還關於一種合成奈米線的方法,包含但不限於以用於合成之特別合適的催化劑為基礎的方法。另外,本發明亦關於一種具有非常低霧度(haze)的透明導電膜,同時達成高透明度及低電阻。
銀奈米線代表一種用於透明導電體及其他導電體應用之具前景的技術,可作為更多功能的替代物替代傳統導電氧化物(如氧化銦錫)及其他導電材料。雖然至今用於市場各種應用的銀奈米線仍有限,但銀奈米線被期望將能提供高性能應用材料之成長性供給。銀奈米線通常係被合成然後被傳遞至用於併入至產品的結構。因此,商業化的第一步係涉及銀奈米線的合成。
在第一實施方案中,本發明係關於一種奈米線之集合,包含銀且具有不大於約20奈米的平均直徑以及不大於約2.5奈米之直徑的標準差。對於薄且均勻的奈米線,該奈米線之集合之特徵可在於:當於二甲基亞碸的稀溶液中測量時,在410奈米處的吸光度相對於最大吸光度係不大於約0.225,且具有窄的吸收峰。在一些實施態樣中,不大於約10%之該等奈米線具有大於18奈米之直徑。
在另一實施方案中,本發明係關於一種合成銀奈米線之方法,該方法包含形成實質上不含順磁性離子之反應溶液,該反應溶液包含多元醇溶劑、聚乙烯基吡咯啶酮、氯化物鹽及溴化物鹽之共混物。該反應溶液包含具有至少一個但不多於三個的氮原子以及至少一個碳原子的五員芳族雜環陽離子。合適的五員雜環離子包括例如咪唑鎓(imidazolium)、吡唑鎓(pyrazolium)、其衍生物、及其混合物。該反應溶液可被加熱以達到選定的峰值溫度,然後可終止或可不終止該加熱。將可溶性銀鹽添加至該反應溶液。在一些實施態樣中,該可溶性銀鹽可於接近或達到該峰值溫度後添加,例如在約5℃範圍內。
在另一實施方案中,本發明係關於一種合成銀奈米線之方法,該方法包含如下步驟:形成包含以下之共混物的反應溶液:多元醇溶劑、聚乙烯基吡咯啶酮、包含氯化物及/或溴化物之鹽、以及具有包含至少一個但不多於三個的氮原子及至少一個碳原子之五員芳族雜環的中性有機化合物;將該反應溶液加熱至峰值溫度;以及添加可溶性銀鹽。在一些實施態樣中,該可溶性銀鹽可於接近或達到該峰值溫度後添加,例如在約5℃範圍內。該中性有機化合物可為咪唑、吡唑、其衍生物、或其混合物。
在另一實施方案中,本發明係關於一種透明導電性結構,包含透明基板以及位於該透明基板之表面之上的稀疏金屬導電層(sparse metal conductive layer)。在基於本文所述之改善的銀奈米線的實施態樣中,該透明導電性結構可具有不大於約100Ω/□的片電阻、至少約90%的可見光總透射率及不大於約0.60%的霧度。在一些實施態樣中,在具有黑色表面的基板上以漫反射型式所獲得的△L*值為不大於2.0之值,△L*=該導電性結構之L*減去不具有該稀疏金屬導電膜的結構之L*。
在另一實施方案中,本發明係關於一種透明導電性結構,包含透明基板、位於該透明基板之第一表面之上的第一稀疏金屬導電層、以及位於該基板之與該第一表面相對的第二表面之上的第二稀疏金屬導電層。在一些實施態樣中,該透明導電性結構之每個表面係具有不大於約100Ω/□的片電阻,且其中該透明導電性結構具有至少約90%的可見光總透射率及不大於約0.90%的霧度。
100‧‧‧透明結構
102‧‧‧透明導電層
104‧‧‧基板
106‧‧‧外塗層
110‧‧‧第二結構
112‧‧‧光學透明黏著層
114‧‧‧丙烯酸系板
116‧‧‧抗反射層
120‧‧‧參考結構
第1圖為使用第一組反應物所形成的銀奈米線的穿透式電子 顯微鏡圖(TEM)。
第2圖為描繪銀奈米線直徑的直方圖,其中使用形成第1圖之銀奈米線所用之反應條件而製造該銀奈米線。
第3圖為第1圖所示之奈米線的UV-可見光吸收光譜。
第4圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中除使用聚乙烯基吡咯啶酮K90(PVP K90)封端聚合物外,係使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物而形成該銀奈米線。
第5圖為描繪銀奈米線直徑的直方圖,其中使用形成第4圖之銀奈米線所用之反應條件而製造該銀奈米線。
第6圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中除使用PVP 85N封端聚合物外,係使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物而形成該銀奈米線。
第7圖為描繪銀奈米線直徑的直方圖,其中使用形成第6圖之銀奈米線所用之反應條件而製造該銀奈米線。
第8圖為第6圖所示之奈米線的UV-可見光吸收光譜。
第9圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中除使用第一替代溴鹽外,係使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物而形成該銀奈米線。
第10圖為描繪銀奈米線直徑的直方圖,其中使用形成第9圖之銀奈米線所用之反應條件而製造該銀奈米線。
第11圖為第9圖所示之奈米線的UV-可見光吸收光譜。
第12圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中除 使用第二替代溴鹽外,係使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物而形成該銀奈米線。
第13圖為描繪銀奈米線直徑的直方圖,其中使用形成第12圖之銀奈米線所用之反應條件而製造該銀奈米線。
第14圖為使用一組控制反應物所形成的銀奈米線的穿透式電子顯微鏡圖(TEM)。
第15圖為描繪銀奈米線直徑的直方圖,其中使用形成第14圖之銀奈米線所用之反應條件而製造該銀奈米線。
第16圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使用與形成第14圖之銀奈米線所用之控制反應物相當的一組反應物,且在第一濃度添加咪唑催化劑,從而形成該銀奈米線。
第17圖為描繪銀奈米線直徑的直方圖,其中使用形成第16圖之銀奈米線所用之反應條件而製造該銀奈米線。
第18圖為第16圖所示之奈米線的UV-可見光吸收光譜與第14圖所示之銀奈米線的控制組光譜。
第19圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使用與形成第14圖之銀奈米線所用之控制反應物相當的一組反應物,且在第二濃度添加咪唑,從而形成該銀奈米線。
第20圖為描繪銀奈米線直徑的直方圖,其中使用形成第19圖之銀奈米線所用之反應條件而製造該銀奈米線。
第21圖為第19圖所示之奈米線的UV-可見光吸收光譜與第14圖所示之銀奈米線的控制組光譜。
第22圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物,且在第一濃度添加咪唑,從而形成該銀奈米線。
第23圖為描繪銀奈米線直徑的直方圖,其中使用形成第22圖之銀奈米線所用之反應條件而製造銀奈米線。
第24圖為第22圖所示之奈米線的UV-可見光吸收光譜與不添加咪唑添加劑而相應形成之銀奈米線的控制組光譜。
第25圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物,且在第二濃度添加咪唑,從而形成該銀奈米線。
第26圖為描繪銀奈米線直徑的直方圖,其中使用形成第25圖之銀奈米線所用之反應條件而製造該銀奈米線。
第27圖為第25圖所示之奈米線的UV-可見光吸收光譜與不添加咪唑添加劑之銀奈米線的控制組光譜。
第28圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物,且添加吡唑,從而形成該銀奈米線。
第29圖為描繪銀奈米線直徑的直方圖,其中使用形成第28圖之銀奈米線所用之反應條件而製造該銀奈米線。
第30圖為第28圖所示之奈米線的UV-可見光吸收光譜與不添加咪唑添加劑之銀奈米線的控制組光譜。
第31圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使 用與形成第28圖之銀奈米線所用之反應物相當的一組反應物而形成該銀奈米線。
第32圖為描繪銀奈米線直徑的直方圖,其中使用形成第31圖之銀奈米線所用之反應條件而製造該銀奈米線。
第33圖為第31圖所示之奈米線的UV-可見光吸收光譜與不添加咪唑添加劑之銀奈米線的控制組光譜。
第34圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使用與形成第28圖之銀奈米線所用之反應物相當的一組反應物,且該組成以五倍體積增大,從而形成該銀奈米線。
第35圖為描繪銀奈米線直徑的直方圖,其中使用形成第34圖之銀奈米線所用之反應條件而製造該銀奈米線。
第36圖為第34圖所示之奈米線的UV-可見光吸收光譜與不添加吡唑添加劑之銀奈米線的控制組光譜。
第37圖為銀奈米線的穿透式電子顯微鏡圖(TEM),其中使用與形成第1圖之銀奈米線所用之反應物相當的一組反應物,且添加少量水至反應器,從而形成該銀奈米線。
第38圖為描繪銀奈米線直徑的直方圖,其中使用形成第37圖之銀奈米線所用之反應條件而製造該銀奈米線。
第39圖為第37圖所示之奈米線的UV-可見光吸收光譜與不添加咪唑添加劑之銀奈米線的控制組光譜。
第40圖為具有導電層之結構的截面示意圖,該結構包含在基板上的熔合金屬奈米結構化網路以及導電層上的外塗層。
第41圖為具有黑色表面之結構的截面示意圖,該結構具有光學透明黏著層使第40圖之結構黏著至該黑色表面上、以及添加至環烯烴基板之對面上的防反射層。
第42圖為相應於第41圖之結構的控制組結構,但不具導電層或外塗層。
第43圖為基板之截面示意圖,其中具有施於該基板之二相對面的透明導電膜、以及施於該透明導電膜的聚合物外塗層。
本發明所提供之合成技術係用於製造具有非常小之直徑的高度均勻的銀奈米線,該等銀奈米線可用於製造具有改善性能的透明導電膜。在一些實施態樣中,均勻奈米線可具有不大於約20奈米的平均直徑以及不大於約2.5奈米之直徑的標準差所表示的均勻度。奈米線可進一步藉由奈米線之稀溶液的光譜性質而表徵,且光譜表徵係提供一替代方式已用於表徵奈米線之集合的性質。合成技術可基於使用氯化物系催化劑及溴化物系催化劑二者,且在一些實施態樣中,該等催化劑的至少一者可具有基於五員芳族雜環陽離子的催化劑,如咪唑鎓。在另外或替代的實施態樣中,還可添加如咪唑、吡唑、其其他異構物、或其衍生物等非離子五員有機雜環化合物作為催化劑。反應可被控制以達成具有小的平均線直徑且高度均勻的經純化銀奈米線。經純化銀奈米線可展現更高程度的均勻性與非常小的平均直徑,且可形成分散液/墨液用於形成具高度合意之性質的透明導電膜。特定而言,該產品透明導電膜可達成非常低的霧度以及合意的暗反射性質,這些性質為顯示器應用中令人感興趣的性質。
銀奈米線的分散液可被沉積於表面上及加工成導電膜。所得導電膜由於其機械性質、對可見光的透光性、該等特徵之組合、或導電膜其他方面而可使人滿意。特定而言,使用奈米線來形成透明導電膜對於具有顯示器的裝置而言可具有顯著的應用性。由於銀奈米線之加工成膜可顯著影響所得膜之性質,高品質奈米線之使用亦可為所得透明導電膜之品質的重要因素。奈米線之品質可被各種因素影響,但至關重要的因素包括奈米線的純度、奈米線的薄度、高寬比、以及如本文所述的奈米線尺寸的均勻度。本文所述的薄且均勻的銀奈米線可有效地製造具有如下性質之透明導電膜:非常低的霧度、以及非常低的色彩濃度或如下文描述之在CIELAB量度中表示為反射L*的發光度。
本文所描述之合成方法已成功地用於合成特別具有高度均勻性的薄奈米線。另外,該等合成方法在一規格中已達成高產率,該規格可進行適當純化技術,使所得銀奈米線可用於商業化。由於銀奈米線的高度薄且均勻之特性,可將奈米線加工至透明導電膜中,使具有改善之低程度的霧度、及在所欲值之導電性(片電阻)下的反射、及高透射率。
雖然一些用於合成銀奈米線的替代方法已被報導,但商業上可行的銀奈米線合成方法通常係基於一般所稱的多元醇製程,該製程涉及聚乙烯基吡咯啶酮封端劑及二醇溶劑還原劑。第一個用於銀奈米線合成之基於聚乙烯基吡咯啶酮封端劑的多元醇製程的報導大致上為Ducamp-Sanguesa等人於Journal of Solid State Chemistry,100,272-280(1992)發表,標題為「Synthesis and Characterization of Fine and Monodisperse Silver Particles of Uniform Shape」,其全文併於此以供參考。該技術進一步被夏教 授研究室擴展,參見夏等人的美國專利第7,585,349號,標題為「Methods of Nanostructure Formation and Shape Selection」,以及Wiley等人於Acc.Chem.Res.2007,40,1067-1076發表的「Synthesis of Silver Nanostructures with Controlled Shapes and Properties」,該二文獻之全文均併於此以供參考。類似的合成方法係使用Fe+2或Cu+2鹵化物鹽進行,係夏等人於Angew.Chem.Int.Ed.,48,60(2009)發表的「Shape Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics?」。其他各種金屬鹵化物鹽係已被用於金屬奈米線之合成。四級鏻鹽作為替代金屬鹵化物之使用係描述於Whitcomb的美國專利第8,741,025號,標題為「Nanowire Preparation Methods,Compositions,and Articles」,其全文併於此以供參考。
具有順磁性陰離子之咪唑鎓鹵化物已作為催化劑用於形成銀奈米線,如Jo等人發表於RSC Advances 2016,6,104273-104279的「Synthesis of small diameter silver nanowires via a magnetic-ionic-liquid-assisted polyol process」所述。Jo等人之研究涉及FeCl4 -陰離子。他們的一些研究涉及1-丁基-3甲基咪唑鎓四氯化鐵(bmim(FeCl4))以及bmimBr。本研究使用咪唑鎓鹽催化劑並避免使用順磁性成分(FeCl4),且在一些實施態樣中係使用具有更簡單之陽離子與咪唑鎓陽離子組合的替代性二級鹽。鐵陽離子在反應溶液中之存在顯著地改變合成條件,此在本研究中被避免。本研究在合成條件方面亦不同於Jo等人的方法。本研究涉及形成高度均勻的奈米線以及相較於Jo等人之結果更薄的奈米線。
一般而言,反應係在液態多元醇溶劑中進行,例如乙二醇、丙二醇、其組合等。使用聚乙烯基吡咯啶酮(PVP)封端劑,並例示各種分 子量的PVP聚合物。使用較高分子量聚乙烯基吡咯啶酮而合成較薄之奈米線的方法係描述於da Silva等人於ACSNano 2016,10,7892-7900發表的「Facile Synthesis of Sub-20 nm Silver Nanowires Through Bromide-Mediated Polyol Method」,其全文併於此以供參考。
本文所述之均勻且薄的銀奈米線已被合成,該合成使用具有五員芳族雜環部分的陽離子,且係描述於一些特定實施態樣的內文中。有機雜環陽離子可作為鹵化物的型式方便地提供,但亦可有效地使用其他具有該等陽離子的鹽,例如硝酸鹽。無論有機雜環陽離子是否以鹵化物的型式提供,鹵化物陰離子可額外地或替代地與適用於其反應條件之合適的陽離子一起被提供,例如Na+、K+、NH4 +、其混合物等。本文首先討論一些特別合適的陽離子雜環,然後在之後的段落中對這些陽離子催化劑進行一般性討論。
在一些實施態樣中,咪唑鎓鹽化合物(如氯化物及/或溴化物鹽)(1,3-經取代二氮雜環戊-2,4-二烯鹵化物)可由以下化學示所示:
Figure 108136063-A0101-12-0011-1
其中R1及R2各自獨立為氫;直鏈、支鏈、或環狀烷基(如甲基、丙基、異丙基、丁基、環己基);不飽和基團(如乙烯基);芳基烷基(如苄基、萘基甲基);或其他含高達至少30個碳原子的基團;但R1及R2不同時為氫;其中,R3為鹵素或R1及R2所述的任何取代基,且可獨立位於五員環的2、4、或5位,以及X-為陰離子(例如BF4 -、PF6 -、Cl-、或Br-)。一些咪唑鎓系化合物具有1-甲基及在3位的較長鏈,雖然1及3位係由於對稱性而為相同的。 亦可考慮在其他環位置的額外取代基。在此處的反應溶液中,溶液缺乏被預期可改變溶液中離子平衡條件的錯合金屬陽離子。另外,本反應溶液缺乏順磁性成分。由於氯化銀非常低的溶解度,自由氯離子通常沉澱氯化銀,其可形成小粒子晶種。溴化銀在二醇中亦具有非常低的溶解度。當然在平衡中,根據各自的平衡常數,少量的氯化銀及溴化銀二者係溶解於二醇中。
另外,吡唑鎓鹽(如鹵化物)為咪唑鎓鹽的異構型式且可為有用的催化劑化合物。總而言之,咪唑鎓鹽及吡唑鎓鹽離子可被稱為基於具有二個環上氮原子之五員芳族環的二氮鎓離子。吡唑鎓鹽的一般結構如以下化學式所示:
Figure 108136063-A0101-12-0012-4
其中R1、R2、及R3分別如同以上咪唑鎓鹽之敘述且對吡唑鎓而言可相同;以及X-為陰離子。
其他五員芳族雜環離子。例如以噻唑鎓鹽等選定的五員芳族雜環為代表:
Figure 108136063-A0101-12-0012-3
其中R1及R2分別如同咪唑鎓鹽之敘述。以及R3為氫;直鏈、支鏈、或環狀烷基(如甲基、丙基、異丙基、丁基、環己基);不飽和基團(如乙烯基);芳基烷基(如苄基、萘基甲基);或其他具有高達至少30個碳原子的基團。以及X-為陰離子,例如Cl-、或Br-
氯化物催化劑與溴化物催化劑之組合使用係如胡等人(以下 稱為胡)於ACSNano,Vol.4(5),(April 2010),2955-2963,標題為「Scalable Coating and Properties of Transparent,Flexible,Silver Nanowire Electrodes」的文獻中所描述,其全文併於此以供參考。在本文描述的一些實施態樣中,催化劑中的咪唑鎓離子與改善之製程控制結合以合成具有非常小且均勻尺寸之改善的銀奈米線。一般而言,氯化物鹽與溴化物鹽均可被使用。另外,申請人首先發現一種非聚合物有機分子、咪唑及其衍生物可改善奈米線的幾何形狀。
與離子催化劑結合,申請人發現可使用中性有機催化劑進一步促進更薄且高度均勻的奈米線之合成。在一些例子中提供可溶性有機催化劑小分子。例如,咪唑化合物及吡唑化合物(或更一般的具有碳及氮之五員芳族雜環)係示於實施例中以提供使用選定離子催化劑形成的更薄奈米線,同時以高產率製造更均勻的奈米線。非離子有機催化劑添加劑之使用提供了可促進合成的新種類試劑。中性有機催化劑係與合適的鹵化物鹽催化劑組合使用。已顯示出可形成奈米線之集合,其有顯著部分的奈米線係具有小於15奈米之直徑。
下文提供之實施例係基於乙二醇溶劑,儘管丙二醇在本技術領域中已知亦可作為乙二醇之替代或與乙二醇混合用於合成銀奈米線。至於封端劑,已成功地使用聚乙烯基吡咯啶酮(PVP)及PVP共聚物。吾人可想像使用其他極性聚合物可替代(PVP),但至今使用多元醇導向(polyol driven)的合成中,仍未有關於使用其他封端劑之不錯的結果的報導。PVP共聚物已被用於合成相對厚的銀奈米線,如同Alsayed等人於美國公開專利申請案第2014/0178247 A1號,標題「Process for Making Silver Nanostructures and Copolymer Useful in Such Process」中所描述,其全文併於此以供參考。一種不使用聚合物封端劑的含水合成方法係Miyagishima等人於美國公開專利申請案第2010/0078197 A1號,標題「Metal Nanowires,Methods for Producing the Same and Transparent Conductor」中所討論,其全文併於此以供參考。實施例中的結果報導為使用具有分子量約40,000公克/莫耳至50,000公克/莫耳的PVP K30、分子量具有約1,000,000的更純型式PVP的PVP K85N、或具有分子量約900,000至1,600,000的PVP K90(PVP K90,BASF)。PVP的K值係關於特定的黏度測量,但該等值通常可轉換至分子量範圍。聚合物通常可藉由分子量範圍而表徵,該分子量範圍係基於使用可接受之分析技術進行估計的。分子量分布可取決於所屬合成技術且對於特定產品可能改變。BASF據信為世上最大的PVP供應商,但亦知有其他供應商,如Ashland化學公司及Nippon Shokubai。更高分子量之PVP的結果傾向於聚有更小的直徑,即,更薄的奈米線,然而產率稍降低。
催化劑之選擇併同更高的峰值溫度可提供更短的反應時間同時亦提供高奈米線產率。一般而言,相對於已知相仿的合成技術,本文的反應提供較改善的產率。高產率及更短的合成時間對於商業化奈米線之合成係合意的特徵。如上所述之胡亦使用高反應溫度及短反應時間,然而胡使用固態氯化銀催化劑,就申請人之經驗,該等催化劑需更低的反應溫度及更長的反應時間來獲得稍薄的線。使用本文描述的催化劑系統,即使在更高峰值溫度及更短的反應時間下亦獲得非常薄且均勻的銀奈米線。基於本領域之經驗,對於更大規模製造產率而言,平均銀奈米線之直徑至今受限於約22奈米。一些製造更薄的線之嘗試已成功地少量減少銀奈米線之 平均直徑,但通常犧牲均勻度及/或產率。本文之重要成就在於先前未有之薄的奈米線,同時獲得的產率係相當於平均直徑22奈米下之產率。
在一些實施態樣中,改善之銀奈米線可具有不大於約20奈米且通常不大於約19奈米的平均直徑。相應地,該等奈米線同時具有高程度的均勻性,其係藉由顯微圖及光譜測量二者而確定,如下文描述。奈米線之直徑可藉由檢驗來自電子顯微鏡的影像而確定。平均值通常藉由約100個代表性奈米線之量測而評價。直徑之均勻性可以標準差方便地表示,雖然直徑分布的其他方面如特定截值(特別是18奈米或更小)以下之線的數目亦可提供直徑分布有用的表徵。在一些實施態樣中,標準差不大於約3.5奈米。另外,在一些實施態樣中,至少75%之該等銀奈米線具有小於18奈米的直徑。平均奈米線長度可為約10微米至30微米。歷史上,奈米線長度曾被考慮為重要參數,但已發現一旦長度達到大於約10微米,長度的進一步增加並不會顯著改善以該等奈米線形成之透明導電層的性質。在合適分散劑中的UV-可見光吸收光譜亦可用於表徵奈米線。一種合適的液體可為具有銀奈米線濃度0.005重量%的二甲基亞碸(DMSO),雖然在低濃度下,標準化(normalized)吸收光譜通常並不顯著對該濃度敏感。如本文所用,標準化吸收光譜係將300奈米至800奈米範圍之波長內的最高值設定為1且最低值設定為0。當平均奈米線直徑變小,則吸收最大值傾向偏移至較低波長(藍移)。當銀奈米線變得更均勻,則吸收峰傾向變窄。由於尚未完全理解的峰之形狀變化,可能存在吸收峰變窄的額外貢獻因素。然而,對於均勻且薄的銀奈米線,吸收峰變窄且藍移,此可藉由測量410奈米處之降低的吸光度或者藉由測量吸收峰寬度而得知。
本文特別感興趣的透明導電元件(例如膜)係包含稀疏金屬導電層(sparse metal conductive layer)。導電層通常稀疏化以提供所欲量的透光度,使得金屬的覆蓋在導電元件層之上及之間具有顯著間隙。例如,透明導電膜可包含沿層沉積的金屬奈米線,其中足夠的接觸可提供給電子滲透以提供合適的導電途徑。薄且均勻的銀奈米線可有效用於各種結構以提供涉有稀疏金屬導電層的透明導電膜。在其他實施態樣中,透明導電膜可包含熔合金屬奈米結構化網路,據發現該熔合金屬奈米結構化網路係展現合意的電性質及光學性質。
一般而言,可由金屬奈米線形成各種稀疏金屬導電層。一種由經加工使得奈米線在接點處平坦以改善導電性的金屬奈米線所形成的膜係Alden等人於美國專利第8,049,333號,標題「Transparent Conductors Comprising Metal Nanowires」中所描述,其全文併於此以供參考。一種包含鑲嵌有金屬奈米線之表面以增加金屬導電性的結構係Srinivas等人於美國專利第8,748,749號,標題「Patterned Transparent Conductors and Related Manufacturing Methods」中所描述,其全文併於此以供參考。然而,已發現熔合金屬奈米結構化網路具有如下改善之性質:高導電度以及就透光度及低霧度而言合意的光學性質。相鄰金屬奈米線之熔合可藉由基於在商業上合適之製程條件的化學製程進行。
特定而言,一個基於金屬奈米線所製得之導電膜的顯著優點為,已發現一種用以形成熔合金屬網路的良好可控制的製程,其中係金屬奈米線的相鄰區段進行熔合。特定而言,已發現鹵化物離子可驅使金屬奈米線之熔合以形成熔合金屬奈米結構。已經以各種方式引入含鹵化物陰離 子的熔合劑,並成功達成具有相應顯著降低之電阻的熔合。應注意在此製程中的鹵化物離子不應與在奈米線合成反應中的鹵化物離子混淆。特定而言,使用鹵化物陰離子的金屬奈米線之熔合已藉由醯鹵化物蒸氣及/或溶液與鹵化物鹽溶液達成。使用鹵化物源的金屬奈米線之熔合係進一步描述於Virkar等人的美國公開專利申請案第2013/0341074號,標題「Metal Nanowire Networks and Transparent Conductive Material」中,以及Virkar等人的美國專利第9,920,207號('207專利),標題「Metal Nanostructured Networks and Transparent Conductive Material」中,該二文獻之全文均併於此以供參考。
一種形成熔合金屬奈米線網路的製程之延伸係基於提供還原/氧化(氧化還原)反應,以形成熔合奈米線但不破壞所得膜的光學性質。用於沉積於接點的金屬可有效地以溶解之金屬鹽添加或者可自金屬奈米線本身溶解出。有效使用氧化還原化學將金屬奈米線熔合成奈米結構化網路係進一步描述於Virkar等人的美國公開專利申請案第2014/0238833A1號('833申請案),標題為「Fused Metal Nanostructured Networks,Fusing Solutions with Reducing Agents and Methods for Forming Metal Networks」,其全文併於此以供參考。該'833申請案亦描述一種用於形成熔合金屬奈米結構化網路的單溶液方法。形成熔合金屬奈米結構化網路的單溶液方法係進一步描述於李等人的美國專利第9,183,968 B1號(以下稱為'968專利),標題為「Metal Nanowire Inks for the Formation of Transparent Conductive Films with Fused Networks」,其全文併於此以供參考,且在下文實施例係使用單溶液或墨液製程而形成熔合金屬奈米結構化網路。
可達成固化成熔合奈米結構化金屬網路之有效單沉積墨液的合意墨液係包含合意量的金屬奈米線以在所得膜中達成適當的金屬負載。在適當的溶液中,在墨液沉積及乾燥前該墨液係穩定的。墨液可包含合適量的聚合物黏合劑,該聚合物黏合劑有助於形成穩定的導電膜以用於進一步加工。為了使用單墨液系統獲得良好的熔合結果,已發現親水性聚合物很有效,如纖維素或幾丁聚醣系聚合物。作為用於熔合製程中金屬源的金屬離子可以可溶性金屬鹽提供。
單墨液配方提供了在基板表面上沉積所欲金屬負載以作為膜,同時在墨液中提供成分使得墨液在適當條件下乾燥時誘發熔合製程。因理解通常直至乾燥前均不發生熔合,該等墨液可方便地稱為熔合金屬奈米線墨液。墨液通常包含含水溶劑,在一些實施態樣中該含水溶劑可更包含醇及/或其他有機溶劑。墨液可更包含溶解之金屬鹽作為用於熔合製程的金屬源。在不意於受限於理論的情況下,據信墨液的成分(如醇或其他有機組成物)還原溶液中的金屬離子以驅動熔合製程。使用此類系統之熔合製程的先前經驗顯示金屬係傾向於沉積於相鄰金屬奈米線交接處。可提供聚合物黏合劑以穩定膜以及影響墨液性質。可調整特定的墨液配方以選擇適當的墨液性質用於特定的沉積方法以及使得基板表面具有特定塗層性質。如下文進一步描述,可選擇乾燥條件以有效進行熔合製程。本文亦建立二種溶液熔合系統且可利用本文所描述之改善的銀奈米線。
已發現熔合金屬奈米結構化網路可提供低片電阻同時相應地提供高透射率及低霧度。降低銀奈米線的厚度可進一步改善光學性質。本文之結果還顯示奈米線的均勻度亦有助於光學性質的進一步改善。特定 而言,已發現具有18奈米或更大直徑之奈米線的數目減少可提供非常低的霧度值及非常低的漫反射L*值。本文所描述之合成技術可經選擇以製造具有均勻度的銀奈米線,其中大於75%之該等奈米線具有不大於約18奈米的直徑。在一些實施態樣中,屬於透明導電膜的反射型式的L*值可為不大於約2.0,其中該參數在下文中描述為△L*,其中其他結構特徵的L*係自整體L*值中扣除。對於以薄且均勻之銀奈米線形成且片電阻不大於約100Ω/□的熔合金屬奈米結構化網路,透光度型式的霧度值可為不大於約0.6%。
銀奈米線之合成與純化
改善的銀奈米線之合成以達成高度均勻且具有小的平均直徑的銀奈米線。該合成適於以相對高的產率大規模的合成。具有合意的短反應時間之改善的催化劑及催化劑之組合可提供高度均勻的銀奈米線。特定而言,使用二烷基咪唑鎓鹵化物鹽與氯化物鹽及溴化物鹽共混(其亦可包含無機陽離子)可得合意的結果。另一令人驚訝的改善的結果係由小分子有機催化劑(如咪唑)獲得,且可預期其異構物有相似性。PVP封端聚合物之選擇亦可有利地影響銀奈米線的薄度。一般而言,需要純化步驟以自反應混合物分離奈米線,該反應混合物包含顯著量的其他奈米結構,如奈米粒子。在本段落所述之濃度係基於添加至反應溶液的量及體積,且溶液中的實際濃度發展係基於溶液中物質的交互作用及反應。
在多元醇製程中,溶劑為二醇,通常為乙二醇、丙二醇、或其共混物。該等二醇可作為具有可控制性質(例如透過加熱)的還原劑。作為溶劑,二醇的量通常係基於反應的規模而設定,且其他反應物亦據此調整。用於提供銀離子形成至奈米線中的標準銀鹽源為硝酸銀,硝酸銀可 溶於二醇,雖然原則上可使用其他可溶性銀鹽。添加可溶性銀鹽以驅使奈米線合成。由於銀實質上被消耗,銀的濃度在反應期間會顯著改變。一般而言,硝酸銀可以固體添加或溶解於二醇溶劑,且另外硝酸銀實質上可全部同時添加或逐漸添加。在本文的實施例中,硝酸銀的乙二醇溶液係實質上全部同時添加,於實用上係不大於約10分鐘的期間。
聚乙烯基吡咯啶酮在多元醇製程中係作為封端劑使用。在不意於受限於理論的情況下,據信聚乙烯基吡咯啶酮(PVP)傾向於與結晶銀的特定晶體晶格締合,使得銀因此沿晶體的其他面沉積以形成奈米線。夏的研究團隊之研究已檢驗各種銀奈米結構之合成。PVP的分子量可影響合成反應。具有分子量約40,000至60,000公克/莫耳的PVP K30可成功地用於形成薄的奈米線。具有分子量約900,000至1,600,000的PVP K-90(或K-85)或其與PVP K30的共混物亦成功地用於獲得類似結果,如本文所示。在其他參數相同下,越高分子量的PVP封端劑傾向於形成稍微較細的奈米線但近來發現其產率顯著降低。反應混合物通常包含約0.1重量%至約10重量%、在另一些實施態樣約0.2重量%至9重量%、以及在其他實施態樣約0.25重量%至約8重量%的PVP於反應混合物中。本領域技藝人士將認知到在上述明確範圍內的其他PVP濃度範圍係被考量且包含於本發明之揭露內。
可溶性銀鹽係添加以提供銀離子用於化學還原成銀而集結至銀奈米線中。實用上,硝酸銀(AgNO3)至今為唯一可輕易供使用之可適當溶於二醇溶劑的銀鹽。其他更複雜深奧的銀鹽可被確認具有適當的溶解度,但他們卻被預期相對於硝酸鹽為費用過高。對於硝酸鹽,反應混合物通常包含約0.0025M至約0.25M、在另一些實施態樣約0.005至約0.20M、 以及在其他實施態樣約0.01M至0.15M的硝酸銀於反應混合物中,且其他可溶性銀鹽係可被添加以達成相當的莫耳濃度。本領域技藝人士將認知到在上述明確範圍內的其他可溶性銀鹽濃度範圍係被考量且包含於本發明之揭露內。隨著硝酸銀在反應期間內被轉化,表示反應混合物「包含」一特定量之硝酸銀係指在反應期間內硝酸銀的相對添加量,而非必然為一特定時間下溶液中的銀量,其為流動且不可輕易測得的。
催化劑鹽之特定共混物之使用導致本文所述之改善的奈米線合成。一般而言,反應溶液包含氯化物鹽及溴化物鹽,因此至少混合二種鹽至二醇溶劑中。為了獲得所欲的銀奈米線性質,反應溶液實質上不含順磁性離子,如鐵離子。在本申請案中,實質上不含係指無添加離子且通常不大於1x10-6M的順磁性離子。在一些實施態樣中,合意的離子催化劑包含所添加的催化劑中溴濃度對氯濃度的莫耳比為約0.5至約15、在另一些實施態樣中為約0.75至約10、在另一些實施態樣中為約0.9至約7、以及在其他實施態樣中為約0.95至約6。本領域技藝人士將認知到在上述明確範圍內的其他離子比範圍係被考量且包含於本發明之揭露內。
對於陽離子,該鹽通常包含有機陽離子(例如咪唑鎓)且在一些實施態樣中可有效使用陽離子的共混物。若使用二種明顯不同的陽離子,則該等陽離子之一種可為無機陽離子,例如Na+或K+、銨陽離子NH4 +、如四甲基銨或己基三甲基銨等經取代之銨陽離子、或其混合物。在實施例中獲得一些成功的結果,係使用氯化咪唑鎓(imidazolium chloride)鹽與溴化咪唑鎓(imidazolium bromide)鹽的共混物(且可包括另外視需要添加的非離子催化劑)及/或此處所述之有機陽離子的共混物。有機陽離子可與 其他的陰離子(如硝酸鹽)一起提供,只要有提供合意的氯化物及/或溴化物陰離子。一般而言,用於合成薄的奈米線之特別感興趣的有機陽離子包含如下五員芳族雜環:芳香環上具有一至三個氮原子以及一或更多個碳原子與如氧或硫等視需要的其他雜原子。一般而言,催化劑鹽可獨立為濃度約0.00001M至約0.01M,在另一些實施態樣中為約0.00002M至約0.005M,以及在其他實施態樣中為約0.00005M至約0.0025M。本領域技藝人士將認知到在上述明確範圍內的其他濃度範圍係被考量且包含於本發明之揭露內。
具有五員芳族雜環的有機陽離子包括基於咪唑鎓、吡唑鎓、噻唑鎓、噁唑鎓(oxazolium)、三唑鎓(triazolium)等的部分(moiety)。合適的咪唑鎓陽離子包括如1-丁基-3-甲基咪唑鎓、1-乙基-3-甲基咪唑鎓、1-己基-3-甲基咪唑鎓、1-辛基-3-甲基咪唑鎓、1,3-二異丙基咪唑鎓、1,3-二環己基咪唑鎓等、或其混合物。類似的衍生物可用於其他雜環。下文呈現的實施例係使用氯化1-辛基-3-甲基咪唑鎓進行,但一些使用上述列舉之其他陽離子的初步實驗係在該等實驗的條件下獲得合理相仿的結果。
在一些實施態樣中,還可添加非離子有機催化劑。所呈現實施例為添加咪唑或吡唑以及氯化物及溴化物鹽催化劑添加劑以提供所欲薄且均勻的奈米線。然而,非離子催化劑可僅與單一鹵化物催化劑鹽(如氯化物或溴化物任一種)一起使用,亦可與具有氯化物鹽及溴化物鹽二者之溶液一起使用。在單一鹵化物鹽與非離子催化劑一起使用的實施態樣中,鹵化物鹽之濃度範圍仍然在上文呈現的值內,且使用非離子催化劑之合成的一般反應條件係與單純使用離子鹽催化劑之合成的反應條件重疊。
已發現如咪唑等芳族雜環以相當或更好的均勻度及高產率促進較薄奈米線之形成。特定而言,具有碳及氮的五員芳族雜環可用作非離子催化劑。五員芳族雜環可具有1至3個氮原子及至少一個碳原子且可包括其他原子,該五員芳族雜環例如噻唑或噁唑。除咪唑外,經取代之咪唑亦可用作催化劑,例如2甲基咪唑、4(5)-(羥甲基)咪唑、4-異丙基咪唑、4(5)-溴-4(5)-甲基-咪唑、2-溴-1H-咪唑、1-乙烯基咪唑、及其寡聚物等、或其混合物。吡唑及經取代之吡唑亦可為有用的催化劑,例如3-環丙基-1H-吡唑、5-甲基-1H-吡唑、3-(三氟甲基)吡唑、及1,4,5,6-四氫環戊[c]吡唑。未經取代或經取代的噁唑(如噁唑-5-甲醇)、吡咯及經取代之吡咯、以及噻唑及經取代之噻唑(如2-甲基-1,3-噻唑)亦可作為咪唑及吡唑的異構物而為有用的催化劑。乙烯基衍生物可聚合以形成二聚物或更大的寡聚物或聚合物,預期可保留其催化能力。其他衍生物包括例如雙環衍生物如嘌呤,其具有芳族咪唑環與嘧啶雜環連接。在反應混合物中,有機非離子催化劑可具有約0.0001M至約0.1M的濃度範圍,在另一些實施態樣中0.00025M至約0.025M,以及在其他實施態樣中約0.0005M至約0.02M。本領域技藝人士將認知到在上述明確範圍內的其他濃度範圍係被考量且包含於本發明之揭露內。
為了將經合成之奈米線直徑控制在較小的值上,已發現添加少量的水至反應中可降低奈米線直徑而不使直徑分布寬化或些微改善直徑分布。水可於添加硝酸銀之前添加。一般而言,可使用去離子水,雖然各種程度的純化水為合適的。在一些實施態樣中,在反應開始時,反應溶液可包含約0.01至約5重量%的水,在另一些實施態樣中約0.025至約4重量%, 以及另一些實施態樣中約0.05至約2重量%的水。反應可以如同沒有水時相同的方式進行。本領域技藝人士將認知到在上述明確範圍內的其他水含量範圍係被考量且包含於本發明之揭露內。
合成製程在合適尺寸的攪拌反應器中開始。一般而言,反應使用封閉系統或開放系統皆可成功,但封閉系統可適於達成較好的生產率。對於本文所述之合成,封閉系統未經沖洗(purge),且該系統藉由冷凝器開放至環境空氣。顯著部分的溶劑通常與PVP一起於反應開始時添加,然後引進熱量以增加溶劑的溫度。加熱可例如使用加熱包(heating mantle)進行。可使用機械攪拌器或磁攪拌器起始攪拌。繼續加熱至達到目標溫度。當反應容器達到目標峰值溫度時,可停止或不停止加熱,且冷卻速率可基於所欲反應時間部分調整。目標峰值溫度可為至少約130℃,在另一些實施態樣中至少約135℃,在另一些實施態樣中至少約140℃,以及在其他實施態樣中至少約145℃至低於任何這些範圍中所用溶劑沸點的一度。本領域技藝人士將認知到在上述明確範圍內的其他溫度範圍係被考量且包含於本發明之揭露內。
在添加硝酸銀而起始合成反應前,可依序或一起添加催化劑。一般而言,催化劑、鹽催化劑、及/或中性催化劑可作為固體、液體鹽、溶液、或其組合而添加。多種催化劑可依序或同時或以其組合添加。在攪拌該等催化劑後以及於或接近峰值目標溫度時,添加可溶性銀鹽,一般為硝酸銀。銀鹽可作為固體或二醇溶液而添加。特別當催化劑及銀鹽作為固體添加時及甚至在其他態樣中,可添加另外的二醇(可被稱為加滿溶劑(top off solvent))以達成反應混合物所欲的總體積。在一些實施態樣中, 約2%至約40%的總溶劑可作為加滿溶劑添加,其可於催化劑之添加同時、之後、或一部分同時一部分之後添加,此方法可完成反應混合物的形成,雖然在另一些實施態樣中,全部量的溶劑可與溶解的銀鹽一起添加。持續攪拌直至反應完成。從開始加熱已填充有溶劑的反應器至反應完成可為約1小時至10小時,在另一些實施態樣中約1.75小時至約8小時,以及在其胎實施態樣約1.9小時至3.5小時。本領域技藝人士將認知到在上述明確範圍內的其他時間範圍係被考量且包含於本發明之揭露內。
反應完成之後,完成的反應混合物係已預備用於冷卻之後的純化。合成之後反應器中任何大的結構物可藉由過濾、離心、或其他適當方法去除。在任何基本純化步驟以去除大粒子後,銀奈米線通常進一步藉由分散液的去穩定化並收集沉降的奈米線而純化,例如離心之後收集。針對銀奈米線純化的去穩定化可藉由添加可與二醇互溶的丙酮或類似有機溶劑而發生,但奈米線較不穩定地分散於其中。分散液去穩定化之後,可進行離心以收集奈米線而小的銀粒子可維持分散。可重複此過程以進一步改善純化。
純化之後,可評價反應產率。為了確定產率,經純化及收集之奈米線的重量係除以可溶性銀鹽提供之銀的重量。在本文所述的反應中,產率可為至少約10%,在另一些實施態樣中至少約12%,以及在其他實施態樣中至少約15%至約35%。本領域技藝人士將認知到在上述明確範圍內的其他範圍係被考量且包含於本發明之揭露內。
已發現貴金屬(如金或鉑)可塗佈於銀奈米線之上以改善結構的穩定性及化學鈍性。已經發展一些有效製程用於進行塗佈以形成薄且 均勻的塗層,且不顯著改變由經塗佈之奈米線形成的結構的光學性質。奈米線之塗佈係進一步描述於胡等人的美國專利第9,530,534號中,標題為「Transparent Conductive Film」,其全文併於此以供參考。奈米線可具有貴金屬塗層,該貴金屬塗層相對於整體奈米線重量約0.05重量%至約15重量%的貴金屬。本領域技藝人士將認知到在上述明確範圍內的其他沉積量範圍係被考量且包含於本發明之揭露內。
在一種施加貴金屬塗層的方法中,藉由直接金屬沉積而形成經貴金屬塗佈之銀奈米線的方法包含:逐漸添加含溶解之貴金屬離子及金屬離子錯合配位基的塗佈溶液至含銀奈米線及還原劑的反應溶液中,以在銀奈米線上形成貴金屬塗層。該反應溶液可進一步包含封端聚合物,例如PVP(聚乙烯基吡咯啶酮)。在另一施加貴金屬塗層的替代方法中,藉由電鍍交換而形成經貴金屬塗佈之銀奈米線的方法包含:逐漸添加含貴金屬離子與錯合配位基之混合物的塗佈溶液至含銀奈米線與聚合物封端劑之分散共混物的經加熱之反應溶液中,以逐漸以貴金屬取代銀而形成完整銀核心與貴金屬塗層。
銀奈米線之表徵
經純化的奈米線可使用電子顯微鏡及奈米線分散液的吸收光譜而表徵。穿透式電子顯微鏡圖可用於測量奈米線直徑。奈米線的長度可使用掃描式電子顯微鏡或使用良好品質的光學顯微鏡測量。基於放大率,電子顯微鏡圖像具有相關尺標。使用該尺標,該圖像可直接用於量測直徑及長度。
通常可使用隨機選擇之大約100或更多奈米線的組,雖然合 理準確的結果可由更少的奈米線獲得。對於本文所述的均勻奈米線,基於100或更多奈米線而報導的數目據信對於根據該量測之直徑係準確至大約0.1奈米。均勻銀奈米線的平均直徑可不大於約20奈米,在另一些實施態樣中不大於約19奈米,在另一實施態樣中不大於約18奈米,在另一些實施態樣中不大於約17.5奈米,在另一些實施態樣中不大於約17.0奈米,以及在其他實施態樣為約12至約19.0奈米。對於長度,銀奈米線可具有約5微米至約30微米的平均長度。高寬比可定義為平均長度除以平均直徑之比例。在一些實施態樣中,奈米線可具有至少約400的平均高寬比,以及在另一些實施態樣中約500至約10,000的高寬比。本領域技藝人士將認知到在上述明確範圍內的其他銀奈米線尺寸範圍係被考量且包含於本發明之揭露內。
對於奈米線直徑分布之表徵,有多種方法是可用的。例如,可提供具有小於18奈米或小於15奈米直徑之奈米線的百分比。對於一些應用,較合適可不具有太大百分比的較大奈米線,而這提供直徑分布上的進一步資訊。在一些實施態樣中,銀奈米線可具有至少約60%具有不大於18奈米的直徑,在另一些實施態樣中至少約65%,在另一些實施態樣中至少約75%,以及在其他實施態樣中至少約85%之銀奈米線具有不大於18奈米的直徑。如下文將提及,消除大部分具有大於18奈米之直徑的奈米線係可提供具有特別低的霧度及漫射發光度(L*)的透明導電膜之形成。另外,銀奈米線可有至少2%具有不大於15奈米的直徑,在一些實施態樣中至少約15%,以及在其他實施態樣中至少約40%之奈米線具有不大於15奈米的直徑。如上文提及,標準差提供關於奈米線直徑之均勻度的重要資訊。直徑的標準差(standard deviation,SD)係如下計算:SD=(Σ(dn-d)2)1/2/(N-1), 其中N為所量測之直徑的數目,n=1至N且如同Σ指示地疊加,以及d為平均直徑。在一些實施態樣中,標準差不大於約3.5奈米,在另一些實施態樣中不大於約3.0奈米,在另一些實施態樣中不大於約2.5奈米,以及在其他實施態樣中不大於約2.0奈米。本領域技藝人士將認知到在上述明確範圍內的其他均勻度測量範圍係被考量且包含於本發明之揭露內。
奈米線可分散於合適溶液中以獲得吸收光譜,其可作為獨立方法用於表徵銀奈米線的尺寸及均勻度。二甲基亞碸(DMSO)為用於量測奈米線之光譜的合適溶劑,其係因為銀奈米線可分散於DMSO,以及因為DMSO在所感興趣的範圍內(300至500奈米)具有低吸光度且DMSO具有相對高的折射率。DMSO係普遍用於UV-可見光吸收之研究的溶劑,而銀奈米線光譜之參考將參照在稀釋DSMO分散液中量測的光譜。一般而言,標準化吸收光譜應為獨立於稀釋分散液之濃度。其他極性溶劑如醇及水等亦可被使用,但該等溶劑相對於DSMO係具有較低的折射率。一般而言,銀奈米線在水中的相應光譜相對於DMSO中的光譜係被預期為更尖銳且些微藍移。
作為通常性規則,已發現較薄的銀奈米線顯示介於350奈米至400奈米之間有一峰值的吸收光譜,其因銀奈米線變得更薄且更均勻而偏移至較低波長。對於稀釋DMSO分散液中量測的光譜,吸收光譜在小於376奈米處可具有一峰值且在一些實施態樣中在小於374奈米處可具有一峰值。標準化吸光度可容易地用於評價吸收光譜以消除關於該量測之顯著的尺度複雜度。如本文所用,介於300奈米與800奈米之間的光譜係被標準化以具有0與1之間的吸光值。類似地,更均勻的銀奈米線直徑可顯示較窄的吸收峰,且該較窄的吸收峰可藉由410奈米處的標準化吸光度而表徵,其係 沿著吸收峰中更高波長之降低邊緣。因此410奈米處之較小的標準化吸光度通常係與較窄的吸收峰及相應之更均勻的銀奈米線直徑相關。在一些實施態樣中,410奈米處的標準化吸光度可不大於0.20,以及在其他實施態樣中不大約0.185。本領域技藝人士將認知到在上述明確範圍內的其他標準化吸收度值範圍係被考量且包含於本發明之揭露內。本文所呈現之結果通常與此定性理解一致,但吸收光譜在銀奈米線分布方面尚未完全被理解。
稀疏金屬導電層
稀疏金屬導電層通常由金屬奈米線形成。在足夠之負載及選定之奈米線性質下,奈米線可達成合理導電度,且具有相應適合的光學性質。本文所述之由薄且均勻之銀奈米線形成的透明導電膜結構被預期可提供合意的性質予具有各種稀疏金屬導電結構的膜。另外,特別合意的性質係使用熔合金屬奈米結構化網路達成。提供替代的實施態樣中,熔合組分並不包含於加工溶液中,且通常使用具有薄且均勻之銀奈米線的未熔合膜可達成令人滿意的結果,其中該銀奈米線有助於性質上的相對改善。此處的討論著重於涉及熔合金屬奈米結構化網路的實施態樣,已發現該熔合金屬奈米結構化網路作為透明導電膜上係提供改善之表現性質。
已發展數種實用方法以達成金屬奈米線之熔合。可使金屬負載達平衡以達成合意程度的導電性與良好的光學性質。藉由使用本文所述之薄且均勻之銀奈米線,可在特定程度的導電度上改善導電膜的光學性質。一般而言,金屬奈米線之加工可藉由沉積二種墨液而達成,其中第一墨液包含金屬奈米線而第二墨液包含熔合組成物;或藉由沉積將熔合元素結合至金屬奈米線分散液中的墨液而達成。墨液可更包含或不包含額外的 加工助劑、黏合劑等。可挑選合適於特定墨液系統的合適圖案化方法。
一般而言,用於形成金屬奈米結構化網路的一或更多溶液或墨液可集合地包含經良好分散的金屬奈米線、熔合劑、及視需要的其他成分,例如聚合物黏合劑、交聯劑、潤濕劑(wetting agent)(如表面活性劑)、增稠劑(thickener)、分散劑、其他視需要之添加劑、或其組合。用於金屬奈米線墨液的溶劑及/或熔合溶液(若不同於該奈米線墨液時)可包含含水溶劑、有機溶劑、或其混合物。特定而言,合適的溶劑包括例如水、醇、酮、酯、醚,如二醇醚、芳族化合物、烷烴等及其混合物。特定的溶劑包括水、乙醇、異丙醇、異丁醇、三級丁醇、甲基乙基酮、二醇醚、甲基異丁基酮、甲苯、己烷、乙酸乙酯、乙酸丁酯、乳酸乙酯、PGMEA(2-甲氧基-1-甲基乙基乙酸酯)、碳酸二甲酯、或其混合物。溶劑除了需要基於可形成金屬奈米線之良好分散液的能力挑選外,溶劑還需要與其他選定的添加劑相容使得該等添加劑可溶於該溶劑中。在其中熔合劑被包含於具有金屬奈米線之單溶液中的實施態樣中,溶劑或其成分可為或可不為熔合溶液的重要成分(如醇)且若適合時則可相應地選擇。
無論金屬奈米線墨液為單墨液或二墨液型式,可包括約0.01至約1重量百分比的金屬奈米線,在另一些實施態樣中約0.02至約0.75重量百分比的金屬奈米線,以及在其他實施態樣中約0.04至約0.5重量百分比的金屬奈米線。本領域技藝人士將認知到在上述明確範圍內的其他金屬奈米線的濃度範圍係被考量且包含於本發明之揭露內。金屬奈米線之濃度影響基板表面上的金屬負載量以及墨液的物理性質。
銀提供優異導電性且可購得商業化銀奈米線。然而,使用本 文方法合成之薄且均勻的奈米線係提供改善之透明導電膜。該等銀奈米線之性質係總結於上述細節及以下實施例。
聚合物黏合劑及溶劑通常一致地選擇使得聚合物黏合劑為可溶或可分散於溶劑中。在合適的實施態樣中,金屬奈米線墨液通常包含約0.02至約5重量百分比的黏合劑,在另一些實施態樣中約0.05至約4重量百分比的黏合劑,以及在其他實施態樣中約0.1至約2.5重量百分比的聚合物黏合劑。在一些實施態樣中,聚合物黏合劑包含可交聯有機聚合物(如輻射可交聯有機聚合物)及/或熱可固化有機黏合劑。為了促進黏合劑交聯,在一些實施態樣中金屬奈米線墨液可包含0.0005重量%至約1重量%的交聯劑,在另一些實施態樣中約0.002重量%至0.5重量%,以及在其他實施態樣約0.005重量%至約0.25重量%。奈米線墨液可視需要包含流變改質劑(rheology modifying agent)或其組合。在一些實施態樣中,墨液可包含潤濕劑或表面活性劑以降低表面張力,且潤濕劑可用於改善塗層性質。潤濕劑通常為可溶於溶劑。在一些實施態樣中,奈米線墨液可包含約0.001重量百分比至約1重量百分比的潤濕劑,在另一些實施態樣中約0.002至約0.75重量百分比,以及在其他實施態樣中約0.003至約0.6重量百分比的潤濕劑。可視需要使用增稠劑作為流變改質劑以穩定分散液以及降低或消除沉降。在一些實施態樣中,奈米線墨液可視需要包含約0.05至約5重量百分比的增稠劑,在另一些實施態樣中約0.075至約4重量百分比,以及在其他實施態樣中約0.1至3重量百分比的增稠劑。本領域技藝人士將認知到在上述明確範圍內的其他黏合劑、潤濕劑及增稠劑的範圍係被考量且包含於本發明之揭露內。
許多聚合物黏合劑可適合溶解/分散於供金屬奈米線用的 溶劑中,而合適的黏合劑包括針對塗層應用而發展的聚合物。硬塗層聚合物如輻射可硬化塗層等係商業可購得,例如作為用於各種應用的硬塗層材料,其可經挑選使得溶於含水或不含水溶劑。合適種類的輻射可固化聚合物及/或熱可固化聚合物包括例如聚胺甲酸酯、丙烯酸系樹脂、丙烯酸系共聚物、纖維素醚及酯、其他不溶於水之結構多醣、聚醚、聚酯、含環氧基之聚合物、及其混合物。商業化聚合物黏合劑包括例如NEOCRYL®品牌丙烯酸系樹脂(DMS NeoResins)、JONCRYL®品牌丙烯酸系共聚物(BASF Resins)、ELVACITE®品牌丙烯酸樹脂(Lucite International)、SANCURE®品牌聚胺甲酸酯(Lubrizol Advanced Material)、纖維素乙酸丁酸酯聚合物(來自EastmanTM Chemical的CAB品牌)、BAYHYDROLTM品牌聚胺甲酸酯分散液(Bayer Material Science)、UCECOAT®品牌聚胺甲酸酯分散液(Cytec Industries,Inc.)、MOWITOL®品牌聚乙烯丁醛(Kuraray America,Inc.)、纖維素醚如乙基纖維素或羥基丙基甲基纖維素、其他多醣系聚合物如幾丁聚醣及果膠、合成聚合物如聚乙烯乙酸酯等。特定而言,已發現多醣系聚合物非常適合作為稀疏金屬導電層中的黏合劑。聚合物黏合劑可為在輻射曝照下自交聯,及/或可與光起始劑或其他交聯劑交聯。在一些實施態樣中,光交聯劑可在輻射曝照下形成自由基,然後該等自由基根據自由基聚合機制誘發交聯反應。合適的光起始劑包括例如商業可購得的IRGACURE®品牌(BASF)、GENOCURETM品牌(Rahn USA Corp.)、以及DOUBLECURE®品牌(Double Bond Chemical Ind.,Co,Ltd.)、及其組合等。
潤濕劑可用於改善金屬奈米線墨液的可塗佈性以及金屬奈米線分散液的品質。特定而言,潤濕劑可降低墨液的表面能使得在塗佈之 後良好地展開至表面上。潤濕劑可為表面活性劑及/或分散劑。表面活性劑為一種用於降低表面能的材料,且表面活性劑可改善材料的溶解性。表面活性劑通常具有親水部分的分子,該親水部分有助於表面活性劑的性質。廣泛的多種表面活性劑例如非離子表面活性劑、陽離子表面活性劑、陰離子表面活性劑、兩性離子表面活性劑等均係商業可購得。在一些實施態樣中,若與表面活性劑有關的性質不會是問題,非離子表面活性劑潤濕劑(如分散劑)亦為本領域所習知,其可有效改善墨液的潤濕能力。合適的商業化潤濕劑包括例如COATOSILTM品牌環氧官能化矽烷寡聚物(Momentum Performance Materials)、SILWETTM品牌有機聚矽氧表面活性劑(Momentum Performance Materials)、THETAWETTM品牌短鏈非離子氟表面活性劑(ICT Industries,Inc.)、ZETASPERSE®品牌聚合分散劑(Air Products Inc.)、SOLSPERSE®品牌聚合分散劑(Lubrizol)、XOANONS WE-D545分散劑(Anhui Xoanons Chemical Co.,Ltd)、EFKATM PU 4009聚合分散劑(BASF)、MASURF FP-815 CP、MASURF FS-910(Mason Chemicals)、NOVECTM FC-4430氟化表面活性劑(3M)、及其混合物等。
增稠劑可藉由自金屬奈米線墨液降低或消除固體沉降而用於改善分散液的穩定度。增稠劑可顯著或不顯著改變墨液的黏度或其他流體性質。合適的增稠劑係商業可獲得且包括例如CRAYVALLACTM品牌的改質尿素如LA-100(Cray Valley Acrylics,USA)、聚丙烯醯胺、THIXOLTM 53L品牌丙烯酸系增稠劑、COAPURTM 2025、COAPURTM 830W、COAPURTM 6050、COAPURTM XS71(Coatex,Inc.)、BYK®品牌改質尿素(BYK Additives)、Acrysol DR 73、Acrysol RM-995、Acrysol RM-8W(Dow Coating Materials)、Aquaflow NHS-300、Aquaflow XLS-530疏水改質聚醚增稠劑(Ashland Inc.)、Borchi Gel L 75 N、Borchi Gel PW25(OMG Borchers)等。
其他添加劑可添加至金屬奈米線墨液,其通常各自不大於約5重量百分比,在另一些實施態樣中不大於約2重量百分比,以及在其他實施態樣中不大於約1重量百分比。其他添加劑可包含例如抗氧化劑、UV穩定劑、除泡劑或抗發泡劑、抗沉降劑、黏度改質劑等。
在一些實施態樣中,使用一方法,其中稀疏奈米線膜首先沉積,然後進一步的加工可涉及或不涉及銀奈米線的熔合。如上所述,熔合成單一熔合金屬奈米結構化網路可提供透明導電膜改善之性質。對於金屬奈米線墨液的沉積,可使用任何合理的沉積方法,例如浸塗佈、噴塗佈、刀刃塗佈、桿塗佈、麥爾棒塗佈(Meyer-rod coating)、狹縫模塗佈、凹版印刷、旋轉塗佈等。對於合意的沉積方法,墨液可具有如黏度等性質係適當地經添加劑調整。類似地,沉積方法係針對所沉積之液體量,且墨液濃度可經調整以於表面上提供合意的金屬奈米線負載。在使用分散液形成塗層後,可將稀疏金屬導電層乾燥以去除液體。
金屬奈米線的熔合可藉由各種試劑達成。在不意於受限於理論的情況下,據信熔合劑可賦予金屬離子可移動性,且在熔合製程中自由能似可降低。在一些實施態樣中,過量的金屬遷移或生長可導致光學性質劣化,因此合意的結果可藉由以合理控制的方式使平衡偏移而達成,通常持續一段短時間,使得產生足夠熔合以獲得所欲導電性同時維持所欲光學性質。一般而言,熔合製程可以受控制的暴露於熔合蒸氣及/或藉由使用溶液中的熔合劑而進行的。在合適的條件下,熔合金屬導電網路為單一結 構。
在一些實施態樣中,熔合製程的起始可藉由部分地使溶液乾燥以增加組分的濃度而加以控制,且該熔合製程的淬冷可例如藉由沖洗(rinsing)或更完全地使金屬層乾燥而達成。在一些實施態樣中,提供接續的製程沉積另一墨液而使金屬奈米線熔合成具導電性金屬奈米結構化網路。熔合劑可與金屬奈米線一起併入單墨液中。該單墨液溶液可提供熔合製程的適當控制。以下實施例描述一種單墨液配方,其用於形成具有薄且均勻之金屬奈米線的單一熔合金屬導電網路。
稀疏金屬導電層通常形成於選定的基板表面上。在一些實施態樣中,基板為透明聚合物膜。可採用加工使膜圖案化。用於基板的合適聚合物包括例如聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)、聚丙烯酸酯、聚甲基丙烯酸甲酯、聚烯烴、聚乙烯氯、氟聚合物、聚醯胺、聚醯亞胺、聚碸、聚矽氧、聚醚醚酮、聚降莰烯(polynorbornene)、聚酯、聚苯乙烯、聚胺甲酸酯、聚乙烯醇、聚乙烯乙酸酯、丙烯腈-丁二烯-苯乙烯共聚物、環烯烴聚合物、環烯烴共聚物(COC)、環烯烴聚合物(COP)、聚碳酸脂、其共聚物或其共混物等。氟聚合物包括例如聚氟乙烯、聚偏二氟乙烯、聚四氟乙烯、六氟丙烯、全氟丙基乙烯醚、全氟甲基乙烯醚、聚氯三氟乙烯等。一些實施態樣中的聚合物膜可具有約5微米至約5奈米的厚度,在另一些實施態樣中約10微米至約2奈米,以及在其他實施態樣中約15微米至1奈米。本領域技藝人士將認知到在上述明確範圍內的其他厚度範圍係被考量且包含於本發明之揭露內。基板可包含多個組成及/或性質不同的層。以下呈現適用於透明導電膜之基板的材料的更具體種類,且一般基 板種類將包括該等具體材料及性質。
膜可藉由例如使用熱風機、烘箱、熱燈等乾燥,雖然在一些實施態樣中可空氣乾燥的膜可為適合的。在一些實施態樣中,乾燥期間可將膜加熱至約50℃至約150℃的溫度。乾燥之後,可例如使用醇或其他溶劑或溶劑共混物(如乙醇或異丙基醇)將膜沖洗一或更多次,以去除過剩固體而降低霧度。圖案化可藉由一些方便的方式達成。例如,金屬奈米線的印刷可直接導致圖案化。額外地或取代地,在熔合之前或之後,微影技術及/或削磨(ablation)方法可用於去除或適當地破壞部分金屬奈米線以形成圖案。可在烯疏金屬導電層上施加一或更多外塗層,如上文所述。
對於藉由基板上之稀疏金屬導電層而形成的透明導電膜之用途,該等膜通常係整合至其他結構中。對於透明導電膜之處理,通常在導電層之上放置保護聚合物外塗層。另外,針對加工,聚合物外塗層可藉由使用溶液塗佈技術而施加,或使用其他方法如擠出、層疊、軋光(calendering)、熔融塗佈技術等。若存在有多個聚合物外塗層,該等外塗層可使用或不使用類似方法施加。對於溶液加工外塗層,上文所述的各種塗佈方法可相同地應用於這些層。然而,聚合物外塗層的溶液加工可導致溶劑與形成金屬奈米線的良好分散液未必然相容。
一般而言,聚合物外塗層可具有約10奈米至約12微米的厚度,在另一些實施態樣中約15奈米至10微米,以及在其他實施態樣中約20奈米至8微米。在一些實施態樣中,可以如下方法選擇外塗層:藉由選擇折射率及厚度使得施加外塗層之後顯著降低霧度且不顯著劣化其他性質。另外,可選擇外塗層的厚度及組成而使得經由該外塗層量測的片電阻相對於 無該外塗層的量測值並無顯著改變。本領域技藝人士將認知到在上述明確範圍內的其他外塗層厚度範圍係被考量且包含於本發明之揭露內。
用於外塗層之適合的商業化塗佈組成物包括例如來自Dexerials Corporation(日本)的塗佈溶液、來自Hybrid Plastics,Inc.(密西西比州,美國)的POSS®塗佈組成物、來自California Hardcoating Company(加州,美國)的經二氧化矽填充的矽氧烷塗佈組成物、來自SDC Technologies,Inc.(加州,美國)的CrystalCoat UV可固化塗佈組成物。聚合物濃度及相應地其他非揮發性試劑之濃度可經選擇以達成塗佈溶液之合意的流變性,例如用於所選擇之塗佈製程的適當黏度。可添加或去除溶劑以調整總固體濃度。相對量的固體可經選擇以調整所得塗佈組成物的組成,且固體的總量可經調整以達成所欲的經乾燥之塗層厚度。一般而言,塗佈溶液可具有約0.025重量%至約50重量%的聚合物濃度,在其他實施態樣中約0.05重量%至約25重量%,以及在其他實施態樣約0.075重量%至約20重量%。本領域技藝人士將認知到在上述明確範圍內的其他聚合物濃度範圍係被考量且包含於本發明之揭露內。可選擇具有不同折射率之聚合物或其複合物作為外塗層,以賦予所欲透光度或其他性質,如抗反射及抗眩光。
透明塗層可更包含視需要的改質劑,例如用於透明導電膜的交聯劑、潤濕劑、黏度改質劑、改質奈米粒子、及/或穩定劑(如抗氧化劑及/或UV穩定劑)。改質奈米粒子如奈米鑽石之使用係描述於Virkar等人的美國公開專利申請案第2016/0096967號,標題為「Property Enhancing Fillers for Transparent Coatings and Transparent Conductive Films」,其全文併於此以供參考。於外塗層中穩定劑之併入係描述於Yang等人的共同審查中 美國專利申請案第15/730,053號,標題為「Stabilized Sparse Metal Conductive Films and Solutions for Delivery of Stabilizing Compounds」,其全文併於此以供參考。
對於塗佈前驅物溶液之沉積,可使用任何合理的沉積方法,例如浸塗佈、噴塗佈、刀刃塗佈、桿塗佈、麥爾棒塗佈(Meyer-rod coating)、狹縫模塗佈、凹版印刷、旋轉塗佈等。沉積方法係針對液體沉積量,且可調整溶液濃度以在表面上提供所欲產物塗層厚度。在以分散液形成塗層後,可將塗層乾燥以去除液體及適當地交聯。
對於產物之形成,光學透明黏著層及覆蓋稀疏金屬導電層之較厚的保護膜(與上文所述之視需要之外塗層)可在適合位置形成孔洞等以提供使電連接至導電層。一般而言,各種聚合物膜加工技術及設備可用於加工這些聚合物片,且在本領域中已良好地發展該等設備及技術,以及進一步發展的設備及技術可相應地用於本文的材料。這些具有光學透明黏著層等的結構之形成係進一步描述於Yang等人的美國公開專利申請案第2016/0122562A號,標題為「Stabilized Transparent Conductive Elements Based on Sparse Metal Conductive Layers」,其全文併於此以供參考。
透明導電膜-CEI顏色性質
在稀疏金屬導電層的內容中,膜可藉由除了導電度、透射率及霧度表徵外,還可藉由其顏色性質而表徵,將在以下段落描述。顏色參數係相應於色覺(color perception)而定義。可測量而評價屬於透明導電層的顏色變化。特定對銀系稀疏金屬導電層而言,可觀察到一些黃化,通常目標係使黃化維持低值,且為了低感知能見度(perceptional visibility)還希 望使漫反射強度(L*)維持低值。本文所描述之薄且均勻之奈米線可達成優異的低色彩貢獻,而進一步貢獻其用於透明導電膜之合意的本質。
色彩空間可定義為人類可感知色彩的相關光譜波長。CIELAB為一種色彩空間,其由國際照明委員會(CIE)確定。CIELAB色彩空間係使用三維座標L*、a*及b*,其中L*係關於顏色的亮度,a*係關於顏色於紅色與綠色之間之位置,以及b*係關於顏色於黃色與藍色之間之位置。「*」值係代表相對於標準白點的標準化值。a*及b*之CIELAB參數可使用商業化軟體基於透明導電膜上之透光度的分光光度計量測值而測定。雖然LAB參數可以透射或反射型式任一種評價,在此處a*及b*係以關於透明導電膜的透射型式評價,而L*係使用色彩計/分光光度計以反射型式評價,使用以下將描述的堆疊結構量測。本文所報導的L*量測值為漫反射值,其不包括鏡反射(speculative reflection,specular reflection)。用於進行量測的分光光度計具有整合球體(integration sphere),該分光光度計可在該整合球體上進行量測而不包括鏡反射。
併入有稀疏金屬導電網路的膜可被發現具有稍帶黃色的色澤,且b*的降低可導致更中性外表的膜。本文所述之薄且均勻之奈米線據發現可形成高度透明的膜,其具有低片電阻及相對低的b*值。另外,還發現可引入奈米尺寸的著色劑至結構中以降低結構的整體b*值。奈米尺寸著色劑之使用係描述於Yang等人的美國公開專利申請案第2016/0108256號,標題為「Transparent Films with Control of Light Hue Using Nanoscale Colorants」,,其全文併於此以供參考。
對於一些應用,反射L*亦為重要。為了量測L*,通常適合 相對於黑色背景在反射方向上量測。L*係關於顏色的亮度,且接近零之L*值(相應於黑色)可合適地基於在具有黑色背景的堆疊結構的反射量測。雖然顏色可接近黑色,但穿過導電層的透射高,因此透明導電層所提供暗色相(dark hue)使顏色改變。對於特定應用,適合使透明導電膜相對於黑色背景僅貢獻少量光反射。如實施例中所報導之△L*值,其為L*(TCF)-L*(base),其中L*(TCF)為安裝於具有黑色背景之基板上之具有透明導電膜的結構的值,而L*(base)為無透明導電層之相應的結構的值。量測係以漫反射(或SCE,鏡反射貢獻排除)模式使用Konica-Minolta分光光度計CM-3700A進行,其中該分光光度計可用於透射或反射量測且具有內建整合球體,裝備有SpectraMagic NX軟體而可提供CIELAB值。
在一些實施態樣中,具有不大於約100Ω/□之片電阻的透明導電膜可導致不大於約2.0的△L*值,在另一些實施態樣中不大於約1.75,以及在其他實施態樣不大於約1.5,上述係相對於黑色背景使用反射型式量測。另外,可使透明導電膜之透射b*的絕對值不大於約1.0,在另一些實施態樣中不大於約0.9,以及在其他實施態樣不大於約0.75。本領域技藝人士將認知到在上述明確範圍內的其他光學參數及相應片電阻範圍係被考量且包含於本發明之揭露內。b*及a*值可使用標準CIELAB94及/或CIE DE2000中的公式評價,該等公式為國際照明委員會(Commission Internationale de L'Eclairage)所定,參見Colorimetry,第3版,CIE,2004,其全文併於此以供參考。可使用商業化分光光度計及軟體進行這些計算,例如Konica Minolta分光光度計CM-3700A與SpectraMagicTM NX軟體。
透明導電膜-電性質及光學性質
併入稀疏金屬導電層(如熔合金屬奈米結構化網路)的透明導電膜可提供低的電阻同時提供良好的光學性質。因此,該等膜可有效作為透明導電電極等。該等透明導電電極可適用於各種應用,例如沿著太陽能電池之接收光的表面的電極。對於顯示器且特別是對於觸控螢幕,可使膜圖案化以提供由該膜形成的導電圖案。具有透明導電膜的基板通常在圖案的相應部分係具有良好的光學性質。
薄膜的電阻可表示為片電阻,其係以每平方之歐姆的單位表示(Ω/□或ohms/sq),藉此區分根據相關量測方法之參數所得的體電阻值。膜的片電阻通常使用四點探針量測或其他合適方法量測。在一些實施態樣中,熔合金屬奈米線網路可具有不大於約200Ω/□的片電阻,在另一些實施態樣中不大於約150Ω/□,在另一些實施態樣中不大於約100Ω/□,以及在其他實施態樣中不大於約75Ω/□。本領域技藝人士將認知到在上述明確範圍內的其他片電阻範圍係被考量且包含於本發明之揭露內。在實施例中,透明導電膜係以目標片電阻70Ω/□或50Ω/□形成。一般而言,片電阻可藉由增加奈米線負載而降低,但增加負載在其他方面上可為或不為合意的。
根據特定應用,用於裝置之片電阻的商業化規格可能非必然針對低片電阻值,例如當涉及額外成本時,而目前商業化相關值可例如為270Ω/□、相對150Ω/□、相對100Ω/□、相對50Ω/□、相對40Ω/□、相對30Ω/□或更低等作為目標值用於不同品質及/或尺寸的觸控螢幕,且這些值各自限定以特定值作為端點的範圍,例如270Ω/□至150Ω/□、270Ω/□至100Ω/□、150Ω/□至100Ω/□等15個被限定的特定範圍。因此,較低成本的膜可適用於特定應用,換來價格適中但較高的片電阻值。
對於作為透明導電膜之應用,適合使熔合金屬奈米線網路或其他稀疏金屬導電層維持良好透光度。原則上,透光度與金屬負載呈逆相關,較高的負載導至透光度的降低,雖然網路的加工亦顯著影響透光度。另外,聚合物黏合劑及其他添加劑可經選擇以維持良好透光度。透光度可為無因次量,透射率。透射率為透射光強度(I)對入射光強度(Io)的比例。在以下實施例中報導對於透明基板上之透明導電層的透射率。透明導電層的透光度可評價為相對於穿過支持透明導電膜之基板的透射光。例如,本文所述之導電層的透光度可藉由使用UV-可見光分光光度計及測量穿過導電膜及支持基板的總透射率而測得。在透明膜基板上的透明導電層之透射率值係被報導。穿過導電層的透射率(Tlayer)可藉由所測得之總透射率(T)除以穿過支持基板的透射率(Tsub)而估計。(T=I/Io且T/Tsub=(I/Io)/(Isub/Io)=I/Isub=Tlayer)。因此,所報導之總透射率可經修正以去除穿過基板的透射率而獲得導電層、外塗層、或其他組件之單獨的透射率。
雖然通常希望具有橫跨可見光譜的良好透光度,但為了方便,可報導550奈米波長處的光的光學透射率。替代地或額外地,透射率可報導為400奈米至700奈米波長的光的總透射率,且於以下實施例報導此種結果。一般而言,對於熔合金屬奈米線膜,550奈米透射率與400奈米至700奈米的總透射率(或方便地簡稱為「總透射率」)之量測並無定性上的不同。在一些實施態樣中,由熔合網路形成的膜係具有至少80%的總透射率(TT%),在另一些實施態樣中至少約85%,在另一些實施態樣中至少約90%,在其他實施態樣中至少約94%,以及在一些實施態樣中約95%至99%。可使用標準ASTM D1003(「用於透明塑膠之霧度及發光透射率的標準測試 方法,Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics」)評價膜的透射率,該標準併於此以供參考。本領域技藝人士將認知到在上述明確範圍內的其他透射率範圍係被考量且包含於本發明之揭露內。
熔合金屬網路還可有低霧度與可見光的高透射率,同時具有合意的低片電阻。霧度可使用霧度計根據上文引述的ASTM D1003測量,且可將基板的霧度貢獻量排除而提供透明導電膜的霧度值。根據ASTM D1003測量的霧度係基於透射的霧度,且可基於反射的霧度進行不同的量測。除非另外明確指示,本文的霧度係指基於透射的霧度。在一些實施態樣中,透明導電膜可具有不大於約0.6%的霧度值,在另一些實施態樣中不大於約0.5%,在另一些實施態樣中不大於約0.4%,以及在其他實施態樣中約0.35%至約0.15%。已發現選定之透明外塗層可顯著降低具有透明導電層之結構的霧度,且具有該外塗層之結構的值可相對以上霧度值範圍而加以考量。聚合物外塗層已在上文中討論。本領域技藝人士將認知到在上述明確範圍內的其他霧度範圍係被考量且包含於本發明之揭露內。
在下文實施例中,透明導電膜係以二種目標片電阻形成,即70Ω/□與50Ω/□,雖然已量測其實際片電阻。為了獲得更低的片電阻值,表面可使用更高的金屬負載,其可相應地導致透射率稍微降低與霧度及b*的增加。
如實施例中所述,因合適地選擇銀奈米線,因而同時達成非常低的霧度值以及片電阻。聚合物外塗層可進一步降低霧度。可調整負載以平衡片電阻及霧度,使得可具有低的霧度值同時仍具有良好的片電阻 值。特定而言,不大於0.8%的霧度值、以及在其他實施態樣中約0.15至約0.7%的霧度值可與至少約60Ω/□的片電阻一起達成。另外,0.3%至約0.8%、以及在其他實施態樣中約0.35%至約0.7%的的霧度值可與約30Ω/□至約60Ω/□的片電阻值一起達成。該等膜係維持良好的透光度。本領域技藝人士將認知到在上述明確範圍內的其他霧度範圍係被考量且包含於本發明之揭露內。
針對多層膜的相應性質,通常選擇額外的組分使其少量影響光學性質,且用於光學元件的各種塗層及基板係商業上可獲得。合適的光學塗層、基板及相關材料係如上文所統整。一些結構材料可為電絕緣,且若使用較厚的絕緣層,則膜可被圖案化以提供穿過該絕緣層的間隙或空隙的位置,如此提供通路或電接觸至所鑲有的導電元件。
為了製造感應器等,通常進行如上文描述的圖案化以產生導電區域及電絕緣區域,其中該二區域皆為透明。由含有薄且均勻之奈米線的墨液所製造的透明導電膜還可被塗佈至基板的一或更多側面,而可用於製造觸控感應器。雖然觸控感應器可由二個不同的透明導電膜層以光學透明黏著劑分開地構成,但還可藉由沉積(塗佈)然後基板上稀疏金屬層圖案化而製造感應器。可圖案化及加工在基板之一側面的稀疏金屬層之單一塗層,用以在單一層上界定感測(sense)及接地(ground)(或「X-」及「Y-」)二者。或者,基板可在該同一基板之二個側面塗佈,例如接續地在各個面沉積及加工。在圖案化及進一步加工使透明導電膜併入結構中後,可製造極薄的感應器。相較於氧化銦錫(或其他摻雜金屬氧化物),由稀疏金屬層製造的透明導體之一主要優點為優越的可撓性。藉由在單一基板上製造整 個感測器,可進一步發揮該優點。將基板二表面上之透明導體圖案化的一般方法係描述於Zhong等人的美國公開專利申請案第2015/0116255號,標題為「Double Sided Touch Sensor on Transparent Substrate」,其全文併於此以供參考。在基板之相對面加工銀系透明導電膜的方法係描述於Jones等人的美國公開專利申請案第2014/0202742號,標題為「Two-Sided Laser Patterning on Thin Film Substrates」,其全文併於此以供參考。
實施例
實施例1-使用含KBr之鹽催化劑合成銀奈米線
此實施例係描述使用改善之催化劑組合物及製程合成非常薄且高度均勻之銀奈米線的方法。
第一合成反應係在封閉的二公升反應器中進行,且結合各個實施態樣的四個批次用於分析。首先,將約1.67公升的乙二醇放置於在室溫下的反應器,然後開始加熱。在加熱開始之前,將聚乙烯基吡咯啶酮(K30,BASF)在持續攪拌下添加至EG,然後繼續加熱。一旦反應器幾乎到達目標峰值溫度,則停止加熱,然後將催化劑(KBr及氯化1-辛基-3-甲基咪唑鎓(OMMCl))的乙二醇溶液在持續混合下添加至反應器。在適當的混合後,添加硝酸銀的乙二醇溶液。根據添加至反應器的量,反應器中的濃度為0.1重量%至10重量%的PVP、0.00002M至0.002M的KBr、0.00002M至0.002M的OMMCl、0.0025M至0.25M的AgNO3。當然,一旦添加反應物且發生各種反應時(如AgCl沉澱及Ag還原),溶液中各種物種的濃度將變化,因此參照添加時的量係提供有用的參考點。在硝酸銀混合後,添加額外量的乙二醇直至達到所欲體積,然後繼續攪拌直至反應終止,其約為至反應器的最後添 加之後一小時。
合成完成之後,使用重複的丙酮析出、離心以及在水中再分散而純化銀奈米線。將經純化的銀奈米線自分散液中取出及乾燥以評估產率。產率係基於比較在經純化之銀奈米線中的銀量與以硝酸銀型式添加的總銀量。在此實驗中,產率一般約為12至15%。
收集的銀奈米線藉由穿透式電子顯微鏡(TEM)表徵。代表性TEM顯微圖示於第1圖。對108個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第2圖。平均直徑為17.3奈米,標準差1.9奈米,69%之該等奈米線具有18奈米或更小的直徑,以及1.8%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為14.2奈米。
銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性UV-可見光吸收光譜與無氯化咪唑鎓鹽下進行合成之代表性控制組係示於第3圖。相同的控制組吸收光譜係示於以下所有吸收光譜圖中。吸收光譜最大值在375.5奈米相較於控制組吸收最大值在376.6奈米;以及於410奈米處的標準化吸光度為0.208,而控制組於410奈米處的標準化吸光度為0.246。410奈米處之降低的吸光度係與較薄且霧度較低的奈米線相符。
第二合成反應係使用PVP K90(BASF)代替PVP K30而進行。合成的其餘方面實質上係與以上第一合成相同。此反應的產率低。此樣品的代表性電子顯微圖示於第4圖。對52個奈米線進行直徑量測及平均。銀奈米線直徑的直方圖示於第5圖。平均直徑為16.2奈米,標準差2.1奈米,82.7%之該等奈米線具有18奈米或更小的直徑,以及29%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為12.7奈米。第三合成反應係使用 PVP K85(商業化的更均勻聚合物)代替原始PVP K30中的3%。合成的其餘方面實質上係與以上第一合成相同。此反應的產率為約12%。
代表性TEM顯微圖示於第6圖。對128個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第7圖。平均直徑為16.9奈米,標準差1.7奈米,74.3%之該等奈米線具有18奈米或更小的直徑,以及8.6%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為14.2奈米。使用PVP(高分子量)K85所得之結果係介於使用PVP K30與PVP K90合成之銀奈米線的性質之間,除了使用PVP K85(高分子量)合成之銀奈米線的奈米線直徑之標準差係小於其他任一者的合成結果。代表性吸收光譜示於第8圖。吸收光譜最大值在372.1奈米,以及於410奈米處的標準化吸光度為0.166。410奈米處之窄的峰寬度及低吸光度係與直徑高度均勻及薄的奈米線相符。
實施例2-使用替代性溴化物鹽催化劑合成銀奈米線
此實施例係針對使用具有多原子陽離子的溴化物鹽催化劑合成銀奈米線的方法。
第一組實驗係使用溴化己基三甲基銨(C6H13(CH3)3NBr)與氯化1-辛基-3甲基咪唑鎓催化劑進行。合成的其餘方面係如實施例1所述進行。代表性TEM顯微圖示於第9圖。對123個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第10圖。平均直徑為17.3奈米,標準差2.1奈米,81.3%之該等奈米線具有18奈米或更小的直徑,以及5.7%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為14.4奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜示於第11圖。吸收光 譜最大值在372.1奈米,以及於410奈米處的標準化吸光度為0.176。410奈米處之低吸光度係與直徑的高度均勻相符。
另一樣品係使用溴化1-丁基3-甲基咪唑鎓代替實施例1中的KBr。合成的其餘方面係如實施例1所述進行。代表性TEM顯微圖示於第12圖。對134個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第13圖。平均直徑為17.4奈米,標準差1.8奈米。所測得之最小直徑為13.7奈米,而所測得之最大直徑為23.6奈米。
實施例3-使用咪唑合成銀奈米線
此實施例展示使用咪唑有機催化劑合成的銀奈米線的性質。
二種樣品係使用咪唑添加劑與氯化銨及溴化鉀鹽催化劑形成,以及形成僅使用氯化銨及溴化鉀而無任何咪唑添加劑的控制組樣品。咪唑添加劑係以約0.0001M至約0.05M的濃度添加。除了添加咪唑外,合成反應係實質上如同實施例1進行。在樣品中分別使用二種不同濃度的咪唑,其中第二樣品中使用的咪唑相對於第一樣品為三倍。
控制組奈米線樣品之代表性TEM顯微圖示於第14圖。對100個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第15圖。平均直徑為21.5奈米,標準差2.4奈米。所測得之最小直徑為17.2奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與使用咪唑之樣品的吸收光譜結合示出,如下文進一步解釋。吸收光譜最大值在377.6奈米,以及於410奈米處的標準化吸光度為0.243。
在第一咪唑濃度下合成之銀奈米線的代表性TEM顯微圖示於第16圖。對108個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖 示於第17圖。平均直徑為19.6奈米,標準差1.8奈米,20%之該等奈米線具有18奈米或更小的直徑,以及0%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為16.8奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無咪唑的控制組吸收光譜示於第18圖。吸收光譜最大值在376.0奈米,以及於410奈米處的標準化吸光度為0.214。使用咪唑合成的奈米線具有降低的奈米線直徑及更佳均勻度,如標準差、UV-可見光峰寬度、吸收最大值之波長、及410奈米處相對吸光度所表示。
在第二咪唑濃度下合成之銀奈米線的代表性TEM顯微圖示於第19圖。對105個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第20圖。平均直徑為18.9奈米,標準差2.0奈米,38%之該等奈米線具有18奈米或更小的直徑,以及0%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為15.5奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無咪唑的控制組吸收光譜示於第21圖。吸收光譜最大值在376奈米,以及於410奈米處的標準化吸光度為0.206。使用更高咪唑濃度合成的奈米線具有更加降低的奈米線直徑,雖然以標準差表示的均勻度無更加改善。
二種另外的奈米線係在二種咪唑濃度下與氯化1-辛基-3-甲基咪唑鎓及溴化鉀鹽進行合成。第二咪唑濃度為第一咪唑濃度的二倍。使用第一咪唑濃度合成之銀奈米線的代表性TEM顯微圖示於第22圖。對109個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第23圖。平均直徑為15.8奈米,標準差1.5奈米,90%之該等奈米線具有18奈米或更小的直徑,以及32%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為 13.3奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無咪唑的控制組吸收光譜示於第24圖。吸收光譜最大值在373.5奈米,而控制組吸收最大值在376.1奈米;以及於410奈米處的標準化吸光度為0.188,而控制組於410奈米處的標準化吸光度為0.216。根據標準差及吸收光譜,使用咪唑合成的奈米線具有非常小且均勻的奈米線直徑。
使用第二咪唑濃度(與氯化1-辛基-3-甲基咪唑鎓及溴化鉀)合成之銀奈米線的代表性TEM顯微圖示於第25圖。對102個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第26圖。平均直徑為17.7奈米,標準差2.8奈米,70.6%之該等奈米線具有18奈米或更小的直徑,以及12.7%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為13.7奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無咪唑的控制組吸收光譜示於第27圖。吸收光譜最大值在374.4奈米,而控制組吸收最大值在376.1奈米;以及於410奈米處的標準化吸光度為0.178,而控制組於410奈米處的標準化吸光度為0.216。相對於前段所述的使用較低咪唑濃度的樣品,更高的咪唑濃度導致較薄且較不均勻的銀奈米線。
實施例4-使用吡唑合成銀奈米線
此實施例展示使用吡唑有機催化劑合成的銀奈米線的性質。
二銀奈米線樣品係在2公升反應器尺度下使用吡唑添加劑與氯化1-辛基-3-甲基咪唑鎓及溴化鉀鹽催化劑而形成。吡唑添加劑係以約0.0001M至約0.05M的濃度添加。除了添加吡唑外,合成反應係實質上如同實施例2進行。在相同吡唑濃度下重複而合成二樣品。
使用第一吡唑樣品合成之銀奈米線的代表性TEM顯微圖示 於第28圖。對103個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第29圖。平均直徑為14.9奈米,標準差1.65奈米,94%之該等奈米線具有18奈米或更小的直徑,以及62%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為12.5奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無吡唑的控制組吸收光譜示於第30圖。吸收光譜最大值在368奈米,而控制組吸收最大值的376.1奈米;以及於410奈米處的標準化吸光度為0.154,而控制組於410奈米處的標準化吸光度為0.216。使用吡唑合成的奈米線具有非常小且均勻的奈米線直徑,以及相對於使用咪唑合成甚至更小的平均直徑及相似的標準差。
在選定之吡唑濃度下第二輪合成之銀奈米線的代表性TEM顯微圖示於第31圖。對90個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第32圖。平均直徑為15.25奈米,標準差1.73奈米,95%之該等奈米線具有18奈米或更小的直徑,以及54%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為12.3奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無吡唑的控制組吸收光譜示於第33圖。吸收光譜最大值在370奈米,而控制組吸收最大值在376.1奈米;以及於410奈米處的標準化吸光度為0.154,而控制組於410奈米處的標準化吸光度為0.216。使用吡唑之第二輪合成的奈米線具有相似之非常小且均勻的奈米線直徑,雖然相對於使用吡唑之第一輪合成的銀奈米線係具有稍大的平均直徑及標準差。
另一銀奈米線樣品係在10公升反應器尺度下在上述樣品的濃度下使用吡唑添加劑與氯化1-辛基-3-甲基咪唑鎓及溴化鉀鹽催化劑而形 成。使用第二吡唑濃度合成之銀奈米線的代表性TEM顯微圖示於第34圖。對94個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第35圖。平均直徑為15.29奈米,標準差1.21奈米,99%之該等奈米線具有18奈米或更小的直徑,以及39%之該等奈米線具有15奈米或更小的直徑。所測得之最小直徑為12.9奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無吡唑的控制組吸收光譜示於第36圖。吸收光譜最大值在371奈米,而控制組吸收最大值在376.1奈米;以及於410奈米處的標準化吸光度為0.158,而控制組於410奈米處的標準化吸光度為0.216。另外對異丙基醇中的分散液進行吸收光譜,且對於全部三個樣品,第一樣品的吸收最大值在358.5奈米處以及其他二個樣品在359奈米處。在10公升尺度下合成的奈米線在目前發現的批次對批次的變異範圍(batch to batch variation)內,係與在較小批次中製造的銀奈米線具有大致相等的性質。
實施例5-合成期間添加水
此實施例展示在奈米線合成期間添加少量的水導致奈米線直徑降低同時維持均勻的奈米線。
除了在添加硝酸銀之前添加0.3重量百分比的水至溶劑之外,銀奈米線樣品係如同實施例1所述使用OMMCl及KBr催化劑而合成。反應中使用少量水合成之銀奈米線的代表性TEM顯微圖示於第37圖。對127個奈米線進行線直徑量測及平均。銀奈米線直徑的直方圖示於第38圖。平均直徑為16.5奈米,標準差1.69奈米,72%之該等奈米線具有17奈米或更小的直徑。所測得之最小直徑為14.3奈米。銀奈米線的分散液係於DMSO中形成,然後進行吸收光譜。代表性吸收光譜與無添加水的控制組吸收光譜示 於第39圖。吸收光譜最大值在373奈米,控制組吸收最大值在376.6奈米;以及於410奈米處的標準化吸光度為0.182,而控制組於410奈米處的標準化吸光度為0.246。水的添加降低0.8奈米的平均直徑且導致奈米線的更佳均勻度。
實施例6-透明導電膜
此實施例確立透明導電膜的改善性質,該透明導電膜由如本文所述而合成之較薄且均勻的銀奈米線形成。
對於如以上實施例所述而合成之選定組別的較薄且均勻之銀奈米線進行透明導電膜的光學性質檢驗。在二種結構上進行測量,以及對於使用無透明導電膜之參考結構的控制組進行測量。對於二種導電結構,使用銀奈米線墨液而形成透明導電膜,實質上如同上文引述之'968專利的實施例5所述。膜係手動地使用狹縫塗佈而沉積至基板上。具有銀奈米線墨液之結構係於烘箱中在100℃下進行10分鐘以使墨液乾燥。乾燥製程誘發化學熔合,其係由於溶劑去除而使成分濃縮,其中進一步的反應係藉由持續乾燥而結束。選擇銀沉積的量使得膜以大約50Ω/□或70Ω/□的片電阻為目標,如同以下具體樣品所示。在導電膜乾燥之後,在該經乾燥的導電膜上手動地狹縫塗佈商業化的外塗層。使用UV燈將該外塗層乾燥及交聯以形成具有85奈米之厚度的外塗層。
對於用於測試薄膜性質的結構,該等結構係圖示於第40圖至第42圖。參照第40圖,顯示透明結構100係在基板104(50微米厚的環烯烴聚合物(COP))上且具有透明導電層102(具有熔合金屬奈米結構網路),以及在透明導電層102上之有商業化丙烯酸系塗佈組成物所形成之大約85 奈米的外塗層106。參照第41圖,顯示適用於反射量測的第二結構110。黑色丙烯酸系板係用於對量測提供黑色背景。在某種意義上,黑色基板係用於模擬黑色手機銀幕。在第41圖中,在外塗層106上放置具有二個黏著表面的光學透明黏著層112。光學透明黏著層112的另一表面係放置於黑色丙烯酸系板114上。在基板104的另一表面上放置抗反射層116。第42圖顯示參考結構120。參照第42圖,疊層有黑色丙烯酸系板114、光學透明黏著層112、基板104、以及抗反射層116,其不具有透明導電層102或外塗層106。
第40圖的結構係用於測量片電阻、透射率、b*、及霧度。第二結構係示於第41圖,以及無透明導電膜的參考結構係式於第42圖。第41圖及第42圖中的結構係用於以SCE模式測量反射L*。第42圖之參考結構的SCE模式CIELAB量測值為L*=1.62、a*=0.19、以及b*=-0.07。
膜樣品的霧度值係使用BYK Haze-Gard plus 4725霧度計測量。為了調整以下樣品之霧度量測值,可從具有透明導電層(第41圖)的量測值扣除控制組樣品(第42圖)的基板之霧度值,以分別獲得導電膜及外塗層大概的霧度量測值。TT%及霧度值係使用BYK Haze-Gard plus 4725霧度計根據ASTM D 1003標準(「用於透明塑膠之霧度及發光透射率的標準測試方法,Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics」)測量,該標準併於此以供參考。對於膜所呈現之總透射率及霧度值係包括50微米厚的COP基板,該基板具有92.6%的總透射率、0.08%的霧度、及0.09的b*。b*及a*的CIELAB值係使用商業化軟體測定,其係使用來自Konica Minolta分光光度計CM-3700A所得之量測值與SpectraMagicTM NX軟體測定。
片電阻係使用4點探針方法、非接觸式電阻計測量,或使用由銀膠形成之銀的二實線(非透明)所界定的方形而量測膜的電阻值。在一些實施態樣中,為了進行電阻量測,有時係使用一對平行之銀膠條,其係藉由將該銀膠塗至樣品的表面上而界定方形或矩形,然後在大約120℃下退火20分鐘而固化及乾燥該銀膠。連接鱷魚夾至銀膠條,然後連接引線至商業化電阻量測裝置。
對於控制組奈米線及具有降低之直徑且均勻的奈米線進行導電及光學量測。以二種沉積量進行量測,其中一種以約50Ω/□之片電阻為目標,而第二種以70Ω/□之片電阻為目標,以及進行具有及不具外塗層之量測。結果呈現於表1(不具外塗層)及表2(具有外塗層)。對於較薄且均勻的奈米線,片電阻與霧度之乘積顯著降低。
Figure 108136063-A0101-12-0055-5
Figure 108136063-A0101-12-0055-6
Figure 108136063-A0101-12-0056-7
另外還測定使用三種不同批次的薄且均勻之奈米線的導電及光學性質。結果示於表3(不具外塗層)及表4(具有外塗層)。在這些結果中,如同表1及表2所呈現之結果,外塗層導致H%及b*顯著降低,同時僅些微或沒有導致透射率(TT%)變化。
Figure 108136063-A0101-12-0056-8
Figure 108136063-A0101-12-0056-9
Figure 108136063-A0101-12-0057-10
對於表1及表2所使用的樣品,以反射型式測量L*。已測量第42圖之控制組結構的L*而發現為1.62。對於具有透明導電膜的樣品,報導△L*值(其為L*樣品-L*控制組),因為該值與透明導電膜的性質相關。這些值呈現於表5。較薄的奈米線展現顯著較小的△L*值。
Figure 108136063-A0101-12-0057-11
評價七個批次的較薄且均勻之銀奈米線以檢驗直徑分布如何影響光學性質。塗層具有約70Ω/□之片電阻為目標,儘管已列出具體量測值。奈米線之性質係呈現於表6以及奈米線的光學性質係呈現於表7。
Figure 108136063-A0101-12-0057-12
表7
Figure 108136063-A0101-12-0058-14
根據表5及表6的結果,較低的L*可與具有較少之直徑大於18奈米的奈米線相關。因此,較薄之平均直徑與較小之標準差二者結合對於達成較小的L*值可為特別重要。
一種結構係於COP聚合物基板之二相對表面上使用金屬奈米結構化網路而形成。該結構顯示於第43圖。透明導電膜及聚合物外塗層可接續形成,且各別的透明導電膜之形成係實質上如同本實施例中上文之結果。所得結構係具有二個透明導電膜,各個膜係具有約70Ω/□的片電阻。最終結構的霧度(H%)為0.56。
以上的實施態樣目的為說明性而非限定性。另外的實施態樣係包含於申請專利範圍中。另外,雖然本發明係參照特定實施態樣而描述,本領域技藝人士將認知到在不偏離本發明精神及範圍的情況下,可在形式及細節上最改變。上文中任何併入之參考文獻係被限制使得沒有併入任何與本文明確揭示相反的主體。在某種程度上,特定結構、組合物、及/或製程於本文中係與組成、元件、成分或其他部分一起描述,應理解本發明之揭露係涵蓋特定實施態樣;包含特定組分、元件、成分、其他部分、或其組合的實施態樣;以及實質上由該等組分、元件、成分、其他部分、或 其組合組成且可包含其他不改變本體基本性質之特徵的實施態樣,如同討論中所建議,除非特別另外說明。

Claims (28)

  1. 一種奈米線之集合,包含銀且具有不大於約20奈米的平均直徑以及不大於約2.5奈米之直徑的標準差。
  2. 如請求項1所述之奈米線之集合,具有不大於約18奈米的平均直徑。
  3. 如請求項1所述之奈米線之集合,具有不大於約16奈米的平均直徑。
  4. 如請求項1所述之奈米線之集合,具有不大於約2.25奈米之直徑的標準差。
  5. 如請求項1所述之奈米線之集合,具有不大於約2.0奈米之直徑的標準差。
  6. 如請求項1所述之奈米線之集合,其中該等奈米線於二甲基亞碸(dimethylsulfoxide;DMSO)中之稀釋分散液的最大吸收波長不大於376.5奈米,在410奈米下的標準化(normalized)吸光度不大於約0.225。
  7. 如請求項1所述之奈米線之集合,其中當介於300奈米與800奈米之間的光譜被標準化成具有介於0與1之間的吸光值時,該等奈米線於二甲基亞碸中之稀釋分散液在410奈米下的吸光度不大於約0.18。
  8. 如請求項1所述之奈米線之集合,其中不大於25%之該等奈米線具有大於18奈米之直徑。
  9. 如請求項1所述之奈米線之集合,其中不大於約10%之該等奈米 線具有大於18奈米之直徑。
  10. 如請求項1所述之奈米線之集合,具有貴金屬塗層。
  11. 一種合成銀奈米線之方法,該方法包括下列步驟:形成實質上不含順磁性離子之反應溶液,該反應溶液包含多元醇溶劑、聚乙烯基吡咯啶酮(PVP)、氯化物鹽及溴化物鹽之共混物,其中該反應溶液包含具有至少一個但不多於三個的氮原子以及至少一個碳原子的五員芳族雜環陽離子;將該反應溶液加熱至峰值溫度;以及添加可溶性銀鹽。
  12. 如請求項11所述之方法,其中溴化物離子之莫耳量為氯化物離子之莫耳量的約0.6倍至約5倍。
  13. 如請求項11所述之方法,其中對反應混合物進行加熱以達到至少約145℃的峰值溫度,然後可終止或不終止該加熱。
  14. 如請求項11所述之方法,其中該反應溶液包含銨、具有有機官能基的銨、鹼性陽離子、或其混合物。
  15. 如請求項11所述之方法,其中該芳族雜環陽離子包含咪唑鎓(imidazolium)、吡唑鎓(pyrazolium)、其衍生物、或其混合物。
  16. 如請求項11所述之方法,其中該反應溶液包含聚乙烯基吡咯啶酮K30(PVP K30)及聚乙烯基吡咯啶酮K90(PVP K90)的共混物。
  17. 如請求項11所述之方法,其中該可溶性銀鹽係於目標峰值溫度之±5℃內添加,然後該加熱係被中斷或減少以達成逐漸冷卻。
  18. 如請求項11所述之方法,其中以反應器內之添加量計,該反應溶液之濃度為0.1重量%至10重量之PVP、0.00002M至0.005M之溴化物鹽、0.00002M至0.005M之氯化物鹽、0.00002M至0.005M之咪唑鎓鹽及0.0025M至0.25M之AgNO 3
  19. 如請求項11所述之方法,其中該溶劑中的2%至40%係與該可溶性銀鹽一起添加或者係於該可溶性銀鹽添加後進行添加。
  20. 如請求項11所述之方法,其中反應開始時,反應器中之混合物更包含約0.01重量%至約5重量%的水。
  21. 如請求項11所述之方法,更包含自完成之反應混合物中對銀奈米線進行純化,其中該等銀奈米線具有不大於約18奈米之平均直徑以及不大於約2.5奈米之直徑的標準差。
  22. 一種合成銀奈米線之方法,該方法包含下列步驟:形成包含以下之共混物的反應溶液:多元醇溶劑、聚乙烯基吡咯啶酮、包含氯化物及/或溴化物之鹽、以及具有包含至少一個但不多於三個的氮原子及至少一個碳原子之五員芳族雜環的中性有機化合物;將該反應溶液加熱至峰值溫度;以及添加可溶性銀鹽。
  23. 如請求項22所述之方法,其中該可溶性銀鹽係於目標峰值溫度之±5℃內添加。
  24. 如請求項22所述之方法,其中具有五員芳族環的該化合物為咪唑、吡唑、咪唑衍生物、吡唑衍生物、或其混合物。
  25. 如請求項22所述之方法,其中以反應器內之添加量計,該反應溶液之濃度為0.1重量%至10重量%之PVP、0.00002M至0.005M之溴化物鹽、0.00002M至0.005M之氯化物鹽、約0.0001M至約0.1M之芳族雜環化合物、及0.0025M至0.25M之AgNO 3,其中該反應溶液包含咪唑鎓、吡唑鎓、噻唑鎓、其衍生物、或其混合物。
  26. 如請求項22所述之方法,其中該溶劑中的2%至40%係與該可溶性銀鹽一起添加或係於該可溶性銀鹽添加後進行添加。
  27. 如請求項22所述之方法,其中反應開始時的該反應溶液更包含約0.01重量%至約5重量%的水。
  28. 如請求項22所述之方法,更包含自完成之反應混合物中對銀奈米線進行純化,其中該等銀奈米線具有不大於約20奈米之平均直徑以及不大於約3.5奈米之直徑的標準差。
TW108136063A 2017-12-06 2018-12-06 薄且均勻之銀奈米線、合成方法及由該等奈米線形成之透明導電膜 TWI754841B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762595281P 2017-12-06 2017-12-06
US62/595,281 2017-12-06
US15/951,758 US10714230B2 (en) 2017-12-06 2018-04-12 Thin and uniform silver nanowires, method of synthesis and transparent conductive films formed from the nanowires
US15/951,758 2018-04-12

Publications (2)

Publication Number Publication Date
TW202003868A true TW202003868A (zh) 2020-01-16
TWI754841B TWI754841B (zh) 2022-02-11

Family

ID=66658507

Family Applications (4)

Application Number Title Priority Date Filing Date
TW108136063A TWI754841B (zh) 2017-12-06 2018-12-06 薄且均勻之銀奈米線、合成方法及由該等奈米線形成之透明導電膜
TW111101310A TW202217853A (zh) 2017-12-06 2018-12-06 奈米線之集合
TW107143804A TWI686487B (zh) 2017-12-06 2018-12-06 薄且均勻之銀奈米線、合成方法及由該等奈米線形成之透明導電膜
TW110111673A TWI756091B (zh) 2017-12-06 2018-12-06 透明導電性結構

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW111101310A TW202217853A (zh) 2017-12-06 2018-12-06 奈米線之集合
TW107143804A TWI686487B (zh) 2017-12-06 2018-12-06 薄且均勻之銀奈米線、合成方法及由該等奈米線形成之透明導電膜
TW110111673A TWI756091B (zh) 2017-12-06 2018-12-06 透明導電性結構

Country Status (7)

Country Link
US (5) US10714230B2 (zh)
EP (1) EP3721453A4 (zh)
JP (2) JP7224056B2 (zh)
KR (2) KR102641062B1 (zh)
CN (3) CN114596978A (zh)
TW (4) TWI754841B (zh)
WO (1) WO2019113162A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910525B2 (en) * 2019-01-28 2024-02-20 C3 Nano, Inc. Thin flexible structures with surfaces with transparent conductive films and processes for forming the structures
KR20220097516A (ko) 2019-11-18 2022-07-07 시쓰리나노 인크 성긴 금속 전도성 층의 안정화를 위한 투명 전도성 필름의 코팅 및 가공
KR102313100B1 (ko) * 2020-05-22 2021-10-15 주식회사 아란 은 나노와이어 및 그 제조방법
CN112191862B (zh) * 2020-10-13 2022-12-09 深圳市华科创智技术有限公司 一种超细纳米银线的制备方法
CN114623611A (zh) * 2020-12-14 2022-06-14 宋太伟 单层或多层纳米线网薄层的高效减反吸光热薄膜结构工艺
CN112768140B (zh) * 2020-12-30 2022-06-14 华南理工大学 一种氧化铝防护银纳米线透明电极及其制备方法与应用

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US80701A (en) * 1868-08-04 Improvement in apparatus for extinguishing fires
US7585349B2 (en) 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
JP4787938B2 (ja) 2003-03-28 2011-10-05 ザ・プロウボウスト・フェロウズ・ファウンデーション・スカラーズ・アンド・ザ・アザー・メンバーズ・オブ・ボード・オブ・ザ・カレッジ・オブ・ザ・ホリー・アンド・アンデバイデッド・トリニティ・オブ・クイーン 銀ナノ粒子を用いた検体検出用センサ
US7732038B2 (en) 2004-07-12 2010-06-08 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding filter
US8114187B2 (en) 2004-08-03 2012-02-14 University Of Washington Through Its Center For Commercialization Synthesis of platinum nanostructures
SG183720A1 (en) 2005-08-12 2012-09-27 Cambrios Technologies Corp Nanowires-based transparent conductors
US20080003130A1 (en) * 2006-02-01 2008-01-03 University Of Washington Methods for production of silver nanostructures
US8454721B2 (en) 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
JP2009084193A (ja) * 2007-09-28 2009-04-23 Sumitomo Seika Chem Co Ltd チアゾリウム塩
US7922787B2 (en) * 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires
FR2926993B1 (fr) * 2008-02-06 2011-03-11 Sanofi Aventis Association entre un sel de bis-thiazolium ou l'un de ses precurseurs et l'artemisinine ou l'un de ses derives pour le traitement du paludisme
US8110667B2 (en) * 2008-04-28 2012-02-07 Battelle Memorial Institute Method for conversion of carbohydrate polymers to value-added chemical products
JP5612814B2 (ja) 2008-09-22 2014-10-22 信越ポリマー株式会社 導電性高分子溶液、導電性塗膜および入力デバイス
JP5306760B2 (ja) 2008-09-30 2013-10-02 富士フイルム株式会社 透明導電体、タッチパネル、及び太陽電池パネル
US20110027623A1 (en) * 2009-01-21 2011-02-03 John Michael David Coey Electrochemical device
KR20120102489A (ko) * 2009-04-10 2012-09-18 스미또모 가가꾸 가부시키가이샤 금속 복합체 및 그의 조성물
TWI540593B (zh) * 2010-01-15 2016-07-01 坎畢歐科技公司 低霧度透明導體
US8920682B2 (en) * 2010-03-19 2014-12-30 Eastern Michigan University Nanoparticle dispersions with ionic liquid-based stabilizers
WO2012011774A2 (ko) * 2010-07-22 2012-01-26 공주대학교산학협력단 은 나노와이어의 제조방법
BR112013014066A2 (pt) * 2010-12-07 2016-09-13 Rhodia Operations nanoestruturas eletricamente condutoras, método para fazer essas nanoestruturas, películas de polímeros eletricamente condutores contendo tais nanoestruturas e dispositivos eletrônicos que contêm tais películas
WO2012145622A1 (en) * 2011-04-22 2012-10-26 Sun Catalytix Corporation Nanostructures, systems, and methods for photocatalysis
US8741025B2 (en) 2011-05-23 2014-06-03 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
JP5813875B2 (ja) 2011-08-24 2015-11-17 イノバ ダイナミックス, インコーポレイテッド パターン化された透明導体および関連する製造方法
JP5867124B2 (ja) * 2012-02-06 2016-02-24 住友化学株式会社 金属ナノワイヤーの製造方法
JP5669781B2 (ja) * 2012-03-23 2015-02-18 富士フイルム株式会社 導電性部材及びその製造方法、並びにタッチパネル
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
US9920207B2 (en) 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
BR112015006873A2 (pt) 2012-09-27 2017-07-04 Rhodia Operations processo para produzir nanoestruturas de prata e copolímero útil em tal processo
WO2014133688A1 (en) 2013-01-22 2014-09-04 Cambrios Technologies Corporation Two-sided laser patterning on thin film substrates
US10020807B2 (en) 2013-02-26 2018-07-10 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
US20140251087A1 (en) 2013-03-08 2014-09-11 Innova Dynamics, Inc. Production of nanostructures
EP2830110A1 (en) 2013-07-22 2015-01-28 Heraeus Precious Metals GmbH & Co. KG Patterning of a composition comprising silver nanowires
US9557337B2 (en) * 2013-10-02 2017-01-31 Becton, Dickinson And Company Polymersome encapsulation of hydrophobic fluorescent polymers
US9292141B2 (en) 2013-10-30 2016-03-22 Apple Inc. Double sided touch sensor on transparent substrate
KR101532578B1 (ko) 2014-01-15 2015-07-01 주식회사 나노이닉스 이온 액체를 이용한 초 미세 은 나노와이어의 제조방법 및 이를 이용한 투명전극 필름의 제조방법
JP6327870B2 (ja) 2014-01-29 2018-05-23 デクセリアルズ株式会社 金属ナノワイヤー、透明導電膜及びその製造方法、分散液、情報入力装置、並びに、電子機器
WO2015133453A1 (ja) * 2014-03-07 2015-09-11 Dowaホールディングス株式会社 銀ナノワイヤの製造方法並びに銀ナノワイヤおよびそれを用いたインク
KR20150107091A (ko) 2014-03-13 2015-09-23 주식회사 에이든 헤이즈 및 전기전도도가 개선된 은 나노와이어를 이용한 투명 도전체
US10081058B2 (en) * 2014-04-11 2018-09-25 Cam Holding Corporation Methods of controlling nanowire morphology
JP2017134884A (ja) 2014-06-12 2017-08-03 コニカミノルタ株式会社 透明導電体の製造方法
US9183968B1 (en) * 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
KR101604969B1 (ko) 2014-09-01 2016-03-22 국민대학교산학협력단 고압 폴리올 공법을 이용한 초미세 은 나노와이어 제조방법 및 이를 이용한 투명 전도성 전극필름
US20160096967A1 (en) 2014-10-03 2016-04-07 C3Nano Inc. Property enhancing fillers for transparent coatings and transparent conductive films
US11111396B2 (en) 2014-10-17 2021-09-07 C3 Nano, Inc. Transparent films with control of light hue using nanoscale colorants
DE102015013239A1 (de) * 2014-10-28 2016-04-28 Dow Global Technologies Llc Hydrothermalverfahren zur Herstellung von Silber-Nanodrähten
US9908178B2 (en) * 2014-10-28 2018-03-06 Kookmin University Industry Academy Cooperation Foundation Method for preparing ultrathin silver nanowires, and transparent conductive electrode film product thereof
US20160122562A1 (en) 2014-10-29 2016-05-05 C3Nano Inc. Stable transparent conductive elements based on sparse metal conductive layers
KR102178777B1 (ko) 2014-12-23 2020-11-13 솔브레인홀딩스 주식회사 구리 나노 와이어를 합성하기 위한 조성물 및 이를 사용한 구리 나노 와이어의 제조 방법
KR102271520B1 (ko) 2014-12-29 2021-07-01 솔브레인 주식회사 복합 은 나노와이어 및 이의 제조방법
TWI695848B (zh) * 2015-03-03 2020-06-11 德商巴斯夫歐洲公司 銀奈米線與基於(甲基)丙烯酸酯之封端劑的合成
US9530534B2 (en) * 2015-04-03 2016-12-27 C3Nano Inc. Transparent conductive film
US10147512B2 (en) * 2015-12-09 2018-12-04 C3Nano Inc. Methods for synthesizing silver nanoplates and noble metal coated silver nanoplates and their use in transparent films for control of light hue
JP2017066512A (ja) * 2016-05-10 2017-04-06 マイクロ波化学株式会社 銀ナノワイヤの製造方法
JP7041674B2 (ja) 2016-10-14 2022-03-24 シー3ナノ・インコーポレイテッド 安定化された薄く広がった金属導電性フィルム、および安定化化合物の供給のための溶液
CN106563812B (zh) 2016-10-26 2018-04-24 东南大学 一种水溶液中光触发合成超细银纳米线的方法

Also Published As

Publication number Publication date
KR102480158B1 (ko) 2022-12-21
TW202217853A (zh) 2022-05-01
CN113744917A (zh) 2021-12-03
US11848117B2 (en) 2023-12-19
KR20230003391A (ko) 2023-01-05
CN111602209B (zh) 2022-04-15
TWI754841B (zh) 2022-02-11
US10714230B2 (en) 2020-07-14
TW201925487A (zh) 2019-07-01
US20190172601A1 (en) 2019-06-06
EP3721453A2 (en) 2020-10-14
TWI756091B (zh) 2022-02-21
TW202126823A (zh) 2021-07-16
WO2019113162A3 (en) 2020-03-26
US20190378633A1 (en) 2019-12-12
WO2019113162A2 (en) 2019-06-13
JP7224056B2 (ja) 2023-02-17
CN111602209A (zh) 2020-08-28
US10438714B2 (en) 2019-10-08
US11037694B2 (en) 2021-06-15
JP2021505767A (ja) 2021-02-18
US20190172602A1 (en) 2019-06-06
TWI686487B (zh) 2020-03-01
US20190172600A1 (en) 2019-06-06
JP2022188220A (ja) 2022-12-20
KR102641062B1 (ko) 2024-02-27
EP3721453A4 (en) 2021-09-22
CN114596978A (zh) 2022-06-07
KR20200090899A (ko) 2020-07-29
US20210265073A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
TWI686487B (zh) 薄且均勻之銀奈米線、合成方法及由該等奈米線形成之透明導電膜
JP7145906B2 (ja) ナノスケール着色剤を使用して明るい色相が制御される透明フィルム
US20230250535A1 (en) Noble metal coated silver nanowires
TWI733720B (zh) 合成銀奈米板及經貴金屬塗覆之銀奈米板之方法,及其於透明膜中控制光色之用途