TW201944670A - 雷射裝置及其電源裝置 - Google Patents
雷射裝置及其電源裝置 Download PDFInfo
- Publication number
- TW201944670A TW201944670A TW108111126A TW108111126A TW201944670A TW 201944670 A TW201944670 A TW 201944670A TW 108111126 A TW108111126 A TW 108111126A TW 108111126 A TW108111126 A TW 108111126A TW 201944670 A TW201944670 A TW 201944670A
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- frequency
- overvoltage
- power supply
- voltage
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/097—Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
- H01S3/09702—Details of the driver electronics and electric discharge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/087—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
提供一種提高了可靠性之雷射裝置。高頻電源(400)向包含1對放電電極(202,204)的電容之諧振電路(210)施加高頻電壓(VRF)。過電壓抑制電路(500)抑制諧振電路(210)的兩端之間的過電壓。若檢測出異常,則保護電路(550)停止施加來自高頻電源(400)的高頻電壓(VRF)。
Description
本發明係有關一種雷射裝置。
作為工業用加工工具,廣泛普及有雷射加工裝置。雷射加工裝置使用CO2
雷射等高輸出的氣體雷射。圖1係雷射裝置100R的區塊圖。雷射裝置100R具備雷射諧振器200及電源裝置250R。雷射諧振器200具備1對放電電極202,204、全反射鏡206及部分反射鏡208。
1對放電電極202,204設置在填充有CO2 等雷射介質氣體之氣體腔內。在1對放電電極202,204之間存在靜電電容C。該靜電電容C與電感器L(電感器元件或寄生電感器)形成具有諧振頻率fRES 之諧振電路210。
電源裝置250R向諧振電路210施加高頻電壓VRF 。高頻電壓VRF 的頻率fRF (以下,稱作同步頻率)設定在諧振電路的頻率fRES 的附近。藉由施加高頻電壓VRF ,放電電流在1對放電電極202,204之間流動。藉由放電電流激勵雷射介質氣體而形成反轉分佈。誘導發射光在由全反射鏡206和部分反射鏡208所形成之光諧振器內往返移動,且藉由經由雷射介質氣體而增幅。所增幅之光的一部分從部分反射鏡208作為輸出而被取出。
電源裝置250R具備:直流電源300,生成呈穩定化之直流電壓VDC ;及高頻電源400,將直流電壓VDC 轉換為高頻電壓VRF 。
(先前技術文獻)
(專利文獻)
專利文獻1:日本特開平9-129953號公報
專利文獻2:日本特開2015-32746號公報
專利文獻3:日本特開2017-69561號公報
1對放電電極202,204設置在填充有CO2 等雷射介質氣體之氣體腔內。在1對放電電極202,204之間存在靜電電容C。該靜電電容C與電感器L(電感器元件或寄生電感器)形成具有諧振頻率fRES 之諧振電路210。
電源裝置250R向諧振電路210施加高頻電壓VRF 。高頻電壓VRF 的頻率fRF (以下,稱作同步頻率)設定在諧振電路的頻率fRES 的附近。藉由施加高頻電壓VRF ,放電電流在1對放電電極202,204之間流動。藉由放電電流激勵雷射介質氣體而形成反轉分佈。誘導發射光在由全反射鏡206和部分反射鏡208所形成之光諧振器內往返移動,且藉由經由雷射介質氣體而增幅。所增幅之光的一部分從部分反射鏡208作為輸出而被取出。
電源裝置250R具備:直流電源300,生成呈穩定化之直流電壓VDC ;及高頻電源400,將直流電壓VDC 轉換為高頻電壓VRF 。
(先前技術文獻)
(專利文獻)
專利文獻1:日本特開平9-129953號公報
專利文獻2:日本特開2015-32746號公報
專利文獻3:日本特開2017-69561號公報
(本發明所欲解決之課題)
本發明人等對圖1的雷射裝置100R進行研究之結果,發現以下課題。
若在放電電極202或204中發生接觸不良等,則以開放狀態運行。開放狀態下,靜電電容C變得非常小,因此諧振電路的諧振頻率成為非常高的值fRES ’。若在該狀態下,繼續施加同步頻率f0 (f0 <fRES ’)的高頻電壓VRF ,則在諧振頻率fRES ’中,發生超過高頻電壓VRF 的振幅之非常高的高電壓。若該高電壓施加到高頻電源400的內部的半導體元件(亦即功率電晶體),則可靠性降低。
本發明係在相關之狀況中完成者,其一種態樣的例示性目的之一在於提供一種提高了可靠性之雷射裝置。
(用以解決課題之手段)
本發明的一種態樣係有關雷射裝置或其電源裝置。雷射裝置具備:雷射諧振器,包含1對放電電極;及電源裝置,驅動1對放電電極。電源裝置具備:高頻電源,向包含1對放電電極的電容之諧振電路施加高頻電壓;過電壓抑制電路,抑制諧振電路的兩端之間的過電壓;及保護電路,若檢測出異常,則停止施加高頻電壓。保護電路檢測出異常時所需的時間短於過電壓抑制電路能夠耐過電壓之時間。
依該態樣,藉由設置過電壓抑制電路,諧振電路的諧振頻率大大偏離設計值時,能夠抑制過電壓,從而能夠保護高頻電源等中包含之半導體元件。而且,在過電壓抑制電路抑制高電壓之期間,藉由保護電路判定有無異常,當發生異常時,停止裝置,藉此能夠保護高頻電源的半導體元件,並且能夠防止降低過電壓抑制電路的可靠性。
過電壓抑制電路的電容亦可小於1對放電電極的電容的1/5。藉此,能夠減小過電壓抑制電路對諧振電路的諧振頻率帶來的影響。
過電壓抑制電路亦可包含電壓抑制器、突波保護裝置、氣體避雷器(突波避雷器)中的至少一個。
過電壓抑制電路亦可包含以串聯連接之複數個元件。各個元件的靜電電容較大時,藉由以串聯連接該些,能夠減小過電壓抑制電路的靜電電容。
過電壓抑制電路亦可包含電容為1對放電電極的電容的1/10以下的電容器。此時,電容器成為負荷,因此能夠防止諧振頻率變得過高,從而能夠抑制過電壓。
過電壓抑制電路亦可包含LCR負荷。此時,即使放電電極發生異常而成為開放狀態,亦能夠藉由LCR負荷防止諧振頻率變得過高,從而能夠抑制過電壓。
保護電路亦可根據有無雷射裝置的輸出光而判定異常。雷射裝置不發光時,亦可判定為無負荷狀態。CO2 雷射時,使用紅外線檢測元件即可。
保護電路亦可根據諧振頻率的電流成分而判定異常。監視流向負荷(諧振電路)或高頻電源的輸出之電流,且從檢測值提取諧振頻率的成分,諧振頻率的電流較小時,亦可判定為無負荷狀態。
保護電路亦可根據除了諧振頻率以外的電流成分而判定異常。監視流向負荷(諧振電路)或高頻電源的輸出之電流,且從檢測值提取除了諧振頻率以外的成分,諧振頻率以外的電流較大時,亦可判定為無負荷狀態。
保護電路亦可根據發射後的高頻電源的輸入電壓的下降幅度而判定異常。若雷射正常發光,則放電儲存在直流電源的輸出電容器(電容器組)之電荷,而直流電壓下降。因此,監視電容器組的電壓,電壓下降較小時,能夠判定為無負荷狀態。
保護電路亦可根據流向過電壓抑制電路之電流而判定異常。在電流流向構成過電壓抑制電路之突波保護裝置時,能夠判定為無負荷狀態。
保護電路亦可根據頻率高於諧振頻率的雜訊而判定異常。電流成為高頻時,高頻的輻射雜訊或傳導雜訊增加。利用天線檢測出該雜訊,雜訊增加時,能夠判定為無負荷狀態。
保護電路亦可根據1對放電電極之間的電壓而判定異常。雖然施加高頻電壓,但在諧振電路的兩端之間未檢測到充分的電壓時,能夠判定為無負荷狀態。
另外,在方法、裝置、系統等之間相互置換以上構成要件的任意組合或本發明的構成要件或表示的內容亦作為本發明的態樣而有效。
(發明之效果)
依本發明的一種態樣,能夠提高雷射裝置的可靠性。
本發明人等對圖1的雷射裝置100R進行研究之結果,發現以下課題。
若在放電電極202或204中發生接觸不良等,則以開放狀態運行。開放狀態下,靜電電容C變得非常小,因此諧振電路的諧振頻率成為非常高的值fRES ’。若在該狀態下,繼續施加同步頻率f0 (f0 <fRES ’)的高頻電壓VRF ,則在諧振頻率fRES ’中,發生超過高頻電壓VRF 的振幅之非常高的高電壓。若該高電壓施加到高頻電源400的內部的半導體元件(亦即功率電晶體),則可靠性降低。
本發明係在相關之狀況中完成者,其一種態樣的例示性目的之一在於提供一種提高了可靠性之雷射裝置。
(用以解決課題之手段)
本發明的一種態樣係有關雷射裝置或其電源裝置。雷射裝置具備:雷射諧振器,包含1對放電電極;及電源裝置,驅動1對放電電極。電源裝置具備:高頻電源,向包含1對放電電極的電容之諧振電路施加高頻電壓;過電壓抑制電路,抑制諧振電路的兩端之間的過電壓;及保護電路,若檢測出異常,則停止施加高頻電壓。保護電路檢測出異常時所需的時間短於過電壓抑制電路能夠耐過電壓之時間。
依該態樣,藉由設置過電壓抑制電路,諧振電路的諧振頻率大大偏離設計值時,能夠抑制過電壓,從而能夠保護高頻電源等中包含之半導體元件。而且,在過電壓抑制電路抑制高電壓之期間,藉由保護電路判定有無異常,當發生異常時,停止裝置,藉此能夠保護高頻電源的半導體元件,並且能夠防止降低過電壓抑制電路的可靠性。
過電壓抑制電路的電容亦可小於1對放電電極的電容的1/5。藉此,能夠減小過電壓抑制電路對諧振電路的諧振頻率帶來的影響。
過電壓抑制電路亦可包含電壓抑制器、突波保護裝置、氣體避雷器(突波避雷器)中的至少一個。
過電壓抑制電路亦可包含以串聯連接之複數個元件。各個元件的靜電電容較大時,藉由以串聯連接該些,能夠減小過電壓抑制電路的靜電電容。
過電壓抑制電路亦可包含電容為1對放電電極的電容的1/10以下的電容器。此時,電容器成為負荷,因此能夠防止諧振頻率變得過高,從而能夠抑制過電壓。
過電壓抑制電路亦可包含LCR負荷。此時,即使放電電極發生異常而成為開放狀態,亦能夠藉由LCR負荷防止諧振頻率變得過高,從而能夠抑制過電壓。
保護電路亦可根據有無雷射裝置的輸出光而判定異常。雷射裝置不發光時,亦可判定為無負荷狀態。CO2 雷射時,使用紅外線檢測元件即可。
保護電路亦可根據諧振頻率的電流成分而判定異常。監視流向負荷(諧振電路)或高頻電源的輸出之電流,且從檢測值提取諧振頻率的成分,諧振頻率的電流較小時,亦可判定為無負荷狀態。
保護電路亦可根據除了諧振頻率以外的電流成分而判定異常。監視流向負荷(諧振電路)或高頻電源的輸出之電流,且從檢測值提取除了諧振頻率以外的成分,諧振頻率以外的電流較大時,亦可判定為無負荷狀態。
保護電路亦可根據發射後的高頻電源的輸入電壓的下降幅度而判定異常。若雷射正常發光,則放電儲存在直流電源的輸出電容器(電容器組)之電荷,而直流電壓下降。因此,監視電容器組的電壓,電壓下降較小時,能夠判定為無負荷狀態。
保護電路亦可根據流向過電壓抑制電路之電流而判定異常。在電流流向構成過電壓抑制電路之突波保護裝置時,能夠判定為無負荷狀態。
保護電路亦可根據頻率高於諧振頻率的雜訊而判定異常。電流成為高頻時,高頻的輻射雜訊或傳導雜訊增加。利用天線檢測出該雜訊,雜訊增加時,能夠判定為無負荷狀態。
保護電路亦可根據1對放電電極之間的電壓而判定異常。雖然施加高頻電壓,但在諧振電路的兩端之間未檢測到充分的電壓時,能夠判定為無負荷狀態。
另外,在方法、裝置、系統等之間相互置換以上構成要件的任意組合或本發明的構成要件或表示的內容亦作為本發明的態樣而有效。
(發明之效果)
依本發明的一種態樣,能夠提高雷射裝置的可靠性。
以下,以優選的實施形態為基礎參閱圖式對本發明進行說明。對示於各圖式之相同或等同的構成要件、構件、處理標註相同符號,並適當省略重複之說明。又,實施形態僅為例示並非限定發明,記述於實施形態之所有特徵或其組合並不一定是本發明的本質者。
圖2係實施形態之雷射裝置100的區塊圖。雷射裝置100具備雷射諧振器200及電源裝置250。雷射諧振器200與電源裝置250的功能與圖1相同。
雷射諧振器200具備1對放電電極202,204,這些之間的靜電電容C與電感器L一同形成諧振電路210。將該諧振電路210的諧振頻率設為fRES 。
電源裝置250除了圖1的電源裝置250還具備過電壓抑制電路500及保護電路550。
直流電源300產生穩定化成既定電壓位準之直流電壓VDC 並供給到高頻電源400。高頻電源400產生具有與諧振頻率fRES 相同頻率(同步頻率)fRF 之高頻電壓VRF 並供給到雷射諧振器200。高頻電源400的結構並無限定,但能夠包含將直流電壓VDC 轉換成交流電壓VAC 之逆變器及使逆變器的輸出電壓VAC 升壓之變壓器。
過電壓抑制電路500構成為能夠抑制諧振電路210的兩端之間的過電壓。
保護電路550監視雷射裝置100的動作,檢測到異常時,停止施加藉由高頻電源400之高頻電壓VRF 。保護電路550設為檢測對象之異常為使過電壓在諧振電路210的兩端之間產生之異常,換言之,為如實際產生基於過電壓抑制電路500之抑制動作之異常。作為該種異常,例示有諧振電路210的諧振頻率變得高於其設計值(亦即同步頻率)fRES 的異常,例如,因放電電極202,204的接觸不良、電感器L的偏離、連接這些之配線的偏離等而產生,以下總稱為開放異常。另外,諧振電路210的兩端之間的電壓ΔV的頻譜除了同步頻率fRF 還包含其他頻率成分,又,高頻電源400的輸出端與雷射諧振器200的輸入端之間存在未圖式的寄生阻抗,因此希望在高頻電壓VRF 與兩端之間的電壓ΔV的波形未必一致這一點引起注意。
設計成保護電路550檢測出開放異常時所需的時間短於過電壓抑制電路500能夠耐過電壓之時間。
以上為雷射裝置100的結構。依該雷射裝置100,能夠得到以下效果。
依本實施形態,藉由設置過電壓抑制電路500,諧振電路210的諧振頻率大大偏離設計值fRES 時,能夠抑制在其兩端之間產生之過電壓,能夠保護高頻電源400等中包含之半導體元件。
其中,兩端之間的電壓ΔV的過電壓狀態藉由過電壓抑制電路500得到抑制之期間,電流繼續流向過電壓抑制電路500。若長期持續該狀態,則有可能過電壓抑制電路500的發熱變大,過電壓抑制功能下降,或者完全喪失過電壓抑制功能。於是,有可能再次向高頻電源400施加過電壓,降低半導體元件的可靠性。因此,除了過電壓抑制電路500還設置保護電路550,在過電壓抑制電路500抑制高電壓之期間,藉由保護電路550判定有無異常,當發生異常時,藉由停止高頻電源400或直流電源300,能夠消除產生過電壓的原因從而保護高頻電源400的半導體元件,並且能夠防止過電壓抑制電路500的可靠性下降。
本發明係作為圖2的區塊圖或電路圖來掌握,或者涉及源於上述說明之各種裝置、方法者,並非係限定於特定結構者。以下,為了有助於理解發明的本質或動作,並且明確這些,對更具體的構成例或實施例進行說明,這並非為了縮小本發明的範圍。
圖3(a)~圖3(d)係表示過電壓抑制電路500的構成例之電路圖。圖3(a)的過電壓抑制電路500包含氣體避雷器502。若氣體避雷器502的端子之間的電壓超過動作開始電壓,則氣體避雷器502成為短路狀態,過電壓抑制電路500的兩端之間的電壓ΔV得到抑制。
其中,過電壓抑制電路500的兩端之間的靜電電容小於1對放電電極的靜電電容的1/5為較佳。其原因在於,若過電壓抑制電路500的靜電電容過大,則使諧振電路210的諧振頻率fRES 偏移,從而對電路動作帶來影響。在該觀點下,如圖3(a)所示,若由氣體避雷器502單體構成過電壓抑制電路500,則存在靜電電容過大之情況。
該種情況下,如圖3(b)所示,以串聯連接複數個過電壓抑制元件(突波保護裝置)即可。藉此,過電壓抑制電路500的兩端之間的靜電電容成為複數個過電壓抑制元件各自的靜電電容的合成電容,因此能夠設為小於各個過電壓抑制元件的靜電電容。
更詳細而言,圖3(b)的過電壓抑制電路500包含以串聯連接之氣體避雷器502及變阻器504。該結構中,若向過電壓抑制電路500的兩端之間施加高電壓ΔV,則氣體避雷器502的端子之間的電壓超過動作開始電壓而成為短路狀態,而高電壓ΔV施加於變阻器504。其結果,電流根據變阻器504的I-V特性流動,從而能夠抑制高電壓ΔV。能夠使用一般過電壓抑制元件來代替變阻器504,例如亦可使用SPD(氧化鋅型避雷器)或瞬變吸收器(transorb)。
圖3(a)、圖3(b)的過電壓抑制電路500係響應於過電壓而進行動作者,但並不限定於此,過電壓抑制電路500亦可為預防發生雷射諧振器200的開放異常狀態下的過電壓之電路。更具體而言,過電壓抑制電路500在同步頻率fRF 下,相比諧振電路210為十分高的高阻抗,在高於同步頻率fRF 的頻率下,亦可具有較低的阻抗。圖3(c)的過電壓抑制電路500包含電容器506。電容器506的靜電電容為1對放電電極202,204的靜電電容的1/5以下,1/10以下為較佳。即使發生開放異常,其電容器506以負荷殘留,因此能夠防止諧振頻率變得過高,並且能夠抑制過電壓。
圖3(d)的過電壓抑制電路500包含LCR負荷電路。即使成為開放狀態,亦能夠藉由LCR負荷防止諧振頻率變得過高,從而能夠抑制過電壓。
再者,過電壓抑制電路500亦可為並聯連接例示於圖3(a)~圖3(d)之若干電路的結構。
圖4係表示電源裝置250的具體的構成例之電路圖。向雷射裝置100輸入指示發光期間(激勵期間)與停止期間之控制訊號(激勵訊號)S1,根據激勵訊號S1進行間歇動作。例如,激勵訊號S1為數kHz左右的重覆頻率、佔空比5%左右的脈衝訊號。
高頻電源400具備H橋接電路(全橋電路)402及升壓變壓器404。高頻電源400具備2個H橋接電路402及升壓變壓器404的組401的系統,這些進行並聯連接。當然,亦可以僅由1個系統構成該組401。激勵訊號S1指示激勵區間之位準(例如高位準)時,H橋接電路402進行開關,向升壓變壓器404的1次繞組施加交流電壓VAC 。H橋接電路402的開關頻率為同步頻率fRF ,例如設定為2MHz左右。其結果,在升壓變壓器404的2次繞組中產生使交流電壓VAC 升壓之高頻電壓VRF 。
直流電源300包含電容器組302及充電電路304。電容器組302設置在直流鏈路306之間。充電電路304對電容器組302進行充電,恆定地保持電容器組302的電壓VDC 。
在激勵區間時,H橋接電路402進行開關動作,藉此釋放儲存在電容器組302之能量(電荷),直流電壓VDC 的電壓位準下降。充電電路304為了補償直流電壓VDC 的電壓位準的下降,向電容器組302供給充電電流。亦即,直流電源300亦與激勵訊號S1同步而進行間歇動作。
再者,亦可由還包含激勵期間而穩定地進行動作之DC/DC轉換器構成直流電源300。
圖4中,保護電路550構成為高頻電源400的一部分。在高頻電源400的輸出設置電流感測器CT,監視流向雷射諧振器200之電流。具體而言,在2個系統的升壓變壓器404各自的輸出設置電流感測器CT1、CT2,保護電路550根據電流感測器CT1、CT2的輸出檢測出異常,在異常狀態下停止H橋接電路402。
圖5係表示包含保護電路550之高頻電源400的構成例之圖。保護電路550具備高頻電流檢測電路(高頻電流檢測基板)560、前置放大器電路(前置放大器基板)570、驅動訊號產生電路(驅動訊號產生基板)580A、580B。
高頻電流檢測電路560接收2個電流感測器CT1、CT2的輸出,去除同步頻率fRF (2MHz)的頻率成分。高頻電流檢測電路560例如包含頻帶去除濾波器562、564。
前置放大器電路570處理電流感測器CT1、CT2所檢測出之電流值。位準判定部572(574)比較頻帶去除濾波器562(564)的輸出與閾值。位準判定器576(578)比較電流感測器CT1(CT2)的輸出與既定閾值。電流差判定器579檢測出2個電流感測器CT1、CT2的輸出的差分並與閾值進行比較。
驅動訊號產生電路580A為生成用於控制H橋接電路402之驅動訊號之區塊。頻帶去除濾波器562(564)的輸出更大時,亦即較多地包含高於同步頻率fRF 的頻率成分時,驅動訊號產生電路580A判定為開放異常(電路開放),而發生聯鎖。
電流感測器CT1(CT2)的輸出更大時,驅動訊號產生電路580A判定為過電流狀態,而發生聯鎖。
差分大於閾值時,驅動訊號產生電路580A判定為電流不平衡狀態,而發生聯鎖。
因任何因素發生聯鎖時,停止高頻電源400(H橋接電路402的開關動作)。又,停止指令供給到PLC (Programmable Logic Controller(可編程控制器))590。PLC係具備作為序定器或狀態機的功能,統括控制電源裝置250整體之控制器。接收停止指示之PLC590向驅動訊號產生電路580B指示停止。驅動訊號產生電路580B為用於控制直流電源300之區塊,響應於停止指示,而停止直流電壓VDC 的生成動作。
以上為保護電路550的構成例。接著對基於保護電路之異常檢測的變形例進行說明。
(變形例1)
保護電路550根據有無雷射裝置100的輸出(雷射光)而判定異常。亦即,雖然高頻電源400處於動作狀態,但在未檢測到雷射光時,能夠判定為開放異常。該變形例中,保護電路550能夠由光感測器構成。
(變形例2)
如圖4所述,直流電源300包含電容器組302及充電電路304時,雷射諧振器200正常發光時,電容器組302的電壓VDC 下降一定幅度的電壓,但雷射諧振器200沒有正常發光時,電容器組302的電壓VDC 下降幅度變小。因此,保護電路550亦可根據發射前後的高頻電源400的輸入電壓(直流電源300的輸出電壓VDC )的下降幅度而判定異常。
(變形例3)
在流向過電壓抑制電路500之電流超過閾值時,保護電路550亦可判定為異常。
(變形例4)
在流向諧振電路之電流成為高頻時,高頻的輻射雜訊或傳導雜訊有所增加。保護電路550利用天線檢測出該高頻雜訊,高頻雜訊有所增加時,亦可判定為無負荷狀態(開放異常)。
(變形例5)
保護電路550監視1對放電電極202,204之間的電位差ΔV,亦可根據電位差ΔV而判定異常。
再者,保護電路550亦可併用在此說明之若干異常檢測方法。
實施形態中,對過電壓抑制電路500設置在電源裝置250之情況進行了說明,但並不限定於此,過電壓抑制電路500亦可設置在雷射諧振器200側。
(用途)
接著對雷射裝置100的用途進行說明。圖6係表示具備雷射裝置100之雷射加工裝置900之圖。雷射加工裝置900向對象物902照射雷射脈衝904,而對對象物902進行加工,對象物902的種類並無特別限定,並且加工的種類亦例示有打孔(鑽孔)、切斷等,但並不限定於此。
雷射加工裝置900具備雷射裝置100、光學系統910、控制裝置920、載台930。對象物902載置在載台930上並根據需要進行固定。載台930根據來自控制裝置920的位置控制訊號S2定位對象物902,並相對掃描對象物902與雷射脈衝904的照射位置。載台930能夠為1軸、2軸(XY)或3軸(XYZ)。
雷射裝置100根據來自控制裝置920的觸發訊號(激勵訊號)S1進行振蕩而產生雷射脈衝906。光學系統910向對象物902照射雷射脈衝906。光學系統910的結構並無特別限定,能夠包含用於將射束導入對象物902的反射鏡組、用於光束整形的透鏡或孔徑等。
控制裝置920統括控制雷射加工裝置900。具體而言,控制裝置920對雷射裝置100間歇地輸出激勵訊號S1。又,控制裝置920生成用於根據記述加工處理之資料(配方)控制載台930的位置控制訊號S2。
根據實施形態,使用具體的語句對本發明進行了說明,但實施形態僅表示本發明的原理、應用的一方面,實施形態中,在不脫離技術方案中規定之本發明的思想之範圍內,可允許多個變形例或配置的變更。
圖2係實施形態之雷射裝置100的區塊圖。雷射裝置100具備雷射諧振器200及電源裝置250。雷射諧振器200與電源裝置250的功能與圖1相同。
雷射諧振器200具備1對放電電極202,204,這些之間的靜電電容C與電感器L一同形成諧振電路210。將該諧振電路210的諧振頻率設為fRES 。
電源裝置250除了圖1的電源裝置250還具備過電壓抑制電路500及保護電路550。
直流電源300產生穩定化成既定電壓位準之直流電壓VDC 並供給到高頻電源400。高頻電源400產生具有與諧振頻率fRES 相同頻率(同步頻率)fRF 之高頻電壓VRF 並供給到雷射諧振器200。高頻電源400的結構並無限定,但能夠包含將直流電壓VDC 轉換成交流電壓VAC 之逆變器及使逆變器的輸出電壓VAC 升壓之變壓器。
過電壓抑制電路500構成為能夠抑制諧振電路210的兩端之間的過電壓。
保護電路550監視雷射裝置100的動作,檢測到異常時,停止施加藉由高頻電源400之高頻電壓VRF 。保護電路550設為檢測對象之異常為使過電壓在諧振電路210的兩端之間產生之異常,換言之,為如實際產生基於過電壓抑制電路500之抑制動作之異常。作為該種異常,例示有諧振電路210的諧振頻率變得高於其設計值(亦即同步頻率)fRES 的異常,例如,因放電電極202,204的接觸不良、電感器L的偏離、連接這些之配線的偏離等而產生,以下總稱為開放異常。另外,諧振電路210的兩端之間的電壓ΔV的頻譜除了同步頻率fRF 還包含其他頻率成分,又,高頻電源400的輸出端與雷射諧振器200的輸入端之間存在未圖式的寄生阻抗,因此希望在高頻電壓VRF 與兩端之間的電壓ΔV的波形未必一致這一點引起注意。
設計成保護電路550檢測出開放異常時所需的時間短於過電壓抑制電路500能夠耐過電壓之時間。
以上為雷射裝置100的結構。依該雷射裝置100,能夠得到以下效果。
依本實施形態,藉由設置過電壓抑制電路500,諧振電路210的諧振頻率大大偏離設計值fRES 時,能夠抑制在其兩端之間產生之過電壓,能夠保護高頻電源400等中包含之半導體元件。
其中,兩端之間的電壓ΔV的過電壓狀態藉由過電壓抑制電路500得到抑制之期間,電流繼續流向過電壓抑制電路500。若長期持續該狀態,則有可能過電壓抑制電路500的發熱變大,過電壓抑制功能下降,或者完全喪失過電壓抑制功能。於是,有可能再次向高頻電源400施加過電壓,降低半導體元件的可靠性。因此,除了過電壓抑制電路500還設置保護電路550,在過電壓抑制電路500抑制高電壓之期間,藉由保護電路550判定有無異常,當發生異常時,藉由停止高頻電源400或直流電源300,能夠消除產生過電壓的原因從而保護高頻電源400的半導體元件,並且能夠防止過電壓抑制電路500的可靠性下降。
本發明係作為圖2的區塊圖或電路圖來掌握,或者涉及源於上述說明之各種裝置、方法者,並非係限定於特定結構者。以下,為了有助於理解發明的本質或動作,並且明確這些,對更具體的構成例或實施例進行說明,這並非為了縮小本發明的範圍。
圖3(a)~圖3(d)係表示過電壓抑制電路500的構成例之電路圖。圖3(a)的過電壓抑制電路500包含氣體避雷器502。若氣體避雷器502的端子之間的電壓超過動作開始電壓,則氣體避雷器502成為短路狀態,過電壓抑制電路500的兩端之間的電壓ΔV得到抑制。
其中,過電壓抑制電路500的兩端之間的靜電電容小於1對放電電極的靜電電容的1/5為較佳。其原因在於,若過電壓抑制電路500的靜電電容過大,則使諧振電路210的諧振頻率fRES 偏移,從而對電路動作帶來影響。在該觀點下,如圖3(a)所示,若由氣體避雷器502單體構成過電壓抑制電路500,則存在靜電電容過大之情況。
該種情況下,如圖3(b)所示,以串聯連接複數個過電壓抑制元件(突波保護裝置)即可。藉此,過電壓抑制電路500的兩端之間的靜電電容成為複數個過電壓抑制元件各自的靜電電容的合成電容,因此能夠設為小於各個過電壓抑制元件的靜電電容。
更詳細而言,圖3(b)的過電壓抑制電路500包含以串聯連接之氣體避雷器502及變阻器504。該結構中,若向過電壓抑制電路500的兩端之間施加高電壓ΔV,則氣體避雷器502的端子之間的電壓超過動作開始電壓而成為短路狀態,而高電壓ΔV施加於變阻器504。其結果,電流根據變阻器504的I-V特性流動,從而能夠抑制高電壓ΔV。能夠使用一般過電壓抑制元件來代替變阻器504,例如亦可使用SPD(氧化鋅型避雷器)或瞬變吸收器(transorb)。
圖3(a)、圖3(b)的過電壓抑制電路500係響應於過電壓而進行動作者,但並不限定於此,過電壓抑制電路500亦可為預防發生雷射諧振器200的開放異常狀態下的過電壓之電路。更具體而言,過電壓抑制電路500在同步頻率fRF 下,相比諧振電路210為十分高的高阻抗,在高於同步頻率fRF 的頻率下,亦可具有較低的阻抗。圖3(c)的過電壓抑制電路500包含電容器506。電容器506的靜電電容為1對放電電極202,204的靜電電容的1/5以下,1/10以下為較佳。即使發生開放異常,其電容器506以負荷殘留,因此能夠防止諧振頻率變得過高,並且能夠抑制過電壓。
圖3(d)的過電壓抑制電路500包含LCR負荷電路。即使成為開放狀態,亦能夠藉由LCR負荷防止諧振頻率變得過高,從而能夠抑制過電壓。
再者,過電壓抑制電路500亦可為並聯連接例示於圖3(a)~圖3(d)之若干電路的結構。
圖4係表示電源裝置250的具體的構成例之電路圖。向雷射裝置100輸入指示發光期間(激勵期間)與停止期間之控制訊號(激勵訊號)S1,根據激勵訊號S1進行間歇動作。例如,激勵訊號S1為數kHz左右的重覆頻率、佔空比5%左右的脈衝訊號。
高頻電源400具備H橋接電路(全橋電路)402及升壓變壓器404。高頻電源400具備2個H橋接電路402及升壓變壓器404的組401的系統,這些進行並聯連接。當然,亦可以僅由1個系統構成該組401。激勵訊號S1指示激勵區間之位準(例如高位準)時,H橋接電路402進行開關,向升壓變壓器404的1次繞組施加交流電壓VAC 。H橋接電路402的開關頻率為同步頻率fRF ,例如設定為2MHz左右。其結果,在升壓變壓器404的2次繞組中產生使交流電壓VAC 升壓之高頻電壓VRF 。
直流電源300包含電容器組302及充電電路304。電容器組302設置在直流鏈路306之間。充電電路304對電容器組302進行充電,恆定地保持電容器組302的電壓VDC 。
在激勵區間時,H橋接電路402進行開關動作,藉此釋放儲存在電容器組302之能量(電荷),直流電壓VDC 的電壓位準下降。充電電路304為了補償直流電壓VDC 的電壓位準的下降,向電容器組302供給充電電流。亦即,直流電源300亦與激勵訊號S1同步而進行間歇動作。
再者,亦可由還包含激勵期間而穩定地進行動作之DC/DC轉換器構成直流電源300。
圖4中,保護電路550構成為高頻電源400的一部分。在高頻電源400的輸出設置電流感測器CT,監視流向雷射諧振器200之電流。具體而言,在2個系統的升壓變壓器404各自的輸出設置電流感測器CT1、CT2,保護電路550根據電流感測器CT1、CT2的輸出檢測出異常,在異常狀態下停止H橋接電路402。
圖5係表示包含保護電路550之高頻電源400的構成例之圖。保護電路550具備高頻電流檢測電路(高頻電流檢測基板)560、前置放大器電路(前置放大器基板)570、驅動訊號產生電路(驅動訊號產生基板)580A、580B。
高頻電流檢測電路560接收2個電流感測器CT1、CT2的輸出,去除同步頻率fRF (2MHz)的頻率成分。高頻電流檢測電路560例如包含頻帶去除濾波器562、564。
前置放大器電路570處理電流感測器CT1、CT2所檢測出之電流值。位準判定部572(574)比較頻帶去除濾波器562(564)的輸出與閾值。位準判定器576(578)比較電流感測器CT1(CT2)的輸出與既定閾值。電流差判定器579檢測出2個電流感測器CT1、CT2的輸出的差分並與閾值進行比較。
驅動訊號產生電路580A為生成用於控制H橋接電路402之驅動訊號之區塊。頻帶去除濾波器562(564)的輸出更大時,亦即較多地包含高於同步頻率fRF 的頻率成分時,驅動訊號產生電路580A判定為開放異常(電路開放),而發生聯鎖。
電流感測器CT1(CT2)的輸出更大時,驅動訊號產生電路580A判定為過電流狀態,而發生聯鎖。
差分大於閾值時,驅動訊號產生電路580A判定為電流不平衡狀態,而發生聯鎖。
因任何因素發生聯鎖時,停止高頻電源400(H橋接電路402的開關動作)。又,停止指令供給到PLC (Programmable Logic Controller(可編程控制器))590。PLC係具備作為序定器或狀態機的功能,統括控制電源裝置250整體之控制器。接收停止指示之PLC590向驅動訊號產生電路580B指示停止。驅動訊號產生電路580B為用於控制直流電源300之區塊,響應於停止指示,而停止直流電壓VDC 的生成動作。
以上為保護電路550的構成例。接著對基於保護電路之異常檢測的變形例進行說明。
(變形例1)
保護電路550根據有無雷射裝置100的輸出(雷射光)而判定異常。亦即,雖然高頻電源400處於動作狀態,但在未檢測到雷射光時,能夠判定為開放異常。該變形例中,保護電路550能夠由光感測器構成。
(變形例2)
如圖4所述,直流電源300包含電容器組302及充電電路304時,雷射諧振器200正常發光時,電容器組302的電壓VDC 下降一定幅度的電壓,但雷射諧振器200沒有正常發光時,電容器組302的電壓VDC 下降幅度變小。因此,保護電路550亦可根據發射前後的高頻電源400的輸入電壓(直流電源300的輸出電壓VDC )的下降幅度而判定異常。
(變形例3)
在流向過電壓抑制電路500之電流超過閾值時,保護電路550亦可判定為異常。
(變形例4)
在流向諧振電路之電流成為高頻時,高頻的輻射雜訊或傳導雜訊有所增加。保護電路550利用天線檢測出該高頻雜訊,高頻雜訊有所增加時,亦可判定為無負荷狀態(開放異常)。
(變形例5)
保護電路550監視1對放電電極202,204之間的電位差ΔV,亦可根據電位差ΔV而判定異常。
再者,保護電路550亦可併用在此說明之若干異常檢測方法。
實施形態中,對過電壓抑制電路500設置在電源裝置250之情況進行了說明,但並不限定於此,過電壓抑制電路500亦可設置在雷射諧振器200側。
(用途)
接著對雷射裝置100的用途進行說明。圖6係表示具備雷射裝置100之雷射加工裝置900之圖。雷射加工裝置900向對象物902照射雷射脈衝904,而對對象物902進行加工,對象物902的種類並無特別限定,並且加工的種類亦例示有打孔(鑽孔)、切斷等,但並不限定於此。
雷射加工裝置900具備雷射裝置100、光學系統910、控制裝置920、載台930。對象物902載置在載台930上並根據需要進行固定。載台930根據來自控制裝置920的位置控制訊號S2定位對象物902,並相對掃描對象物902與雷射脈衝904的照射位置。載台930能夠為1軸、2軸(XY)或3軸(XYZ)。
雷射裝置100根據來自控制裝置920的觸發訊號(激勵訊號)S1進行振蕩而產生雷射脈衝906。光學系統910向對象物902照射雷射脈衝906。光學系統910的結構並無特別限定,能夠包含用於將射束導入對象物902的反射鏡組、用於光束整形的透鏡或孔徑等。
控制裝置920統括控制雷射加工裝置900。具體而言,控制裝置920對雷射裝置100間歇地輸出激勵訊號S1。又,控制裝置920生成用於根據記述加工處理之資料(配方)控制載台930的位置控制訊號S2。
根據實施形態,使用具體的語句對本發明進行了說明,但實施形態僅表示本發明的原理、應用的一方面,實施形態中,在不脫離技術方案中規定之本發明的思想之範圍內,可允許多個變形例或配置的變更。
100‧‧‧雷射裝置
200‧‧‧雷射諧振器
202、204‧‧‧放電電極
206‧‧‧全反射鏡
208‧‧‧部分反射鏡
210‧‧‧諧振電路
250‧‧‧電源裝置
300‧‧‧直流電源
302‧‧‧電容器組
304‧‧‧充電電路
400‧‧‧高頻電源
402‧‧‧H橋接電路
404‧‧‧升壓變壓器
500‧‧‧過電壓抑制電路
502‧‧‧氣體避雷器
504‧‧‧變阻器
550‧‧‧保護電路
560‧‧‧高頻電流檢測電路
570‧‧‧前置放大器電路
580‧‧‧驅動訊號產生電路
590‧‧‧PLC
圖1係雷射裝置的區塊圖。
圖2係實施形態之雷射裝置的區塊圖。
圖3(a)~圖3(d)係表示過電壓抑制電路的構成例之電路圖。
圖4係表示電源裝置的具體的構成例之電路圖。
圖5係表示包含保護電路之高頻電源的構成例之圖。
圖6係表示具備雷射裝置之雷射加工裝置之圖。
Claims (6)
- 一種電源裝置,其對包含1對放電電極之雷射諧振器進行驅動,該電源裝置的特徵為,具備: 高頻電源,向包含前述1對放電電極的電容之諧振電路施加高頻電壓; 過電壓抑制電路,抑制前述諧振電路的兩端之間的過電壓;及 保護電路,若檢測出異常,則停止施加前述高頻電壓, 前述保護電路檢測出前述異常時所需的時間短於前述過電壓抑制電路能夠耐前述過電壓之時間。
- 如申請專利範圍第1項之電源裝置,其中, 前述過電壓抑制電路的電容小於前述1對放電電極的電容的1/5。
- 如申請專利範圍第1或2項之電源裝置,其中, 前述過電壓抑制電路包含電壓抑制器、突波保護裝置、氣體避雷器、電容為前述1對放電電極的電容的1/10以下的電容器及LCR負荷中的至少一個。
- 如申請專利範圍第1或2項之電源裝置,其中, 前述過電壓抑制電路包含以串聯連接之複數個元件。
- 如申請專利範圍第1或2項之電源裝置,其中, 前述保護電路根據如下中的至少一個而判定異常,亦即 (i)有無前述雷射裝置的輸出光; (ii)流向前述高頻電源之電流中的前述諧振電路的諧振頻率的成分; (iii)流向前述高頻電源之電流中的除了前述諧振電路的諧振頻率以外的成分; (iv)發射後的前述高頻電源的輸入電壓的下降幅度; (v)流向前述過電壓抑制電路之電流; (vi)頻率高於前述諧振電路的諧振頻率的雜訊;及 (vii)前述1對放電電極之間的電壓。
- 一種雷射裝置,其特徵為,具備: 1對放電電極; 高頻電源,向包含前述1對放電電極的電容之諧振電路施加高頻電壓; 過電壓抑制電路,抑制前述諧振電路的兩端之間的過電壓;及 保護電路,若檢測出異常,則停止施加前述高頻電壓, 前述保護電路檢測出前述異常時所需的時間短於前述過電壓抑制電路能夠耐前述過電壓之時間。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-081678 | 2018-04-20 | ||
JP2018081678A JP7045250B2 (ja) | 2018-04-20 | 2018-04-20 | レーザ装置およびその電源装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201944670A true TW201944670A (zh) | 2019-11-16 |
TWI713275B TWI713275B (zh) | 2020-12-11 |
Family
ID=68284918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108111126A TWI713275B (zh) | 2018-04-20 | 2019-03-29 | 雷射裝置及其電源裝置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7045250B2 (zh) |
KR (1) | KR102531290B1 (zh) |
CN (1) | CN110391582B (zh) |
TW (1) | TWI713275B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023166674A (ja) | 2022-05-10 | 2023-11-22 | 住友重機械工業株式会社 | 電源装置、レーザ装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3314157A1 (de) * | 1982-04-19 | 1983-12-08 | Kraftwerk Union AG, 4330 Mülheim | Anregungskreis fuer lasersysteme, insbesondere fuer te-hochenergielaser, mit einstellung der vorionisierung |
EP0261663B1 (en) * | 1986-09-26 | 1992-06-17 | Hitachi, Ltd. | Laser device with high-voltage pulse generator, high-voltage pulse generator and pulse generating method |
JP3001723B2 (ja) * | 1992-05-26 | 2000-01-24 | 株式会社東芝 | パルス充電回路 |
JPH0613692A (ja) * | 1992-06-26 | 1994-01-21 | Toshiba Corp | ガスレーザ発振器 |
JPH0739166A (ja) * | 1993-07-26 | 1995-02-07 | Toshiba Corp | 高周波電源装置及びレーザ発振装置 |
JPH07221378A (ja) * | 1994-02-08 | 1995-08-18 | Toshiba Corp | 高周波電源装置及びレーザ発振装置 |
JP3496369B2 (ja) | 1995-11-06 | 2004-02-09 | 三菱電機株式会社 | レーザ用電源装置 |
JPH11178333A (ja) * | 1997-12-15 | 1999-07-02 | Sansha Electric Mfg Co Ltd | 直流電源装置 |
JP3991450B2 (ja) * | 1998-06-16 | 2007-10-17 | 三菱電機株式会社 | 高周波交流電源装置 |
JP3961201B2 (ja) * | 2000-07-27 | 2007-08-22 | 三菱電機株式会社 | レーザ用電源装置 |
JP4135417B2 (ja) * | 2002-07-09 | 2008-08-20 | 三菱電機株式会社 | レーザ電源装置及びレーザ装置 |
JP4312035B2 (ja) * | 2003-11-18 | 2009-08-12 | ギガフォトン株式会社 | 電源装置および高電圧パルス発生装置並びに放電励起式ガスレーザ装置 |
JP4700460B2 (ja) * | 2005-09-27 | 2011-06-15 | 東芝三菱電機産業システム株式会社 | 直列半導体スイッチ装置 |
US20070071047A1 (en) * | 2005-09-29 | 2007-03-29 | Cymer, Inc. | 6K pulse repetition rate and above gas discharge laser system solid state pulse power system improvements |
WO2009145184A1 (ja) * | 2008-05-27 | 2009-12-03 | パナソニック電工株式会社 | 放電灯点灯装置 |
JP5075775B2 (ja) * | 2008-09-19 | 2012-11-21 | ギガフォトン株式会社 | パルスレーザ用電源装置 |
JP5093181B2 (ja) * | 2009-04-13 | 2012-12-05 | 三菱電機株式会社 | ガスレーザ発振器 |
JP4809486B2 (ja) * | 2010-04-05 | 2011-11-09 | ファナック株式会社 | 放電開始を判定する機能を有するガスレーザ発振器 |
EP2732558B1 (en) * | 2011-07-13 | 2019-03-06 | USHIO Denki Kabushiki Kaisha | Power supply for a discharge produced plasma euv source |
JP5920870B2 (ja) * | 2011-11-02 | 2016-05-18 | 株式会社アマダミヤチ | レーザ電源装置 |
JP6184798B2 (ja) | 2013-08-05 | 2017-08-23 | 住友重機械工業株式会社 | ガスレーザ装置、パルスレーザビーム出力方法及びレーザ加工装置 |
JP2015097446A (ja) * | 2013-11-15 | 2015-05-21 | キヤノン株式会社 | 電源装置及び画像形成装置 |
JP6355496B2 (ja) * | 2014-09-17 | 2018-07-11 | 住友重機械工業株式会社 | レーザ加工装置及びパルスレーザビームの出力方法 |
JP2017069561A (ja) | 2015-09-29 | 2017-04-06 | パナソニックIpマネジメント株式会社 | ガスレーザ発振装置 |
-
2018
- 2018-04-20 JP JP2018081678A patent/JP7045250B2/ja active Active
-
2019
- 2019-03-29 TW TW108111126A patent/TWI713275B/zh active
- 2019-04-01 KR KR1020190037767A patent/KR102531290B1/ko active IP Right Grant
- 2019-04-02 CN CN201910262061.8A patent/CN110391582B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
KR102531290B1 (ko) | 2023-05-10 |
TWI713275B (zh) | 2020-12-11 |
CN110391582A (zh) | 2019-10-29 |
CN110391582B (zh) | 2024-04-12 |
JP7045250B2 (ja) | 2022-03-31 |
KR20190122554A (ko) | 2019-10-30 |
JP2019192715A (ja) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5679241B1 (ja) | 電圧形直流電源装置および電圧形直流電源装置の制御方法 | |
KR101609107B1 (ko) | 직류전원장치, 직류전원장치의 제어방법 | |
JP5712704B2 (ja) | 高電圧インバータ装置 | |
JP5920870B2 (ja) | レーザ電源装置 | |
US9137885B2 (en) | DC power supply device, and control method for DC power supply device | |
TWI599273B (zh) | 電源裝置 | |
TWI713275B (zh) | 雷射裝置及其電源裝置 | |
JP2019062640A (ja) | 電源装置 | |
JP5948219B2 (ja) | 電力変換装置の制御装置 | |
US6683422B1 (en) | Full wave sense amplifier and discharge lamp inverter incorporating the same | |
JP4805205B2 (ja) | 放電負荷用電源 | |
JP5972603B2 (ja) | レーザ電源装置及びその制御方法 | |
JP6831270B2 (ja) | 高周波電源用の電源制御装置および高周波電源の制御方法、ならびにレーザ加工システム用の光源 | |
TWI733215B (zh) | 雷射裝置用的電源裝置 | |
JPS63273376A (ja) | レ−ザ発振装置 | |
JP2008269836A (ja) | 高圧放電灯点灯装置 | |
JP2009054365A (ja) | 高圧放電灯点灯装置 | |
US20170189983A1 (en) | Welding power supply with interleaved inverter circuitry | |
JP2011233659A (ja) | レーザ発振装置およびレーザ加工機 | |
JP6051579B2 (ja) | 充電回路及び閃光放電ランプ点灯装置 | |
CN117040255A (zh) | 电源装置及激光装置 | |
JP2006094609A (ja) | 電源装置 | |
JP5784412B2 (ja) | 放電灯点灯装置 | |
JP5691541B2 (ja) | 閃光放電ランプ点灯装置 | |
JP2010264886A (ja) | 放電灯点灯装置及びそれを用いた車載用前照灯点灯装置 |