TW201937303A - 用於減少光阻模型預測錯誤之系統及方法 - Google Patents

用於減少光阻模型預測錯誤之系統及方法 Download PDF

Info

Publication number
TW201937303A
TW201937303A TW107146045A TW107146045A TW201937303A TW 201937303 A TW201937303 A TW 201937303A TW 107146045 A TW107146045 A TW 107146045A TW 107146045 A TW107146045 A TW 107146045A TW 201937303 A TW201937303 A TW 201937303A
Authority
TW
Taiwan
Prior art keywords
photoresist
profile
metrology
actual
parameters
Prior art date
Application number
TW107146045A
Other languages
English (en)
Other versions
TWI687781B (zh
Inventor
瑪爾連 庫伊曼
大衛 馬瑞 里歐
珊德 弗瑞德瑞克 威斯特
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201937303A publication Critical patent/TW201937303A/zh
Application granted granted Critical
Publication of TWI687781B publication Critical patent/TWI687781B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70653Metrology techniques
    • G03F7/70666Aerial image, i.e. measuring the image of the patterned exposure light at the image plane of the projection system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • G03F7/706839Modelling, e.g. modelling scattering or solving inverse problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

本發明描述一種用於校準一光阻模型之方法。該方法包括以下步驟:基於一光阻結構之一模擬空間影像及該光阻模型之參數產生該光阻結構之一模型化光阻輪廓;及基於藉由一度量衡裝置獲得的一實際光阻結構之資訊自該模型化光阻輪廓預測該光阻結構之一度量衡輪廓。該方法包括基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之一實際度量衡輪廓之一比較來調整該光阻模型之該等參數。

Description

用於減少光阻模型預測錯誤之系統及方法
本文的描述係關於用於改良對藉由光阻模型製成的光阻輪廓之預測的系統及方法。特定言之,本文的描述提供減少光阻模型預測錯誤之技術。
微影設備可用於(例如)積體電路(IC)或其他裝置之製造中。在此類情況下,圖案化裝置(例如,光罩)可含有或提供對應於裝置之個別層的圖案(「設計佈局」),且此圖案可轉印至上基板(例如,矽晶圓)上已塗佈有一層輻射敏感材料(「光阻」)之目標部分(例如,包含一或多個晶粒)上(藉由諸如經由圖案化裝置上之圖案輻照該目標部分之方法)。一般而言,單一基板含有複數個鄰近目標部分,圖案係由微影設備順次地轉印至該複數個鄰近目標部分,一次一個目標部分。在一種類型之微影設備中,將整個圖案化裝置上之圖案一次性轉印至一個目標部分上;此種設備通常被稱作晶圓步進器(wafer stepper)。在通常被稱作步進掃描設備(step-and-scan apparatus)之替代設備中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化裝置進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化裝置上之圖案之不同部分逐漸地轉印至一個目標部分。一般而言,因為微影設備將具有放大因數M (通常<1),所以基板被移動之速率F將為投影光束掃描圖案化裝置之速率的因數M倍。
在將圖案自圖案化裝置轉印至裝置製造過程之基板之裝置製作程序之前,基板可經歷裝置製造過程之各種裝置製作程序,諸如,上底漆、光阻塗佈及軟烘烤。在圖案轉印之後,基板可經受裝置製造過程之其他裝置製作程序,諸如經轉印圖案之曝露後烘烤(PEB)、顯影、硬烘烤及量測/檢測。此裝置製造程序陣列係用作製造裝置(例如IC)之個別層之基礎。基板可接著經受裝置製造過程之各種裝置製作程序,諸如蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械拋光、計量(例如,使用掃描電子顯微鏡(SEM)等,其全部旨在精整該裝置之個別層。若在裝置中需要若干層,則針對每一層來重複整個過程或其變體。最終,在基板上之每一目標部分中將存在裝置。若存在複數個裝置,則接著藉由諸如切塊或鋸切之技術將此等裝置彼此分離,據此,可將個別裝置安裝於載體上、連接至接腳,等等。
因此,製造裝置(諸如半導體裝置)通常涉及使用數個製造過程來處理基板(例如,半導體晶圓)以形成該等裝置之各種特徵及多個層。通常使用例如沈積、微影、蝕刻、化學機械拋光及離子植入來製造及處理此類層及特徵。可在基板上之複數個晶粒上製作多個裝置,且接著將該等裝置分離成個別裝置。此裝置製造過程可被認為係圖案化過程。圖案化過程涉及圖案化步驟,諸如使用微影設備之光學或奈米壓印微影,以在基板上提供圖案且通常但視情況涉及一或多個相關圖案處理步驟,諸如藉由顯影設備之光阻顯影、使用烘烤工具烘烤基板、使用蝕刻設備使用圖案進行蝕刻等。另外,通常在圖案化過程中涉及一或多個計量過程。
隨著半導體製造過程繼續進步,幾十年來,功能元件之尺寸已不斷地縮減,而每裝置的諸如電晶體之功能元件之量已在穩定增加,遵循通常被稱作「莫耳定律(Moore's law)」之趨勢。在當前技術狀態下,使用微影投影設備製造裝置之層,該等微影投影設備使用來自深紫外照明源之照明將對應於設計佈局之圖案投影至基板上,從而產生尺寸遠低於100 nm,即小於來自照明源(例如,193 nm照明源)之輻射的波長之一半,的個別功能元件。供印刷尺寸小於微影投影設備之經典解析度極限之特徵的此製程根據解析度公式CD = k1 ×λ/NA通常被稱作低k1 微影,其中λ為所採用輻射之波長(當前在大多數情況下為248 nm或193 nm),NA為微影投影設備中之投影光學件之數值孔徑,CD為「臨界尺寸」(通常為所印刷之最小特徵大小),且k1 為經驗解析度因數。一般而言,k1 愈小,則在基板上再現類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜的微調步驟施加至微影投影設備及/或對應於設計佈局之圖案。此等步驟包括例如但不限於NA及/或光學相干設定之最佳化、客製化照明方案、相移圖案化裝置之使用、對應於設計佈局之圖案中之光學近接校正(OPC)(諸如圖案特徵之偏差、輔助特徵之添加、將襯線施加至圖案特徵等等),或一般定義為「解析度增強技術」(RET)之其他方法。
在微影應用中,常常使用光阻模型(例如,迅子光阻模型)來預測將由SEM設備量測的輪廓之光阻輪廓。引入光阻模型以便校正相對於由單一空間影像預測的光阻輪廓之光阻偏差。特定言之,在光阻厚度內的合適高度處之空間影像或空間影像在光阻厚度上的平均強度用於預測目的。此類光阻模型不能準確地預測焦點相依性特徵(諸如具有接近於主要特徵的子解析度輔助特徵(SRAF)的負型色調顯影(NTD)光阻中的1D線空間圖案)之影響。
當前使用的光阻模型不能準確地預測焦點相依性特徵之影響可歸因於光阻輪廓之度量衡量測值(例如,CDSEM量測值)中之特徵相依性偏差。預期特徵大小持續縮小,由度量衡裝置引入之此類偏差的相對貢獻將持續變大,且因此引入進一步模型化錯誤。因此,要求開發用於減少光阻模型預測錯誤的系統及方法。
為了使得能夠理解圖案化過程如何起作用,計算微影技術可用於模擬圖案化過程之一或多個態樣如何「起作用」。因此,適合之計算微影軟體可預測基板上之圖案之形成之一或多個特性,諸如該圖案之經預測CD、經預測輪廓等等,且有可能在該圖案之形成之不同階段處這麼做。
此類計算微影之一個態樣為對光阻層中之圖案之預測。但,已發現預測光阻層中圖案之形成的現有技術可能不會恰當及/或快速地評估光阻層中可出現的圖案。因此,例如,需要提供一種準確地及/或快速地預測光阻圖案之預期(常常高度複雜)形狀的技術。因此,例如,提供用以改良光阻層之光阻模型預測的方法及系統。特定言之,本發明描述一種用於對於焦點相依性特徵藉由利用例如來自光阻輪廓之SEM量測值的資訊校正度量衡裝置(例如,SEM裝置)誘發的偽影來減少光阻模型化錯誤之方法。
藉由本發明之一個實施例,提供一種校準一光阻模型之方法。該方法包括以下步驟:基於一光阻結構之一模擬空間影像及該光阻模型之參數產生該光阻結構之一模型化光阻輪廓;基於藉由一度量衡裝置獲得的一實際光阻結構之資訊自該模型化光阻輪廓預測該光阻結構之一度量衡輪廓;及基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之一實際度量衡輪廓之一比較來調整該光阻模型之該等參數。
藉由該度量衡裝置獲得的該實際光阻結構之該資訊對應於藉由該度量衡裝置產生的一波形之一部分之一寬度。
該波形之該部分對應於藉由該度量衡裝置成像的該實際光阻結構之一邊緣。
該光阻結構之該預測度量衡輪廓係基於與該度量衡裝置相關聯之參數而自該模型化光阻輪廓產生。
該方法進一步包括以下步驟:基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之該實際度量衡輪廓之一比較更新該度量衡裝置之參數。
該度量衡裝置為一掃描電子顯微鏡。
該方法進一步包括以下步驟:基於該光阻模型之經調整光阻參數最佳化一光罩佈局之參數及一光學源之參數。
該方法進一步包括以下步驟:基於該光阻模型之該等經調整參數預測另一光阻結構之一度量衡輪廓;藉由該度量衡裝置獲得該另一光阻結構之一實際度量衡輪廓;及基於另一光阻結構之該預測度量衡輪廓與另一光阻結構之該實際度量衡輪廓之一比較計算一錯誤。
藉由一個實施例,提供一種用於校準一光阻模型之裝置。該裝置包括一處理器,該處理器經組態以:基於一光阻結構之一模擬空間影像及該光阻模型之參數產生該光阻結構之一模型化光阻輪廓;基於藉由一度量衡裝置獲得的一實際光阻結構之資訊自該模型化光阻輪廓預測該光阻結構之一度量衡輪廓;及基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之一實際度量衡輪廓之一比較來調整該光阻模型之該等參數。
藉由該度量衡裝置獲得的該實際光阻結構之該資訊對應於藉由該度量衡裝置產生的一波形之一部分之一寬度。
該波形之該部分對應於藉由該度量衡裝置成像的該實際光阻結構之一邊緣。
該波形之該部分之該寬度係在一預定臨限強度位準下量測。
該光阻結構之該預測度量衡輪廓係基於與該度量衡裝置相關聯之參數而自該模型化光阻輪廓產生。
包括於該裝置中之該處理器進一步經組態以基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之該實際度量衡輪廓之一比較更新該度量衡裝置之參數。
該度量衡裝置為一掃描電子顯微鏡。
包括於該裝置中之該處理器進一步經組態以基於該光阻模型之經調整光阻參數最佳化一光罩佈局之參數及一光學源之參數。
包括於該裝置中之該處理器進一步經組態以:基於該光阻模型之該等經調整參數預測另一光阻結構之一度量衡輪廓;藉由該度量衡裝置獲得該另一光阻結構之一實際度量衡輪廓;及基於另一光阻結構之該預測度量衡輪廓與另一光阻結構之該實際度量衡輪廓之一比較計算一錯誤。
藉由一個實施例,提供一種方法,其包括以下步驟:至少基於一光阻結構之一模擬空間影像產生該光阻結構之一模型化光阻輪廓;基於該模型化光阻輪廓、該模擬空間影像及與該光阻結構相關聯的一組光阻側壁參數中之至少一個光阻側壁參數預測對應於藉由一度量衡裝置成像的一實際光阻結構之一邊緣的一波形之一部分之一量測值;及基於該波形之該部分之該預測量測值與對應於藉由該度量衡裝置成像的該實際光阻結構之該邊緣的該波形之該部分之一實際量測值之一比較來調整該至少一個光阻側壁參數。
一波形之該部分之該預測量測值為藉由該度量衡裝置產生的一波形之該部分之一寬度,該寬度係在一預定臨限強度位準下量測。
藉由該度量衡裝置產生的該波形之該部分之該預測量測值係基於該組光阻側壁參數中之至少兩個光阻側壁參數。
該組光阻側壁參數包括三個光阻側壁參數,且藉由一度量衡裝置產生的該波形之該部分之該預測量測值係基於該組光阻側壁參數中之每一光阻側壁參數。
垂直強度範圍參數計算為一第一空間影像之一第一強度與一第二空間影像之一第二強度之間的一差,該第一空間影像對應於一光阻層內的一第一位置,且該第二空間影像對應於該光阻層內的一第二位置。
該第一位置處於該光阻層之一頂部第三部分中,且該第二位置處於該光阻層之一底部第三部分中。
該第一位置處於該光阻層之一頂表面下方15奈米,且該第二位置處於該光阻層之該頂表面下方75奈米。
該方法進一步包括以下步驟:基於該等經調整光阻側壁參數最佳化一光罩佈局之參數及一光學源之參數。
該方法進一步包括以下步驟:基於另一光阻結構之一模型化光阻輪廓、另一光阻結構之一模擬空間影像及該組光阻側壁參數中之該經調整至少一個光阻側壁參數預測對應於藉由該度量衡裝置成像的另一實際光阻結構之一邊緣的另一波形之一部分之另一量測值;及基於另一波形之該部分之該預測量測值判定另一實際光阻結構之該邊緣之一蝕刻品質。
在一實施例中,提供一種包含機器可讀指令之非暫時性電腦程式產品,該等機器可讀指令用於使一處理器執行如本文所描述之一方法。在一實施例中,提供一種系統,其包含:一硬體處理器;及如本文中所描述之一非暫時性電腦程式產品。
作為實施例之背景且轉至圖1,說明例示性微影投影設備10A。主要組件為:輻射源12A,其可為深紫外線準分子雷射源或包括極紫外線(EUV)光源之其他類型之光源;照明光學件,其界定部分相干性(表示為σ)且可包括塑形來自源12A之輻射之光學件14A、16Aa及16Ab;支撐件,其經組態以固持圖案化裝置18A;及投影光學件16Ac,其將圖案化裝置圖案之影像投影於基板平面22A上。投影光學件之光瞳平面處之可調整濾光器或孔徑20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度定義投影光學件之數值孔徑NA=sin(Θmax )。在一實施例中,微影投影設備自身無需具有輻射源12A。
因此,在微影投影設備中,光學件16Ac將圖案化裝置圖案之空中影像導向至基板上(通常為經縮小版本)。空中影像(AI)為在基板位階處之輻射強度分佈。曝露基板上之光阻層,且將空中影像轉印至光阻層以在其中作為潛伏「光阻影像」(RI)。可將光阻影像(RI)定義為光阻層中之光阻之溶解度的空間分佈。
現在,常常需要能夠以計算方式判定圖案化過程將如何在基板上產生所要圖案。因此,可提供模擬以模擬製程之一或多個部分。例如,需要能夠模擬在顯影光阻之後將圖案化裝置圖案轉印至基板之光阻層上以及該光阻層中產生之圖案上之微影製程。
圖2中說明用於模擬微影投影設備中之微影的例示性流程圖。照明模型31表示照明之光學特性(包括輻射強度分佈及/或相位分佈)。投影光學件模型32表示投影光學件之光學特性(包括由投影光學件引起的輻射強度分佈、偏振及/或相位分佈之改變)。設計佈局模型35表示設計佈局之光學特性(包括由給定設計佈局引起的對輻射強度分佈及/或相位分佈之改變),該設計佈局為在圖案化裝置上或藉由圖案化裝置而形成之特徵之配置的表示。可使用照明模型31、投影光學件模型32及設計佈局模型35模擬空中影像36。可使用光阻模型37自空中影像36模擬光阻影像38。微影之模擬可例如預測光阻影像中之輪廓及/或CD。
更特定言之,應注意,照明模型31可表示照明之光學特性,包括但不限於,NA-西格瑪(σ)設定以及任何特定照明形狀(例如,離軸照明,諸如,環形、四極、偶極等等。投影光學件模型32可表示投影光學件之光學特性,包括例如像差、變形、折射率、實體大小或尺寸等。設計佈局模型35亦可表示實體圖案化裝置之一或多個物理性質,如例如以全文引用的方式併入本文中之美國專利第7,587,704號中所描述。與微影投影設備相關聯之光學性質(例如照明、圖案化裝置及投影光學件之性質)規定空中影像。由於微影投影設備中使用之圖案化裝置可改變,因此需要將圖案化裝置之光學性質與微影投影設備中至少包括照明及投影光學件之其餘部分之光學性質分離,且因此提供設計佈局模型35。
可使用光阻模型37以根據空中影像計算光阻影像,其實例可在美國專利第8,200,468號中找到,該美國專利特此以全文引用之方式併入。光阻模型通常主要與光阻層之性質相關(例如,在曝露期間出現的化學製程、曝露後烘烤及/或顯影之影響),但因為光阻模型通常依據SEM量測資料加以校準,因此其將傾向於亦併有SEM偽影。
模擬之目標係準確地預測(例如)邊緣置放、空中影像強度斜率及/或CD,可接著將該等邊緣置放、空中影像強度斜率及/或CD與預期設計進行比較。預期設計通常被定義為可以諸如GDSII、OASIS或其他檔案格式之標準化數位檔案格式而提供之預OPC設計佈局。
自該設計佈局,可識別被稱作「剪輯(clip)」之一或多個部分。在實施例中,提取剪輯集合,其表示設計佈局中之複雜圖案(通常為約50個至1000個剪輯,但可使用任何數目個剪輯)。如熟習此項技術者應瞭解,此等圖案或剪輯表示設計之小部分(即,電路、胞元等等),且該等剪輯表示需要特定關注及/或驗證之小部分。換言之,剪輯可為設計佈局之部分,或可類似或具有臨界特徵係藉由體驗而識別(包括由客戶提供之剪輯)、藉由試誤法而識別或藉由執行全晶片模擬而識別的設計佈局之部分的類似行為。剪輯常常含有一或多個測試圖案或量規圖案。可由客戶基於設計佈局中要求特定影像最佳化之已知臨界特徵區域而先驗地提供初始較大剪輯集合。替代地,在另一實施例中,可藉由使用識別臨界特徵區域之某種自動化(諸如,機器視覺)或手動演算法而自整個設計佈局提取初始較大剪輯集合。
在一些實例中,模擬及模型化可用來組態圖案化裝置圖案之一或多個特徵(例如,執行光學近接校正)、照明之一或多個特徵(例如,改變照明之空間/角強度分佈之一或多個特性,諸如改變形狀),及/或投影光學件之一或多個特徵(例如,數值孔徑,等)。此類組態通常可分別被稱作光罩最佳化、源最佳化及投影最佳化。可獨立地執行或以不同組合形式組合此類最佳化。一個此類實例為源-光罩最佳化(source-mask optimization,SMO),其涉及組態圖案化裝置圖案之一或多個特徵連同照明之一或多個特徵。最佳化技術可聚焦於剪輯中之一或多者。最佳化可使用本文中所描述之模擬以產生各種參數之值。
在一系統之最佳化過程中,可將該系統之優值(figure of merit)表示為成本函數。最佳化過程歸結為找到最小化成本函數的系統之一組參數(設計變數)的過程。成本函數可取決於最佳化之目標而具有任何適合的形式。舉例而言,成本函數可為系統之某些特性(評估點)相對於此等特性之預期值(例如,理想值)之偏差的加權均方根(RMS);成本函數亦可為此等偏差之最大值(即,最差偏差)。本文中之術語「評估點」應被廣泛地解譯為包括系統之任何特性。歸因於系統之實施之實務性,系統之設計變數可限於有限範圍及/或可相互相依。在微影投影設備之情況下,約束常常與硬體之物理性質及特性(諸如,可調諧範圍,及/或圖案化裝置可製造性設計規則)相關聯,且評估點可包括基板上之光阻影像上的實體點,以及諸如劑量及焦點之非物理特性。
如上文所提及,基板上之層可具有轉印至其之圖案。此類層通常將被稱作光阻層,且可具有各種化學組成物。在一實施例中,光阻層為輻射敏感材料層。光阻層通常具有小型但有限之厚度,該厚度在大小方面可與成像至光阻上的圖案可比相當。光阻層可經歷微影製程中之各種處理。舉例而言,光阻可曝露於諸如EUV或DUV之輻射,輻射在光阻中引發化學反應。光阻可經歷曝露後烘烤(PEB)、顯影(例如,正型色調顯影或負型色調顯影)及/或硬烘烤。此等處理中之每一者可使得光阻在一個、兩個或三個維度上發生變形,且變形可為位置相關的(例如,三維位置相關的)。光阻之變形可影響下游處理,諸如材料沈積及蝕刻。在使用負型色調顯影之微影製程中,光阻變形對光阻頂部最大損耗及臨界尺寸的影響可能尤其顯著。因此,能夠預測光阻之變形的光阻模型37有益於較準確之微影及較高之良率。光阻模型37亦可能夠預測光阻層之對微影製程中之各種其他物理及化學處理的反應。隨後描述根據本發明之態樣的例示性光阻模型。
圖3A、圖3B、圖3C及圖3D示意性地展示基板320上之光阻層310之例示性變形。在光阻層中例如藉由經由圖案化裝置340將光阻層310曝露於輻射330而形成圖案。光阻層310可經歷曝露後處理,諸如PEB,且變形成經變形光阻層350。在此實例中,光阻層310之變形使得經變形光阻層350中曝露於輻射之部分相較於經變形光阻層350之其餘部分具有較小厚度。經變形光阻層350之部分355在曝露期間接收足夠高的劑量以在負型色調顯影之後保持在基板320上,且經變形光阻層350之其餘部分(例如,部分356)在負型色調顯影之後溶解。或者,經變形光阻層350之部分355在曝露期間接收足夠高劑量,以在正型色調顯影之後溶解,且經變形光阻層350之其餘部分在正型色調顯影之後保持在基板320上。部分355保留還是溶解取決於光阻之化學組成物及顯影劑之化學組成物。
在顯影期間移除光阻層之對顯影劑可溶的部分。此等部分之移除可引起除如關於圖3所描述之光阻層350之變形之外或替代於該變形的光阻層之其餘部分之變形。圖4A、圖4B、圖4C及圖4D示意性地展示此類例示性額外變形。圖4A展示圖3之經曝露光阻層350 (具有圖3C中展示之視情況存在之變形),其中部分355在曝露期間接收足夠高劑量且因此可溶於正型色調顯影劑且部分356並不接收足夠高劑量且因此不可溶於正型色調顯影劑。圖3B展示在顯影期間,部分355溶解且部分356保留。作為此類顯影之部分或在此後之一時間段期間,部分356可變形成部分357。此可發生在部分355之移除期間及/或在顯影完成之後的一時間段內。點線表示部分356之輪廓。在實例中,部分356收縮且變為部分357。圖4C展示圖3之經曝露光阻層350 (具有圖3C中展示之可選變形),其中部分355在曝露期間接收足夠高劑量且因此不可溶於負型色調顯影劑,且部分356並不接收足夠高劑量且因此可溶於負型色調顯影劑。圖4D展示在顯影期間,部分355保留且部分356溶解。作為此類顯影之部分或在此後之一時間段期間,部分355可變形成部分354。此可發生在部分356之移除期間及/或在顯影完成之後的一時間段內。點線表示部分355之輪廓。在實例中,部分355收縮且變為部分354。
藉由本發明之一個實施例,提供一種減少預測光阻層之輪廓時的光阻模型錯誤之方法。該方法藉由校正SEM (即,度量衡裝置)誘發的偽影而準確地預測光阻輪廓,對於焦點相依性特徵尤其如此。特定言之,該方法利用來自SEM波形之資訊來校正SEM誘發的偽影。藉由一個實施例,來自SEM波形之資訊對應於SEM波形中對應於光阻輪廓之白色條帶之寬度。接下來參考圖5A及圖5B描述關於SEM波形之細節。
藉由一個實施例,藉由使用CDSEM影像中的白色條帶之寬度校正SEM誘發的偽影之動機為白色條帶之寬度為光阻之側壁形狀的量度。光阻之側壁形狀由三個參數判定:空間影像之斜率、垂直強度範圍參數,及線CD。此外,白色條帶之寬度與光阻模型錯誤相關,藉由本發明之一個實施例,光阻模型錯誤歸因於CDSEM量測值中的形狀誘發偏差。必須瞭解,CDSEM量測值中之偏差當前不模型化於諸如迅子光阻模型之光阻模型中。因此,在下文中,白色條帶之寬度用於光阻模型之校準程序中。此外,如下文所描述,經校準光阻模型可用於驗證目的以及源-光罩最佳化應用。
現轉至圖5A,描繪例示性SEM影像500。該SEM影像包括由510表示之複數個光阻輪廓(例如,1D線特徵)。每一線特徵包括在線特徵任一側處之白色條帶520。必須瞭解,由於當前掃描電子顯微鏡中之偽影,線特徵之左側與右側之白色條帶之寬度及亮度存在差異。因此,藉由一個實施例,僅在該特徵之一個側(例如,左側或右側)處量測的白色條帶之寬度用於光阻模型之校準過程中。
如將瞭解,無需全輪廓用於執行本文所描述之方法。例如,可使用輪廓之大小。若輪廓為圓,則例如,圓之大小可用作輪廓之參數化。在一種方法中,大小可為在一個方向(例如,x或y)上之寬度。大體而言,輪廓之任何類型的參數化可用於替代輪廓本身。
作為一實例,細長特徵可擬合於橢圓,且參數化可為長軸或短軸。在典型圖案中,特徵沿著x或y方向印刷,使得擬合至該特徵之橢圓的長軸及短軸將同樣在x或y方向上。
更大體而言,輪廓可擬合至預定義形狀(圓、橢圓、直線、具有圓帽之線),且自例如橢圓之軸、線之寬度(CD)、一個特徵與其他特徵之間(尖端至尖端)的距離判定參數。
圖5B描繪對應於SEM影像之一區之例示性SEM波形550。特定言之,圖5B中之SEM波形550對應於如圖5A中所描繪之白色條帶區520。參考圖5B,相對於預定臨限強度位準560量測SEM波形之白色條帶之寬度570。
在一實施例中,臨限值係基於如圖5B中所示的經濾波SEM信號之最小值及最大值。通常,臨限值可設定為最小值與最大值之間的差之約60%,但原則上,可使用其他百分比。
在一實施例中,由於並不表示所關注的特徵之SEM偽影或局部極值之其他源,靠近所關注的白色條帶在局部量測最小值及最大值,而非量測全影像之最小值及最大值。
典型光阻模型(例如,迅子光阻模型)包括在光阻厚度上對空間影像求平均值,或選擇光阻層內合適高度處之空間影像。此類方法導致不準確地預測焦點相依性特徵,諸如具有接近於主要特徵的子解析度輔助特徵(SRAF)的負型色調顯影(NTD)光阻中的1D線空間圖案。因此,藉由本發明之一個實施例,在特徵邊緣處之在本文中稱為垂直強度範圍(VIR)參數之參數用作光阻厚度上之空中影像強度改變之量度。特定言之,參數VIR如下界定:
VIR (x, y) = AI (x, y, AIlocation = 15 nm) - AI (x, y, AIlocation = 75 nm) (1)
其中,x及y對應於光阻之一層內的座標,且AIlocation 對應於光阻厚度內之深度。注意,可相對於光阻層之頂表面量測深度。
藉由一個實施例,空間影像之斜率及VIR影響光阻之形狀。隨位置而變的空中影像強度之斜率量測自亮至暗之轉變中影像之陡度。藉由將斜率除以影像之強度來獲得空間影像之正規化斜率(在本文中稱為影像對數斜率(ILS))。圖6A說明描繪垂直強度範圍對具有類似影像對數斜率的特徵之特徵形狀的影響之例示性曲線圖。特定言之,圖6A描繪光阻層之側壁之輪廓如何隨VIR的變化而改變。可觀察到,VIR之增大導致光阻層之側壁的減小。以類似方式,圖6B說明描繪影像對數斜率對具有類似VIR的特徵之特徵形狀的影響的例示性曲線圖。圖6B描繪ILS之增大導致光阻層之側壁之增大。
轉至圖7A及圖7B,描繪根據一實施例之說明垂直強度範圍對特徵形狀之影響的示意圖。圖7A描繪在光阻厚度之頂表面與底表面之間具有大的正VIR之情形。線701及703分別對應於光阻層之底部與光阻層之頂部處具有相同空中影像強度之點。必須瞭解,在VIR具有大的正值(即,光阻之頂部層與底部層之間的空間影像強度差大)時,等強度曲線730基本上懸垂。此導致形成於基板720上之垂直光阻形狀710。
相比之下,圖7B描繪在光阻厚度之頂表面與底表面之間具有小的正VIR之情形。線751及753分別對應於光阻層之底部與光阻層之頂部處具有相同空中影像強度之點。在光阻厚度之頂表面與底表面之間的VIR小(即,光阻之頂部層與底部層之間的空間影像強度差小)時,等強度曲線780基本上垂直。在此類情況下,形成於基板770上之光阻760具有顯著側壁。
現轉至圖8A及圖8B,描繪根據一實施例之說明影像對數斜率(ILS)對光阻形狀之影響的示意圖。必須瞭解,光由光阻吸收,光阻之頂部處的強度始終略微高於底部。
圖8A描繪在光阻厚度之頂表面與底表面之間具有小ILS之情形。曲線801及803分別對應於光阻層之底部與光阻層之頂部處具有相同空中影像強度之點。必須瞭解,在ILS小時,光阻之頂部層與底部層上具有相同強度的點之間的水平距離大。特定言之,考慮由線807表示之特定強度位準,吾人可注意到,處於曲線801 (或803)上且與線807相交之點之間的水平距離大。在具有小ILS之情況下,等強度曲線805基本上懸垂。此導致形成於基板820上之垂直光阻形狀810。
相比之下,圖8B描繪在光阻厚度之頂表面與底表面之間具有大ILS之情形。曲線851及853分別對應於光阻層之底部與光阻層之頂部處具有相同空中影像強度之點。必須瞭解,在ILS大時,光阻之頂部層及底部層上具有相同強度的點之間的水平距離小。特定言之,考慮由線857表示之特定強度位準,吾人可注意到,處於曲線851 (或853)上且與線857相交之點之間的水平距離小。在具有大ILS之此類情況下,等強度曲線855基本上垂直。在此情況下,形成於基板870上之光阻860具有顯著側壁。
如前所述,白色條帶(經由SEM影像獲得)之寬度為光阻之側壁形狀之量度。光阻之側壁形狀由三個參數判定:空間影像之斜率、光阻之垂直強度範圍參數,及線CD (臨界尺寸)。
VIR參數計算為在光阻內第一位置處的第一空間影像之第一強度與在光阻層內第二位置處的第二空間影像之第二強度之間的差。藉由一個實施例,第一位置處於光阻層之頂表面下方15 nm,且第二位置處於光阻層之頂表面下方75 nm。然而,必須瞭解,15 nm及75 nm之上述值絕不限制本發明之範疇。舉例而言,第一位置可選自光阻層之頂部第三部分,且第二位置可選自光阻層之底部第三部分。
另外,藉由本發明之一個實施例,第一位置可為對應於在光阻層之第一部分中計算的空間影像之第一平均強度的位置,且第二位置可為對應於在光阻層之第二部分中計算的空間影像之第二平均強度的位置。第一部分可為光阻層之具有第一高度的頂部部分,且第二部分為光阻層之具有第二高度的底部部分,其中第一高度為光阻層之高度的20%,且第二高度為光阻層之高度的20%。或者,第一高度可為光阻層之高度的30%,且第二高度可為光阻層之高度的30%。
此外,藉由一個實施例,SEM影像之白色條帶之寬度取決於線CD、VIR參數及空間影像之斜率。特定言之,藉由一個實施例,白色條帶之寬度隨著線CD增大而增大,且隨著空間影像之斜率增大而減小。此外,SEM影像之白色條帶之寬度隨著VIR值增大而減小。因此,白色條帶之寬度受亦判定側壁形狀之相同參數影響,即線CD、空間影像之斜率及VIR參數。因此,藉由一個實施例,SEM影像之白色條帶之寬度為光阻之側壁形狀之量度。因此,如下文所描述,SEM影像之白色條帶之寬度用以在光阻輪廓之光阻模型預測中校正SEM誘發的偽影。
現轉至圖9,提供說明根據本發明之一實施例之在校準光阻模型時執行的步驟之例示性流程圖。
光阻模型(例如,迅子光阻模型)之校準開始於獲得光罩(步驟910)及照明光學系統模型(步驟920)以產生光阻層之模擬空間影像(步驟930)。
另外,在步驟940中判定考慮中的光阻模型之一組光阻參數之初始值。在步驟950中基於在步驟940中判定的光阻參數及在步驟930中產生的模擬空間影像來產生(即,預測)光阻結構之光阻輪廓。
另外,校準過程在步驟955中獲得如由度量衡裝置(例如,SEM裝置)獲取的實際光阻結構之資訊。舉例而言,藉由一個實施例,在步驟955中獲得如由CDSEM獲取的白色條帶之寬度的量測值。基於藉由CDSEM獲取的白色條帶之所量測寬度、步驟950之預測光阻輪廓及來自步驟980之SEM偏差參數(表徵SEM裝置)之初始值,校準過程在步驟960中預測光阻結構之SEM輪廓。藉由一個實施例,與SEM裝置相關聯的偏差可表示為:
(2)
其中c 0為有效SEM參數。該過程接著進行至步驟970,其中執行查詢以判定步驟960之預測SEM輪廓是否匹配如由CDSEM所量測的實際SEM輪廓(步驟990)。基於預測SEM輪廓與實際SEM輪廓之間的匹配程度,校準過程將反饋分別提供至步驟940及980。特定言之,反饋迴路對應於參數校準步驟,其中分別地,光阻參數在步驟940中更新,且有效SEM參數在步驟980中更新。
另外,如圖9中所概述的校準過程重複步驟940、950、980、960及970,直至滿足停止準則。藉由一個實施例,停止準則可對應於在預測SEM輪廓與實際SEM輪廓之間具有精確匹配。或者,藉由一個實施例,停止準則可對應於預測SEM輪廓與實際SEM輪廓之間的匹配錯誤在預定或所選臨限程度內。在一實施例中,可使用光阻參數之一組預設組合執行校準。在參數網上的各點上評估該模型,且選擇具有最小錯誤之結果。在此情況下,不存在「停止準則」本身,而實際上自各種選擇當中進行選擇。
注意,在滿足停止準則時,光阻模型之光阻參數係以使得光阻模型基本上獨立於SEM設定之方式加以校準。即,認識到完美的校準可能實際上不可達成,理想情況下,以不同SEM電壓重複實驗應僅改變模型980之參數。因此,實施例可提供以不同處理條件使用多個SEM量測值之能力,其可提供對光阻模型之額外校準選項。就此而言,光阻參數可進一步併有如上文所論述之VIR參數。
圖10描繪說明根據本發明之一實施例之經執行以驗證經校準光阻模型之步驟的例示性流程圖。
驗證經校準光阻模型之過程開始於獲得光罩(步驟1010)及照明光學系統(步驟1020)以產生另一光阻結構之模擬空間影像(步驟1030)。
另外,在步驟1050中,利用光阻模型之光阻參數之經校準值(步驟1040)及在步驟1030中產生的模擬空間影像來預測考慮中的另一光阻結構之光阻輪廓。
此外,驗證過程在步驟1055中獲得藉由度量衡裝置(例如,SEM裝置)獲取的實際光阻結構之資訊。舉例而言,如前所述,藉由一個實施例,可在步驟1055中獲得如由CDSEM獲取的白色條帶之寬度之量測值。基於如由CDSEM獲取的白色條帶之所量測寬度、步驟1050之預測光阻輪廓及SEM偏差參數之經校準值(步驟1080),驗證過程在步驟1060中預測光阻結構之SEM輪廓。
驗證過程進一步進行至步驟1070,其中執行查詢以判定步驟1060之預測SEM輪廓是否匹配如由CDSEM所量測的(考慮中的光阻結構之)實際SEM輪廓(步驟1090)。該過程進一步進行至步驟1095,其中可計算預測SEM輪廓與實際SEM輪廓之間的均方根錯誤以判定經校準模型之有效性。必須瞭解,在步驟1095中計算的均方根錯誤之低值對應於準確校準的光阻模型。
圖11描繪說明根據本發明之一實施例之源光罩最佳化(SMO)過程中執行的步驟之例示性流程圖。
SMO最佳化過程開始於判定光罩佈局圖案之初始參數值(步驟1110)及光學照明系統參數(步驟1120)。藉由一個實施例,光學照明系統之初始參數包括調諧及調整參數,諸如圓形照明區之外半徑、環形區之內半徑、界定內半徑及外半徑中之每一極所對之角度的極角等,而光罩佈局圖案參數可對應於與光罩或二元光罩相關的相移。
在步驟1130中,基於光罩佈局圖案及光學照明系統之初始參數產生空間影像。另外,最佳化過程在步驟1150中基於所產生的空間影像(步驟1130)及光阻模型之光阻參數(步驟1140)預測光阻輪廓。必須瞭解,最初可藉由如圖9中所概述之校準過程校準SMO過程中在考慮中之光阻模型。
另外,該過程進行至步驟1160,其中執行查詢以判定步驟1150之預測光阻輪廓是否匹配例如由晶片設計者設計的實際輪廓(步驟1170)。
藉由一個實施例,基於步驟1150之預測光阻輪廓與實際輪廓之間的匹配程度,SMO過程將反饋分別提供至步驟1110及1120。特定言之,反饋迴路對應於光罩佈局參數及光學照明系統參數之參數校準步驟。
必須瞭解,如圖11中所概述之SMO過程重複該等校準步驟(即,更新光罩佈局及光學照明系統之參數),直至滿足停止準則。藉由一個實施例,停止準則可對應於在預測光阻輪廓與如由晶片設計者設計的實際輪廓之間具有精確匹配。或者,藉由一個實施例,停止準則可對應於預測光阻輪廓與實際輪廓之間的匹配錯誤在預定臨限程度內。另外,SMO過程可繼續至校準光罩佈局之參數及/或光學照明系統之參數,直至達成與SMO相關聯的最佳化目標(例如,成本函數)。必須瞭解,如圖11中所概述的SMO過程不同於典型源-光罩最佳化應用,不同之處在於圖11之SMO試圖使所需輪廓匹配不包括SEM偽影的預測光阻輪廓。注意,預測光阻輪廓不包括SEM誘發的偽影,此係因為用以預測光阻輪廓之光阻參數係以併有SEM偏差的方式加以校準。特定言之,藉由如圖9中所概述的校準過程校準光阻參數。
圖12描繪說明根據本發明之一個實施例之在校準光阻側壁參數以預測白色條帶之寬度時執行的步驟之例示性流程圖。藉由一個實施例,自SEM波形獲得的資訊可用以校準3D光阻模型。如接下來所描述,白色條帶之預測寬度可用以指示具有獨特側壁形狀之光阻特徵。因此,如參考圖12所概述的過程可用來指示熱點之存在,熱點即預期以不良方式印刷之光阻特徵,即具有奇怪印刷形狀的光阻特徵。
圖12之過程開始於獲得光罩之參數(步驟1210)及照明光學系統之參數(步驟1220)以產生光阻層之模擬空間影像(步驟1230)。
另外,在步驟1250中,利用光阻模型之一組經校準光阻參數(步驟1240)及在步驟1230中產生的空間影像預測光阻結構之光阻輪廓。
該過程接著移至步驟1260,其中基於空間影像(步驟1230)、預測光阻輪廓(1250)及光阻側壁參數之初始值(步驟1280)預測白色條帶之寬度。藉由一個實施例,光阻側壁參數至少包括光阻層之VIR、光阻輪廓之線CD及空間影像之斜率。
此外,藉由本發明之一個態樣,可使用僅一個側壁參數來產生白色條帶之預測寬度。或者,藉由一個態樣,可使用任何兩個側壁參數來預測白色條帶之寬度。另外,藉由一個態樣,可使用全部三個側壁參數(即,光阻層之VIR、光阻輪廓之線CD及空間影像之斜率)來預測白色條帶之寬度。
在預測白色條帶之寬度之後,圖12中之過程進行至步驟1270,其中進行查詢以判定步驟1260之白色條帶之預測寬度是否匹配如自SEM裝置獲得的所量測白色條帶。另外,基於白色條帶之預測寬度及白色條帶之量測寬度之間的匹配程度,該校準過程將反饋提供至步驟1280。特定言之,反饋迴路對應於參數校準步驟,其中在步驟1280中更新至少一個光阻側壁參數。
另外,如圖12中所概述的校準過程重複步驟1260、1270及1280,直至滿足停止準則。藉由一個實施例,停止準則可對應於在白色條帶之預測寬度與白色條帶之量測寬度之間具有精確匹配。或者,藉由一個實施例,停止準則可對應於白色條帶之預測寬度與白色條帶之量測寬度之間的匹配錯誤在預定臨限程度內。如接下來所描述,圖12之校準過程可用以指示預期以不可接受的方式印刷在光阻層之基板上的光阻特徵。
圖13描繪說明經執行以偵測光阻層之奇怪特徵(即,預期以不可接受的方式印刷在基板上的光阻圖案)的步驟之例示性流程圖。
圖13之過程開始於獲得光罩之參數(步驟1310)及照明光學系統之參數(步驟1320)以產生光阻層之模擬空間影像(步驟1330)。
另外,在步驟1350中,利用光阻模型之一組經校準光阻參數(步驟1340)及在步驟1330中產生的空間影像預測光阻結構之光阻輪廓。
該過程接著移至步驟1360,其中基於空間影像(步驟1330)、預測光阻輪廓(1350)及光阻側壁參數之經校準值(步驟1370)預測對應於考慮中的特定光阻特徵的白色條帶之寬度。藉由一個實施例,光阻側壁參數包括光阻層之VIR、光阻輪廓之CD及空間影像之斜率,其中藉由如圖12中所概述的過程校準光阻側壁參數中之至少一者。
基於步驟1360中的白色條帶之預測寬度,在步驟1380中可對奇怪的光阻印刷特徵加旗標。特定言之,基於光阻特徵之預測白色條帶寬度對預期以不良方式印刷的光阻特徵加旗標。舉例而言,藉由一個實施例,基於預測白色條帶具有大值(即,寬寬度白色條帶),可將對應光阻特徵加旗標為預期以不可接受的方式印刷的特徵。必須瞭解,對應於白色條帶之預測寬度的資訊可用於改良蝕刻模型之效率。視為過寬的程度將取決於所考慮的特定圖案而變化。舉例而言,其可取決於圖案之光阻類型或典型線寬。在此處考慮之特定情況下,寬於18 nm之白色條帶可認為過寬。廣泛地,給定過程可包括界定可接受特徵大小的外部限制之所選臨限值。
圖14為說明執行本文中所揭示之方法及流程之一或多個態樣之電腦系統100的方塊圖。電腦系統100包括用於傳達資訊之匯流排102或其他通信機構,及與匯流排102耦接以用於處理資訊之一處理器104 (或多個處理器104及105)。電腦系統100亦包括主記憶體106,諸如隨機存取記憶體(RAM)或其他動態儲存裝置,其耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令。主記憶體106在執行待由處理器104執行之指令期間亦可用於儲存暫時變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令之唯讀記憶體(ROM) 108或其他靜態儲存裝置。提供儲存裝置110 (諸如,磁碟或光碟)且將其耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102耦接至用於向電腦使用者顯示資訊之顯示器112,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入裝置114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入裝置為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如,滑鼠、軌跡球或游標方向按鍵。此輸入裝置通常具有在兩個軸(第一軸(例如,x)及第二軸(例如,y))上的兩個自由度,其允許裝置指定平面中的位置。觸控面板(螢幕)顯示器亦可被用作輸入裝置。
根據一個實施例,本文中所描述過程之部分可回應於處理器104執行含於主記憶體106中之一或多個指令的一或多個序列而由電腦系統100執行。可自諸如儲存裝置110之另一電腦可讀媒體將此類指令讀取至主記憶體106中。含於主記憶體106中之指令序列的執行使得處理器104執行本文中所描述之過程步驟。亦可採用多處理佈置配置中之一或多個處理器,以執行包含於主記憶體106中的指令序列。在一替代具體實例實施例中,可取代或結合軟體指令來使用硬佈線電路系統。因此,本文中之描述不限於硬體電路系統與軟體之任何特定組合。
如本文所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括(例如)光碟或磁碟,諸如儲存裝置110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸電纜、銅線及光纖,包括包含匯流排102的線。傳輸媒體亦可呈聲波或光波之形式,諸如在射頻(RF)及紅外(IR)資料通信期間所產生之聲波或光波。電腦可讀媒體之常見形式包括(例如)軟性磁碟、可撓性磁碟、硬碟、磁帶、任何其他磁媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
各種形式之電腦可讀媒體可涉及將一或多個指令之一或多個序列攜載至處理器104以供執行。舉例而言,初始地可將該等指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線而發送指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外線傳輸器以將資料轉換成紅外線信號。耦接至匯流排102之紅外線偵測器可接收紅外線信號中攜載之資料且將該資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自主記憶體106擷取且執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存裝置110上。
電腦系統100亦較佳地包括耦接至匯流排102的通信介面118。通信介面118將雙向數據資料通信耦接器提供至連接至區域網路122的網路連結120。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以將提供至對應類型之電話線的數據資料通信連接提供至對應類型之電話線。作為另一實例,通信介面118可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線連結。在任何此實施中,通信介面118發送且接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光學信號。
網路連結120通常經由一或多個網路而將資料通信提供至其他資料裝置。舉例而言,網路鏈路120可經由區域網路122將提供至主機電腦124之連接或由網際網路服務提供者(ISP) 126操作之資料裝備的連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」128)來提供資料通信服務。區域網路122及網際網路128兩者使用攜載數位資料串流的電信號、電磁信號或光學信號。經由各種網路之信號及在網路連結120上且經由通信介面118之信號為輸送資訊的例示性形式之載波,該等信號將數位資料攜載至電腦系統100且自電腦系統100攜載數位資料。
電腦系統100可經由網路、網路連結120及通信介面118發送訊息及接收資料,包括程式碼。在網際網路實例中,伺服器130可經由網際網路128、ISP 126、區域網路122及通信介面118傳送應用程式所請求之程式碼。一個此類下載應用程式可提供例如如本文所描述之過程。經接收碼可在其被接收時由處理器104執行,及/或儲存於儲存裝置110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波形式之應用程式碼。
圖15示意性地描繪用於與本文中所描述之方法一起使用的例示性微影投影設備。該設備包含:
- -照明系統IL,其用以調節輻射光束B。在此特定情況下,照明系統亦包含輻射源SO;
- 一第一物件台(例如,光罩台) MT,其配備有用以固持圖案化裝置MA (例如,倍縮光罩)之圖案化裝置固持器,且連接至用以相對於項目PS來準確地定位該圖案化裝置的第一定位器;
- 第二物件台(基板台) WT,其具備用以固持基板W (例如光阻塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器;
- 投影系統(「透鏡」) PS (例如折射、反射或反射折射光學系統),其用以將圖案化裝置MA之經輻照部分成像至基板W之目標部分C (例如包含一或多個晶粒)上。
如本文所描繪,設備屬於透射類型(即,具有透射光罩)。然而,一般而言,其亦可屬於(例如)反射類型(具有反射光罩)。替代地,該設備可使用另一種類之圖案化裝置作為經典光罩之使用的替代例;實例包括可程式化鏡面陣列或LCD矩陣。
源SO (例如,水銀燈或準分子雷射)產生輻射光束。舉例而言,此光束係直接地抑或在已橫穿諸如光束擴展器Ex之調節構件之後饋入至照明系統(照明器) IL中。照明器IL可包含調整構件AD以用於設定光束中之強度分佈之外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL通常將包含各種其他組件,諸如,積光器IN及聚光器CO。以此方式,照射於圖案化裝置MA上之光束B在其橫截面中具有所要均一性及強度分佈。
應注意,關於圖15,源SO可在微影投影設備之外殼內(源SO為例如水銀燈時常常為此情況),但源SO亦可遠離微影投影設備,源SO產生之輻射光束引導至設備(例如,藉助於合適導向鏡);此後一情形常常為源SO為準分子雷射(例如,基於KrF、ArF或F2 發出雷射)時之情況。
光束PB隨後截取被固持於圖案化裝置台MT上之圖案化裝置MA。在已橫穿圖案化裝置MA的情況下,光束B傳遞通過透鏡PL,該透鏡將光束B聚焦至基板W之目標部分C上。藉助於第二定位構件(及干涉量測構件IF),基板台WT可準確地移動,以便例如將不同目標部分C定位在光束PB之路徑中。類似地,第一定位構件可用以(例如)在自圖案化裝置庫對圖案化裝置MA之機械擷取之後或在掃描期間相對於光束B之路徑來準確地定位圖案化裝置MA。一般而言,將憑藉未在圖15中明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在晶圓步進器(相對於步進掃描工具)之情況下,圖案化裝置台MT可僅連接至短衝程致動器,或可固定。
所描繪工具可用於兩個不同模式中:
- 在步進模式中,圖案化裝置台MT保持基本上固定,且整個圖案化裝置影像一次性(即,單一「閃光」)投影至目標部分C上。接著使基板台WT在x方向及/或y方向上移位,使得可由光束PB輻照不同目標部分C;
- 在掃描模式中,基本上相同情境適用,惟單次「閃光」中不曝露給定目標部分C除外。實情為,圖案化裝置台MT可以速度v在給定方向(所謂的「掃描方向」,例如,y方向)上移動,以使得投影光束B掃過圖案化裝置影像;同時,基板台WT同時以速度V=Mv在相同或相反方向上移動,其中M為透鏡PL之放大率(通常,M = 1/4或1/5)。以此方式,可在不必損害解析度的情況下曝露相對大目標部分C。
圖16示意性地描繪可用於本文中所描述之方法之另一例示性微影投影設備1000。
微影投影設備1000包括:
- 源收集器模組SO
- 照明系統(照明器) IL,其經組態以調節輻射光束B (例如,EUV輻射);
- 支撐結構(例如,光罩台) MT,其經建構以支撐圖案化裝置(例如,光罩或倍縮光罩) MA且連接至經組態以準確地定位圖案化裝置之第一定位器PM;
- 基板台(例如,晶圓台) WT,其經建構以固持基板(例如,光阻塗佈晶圓) W,且連接至經組態以準確地定位該基板之第二定位器PW;及
- 投影系統(例如,反射性投影系統) PS,其經組態以藉由圖案化裝置MA將賦予輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。
如此處所描繪,設備1000屬於反射類型(例如,使用反射光罩)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以光罩可具有包含(例如)鉬與矽之多堆疊的多層反射器。在一個實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度為四分之一波長。可運用X射線微影來產生更小波長。由於大部分材料在EUV及x射線波長下具吸收性,因此圖案化裝置構形上的圖案化吸收材料之薄件(例如,在多層反射器的頂部上之TaN吸收體)界定特徵將印刷(正性光阻)或不印刷(負性光阻)在何處。
參考圖16,照明器IL自源收集器模組SO接收極紫外線輻射光束。用以產生EUV輻射之方法包括但不一定限於將材料轉換為電漿狀態,其具有的至少一種元素具有在EUV範圍中的一或多個發射譜線,例如氙、鋰或錫。在一種此類方法(常常被稱為雷射產生電漿(「LPP」))中,可藉由運用雷射光束來輻照燃料(諸如,具有譜線發射元素之材料小滴、串流或叢集)而產生電漿。源收集器模組SO可為包括雷射(圖16中未展示)的EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射,例如EUV輻射,該輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射光束時,雷射及源收集器模組可為分離實體。
在此等情況下,雷射不被視為形成微影設備之部分,且輻射光束係憑藉包含(例如)適合引導鏡面及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他情況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部分。
照明器IL可包含用於調整輻射光束之角強度分佈的調整器。一般而言,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面裝置及琢面化光瞳鏡面裝置。照明器可被用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於固持在支撐結構(例如,光罩台) MT上之圖案化裝置(例如,光罩) MA上,且由圖案化裝置圖案化。在自圖案化裝置(例如,光罩) MA 反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將輻射光束B聚焦至基板W之目標部分C上。藉助於第二定位器PW及位置感測器PS2 (例如,干涉量測裝置、線性編碼器或電容式感測器),基板台WT可準確地移動以便例如將不同目標部分C定位在輻射光束B之路徑中。類似地,第一定位器PM及另一位置感測器PS1可用來準確地相對於輻射光束B之路徑定位圖案化裝置(例如,光罩) MA。圖案化裝置(例如,光罩) MA與基板W可使用圖案化裝置對準標記M1、M2及基板對準標記P1、P2來對準。
所描繪設備1000可用於以下模式中之至少一者中:
1. 在步進模式中,支撐結構(例如,光罩台) MT及基板台WT保持基本上固定,同時賦予輻射光束之整個圖案一次性(即單次靜態曝露)投影至目標部分C上。接著,使基板台WT在X及/或Y方向上移位,使得可曝露不同目標部分C。
2. 在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上之同時,同步地掃描支撐結構(例如,光罩台) MT及基板台WT (即,單次動態曝露)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如,光罩台) MT之速度及方向。
3. 在另一模式中,支撐結構(例如,光罩台) MT保持基本上固定以固持可程式化圖案化裝置,且在將賦予輻射光束之圖案投影至目標部分C上的同時移動或掃描基板台WT。在此模式中,通常,使用脈衝式輻射源,且在基板台WT之每一移動之後或掃描期間的連續輻射脈衝之間根據需要更新可程式化圖案化裝置。此操作模式可易於應用於利用可程式化圖案化裝置(諸如,如上文所提及之類型的可程式化鏡面陣列)之無光罩微影。
圖17更詳細地展示設備1000,其包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置以使得可將真空環境維持於源收集器模組SO之封閉結構220中。可藉由放電產生電漿源形成EUV輻射發射電漿210。可藉由氣體或蒸汽(例如,氙氣體、鋰蒸汽或錫蒸汽)而產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜的EUV範圍內之輻射。舉例而言,藉由引起至少部分離子化電漿之放電來產生極熱電漿210。為了輻射之有效率產生,可要求為(例如) 10 Pa之分壓之氙、鋰、錫蒸汽或任何其他適合氣體或蒸汽。在一實施例中,提供經激發錫(Sn)電漿以產生EUV輻射。
由熱電漿210發射之輻射係經由定位於源腔室211中之開口中或後方的視情況選用的氣體障壁或污染物截留器230 (在一些情況下,亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染物截留器230亦可包括氣體障壁,或氣體障壁與通道結構之組合。如在此項技術中已知,本文中進一步所指示之污染物截留器或污染物障壁230至少包括通道結構。
收集器腔室211可包括可為所謂的掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可由光柵光譜濾光器240反射,光柵光譜濾光器240待沿著由點虛線「O」指示之光軸而聚焦在虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置成使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24,該琢面化場鏡面裝置及該琢面化光瞳鏡面裝置經配置以提供輻射光束21在圖案化裝置MA處的所要角分佈,以及輻射強度在圖案化裝置MA處的所要均一性。在由支撐結構MT固持之圖案化裝置MA處反射輻射光束21之後,形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30而成像至由基板台WT固持之基板W上。
比所展示之元件更多的元件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影設備之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所展示之鏡面多的鏡面,例如在投影系統PS中可存在比圖17中所展示之反射元件多1至6個的額外反射元件。
如圖17中所說明之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。將掠入射反射器253、254及255圍繞光軸O而軸向地對稱安置,且將此類型之收集器光學裝置CO與放電產生電漿源(常常被稱作DPP源)組合而較佳地使用。
或者,源收集器模組SO可為如圖18所展示之LPP輻射系統之部分。雷射LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數10電子伏特之電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間產生之高能輻射係自電漿發射、由近正入射收集器光學件CO收集,且聚焦至圍封結構220中之開口221上。
儘管在本文中可特定參考諸如IC之裝置之製造,但應明確地理解,本文中之描述具有許多其他可能的應用。舉例而言,其可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示器面板、薄膜磁頭等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,應認為本文對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用可分別與更一般之術語「光罩」、「基板」及「目標部分」互換。
可以使用以下條項進一步描述實施例:
1. 一種校準一光阻模型之方法,該方法包含:
基於一光阻結構之一模擬空間影像及該光阻模型之參數產生該光阻結構之一模型化光阻輪廓;
基於藉由一度量衡裝置獲得的一實際光阻結構之資訊自該模型化光阻輪廓預測該光阻結構之一度量衡輪廓;及
基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之一實際度量衡輪廓之一比較來調整該光阻模型之該等參數。
2. 如條項1之方法,其中藉由該度量衡裝置獲得的該實際光阻結構之該資訊對應於藉由該度量衡裝置產生的一波形之一部分之一寬度。
3. 如條項2之方法,其中該波形之該部分對應於藉由該度量衡裝置成像的該實際光阻結構之一邊緣。
4. 如條項1至3中任一項之方法,其中該波形之該部分之該寬度係在一預定臨限強度位準下量測。
5. 如條項1至4中任一項之方法,其中該光阻結構之該預測度量衡輪廓係基於與該度量衡裝置相關聯之參數而自該模型化光阻輪廓產生。
6. 如條項1至5中任一項之方法,其進一步包含:
基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之該實際度量衡輪廓之一比較更新該度量衡裝置之參數。
7. 如條項1至6中任一項之方法,其中該度量衡裝置為一掃描電子顯微鏡。
8. 如條項1之方法,其進一步包含:
基於該光阻模型之經調整光阻參數最佳化一光罩佈局之參數及一光學源之參數。
9. 如條項1之方法,其進一步包含:
基於該光阻模型之該等經調整參數預測另一光阻結構之一度量衡輪廓;
藉由該度量衡裝置獲得該另一光阻結構之一實際度量衡輪廓;及
基於另一光阻結構之該預測度量衡輪廓與另一光阻結構之該實際度量衡輪廓之一比較計算一錯誤。
10. 一種用於校準一光阻模型之裝置,該裝置包含:
一處理器,其經組態以
基於一光阻結構之一模擬空間影像及該光阻模型之參數產生該光阻結構之一模型化光阻輪廓;
基於藉由一度量衡裝置獲得的一實際光阻結構之資訊自該模型化光阻輪廓預測該光阻結構之一度量衡輪廓;及
基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之一實際度量衡輪廓之一比較來調整該光阻模型之該等參數。
11. 如條項10之裝置,其中藉由該度量衡裝置獲得的該實際光阻結構之該資訊對應於藉由該度量衡裝置產生的一波形之一部分之一寬度。
12. 如條項11之裝置,其中該波形之該部分對應於藉由該度量衡裝置成像的該實際光阻結構之一邊緣。
13. 如條項10至12中任一項之裝置,其中該波形之該部分之該寬度係在一預定臨限強度位準下量測。
14. 如條項10至13中任一項之裝置,其中該光阻結構之該預測度量衡輪廓係基於與該度量衡裝置相關聯之參數而自該模型化光阻輪廓產生。
15. 如條項10至14中任一項之裝置,其中該處理器經進一步組態以:
基於該實際光阻結構之該預測度量衡輪廓與該實際度量衡輪廓之一比較更新該度量衡裝置之參數。
16. 如條項10至16中任一項之裝置,其中該度量衡裝置為一掃描電子顯微鏡。
17. 如條項10之裝置,其中該處理器經進一步組態以:
基於該光阻模型之經調整光阻參數最佳化一光罩佈局之參數及一光學源之參數。
18. 如條項10之裝置,其中該處理器經進一步組態以:
基於該光阻模型之該等經調整參數預測另一光阻結構之一度量衡輪廓;
藉由該度量衡裝置獲得該另一光阻結構之一實際度量衡輪廓;及
基於另一光阻結構之該預測度量衡輪廓與另一光阻結構之該實際度量衡輪廓之一比較計算一錯誤。
19. 一種包含機器可讀指令之非暫時性電腦程式產品,該等機器可讀指令用於使得一處理器導致執行如條項1至9中任一項之方法。
20. 一種系統,其包含
一硬體處理器;及
如條項19之非暫時性電腦程式產品。
21. 一種方法,其包含:
至少基於一光阻結構之一模擬空間影像產生該光阻結構之一模型化光阻輪廓;
基於該模型化光阻輪廓、該模擬空間影像及與該光阻結構相關聯的一組光阻側壁參數中之至少一個光阻側壁參數預測對應於藉由一度量衡裝置成像的一實際光阻結構之一邊緣的一波形之一部分之一量測值;及
基於該波形之該部分之該預測量測值與對應於藉由該度量衡裝置成像的該實際光阻結構之該邊緣的該波形之該部分之一實際量測值之一比較來調整該至少一個光阻側壁參數。
22. 如條項21之方法,其中一波形之該部分之該預測量測值為藉由該度量衡裝置產生的一波形之該部分之一寬度,該寬度係在一預定臨限強度位準下量測。
23. 如條項21之方法,其中藉由該度量衡裝置產生的該波形之該部分之該預測量測值係基於該組光阻側壁參數中之至少兩個光阻側壁參數。
24. 如條項21之方法,其中該組光阻側壁參數包括三個光阻側壁參數,且藉由一度量衡裝置產生的該波形之該部分之該預測量測值係基於該組光阻側壁參數中之每一光阻側壁參數。
25. 如條項21至24之方法,其中該組光阻側壁參數包括一垂直強度範圍參數、一臨界距離線寬參數及該空間影像參數之一斜率。
26. 如條項25之方法,其中該垂直強度範圍參數計算為一第一空間影像之一第一強度與一第二空間影像之一第二強度之間的一差,該第一空間影像對應於一光阻層內的一第一位置,且該第二空間影像對應於該光阻層內的一第二位置。
27. 如條項25之方法,其中該第一位置處於該光阻層之一頂部第三部分中,且該第二位置處於該光阻層之一底部第三部分中。
28. 如條項26至27中任一項之方法,其中該第一位置處於該光阻層之一頂表面下方15奈米,且該第二位置處於該光阻層之該頂表面下方75奈米。
29. 如條項21之方法,其進一步包含:
基於該經調整光阻側壁參數最佳化一光罩佈局之參數及一光學源之參數。
30. 如條項21之方法,其進一步包含:
基於另一光阻結構之一模型化光阻輪廓、另一光阻結構之一模擬空間影像及該組光阻側壁參數中之該經調整至少一個光阻側壁參數預測對應於藉由該度量衡裝置成像的另一實際光阻結構之一邊緣的另一波形之一部分之另一量測值;及
基於另一波形之該部分之該預測量測值判定另一實際光阻結構之該邊緣之一蝕刻品質。
31. 一種包含機器可讀指令之非暫時性電腦程式產品,該等機器可讀指令用於使得一處理器導致執行如條項21至30中任一項之方法。
32. 一種系統,其包含
一硬體處理器;及
如條項31之非暫時性電腦程式產品。
33. 如條項1至9中任一項之方法,其中該預測度量衡輪廓及該實際度量衡輪廓經參數化,且該等輪廓之參數化用於該比較中。
34. 如條項10至18中任一項之裝置,其中該預測度量衡輪廓及該實際度量衡輪廓經參數化,且該等輪廓之參數化用於該比較中。
應注意,術語「光罩」、「倍縮光罩」與「圖案化裝置」在本文中可互換地利用。又,熟習此項技術者應認識到,特別是在微影模擬/最佳化之內容背景中,術語「光罩」/「圖案化裝置」及「設計佈局」可被互換地使用,此係因為:在微影模擬/最佳化中,未必使用實體圖案化裝置,而可使用設計佈局以表示實體圖案化裝置。
在本文件中,術語「輻射」及「光束」用來涵蓋所有類型之電磁輻射,包括紫外輻射(例如,波長為365、248、193、157或126 nm)及極紫外光輻射(EUV)(例如波長在5至20 nm範圍內)。
如本文中所使用,術語「最佳化(optimizing及optimization)」意謂調整微影投影設備及/或圖案化過程,使得圖案化過程(諸如微影)之結果及/或處理具有更合乎需要之特性,諸如設計佈局在基板上的較高投影準確度、較大處理窗,等。術語「最佳化」不必需要微影之結果及/或處理具有最合乎需要的特性,諸如設計佈局在基板上之最高投影準確度、最大處理窗,等。
上文所提及之圖案化裝置包含或可形成設計佈局。可利用電腦輔助設計(CAD)程式來產生設計佈局,此過程常常被稱作電子設計自動化(EDA)。大多數CAD程式遵循預定設計規則之集合,以便產生功能設計佈局/圖案化裝置。藉由處理及設計限制來設定此等規則。舉例而言,設計規則定義電路裝置(諸如,閘、電容器等等)之間的空間容許度。以便確保該等電路裝置或線彼此不會以不理想方式相互作用。設計規則限制通常被稱作「臨界尺寸」(CD)。可將電路之臨界尺寸定義為線或孔之最小寬度,或兩條線或兩個孔之間的最小空間。因此,CD判定經設計電路之總大小及密度。當然,積體電路製作中之目標中之一者係在基板上如實地再現原始電路設計(經由圖案化裝置)。
如本文中所使用之術語「光罩」或「圖案化裝置」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化裝置,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除經典光罩(透射性或反射性、二元、相移、混合式等)以外,其他此類圖案化裝置之實例包括可程式化鏡面陣列及可程式化LCD陣列。
本文中所揭示之概念可模擬或在數學上模型化任何圖案化過程,且可尤其適用於能夠產生愈來愈短波長之成像技術。已經在使用中之此類成像技術之實例包括極紫外線(EUV)、DUV微影,其能夠藉由使用ArF雷射產生193 nm波長及/或藉由使用氟雷射產生157 nm波長。此外,EUV微影能夠藉由使用例如同步加速器或藉由用高能電子撞擊材料(固體或漿體)來產生在約5 nm至約20 nm範圍內的波長以便產生在此範圍內的光子。
雖然本文中所揭示之概念可用於涉及在諸如矽晶圓之基板上的成像的圖案化過程,但應理解,所揭示之概念可與任何類型之微影成像系統一起使用,例如,用於在不同於矽晶圓的基板上之成像的微影成像系統。
在方塊圖中,所說明之組件被描繪為離散功能區塊,但實施例不限於本文中所描述之功能性如所說明來組織之系統。由組件中之每一者提供之功能性可由軟體或硬體模組提供,該等模組以與目前所描繪之方式不同之方式組織,例如,可摻和、結合、複寫、解散、分配(例如,在資料中心內或按地區),或另外以不同方式組織此軟體或硬體。本文中所描述之功能性可由執行儲存於有形的、非暫時性機器可讀媒體上之程式碼之一或多個電腦的一或多個處理器提供。在一些狀況下,第三方內容遞送網路可主控經由網路傳達之資訊中的一些或全部,在此狀況下,在據稱供應或以另外方式提供資訊(例如,內容)之情況下,可藉由發送指令以自內容遞送網路擷取彼資訊提供該資訊。
除非另外具體地陳述,否則如自論述顯而易見,應瞭解,貫穿本說明書,利用諸如「處理」、「計算(computing/calculating)」、「判定」或其類似者之術語的論述係指諸如專用電腦或類似專用電子處理/計算裝置之特定設備的動作或過程。
讀者應瞭解,本申請案描述若干發明。並非將彼等發明分開至多個經分離專利申請案中,申請人已將此等發明分組至單個文件中,此係因為其相關標的物可在應用過程中經濟地適用。但不應合併此等發明之相異優點及態樣。在一些情況下,實施例解決本文中所提到之所有不足,但應理解,該等發明係獨立地有用,且一些實施例僅解決此等問題之子集或供應其他未經提及之益處,該等益處對於檢閱本發明之熟習此項技術者將顯而易見。歸因於成本約束,目前可不主張本文中所揭示之一些發明,且可在稍後申請案(諸如接續申請案或藉由修正本技術方案)中主張該等發明。類似地,歸因於空間限制,本發明文件之發明摘要及發明內容章節皆不應被視為含有所有此等發明之全面清單或此等發明之所有態樣。
應理解,描述及圖式不意欲將本發明限制於所揭示之特定形式,但相反,意欲涵蓋屬於如由所附申請專利範圍所界定的本發明之精神及範疇內之所有修改、等效者及替代例。
鑒於此描述,本發明之各個態樣之修改及替代實施例對於熟習此項技術者而言將顯而易見。因此,本說明書及圖式應被理解為僅為說明性的且係出於教示熟習此項技術者執行本發明之一般方式之目的。應理解,本文中所展示且描述之本發明之形式應被視為實施例之實例。元件及材料可替代本文中所說明及描述之元件及材料,可反轉或省略部分及程序,可獨立利用某些特徵,且可組合實施例或實施例之特徵,此皆如熟習此項技術者在獲得此描述之益處之後將顯而易見。可在不脫離如在以下申請專利範圍中所描述之本發明之精神及範疇的情況下對本文中所描述之元件作出改變。本文中所使用之標題僅為達成組織性目的,且不意欲用以限制本說明書之範疇。
如貫穿本申請案所使用,詞「可」係在許可之意義(亦即,意謂有可能)而非強制性之意義(亦即,意謂必須)下予以使用。詞「包括(include/including/includes)」及其類似者意謂包括但不限於。如貫穿本申請案所使用,單數形式「一(a、an)」及「該」包括複數個參照物,除非內容另有明確地指示。因此,舉例而言,「一元件」之提及包括兩個或更多個元件之組合,儘管會針對一或多個元件使用其他術語及片語,諸如「一或多個」。除非另有指示,否則術語「或」係非獨占式的,亦即,涵蓋「及」與「或」兩者。描述條件關係之術語,例如,「回應於X,而Y」、「在X之後,Y」、「若X,則Y」、「當X時,Y」等涵蓋因果關係,其中前提為必要的因果條件,前期為充分的因果條件,或前期為結果的貢獻因果條件,例如,「在條件Y獲得後,即出現狀態X」對於「僅在Y後,才出現X」及「在Y及Z後,即出現X」係通用的。此等條件關係不限於即刻遵循前提而獲得之結果,此係由於可延遲一些結果,且在條件陳述中,前提連接至其結果,例如,前提係與出現結果之可能性相關。除非另有指示,否則複數個特質或功能經映射至複數個物件(例如,執行步驟A、B、C及D之一或多個處理器)之陳述涵蓋所有此等特質或功能經映射至所有此等物件及特質或功能之子集經映射至特質或功能之子集兩者(例如,所有處理器各自執行步驟A至D,及其中處理器1執行步驟A,處理器2執行步驟B及步驟C之一部分,且處理器3執行步驟C之一部分及步驟D之狀況)。另外,除非另外指示,否則一個值或動作係「基於」另一條件或值之陳述涵蓋條件或值為單獨因數之情況及條件或值為複數個因數當中之一個因數之情況兩者。除非另外指示,否則某集合之「每一」例項具有某種屬性之陳述不應被理解為排除較大集合之一些另外相同或相似部件並不具有該屬性之狀況,亦即,每一未必意謂每個都。對自範圍選擇之提及包括範圍之端點。
在以上描述中,流程圖中之任何程序、描述或區塊應理解為表示程式碼之模組、片段或部分,其包括用於實施該程序中之特定邏輯功能或步驟之一或多個可執行指令,且替代實施包括於本發明之例示性實施例之範圍內,其中功能可取決於所涉及之功能性而不按照所展示或論述之次序執行,包括實質上同時或以相反次序執行,如熟習此項技術者將理解。
雖然已描述某些實施例,但此等實施例僅作為實例來呈現,且並不意欲限制本發明之範疇。實際上,本文中所描述之新穎方法、設備及系統可以多種其他形式體現;此外,在不背離本發明精神之情況下,可對本文中所描述之方法、設備及系統的形式進行各種省略、替代及改變。隨附申請專利範圍及其等效者意欲涵蓋將屬於本發明之範疇及精神內的此類形式或修改。
10A‧‧‧微影投影設備
12A‧‧‧輻射源
14A‧‧‧光學件
16Aa‧‧‧光學件
16Ab‧‧‧光學件
16Ac‧‧‧投影光學件
18A‧‧‧圖案化裝置
20A‧‧‧可調整濾光器或孔徑
21‧‧‧輻射光束
22‧‧‧琢面化場鏡面裝置
22A‧‧‧基板平面
24‧‧‧琢面化光瞳鏡面裝置
26‧‧‧經圖案化光束
28‧‧‧反射元件
30‧‧‧反射元件
31‧‧‧照明模型
32‧‧‧投影光學件模型
35‧‧‧設計佈局模型
36‧‧‧空中影像
37‧‧‧光阻模型
38‧‧‧光阻影像
100‧‧‧電腦系統
102‧‧‧匯流排
104‧‧‧處理器
105‧‧‧處理器
106‧‧‧主記憶體
108‧‧‧唯讀記憶體
110‧‧‧儲存裝置
112‧‧‧顯示器
114‧‧‧輸入裝置
116‧‧‧游標控制件
118‧‧‧通信介面
120‧‧‧網路連結
122‧‧‧區域網路
124‧‧‧主機電腦
126‧‧‧網際網路服務提供者
128‧‧‧網際網路
130‧‧‧伺服器
210‧‧‧電漿
211‧‧‧源腔室/收集器腔室
212‧‧‧收集器腔室
220‧‧‧圍封結構
221‧‧‧開口
230‧‧‧污染物截留器
240‧‧‧光柵光譜濾光器
251‧‧‧上游輻射收集器側
252‧‧‧下游輻射收集器側
253‧‧‧掠入射反射器
254‧‧‧掠入射反射器
255‧‧‧掠入射反射器
310‧‧‧光阻層
320‧‧‧基板
330‧‧‧輻射
340‧‧‧圖案化裝置
350‧‧‧經變形光阻層
354‧‧‧部分
355‧‧‧部分
356‧‧‧部分
357‧‧‧部分
500‧‧‧SEM影像
510‧‧‧光阻輪廓
520‧‧‧白色條帶/白色條帶區
550‧‧‧SEM波形
560‧‧‧預定臨限強度位準
570‧‧‧寬度
701‧‧‧線
703‧‧‧線
710‧‧‧垂直光阻形狀
720‧‧‧基板
730‧‧‧等強度曲線
751‧‧‧線
753‧‧‧線
760‧‧‧光阻
770‧‧‧基板
780‧‧‧等強度曲線
801‧‧‧曲線
803‧‧‧曲線
805‧‧‧等強度曲線
807‧‧‧線
810‧‧‧垂直光阻形狀
820‧‧‧基板
851‧‧‧曲線
853‧‧‧曲線
855‧‧‧等強度曲線
857‧‧‧線
860‧‧‧光阻
870‧‧‧基板
910‧‧‧步驟
920‧‧‧步驟
930‧‧‧步驟
940‧‧‧步驟
950‧‧‧步驟
955‧‧‧步驟
960‧‧‧步驟
970‧‧‧步驟
980‧‧‧步驟
990‧‧‧步驟
1000‧‧‧微影投影設備
1010‧‧‧步驟
1020‧‧‧步驟
1030‧‧‧步驟
1040‧‧‧步驟
1050‧‧‧步驟
1055‧‧‧步驟
1060‧‧‧步驟
1070‧‧‧步驟
1080‧‧‧步驟
1090‧‧‧步驟
1095‧‧‧步驟
1110‧‧‧步驟
1120‧‧‧步驟
1130‧‧‧步驟
1140‧‧‧步驟
1150‧‧‧步驟
1160‧‧‧步驟
1170‧‧‧步驟
1210‧‧‧步驟
1220‧‧‧步驟
1230‧‧‧步驟
1240‧‧‧步驟
1250‧‧‧步驟
1260‧‧‧步驟
1270‧‧‧步驟
1280‧‧‧步驟
1310‧‧‧步驟
1320‧‧‧步驟
1330‧‧‧步驟
1340‧‧‧步驟
1350‧‧‧步驟
1360‧‧‧步驟
1370‧‧‧步驟
1380‧‧‧步驟
AD‧‧‧調整構件
B‧‧‧輻射光束
C‧‧‧目標部分
CO‧‧‧聚光器
IF‧‧‧干涉量測構件/虛擬源點
IL‧‧‧照明系統
IN‧‧‧積光器
LA‧‧‧雷射
M1‧‧‧圖案化裝置對準標記
M2‧‧‧圖案化裝置對準標記
MA‧‧‧圖案化裝置
MT‧‧‧第一物件台/光罩台
O‧‧‧點虛線
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一定位器
PS‧‧‧項目/投影系統/透鏡
PS1‧‧‧位置感測器
PS2‧‧‧位置感測器
PW‧‧‧第二定位器
SO‧‧‧輻射源/源收集器模組
W‧‧‧基板
WT‧‧‧第二物件台/基板台
併入於本說明書中且構成本說明書之一部分的附圖說明一或多個實施例且連同本說明書解釋此等實施例。現將參看隨附示意性圖式而僅作為實例來描述本發明之實施例,在該等圖式中,對應參考符號指示對應部分,且在該等圖式中:
圖1為微影系統之各種子系統的方塊圖。
圖2為計算微影技術之模擬模型之方塊圖。
圖3A、圖3B、圖3C及圖3D示意性地展示基板上之光阻層之例示性變形。
圖4A、圖4B、圖4C及圖4D示意性地展示由光阻層之顯影引起之例示性額外變形。
圖5A描繪例示性SEM影像。
圖5B描繪對應於SEM影像之一部分之例示性SEM波形。
圖6A說明描繪垂直強度範圍對光阻層之形狀的影響之例示性曲線圖。
圖6B說明描繪影像對數斜率對光阻層之形狀的影響之例示性曲線圖。
圖7A及圖7B描繪根據一實施例之說明垂直強度範圍對光阻形狀之影響的示意圖。
圖8A及圖8B描繪根據一實施例之說明影像對數斜率對光阻形狀之影響的示意圖。
圖9描繪說明根據本發明之一個實施例之在校準光阻模型時執行的步驟之例示性流程圖。
圖10描繪說明根據本發明之一實施例之經執行以驗證經校準光阻模型之步驟的例示性流程圖。
圖11描繪說明根據本發明之一實施例之在源光罩最佳化過程中執行的步驟之例示性流程圖。
圖12描繪說明根據本發明之一個實施例之在校準光阻側壁參數以預測白色條帶之寬度時執行的步驟之例示性流程圖。
圖13描繪說明經執行以偵測光阻層之奇怪特徵(odd feature)之例示性流程圖。
圖14為實例電腦系統之方塊圖。
圖15為微影投影設備之示意圖。
圖16為另一微影投影設備之示意圖。
圖17為圖16之設備的更詳細視圖。
圖18為圖16及圖17之設備之源收集器模組的更詳細視圖。

Claims (15)

  1. 一種校準一光阻模型之方法,該方法包含: 基於一光阻結構之一模擬空間影像及該光阻模型之參數產生該光阻結構之一模型化光阻輪廓; 基於藉由一度量衡裝置獲得的一實際光阻結構之資訊自該模型化光阻輪廓預測該光阻結構之一度量衡輪廓;及 基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之一實際度量衡輪廓之一比較來調整該光阻模型之該等參數。
  2. 如請求項1之方法,其中藉由該度量衡裝置獲得的該實際光阻結構之該資訊對應於藉由該度量衡裝置產生的一波形之一部分之一寬度。
  3. 如請求項2之方法,其中該波形之該部分對應於藉由該度量衡裝置成像的該實際光阻結構之一邊緣。
  4. 如請求項1之方法,其中該波形之該部分之該寬度係在一預定臨限強度位準下量測。
  5. 如請求項1之方法,其中該光阻結構之該預測度量衡輪廓係基於與該度量衡裝置相關聯之參數而自該模型化光阻輪廓產生。
  6. 如請求項1之方法,其進一步包含: 基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之該實際度量衡輪廓之一比較來調整該度量衡裝置之參數。
  7. 如請求項1之方法,其中該度量衡裝置為一掃描電子顯微鏡。
  8. 如請求項1之方法,其進一步包含: 基於該光阻模型之經調整光阻參數最佳化一光罩佈局之參數及一光學源之參數。
  9. 如請求項1之方法,其進一步包含: 基於該光阻模型之該等經調整參數預測另一光阻結構之一度量衡輪廓; 藉由該度量衡裝置獲得該另一光阻結構之一實際度量衡輪廓;及 基於另一光阻結構之該預測度量衡輪廓與另一光阻結構之該實際度量衡輪廓之一比較計算一錯誤。
  10. 如請求項1之方法,其中該預測度量衡輪廓及該實際度量衡輪廓經參數化,且該等輪廓之該等參數化用於該比較中。
  11. 一種用於校準一光阻模型之裝置,該裝置包含: 一處理器,其經組態以 基於一光阻結構之一模擬空間影像及該光阻模型之參數產生該光阻結構之一模型化光阻輪廓; 基於藉由一度量衡裝置獲得的一實際光阻結構之資訊自該模型化光阻輪廓預測該光阻結構之一度量衡輪廓;及 基於該預測度量衡輪廓與藉由該度量衡裝置獲得的該實際光阻結構之一實際度量衡輪廓之一比較來調整該光阻模型之該等參數。
  12. 如請求項11之裝置,其中藉由該度量衡裝置獲得的該實際光阻結構之該資訊對應於藉由該度量衡裝置產生的一波形之一部分之一寬度。
  13. 如請求項12之裝置,其中該波形之該部分對應於藉由該度量衡裝置成像的該實際光阻結構之一邊緣。
  14. 如請求項11之裝置,其中該波形之該部分之該寬度係在一預定臨限強度位準下量測。
  15. 如請求項11之裝置,其中該預測度量衡輪廓及該實際度量衡輪廓經參數化,且該等輪廓之該等參數化用於該比較中。
TW107146045A 2017-12-22 2018-12-20 用於減少光阻模型預測錯誤之系統及方法 TWI687781B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762609776P 2017-12-22 2017-12-22
US62/609,776 2017-12-22
US201862769283P 2018-11-19 2018-11-19
US62/769,283 2018-11-19

Publications (2)

Publication Number Publication Date
TW201937303A true TW201937303A (zh) 2019-09-16
TWI687781B TWI687781B (zh) 2020-03-11

Family

ID=64901561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146045A TWI687781B (zh) 2017-12-22 2018-12-20 用於減少光阻模型預測錯誤之系統及方法

Country Status (4)

Country Link
US (1) US11966167B2 (zh)
CN (2) CN111492317B (zh)
TW (1) TWI687781B (zh)
WO (1) WO2019122250A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112749424B (zh) * 2021-01-14 2023-04-21 泉芯集成电路制造(济南)有限公司 光刻胶的轮廓三维建模方法、系统和可读存储介质
CN117349947B (zh) * 2023-12-04 2024-03-15 中交长大桥隧技术有限公司 一种基于sn曲线与svm的结构安全智慧监测方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140145A (ja) 2002-10-17 2004-05-13 Nikon Corp 露光装置
US6869739B1 (en) * 2003-01-28 2005-03-22 International Business Machines Corporation Integrated lithographic print and detection model for optical CD
US7003758B2 (en) 2003-10-07 2006-02-21 Brion Technologies, Inc. System and method for lithography simulation
US7116411B2 (en) 2004-08-26 2006-10-03 Asml Masktools B.V. Method of performing resist process calibration/optimization and DOE optimization for providing OPE matching between different lithography systems
US7488933B2 (en) 2005-08-05 2009-02-10 Brion Technologies, Inc. Method for lithography model calibration
JP4806020B2 (ja) * 2005-08-08 2011-11-02 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィプロセスのフォーカス露光モデルを作成するための方法、公称条件で使用するためのリソグラフィプロセスの単一のモデルを作成するための方法、およびコンピュータ読取可能媒体
CN101305320B (zh) 2005-09-09 2012-07-04 Asml荷兰有限公司 采用独立掩模误差模型的掩模验证系统和方法
JP2007218711A (ja) * 2006-02-16 2007-08-30 Hitachi High-Technologies Corp 電子顕微鏡装置を用いた計測対象パターンの計測方法
US7642020B2 (en) 2006-08-17 2010-01-05 International Business Machines Corporation Method for separating optical and resist effects in process models
JP4328811B2 (ja) 2007-02-27 2009-09-09 キヤノン株式会社 レジストパターン形状予測方法、プログラム及びコンピュータ
US7703069B1 (en) 2007-08-14 2010-04-20 Brion Technologies, Inc. Three-dimensional mask model for photolithography simulation
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
US7765021B2 (en) 2008-01-16 2010-07-27 International Business Machines Corporation Method to check model accuracy during wafer patterning simulation
NL2003654A (en) 2008-11-06 2010-05-10 Brion Tech Inc Methods and system for lithography calibration.
JP2010156866A (ja) 2008-12-27 2010-07-15 Toshiba Corp 特徴量抽出方法、テストパターン選択方法、レジストモデル作成方法および設計回路パターン検証方法
US7900169B2 (en) 2009-01-06 2011-03-01 International Business Machines Corporation OPC model calibration process
US8250498B2 (en) 2010-01-28 2012-08-21 Synopsys, Inc. Method and apparatus for calibrating a photolithography process model by using a process window parameter
US8458626B1 (en) 2012-01-20 2013-06-04 International Business Machines Corporation Method for calibrating an SRAF printing model
NL2010162A (en) 2012-02-03 2013-08-06 Asml Netherlands Bv A lithography model for 3d resist profile simulations.
US20140123084A1 (en) 2012-11-01 2014-05-01 Taiwan Semiconductor Manufacturing Company, Ltd. System and Method for Improving a Lithography Simulation Model
US9404743B2 (en) * 2012-11-01 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method for validating measurement data
US10395361B2 (en) 2015-08-10 2019-08-27 Kla-Tencor Corporation Apparatus and methods for inspecting reticles
WO2017060192A1 (en) * 2015-10-08 2017-04-13 Asml Netherlands B.V. Method and apparatus for pattern correction and verification
US10048594B2 (en) 2016-02-19 2018-08-14 Tokyo Electron Limited Photo-sensitized chemically amplified resist (PS-CAR) model calibration
DE102016218977B4 (de) 2016-09-30 2020-11-12 Carl Zeiss Smt Gmbh Verfahren zur Ermittlung eines OPC-Modells
US9857693B1 (en) 2017-01-08 2018-01-02 Mentor Graphics Corporation Lithography model calibration via cache-based niching genetic algorithms

Also Published As

Publication number Publication date
CN111492317B (zh) 2023-01-10
CN111492317A (zh) 2020-08-04
US11966167B2 (en) 2024-04-23
US20200348598A1 (en) 2020-11-05
TWI687781B (zh) 2020-03-11
WO2019122250A1 (en) 2019-06-27
CN116125756A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN112384860B (zh) 基于机器学习的逆光学邻近效应校正和过程模型校准
TWI590006B (zh) 用於改良微影製程的方法及電腦程式產品
TWI620980B (zh) 影像對數斜率(ils)最佳化
TW201539226A (zh) 用於微影程序之最佳化流程
TWI698717B (zh) 用於圖案組態之方法及其電腦程式產品
TWI687761B (zh) 判定層變形之方法及非暫時性電腦程式產品
TWI823616B (zh) 執行用於訓練機器學習模型以產生特性圖案之方法的非暫時性電腦可讀媒體
TWI706439B (zh) 用於評估抗蝕劑顯影的方法
KR102609413B1 (ko) 자동으로 sem 윤곽 측정 정확성 및 안정성을 개선하기 위한 패턴 인식 활용
TW201702757A (zh) 使用源輻射之角分佈之多重取樣的微影模擬
TWI725325B (zh) 缺陷預測
TWI687781B (zh) 用於減少光阻模型預測錯誤之系統及方法
KR102642972B1 (ko) 모델 캘리브레이션을 위한 게이지 선택의 향상
TWI702467B (zh) 用於改進抗蝕劑模型預測的系統、方法及電腦程式產品
TW202119137A (zh) 在裝置製程中的方法、非暫態電腦可讀媒體、及組態以執行該方法的系統
TWI661264B (zh) 調諧製程模型之方法
US20240319581A1 (en) Match the aberration sensitivity of the metrology mark and the device pattern
TWI654497B (zh) 在製程中導引程序模型及檢測之方法
TW202424656A (zh) 多層級蝕刻程序之模型化
WO2024013038A1 (en) Stochastic-aware source mask optimization based on edge placement probability distribution
TW202028849A (zh) 產生特徵圖案與訓練機器學習模型之方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees