TW201826339A - 基於晶圓之光源參數控制 - Google Patents

基於晶圓之光源參數控制 Download PDF

Info

Publication number
TW201826339A
TW201826339A TW106135286A TW106135286A TW201826339A TW 201826339 A TW201826339 A TW 201826339A TW 106135286 A TW106135286 A TW 106135286A TW 106135286 A TW106135286 A TW 106135286A TW 201826339 A TW201826339 A TW 201826339A
Authority
TW
Taiwan
Prior art keywords
substrate
pulsed
sub
region
spectral
Prior art date
Application number
TW106135286A
Other languages
English (en)
Other versions
TWI661468B (zh
Inventor
維爾拉 厄爾 康利
艾瑞克 安德爾斯 梅森
歐瑪 祖里塔
葛雷格里 艾倫 里克茲坦那
Original Assignee
美商希瑪有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商希瑪有限責任公司 filed Critical 美商希瑪有限責任公司
Publication of TW201826339A publication Critical patent/TW201826339A/zh
Application granted granted Critical
Publication of TWI661468B publication Critical patent/TWI661468B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lasers (AREA)

Abstract

本發明解釋一種光微影方法,其包括:自一光學源產生一脈衝光束;及使該脈衝光束掃描越過一微影曝光設備之一基板以用該脈衝光束對該基板進行曝光,包括用該脈衝光束對該基板之每一子區進行曝光。一子區為該基板之一總面積之一部分。針對該基板之每一子區,接收與該基板之該子區相關聯之一微影效能參數;分析該接收之微影效能參數;及基於該分析,修改該脈衝光束之至少一第一光譜特徵且保持該脈衝光束之至少一第二光譜特徵。

Description

基於晶圓之光源參數控制
所揭示標的物係關於用於藉由調整引導朝向晶圓之脈衝光束之光譜特徵來補償在晶圓掃描期間的微影效能參數之變化的設備。
在半導體微影(或光微影)中,製造積體電路(IC)需要對半導體(例如,矽)基板(其亦被稱為晶圓)執行的多種物理及化學程序。光微影曝光設備或掃描器為將所要圖案施加至基板之目標部分上的機器。晶圓經固定至載台,以使得晶圓大體上沿著由掃描器之正交XL 方向及YL 方向界定之平面延伸。晶圓係由光束輻照,光束具有在深紫外線(deep ultraviolet,DUV)範圍中之波長。光束沿著一軸向方向行進,該軸向方向與掃描器之ZL 方向對應。掃描器之ZL 方向正交於側向XL -YL 平面。光束穿過光束遞送單元,經由光罩(或遮罩)濾光,且隨後投射至所製備之晶圓上。以此方式,晶片設計被圖案化至光阻上,該光阻隨後進行蝕刻及清洗,且接著重複該程序。
在一些一般態樣中,一種光微影設備包括:一光學源,其經組態以產生一脈衝光束;一光譜特徵選擇系統,其在光學上與該該脈衝光束相互作用;一掃描光學系統,其經組態以使該脈衝光束掃描越過定位於一微影設備中之一基板;一度量衡設備,其經組態以判定該基板之每一子區處的至少一個微影效能參數,在該基板中,一子區為該基板之一總面積之一部分;及一控制系統,其連接至該光譜特徵選擇系統、該光學源及該度量衡設備。該控制系統經組態以,在每一基板子區處:接收該經判定之微影效能參數;分析該經判定之微影效能參數;及基於對該經判定之微影效能參數的該分析而:藉由發送一第一信號至該光譜特徵選擇系統來修改該脈衝光束之一第一光譜特徵;及藉由在該脈衝光束之該第一光譜特徵經修改的同時發送一第二信號至該光譜特徵選擇系統來保持該脈衝光束之一第二光譜特徵。 實施可包括以下特徵中之一或多者。舉例而言,該基板之每一子區可為該基板之一曝光域,或每一子區可對應於該光束之一單一脈衝。 該光譜特徵選擇系統可包括包括一致動系統之一光譜特徵致動機構,該致動系統經組態以致使該光譜特徵致動機構之一或多個元件被更改,以藉此更改與該脈衝光束之相互作用。該控制系統可連接至該光譜特徵致動機構之該致動系統,以使得該第一信號經發送至該光譜特徵致動機構之該致動系統且該第二信號經發送至該光譜特徵致動機構之該致動系統。 該微影效能參數可為該基板之一物理性質。該控制系統可經組態以針對該基板之每一子區接收該基板之該物理性質的經判定值。該基板之該物理性質可包括該基板之一位置與一所要位置的一平均偏移及該基板之一載台振動中之一或多者。該基板之該物理性質可為自該基板之中心子區變化至該基板之一邊緣處的子區的該基板之一位置。 該光譜特徵選擇系統可包括一色散光學元件及包括至少三個折射光學元件之一擴束器。該脈衝光束與該色散光學元件及該複數個折射光學元件中之每一者相互作用。該光譜特徵選擇系統可包括包括複數個致動器之一致動系統,該複數個中之該等致動器中之每一者致使該至少三個折射光學元件中之一者相對於該脈衝光束旋轉。該至少三個折射光學元件可包括離該色散光學元件最遠之一第一折射光學元件、鄰近於該第一折射光學元件之一第二折射光學元件及鄰近於該第二折射光學元件之一第三折射光學元件。該第一折射光學元件可與一第一快速致動器相關聯,該第一快速致動器包括一第一旋轉載台,該第一旋轉載台繞一第一旋轉軸旋轉且包括以機械方式連結至該第一折射光學元件以使該第一折射光學元件繞該第一旋轉軸旋轉的一區域。該第三折射光學元件可與一第二快速致動器相關聯,該第二快速致動器包括一第二旋轉載台,該第二旋轉載台繞一第二旋轉軸旋轉且包括以機械方式連結至該第三折射光學元件以使該第三折射光學元件繞該第一旋轉軸旋轉的一區域。 該第一折射光學元件之旋轉可致使該脈衝光束之該第二光譜特徵以一相對粗略的方式改變,且該第三折射光學元件之旋轉可致使該脈衝光束之該第二光譜特徵以一相對精細的方式改變。該第二折射光學元件之旋轉可致使該脈衝光束之該第一光譜特徵以一相對精細的方式改變。該擴束器可包括一第四折射光學元件,且該第四折射光學元件之旋轉可致使該脈衝光束之該第一光譜特徵以一相對粗略的方式改變。該光譜特徵選擇系統可包括處於該擴束器與該色散光學元件之間的一反射光學元件。 該控制系統可藉由判定該微影效能參數是否在一可接受範圍外而分析該經判定之微影效能參數;且若判定該微影效能參數在一可接受範圍外,則該控制系統可藉由發送信號至該光譜特徵選擇系統來修改該脈衝光束之該第一光譜特徵。 該掃描光學系統可經組態以使該脈衝光束及該基板中之一或多者相對於彼此沿著一側向平面移動,以使得該脈衝光束與該基板之每一子區相互作用。該側向平面可垂直於引導該脈衝光束所沿著的一軸向方向。 該光學源可包括:一第一氣體放電載台,其包括容納一能量源且含有包括一第一增益介質之一氣體混合物的一第一氣體放電腔室;及一第二氣體放電載台,其包括容納一能量源且含有包括一第二增益介質之一氣體混合物的一第二氣體放電腔室。該第一氣體放電載台經組態以產生一第一脈衝光束。該第二氣體放電載台經組態以接收該第一脈衝光束且放大該第一脈衝光束以藉此自該光學源產生該脈衝光束。 在其他一般態樣中,一種光微影方法包括:自一光學源產生一脈衝光束;及使該脈衝光束掃描越過一微影曝光設備之一基板以用該脈衝光束對該基板進行曝光,包括用該脈衝光束對該基板之每一子區進行曝光,其中一子區為該基板之一總面積之一部分。該方法包括,針對該基板之每一子區:接收與該基板之該子區相關聯之一微影效能參數;分析該接收之微影效能參數;及基於該分析,修改該脈衝光束之至少一第一光譜特徵且保持該脈衝光束之至少一第二光譜特徵。 實施可包括以下特徵中之一或多者。舉例而言,該脈衝光束可藉由引導該脈衝光束穿過一光譜特徵選擇系統而產生。該方法可包括藉由自該光譜特徵選擇系統之一繞射表面選擇性地反射該脈衝光束來選擇該脈衝光束之該第一光譜特徵。 該基板之每一子區可為該基板之一曝光域,或該基板之每一子區可對應於該光束之一單一脈衝。 藉由在使該脈衝光束掃描越過該基板期間,接收該基板之每一子區處的該微影效能參數,可接收該基板之每一子區處的該微影效能參數。 該微影效能參數可在該子區處接收包含接收以下各項中之一或多者:關於該基板之物理性質之一誤差、形成於該基板上之一特徵之一對比度、曝露於該脈衝光束的一基板區處之一臨界尺寸、形成於該基板上之該特徵相對於一目標或相對於一下層特徵(亦即,一覆疊片)的置放(相對於所要/目標位置之X、Y位置)、一光阻輪廓、一側壁角度及該基板之一位置改變。 藉由接收該基板之一位置與一所要位置的一平均偏移及該基板之一載台振動中之一或多者,可接收該子區處的該微影效能參數。藉由接收自該基板之中心子區變化至該基板之一邊緣處的子區的該基板之一位置,可接收該子區處的該微影效能參數。 藉由在使該脈衝光束掃描越過該基板之前,接收該基板之每一子區處的該微影效能參數,可接收該基板之每一子區處的該微影效能參數。 可藉由修改該脈衝光束之波長來修改該第一光譜特徵,且可藉由將該脈衝光束之頻寬保持在一頻寬範圍內來保持該第二光譜特徵。 藉由將該脈衝光束之頻寬保持在+/- 10飛米(fm)內或+/- 1 fm內,可將該脈衝光束之頻寬保持在該頻寬範圍內。 可藉由使該脈衝光束所穿過之一第一稜鏡系統旋轉來修改該脈衝光束之該第一光譜特徵;且可藉由使該脈衝光束所穿過之一第二稜鏡系統旋轉來保持該脈衝光束之該第二光譜特徵。該第一稜鏡系統及該第二稜鏡系統可為一光譜特徵選擇系統內之組件。可藉由使該脈衝光束所穿過之兩個稜鏡旋轉而使該脈衝光束所穿過之該第一稜鏡系統旋轉;且藉由使該脈衝光束所穿過之至少兩個其他稜鏡旋轉而使該脈衝光束所穿過之第二一稜鏡系統旋轉。可藉由以大於用於致動該第一稜鏡系統之該等稜鏡之另一者的致動步進之致動步進來致動該第一稜鏡系統之該等稜鏡中之一者而使該第一稜鏡系統之該兩個稜鏡旋轉。可藉由以大於用於致動該第二稜鏡系統之該等稜鏡之另一者的致動步進之致動步進來致動該第二稜鏡系統之該等稜鏡中之一者而使該第二稜鏡系統之該兩個其他稜鏡旋轉。 可藉由使該脈衝光束反射所在之一鏡面旋轉來修改該脈衝光束之該第一光譜特徵;且可藉由使該脈衝光束所穿過之一稜鏡系統旋轉來保持該脈衝光束之該第二光譜特徵。該鏡面及該稜鏡系統為一光譜特徵選擇系統內之組件。 該方法亦可包括:至少在該基板之每一子區處,估計自該光學源產生之該脈衝光束之該第一光譜特徵;判定該估計之第一光譜特徵是否在一可接受範圍內;及若判定該估計之第一光譜特徵不在該可接受範圍內,則修改該脈衝光束之該第一光譜特徵。 該方法可包括:至少在該基板之每一子區處,估計自該光學源產生之該脈衝光束之該第二光譜特徵;判定該估計之第二光譜特徵是否在一可接受範圍內;及若判定該估計之第二光譜特徵不在該可接受範圍內,則修改該脈衝光束之該第二光譜特徵。 可藉由調整該第二光譜特徵以補償因該脈衝光束之該第一光譜特徵之該修改所致的該第二光譜特徵之改變來保持該脈衝光束之該第二光譜特徵;且在修改該脈衝光束之該第一光譜特徵同時,可調整該脈衝光束之該第二光譜特徵。 可藉由基於該微影效能參數而判定該基板之一物理性質是否在一可接受範圍外來分析該接收之微影效能參數。 可修改該脈衝光束之該第一光譜特徵以藉此導致該基板處的該脈衝光束之一第一條件之一修改,且可保持該脈衝光束之該第二光譜特徵以藉此導致該基板處的該脈衝光束之一第二條件得以保持在一特定位準。 可藉由如下操作而自該光學源產生該脈衝光束:自一第一氣體放電載台產生一第一脈衝光束,包括選擇該脈衝光束之該第一光譜特徵;將該第一脈衝光束引導至一第二氣體放電載台;及在該第二氣體放電載台中放大該第一脈衝光束以藉此自該光學源產生該脈衝光束。 藉由如下操作,可修改該脈衝光束之至少該第一光譜特徵且可保持該脈衝光束之至少該第二光譜特徵:引導該脈衝光束穿過複數個稜鏡朝向一繞射光學元件,以使得該脈衝光束向後反射離開該繞射光學元件且穿過該複數個稜鏡返回;及使該至少兩個直角稜鏡同時旋轉,以使得該脈衝光束在該繞射光學元件上之一入射角改變,但該脈衝光束在該繞射光學元件上之總放大率不變。 在其他一般態樣中,一種光微影方法包括:自一光學源產生一脈衝光束;接收將一基板之邊緣衰減關聯至該基板之每一子區的一變因(recipe),其中一子區為該基板之一總面積之一部分;使該脈衝光束掃描越過一微影曝光設備之該基板以用該脈衝光束對該基板進行曝光,包括用該脈衝光束對該基板之每一子區進行曝光;修改該脈衝光束之至少一波長以便調整該基板處之聚焦位置,以補償邊緣衰減且基於經曝光之該子區;及在該脈衝光束之該波長經修改同時,保持該脈衝光束之至少一頻寬,以調整該基板處之該聚焦位置且補償經曝光之該子區的邊緣衰減。
相關申請案之交叉參考 本申請案係關於在2016年10月17日申請之美國申請案第15/295,280號,該美國申請案係以全文引用的方式併入本文中。 參看圖1,光微影系統100包括照明系統150,該照明系統產生具有名義上處於中心波長之波長且經引導至光微影曝光設備或掃描器115的脈衝光束110。脈衝光束110係用以在掃描器115中在經安裝至載台122之基板或晶圓120上圖案化微電子特徵。在晶圓120上圖案化出的此等微電子特徵在大小上受臨界尺寸(CD)限制。 由於脈衝光束110係掃描越過晶圓120,因此掃描器115或控制系統185定期地請求改變光束110之光譜特徵(諸如波長或頻寬),以補償在晶圓120處發生的微影效能參數之變化。舉例而言,一或多個微影效能參數可隨正在由脈衝光束110掃描之晶圓120之每一子區而變化。晶圓120之子區係作為在掃描中之晶圓之總面積之一部分的晶圓120之區,且可為晶圓之曝光域或與光束110之單一脈衝相互作用的晶圓120之區。晶圓120之子區可為晶圓120在任何一個特定時間曝露於光束110所處的位置。 晶圓120處之此等微影效能參數可被視為相關聯於晶圓120或與晶圓120相互作用之光束110的特性。舉例而言,因光束110之頻寬所致的色像差、壓力、溫度、晶圓構形或表面形狀、晶圓120之位置改變及光束110之焦平面的誤差為可在掃描越過晶圓120期間意外地波動之微影效能參數。 壓力及溫度參數分別地為掃描器115內之晶圓120附近的環境中之壓力及溫度。壓力及溫度之變化引起光束110之波長的有效改變,且因此引起光束110之的改變。 在一特定實例中,大部分投影透鏡(在光束行進晶圓120時用於光束110之路徑中)具有色像差,在光束110存在波長誤差的情況下,色像差在晶圓120上產生成像誤差。由色像差導致之一個誤差為聚焦誤差且其他誤差傾向於小得多。舉例而言,若光束110之波長偏離目標波長,則晶圓120上之影像將具有明顯的焦平面誤差。因此,需要能夠在光束掃描越過晶圓120時改變光束110之波長,以補償由色像差導致之此等焦平面誤差。 作為另一實例,可自晶圓120之一個子區變化至另一子區的微影效能參數為晶圓120沿著ZL 方向之位置。晶圓120之位置包括作為與所要位置之固定偏移的偏移(諸如平均偏移),且亦包括載台振動或振盪,其為關於位置中之固定偏移之振盪。沿著ZL 方向之載台振動可藉由來源於載台誤差信號之移動標準偏差(MSD)值來特性化。載台振動之較高值使影像模糊且因此導致CD之不均勻性。沿著ZL 方向之平均偏移之特徵在於移動平均值(MA)值。晶圓120之構形可有助於或導致被稱作邊緣衰減(edge roll off)之非所需效應,其中晶圓在沿著其邊緣(且離晶圓之中心子區最遠)之子區處展現不同表面幾何形狀。詳言之,晶圓120最佳聚焦位置的值沿著晶圓120之邊緣或在邊緣附近可顯著不同於在晶圓120之中心附近(此效應可在圖2中看到,如下文所論述)。 參看圖2,展示了晶圓220之例示性圖200,其中針對晶圓220之每一子區(例如,每一曝光域223)標繪出微影效能參數PP。PP之較高值較暗且PP之較低值較淺。晶圓220之圖200展示PP越過晶圓220之曝光域223如何變化。晶圓220之曝光域223為在掃描器115內之曝光狹縫或窗口之一次掃描中經曝光的晶圓220之區。 本文中所描述之光微影系統100及相關聯方法經設計以實現在光束掃描越過晶圓120時且在經掃描器115指導後,修改第一光譜特徵(諸如光束110之波長),以補償晶圓120處之此等效能參數之變化。對光束110之第一光譜特徵之修改係由光譜特徵選擇設備130實施且在其控制下,該光譜特徵選擇設備經組態以與作為用於形成自照明系統150輸出之光束110之種子光束的脈衝光束110A相互作用。由於光譜特徵選擇設備130之設計,光束110之其他光譜特徵可耦合至第一光譜特徵,以使得藉由改變第一光譜特徵,第二光譜特徵將無意中或不當地改變。因此,光微影系統100經設計以在掃描越過晶圓120期間將光束110之第二光譜特徵(諸如頻寬)保持在值的可接受範圍內,即使當第一光譜特徵(諸如波長)經修改時。為了將光束110之第二光譜特徵保持在值的可接受範圍內,光微影系統100調整光束110之第二光譜特徵,以便補償由第一光譜特徵之所要改變導致的第二光譜特徵之非所要改變。對第二光譜特徵(及其他光譜特徵)之修改亦由光譜特徵選擇設備130實施且在其控制下。 對第一光譜特徵之修改及對第二光譜特徵之調整在經掃描器115指導後在晶圓120之每一位置或子區處(例如,在每一曝光域處)發生,且因此在光束110掃描越過晶圓120時發生。舉例而言,可針對晶圓120之每一子區(諸如每一曝光域)而調整光束110之波長及頻寬。此等調整以快速方式發生,以便使調整能夠在自晶圓120之一個子區轉至晶圓120之另一子區所用之時間內穩定至穩定值。 為了針對晶圓120之每一子區實現對頻寬之快速調整,已將光譜特徵選擇設備130重新設計以在光束110掃描越過晶圓120時提供對脈衝光束110之頻寬之快速調整,從而針對晶圓120之每一子區實現對頻寬之調整。 光譜特徵選擇設備130可包括粗略光譜特徵調整系統130A及精細光譜特徵調整系統130B。粗略光譜特徵調整系統130A係用於光譜特徵(諸如頻寬)之粗略、大範圍且緩慢的控制,且係與由光學源104產生之脈衝光束110A相互作用之光學組件的集合。粗略控制意味著與精細控制中所使用之調整步進相比,對光譜特徵之調整步進相對較大。精細光譜特徵調整系統130B係用於光譜特徵(諸如頻寬)之精細、窄範圍且快速的控制。精細控制意味著與粗略控制中所使用之調整步進相比,對光譜特徵之調整步進相對較小。精細光譜特徵調整系統130B可包括在光學上與脈衝光束110A相互作用以控制一或多個光譜特徵的光學系統。精細頻寬調整系統130C可包括以快速方式與光學源105之其他態樣相互作用以控制一或多個光譜特徵(諸如頻寬)的非光學系統。舉例而言,精細光譜特徵調整系統130C可以經組態以調整與光學源105內之該或該等氣體放電腔室相關聯之時序的態樣,以藉此調整脈衝光束110之頻寬。 描述關於光微影系統100之細節。 再次參看圖1,照明系統150包括光學源105,該光學源以能夠被改變之脈衝重複率產生脈衝光束110。照明系統150包括控制系統185,該控制系統與照明系統150內之光學源105及其他特徵通信。照明系統150亦與掃描器115通信以控制照明系統150之操作及脈衝光束110之態樣。 控制系統185以操作方式連接至脈衝光學源105且連接至光譜特徵選擇設備130。且,掃描器115包括微影控制器140,該微影控制器以操作方式連接至控制系統185及掃描器115內之組件。 脈衝光束110之脈衝重複率係光學源105產生光束110之脈衝之速率。因此,舉例而言,脈衝光束110之重複率為1/Dt,其中Dt為脈衝之間的時間。控制系統185通常經組態以控制產生脈衝光束110之重複率,包括在脈衝光束在掃描器115中對晶圓120進行曝光時修改脈衝光束之重複率。 在一些實施中,掃描器115觸發光學源105 (經由控制器140與控制系統185之間的通信)以產生脈衝光束110,因此掃描器115憑藉控制器140及控制系統185來控制重複率、光譜特徵(諸如頻寬或波長)及/或劑量。舉例而言,控制器140發送信號至控制系統185以將光束110之重複率保持在可接受速率之特定範圍內。掃描器115通常針對光束110之每一脈衝叢發保持重複率恆定。光束110之脈衝叢發可對應於晶圓120上之曝光域。舉例而言,脈衝叢發可包括10至500個脈衝之任何位置。 臨界尺寸(CD)係藉由系統100可印刷於晶圓120上之最小特徵尺寸。CD取決於光束110之波長。因此,為了保持印刷於晶圓120上及藉由系統100曝光之其他晶圓上的微電子特徵之均勻CD,光束110之中心波長應保持處於一預期或目標中心波長或在目標波長周圍之波長範圍內。因此,除了保持中心波長處於目標中心波長或在目標波長周圍之可接受波長範圍內之外,亦需要將光束110之頻寬(光束110中之波長的範圍)保持在一可接受頻寬範圍內。 為了將光束110之頻寬保持至可接受範圍,或為了調整光束110之頻寬,控制系統185經組態以判定對脈衝光束110之頻寬的調整量。另外,控制系統185經組態以發送信號至光譜特徵選擇設備130以使設備130之至少一個光學組件(例如,稜鏡)移動,以藉此在脈衝光束110對晶圓120進行曝光時將脈衝光束110之頻寬改變經判定之調整量,以藉此補償由修改脈衝光束110之脈衝重複率導致的頻寬變化。 脈衝光束110之頻寬可在任何兩個脈衝叢發之間改變。此外,頻寬自第一值改變至第二值且亦穩定在第二值所用之時間應小於脈衝叢發之間的時間。舉例而言,若叢發之間的時間段為50毫秒(ms),則將頻寬自第一值改變至第二值且穩定在第二值所用之總時間應小於50 ms。控制系統185及光譜特徵選擇設備130經設計以實現頻寬之此快速改變,如下文所詳細論述。 掃描器115之控制器140發送信號至控制系統185,以調整或修改掃描越過晶圓120之脈衝光束110的態樣(諸如頻寬或重複率)。發送至控制系統185之信號可致使控制系統185修改發送至脈衝光學源105之電信號或發送至設備130之電信號。舉例而言,若脈衝光學源105包括氣體雷射放大器,則電信號提供脈衝電流至脈衝光學源105之一或多個氣體放電腔室內之電極。 晶圓120係置放於晶圓台122 (亦被稱作台)上且載台122連接至一定位器,該定位器經組態以根據特定參數且在控制器140控制下而準確地定位晶圓120。 光微影系統100亦可包括量測系統170,該量測系統可包括量測光束110之一或多個光譜特徵(諸如頻寬或波長)的子系統。由於在操作期間施加至光微影系統100之各種干擾,晶圓120處的光束110之光譜特徵(諸如頻寬或波長)之值可能不會對應於所要光譜特徵(亦即,掃描器115預期之光譜特徵)或與該所要光譜特徵匹配。因此,在操作期間藉由根據光譜估計度量值來量測或估計光束110之光譜特徵(諸如特性頻寬),以使得操作員或自動化系統(例如,回饋控制器)可使用經量測或估計之頻寬以調整光學源105之性質及調整光束110之光譜。量測系統170之子系統基於此光譜而量測光束110之光譜特徵(諸如頻寬及/或波長)。 量測系統170接收自光束分離裝置重新引導的光束110之一部分,該光束分離裝置係置放於光學源105與掃描器115之間的路徑中。該光束分離裝置將第一部分或百分比之光束110引導至量測系統170且將第二部分或百分比之光束110引導朝向掃描器115。在一些實施中,大部分光束110係在第二部分中引導朝向掃描器115。舉例而言,該光束分離裝置將一分率(例如,1%至2%)之光束110引導至量測系統170中。該光束分離裝置可為(例如)光束分光器。 光束110之脈衝以在深紫外線(DUV)範圍中之一波長(例如,248奈米(nm)或193 nm之波長)為中心。經圖案化於晶圓120上之微電子特徵之大小取決於脈衝光束110之波長,且較小波長導致小的最小特徵大小或臨界尺寸。當脈衝光束110之波長為248 nm或193 nm時,微電子特徵之最小大小可為(例如)50 nm或更小。用於脈衝光束110之分析及控制之頻寬可為其光譜300 (或發射光譜)之實際瞬時頻寬,如圖3中所示。光譜300含有關於光束110之光學能量或功率在不同波長(或頻率)上如何分佈的資訊。光束110之光譜300係以圖形式描繪,其中光譜強度(未必具有絕對校準)經標繪為隨波長或光學頻率而變化。光譜300可被稱作光束110之光譜形狀或強度光譜。光束110之光譜性質或特徵包括強度光譜之任何態樣或表示。舉例而言,頻寬為光譜特徵。光束之頻寬為此光譜形狀之寬度的量度,且此寬度可依據雷射光之波長或頻率而給定。與光譜300之細節相關的任何合適之數學構造(即,度量)可用以估計表徵光束之頻寬的值。舉例而言,在光譜形狀之最大峰值強度之一分率(X)處之光譜的全寬(被稱作FWXM)可用以表徵光束頻寬。作為另一實例,含有積分光譜強度之一分率(Y)的光譜之寬度(被稱作EY)可用以表徵光束頻寬。 光束110經引導穿過光束製備系統112,該光束製備系統可包括修改光束110之態樣之光學元件。舉例而言,光束製備系統112可包括反射及/或折射光學元件、光學脈衝伸展器及光學孔隙(包括自動化遮光片)。 光譜特徵選擇設備130係置放於光學源105之第一末端處以與由光學源105產生之光束110A相互作用。光束110A為在光學源105內之諧振器之一個末端處所產生之光束,且可為由主控振盪器產生之種子光束,如下文所論述。光譜特徵選擇設備130經組態以藉由調諧或調整脈衝光束110A之一或多個光譜特徵(諸如頻寬或波長)來精細調諧脈衝光束110之光譜性質。 亦參看圖4,晶圓120、220係由光束110輻照。微影曝光設備115包括一光學配置,該光學配置包括具有(例如)一或多個聚光器透鏡、遮罩134及物鏡配置132之照明器系統129。遮罩134沿著一或多個方向,諸如沿著ZL 方向(其大體上對應於光束110之軸向方向)或在垂直於ZL 方向之XL -YL 平面中,可移動。物鏡配置132包括投影透鏡且使影像轉移能夠自遮罩134至晶圓120上之光阻而進行。照明器系統129調整光束110照射於遮罩134上之角度的範圍。照明器系統129亦均勻化(使變得均一)光束110越過遮罩134之強度分佈。 微影設備115可包括微影控制器140、空氣調節裝置及各種電組件之電力供應器,以及其他特徵。微影控制器140控制如何將層印刷在晶圓120上。 在一些實施中,一浸沒介質可經供應以覆蓋晶圓120。該浸沒介質可為用於液體浸沒微影之液體(諸如水)。在微影係乾式系統之其他實施中,該浸沒介質可為氣體,諸如乾氮氣、乾空氣或乾淨空氣。在其他實施中,晶圓120可在壓控式環境(諸如真空或部分真空)內曝光。 再次參看圖4,程序程式或變因判定晶圓120上之曝光的長度、所使用之遮罩134以及影響曝光之其他因素。在微影期間,光束110之複數個脈衝照明晶圓120之同一區以形成照明劑量。照明同一區的光束110之多個脈衝N可被稱作曝光窗口400且窗口400之大小可由置放於遮罩134之前的曝光狹縫405控制。狹縫405可設計成類似遮光片且可包括能夠打開及關閉之複數個葉片。且,曝光區之大小係由在非掃描方向上的葉片之間的距離及亦由掃描方向上的掃描長度(距離)判定。在一些實施中,N之值為幾十,例如10至100個脈衝。在其他實施中,N之值大於100個脈衝,例如100至500個脈衝。 晶圓台122、遮罩134及物鏡配置132中之一或多者經固定至相關聯致動系統,以藉此形成掃描配置(或掃描光學系統)。在該掃描配置中,遮罩134、物鏡配置132及晶圓120中之一或多者(經由載台122)在曝光期間相對於彼此移動,以掃描越過曝光域223之曝光窗口400。 再次參看圖1,光微影系統100亦包括晶圓度量衡設備145,該晶圓度量衡設備經組態以針對晶圓120、220之每一子區(例如,針對每一曝光域223)判定微影效能參數PP之值。度量衡設備145經連接至控制系統185,以使得控制系統185接收每一晶圓子區的微影效能參數PP之值。控制系統185可儲存每一晶圓子區之微影效能參數PP之值。 在一些實施中,度量衡設備145經組態以在離線模式下使用,在離線模式中,在晶圓120、220已由光束110圖案化之後,分析晶圓120、220。藉由此掃描獲得之資料可由控制系統185針對未來將加以掃描之一或多個晶圓使用。 在其他實施中,度量衡設備145係在線上模式下使用,在線上模式中,在晶圓120、220由光束110進行圖案化之同時,分析晶圓120、220。舉例而言,晶圓120、220之曝光域可在光束110之叢發之間探測到。 再次參看圖1,度量衡設備145可為可探測微影效能參數PP之任何設備。 舉例而言,若正被監測之效能參數PP為晶圓構形,則度量衡設備145可為掃描器115,其可在曝光期間或在晶圓120之掃描之間執行此監測。晶圓120之構形可藉由調整光束110之波長來控制。 度量衡設備145可為自含式系統,諸如高解析度掃描電子顯微鏡(scanning electron microscope,SEM),其係針對高解析度成像而設計,能夠顯示小於(例如) 1 nm之特徵大小。SEM為一種電子顯微鏡,其藉由用聚焦電子射束掃描晶圓120來產生樣本(在此情況下,晶圓120)之影像。SEM可達成優於1奈米(nm)之解析度。 可在處於潮濕條件及低溫或高溫之廣泛範圍下的任何合適環境中(諸如在高真空中,在低真空中,(在環境SEM中))觀察晶圓120。最常見的偵測模式係藉由由經由電子束激勵之原子發射之二次電子。二次電子之數目隨晶圓120之表面與電子束之間的角度而變。在其他系統中,可偵測到回散射電子或x射線。 度量衡設備145可採用掃描白光干涉法,其提供晶圓120之定量非接觸、三維量測結果。在此技術中,白光光束穿過濾光片,接著穿過顯微鏡接物鏡而到達晶圓120之表面。自晶圓120之表面反射回之光將與參考光束組合且經擷取以用於設備145內之軟體分析。在獲得每一點之資料後,設備145可產生晶圓120之表面之三維影像(構形)。晶圓120之此構形圖亦能夠量測此等其他微影效能參數:區域梯級高度、臨界尺寸(CD)、疊對、多層膜厚度及光學性質、組合的構形及膜厚度以及晶圓弓曲。 在其他實施中,度量衡設備145為散射計,其朝向晶圓120傳遞脈衝能量且量測來自晶圓120之反射或繞射能量。散射計可在一個感測器中組合疊對、焦點及CD之量測結果。在一些實施中,度量衡設備145為YieldStar S-250D (由ASML Netherlands B.V. (埃因霍芬(Veldhoven),荷蘭)製造),其為允許使用基於繞射之疊對及基於繞射之焦點技術以及量測CD之可選能力來量測產品上疊對及焦點的獨立度量衡工具。 在一些實施中,度量衡設備145係一疊對度量衡設備,其判定置放於晶圓120之每一層上之材料的單獨圖案是否正確地對準。舉例而言,該疊對度量衡設備判定晶圓之每一層之觸點、線及電晶體是否彼此對齊。圖案之間的任何種類之未對準可導致短路及連接故障,此又將影響良率及利潤邊際。因此,實務上,該疊對度量衡設備係在每一層形成於晶圓120上之後,但在第二層經形成之後使用。該疊對度量衡設備量測晶圓上之最近形成之(亦即,當前)層與晶圓上之先前形成之層的相對位置,其中最近形成之層係形成於先前形成之層上。當前晶圓層與先前形成之晶圓層之間的相對位置將針對光束對晶圓進行曝光所在之每一位置進行量測(在於晶圓120處所量測的光束110之特性與位置對應的情況下)。 度量衡設備145可量測臨界尺寸(CD),其與印刷之特徵尺寸相關。SEM及散射量測工具可用於量測CD。度量衡設備145可量測疊對以檢查相對於設計意圖及/或先前經圖案化之層的影像置放誤差。光學及基於繞射之工具可用於量測疊對。 參看圖5A,在一些實施中,光譜特徵選擇設備130包括經配置以在光學上與脈衝光束110A相互作用的一組光學特徵或組件500、505、510、515、520,及包括呈韌體與軟體之任何組合形式之電子器件的控制模組550。光學組件500、505、510、515、520可經組態以提供粗略光譜特徵調整系統130A;且,若此等組件之調整足夠快速,則調整可經組態以提供精細光譜特徵調整系統130B。儘管圖5A中未圖示,但光譜特徵選擇設備130有可能包括其他光學特徵或其他非光學特徵以用於提供精細光譜特徵控制。 控制模組550連接至一或多個致動系統500A、505A、510A、515A、520A,該一或多個致動系統實體地耦接至各別光學組件500、505、510、515、520。設備130之該等光學組件包括色散光學元件500 (其可為光柵),及由一組折射光學元件505、510、515、520 (其可為稜鏡)組成的擴束器501。光柵500可為經設計以分散及反射光束110A之反射性光柵;因此,光柵500係由適合於與波長在DUV範圍中之脈衝光束110A相互作用的材料製成。稜鏡505、510、515、520中之每一者為透射性稜鏡,其用以在光束穿過稜鏡之主體時分散及重新引導光束110A。該等稜鏡中之每一者可由准許光束110A之波長透射的材料(諸如,氟化鈣)製成。儘管展示了四個折射光學元件505、510、515、520,但有可能在擴束器501中使用少於四個或大於四個折射光學元件。 稜鏡520定位成離光柵500最遠,而稜鏡505定位成最接近光柵500。脈衝光束110A經由孔隙555進入設備130,接著在照射在光柵500之繞射表面502上之前,依序行進穿過稜鏡520、稜鏡510及稜鏡505。隨著光束110A每一次穿過連續稜鏡520、515、510、505,光束110A在光學上被放大且重新引導(以一角度折射)朝向下一個光學組件。光束110A自光柵500繞射及反射而回頭依序穿過稜鏡505、稜鏡510、稜鏡515及稜鏡520,之後在光束110A離開設備130時穿過孔隙555。由於自光柵300每一次穿過連續稜鏡505、510、515、520,光束110A在其朝向孔隙555行進時在光學上被壓縮。 參看圖5B,擴束器501之稜鏡P (其可為稜鏡505、510、515或520中之任一者)之旋轉改變光束110A照射在已旋轉稜鏡P之入射表面H(P)上的入射角。此外,穿過已旋轉稜鏡P之光束110A之兩個區域光學品質(即光學放大率OM(P)及光束折射角δ(P))隨照射在已旋轉稜鏡P之入射表面H(P)上的光束110A之入射角而變。穿過稜鏡P之光束110A之光學放大率OM(P)為離開彼稜鏡P之光束110A的橫向寬度Wo(P)與進入彼稜鏡P之光束110A的橫向寬度Wi(P)之比。 擴束器501內之稜鏡P中之一或多者處的光束110A之區域光學放大率OM(P)的改變導致穿過擴束器501的光束110A之光學放大率OM 565之總體改變。穿過擴束器501之光束110A的光學放大率OM 565為離開擴束器501之光束110A的橫向寬度Wo與進入擴束器501之光束110A的橫向寬度Wi之比。 另外,擴束器501內之稜鏡P中之一或多者中的區域光束折射角δ(P)的改變導致光柵500之表面502處的光束110A之入射角562的總體改變。 可藉由改變光束110A照射在光柵500之繞射表面502上所成之入射角562來調整光束110A之波長。可藉由改變光束110之光學放大率565來調整光束110A之頻寬。 光譜特徵選擇設備130經重新設計以在光束110藉由掃描器115掃描越過晶圓120時,提供對脈衝光束110之頻寬的較快速調整。光譜特徵選擇設備130可經重新設計而具有用於使光學組件500、505、510、515、520中之一或多者更有效且更快速地旋轉的一或多個新致動系統。 舉例而言,光譜特徵選擇設備130包括用於使稜鏡520更有效且更快速地旋轉的新致動系統520A。新致動系統520A可以使稜鏡520旋轉之速率增大的方式來設計。具體言之,安裝至新致動系統520A之稜鏡520的旋轉軸平行於新致動系統520A的可旋轉馬達軸件522A。在其他實施中,新致動系統520A可經設計以包括一臂,該臂在一端實體地連結至馬達軸件522A且在另一端實體地連結至稜鏡520,以提供用於使稜鏡520旋轉之額外槓桿。以此方式,光束110A之光學放大率OM將變得對稜鏡520之旋轉較敏感。 在一些實施中,稜鏡505相對於擴束器之先前設計翻轉以提供對頻寬之更快速調整。在此等情況下,利用稜鏡520之相對較小旋轉,頻寬改變變得相對較快(與設備130之先前設計相比時)。與先前光譜特徵選擇裝置相比時,稜鏡520之每單位旋轉的光學放大率改變在經重新設計之光譜特徵選擇設備130中增大。 設備130經設計以調整光束110A照射在光柵500之繞射表面502上所成之入射角562來調整產生於光學源105之諧振器或多個諧振器內的光束110A之波長。具體言之,此調整可藉由使稜鏡505、510、515、520及光柵500中之一或多者旋轉以藉此調整光束110A之入射角562來進行。 此外,藉由調整光束110A之光學放大率OM 565來調整由光學源105產生之光束110A的頻寬。因此,可藉由使稜鏡505、510、515、520中之一或多者旋轉來調整光束110A之頻寬,該旋轉致使光束110A之光學放大率565改變。 因為特定稜鏡P之旋轉導致彼稜鏡P處之區域光束折射角δ(P)及區域光學放大率OM(P)兩者的改變,所以控制波長及頻寬在此設計中係聯繫的。 另外,光束110A之頻寬對稜鏡520之旋轉相對敏感且對稜鏡505之旋轉相對不敏感。此係因為因稜鏡520之旋轉所致的光束110A之區域光學放大率OM(520)之任何改變將乘以其他稜鏡515、510及505中各自的光學放大率OM(515)、OM(510)、OM(505)之改變的乘積,此係因為彼等稜鏡處於已旋轉稜鏡520與光柵500之間,且光束110A在穿過稜鏡520之後必須行進通過此等其他稜鏡515、510、505。另一方面,光束110A之波長對稜鏡505之旋轉相對敏感且對稜鏡520之旋轉相對不敏感。 舉例而言,為了改變頻寬而不改變波長,應改變光學放大率565而不改變入射角562,且此可藉由使稜鏡520大量旋轉及使稜鏡505少量旋轉來達成。 控制模組550連接至一或多個致動系統500A、505A、510A、515A、520A,該一或多個致動系統實體地耦接至各別光學組件500、505、510、515、520。儘管針對光學組件中之每一者展示了致動系統,但設備130中之光學組件中的一些保持靜止或不實體地耦接至致動系統係可能的。舉例而言,在一些實施中,光柵500可保持靜止且稜鏡515可保持靜止且不實體地耦接至致動系統。 致動系統500A、505A、510A、515A、520A中之每一者包括連接至其各別光學組件之一或多個致動器。光學組件之調整導致光束110A之特定光譜特徵(波長及/或頻寬)的調整。控制模組550自控制系統185接收控制信號,該控制信號包括操作或控制致動系統中之一或多者之特定命令。致動系統可經選擇且經設計以協作地工作。 致動系統500A、505A、510A、515A、520A之致動器中之每一者為用於移動或控制各別光學組件的機械裝置。致動器自模組550接收能量,且將彼能量轉換成施加至各別光學組件之某種運動。舉例而言,致動系統可為力裝置及用於使擴束器之稜鏡中之一或多者旋轉的旋轉載台中之任一者。致動系統可包括例如馬達,諸如步進馬達、閥門、壓控式裝置、壓電式裝置、線性馬達、液壓致動器、音圈等。 光柵500可為高炫耀角中階梯光柵,且以滿足光柵方程之任何入射角562入射於光柵500上的光束110A將被反射(繞射)。光柵方程提供光柵500之光譜級、繞射波長(繞射光束之波長)、光束110A至光柵500上的入射角562、光束110A繞射離開光柵500的退出角、入射至光柵500上的光束110A之垂直發散及光柵500之繞射表面的凹槽間距之間的關係。此外,若使用光柵500以使得光束110A至光柵500上的入射角562等於光束110A自光柵500的退出角,則光柵500及擴束器(稜鏡505、510、515、520)係以利特羅組態配置且反射自光柵500的光束110A之波長為利特羅波長。可認為入射至光柵500上的光束110A之垂直發散接近零。為了反射標稱波長,光柵500將相對於入射至光柵500上之光束110A對準,使得標稱波長穿過擴束器(稜鏡505、510、515、520)反射回來,從而在光學源105中被放大。利特羅波長可隨後藉由改變光束110A至光柵500上的入射角562而在光學源105內之諧振器的整個增益頻寬中經調諧。 稜鏡505、510、515、520中之每一者沿著光束110A之橫向方向足夠寬,使得光束110A含於其穿過之表面內。每一稜鏡在光學上放大自孔隙555朝向光柵500之路徑上的光束110A,且因此每一稜鏡的大小自稜鏡520至稜鏡505依次變大。因此,稜鏡505大於稜鏡510 (該稜鏡大於稜鏡515),且稜鏡520為最小稜鏡。 離光柵500最遠且大小亦最小之稜鏡520係安裝於致動系統520A上,且特定言之安裝至導致稜鏡520旋轉的旋轉軸件522A,且此旋轉改變照射在光柵500上之光束110A的光學放大率以藉此修改自設備130輸出之光束110A的頻寬。致動系統520A經設計為快速致動系統520A,此係因為該致動系統包括旋轉步進馬達,其包括稜鏡520所固定至的旋轉軸件522A。旋轉軸件522A繞其軸件軸旋轉,該軸旋轉平行於稜鏡520之旋轉軸。此外,因為致動系統520A包括旋轉步進馬達,所以該致動系統不具有任何機械記憶體且亦不具有能量基態。旋轉軸件522A之每一位置的能量與旋轉軸件522A之其他位置中之每一者相同,且旋轉軸件522A不具有低位能之較佳靜止位置。 在一些實施中,致動系統510A (稜鏡510安裝至其)可為類似於快速致動系統520A之快速致動系統。以此方式,致動系統510A可包括導致稜鏡510旋轉的旋轉軸件512A,且此旋轉改變照射在光柵500上之光束110A的光學放大率以藉此修改自設備130輸出之光束110A的頻寬。致動系統510A因此經設計為快速致動系統(類似於系統520A),此係因為該致動系統包括旋轉步進馬達,其包括稜鏡510所固定至的旋轉軸件512A。旋轉軸件512A繞其軸件軸旋轉,該軸旋轉平行於稜鏡510之旋轉軸。此外。因為致動系統510A包括旋轉步進馬達,所以該致動系統不具有任何機械記憶體且亦不具有能量基態。旋轉軸件512A之每一位置的能量與旋轉軸件512A之其他位置中之每一者相同,且旋轉軸件512A不具有低位能之較佳靜止位置。 如上文所論述,光束110A之頻寬對稜鏡520之旋轉相對敏感且對稜鏡505之旋轉相對不敏感。此係因為因稜鏡520之旋轉所致的光束110A之區域光學放大率OM(520)之任何改變將乘以其他稜鏡515、510及505中各自的光學放大率OM(515)、OM(510)、OM(505)之改變的乘積,此係因為彼等稜鏡處於已旋轉稜鏡520與光柵500之間,且光束110A在穿過稜鏡520之後必須行進通過此等其他稜鏡515、510、505。另一方面,光束110A之波長對稜鏡505之旋轉相對敏感且對稜鏡520之旋轉相對不敏感。因此,可藉由使稜鏡505旋轉來粗略地改變波長,且可旋轉稜鏡520 (以粗略方式)。光束110A的入射角562由於稜鏡505之旋轉及稜鏡520之旋轉而改變,從而抵消由稜鏡505之旋轉導致的放大率改變。此外,新設計之快速致動系統520A使頻寬能夠快速地改變以快速地抵消放大率之非所需改變。另外,若頻寬需要更精細地受控,則可使用新設計之快速致動系統510A使稜鏡510快速地旋轉。亦可能藉由利用致動系統515A使稜鏡515旋轉而更精細地控制波長,該致動系統可包括壓電電氣載台。 稜鏡520可用於粗略的大範圍緩慢頻寬控制。相比之下,頻寬可控制在精細且窄的範圍內且甚至藉由控制稜鏡510更快速地控制。 在一些實施中,光譜特徵選擇設備130可包括光束偏光器,諸如置放於擴束器501與光柵500之間的位置503處且沿著光束110A之路徑的鏡面,此係因為光束在擴束器501與光柵500之間行進。鏡面在其自身致動器系統控制下旋轉以改變照射在光柵500之繞射表面502上的光束110A之入射角562。以此方式,鏡面可用以調整光束110A之波長而不產生對光束110A之光學放大率565或頻寬的非所需改變。 參看圖6A及圖6B,在第一實施中,光譜特徵選擇設備630設計成具有光柵600及四個稜鏡605、610、615、620。光柵600及四個稜鏡605、610、615、620經組態以在光束110A穿過設備630之孔隙655之後與由光學源105產生之光束110A相互作用。光束110A自孔隙655沿著設備630之XSF -YSF 平面中之路徑行進,穿過稜鏡620、稜鏡615、稜鏡610、稜鏡605,接著自光柵600反射,且返回穿過稜鏡605、610、615、620,之後穿過孔隙655退出該設備。 稜鏡605、610、615、620係直角稜鏡,脈衝光束110A透射穿過該等稜鏡,使得脈衝光束110A在其穿過每一直角稜鏡時改變光束之光學放大率。離色散光學元件600最遠之直角稜鏡620具有複數個稜鏡中最小的斜邊,且更接近色散光學元件600之每一連續直角稜鏡具有比離色散光學元件較遠之鄰近直角稜鏡大或相同大小的斜邊。 舉例而言,最接近光柵600之稜鏡605的大小亦最大,例如,該稜鏡之斜邊具有四個稜鏡605、610、615、620中之最大範圍。離光柵600最遠之稜鏡620的大小亦最小,例如,該稜鏡之斜邊具有四個稜鏡605、610、615、620中之最小範圍。鄰近稜鏡有可能大小相同。但,更接近光柵600之每一稜鏡的大小應至少大於其鄰近稜鏡,此係因為光束110A在其行進穿過稜鏡620、稜鏡615、稜鏡610及稜鏡605時在光學上被放大,且因此光束110A之橫向範圍隨著光束110A變得更接近光柵600而放大。光束110A之橫向範圍係沿著垂直於光束110A之傳播方向的平面之範圍。且,光束110A之傳播方向在設備630之XSF -YSF 平面中。 稜鏡605實體地耦接至致動系統605A,該致動系統使稜鏡605繞平行於設備630之ZSF 軸的軸旋轉,稜鏡610實體地耦接至致動系統610A,該致動系統使稜鏡610繞平行於ZSF 軸的軸旋轉,且稜鏡620實體地耦接至快速致動系統620A。快速致動系統620A經組態以使稜鏡605繞平行於設備630之ZSF 軸的軸旋轉。 快速致動系統620A包括旋轉步進馬達621A,其具有旋轉軸件622A及固定至旋轉軸件622A之旋轉板623A。旋轉軸件622A且因此旋轉板623A繞軸件軸AR旋轉,該軸件軸平行於稜鏡620之質心(其對應於旋轉軸AP)且亦平行於設備630之ZSF 軸。儘管非必要,但稜鏡620之軸件軸AR可對應於沿著XSF -YSF 平面的稜鏡620之質心(旋轉軸AP)或與該質心對準。在一些實施中,稜鏡620之質心(或旋轉軸AP)沿著XSF -YSF 平面自軸件軸AR偏移。藉由使軸件軸AR自稜鏡620質心偏移,光束110A之位置可經調整為在稜鏡620經旋轉時處於光柵600之表面上的特定位置。 藉由將稜鏡620安裝至旋轉板623A,稜鏡620直接繞其旋轉軸AP旋轉,此係因為軸件622A及旋轉板623A繞其軸件軸AR旋轉。以此方式,在與使用具有線性可平移軸件(其使用彎曲部而轉換成旋轉運動)之線性步進馬達的系統相比時,實現稜鏡620之快速旋轉或控制。因為軸件622A (及板623A)之旋轉步進直接與稜鏡620 (未賦予任何線性運動)之旋轉步進相關,所以旋轉步進馬達621A能夠使稜鏡620以實現對光束110A且因此光束110之光譜特徵(諸如頻寬)的更快速調整的速率旋轉。步進馬達621A之旋轉設計賦予稜鏡620純粹的旋轉運動,該稜鏡之安裝不使用發現於稜鏡620之先前致動器上的任何線性運動或彎曲部運動。此外,不同於使用線性步進馬達附加彎曲部設計的先前致動器(其中稜鏡620僅可旋轉約自彎曲部判定之角度),旋轉軸件622A之使用使稜鏡620能夠旋轉約完全360°。在一些實施中,為了達成光束110A之頻寬在可接受範圍中之調諧,稜鏡620能夠旋轉15度。稜鏡620可旋轉大於15度,但此對於當前頻寬範圍要求並非必要的。 在一些實施中,步進馬達621A可為直接驅動步進馬達。直接驅動步進馬達係用於位置控制的使用內置式步進馬達功能性之習知電磁馬達。在可能需要更高運動解析度之其他實施中,步進馬達621A可使用壓電馬達技術。 步進馬達621A可為(例如)使用可變頻率驅動控制方法用馬達控制器控制以提供稜鏡620之快速旋轉的旋轉載台。 如上文所論述,使用旋轉步進馬達621A之優點為獲得稜鏡620之更快速旋轉,此係因為稜鏡620之旋轉軸AP平行於旋轉軸件622A且亦平行於軸件軸AR。因此,對於軸件622A之每一單位旋轉,稜鏡620旋轉增量單位且稜鏡620與旋轉軸件622A可旋轉一樣快地旋轉。在一些實施中,為了增加此組態之穩定性及增加稜鏡620之穩定性,快速致動系統620A包括位置監視器624A,其經組態以偵測旋轉步進馬達621A之旋轉軸件622A之位置。旋轉軸件622A的量測位置與旋轉軸件622A的預期或目標位置之間的誤差與稜鏡620之位置的誤差直接相關,且因此,此量測可用以判定稜鏡620之轉動誤差(亦即,實際旋轉與命令旋轉之間的差異)及在操作期間校正此誤差。 控制模組550連接至位置監視器624A以接收旋轉軸件622A之位置的值,且控制模組550亦能夠存取旋轉軸件622A之命令位置的儲存或當前值,使得控制模組550可執行計算以判定旋轉軸件622A的位置量測值與命令位置之間的差異及亦判定如何調整旋轉622A以減小此誤差。舉例而言,控制模組550可判定旋轉軸件622A之旋轉大小以及旋轉方向以抵消誤差。替代地,控制系統185有可能執行此分析。 位置監視器624A可為與旋轉板623A整體地構建之極高解析度光學旋轉編碼器。光學旋轉編碼器使用光學感測技術,其繞上面具有不透明線及圖案之內部碼盤之旋轉。舉例而言,板623A在一束光(諸如發光二極體)中旋轉(因此名為旋轉編碼器),且板623A上之標記充當阻擋及解封光之遮光片。內部光電二極體偵測器感測交替的光束,且編碼器之電子器件將圖案轉換成接著經由編碼器624A之輸出而傳遞至控制模組550的電信號。 在一些實施中,控制模組550可設計成具有僅用於操作旋轉步進馬達621A之快速內部專用控制器。舉例而言,快速內部專用控制器可自編碼器624A接收高解析度位置資料,且可直接發送一信號至旋轉步進馬達621A以調整軸件622A之位置且藉此調整稜鏡620之位置。 亦參看圖6C,照明系統150在控制系統185之控制下改變光譜特徵(諸如光束110A之頻寬),該控制系統與控制模組550介接。舉例而言,為了粗略且廣泛地控制光束110A及光束110之頻寬,控制模組550發送一信號至快速致動系統620A之旋轉步進馬達621A,以使旋轉軸件622A自第一角度θ1 (在圖6C之左側)旋轉至第二角度θ2 (其中Δθ = θ2 - θ1) (在圖6C之右側)。且,軸件622A之此角度改變經直接施加至固定至軸件622A之板623A,且藉此亦施加至固定至板623A之稜鏡620。稜鏡620自θ1至θ2之旋轉導致與光柵600相互作用之脈衝光束110A的光學放大率OM 565自OM1至OM2的改變,且脈衝光束110A之光學放大率565之改變導致脈衝光束110A (以及光束110)之頻寬的改變。藉由使用此快速致動系統620A使稜鏡620旋轉可達成的頻寬之範圍可為寬範圍且可為約100飛米(fm)至約450 fm。可達成的總頻寬範圍可為至少250 fm。 與快速致動系統620A相關聯之稜鏡620的旋轉軸件622A之一個旋轉單位的旋轉導致脈衝光束110A之頻寬改變一量,該量小於測脈衝光束110之頻寬的頻寬量測裝置(例如,作為在下文論述之量測系統170之部分)之解析度。稜鏡620可旋轉至多15度以達成此頻寬改變。實務上,稜鏡620之旋轉量僅由設備630之其他組件之光學佈局約束。舉例而言,過大之旋轉可致使光束110A移位一量,該量過大而使得光束110A不照射在下一個稜鏡615上。在一些實施中,為了達成光束110A之頻寬在可接受範圍中之調諧,稜鏡620能夠旋轉15度,而不具有光束110A離開其他稜鏡605、610或615中之任一者的風險。稜鏡620可旋轉大於15度,但此對於當前頻寬範圍要求並非必要的。 再次參看圖6A,稜鏡610可安裝至致使稜鏡410旋轉之致動系統610A,且稜鏡610之此旋轉可提供對光束110A之波長的精細控制。致動系統610A可包括由壓電馬達控制之旋轉步進馬達。壓電馬達藉由利用反壓電效應而操作,其中材料產生聲學或超音波振動以便產生線性或旋轉運動。 替代地,稜鏡610可安裝至快速致動系統610A,其包括旋轉步進馬達(如具有旋轉622A及固定至旋轉軸件622A之旋轉板623A的旋轉步進馬達621A)。旋轉軸件且因此旋轉板繞平行於稜鏡610之質心(其對應於旋轉軸AP)且亦平行於設備630之ZSF 軸的軸件軸旋轉。以此方式,稜鏡610之旋轉可提供對光束110A之頻寬之更精細控制。 更接近光柵600且大小大於或等於稜鏡620之大小的稜鏡615在一些實施中可在空間中固定。更接近光柵600之下一個稜鏡610具有大於或等於稜鏡615之大小的大小。 最接近光柵610之稜鏡605具有大於或等於稜鏡610之大小的大小(稜鏡605為擴束器之最大稜鏡)。稜鏡605可安裝至致使稜鏡605旋轉之致動系統605A,且稜鏡605之此旋轉可提供對光束110A之波長的粗略控制。舉例而言,稜鏡605可旋轉1至2度以將光束110A (且因此光束110)之波長自約193.2奈米(nm)調諧至約193.5 nm。在一些實施中,致動系統605A包括旋轉步進馬達,其包括稜鏡605所固定至之安裝表面(諸如板623A)及使該安裝表面旋轉之馬達軸件。致動系統605A之馬達可為壓電馬達,其與先前線性步進馬達及彎曲部組合設計相比速度快至五十倍。如致動系統620A,致動系統605A可包括為控制系統185或控制模組650提供角位置回饋之光學旋轉編碼器。 參看圖7A及圖7B,在光譜特徵選擇設備730之另一實施中,快速致動系統720A經設計以使擴束器之稜鏡720 (其離光柵700最遠)繞軸件軸AR旋轉R。視情況或另外,與稜鏡710相關聯之致動系統710A亦可為設計地與快速致動系統720A或620A相同之快速致動系統。 設備730包括延伸臂725A,該臂具有在軸件軸AR之位置以機械方式連結至旋轉板723A的第一區域740A。延伸臂725A具有第二區域745A,其沿著XSF -YSF 平面中之一方向(且因此沿著垂直於軸件軸AR之一方向)自軸件軸AR偏移,使得第二區域745A不與軸件軸AR相交。稜鏡720係以機械方式連結至第二區域745A。 稜鏡720之質心(稜鏡軸AP)及軸件軸AR兩者保持平行於設備730之ZSF 軸;然而,稜鏡720之質心自軸件軸AR偏移。延伸臂725A繞軸件軸AR旋轉角度Δθ施加組合移動至稜鏡720:稜鏡720在XSF -YSF 平面內繞軸件軸AR的角度Δθ之旋轉R (參見圖5C),及稜鏡720沿著位於設備730之XSF -YSF 平面內之一方向的線性平移T。在圖7C之實例中,稜鏡720自第一角度θ1旋轉R至第二角度θ2,且自XSF -YSF 平面中之第一位置Pos1平移T至XSF -YSF 平面中之第二位置Pos2。 稜鏡720之線性平移T藉此使光束110A沿著平行於光柵700之表面702之較長軸701的一方向平移。較長軸701亦沿著設備730之XSF -YSF 平面展開。藉由執行光束110A之此平移,有可能控制光柵700之哪個區或區域係在可能光學放大率OM之範圍的下端經照明。此外,光柵700及光柵之表面702不均勻;即,光柵700之表面702之一些區域與光柵700之表面702的其他區域相比將不同改變施加至光束110A的波前,且表面702之一些區域與表面702之其他區域相比將更多失真施加至光束110A的波前。控制系統185 (或控制模組550)可控制快速致動系統720A以藉此調整稜鏡720之線性平移T及調整光束110A沿著較長軸701之平移,以利用光柵700之表面702之不均勻性,且靠近光柵表面702之一端照明光柵表面702之較高失真區域以提高光譜頻寬,甚至超過簡單地降低光學放大率可達成之效應。 另外,稜鏡720之線性平移T亦使稜鏡720之斜邊H (參見圖7C)在稜鏡720相對於光束110A之位置旋轉期間平移。斜邊H之平移因此使斜邊H之新區域在設備730之操作期間曝露於光束110A。在設備730之壽命中,稜鏡720自其旋轉範圍之一端旋轉至另一端,且更多區域亦曝露於光束110A,此減少由光束110A給稜鏡720帶來之損害的量。 類似於設備630,光譜特徵選擇設備730亦包括光柵600,且擴束器包括稜鏡705、710、715,該等稜鏡沿著光束110A之路徑定位在稜鏡720與光柵700之間。光柵700及四個稜鏡705、710、715、720經組態以在光束110A穿過設備730之孔隙755之後與由光學源105產生之光束110A相互作用。光束110A自孔隙755沿著設備730之XSF -YSF 平面中之路徑行進,穿過稜鏡720、稜鏡715、稜鏡710、稜鏡705,接著自光柵700反射,且返回穿過連續稜鏡705、710、715、720,之後穿過孔隙755退出設備730。 參看圖8A至圖8D,在其他實施方案中,快速致動系統820A設計成與快速致動系統720A相同,但具有附加二級致動器860A。二級致動器860A實體地耦接至離光柵800最遠之稜鏡820。二級致動器860A經組態以使稜鏡820繞軸AH旋轉,該軸處於XSF -YSF 平面中且亦處於稜鏡820之斜邊H的平面中。 在一些實施中,儘管不需要,但二級致動器860A係由控制模組650 (或控制系統185)控制。二級致動器860A可為手動螺釘及彎曲部設計,其不由控制模組550或控制系統185控制。舉例而言,致動器860A可在使用系統820A之後經設定,或可在系統820A之使用之間定期地手動改變。 稜鏡820因此可繞處於XSF -YSF 平面中之軸AH旋轉,以實現對光束110A在何處進入稜鏡820及稜鏡820之斜邊H的更強控制,以便更好地保持光束110A穿過稜鏡815、810、805及光柵800中之每一者之路徑。具體言之,稜鏡820繞軸AH之旋轉使光束110A能夠被更精細地調整。舉例而言,稜鏡820可繞軸AH旋轉,以確保來自光柵800之逆反射(亦即,繞射光束)110A保持在XSF -YSF 平面中且不沿著設備830之ZSF 軸移位,即使稜鏡820繞AP或AR軸旋轉。在AP或AR軸不與ZSF 軸完美對準的情況下,具有此ZSF 軸調整係有益的。另外,使稜鏡820繞AH軸旋轉可為有益的,此係因為延伸臂825A為懸臂支架且其可以沿著ZSF 軸之方式下陷或移動,以使得該臂繞軸AH偏轉且二級致動器860A可用以抵消此偏轉。 參看圖9,例示性光學源905為產生脈衝雷射光束以作為光束110之脈衝雷射源。光學源905為兩級雷射系統,其包括提供種子光束110A至功率放大器(PA) 910之主控振盪器(MO) 900。主控振盪器900通常包括增益介質(其中出現放大)及光學回饋機構(諸如,光學諧振器)。功率放大器910通常包括增益介質,其中放大在與來自主控振盪器900之種子雷射光束接種時出現。若功率放大器910經設計為再生環諧振器,則其描述為功率環放大器(PRA),且在此情況下,可自環設計提供足夠光學回饋。光譜特徵選擇設備130自主控振盪器900接收光束110A,以使得能夠在相對低的輸出脈衝能量下精細調諧光譜參數,諸如光束110A之中心波長及頻寬。功率放大器910自主控振盪器900接收光束110A且放大此輸出以達到光微影中使用之輸出的必要功率。 主控振盪器900包括具有兩個細長電極之放電腔室、充當增益介質之雷射氣體及使氣體在電極之間循環的風扇。雷射諧振器係形成於在放電腔室之一側上的光譜特徵選擇設備130與在放電腔室之第二側上的輸出耦合器915之間,以將種子光束110A輸出至功率放大器910。 光學源905亦可包括自輸出耦合器915接收輸出之線中心分析模組(LAM) 920,及按需要修改光束之大小及/或形狀之一或多個光束修改光學系統925。線中心分析模組920為量測系統170內的可用以量測種子光束之波長(例如,中心波長)之一種量測系統的實例。 功率放大器910包括功率放大器放電腔室,且若其為再生環放大器,則功率放大器亦包括光束反射器或光束轉動裝置930,其將光束反射回至放電腔室中以形成循環路徑。功率放大器放電腔室包括一對細長電極、充當增益介質之雷射氣體及用於使氣體在電極之間循環的風扇。種子光束110A係藉由反覆地穿過功率放大器910而放大。光束修改光學系統925提供內耦合種子光束110A且外耦合來自功率放大器之經放大輻射之一部分以形成輸出光束110的方式(例如,部分反射鏡面)。 主控振盪器900及功率放大器910之放電腔室中所使用之雷射氣體可為用於產生約所需波長及頻寬之雷射束的任何合適氣體。舉例而言,雷射氣體可為發射約193 nm之波長之光的氟化氬(ArF),或發射約248 nm之波長之光的氟化氪(KrF)。 線中心分析模組920監測主控振盪器900之輸出(光束110A)之波長。線中心分析模組920可置放於光學源905內之其他位置處,或其可置放於光學源905之輸出端處。 根據來自掃描器115中之控制器140的指令,由功率放大器910產生之脈衝的重複率係由控制系統185控制主控振盪器900所用之重複率而判定。自功率放大器910輸出之脈衝的重複率係掃描器115看到之重複率。 如上文所論述,有可能僅使用光學元件(諸如圖5A中之光學元件)來粗略且精細地控制頻寬。另一方面,有可能藉由控制MO 900及PRA 910內之電極的啟動之間的差分時序而快速地在精細窄範圍中控制頻寬,同時藉由使用快速致動系統520A調整稜鏡520之角度而在粗略寬範圍中控制頻寬。 參看圖10,提供關於控制系統185之細節,該等細節係關於本文中所描述的系統及方法之態樣。控制系統185可包括圖10中未展示之其他特徵。一般而言,控制系統185包括數位電子電路、電腦硬體、韌體及軟體中之一或多者。 控制系統185包括記憶體1000,其可為唯讀記憶體及/或隨機存取記憶體。適合於有形地體現電腦程式指令及資料之儲存裝置包括所有形式之非揮發性記憶體,包括(舉實例而言):半導體記憶體裝置,諸如EPROM、EEPROM及快閃記憶體裝置;磁碟,諸如內部硬碟及抽取式磁碟;磁光碟;及CD-ROM磁碟。控制系統185亦可包括一或多個輸入裝置1005 (諸如,鍵盤、觸控螢幕、麥克風、滑鼠、手持式輸入裝置等)及一或多個輸出裝置1010 (諸如揚聲器或監視器)。 控制系統185包括一或多個可程式化處理器1015,及有形地體現於供可程式化處理器(諸如,處理器1015)執行之機器可讀儲存裝置中的一或多個電腦程式產品1020。一或多個可程式化處理器1015可各自執行具指令之程式以藉由對輸入資料進行操作及產生適當輸出來執行所要功能。一般而言,處理器1015自記憶體1000接收指令及資料。前述任一者可由專門設計之特殊應用積體電路(ASIC)補充,或併入於專門設計之ASIC中。 控制系統185包括光譜特徵分析模組1025、度量衡模組1027、微影分析模組1030、決策模組1035、光源致動模組1050、微影致動模組1055及光束製備致動模組1060,以及其他組件。此等模組中之每一者可為由一個或多個處理器(諸如處理器1015)執行之一組電腦程式產品。此外,模組1025、1030、1035、1050、1055、1060中之任一者可存取儲存於記憶體1000內之資料。 光譜特徵分析模組1025自量測系統170接收輸出。度量衡模組1027自度量衡設備145接收資料。微影分析模組1030自掃描器115之微影控制器140接收資訊。決策模組1035自分析模組(諸如模組1025、1027及1030)接收輸出且基於來自分析模組之輸出而判定哪個致動模組或哪些致動模組需要被啟動。光源致動模組1050連接至光學源105及光譜特徵選擇設備130之一或多者。微影致動模組1055連接至掃描器115,且特定言之,連接至微影控制器140。光束製備致動模組1060連接至光束製備系統112之一或多個組件。 儘管圖10中僅展示幾個模組,但控制系統185有可能包括其他模組。另外,儘管控制系統185表示為方框,其中所有組件看起來經共置,但控制系統185有可能由實體上彼此遠離之組件組成。舉例而言,光源致動模組1050可與光學源105或光譜特徵選擇設備130實體地共置。 一般而言,控制系統185自量測系統170接收關於光束110之至少某一資訊,且光譜特徵分析模組1025對該資訊執行分析以判定如何調整供應至掃描器115之光束110的一或多個光譜特徵(例如,頻寬)。基於此判定,控制系統185發送信號至光譜特徵選擇設備130及/或光學源105,以經由控制模組550來控制光學源105之操作。一般而言,光譜特徵分析模組1025執行估計光束110之一或多個光譜特徵(例如,波長及/或頻寬)所需的分析。光譜特徵分析模組1025之輸出為光譜特徵之估計值,其被發送至決策模組1035。 光譜特徵分析模組1025包括經連接以接收估計之光譜特徵且亦經連接以接收光譜特徵目標值之比較區塊。一般而言,該比較區塊輸出表示光譜特徵目標值與估計值之間的差的光譜特徵誤差值。決策模組1035接收光譜特徵誤差值且判定如何最佳地實現對系統100之校正以便調整光譜特徵。因此,決策模組1035發送信號至光源致動模組1050,其判定如何基於光譜特徵誤差值來調整光譜特徵選擇設備130 (或光學源105)。光源致動模組1050之輸出包括發送至光譜特徵選擇設備130之一組致動器命令。舉例而言,光源致動模組1050發送該等命令至控制模組550,其連接至設備530內之致動系統。 另外,微影分析模組1030可自(例如)掃描器115之微影控制器140接收指令,以改變脈衝光束110之一或多個光譜特徵或改變光束110之脈衝重複率。微影分析模組1030對此等指令執行分析以判定如何調整該等光譜特徵,且將分析之結果發送至決策模組1035。控制系統185致使光學源105以給定重複率操作。更具體言之,針對每個脈衝(亦即,基於脈衝至脈衝),掃描器115發送觸發信號至光學源105 (憑藉控制系統(經由微影分析模組1030)),且彼等觸發信號之間的時間間隔可為任意的,但當掃描器115以規則間隔發送觸發信號時,則彼等信號之速率為重複率。重複率可為掃描器115所請求之速率。 參看圖11,程序1100係由光微影系統100執行,以快速且獨立地控制脈衝光束110之至少兩個光譜特徵以補償晶圓120之每一子區處的一或多個微影效能參數之變化。至少兩個光譜特徵之獨立控制意味著,若第一光譜特徵應針對晶圓120之特定子區進行調整,且第二光譜特徵應針對晶圓120之特定子區加以保持,則程序1100進行將第二光譜特徵保持在可接受範圍內所需的步驟,且該程序針對晶圓120之每一子區進行此操作。因此,在晶圓120之特定子區中需要任何調整之後且在分析晶圓120之下一個子區之前,第一光譜特徵及第二光譜特徵達到穩定值。此快速分析及調整針對晶圓120之每一子區進行,此係因為光譜特徵選擇系統130已重新設計從而提供對脈衝光束110之光譜特徵的更快速調整。程序1100可由控制系統185執行。 由(例如)光學源105產生脈衝光束110 (1105)。可藉由引導種子光束110A穿過光譜特徵選擇系統130來產生脈衝光束110 (1105)。 舉例而言,可藉由自第一氣體放電載台(諸如主控振盪器900)產生第一脈衝光束910A而自光學源905產生脈衝光束110,該產生包括:選擇脈衝光束910A之第一光譜特徵;將第一脈衝光束910A引導至第二氣體放電載台(諸如功率放大器910);及在第二氣體放電載台中放大該第一脈衝光束以藉此自光學源905產生脈衝光束910。 引導脈衝光束110朝向晶圓120,該晶圓安裝至掃描器115之載台122。舉例而言,視需要修改由光學源105產生之脈衝光束110,且藉由光束製備系統112重新引導該脈衝光束朝向掃描器115。 舉例而言,藉由使脈衝光束110及晶圓120相對於彼此沿著側向平面(XL -YL 平面)移動,使脈衝光束110掃描越過晶圓120 (1110)。具體言之,微影控制器140可發送一或多個信號至與晶圓台122、遮罩134及物鏡配置132相關聯之致動系統,以藉此使遮罩134、物鏡配置132及晶圓120 (經由載台122)中之一或多者在曝光期間相對於彼此移動,以掃描越過晶圓220之每一子區(針對每一曝光域223)之曝光窗口400。 選擇晶圓120之第一子區以由用於微影處理之光束110進行曝光(1115)。所選擇的晶圓120之子區可為曝光域(諸如,晶圓220之曝光域223)。或者,晶圓120之子區可對應於與光束110之單一脈衝相互作用的晶圓120之部分。 接收針對晶圓120之選定子區的晶圓120處之微影效能參數(1120)。舉例而言,控制系統185自微影控制器140接收晶圓120之子區的效能參數,該微影控制器自度量衡設備145接收資料。可在使脈衝光束110掃描越過晶圓120的同時接收(1120)晶圓120之每一子區處的晶圓120之效能參數,或可在使脈衝光束110掃描越過晶圓120之前接收該效能參數。 所接收(1120)之效能參數可為以下各項中之一或多者:晶圓之物理性質的誤差、形成於晶圓上之特徵的對比度、曝露於脈衝光束110之子區處的臨界尺寸、形成於晶圓120上之特徵相對於目標或相對於下層特徵(例如,覆疊片)的置放(相對於所要/目標位置之X、Y位置)、光阻輪廓、側壁角度,以及晶圓120之位置的改變。 控制系統185分析例如接收之微影效能參數(1125),以判定其是否在值的可接受範圍外。若微影效能參數在值的可接受範圍外(1125),則控制系統185判定如何修改光束110之第一光譜特徵,以便補償晶圓120之彼子區中的微影效能參數之不可接受的變化。控制系統185發送信號至光譜特徵選擇設備130以使光束110之第一光譜特徵改變(1130)可補償微影效能參數中之不可接受變化的量。 此外,控制系統185亦分析對光束110之第一光譜特徵的修改是否影響光束110之第二光譜特徵的值,且以可將光束110之第二光譜特徵保持在可接受範圍內的方式動作。舉例而言,控制系統185可判定光束110之第二光譜特徵需要改變以抵消由對光束110之第一光譜特徵的修改導致的對光束110之第二光譜特徵的非所需修改。控制系統185因此發送信號至光譜特徵選擇設備130以使光束之第二光譜特徵改變(1130)可補償此非所需修改的量。 控制系統185判定晶圓120之額外子區是否需要由用於微影處理之光束110進行曝光(1135),且若晶圓120之額外子區需要曝光(1135),則控制系統185選擇晶圓120之下一個子區(1140)作為待由用於微影處理之光束110進行曝光的子區。因此,程序1100持續,直至整個晶圓120已經處理。 此外,程序1100可藉由自光譜特徵選擇系統130之繞射表面(諸如表面502)選擇性地反射脈衝光束110A來修改脈衝光束110之第一光譜特徵(1130)。 藉由引導脈衝光束朝向繞射光學元件(諸如光柵500)穿過複數個稜鏡(諸如稜鏡505、510、515、520),使得脈衝光束逆反射離開繞射光學元件且返回穿過該複數個稜鏡,可修改(1130)脈衝光束之第一光譜特徵且可保持(113)脈衝光束之第二光譜特徵。另外,擴束器中之至少兩個稜鏡可經旋轉,使得脈衝光束110在繞射光學元件上之入射角562改變,但該脈衝光束在繞射光學元件上之總放大率565不改變。 可藉由修改脈衝光束之波長來修改(1130)光束110之第一光譜特徵。此外,可藉由將脈衝光束110之頻寬保持在一頻寬範圍內來保持(1130)第二光譜特徵。舉例而言,脈衝光束110之頻寬可保持在+/- 10飛米(fm)內或+/- 1 fm內。 藉由使脈衝光束110A穿過的光譜特徵選擇設備130之第一稜鏡系統旋轉,可修改(1130)脈衝光束110之第一光譜特徵。舉例而言,控制系統185可發送信號至圖5A之光譜特徵選擇設備130之控制模組550,以使擴束器501之一或多個稜鏡旋轉。舉例而言,稜鏡505可經旋轉以實現相對粗略的波長修改,且稜鏡510可經旋轉以實現相對精細的波長修改。作為另一實例,稜鏡505可經旋轉以實現相對粗略的波長修改,且稜鏡515可經旋轉以實現相對精細的波長修改。 此外,藉由使脈衝光束110A穿過的光譜特徵選擇設備130之第二稜鏡系統旋轉,可保持(1130)脈衝光束110之第二光譜特徵。舉例而言,控制系統185可發送信號至圖5A之光譜特徵選擇設備130之控制模組550,以使擴束器501之一或多個稜鏡旋轉。舉例而言,使用如上文所論述之快速致動器,稜鏡520可經旋轉以實現相對粗略的頻寬調整,且稜鏡510可經旋轉以實現相對精細的頻寬調整。 相對粗略的波長修改可由與稜鏡相關聯之致動步進實現,該致動步進相對大於用以提供相對精細的波長修改之致動步進。類似地,相對粗略的頻寬調整可由與稜鏡相關聯之致動步進實現,該致動步進相對大於用以提供相對精細的頻寬修改之致動步進。 藉由使置放於稜鏡505與光譜特徵選擇設備130之光柵500 (脈衝光束110A穿過該光柵)之間的鏡面旋轉,可修改(1130)脈衝光束110之第一光譜特徵。舉例而言,控制系統185可發送信號至圖5A之光譜特徵選擇設備130之控制模組550以使鏡面旋轉。 藉由調整第二光譜特徵以補償因對脈衝光束110之第一光譜特徵之修改所致的第二光譜特徵之改變(1130),控制系統185可保持脈衝光束110之第二光譜特徵(1130)。此外,可在修改脈衝光束110之第一光譜特徵(1130)的同時調整(1130)脈衝光束110之第二光譜特徵。 對脈衝光束110之第一光譜特徵之修改(1130)可導致對晶圓120處的脈衝光束110之第一條件之修改。舉例而言,若第一光譜特徵為光束110之波長,則修改波長導致對晶圓120處的光束110之焦平面之修改。保持該脈衝光束110之第二光譜特徵(1130)可導致晶圓120處的脈衝光束110之第二條件保持在特定位準。舉例而言,若第二光譜特徵為光束110之頻寬,則藉由保持光束110之頻寬,可藉此保持晶圓120處的光束110之對比度屬性或焦點深度。 儘管上文給出之實例參考圖5A之光譜特徵選擇設備,但圖6A、圖7A及圖8A之光譜特徵選擇裝置的設計中之任一者可替代地用以執行程序1100中之一或多個步驟。 另外,在程序1100期間,控制系統185亦執行如圖12中所示之平行程序1150,其用於在所述晶圓120掃描光束110時控制脈衝光束110之一或多個光譜特徵。此程序1150不管微影效能參數是否在可接受範圍外而執行,且因此不考慮微影效能參數。儘管如此,由控制系統185在程序1150期間執行之分析可由控制系統185使用以亦判定如何分析接收之微影效能參數(1125)且修改第一光譜特徵及保持第二光譜特徵(1130)。 程序1150包括量測脈衝光束110之一或多個光譜特徵(1155)及判定量測之光譜特徵中之任一者是否在值之可接受範圍外(1160)。舉例而言,控制系統185之光譜特徵分析模組1025可自量測系統170接收光譜特徵量測結果(1155)。光譜特徵分析模組1025可判定光譜特徵中之任一者是否在值之可接受範圍外(1160)。若光譜特徵中之任一者在值之可接受範圍外,則調整彼等光譜特徵(1165)。舉例而言,決策模組1035可發送信號至光源致動模組1050,該光源致動模組發送信號至光譜特徵選擇設備130以調整光束110之一或多個光譜特徵(1165)。此調整可與需要進行以顧及晶圓特性之改變的任何調整協調(1130)。 程序1150可在掃描期間且例如針對每一曝光域223或針對每一子區(其中步驟1120、1125、1130經執行)以規則間隔執行。此外,控制系統185有可能協調補償微影效能參數變化所需的對第一光譜特徵之調整(1130)與對第一光譜特徵之任何所需調整,以確保第一光譜特徵在值之可接受範圍內。 其他實施在以下申請專利範圍之範疇內。
100‧‧‧光微影系統
105‧‧‧光學源/脈衝光源
110‧‧‧脈衝光束
110A‧‧‧脈衝光束
112‧‧‧光束製備系統
115‧‧‧光微影曝光設備或掃描器
120‧‧‧基板或晶圓
122‧‧‧載台/晶圓台
129‧‧‧照明器系統
130‧‧‧光譜特徵選擇設備
130A‧‧‧粗略光譜特徵調整系統
130B‧‧‧精細光譜特徵調整系統
132‧‧‧物鏡配置
134‧‧‧遮罩
140‧‧‧微影控制器
145‧‧‧度量衡設備
150‧‧‧照明系統
170‧‧‧量測系統
185‧‧‧控制系統
200‧‧‧圖
220‧‧‧晶圓
223‧‧‧曝光域
300‧‧‧光譜
400‧‧‧曝光窗口
405‧‧‧曝光狹縫
500‧‧‧光學特徵或組件/色散光學元件/光柵
500A‧‧‧致動系統
501‧‧‧擴束器
502‧‧‧繞射表面
503‧‧‧位置
505‧‧‧光學組件/稜鏡
505A‧‧‧致動系統
510‧‧‧光學組件/稜鏡
510A‧‧‧致動系統
512A‧‧‧旋轉軸件
515‧‧‧光學組件/稜鏡
515A‧‧‧致動系統
520‧‧‧光學組件/稜鏡
520A‧‧‧致動系統
522A‧‧‧馬達軸件/旋轉軸件
550‧‧‧控制模組
555‧‧‧孔隙
562‧‧‧入射角
565‧‧‧光學放大率OM
600‧‧‧光柵/色散光學元件
605‧‧‧稜鏡
605A‧‧‧致動系統
610‧‧‧稜鏡
610A‧‧‧致動系統
615‧‧‧稜鏡
620‧‧‧稜鏡
620A‧‧‧致動系統
621A‧‧‧旋轉步進馬達
622A‧‧‧旋轉軸件
623A‧‧‧旋轉板
624A‧‧‧位置監視器
630‧‧‧光譜特徵選擇設備
655‧‧‧孔隙
700‧‧‧光柵
701‧‧‧軸
702‧‧‧表面
705‧‧‧稜鏡
710‧‧‧稜鏡
710A‧‧‧致動系統
715‧‧‧稜鏡
720‧‧‧稜鏡
720A‧‧‧快速致動系統
723A‧‧‧旋轉板
725A‧‧‧延伸臂
730‧‧‧光譜特徵選擇設備
740A‧‧‧第一區域
745A‧‧‧第二區域
755‧‧‧孔隙
800‧‧‧光柵
805‧‧‧稜鏡
810‧‧‧稜鏡
815‧‧‧稜鏡
820‧‧‧稜鏡
820A‧‧‧快速致動系統
825A‧‧‧延伸臂
830‧‧‧設備
860A‧‧‧二級致動器
900‧‧‧主控振盪器(MO)
905‧‧‧光學源
910‧‧‧功率放大器(PA)
910A‧‧‧第一脈衝光束
915‧‧‧輸出耦合器
920‧‧‧線中心分析模組(LAM)
925‧‧‧光束修改光學系統
930‧‧‧光束反射區或光束轉動裝置
1000‧‧‧記憶體
1005‧‧‧輸入裝置
1010‧‧‧輸出裝置
1015‧‧‧可程式化處理器
1020‧‧‧電腦程式產品
1025‧‧‧光譜特徵分析模組
1027‧‧‧度量衡模組
1030‧‧‧微影分析模組
1035‧‧‧決策模組
1050‧‧‧光源致動模組
1055‧‧‧微影致動模組
1060‧‧‧光束製備致動模組
1100‧‧‧程序
1105‧‧‧步驟
1110‧‧‧步驟
1115‧‧‧步驟
1120‧‧‧步驟
1125‧‧‧步驟
1130‧‧‧步驟
1135‧‧‧步驟
1140‧‧‧步驟
1150‧‧‧平行程序
1155‧‧‧步驟
1160‧‧‧步驟
1165‧‧‧步驟
AH‧‧‧軸
AP‧‧‧旋轉軸
AR‧‧‧軸件軸
H‧‧‧斜邊
H(P)‧‧‧入射表面
OM(P)‧‧‧光學放大率
P‧‧‧稜鏡
Pos1‧‧‧第一位置
Pos2‧‧‧第二位置
PP‧‧‧微影效能參數
R‧‧‧旋轉
T‧‧‧平移
Wi‧‧‧橫向寬度
Wi(P)‧‧‧橫向寬度
Wo‧‧‧橫向寬度
Wo(P)‧‧‧橫向寬度
XL‧‧‧方向
YL‧‧‧方向
ZL‧‧‧方向
ZSF‧‧‧方向/軸
θ1‧‧‧第一角度
θ2‧‧‧第二角度
δ(P)‧‧‧光束折射角
圖1為產生經引導至光微影曝光設備之脈衝光束之光微影系統的方塊圖; 圖2為描繪在圖1之光微影曝光設備內成像的晶圓之圖的示意圖,該圖展示晶圓之子區; 圖3為由圖1之光微影系統產生的脈衝光束之例示性光譜的曲線圖; 圖4為可用於圖1之光微影系統中的例示性光微影曝光設備之方塊圖; 圖5A為可用於圖1之光微影系統中的例示性光譜特徵選擇設備之方塊圖; 圖5B為圖5A之光譜特徵選擇設備內的例示性稜鏡之方塊圖,且展示了經由稜鏡之光束放大率及光束折射角; 圖6A為包括與稜鏡中之至少一者相關聯的快速致動器且可用於圖1之光微影系統中的例示性光譜特徵選擇設備之方塊圖; 圖6B為沿著圖6A之設備的稜鏡中之一者之6B-6B截面截取的視圖; 圖6C為沿著圖6B之稜鏡之ZSF 方向的視圖,展示了稜鏡之旋轉; 圖7A為包括與稜鏡中之至少一者相關聯的快速致動器且可用於圖1之光微影系統中的例示性光譜特徵選擇設備之方塊圖; 圖7B為沿著圖7A之設備的稜鏡中之一者之7B-7B截面截取的視圖; 圖7C為沿著圖7B之稜鏡之ZSF 方向的視圖,展示了稜鏡之旋轉; 圖8A為包括與稜鏡中之至少一者相關聯的快速致動器且可用於圖1之光微影系統中的例示性光譜特徵選擇設備之方塊圖; 圖8B為沿著圖8A之設備的稜鏡中之一者之8B-8B截面截取的視圖; 圖8C為沿著圖8B之稜鏡之ZSF 方向的視圖,展示了稜鏡之旋轉; 圖8D為展示於圖8B中的沿著8B-8B截面截取之近視圖; 圖9為可用於圖1之光微影系統中的例示性光學源之方塊圖; 圖10為可用於圖1之光微影系統中的例示性控制系統之方塊圖; 圖11為由圖1之光微影系統執行以快速且獨立地控制脈衝光束之至少兩個光譜特徵以補償晶圓之每一子區中的晶圓處之特性變化的例示性程序的流程圖;且 圖12為由圖1之光微影系統執行以控制脈衝光束之一或多個光譜特徵的例示性程序的流程圖。

Claims (22)

  1. 一種光微影設備,其包含: 一光學源,其經組態以產生一脈衝光束; 一光譜特徵選擇系統,其在光學上與該該脈衝光束相互作用; 一掃描光學系統,其經組態以使該脈衝光束掃描越過定位於一微影設備中之一基板; 一度量衡設備,其經組態以判定該基板之每一子區處的至少一個微影效能參數,在該基板中,一子區為該基板之一總面積之一部分;及 一控制系統,其連接至該光譜特徵選擇系統、該光學源及該度量衡設備,且經組態以,在每一基板子區處: 接收該經判定之微影效能參數; 分析該經判定之微影效能參數;及 基於對該經判定之微影效能參數的該分析而: 藉由發送一第一信號至該光譜特徵選擇系統來修改該脈衝光束之一第一光譜特徵;及 藉由在該脈衝光束之該第一光譜特徵經修改的同時發送一第二信號至該光譜特徵選擇系統來保持該脈衝光束之一第二光譜特徵。
  2. 如請求項1之光微影設備,其中該基板之每一子區為該基板之一曝光域,或每一子區對應於該光束之一單一脈衝。
  3. 如請求項1之光微影設備,其中該光譜特徵選擇系統包含:包括一致動系統之一光譜特徵致動機構,該致動系統經組態以致使該光譜特徵致動機構之一或多個元件被更改,以藉此更改與該脈衝光束之相互作用。
  4. 如請求項1之光微影設備,其中該微影效能參數包括該基板之一位置與一所要位置的一平均偏移及該基板之一載台振動中之一或多者。
  5. 如請求項1之光微影設備,其中該微影效能參數包括自該基板之中心子區變化至該基板之一邊緣處的子區的該基板之一位置。
  6. 如請求項1之光微影設備,其中該光譜特徵選擇系統包含: 一色散光學元件及包括至少三個折射光學元件之一擴束器,該脈衝光束與該色散光學元件及該複數個折射光學元件中之每一者相互作用;及 包括複數個致動器之一致動系統,該複數個中之該等致動器中之每一者致使該至少三個折射光學元件中之一者相對於該脈衝光束旋轉; 其中該致動系統包括與該等折射光學元件中之至少一者相關聯之一快速致動器,該快速致動器包括一旋轉載台,該旋轉載台繞一旋轉軸旋轉且包括以機械方式連結至該相關聯折射光學元件以使該相關聯折射光學元件繞該旋轉軸旋轉的一區域。
  7. 如請求項6之光微影設備,其中一第一折射光學元件之旋轉致使該脈衝光束之該第二光譜特徵以一相對粗略的方式改變,一第二折射光學元件之旋轉致使該脈衝光束之該第一光譜特徵以一相對精細的方式改變,且一第三折射光學元件之旋轉致使該脈衝光束之該第二光譜特徵以一相對精細的方式改變。
  8. 如請求項7之光微影設備,其中該擴束器包括一第四折射光學元件,且該第四折射光學元件之旋轉致使該脈衝光束之該第一光譜特徵以一相對粗略的方式改變。
  9. 如請求項1之光微影設備,其中: 該控制系統藉由判定該微影效能參數是否在一可接受範圍外而分析該經判定之微影效能參數;且 若判定該微影效能參數在一可接受範圍外,則該控制系統藉由發送信號至該光譜特徵選擇系統來修改該脈衝光束之該第一光譜特徵。
  10. 如請求項1之光微影設備,其中該掃描光學系統經組態以使該脈衝光束及該基板中之一或多者相對於彼此沿著一側向平面移動,以使得該脈衝光束與該基板之每一子區相互作用,其中該側向平面垂直於引導該脈衝光束所沿著的一軸向方向。
  11. 一種光微影方法,其包含: 自一光學源產生一脈衝光束; 使該脈衝光束掃描越過一微影曝光設備之一基板以用該脈衝光束對該基板進行曝光,包括用該脈衝光束對該基板之每一子區進行曝光,其中一子區為該基板之一總面積之一部分;及 針對該基板之每一子區: 接收與該基板之該子區相關聯之一微影效能參數; 分析該接收之微影效能參數;及 基於該分析,修改該脈衝光束之至少一第一光譜特徵且保持該脈衝光束之至少一第二光譜特徵。
  12. 如請求項11之方法,其中接收該基板之每一子區處的該微影效能參數包含:在使該脈衝光束掃描越過該基板期間,接收該基板之每一子區處的該微影效能參數。
  13. 如請求項11之方法,其中接收該子區處的該微影效能參數包含接收以下各項中之一或多者:關於該基板之物理性質之一誤差、形成於該基板上之一特徵之一對比度、曝露於該脈衝光束的一基板區處之一臨界尺寸、形成於該基板上之該特徵相對於一目標或相對於一下層特徵的置放(相對於所要/目標位置之X、Y位置)、一光阻輪廓、一側壁角度及該基板之一位置改變;該基板之一位置與一所要位置的一平均偏移及該基板之一載台振動,及自該基板之中心子區變化至該基板之一邊緣處的子區的該基板之一位置。
  14. 如請求項11之方法,其中接收該基板之每一子區處的該微影效能參數包含:在使該脈衝光束掃描越過該基板之前,接收該基板之每一子區處的該微影效能參數。
  15. 如請求項11之方法,其中: 修改該第一光譜特徵包含修改該脈衝光束之波長,且 保持該第二光譜特徵包含將該脈衝光束之頻寬保持在一頻寬範圍內。
  16. 如請求項15之方法,其中將該脈衝光束之頻寬保持在該頻寬範圍內包含將該脈衝光束之頻寬保持在+/- 10飛米(fm)內或+/- 1 fm內。
  17. 如請求項11之方法,其中: 修改該脈衝光束之該第一光譜特徵包含使該脈衝光束所穿過之一第一稜鏡系統旋轉;且 保持該脈衝光束之該第二光譜特徵包含使該脈衝光束所穿過之一第二稜鏡系統旋轉; 其中該第一稜鏡系統及該第二稜鏡系統為一光譜特徵選擇系統內之組件。
  18. 如請求項11之方法,其進一步包含: 至少在該基板之每一子區處,估計自該光學源產生之該脈衝光束之一光譜特徵; 判定該估計之光譜特徵是否在一可接受範圍內;及 若判定該估計之光譜特徵不在該可接受範圍內,則修改該脈衝光束之該光譜特徵, 其中該光譜特徵為該第一光譜特徵及該第二光譜特徵中之一或多者。
  19. 如請求項11之方法,其中: 保持該脈衝光束之該第二光譜特徵包含調整該第二光譜特徵以補償因該脈衝光束之該第一光譜特徵之該修改所致的該第二光譜特徵之改變;且 調整該脈衝光束之該第二光譜特徵與修改該脈衝光束之該第一光譜特徵同時發生。
  20. 如請求項11之方法,其中分析該接收之微影效能參數包含:基於該微影效能參數而判定該基板之一物理性質是否在一可接受範圍外。
  21. 如請求項11之方法,其中修改該脈衝光束之該第一光譜特徵導致該基板處的該脈衝光束之一第一條件之一修改,且保持該脈衝光束之該第二光譜特徵導致該基板處的該脈衝光束之一第二條件得以保持在一特定位準。
  22. 一種光微影方法,其包含: 自一光學源產生一脈衝光束; 接收將一基板之邊緣衰減關聯至該基板之每一子區的一變因,其中一子區為該基板之一總面積之一部分; 使該脈衝光束掃描越過一微影曝光設備之一基板以用該脈衝光束對該基板進行曝光,包括用該脈衝光束對該基板之每一子區進行曝光; 修改該脈衝光束之至少一波長以便調整該基板處之聚焦位置,以補償邊緣衰減且基於經曝光之該子區;及 在該脈衝光束之該波長經修改同時,保持該脈衝光束之至少一頻寬,以調整該基板處之該聚焦位置且補償經曝光之該子區的邊緣衰減。
TW106135286A 2016-10-17 2017-10-16 基於晶圓之光源參數控制 TWI661468B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/295,524 2016-10-17
US15/295,524 US9989866B2 (en) 2016-10-17 2016-10-17 Wafer-based light source parameter control

Publications (2)

Publication Number Publication Date
TW201826339A true TW201826339A (zh) 2018-07-16
TWI661468B TWI661468B (zh) 2019-06-01

Family

ID=61902269

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106135286A TWI661468B (zh) 2016-10-17 2017-10-16 基於晶圓之光源參數控制
TW108114522A TWI706440B (zh) 2016-10-17 2017-10-16 光微影設備及光微影方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108114522A TWI706440B (zh) 2016-10-17 2017-10-16 光微影設備及光微影方法

Country Status (7)

Country Link
US (2) US9989866B2 (zh)
JP (1) JP6853879B2 (zh)
KR (2) KR102379328B1 (zh)
CN (2) CN114755893A (zh)
NL (1) NL2019678A (zh)
TW (2) TWI661468B (zh)
WO (1) WO2018075247A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989866B2 (en) * 2016-10-17 2018-06-05 Cymer, Llc Wafer-based light source parameter control
US10416471B2 (en) 2016-10-17 2019-09-17 Cymer, Llc Spectral feature control apparatus
US10914646B2 (en) * 2017-09-11 2021-02-09 Optilab, Llc System and method for monitoring the health of structures and machines using fiber Bragg Grating (FBG)
CN118011728A (zh) 2017-10-19 2024-05-10 西默有限公司 在单次光刻曝光通过过程中形成多个空间图像
NL2022609A (en) 2018-03-12 2019-09-18 Asml Netherlands Bv Control System and Method
JP7044894B2 (ja) 2018-03-30 2022-03-30 サイマー リミテッド ライアビリティ カンパニー パルス光ビームのスペクトル特性選択及びパルスタイミング制御
CN114144731B (zh) 2019-07-23 2024-04-09 西默有限公司 补偿由重复率偏差引起的波长误差的方法
KR20230010237A (ko) * 2020-06-09 2023-01-18 사이머 엘엘씨 중심 파장 제어를 위한 시스템 및 방법
CN116982005A (zh) * 2021-04-12 2023-10-31 极光先进雷射株式会社 谱波形的控制方法、激光装置、曝光装置和电子器件的制造方法
CN115509082B (zh) * 2022-11-09 2023-04-07 华芯程(杭州)科技有限公司 光学邻近校正模型的训练方法、装置及光学邻近校正方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276283A (ja) * 1989-04-18 1990-11-13 Toshiba Corp 狭帯域レーザ装置
JP3175180B2 (ja) 1990-03-09 2001-06-11 キヤノン株式会社 露光方法及び露光装置
JPH05152666A (ja) * 1991-11-27 1993-06-18 Mitsubishi Electric Corp 狭帯域化レーザ
JP4102457B2 (ja) 1997-05-09 2008-06-18 株式会社小松製作所 狭帯域化レーザ装置
US5978409A (en) 1998-09-28 1999-11-02 Cymer, Inc. Line narrowing apparatus with high transparency prism beam expander
US6671294B2 (en) 1997-07-22 2003-12-30 Cymer, Inc. Laser spectral engineering for lithographic process
US6853653B2 (en) 1997-07-22 2005-02-08 Cymer, Inc. Laser spectral engineering for lithographic process
US6061382A (en) 1998-05-04 2000-05-09 Lambda Physik Gmbh Laser system and method for narrow spectral linewidth through wavefront curvature compensation
US6393037B1 (en) 1999-02-03 2002-05-21 Lambda Physik Ag Wavelength selector for laser with adjustable angular dispersion
US6567450B2 (en) 1999-12-10 2003-05-20 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6865210B2 (en) 2001-05-03 2005-03-08 Cymer, Inc. Timing control for two-chamber gas discharge laser system
US6625191B2 (en) 1999-12-10 2003-09-23 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
JP2001085313A (ja) 1999-09-13 2001-03-30 Nikon Corp 露光方法及び装置、並びにデバイスの製造方法
JP2003518757A (ja) 1999-12-22 2003-06-10 サイマー, インコーポレイテッド 二方向ビーム拡大を用いた狭線化レーザ
US7075963B2 (en) * 2000-01-27 2006-07-11 Lambda Physik Ag Tunable laser with stabilized grating
US6856638B2 (en) 2000-10-23 2005-02-15 Lambda Physik Ag Resonator arrangement for bandwidth control
US6813287B2 (en) * 2001-03-29 2004-11-02 Gigaphoton Inc. Wavelength control device for laser device
US7154928B2 (en) 2004-06-23 2006-12-26 Cymer Inc. Laser output beam wavefront splitter for bandwidth spectrum control
US7250237B2 (en) * 2003-12-23 2007-07-31 Asml Netherlands B.V. Optimized correction of wafer thermal deformations in a lithographic process
JP4798687B2 (ja) 2004-07-09 2011-10-19 株式会社小松製作所 狭帯域化レーザ装置
WO2006023612A2 (en) * 2004-08-19 2006-03-02 Zetetic Institute Sub-nanometer overlay, critical dimension, and lithography tool projection optic metrology systems based on measurement of exposure induced changes in photoresist on wafers
US7366219B2 (en) 2004-11-30 2008-04-29 Cymer, Inc. Line narrowing module
US20060114956A1 (en) 2004-11-30 2006-06-01 Sandstrom Richard L High power high pulse repetition rate gas discharge laser system bandwidth management
US7286207B2 (en) 2005-04-28 2007-10-23 Infineon Technologies, Ag Exposing a semiconductor wafer using two different spectral wavelengths and adjusting for chromatic aberration
US7443484B2 (en) 2005-05-13 2008-10-28 Infineon Technologies Ag Method for exposing a semiconductor wafer by applying periodic movement to a component
US7885309B2 (en) 2005-11-01 2011-02-08 Cymer, Inc. Laser system
US7822084B2 (en) 2006-02-17 2010-10-26 Cymer, Inc. Method and apparatus for stabilizing and tuning the bandwidth of laser light
US8259764B2 (en) 2006-06-21 2012-09-04 Cymer, Inc. Bandwidth control device
JP5114767B2 (ja) * 2006-10-10 2013-01-09 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整装置
JP4972427B2 (ja) 2007-02-15 2012-07-11 株式会社小松製作所 高繰返し動作が可能で狭帯域化効率の高いエキシマレーザ装置
US7659529B2 (en) 2007-04-13 2010-02-09 Cymer, Inc. Method and apparatus for vibration reduction in laser system line narrowing unit wavelength selection optical element
US8144739B2 (en) 2008-10-24 2012-03-27 Cymer, Inc. System method and apparatus for selecting and controlling light source bandwidth
DE102008064504B4 (de) 2008-12-22 2011-04-07 Carl Zeiss Smt Gmbh Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage für die Mikrolithographie
US8520186B2 (en) 2009-08-25 2013-08-27 Cymer, Llc Active spectral control of optical source
DE102009039957A1 (de) 2009-08-28 2010-10-14 Carl Zeiss Laser Optics Gmbh Vorrichtung zur variablen Einstellung der spektralen Bandbreite
NL2005424A (en) 2009-10-30 2011-05-02 Asml Netherlands Bv Lithographic method and apparatus.
JP5423384B2 (ja) * 2009-12-24 2014-02-19 株式会社Sumco 半導体ウェーハおよびその製造方法
NL2005996A (en) * 2010-02-19 2011-08-22 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
JP2011249818A (ja) 2011-07-04 2011-12-08 Komatsu Ltd 狭帯域化レーザ装置
JP2013070029A (ja) * 2011-09-08 2013-04-18 Gigaphoton Inc マスタオシレータシステムおよびレーザ装置
JP6113426B2 (ja) * 2011-09-08 2017-04-12 ギガフォトン株式会社 マスタオシレータシステムおよびレーザ装置
JP5820689B2 (ja) * 2011-10-28 2015-11-24 ギガフォトン株式会社 レーザ装置
US9207119B2 (en) 2012-04-27 2015-12-08 Cymer, Llc Active spectral control during spectrum synthesis
JP2013247240A (ja) * 2012-05-25 2013-12-09 Gigaphoton Inc レーザ装置
DE102012211256A1 (de) 2012-06-29 2014-01-02 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage für die Projektionslithographie
WO2014030645A1 (ja) 2012-08-23 2014-02-27 ギガフォトン株式会社 光源装置及びデータ処理方法
JPWO2014192704A1 (ja) 2013-05-27 2017-02-23 ギガフォトン株式会社 レーザ装置及びアクチュエータを制御する方法
US9715180B2 (en) * 2013-06-11 2017-07-25 Cymer, Llc Wafer-based light source parameter control
US9977661B2 (en) * 2013-06-28 2018-05-22 Tencent Technology (Shenzhen) Company Limited Method and system for generating a user interface
JP5730428B2 (ja) * 2014-05-07 2015-06-10 株式会社小松製作所 狭帯域化レーザ装置及びそのスペクトル幅調整方法
US9599510B2 (en) * 2014-06-04 2017-03-21 Cymer, Llc Estimation of spectral feature of pulsed light beam
US9785050B2 (en) 2015-06-26 2017-10-10 Cymer, Llc Pulsed light beam spectral feature control
US9762023B2 (en) 2015-12-21 2017-09-12 Cymer, Llc Online calibration for repetition rate dependent performance variables
US9989866B2 (en) * 2016-10-17 2018-06-05 Cymer, Llc Wafer-based light source parameter control

Also Published As

Publication number Publication date
US9989866B2 (en) 2018-06-05
US10268123B2 (en) 2019-04-23
KR102256731B1 (ko) 2021-05-25
US20180164697A1 (en) 2018-06-14
CN109844648A (zh) 2019-06-04
US20180107123A1 (en) 2018-04-19
WO2018075247A1 (en) 2018-04-26
JP2019532334A (ja) 2019-11-07
JP6853879B2 (ja) 2021-03-31
CN109844648B (zh) 2022-03-11
KR20190055247A (ko) 2019-05-22
CN114755893A (zh) 2022-07-15
KR102379328B1 (ko) 2022-03-25
TW201935523A (zh) 2019-09-01
KR20210060681A (ko) 2021-05-26
NL2019678A (en) 2018-04-20
TWI661468B (zh) 2019-06-01
TWI706440B (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI661468B (zh) 基於晶圓之光源參數控制
US11561407B2 (en) Spectral feature control apparatus
KR20190057397A (ko) 펄스형 광 빔의 스펙트럼 특성의 제어 기술
JP6678277B2 (ja) ウェーハステージ振動の制御