TW201819960A - 顯示裝置、電子裝置以及攜帶資訊終端 - Google Patents

顯示裝置、電子裝置以及攜帶資訊終端 Download PDF

Info

Publication number
TW201819960A
TW201819960A TW105137475A TW105137475A TW201819960A TW 201819960 A TW201819960 A TW 201819960A TW 105137475 A TW105137475 A TW 105137475A TW 105137475 A TW105137475 A TW 105137475A TW 201819960 A TW201819960 A TW 201819960A
Authority
TW
Taiwan
Prior art keywords
light
emitting element
layer
abbreviation
liquid crystal
Prior art date
Application number
TW105137475A
Other languages
English (en)
Other versions
TWI724060B (zh
Inventor
山崎舜平
瀬尾哲史
初見亮
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201819960A publication Critical patent/TW201819960A/zh
Application granted granted Critical
Publication of TWI724060B publication Critical patent/TWI724060B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • H04N1/6063Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut dependent on the contents of the image to be reproduced
    • H04N1/6066Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut dependent on the contents of the image to be reproduced dependent on the gamut of the image to be reproduced
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Abstract

本發明提供一種能夠實現廣色域的顯示的顯示裝置。另外,可以提供一種可以實現廣色域的顯示及由於窄光譜所導致的濃淡差得到緩和的顯示的顯示裝置。一種顯示裝置包括液晶元件及發光元件,在從液晶元件經過濾色片得到的發光中,NTSC的面積比為20%以上且60%以下,在從發光元件得到的發光中,BT.2020的面積比為80%以上且100%以下。

Description

顯示裝置、電子裝置以及攜帶資訊終端
本發明的一個實施方式係關於一種顯示裝置及電子裝置。但是本發明的一個實施方式不侷限於此。就是說,本發明的一個實施方式係關於一種物體、方法、製造方法或驅動方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。明確而言,作為本發明的一個實施方式的例子可以舉出半導體裝置、顯示裝置、液晶顯示裝置以及照明設備等。
作為顯示裝置,已知:作為顯示元件具備液晶元件的液晶顯示裝置;以及作為顯示元件具備發光元件(EL元件)的發光裝置;等。例如,液晶顯示裝置包括在彼此對置的一對電極之間隔著配向膜夾持液晶材料的液晶元件,利用液晶的光學調變作用進行顯示。另外,發光裝置包括在一對電極之間具有EL層的發光元件,利用在對一對電極之間施加電壓時從發光元件得到的發光進行顯示。
此外,當使用上述顯示元件進行全彩色顯示時,在使用液晶元件的情況下,藉由組合液晶元件與濾色片可以實現全彩色顯示,而在使用發光元件的情況下,藉由製造分別將發光顏色不同的發光物質用於EL層的多個發光元件可以實現全彩色顯示。另外,也可以組合發光元件與濾色片。
作為實現全彩色顯示的發光元件的具體方式,可以舉出如下方式:分別形成發射各種光的發光元件的所謂的分別塗布方式;組合白色發光元件與濾色片的白光濾色片方式;以及組合藍色發光元件等單色發光元件與顏色轉換濾色片的顏色轉換方式;等。
[專利文獻1]日本專利申請公開第2007-53090號公報
當使用上述顯示裝置實現全彩色顯示時,藉由使呈現各發光顏色的各發光元件的色度(x,y)具有所希望的範圍,可以實現廣色域的顯示。
雖然從發光元件得到的光示出良好的色度,但是具有非常窄的光譜,因此有時成為濃淡差大的顯示,從而該顯示對觀眾來說強烈而會產生眼睛疲累。
於是,在本發明的一個實施方式中提供一種可以實現廣色域的顯示的顯示裝置。另外,在本發明的另一個實施方式中提供一種可以實現廣色域的顯示及由於窄 光譜所導致的濃淡差得到緩和的顯示的顯示裝置。另外,在本發明的另一個實施方式中提供一種可以實現廣色域的顯示及眼睛刺激少的顯示的顯示裝置。另外,在本發明的另一個實施方式中提供一種新穎的發光元件。另外,在本發明的另一個實施方式中提供一種色純度高的發光元件。
這些目的的記載不妨礙其他目的的存在。另外,本發明的一個實施方式不一定必須要達到上述所有目的。另外,從說明書、圖式、申請專利範圍等的記載可顯而易見地看出上述以外的目的,而可以從說明書、圖式、申請專利範圍等的記載中衍生這些以外的目的。
本發明的一個實施方式是一種顯示裝置,該顯示裝置包括液晶元件及發光元件,在從液晶元件經過濾色片得到的發光中,NTSC的面積比為20%以上且60%以下,在從發光元件得到的發光中,BT.2020的面積比為80%以上且100%以下。另外,在從發光元件得到的發光中,BT.2020的面積比較佳為90%以上且100%以下。
另外,本發明的另一個實施方式是一種顯示裝置,該顯示裝置包括液晶元件及發光元件,在從液晶元件經過濾色片得到的發光中,NTSC的覆蓋率為20%以上且60%以下,在從發光元件得到的發光中,BT.2020的覆蓋率為75%以上且100%以下。另外,在從發光元件得到的發光中,BT.2020的覆蓋率較佳為75%以上且100%以下。
另外,本發明的另一個實施方式是一種顯示 裝置,該顯示裝置包括液晶元件及發光元件,在從液晶元件得到的發光中,NTSC的覆蓋率為20%以上且60%以下,在從發光元件得到的發光中,在使用CIE1931色度座標表示的色度(x,y)中,色度x為0.130以上且0.250以下,色度y大於0.710且0.810以下。
另外,本發明的另一個實施方式是一種顯示裝置,該顯示裝置包括液晶元件及發光元件,在從液晶元件得到的發光中,NTSC的覆蓋率為20%以上且60%以下,在從發光元件得到的發光中,在使用CIE1931色度座標表示的色度(x,y)中,色度x大於0.680且0.720以下,色度y為0.260以上且0.320以下。
另外,本發明的另一個實施方式是一種顯示裝置,該顯示裝置包括液晶元件及發光元件,在從液晶元件得到的發光中,NTSC的覆蓋率為20%以上且60%以下,在從發光元件得到的發光中,在使用CIE1931色度座標表示的色度(x,y)中,色度x為0.120以上且0.170以下,色度y為0.020以上且小於0.060。
另外,在上述各結構中,液晶元件是反射式液晶元件,發光元件是在反射電極與半透射.半反射電極之間具有EL層的發光元件。
另外,在上述結構中,發光元件所包括的EL層較佳為呈現白色光。另外,EL層至少包括發光層。另外,EL層可以為多個層,並且可以採用EL層與EL層之間具有電荷產生層而層疊有EL層的結構。
另外,本發明的另一個實施方式是一種電子裝置,該電子裝置包括本發明的一個實施方式的顯示裝置以及操作鍵、揚聲器、麥克風或者外部連接部。
另外,本發明的另一個實施方式是一種可攜式資訊終端,該可攜式資訊終端包括本發明的一個實施方式的顯示裝置以及操作鍵、揚聲器、麥克風或者外部連接部。
另外,本發明的一個實施方式不侷限於包括顯示元件的顯示裝置,在其範疇內也包括適用顯示裝置的電子裝置(明確而言,包括顯示元件或顯示裝置以及連接端子或操作鍵的電子裝置)以及照明設備(明確而言,包括顯示元件或顯示裝置以及外殼的照明設備)。由此,本說明書中的顯示裝置是指影像顯示裝置或光源(包括照明設備)。另外,顯示裝置還包括:在顯示裝置上設置有連接器諸如FPC(Flexible Printed Circuit:軟性印刷電路板)或TCP(Tape Carrier Package:捲帶式封裝)的模組;在TCP的端部設置有印刷線路板的模組;或者藉由COG(Chip on Glass:晶粒玻璃接合)方式IC(集成電路)直接安裝在發光元件上的模組。
根據本發明的一個實施方式,可以提供一種可以實現廣色域的顯示的顯示裝置。另外,根據本發明的另一個實施方式,可以提供一種可以實現廣色域的顯示及由於窄光譜所導致的濃淡差得到緩和的顯示的顯示裝置。另外,根據本發明的另一個實施方式,可以提供一種可以 實現廣色域的顯示及眼睛刺激少的顯示的顯示裝置。另外,根據本發明的另一個實施方式,可以提供一種新穎的發光元件。另外,根據本發明的另一個實施方式,可以提供一種色純度高的發光元件。
這些效果的記載不妨礙其他效果的存在。另外,本發明的一個實施方式不一定必須要達到上述所有效果。另外,從說明書、圖式、申請專利範圍等的記載可顯而易見地看出上述以外的效果,而可以從說明書、圖式、申請專利範圍等的記載中衍生這些以外的效果。
100L‧‧‧液晶元件
100E‧‧‧發光元件
101L、101E‧‧‧第一電極
102L、102E‧‧‧第二電極
103L‧‧‧液晶層
103E‧‧‧EL層
104‧‧‧配向膜
105L‧‧‧濾色片
105E‧‧‧濾色片
106‧‧‧偏振層
107L、107E、108‧‧‧光
200R、200R’、200R”‧‧‧發光元件(紅色)
200G、200G’、200G”‧‧‧發光元件(綠色)
200B、200B’、200B”‧‧‧發光元件(藍色)
201‧‧‧第一電極
202、202’‧‧‧第二電極
203R、203G、203B、203W‧‧‧EL層
204R、204G、204B‧‧‧EL層
207R、207R’、207R”‧‧‧光(紅色)
207G、207G’、207G”‧‧‧光(綠色)
207B、207B’、207B”‧‧‧光(藍色)
301‧‧‧第一電極
302‧‧‧第二電極
303‧‧‧EL層
303a、303b‧‧‧EL層
304‧‧‧電荷產生層
311、311a、311b‧‧‧電洞注入層
312、312a、312b‧‧‧電洞傳輸層
313、313a、313b‧‧‧發光層
314、314a、314b‧‧‧電子傳輸層
315、315a、315b‧‧‧電子注入層
401‧‧‧液晶元件
402‧‧‧發光元件
403‧‧‧導電層
404‧‧‧開口部
405‧‧‧第二基板
407‧‧‧導電層
408‧‧‧導電層
409‧‧‧液晶層
410‧‧‧第一元件層(顯示元件層)
411‧‧‧第二元件層(顯示元件層)
412‧‧‧第三元件層(驅動元件層)
415‧‧‧配向膜
416‧‧‧配向膜
418‧‧‧濾色片
419‧‧‧絕緣層
420‧‧‧導電層
421‧‧‧導電層
422‧‧‧EL層
423‧‧‧濾色片
424‧‧‧偏振層
425‧‧‧電晶體
426‧‧‧電晶體
427‧‧‧端子部
501‧‧‧電路(G)
502‧‧‧電路(S)
503‧‧‧顯示部
504‧‧‧像素
505‧‧‧導電膜
506‧‧‧位置
507‧‧‧開口部
510‧‧‧液晶元件
511‧‧‧發光元件
900‧‧‧基板
901‧‧‧第一電極
902a‧‧‧第一EL層
902b‧‧‧第二EL層
903‧‧‧第二電極
904‧‧‧電荷產生層
905‧‧‧基板
906‧‧‧濾色片
911a‧‧‧第一電洞注入層
911b‧‧‧第二電洞注入層
912a‧‧‧第一電洞傳輸層
912b‧‧‧第二電洞傳輸層
913a‧‧‧發光層(A)
913(b1)‧‧‧第一發光層(B1)
913(b2)‧‧‧第二發光層(B2)
914a‧‧‧第一電子傳輸層
914b‧‧‧第二電子傳輸層
915a‧‧‧第一電子注入層
915b‧‧‧第二電子注入層
5101‧‧‧燈
5102‧‧‧輪轂
5103‧‧‧車門
5104‧‧‧顯示部
5105‧‧‧方向盤
5106‧‧‧變速杆
5107‧‧‧座位
5108‧‧‧倒後鏡
7100‧‧‧電視機
7101‧‧‧外殼
7103‧‧‧顯示部
7105‧‧‧支架
7107‧‧‧顯示部
7109‧‧‧操作鍵
7110‧‧‧遙控器
7201‧‧‧主體
7202‧‧‧外殼
7203‧‧‧顯示部
7204‧‧‧鍵盤
7205‧‧‧外部連接埠
7206‧‧‧指向裝置
7302‧‧‧外殼
7304‧‧‧顯示部
7305‧‧‧表示時間的圖示
7306‧‧‧其他圖示
7311‧‧‧操作按鈕
7312‧‧‧操作按鈕
7313‧‧‧連接端子
7321‧‧‧錶帶
7322‧‧‧錶帶扣
7400‧‧‧行動電話機
7401‧‧‧外殼
7402‧‧‧顯示部
7403‧‧‧操作按鈕
7404‧‧‧外部連接部
7405‧‧‧揚聲器
7406‧‧‧麥克風
7407‧‧‧相機
7500(1)、7500(2)‧‧‧外殼
7501(1)、7501(2)‧‧‧第一面
7502(1)、7502(2)‧‧‧第二面
7601‧‧‧主體
7602‧‧‧顯示部
7603‧‧‧臂部
9310‧‧‧可攜式資訊終端
9311‧‧‧顯示部
9312‧‧‧顯示區域
9313‧‧‧鉸鏈
9315‧‧‧外殼
在圖式中:圖1A和圖1B是說明本發明的一個實施方式的顯示裝置的圖;圖2A至圖2C是說明本發明的一個實施方式的顯示裝置的圖;圖3A至圖3D是說明本發明的一個實施方式的顯示裝置的圖;圖4A至圖4E是說明本發明的一個實施方式的顯示裝置的圖;圖5A、圖5B1及圖5B2是說明本發明的一個實施方式的顯示裝置的圖;圖6是說明本發明的一個實施方式的顯示裝置的圖;圖7A、圖7B、圖7C、圖7D’1、圖7D’2及圖7E是 說明電子裝置的圖;圖8A至圖8C是說明電子裝置的圖;圖9A和圖9B是說明汽車的圖;圖10是示出液晶面板的NTSC的覆蓋率-反射率特性(模擬)的圖;圖11是示出液晶面板的NTSC的覆蓋率-反射率特性(實測)的圖;圖12是示出液晶面板的NTSC的覆蓋率-反射率特性(校正)的圖;圖13是說明發光元件的圖;圖14是示出濾色片的透過光譜的圖;圖15是示出發光元件1至發光元件4的亮度-電流密度特性的圖;圖16是示出發光元件1至發光元件4的亮度-電壓特性的圖;圖17是示出發光元件1至發光元件4的電流效率-亮度特性的圖;圖18是示出發光元件1至發光元件4的電流-電壓特性的圖;圖19是示出發光元件1至發光元件4的發射光譜的圖;圖20是示出發光元件5至發光元件8的亮度-電流密度特性的圖;圖21是示出發光元件5至發光元件8的亮度-電壓特 性的圖;圖22是示出發光元件5至發光元件8的電流效率-亮度特性的圖;圖23是示出發光元件5至發光元件8的電流-電壓特性的圖;圖24是示出發光元件5至發光元件8的發射光譜的圖。
以下,參照圖式詳細地說明本發明的實施方式。注意,本發明不侷限於以下說明,其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下所示的實施方式及實施例所記載的內容中。
另外,為了便於理解,有時在圖式等中示出的各結構的位置、大小及範圍等並不表示其實際的位置、大小及範圍等。因此,所公開的發明不一定侷限於圖式等所公開的位置、大小、範圍等。
注意,在本說明書等中,當利用圖式說明發明的結構時,有時在不同的圖式中共同使用表示相同的部分的符號。
實施方式1
在本實施方式中,參照圖1A和圖1B說明本發明的 一個實施方式的顯示裝置。
圖1A示出本發明的一個實施方式的顯示裝置的結構。就是說,本實施方式所示的顯示裝置包括液晶元件100L及發光元件100E。
液晶元件100L在第一電極101L與第二電極102L之間包括液晶層103L及配向膜104。另外,第一電極101L是反射電極,可以反射外光。另外,第二電極102L是透明電極,具有使可見光透過的透光性。
另外,在透過第二電極102L的光向外部發射的方向上具有濾色片(也稱為彩色層)105L及偏振層106。由此,透過了第二電極102L的光穿過濾色片105L及偏振層106而成為光107L。
發光元件100E在第一電極101E與第二電極102E之間包括EL層103E。另外,在發光元件所包括的電極中,至少第二電極102E為透明電極,具有透過可見光的透光性。另外,EL層103E既可以具有可以獲得所希望的發光顏色的發光材料,又可以具有組合發光顏色不同的多個發光材料的材料。另外,在透過了第二電極102E的光向外部發射的方向上根據需要具有濾色片(也稱為彩色層)105E。
從EL層103E發射的光透過第二電極102E,或者在具有濾色片105E時透過濾色片105E,而成為光107E。
本實施方式所示的顯示裝置包括液晶元件 100L及發光元件100E,因此可以從顯示裝置獲得的光是可以將從液晶元件100L獲得的光107L和可以從發光元件100E獲得的光107E合在一起的光108。
另外,在本實施方式所示的顯示裝置中,從液晶元件100L得到的發光(光107L)能夠滿足一種全彩色顯示的品質規格的NTSC規格(這是由美國國家電視標準委員會(National Television System Committee)作成的類比電視制式的色域規格)。圖1B示出NTSC規格。明確而言,NTSC規格滿足在由CIE(國際照明委員會)決定的CIE1931色度座標(xy色度座標)的色度(x,y)的紅色(R)(x,y)=(0.670,0.330)、綠色(G)(x,y)=(0.210,0.710)、藍色(B)(x,y)=(0.140,0.080)的全彩色顯示的品質。另外,NTSC的面積比為如下面積比:首先,計算出連接滿足NTSC規格的RGB的各CIE1931色度座標(上述xy色度座標)而形成的三角形的面積P以及連接本發明的一個實施方式的液晶元件(R,G,B)的各CIE色度座標(x,y)而形成的三角形的面積Q,再計算出它們的面積比(Q/P)。另外,NTSC的覆蓋率為如下比率:藉由組合本發明的一個實施方式的液晶元件(R,G,B)的各CIE色度座標(x,y)可以實現NTSC規格的色域(上述三角形的內側)中的多少(%)的比率。
在本實施方式中,作為顯示裝置所包括的液晶元件100L,較佳為使用反射式液晶元件。另外,液晶 元件100L的NTSC的面積比或NTSC的覆蓋率較佳為20%以上且60%以下。這是因為如下緣故:當液晶元件100L的NTSC的面積比或NTSC的覆蓋率為20%以上且60%以下時,可以在包括反射式液晶元件的面板中獲得15%以上的反射率。本實施方式所示的顯示裝置是包括能夠實現BT.2020的發光元件及液晶元件的面板,因此藉由具有液晶元件的NTSC的面積比或NTSC的覆蓋率為20%以上且60%以下並且包括液晶元件的面板具有其反射率為15%以上的亮度,可以獲得能夠進行廣色域的顯示、可見性高並且對眼睛刺激少的顯示裝置。另外,關於對包括反射式液晶元件的面板的NTSC的面積比或NTSC的覆蓋率與反射率之間的關係進行模擬的結果,將在實施例中進行說明。
另外,在作為顯示裝置所包括液晶元件100L使用反射式液晶元件的情況下,在觀看由液晶元件進行的顯示時,不直接觀看元件的光源(間接光源),因此實現對眼睛刺激少的顯示。此外,如上所述,在可以不直接觀看光源而看見顯示時,也可以使用透射式液晶元件或MEMS元件等。
另外,作為液晶元件100L的驅動模式,可以舉出VA(Vertical Alignment:垂直配向)模式、TN(Twisted Nematic:扭轉向列)模式、IPS(In-Plane-Switching:平面內切換)模式、FFS(Fringe Field Switching:邊緣場切換)模式、OCB(Optically Compensated Birefringence:光學補償雙折射)模式以及藍相(Blue Phase)模式等。此外,作為上述VA模式,明確而言,也可以使用MVA(Multi-Domain Vertical Alignment:多象限垂直配向)模式、PVA(Patterned Vertical Alignment:垂直配向構型)模式、ECB(Electrically Controlled Birefringence:電控雙折射)模式、CPA(Continuous Pinwheel Alignment:連續焰火狀排列)模式、ASV(Advanced Super View:高級超視覺)模式等驅動方法。
作為用於液晶元件100L的液晶可以使用熱致液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal:聚合物分散液晶)、鐵電液晶、反鐵電液晶等。上述液晶根據條件而呈現膽固醇相、層列相、立方相、手性向列相、各向同性相等。另外,也可以使用正型液晶或負型液晶,根據使用模式或設計可以使用適當的液晶。
另外,作為用於液晶元件100L的電極(第一電極101L及第二電極102L)的材料,只要滿足上述功能(例如,透光性等)就可以適當地組合下面所示的材料。例如,可以適當地使用金屬、合金、導電化合物以及它們的混合物等。明確而言,可以舉出In-Sn氧化物(也稱為ITO)、In-Si-Sn氧化物(也稱為ITSO)、In-Zn氧化物、In-W-Zn氧化物。除了上述以外,還可以舉出鋁(Al)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鎵(Ga)、鋅 (Zn)、銦(In)、錫(Sn)、鋯(Zr)、鉬(Mo)、鉭(Ta)、鎢(W)、鈀(Pd)、金(Au)、鉑(Pt)、銀(Ag)、釔(Y)、釹(Nd)等金屬以及適當地組合它們而成的合金。除了上述以外,可以使用屬於元素週期表中第1族或第2族的元素(例如,鋰(Li)、銫(Cs)、鈣(Ca)、鍶(Sr)、銪(Eu)、鐿(Yb)等稀土金屬、適當地組合它們而成的合金以及石墨烯等。
濾色片105E及濾色片105L使在可見光中具有特定的波長區域的光透過並且阻礙具有特定的波長區域的光。由此,藉由適當地設置只使具有所希望的波長區域的光透過的濾色片105E及濾色片105L,可以調整從液晶元件得到的發光顏色。另外,濾色片105E及濾色片105L可以利用染色法、顏料分散法、印刷法及蒸鍍法等形成。
偏振層106是用來對透過光的振動的方向進行限定的偏光片。偏振層106既可以設置在配置於液晶元件100L的電極(第一電極101L及第二電極102L)的外側的基板的電極一側,又可以設置在該基板的內側。另外,圖1A和圖1B未圖示,但是也可以設置相位差層。
另外,在本發明的一個實施方式的顯示裝置中,較佳為使用如下發光元件:從發光元件100E得到的發光(光107E)具有滿足在全彩色顯示的品質規格中由NHK(日本放送協會)決定的特高清電視(UHDTV:Ultra High Definition Television)中使用的規格(所謂的BT.2020規格)的色度(x,y)。另外,BT.2020規格是圖 1B所示的規格,明確而言,示出滿足由CIE決定的CIE1931色度座標(xy色度座標)的色度(x,y)的紅色(0.708,0.292)、綠色(0.170,0.797)、藍色(0.131,0.046))的全彩色顯示的規格。
作為用於發光元件100E的電極(第一電極101E及第二電極102E)的材料,只要滿足上述功能(例如,透光性等)就可以適當地組合而使用上述用於液晶元件100L的電極(第一電極101L及第二電極102L)的材料。
滿足BT.2020規格的發光元件如圖2A所示那樣各包括呈現紅色光的發光元件(紅色)200R、呈現綠色光的發光元件(綠色)200G以及呈現藍色光的發光元件(藍色)200B,上述發光元件可以採用都具有不同發光物質的EL層(203R、203G、203B)的結構。另外,較佳為以發光元件(紅色)200R的色度(x,y)滿足(0.708,0.292)、發光元件(綠色)200G的色度滿足(0.170,0.797)並且發光元件(藍色)200B的色度滿足(0.131,0.046)的方式選擇EL層的疊層結構及材料。
另外,圖2A所示的發光元件(200R、200G、200B)都包括第一電極201及第二電極202。此外,圖2A所示的發光元件(200R、200G、200B)的第二電極202至少為使可見光透過的透明電極。另外,可以從發光元件(紅色)200R的EL層203R獲得紅色光207R,從發光元件(綠色)200G的EL層203G獲得綠色光 207G,從發光元件(藍色)200B的EL層203B獲得藍色光207B。
另外,當採用圖2B所示的結構時,也以滿足BT.2020規格的方式形成發光元件。圖2B所示的各發光元件的第一電極201及第二電極202的結構與圖2A所示的各發光元件相同,但是不同之處在於:發光元件(紅色)200R’、發光元件(綠色)200G’以及發光元件(藍色)200B’包括呈現白色光的共同的EL層203W。另外,藉由穿過具有使紅色光透過的功能的濾色片(紅色)204R,可以從發光元件(紅色)200R’獲得紅色光207R’。另外,藉由穿過具有使綠色光透過的功能的濾色片(綠色)204G,可以從發光元件(綠色)200G’獲得綠色光207G’。另外,藉由穿過具有使藍色光透過的功能的濾色片(藍色)204B,可以從發光元件(藍色)200B’獲得藍色光207B’。
另外,當採用圖2C所示的結構時,也以滿足BT.2020規格的方式形成發光元件。採用圖2C所示的結構的發光元件具有根據想要從各發光元件提取的發光顏色而增強其發光的光學微諧振腔(微腔)結構,因此,在形成滿足BT.2020規格的發光元件上更佳的。由此,在圖2C所示的發光元件中,作為第一電極201使用反射電極,作為第二電極202’使用半透射.半反射電極。另外,如圖2A所示那樣,在每個發光元件中利用分別塗布方式形成EL層時,也可以形成與光學微諧振腔(微腔)結構 組合的發光元件。
在圖2C中,由於發光元件(紅色)200R”是呈現紅色光的發光元件,所以較佳為以第一電極201與第二電極202’之間的光學距離成為增強紅色光的光學距離a的方式在第一電極201上層疊具有透光性的導電膜208R而進行調整。另外,由於發光元件(綠色)200G”是呈現綠色光的發光元件,所以較佳為以第一電極201與第二電極202’之間的光學距離成為增強綠色光的光學距離b的方式在第一電極201上層疊具有透光性的導電膜208G而進行調整。另外,由於發光元件(藍色)200B”是呈現藍色光的發光元件,所以以第一電極201與第二電極202’之間的光學距離成為增強藍色光的光學距離c的方式形成有EL層203W,但是可以根據需要在第一電極201上層疊具有透光性的導電膜而進行調整。
如圖2B及圖2C所示,當從EL層203W得到的光是白色光時,構成白色光的紅色光、綠色光以及藍色光都具有獨立的發射光譜,並且它們的光譜沒有重疊是在抑制色純度的降低上較佳的。尤其是,由於綠色光的光譜的峰值波長及紅色光的光譜的峰值波長接近,所以它們的光譜互相容易重疊。為了抑制上述發射光譜的重疊,在本實施方式所示的發光元件中,藉由EL層203W所包括的EL層使用較佳的發光物質並採用特定的疊層結構,可以獲得不同的發射光譜的重疊得到抑制並且每個發光顏色都呈現良好的色度的發光元件。
作為本實施方式所示的顯示裝置所包括的發光元件100E,較佳為使用具有以圖1B的色座標表示的色度範圍(區域A、區域B、區域C)的發光元件。另外,具體的發光元件的色度範圍為如下:發光元件(紅色)(200R、200R’、200R”)具有以區域A表示的色度範圍(CIE1931色度座標的色度x大於0.680且0.720以下,色度y為0.260以上且0.320以下),發光元件(綠色)(200G、200G’、200G”)具有以區域B表示的色度範圍(色度x為0.130以上且0.250以下,色度y大於0.710且0.810以下),發光元件(藍色)(200B、200B’、200B”)具有以區域C表示的色度範圍(色度x為0.120以上且0.170以下,色度y為0.020以上且小於0.060)。
另外,圖2A至圖2C所示的發光元件(紅色)(200R、200R’、200R”)的發射光譜的峰值波長較佳為620nm以上且680nm以下。另外,發光元件(綠色)(200G、200G’、200G”)的發射光譜的峰值波長較佳為500nm以上且530nm以下。另外,發光元件(藍色)(200B、200B’、200B”)的發射光譜的峰值波長較佳為430nm以上且460nm以下。另外,上述發光元件(發光元件(紅色)(200R、200R’、200R”)、發光元件(綠色)(200G、200G’、200G”)以及發光元件(藍色)(200B、200B’、200B”))的發射光譜的半寬分別較佳為5nm以上且45nm以下、5nm以上且35nm以下以及5nm以上且25nm以下。
另外,在本發明的一個實施方式中,藉由達成上述色度,相對於CIE色度圖(x,y)的BT.2020的色域的面積比較佳為80%以上,或者相對於該色域的覆蓋率較佳為75%以上。更佳的是,面積比為90%以上,或者覆蓋率為85%以上。
由此,在本實施方式所示的顯示裝置中,在從液晶元件經過濾色片得到的發光中,NTSC的面積比或NTSC的覆蓋率為20%以上且60%以下,在從發光元件得到的發光中,BT.2020的面積比為80%以上且100%以下,並且BT.2020的覆蓋率為75%以上且100%以下。另外,在從發光元件得到的發光中,BT.2020的面積比較佳為90%以上且100%以下,並且BT.2020的覆蓋率較佳為85%以上且100%以下。
另外,在色度的計算中,可以利用色亮度計、分光輻射亮度計和發射光譜測定器中的任一個,並且,在上述測定之至少一個中滿足上述色度,即可。但是,較佳的是,即使使用任何測定法也滿足上述色度。
本實施方式所示的結構可以適當地與其他實施方式所示的結構組合而使用。
實施方式2
在本實施方式中,說明可用於本發明的一個實施方式的顯示裝置的發光元件的一個例子。
《發光元件的基本結構》
首先,說明發光元件的基本結構。圖3A示出在一對電極之間具有包含發光層的EL層而成的發光元件。明確地說,EL層303夾在第一電極301與第二電極302之間。
圖3B示出在一對電極之間具有多個(在圖3B中兩層)EL層(303a及303b)且在EL層之間具有電荷產生層304的疊層結構(串聯結構)的發光元件。具有串聯結構的發光元件可以實現低電壓驅動。
電荷產生層304具有如下功能:在對第一電極301及第二電極302施加電壓時,對一個EL層(303a或303b)注入電子並對另一個EL層(303b或303a)注入電洞的功能。由此,在圖3B中,當以使第一電極301的電壓比第二電極302高的方式施加電壓時,電子從電荷產生層304注入到EL層303a中,電洞注入到EL層303b中。
另外,從光提取效率的觀點來看,電荷產生層304較佳為對可見光具有透光性(明確地說,對電荷產生層304的可見光的穿透率為40%以上)。另外,電荷產生層304即使其電導率比第一電極301或第二電極302低也發揮功能。
圖3C示出發光元件的EL層303具有疊層結構的情況。然而,在此情況下,第一電極301被用作陽極。EL層303具有在第一電極301上依次層疊有電洞注 入層311、電洞傳輸層312、發光層313、電子傳輸層314以及電子注入層315的結構。另外,在如圖3B所示的串聯結構所示地具有多個EL層的情況下,各EL層也具有從陽極一側如上所述地層疊的結構。另外,在第一電極301為陰極且第二電極302為陽極的情況下,疊層順序相反。
EL層(303、303a及303b)中的發光層313適當地組合發光物質及多個物質而具有能夠獲得呈現所希望的發光顏色的螢光發光及磷光發光的結構。另外,發光層313也可以為發光顏色不同的疊層結構。在此情況下,用於層疊的各發光層的發光物質或其他物質可以分別使用不同材料。另外,也可以採用從圖3B所示的多個EL層(303a及303b)中的發光層獲得分別不同的發光顏色的結構。在此情況下,用於各發光層的發光物質或其他物質可以分別使用不同材料。
另外,在本發明的一個實施方式中,例如,藉由使圖3C所示的發光元件的第一電極101為反射電極、使第二電極302為半透射.半反射電極並採用光學微腔諧振器(微腔)結構,可以使從EL層303中的發光層313獲得的光在上述電極之間發生諧振,從而可以增強從第二電極302獲得的光。
在發光元件的第一電極301為由具有反射性的導電材料和具有透光性的導電材料(透明導電膜)的疊層結構構成的反射電極的情況下,可以藉由調整透明導電 膜的厚度來進行光學調整。明確地說,較佳為以如下方式進行調整:相對於從發光層313獲得的光的波長λ,第一電極301與第二電極302的電極間距離為mλ/2(注意,m為自然數)左右。
另外,為了使從發光層313獲得的所希望的光(波長:λ)放大,較佳為調整為如下:從第一電極301到能夠獲得發光層的所希望的光的區域(發光區域)的光學距離及從第二電極302到能夠獲得發光層313的所希望的光的區域(發光區域)的光學距離都成為(2m’+1)λ/4(注意,m’為自然數)左右。注意,在此說明的“發光區域”是指發光層313中的電洞與電子的再結合區域。
藉由進行上述光學調整,可以使能夠從發光層313獲得的特定的單色光的光譜變窄,由此獲得色純度良好的發光。
另外,在上述情況下,嚴格地說,第一電極301和第二電極302之間的光學距離可以說是從第一電極301中的反射區域到第二電極302中的反射區域的總厚度。但是,因為難以準確地決定第一電極301或第二電極302中的反射區域的位置,所以藉由假定第一電極301及第二電極302中的任意的位置為反射區域可以充分得到上述效果。另外,嚴密地說,第一電極301和可以獲得所希望的光的發光層之間的光學距離可以說是第一電極301中的反射區域和可以獲得所希望的光的發光層中的發光區域 之間的光學距離。但是,因為難以準確地決定第一電極301中的反射區域或可以獲得所希望的光的發光層中的發光區域的位置,所以藉由假定第一電極301中的任意的位置為反射區域且可以獲得所希望的光的發光層的任意的位置為發光區域,可以充分得到上述效果。
圖3C所示的發光元件具有微腔結構,因此即使具有相同的EL層也可以提取不同波長的光(單色光)。由此,為了獲得不同的發光顏色不需要分別塗布(例如塗布為R、G、B)。由此,容易實現高解析度。另外,可以與濾色片組合。並且,可以增強具有特定波長的正面方向上的發光強度,從而可以實現低功耗化。
另外,在上述發光元件中,第一電極301和第二電極302中的至少一個為具有透光性的電極(透明電極、透射.半反射電極等)。在具有透光性的電極為透明電極的情況下,透明電極的可見光的穿透率為40%以上。另外,在該電極為半透射.半反射電極的情況下,半透射.半反射電極的可見光的反射率為20%以上且80%以下,較佳為40%以上且70%以下。另外,這些電極的電阻率較佳為1×10-2Ωcm以下。
另外,在上述發光元件中,在第一電極301和第二電極302中的一個為具有反射性的電極(反射電極)的情況下,具有反射性的電極的可見光的反射率為40%以上且100%以下,較佳為70%以上且100%以下。另外,該電極的電阻率較佳為1×10-2Ωcm以下。
《發光元件的具體結構及製造方法》
接著,對發光元件的具體結構及製造方法進行說明。在此,參照圖3D說明具有圖3B所示的串聯結構及微腔結構的發光元件。在圖3D所示的發光元件中,作為第一電極301形成反射電極,作為第二電極302形成半透射.半反射電極。由此,可以單獨使用所希望的電極材料或者使用多個電極材料以單層或疊層形成上述電極。另外,第二電極302在形成EL層303b之後,與上述同樣地選擇材料而形成。另外,上述電極可以利用濺射法或真空蒸鍍法形成。
〈第一電極及第二電極〉
作為形成第一電極301及第二電極302的材料,如果可以滿足上述兩個電極的功能則可以適當地組合下述材料。例如,可以適當地使用金屬、合金、導電化合物以及它們的混合物等。明確而言,可以舉出In-Sn氧化物(也稱為ITO)、In-Si-Sn氧化物(也稱為ITSO)、In-Zn氧化物、In-W-Zn氧化物。除了上述以外,還可以舉出鋁(Al)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鎵(Ga)、鋅(Zn)、銦(In)、錫(Sn)、鉬(Mo)、鉭(Ta)、鎢(W)、鈀(Pd)、金(Au)、鉑(Pt)、銀(Ag)、釔(Y)、釹(Nd)等金屬以及適當地組合它們的合金。 除了上述以外,可以使用屬於元素週期表中第1族或第2族的元素(例如,鋰(Li)、銫(Cs)、鈣(Ca)、鍶(Sr)、銪(Eu)、鐿(Yb)等稀土金屬、適當地組合它們的合金以及石墨烯等。
在圖3D所示的發光元件中第一電極301為陽極的情況下,藉由真空蒸鍍法在第一電極301上依次層疊EL層303a的電洞注入層311a及電洞傳輸層312a。在形成EL層303a及電荷產生層304之後,與上述同樣,在電荷產生層304上依次層疊EL層303b的電洞注入層311b及電洞傳輸層312b。
〈電洞注入層及電洞傳輸層〉
電洞注入層(311a、311b)是將電洞從陽極的第一電極301注入到EL層(303a、303b)中的層,包含電洞注入性高的材料。
作為電洞注入性高的材料,可以舉出鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等過渡金屬氧化物。除了上述以外,可以使用酞青類化合物如酞青(簡稱:H2Pc)、銅酞青(CuPc)等;芳香胺化合物如4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)等;或者高分子如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(簡稱:PEDOT/PSS)等。
作為電洞注入性高的材料,也可以使用包含電洞傳輸性材料及受體材料(電子受體材料)的複合材料。在此情況下,由受體材料從電洞傳輸性材料抽出電子而在電洞注入層311中產生電洞,電洞藉由電洞傳輸層(312a、312b)注入到發光層(313a、313b)中。另外,電洞注入層(311a、311b)可以採用由包含電洞傳輸性材料及受體材料(電子受體材料)的複合材料構成的單層,也可以採用分別使用電洞傳輸性材料及受體材料(電子受體材料)形成的層的疊層。
電洞傳輸層(312a、312b)是將從第一電極301經過電洞注入層(311a、311b)注入的電洞傳輸到發光層(313a、313b)中的層。另外,電洞傳輸層(312a、312b)是包含電洞傳輸性材料的層。作為用於電洞傳輸層(312a、312b)的電洞傳輸性材料,特別較佳為使用具有與電洞注入層(311a、311b)的HOMO能階相同或相近的HOMO能階的材料。
作為用於電洞注入層(311a、311b)的受體材料,可以使用屬於元素週期表中的第4族至第8族的金屬的氧化物。明確地說,可以舉出氧化鉬、氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鎢、氧化錳、氧化錸。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。除了上述以外,可以舉出醌二甲烷衍生物、四氯苯醌衍生物、六氮雜聯伸三苯衍生物等有機受體。明確地說,可以使用7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷 (簡稱:F4-TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)等。
作為用於電洞注入層(311a、311b)及電洞傳輸層(312a、312b)的電洞傳輸性材料,較佳為具有10-6cm2/Vs以上的電洞移動率的物質。另外,只要是電洞傳輸性高於電子傳輸性的物質,可以使用上述以外的物質。
作為電洞傳輸性材料,較佳為使用富π電子型雜芳族化合物(例如,咔唑衍生物或吲哚衍生物)或芳香胺化合物,具體的例子為如下:4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-二茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯基胺(簡稱:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1- 萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-聯茀-2-胺(簡稱:PCBASF)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4”-三(N,N-二苯基胺基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基胺基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)等具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、3-[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨]-9-苯基咔唑(簡稱:PCzPCN1)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)等具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合物;4,4’,4”-(苯- 1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)等具有呋喃骨架的化合物。
再者,還可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
注意,電洞傳輸性材料不侷限於上述材料,可以組合一種或多種的已知的各種各樣材料而用於電洞注入層(311a、311b)及電洞傳輸層(312a、312b)作為電洞傳輸性材料。
接著,在圖3D所示的發光元件中,藉由真空蒸鍍法在EL層303a中的電洞傳輸層312a上形成發光層313a。另外,在形成EL層303a及電荷產生層304之後,藉由真空蒸鍍法在EL層303b中的電洞傳輸層312b上形成發光層313b。
〈發光層〉
發光層(313a、313b)是包含發光物質的層。另外,作為發光物質,適當地使用呈現藍色、紫色、藍紫色、綠色、黃綠色、黃色、橙色、紅色等的發光顏色的物質。另外,藉由在多個發光層(313a、313b)中分別使用不同的 發光物質,可以成為呈現不同的發光顏色的結構(例如,可以組合處於補色關係的發光顏色獲得白色發光)。再者,也可以為一個發光層具有不同的發光物質的疊層結構。
另外,發光層(313a、313b)除了發光物質(客體材料)以外還可以包含一種或多種有機化合物(主體材料、輔助材料)。另外,作為一種或多種有機化合物,可以使用在本實施方式中進行說明的電洞傳輸性材料和電子傳輸性材料中的一者或兩者。
在本發明的一個實施方式中,較佳為使用如下組合:在發光層(313a、313b)中的任一方中使用呈現藍色發光的發光物質(藍色發光物質)作為客體材料,在另一方中使用呈現綠色發光的物質(綠色發光物質)及呈現紅色發光的物質(紅色發光物質)的組合。這種方法是在藍色發光物質(藍色發光層)的發光效率及使用壽命比其他顏色低或短的情況下有效的。另外,在此,當使用將單重激發能量轉換為可見光區域的光的發光物質作為藍色發光物質且使用將三重激發能量轉換為可見光區域的光的發光物質作為綠色及紅色發光物質時,發揮RGB的光譜的平衡良好,所以是較佳的。
對可用於發光層(313a、313b)的發光物質沒有特別的限制,可以使用將單重激發能量轉換為可見光區域的光的發光物質或將三重激發能量轉換為可見光區域的光的發光物質。另外,作為上述發光物質,例如可以舉 出如下物質。
作為將單重激發能量轉換成發光的發光物質,可以舉出發射螢光的物質(螢光材料),例如可以舉出芘衍生物、蒽衍生物、聯伸三苯衍生物、茀衍生物、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、二苯并喹啉衍生物、喹啉衍生物、吡啶衍生物、嘧啶衍生物、菲衍生物、萘衍生物等。尤其是芘衍生物的發光量子產率高,所以是較佳的。作為芘衍生物的具體例子,可以舉出N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(二苯并呋喃-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FrAPrn)、N,N’-雙(二苯并噻吩-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6ThAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-6-胺](簡稱:1,6BnfAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-02)、N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)等。另外,芘衍生物是為了達成本發明的一個實施方式中的藍色的色度(以區域C表示的色度範圍)而有效的化合物群。
除了上述以外,可以使用5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙 [4’-(10-苯基-9-蒽基)聯苯-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基芪-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、4-[4-(10-苯基-9-蒽基)苯基]-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPBA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、N,N”-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)等。
作為將三重激發能量轉換成發光的發光物質,例如可以舉出發射磷光的物質(磷光材料)或呈現熱活化延遲螢光的熱活化延遲螢光(TADF)材料。
作為磷光材料,可以舉出有機金屬錯合物、金屬錯合物(鉑錯合物)、稀土金屬錯合物等。這種物質根據每個物質呈現不同的發光顏色(發光峰值),因此根據需要適當地選擇而使用。
作為呈現藍色或綠色且其發射光譜的峰值波 長為450nm以上且570nm以下的磷光材料,可以舉出如下物質。
例如可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑(triazolato))銥(III)(簡稱:[Ir(Mptz)3])、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑(triazolato)]銥(III)(簡稱:[Ir(iPrptz-3b)3])、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑(triazolato)]銥(III)(簡稱:[Ir(iPr5btz)3])等具有4H-三唑骨架的有機金屬錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑(triazolato)]銥(III)(簡稱:[Ir(Mptz1-mp)3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑(triazolato))銥(III)(簡稱:[Ir(Prptz1-Me)3])等具有1H-三唑骨架的有機金屬錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:[Ir(iPrpmi)3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:[Ir(dmpimpt-Me)3])等具有咪唑骨架的有機金屬錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’}銥(III)吡啶甲酸鹽(簡稱:[Ir(CF3ppy)2(pic)])、雙[2- (4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)乙醯丙酮(簡稱:FIracac)等以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬錯合物等。
作為呈現綠色或黃色且其發射光譜的峰值波長為495nm以上且590nm以下的磷光材料,可以舉出如下物質。
例如可以舉出三(4-甲基-6-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)3])、三(4-三級丁基-6-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)3])、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)2(acac)])、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)2(acac)])、(乙醯丙酮根)雙[6-(2-降莰基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(nbppm)2(acac)])、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(mpmppm)2(acac)])、(乙醯丙酮根)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κN3]苯基-κC}銥(III)(簡稱:[Ir(dmppm-dmp)2(acac)])、(乙醯丙酮根)雙(4,6-二苯基嘧啶)銥(III)(簡稱:[Ir(dppm)2(acac)])等具有嘧啶骨架的有機金屬錯合物、(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-Me)2(acac)])、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-iPr)2(acac)])等具有吡嗪骨架的有機金屬錯合物、三(2- 苯基吡啶根-N,C2’)銥(III)(簡稱:[Ir(ppy)3])、雙(2-苯基吡啶根-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(ppy)2(acac)])、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:[Ir(bzq)2(acac)])、三(苯并[h]喹啉)銥(III)(簡稱:[Ir(bzq)3])、三(2-苯基喹啉-N,C2' )銥(III)(簡稱:[Ir(pq)3])、雙(2-苯基喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(pq)2(acac)])等具有吡啶骨架的有機金屬錯合物、雙(2,4-二苯基-1,3-唑-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(dpo)2(acac)])、雙{2-[4’-(全氟苯基)苯基]吡啶-N,C2’}銥(III)乙醯丙酮(簡稱:[Ir(p-PF-ph)2(acac)])、雙(2-苯基苯并噻唑-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(bt)2(acac)])等有機金屬錯合物、三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:[Tb(acac)3(Phen)])等稀土金屬錯合物。
在上述物質中,具有吡啶骨架(尤其是苯基吡啶骨架)或嘧啶骨架的有機金屬錯合物是為了達成本發明的一個實施方式中的綠色的色度(以區域B表示的色度範圍)而有效的化合物群。
作為呈現黃色或紅色且其發射光譜的峰值波長為570nm以上且750nm以下的磷光材料,可以舉出如下物質。
例如可以舉出(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:[Ir(5mdppm)2(dibm)])、雙[4,6-雙(3-甲基苯基)嘧啶根](二叔戊醯甲烷) 銥(III)(簡稱:[Ir(5mdppm)2(dpm)])、雙[4,6-二(萘-1-基)嘧啶根](二叔戊醯甲烷)銥(III)(簡稱:[Ir(d1npm)2(dpm)])等具有嘧啶骨架的有機金屬錯合物;(乙醯丙酮)雙(2,3,5-三苯基吡嗪)銥(III)(簡稱:[Ir(tppr)2(acac)])、雙(2,3,5-三苯基吡嗪)(二叔戊醯甲烷)銥(III)(簡稱:[Ir(tppr)2(dpm)])、雙{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-P)2(dibm)])、雙{4,6-二甲基-2-[5-(4-氰基-2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-dmCP)2(dpm)])、(乙醯丙酮)雙[2-甲基-3-苯基喹啉合(quinoxalinato)]-N,C2’]銥(III)(簡稱:[Ir(mpq)2(acac)])、(乙醯丙酮)雙(2,3-二苯基喹啉合(quinoxalinato)-N,C2’]銥(III)(簡稱:[Ir(dpq)2(acac)])、(乙醯丙酮)雙[2,3-雙(4-氟苯基)喹啉合(quinoxalinato)]銥(III)(簡稱:[Ir(Fdpq)2(acac)])等具有吡嗪骨架的有機金屬錯合物;三(1-苯基異喹啉-N,C2’)銥(III)(簡稱:[Ir(piq)3])、雙(1-苯基異喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(piq)2(acac)])等具有吡啶骨架的有機金屬錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:[PtOEP])等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:[Eu(DBM)3(Phen)])、三 [1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:[Eu(TTA)3(Phen)])等稀土金屬錯合物。
在上述物質中,具有吡嗪骨架的有機金屬錯合物是為了達成本發明的一個實施方式中的紅色的色度(以區域A表示的色度範圍)而有效的化合物群。尤其是,具有氰基的有機金屬錯合物諸如[Ir(dmdppr-dmCP)2(dpm)]等其穩定性高,所以是較佳的。
另外,作為藍色的發光物質,可以使用光致發光的峰值波長為430nm以上且470nm以下,較佳為430nm以上且460nm以下的物質。另外,作為綠色的發光物質,可以使用光致發光的峰值波長為500nm以上且540nm以下,較佳為500nm以上且530nm以下的物質。另外,作為紅色的發光物質,可以使用光致發光的峰值波長為610nm以上且680nm以下,較佳為620nm以上且680nm以下的物質。另外,光致發光的測定都可以使用溶液或薄膜。
藉由同時使用上述化合物及微腔效果,可以更容易達到上述色度。此時,為了獲得微腔效果所需要的半透射.半反射電極(金屬薄膜部分)的厚度較佳為20nm以上且40nm以下,更佳為大於25nm且40nm以下。當該厚度超過40nm時,效率可能會降低。
作為用於發光層(303a、303b)的有機化合物(主體材料、輔助材料),可以使用選擇一種或多種其能隙比發光物質(客體材料)大的物質。
當發光物質是螢光材料時,較佳為使用單重激發態的能階大且三重激發態的能階小的有機化合物。例如,較佳為使用蒽衍生物或稠四苯衍生物。明確而言,可以舉出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、9-[4-(10-苯基-9-蒽)苯基]-9H-咔唑(簡稱:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(簡稱:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-茀-9-基)聯苯-4’-基}蒽(簡稱:FLPPA)、5,12-二苯基稠四苯、5,12-雙(聯苯-2-基)稠四苯等。
在發光物質是磷光材料的情況下,選擇其三重態激發能量比發光物質的三重態激發能量(基態和三重激發態之間的能量差)大的有機化合物,即可。在此情況下,可以使用鋅或鋁類金屬錯合物、二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹啉衍生物、二苯并喹啉衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、嘧啶衍生物、三嗪衍生物、吡啶衍生物、聯吡啶衍生物、啡啉衍生物等雜芳族化合物或者芳香胺、咔唑衍生物等。
明確地說,三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3)、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁 (III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯并唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等金屬錯合物;2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-二唑-2-基]苯(簡稱:OXD-7)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、2,2’,2”-(1,3,5-苯三基)-三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBphen)、9-[4-(5-苯基-1,3,4-二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)等雜環化合物、NPB、TPD、BSPB等芳香胺化合物。
另外,可以舉出蒽衍生物、菲衍生物、芘衍生物、(chrysene)衍生物、二苯并[g,p](chrysene )衍生物等稠合多環芳香化合物(condensed polycyclic aromatic compound)。具體地,可以舉出9,10-二苯基蒽(簡稱:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、YGAPA、PCAPA、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(簡稱:PCAPBA)、2PCAPA、6,12-二甲氧基-5,11-二苯、DBC1、9-[4-(10-苯基-9-蒽)苯基]-9H-咔唑(簡稱:CzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基) 苯基]-9H-咔唑(簡稱:DPCzPA)、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9’-聯蒽(簡稱:BANT)、9,9’-(二苯乙烯-3,3’-二基)二菲(簡稱:DPNS)、9,9’-(二苯乙稀-4,4’-二基)二菲(簡稱:DPNS2)以及1,3,5-三(1-芘基)苯(簡稱:TPB3)等。
另外,在使用多個用於發光層(303a、303b)的有機化合物的情況下,較佳為組合形成錯合物的化合物而使用。在此情況下,可以適當地組合各種有機化合物而使用,但是為了高效地形成錯合物,特別較佳為組合容易接收電洞的化合物(電洞傳輸性材料)和容易接收電子的化合物(電子傳輸性材料)。另外,作為電洞傳輸性材料及電子傳輸性材料的具體例子,可以使用本實施方式所示的材料。
TADF材料是指能夠利用微小的熱能量將三重激發態上轉換(up-convert)為單重激發態(逆系間竄越)並高效率地呈現來自單重激發態的發光(螢光)的材料。可以高效率地獲得熱活化延遲螢光的條件為如下:三重激發能階和單重激發能階之間的能量差為0eV以上且0.2eV以下,較佳為0eV以上且0.1eV以下。TADF材料所呈現的延遲螢光是指其光譜與一般的螢光同樣但其壽命非常長的發光。該壽命為10-6秒以上,較佳為10-3秒以上。
作為TADF材料,例如可以舉出富勒烯或其衍生物、普羅黃素等吖啶衍生物、伊紅等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為含金屬卟啉,例如,也可以舉出原卟啉-氟化錫錯合物(SnF2(Proto IX))、中卟啉-氟化錫錯合物(SnF2(Meso IX))、血卟啉-氟化錫錯合物(SnF2(Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(SnF2(Copro Ⅲ-4Me))、八乙基卟啉-氟化錫錯合物(SnF2(OEP))、初卟啉-氟化錫錯合物(簡稱:SnF2(Etio I))以及八乙基卟啉-氯化鉑錯合物(簡稱:PtCl2OEP)等。
除了上述以外,可以使用2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(PCCzPTzn)、2-[4-(10H-啡-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡-10-基)苯基]-4,5-二苯基-1,2,4-三唑(PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(ACRSA)等具有富π電子型芳雜環及缺π電子型芳雜環的雜環化合物。另外,在富π電子型芳雜環和缺π電子型芳雜環直接鍵合的物質中,富π電子型芳雜環的施體性和缺π電子型芳雜環的 受體性都強,單重激發態與三重激發態之間的能量差變小,所以是尤其較佳的。
另外,在使用TADF材料的情況下,可以組合其他有機化合物使用。
接著,在圖3D所示的發光元件中,藉由真空蒸鍍法在EL層303a中的發光層313a上形成電子傳輸層314a。另外,在形成EL層303a及電荷產生層304之後,藉由真空蒸鍍法在EL層303b中的發光層313b上形成電子傳輸層314b。
〈電子傳輸層〉
電子傳輸層(314a、314b)是將從第二電極302經過電子注入層(315a、315b)注入的電子傳輸到發光層(313a、313b)中的層。另外,電子傳輸層(314a、314b)是包含電子傳輸性材料的層。作為用於電子傳輸層(314a、314b)的電子傳輸性材料,較佳為具有1×10-6cm2/Vs以上的電子移動率的物質。另外,只要是電子傳輸性高於電洞傳輸性的物質,可以使用上述以外的物質。
作為用於電子傳輸性材料可以舉出具有喹啉配體、苯并喹啉配體、唑配體、噻唑配體的金屬錯合物、二唑衍生物、三唑衍生物、啡啉衍生物、吡啶衍生物、聯吡啶衍生物等。除了上述以外,也可以使用含氮雜芳族化合物等缺π電子型雜芳族化合物。
明確地說,Alq3、三(4-甲基-8-羥基喹啉) 鋁(簡稱:Almq3)、雙(10-羥基苯并[h]-喹啉)鈹(簡稱:BeBq2)、BAlq、Zn(BOX)2、雙[2-(2-羥基苯基)-苯并噻唑]鋅(簡稱:Zn(BTZ)2)等金屬錯合物、2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-二唑-2-基]苯(簡稱:OXD-7)、3-(4’-聯苯基)-4-苯基-5-(4”-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、3-(4-三級丁基苯基)-4-(4-乙基苯基)-5-(4-聯苯基)-1,2,4-三唑(簡稱:p-EtTAZ)、紅啡啉(簡稱:Bphen)、浴銅靈(簡稱:BCP)、4,4’-雙(5-甲基苯并唑-2-基)二苯乙烯(簡稱:BzOs)等雜芳族化合物、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹啉(簡稱:2mDBTBPDBq-II)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹啉(簡稱:2CzPDBq-Ⅲ)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹啉(簡稱:7mDBTPDBq-Ⅱ)和6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹啉(簡稱:6mDBTPDBq-Ⅱ)等喹啉衍生物或二苯并喹啉衍生物。
另外,還可以使用聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)等高分子化合物。
另外,電子傳輸層(314a、314b)既可由單層構成又可由層疊有兩層以上的由上述物質構成的層的構成。
接著,在圖3D所示的發光元件中,藉由真空蒸鍍法在EL層303a中的電子傳輸層314a上形成電子注入層315a。然後,形成EL層303a上的電荷產生層304、EL層303b中的電洞注入層311b、電洞傳輸層312b、發光層313b及電子傳輸層314b,然後藉由真空蒸鍍法形成電子注入層315b。
〈電子注入層〉
電子注入層(315a、315b)是包含電子注入性高的物質的層。作為電子注入層(315a、315b),可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)及鋰氧化物(LiOx)等鹼金屬、鹼土金屬或這些金屬的化合物。此外,可以使用氟化鉺(ErF3)等稀土金屬化合物。此外,也可以將電子鹽用於電子注入層(315a、315b)。作為該電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。另外,也可以使用如上所述的構成電子傳輸層(314a、314b)的物質。
此外,也可以將混合有機化合物與電子予體(施體)而成的複合材料用於電子注入層(315a、315b)。這種複合材料因為藉由電子予體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情 況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用用於如上所述的電子傳輸層(314a、314b)的電子傳輸性材料(金屬錯合物、雜芳族化合物等)。作為電子予體,只要是對有機化合物呈現電子供給性的物質即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
例如,在使從發光層313b獲得的光放大的情況下,較佳為以第二電極302與發光層313b之間的光學距離小於發光層313b所呈現的光的波長的λ/4的方式形成。在此情況下,藉由改變電子傳輸層314b或電子注入層315b的厚度,可以調整光學距離。
〈電荷產生層〉
電荷產生層304具有如下功能:在對第一電極301(陽極)及第二電極302(陰極)施加電壓時,對EL層303a注入電子且對EL層303b注入電洞的功能。電荷產生層304既可以具有對電洞傳輸性材料添加有電子受體(受體)的結構,也可以具有對電子傳輸性材料添加有電子予體(施體)的結構。或者,也可以層疊有這兩種結構。另外,藉由使用上述材料形成電荷產生層304,可以 抑制在層疊EL層時的驅動電壓的增大。
在電荷產生層304具有對電洞傳輸性材料添加有電子受體的結構的情況下,作為電洞傳輸性材料可以使用本實施方式所示的材料。另外,作為電子受體,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4-TCNQ)、氯醌等。另外,可以舉出屬於元素週期表中第4族至第8族的元素的金屬的氧化物。明確地說,可以舉出氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸等。
在電荷產生層304具有對電子傳輸性材料添加有電子施體的結構的情況下,作為電子傳輸性材料可以使用本實施方式所示的材料。另外,作為電子予體,可以使用鹼金屬、鹼土金屬、稀土金屬或屬於元素週期表中第2族、第13族的金屬及它們的氧化物或碳酸鹽。明確而言,較佳為使用鋰(Li)、銫(Cs)、鎂(Mg)、鈣(Ca)、鐿(Yb)、銦(In)、氧化鋰、碳酸銫等。此外,也可以將如四硫稠四苯(tetrathianaphthacene)等有機化合物用作電子予體。
〈基板〉
本實施方式所示的發光元件可以形成在各種基板上。作為該基板的一個例子,可以舉出半導體基板(例如,單晶基板或矽基板)、SOI基板、玻璃基板、石英基板、塑膠基板、金屬基板、不鏽鋼基板、包含不鏽鋼箔的基板、 鎢基板、包含鎢箔的基板、撓性基板、貼合薄膜、包含纖維狀材料的紙或基材薄膜等。
作為玻璃基板的例子,有鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鈉鈣玻璃等。作為撓性基板、貼合薄膜、基材薄膜等,可以舉出以聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)為代表的塑膠、聚丙烯等合成樹脂、聚丙烯、聚酯、聚氟化乙烯、聚氯乙烯、聚醯胺、聚醯亞胺、芳族聚醯胺、環氧、無機蒸鍍薄膜、紙類等。
另外,當製造本實施方式所示的發光元件時,可以利用蒸鍍法等真空製程或旋塗法、噴墨法等溶液製程。作為蒸鍍法,可以利用濺射法、離子鍍法、離子束蒸鍍法、分子束蒸鍍法、真空蒸鍍法等物理蒸鍍法(PVD法)或化學氣相沉積法(CVD法)等。尤其是,可以利用蒸鍍法(真空蒸鍍法)、塗佈法(浸塗法、染料塗布法、棒式塗布法、旋塗法、噴塗法)、印刷法(噴墨法、網版印刷(孔版印刷)法、平板印刷(平板印刷)法、柔版印刷(凸版印刷)法、照相凹版印刷法、微接觸印刷法等)等方法形成包括在發光元件的EL層中的功能層(電洞注入層(311a、311b)、電洞傳輸層(312a、312b)、發光層(313a、313b)、電子傳輸層(314a、314b)、電子注入層(315a、315b)以及電荷產生層304)。
另外,本實施方式所示的構成發光元件的EL層(303a、303b)的各功能層(電洞注入層(311a、 311b)、電洞傳輸層(312a、312b)、發光層(313a、313b)、電子傳輸層(314a、314b)、電子注入層(315a、315b))以及電荷產生層304的材料不侷限於此,只要為可以滿足各層的功能的材料就可以組合地使用。作為一個例子,可以使用高分子化合物(低聚物、樹枝狀聚合物、聚合物等)、中分子化合物(介於低分子與高分子之間的化合物:分子量為400至4000)、無機化合物(量子點材料等)等。作為量子點材料,可以使用膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。
本實施方式所示的結構可以適當地與其他實施方式所示的結構組合而使用。
實施方式3
在本實施方式中,作為本發明的一個實施方式的顯示裝置,說明包括具有液晶元件的第一元件層及具有發光元件的第二元件層並可以根據每個顯示元件進行不同的顯示的顯示裝置。另外,也可以將上述顯示裝置稱為ER-hybrid display(Emission and Reflection Hybrid display或Emission/Reflection hybrid display)等。
本實施方式所示的顯示裝置能夠進行使用液晶元件的顯示及使用發光元件的顯示,但是在使用反射式液晶元件作為液晶元件的情況下,在屋外等外光強而明亮的地方可以利用外光進行使用反射式液晶元件的顯示,因 此能夠以極低功耗驅動。另外,當外光太強而產生表面反射時,可以同時使用液晶元件和發光元件進行顯示。另一方面,在夜間或屋內等外光弱且昏暗的地方藉由使用不需要光源的發光元件進行顯示,可以實現視角廣且色彩再現性良好的影像的顯示以及低功耗驅動。另外,也可以使用透過型(或半透射.半反射電極)的液晶元件作為液晶元件,並且使用發光元件作為兼有光源及顯示元件的元件。因此,藉由組合而進行顯示,可以進行其功耗比習知的顯示面板低且其色彩再現性比習知的顯示面板高的顯示。
圖4A所示的顯示裝置包括具有反射式液晶元件401的第一元件層(顯示元件層)410、具有發光元件402的第二元件層(顯示元件層)411、具有用來驅動上述元件(液晶元件401及發光元件402)的電晶體(425、426)的第三元件層(驅動元件層)412,採用層疊有上述元件層的結構。另外,在圖4A中示出在第一元件層(顯示元件層)410與第二元件層(顯示元件層)411之間具有第三元件層(驅動元件層)412的疊層結構,但是本發明不侷限於此,在如圖4B所示那樣簡單地示出圖4A所示的結構的情況下,也可以形成採用圖4C至圖4E所示的疊層結構的顯示裝置作為其它種類的結構。
另外,在圖4A至圖4E所示的上述顯示裝置中,作為第一元件層(顯示元件層)410所具有的液晶元件401及第二元件層(顯示元件層)411所具有的發光元 件402的驅動方法,例如可以採用以如下方法進行顯示的結構:作為第一模式,由成為第一電極(反射電極)的導電層403反射可見光而使用液晶元件401進行顯示;作為第二模式,將在發光元件402中產生的光從導電層403的開口部404發射出而進行顯示。
另外,第一元件層410所包括的液晶元件401、第二元件層411所包括的發光元件402以及包括電晶體(驅動元件)(425、426)的第三元件層412可以藉由分別形成而剝離並貼合來進行疊層。注意,在形成利用貼合技術的疊層結構的情況下,隔著絕緣層層疊有各元件層。另外,形成在各元件層中的元件(液晶元件401、發光元件402、電晶體(425、426)等)在它們被絕緣的絕緣層中利用導電膜(佈線)導通,可以實現電連接。
第一元件層410所包括的液晶元件401為反射式液晶元件,為了具有反射電極的功能,導電層403使用反射率高的材料。另外,導電層403具有開口部404。另外,為了具有透明電極的功能,導電層407包含使可見光透過的材料。另外,導電層403與導電層407接觸,它們被用作液晶元件401的一個電極。另外,導電層408被用作液晶元件401的另一個電極。並且,在導電層407及導電層408的液晶層409一側分別具有配向膜415、416。另外,與濾色片418接觸地形成的絕緣層419被用作保護層。另外,如果不需要則可以不設置配向膜415、416。
另外,在此未圖示,但是較佳為設置間隔物,該間隔物具有抑制液晶元件401的兩個電極過接近(保持單元間隙)的功能。
第二元件層411所包括的發光元件402採用在一個電極的導電層420與另一個電極的導電層421之間具有EL層422的疊層結構。另外,導電層421包含使可見光透過的材料,導電層420包含反射可見光的材料。由此,發光元件402所發射的光穿過導電層420、濾色片423,經過開口部404而穿過液晶元件401,然後穿過偏振層424,來從基板405向外部發射。
第三元件層412所包括的電晶體(425、426)中的電晶體426的源極和汲極中的一個藉由端子部427與液晶元件401的導電層403及導電層407電連接。另外,電晶體426對應於下面將說明的圖6中的開關SW1。另外,電晶體425的源極和汲極中的一個與發光元件402的導電層420電連接。例如,電晶體425對應於圖6中的電晶體M。
另外,在此未圖示,但是上述電晶體(425、426)藉由FPC等與外部電連接。
圖5A示出顯示裝置的方塊圖。顯示裝置包括電路(G)501、電路(S)502及顯示部503。在顯示部503中,多個像素504在方向R及方向C上配置為矩陣狀。電路(G)501與多個佈線G1、佈線G2、佈線ANO及佈線CSCOM電連接,並且,這些佈線與在方向R上配 置的多個像素504電連接。電路(S)502與多個佈線S1及佈線S2電連接,並且,這些佈線與在方向C上配置的多個像素504電連接。
另外,像素504包括液晶元件和發光元件,它們具有彼此重疊的部分。
圖5B1示出被用作像素504所包括的液晶元件的反射電極的導電膜505的形狀。另外,在導電膜505的一部分中與發光元件重疊的位置506上形成有開口部507。就是說,來自發光元件的光經過該開口部507發射出。
在圖5B1中,以在方向R上相鄰的像素504呈現不同的顏色的方式設置有像素504。並且,以不在方向R上形成為一列的方式形成有開口部507。藉由採用這種排列,可以發揮抑制相鄰的像素504所包括的發光元件之間的串擾的效果。並且,還有因微細結構得到緩和而易於形成元件的優勢。
作為開口部507的形狀,例如可以採用多角形、四角形、橢圓形、圓形或十字等形狀。另外,也可以採用細條狀、狹縫狀等形狀。
此外,作為導電膜505的排列的其他方式,可以採用圖5B2所示的排列。
開口部507對導電膜505的總面積(除了開口部507之外)的比例給顯示裝置的顯示帶來影響。就是說,發生如下問題:在開口部507的面積大時,液晶元件 的顯示變暗,而在開口部507的面積小時,發光元件的顯示變暗。另外,不侷限於上述比例,在開口部507的面積本身小時,從發光元件發射的光提取效率也下降。此外,從保持組合液晶元件及發光元件時的可見性的觀點來看,將上述開口部507對導電膜505的總面積(除了開口部507之外)的比例較佳為設定為5%以上且60%以下。
下面,參照圖6對像素504的電路結構的一個例子進行說明。圖6示出相鄰的兩個像素504。
像素504包括電晶體SW1、電容器C1、液晶元件510、電晶體SW2、電晶體M、電容器C2及發光元件511等。此外,它們在像素504中與佈線G1、佈線G2、佈線ANO、佈線CSCOM、佈線S1和佈線S2中的任何一個電連接。此外,液晶元件510與佈線VCOM1電連接,發光元件511與佈線VCOM2電連接。
另外,電晶體SW1的閘極與佈線G1連接,電晶體SW1的源極和汲極中的一個與佈線S1連接,源極和汲極中的另一個與電容器C1的一個電極及液晶元件510的一個電極連接。電容器C1的另一個電極與佈線CSCOM連接。液晶元件510的另一個電極與佈線VCOM1連接。
此外,電晶體SW2的閘極與佈線G2連接,電晶體SW2的源極和汲極中的一個與佈線S2連接,源極和汲極中的另一個與電容器C2的一個電極及電晶體M的閘極連接。電容器C2的另一個電極與電晶體M的源極和 汲極中的一個及佈線ANO連接。電晶體M的源極和汲極中的另一個與發光元件511的一個電極連接。發光元件511的另一個電極與佈線VCOM2連接。
電晶體M包括夾持半導體的兩個閘極,這兩個閘極彼此電連接。藉由採用這種結構,可以增大流過電晶體M的電流量。
藉由從佈線G1被施加的信號,控制電晶體SW1的導通狀態或非導通狀態。另外,佈線VCOM1供應規定的電位。此外,可以藉由從佈線S1被施加的信號,控制液晶元件510的液晶的配向狀態。佈線CSCOM供應規定的電位。
藉由從佈線G2被施加的信號,控制電晶體SW2的導通狀態或非導通狀態。另外,可以藉由從佈線VCOM2及佈線ANO被施加的電位之間的電位差,使發光元件511發射光。此外,可以藉由從佈線S2被施加的信號,控制電晶體M的導通狀態。
因此,在本實施方式所示的結構中,例如在採用第一模式的情況下,藉由從佈線G1及佈線S1被施加的信號控制液晶元件510,且利用光學調變,由此可以進行顯示。另外,在採用第二模式的情況下,藉由從佈線G2及佈線S2被施加的信號,可以使發光元件511發射光。再者,在同時採用兩種模式的情況下,可以根據從佈線G1、佈線G2、佈線S1及佈線S2的每一個被施加的信號進行使用液晶元件510及發光元件511所希望的顯示。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式4
在本實施方式中說明本發明的一個實施方式的顯示裝置的形成在元件層的驅動元件層中的電晶體的一個例子。作為電晶體的結構,例如可以使用平面型電晶體、交錯型電晶體或反交錯型電晶體等。此外,也可以採用頂閘極型電晶體或底閘極型電晶體。另外,也可以採用通道的上下設置有閘極電極的結構。由此,對電晶體的結構沒有特別的限制。
另外,作為用於電晶體的半導體層的半導體材料,例如可以將第14族元素(矽、鍺等)、化合物半導體或氧化物半導體用於半導體層。典型的是,可以使用包含矽的半導體、包含砷化鎵的半導體或包含銦的氧化物半導體等。
此外,對用於電晶體的半導體層的半導體材料的結晶性沒有特別的限制,也可以使用非晶半導體和具有結晶性的半導體(微晶半導體、多晶半導體、單晶半導體或其一部分具有結晶區域的半導體)中的任一個。藉由使用具有結晶性的半導體,可以抑制電晶體特性的劣化,所以是較佳的。
在用於上述電晶體的半導體層的半導體材料中,尤其較佳為適用金屬氧化物(metal oxide)。
在本說明書等中,金屬氧化物是指廣義上的金屬的氧化物。金屬氧化物被分類為氧化物絕緣體、氧化物導電體(包括透明氧化物導電體)和氧化物半導體(Oxide Semiconductor,也可以簡稱為OS)等。例如,在將金屬氧化物用於電晶體的活性層的情況下,有時將該金屬氧化物稱為氧化物半導體。換言之,可以將OS FET換稱為包含金屬氧化物或氧化物半導體的電晶體。
此外,在本說明書等中,有時將包含氮的金屬氧化物也稱為金屬氧化物(metal oxide)。此外,也可以將包含氮的金屬氧化物稱為金屬氧氮化物(metal oxynitride)。
接著,說明金屬氧化物的氧化物半導體。
氧化物半導體是其能帶間隙比矽大(寬)且其載子密度比矽小的半導體材料。由此,藉由使用氧化物半導體,可以降低電晶體的關態電流(off-state current)。尤其是,較佳為使用其能隙較佳為2eV以上,較佳為2.5eV以上,更佳為3eV以上的氧化物半導體。
另外,藉由降低關態電流,能夠長期間保持儲存於與電晶體串聯連接的電容器中的電荷。由此,藉由將這種電晶體用於像素,能夠在保持各顯示區域所顯示的影像的灰階的狀態下,停止驅動電路。其結果,可以實現功耗極低的顯示裝置。
此外,在本說明書等中,有時記載CAAC(c-axis aligned crystal)或CAC(cloud-aligned composite) 。注意,CAAC是指結晶結構的一個例子,CAC是指功能或材料構成的一個例子。
此外,在本說明書等中,CAC-OS或CAC-metal oxide在材料的一部分中具有導電體的功能,在材料的另一部分中具有介電質(或絕緣體)的功能,作為材料的整體具有半導體的功能。此外,在將CAC-OS或CAC-metal oxide用於電晶體的活性層的情況下,導電體具有使被用作載子的電子(或電洞)流過的功能,介電質具有不使被用作載子的電子流過的功能。藉由導電體的功能和介電質的功能的互補作用,可以使CAC-OS或CAC-metal oxide具有開關功能(控制開啟/關閉的功能)。藉由在CAC-OS或CAC-metal oxide中使各功能分離,可以最大限度地提高各功能。
此外,在本說明書等中,CAC-OS或CAC-metal oxide包括導電體區域及介電質區域。導電體區域具有上述導電體的功能,介電質區域具有上述介電質的功能。此外,在材料中,導電體區域和介電質區域有時以奈米粒子級分離。另外,導電體區域和介電質區域有時在材料中不均勻地分佈。此外,有時觀察到其邊緣模糊而以雲狀連接的導電體區域。
就是說,也可以將CAC-OS或CAC-metal oxide稱為基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)。
此外,在CAC-OS或CAC-metal oxide中,導 電體區域和介電質區域有時以0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下的尺寸分散在材料中。
接著,說明上述CAC-OS的詳細內容。
CAC-OS例如是指包含在氧化物半導體中的元素不均勻地分佈的構成,其中包含不均勻地分佈的元素的材料的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸。注意,在下面也將在氧化物半導體中一個或多個金屬元素不均勻地分佈且包含該金屬元素的.區域混合的狀態稱為馬賽克(mosaic)狀或補丁(patch)狀,該區域的尺寸為0.5nm以上且10nm以下,較佳為1nm以上且2nm以下或近似的尺寸。
另外,作為上述氧化物半導體,較佳為至少包含銦。尤其是,較佳為包含銦及鋅。除此之外,也可以還包含元素M(選自鋁、鎵、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種)。
例如,In-Ga-Zn氧化物中的CAC-OS(在CAC-OS中,尤其可以將In-Ga-Zn氧化物稱為CAC-IGZO)是指材料分成銦氧化物(以下,稱為InOX1(X1為大於0的實數))或銦鋅氧化物(以下,稱為InX2ZnY2OZ2(X2、Y2及Z2為大於0的實數))以及鎵氧化物(以下,稱為GaOX3(X3為大於0的實數))或鎵鋅氧化物(以下,稱為GaX4ZnY4OZ4(X4、Y4及Z4為大於0的實數))等而成為馬賽克狀,且馬賽克狀的 InOX1或InX2ZnY2OZ2均勻地分佈在膜中的構成(以下,也稱為雲狀)。
換言之,CAC-OS是具有以GaOX3為主要成分的區域和以InX2ZnY2OZ2或InOX1為主要成分的區域混在一起的構成的複合氧化物半導體。在本說明書中,例如,當第一區域的In與元素M的原子個數比大於第二區域的In與元素M的原子個數比時,第一區域的In濃度高於第二區域。
注意,IGZO是通稱,有時是指包含In、Ga、Zn及O的化合物。作為典型例子,可以舉出以InGaO3(ZnO)m1(m1為自然數)或In(1+x0)Ga(1-x0)O3(ZnO)m0(-1≦x0≦1,m0為任意數)表示的結晶性化合物。
上述結晶性化合物具有單晶結構、多晶結構或CAAC(C-Axis Aligned Crystalline)結構。CAAC結構是多個IGZO的奈米晶具有c軸配向性且在a-b面上以不配向的方式連接的結晶結構。
另一方面,CAC-OS與氧化物半導體的材料構成有關。CAC-OS是指如下構成:在包含In、Ga、Zn及O的材料構成中,一部分中觀察到以Ga為主要成分的奈米粒子狀區域以及一部分中觀察到以In為主要成分的奈米粒子狀區域分別以馬賽克狀無規律地分散。因此,在CAC-OS中,結晶結構是次要因素。
CAC-OS不包含組成不同的兩種以上的膜的疊層結構。例如,不包含由以In為主要成分的膜與以Ga為 主要成分的膜的兩層構成的結構。
注意,有時觀察不到以GaOX3為主要成分的區域與以InX2ZnY2OZ2或InOX1為主要成分的區域之間的明確的邊界。
在CAC-OS中包含選自鋁、釔、銅、釩、鈹、硼、矽、鈦、鐵、鎳、鍺、鋯、鉬、鑭、鈰、釹、鉿、鉭、鎢和鎂等中的一種或多種以代替鎵的情況下,CAC-OS是指如下構成:一部分中觀察到以該元素為主要成分的奈米粒子狀區域以及一部分中觀察到以In為主要成分的奈米粒子狀區域以馬賽克狀無規律地分散。
CAC-OS例如可以藉由在對基板不進行意圖性的加熱的條件下利用濺射法來形成。在利用濺射法形成CAC-OS的情況下,作為沉積氣體,可以使用選自惰性氣體(典型的是氬)、氧氣體和氮氣體中的一種或多種。另外,成膜時的沉積氣體的總流量中的氧氣體的流量比越低越好,例如,將氧氣體的流量比設定為0%以上且低於30%,較佳為0%以上且10%以下。
CAC-OS具有如下特徵:藉由根據X射線繞射(XRD:X-ray diffraction)測定法之一的out-of-plane法利用θ/2θ掃描進行測定時,觀察不到明確的峰值。也就是說,根據X射線繞射,可知在測定區域中沒有a-b面方向及c軸方向上的配向。
另外,在藉由照射束徑為1nm的電子束(也稱為奈米束)而取得的CAC-OS的電子繞射圖案中,觀察 到環狀的亮度高的區域以及在該環狀區域內的多個亮點。由此,根據電子繞射圖案,可知CAC-OS的結晶結構具有在平面方向及剖面方向上沒有配向的nc(nano-crystal)結構。
另外,例如在In-Ga-Zn氧化物的CAC-OS中,根據藉由能量色散型X射線分析法(EDX:Energy Dispersive X-ray spectroscopy)取得的EDX面分析影像,可確認到:具有以GaOX3為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域不均勻地分佈而混合的構成。
CAC-OS的結構與金屬元素均勻地分佈的IGZO化合物不同,具有與IGZO化合物不同的性質。換言之,CAC-OS具有以GaoX3等為主要成分的區域及以InX2ZnY2OZ2或InOX1為主要成分的區域互相分離且以各元素為主要成分的區域為馬賽克狀的構成。
在此,以InX2ZnY2OZ2或InOX1為主要成分的區域的導電性高於以GaOX3等為主要成分的區域。換言之,當載子流過以InX2ZnY2OZ2或InOX1為主要成分的區域時,呈現氧化物半導體的導電性。因此,當以InX2ZnY2OZ2或InOX1為主要成分的區域在氧化物半導體中以雲狀分佈時,可以實現高場效移動率(μ)。
另一方面,以GaOX3等為主要成分的區域的絕緣性高於以InX2ZnY2OZ2或InOX1為主要成分的區域。換言之,當以GaOX3等為主要成分的區域在氧化物半導體 中分佈時,可以抑制洩漏電流而實現良好的切換工作。
因此,當使用CAC-OS作為電晶體的半導體層時,藉由起因於GaOX3等的絕緣性及起因於InX2ZnY2OZ2或InOX1的導電性的互補作用可以實現高通態電流(Ion)及高場效移動率(μ)。
另外,藉由使用CAC-OS作為電晶體的半導體層,可以提高電晶體的可靠性。
另外,形成In-M-Zn類氧化物膜時使用的濺射靶材的金屬元素的原子數比較佳為滿足In≧M及Zn≧M。這種濺射靶材的金屬元素的原子數比較佳為In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、4:2:4.1等。注意,所形成的膜的原子個數比都包括上述濺射靶材中的金屬元素的原子個數比的±40%的變動。
另外,所形成的膜的載子密度較佳為低。由此,載子密度低的氧化物半導體因為雜質濃度及缺陷能階密度低,可以說是具有穩定的特性的氧化物半導體。另外,作為載子密度低的氧化物半導體膜例如較佳為使用載子密度為1×1017/cm3以下,較佳為1×1015/cm3以下,更佳為1×1013/cm3以下,進一步較佳為1×1011/cm3以下,更進一步較佳為小於1×1010/cm3,1×10-9/cm3以上的氧化物半導體。
本發明不侷限於上述記載,可以根據所需的電晶體的半導體特性及電特性(場效移動率、臨界電壓等)來使用具有適當的組成的材料。另外,較佳為適當地 設定半導體層的載子密度、雜質濃度、缺陷密度、金屬元素與氧的原子個數比、原子間距離、密度等,以得到所需的電晶體的半導體特性。
另外,有時當鹼金屬及鹼土金屬與氧化物半導體鍵合時生成載子而使電晶體的關態電流增大。因此,將藉由二次離子質譜分析法測得的半導體層的鹼金屬或鹼土金屬的濃度設定為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
當使用氧化物半導體時,其結晶結構也可以為非單晶結構。非單晶結構例如包括上述CAAC-OS、多晶結構、微晶結構或非晶結構。在非單晶結構中,非晶結構的缺陷態密度最高,而CAAC-OS的缺陷態密度最低。另外,非晶結構是原子排列無秩序或者完全非晶的結構,不具有結晶部。
此外,半導體層也可以為具有非晶結構的區域、微晶結構的區域、多晶結構的區域、CAAC-OS的區域和單晶結構的區域中的兩種以上的混合膜。混合膜有時例如具有包括上述區域中的兩種以上的區域的單層結構或疊層結構。
藉由適用本實施方式所說明的電晶體作為構成本實施方式的顯示裝置的元件層的驅動元件層所具有的電晶體,可以製造可靠性高的顯示裝置。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式5
在本實施方式中,對適用本發明的一個實施方式的顯示裝置而完成的各種各樣的電子裝置、汽車的例子進行說明。
作為適用顯示裝置的電子裝置,例如可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的監視器、數位相機、數位攝影機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、護目鏡型顯示裝置(VR用顯示裝置等)、可攜式資訊終端、音頻再生裝置、彈珠機等大型遊戲機等。圖7A至圖7D、圖7D’1及圖7D’2以及圖8A至圖8C示出這些電子裝置的具體例子。
圖7A示出電視機的一個例子。在電視機7100中,外殼7101中組裝有顯示部7103。由顯示部7103能夠顯示影像,顯示部7103也可以採用安裝有觸控感測器(輸入裝置)的觸控面板(輸入輸出裝置)。此外,可以將本發明的一個實施方式的顯示裝置用於顯示部7103。在此示出利用支架7105支撐外殼7101的結構。
藉由利用外殼7101所具備的操作開關、或另外提供的遙控器7110可以進行電視機7100的操作。藉由利用遙控器7110所具備的操作鍵7109,可以進行頻道、音量的操作,並可以對在顯示部7103上顯示的影像進行操作。此外,也可以採用在遙控器7110中設置顯示從該 遙控器7110輸出的資訊的顯示部7107的結構。
電視機7100採用具備接收機、數據機等的結構。藉由接收機可以接收一般的電視廣播。再者,藉由數據機連接到有線或無線方式的通訊網路,可以進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者彼此之間等)的資訊通訊。
圖7B為電腦,該電腦包括主體7201、外殼7202、顯示部7203、鍵盤7204、外部連接埠7205、指向裝置7206等。該電腦可以藉由將本發明的一個實施方式的顯示裝置用於其顯示部7203來製造。此外,顯示部7203也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入輸出裝置)。另外,當適用本發明的一個實施方式的顯示裝置時,可以防止由於外光反射所導致的可見性的降低,因此可以實現尤其適合在屋外使用的電腦。
圖7C為智慧手錶,該智慧手錶包括外殼7302、顯示部7304、操作按鈕7311、操作按鈕7312、連接端子7313、錶帶7321、錶帶扣7322等。
安裝在兼作框架(bezel)部分的外殼7302中的顯示部7304具有非矩形狀的顯示區域。顯示部7304可以顯示表示時間的圖示7305以及其他圖示7306等。此外,顯示部7304也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入輸出裝置)。另外,當適用本發明的一個實施方式的顯示裝置時,可以防止由於外光反射所導致的可見性的降低,因此可以實現尤其適合在屋外使用 的智慧手錶。
圖7C所示的智慧手錶可以具有各種功能。例如,可以具有如下功能:在顯示部上顯示多種資訊(靜態影像、運動影像、文字影像等)的功能;觸控面板功能:顯示日曆、日期或時間等的功能:以多種軟體(程式)控制處理的功能:無線通訊功能:使用無線通訊功能與多種電腦網路連接的功能:使用無線通訊功能發送並接收多種資料的功能:以及讀取儲存於存儲介質內的程式或資料並且將該程式或資料顯示於顯示部上的功能等。
外殼7302的內部可具有揚聲器、感測器(包括測定如下因素的功能:力量、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、斜率、振動、氣味或紅外線)、麥克風等。另外,智慧手錶可以藉由將顯示裝置用於其顯示部7304來製造。
圖7D、圖7D’1及圖7D’2示出行動電話機(包括智慧手機)的一個例子。行動電話機7400在外殼7401中具備顯示部7402、麥克風7406、揚聲器7405、相機7407、外部連接部7404、操作按鈕7403等。當將本發明的一個實施方式的液晶元件及發光元件形成在具有撓性的基板來製造顯示裝置時,可以應用於如圖7D所示那樣的具有曲面的顯示部7402。
圖7D所示的行動電話機7400可以用手指等 觸摸顯示部7402來輸入資訊。此外,可以用手指等觸摸顯示部7402來進行打電話或寫電子郵件等的操作。
顯示部7402的螢幕主要有如下三種模式:第一是以影像顯示為主的顯示模式;第二是以文字等資訊輸入為主的輸入模式;第三是混合顯示模式與輸入模式的兩種模式的顯示及輸入模式。
例如,在打電話或寫電子郵件的情況下,將顯示部7402設定為以文字輸入為主的文字輸入模式,並進行顯示在螢幕的文字的輸入操作即可。在此情況下,較佳的是,在顯示部7402的螢幕的大部分上顯示鍵盤或號碼按鈕。
另外,藉由在行動電話機7400內部設置陀螺儀和加速度感測器等檢測裝置,判斷行動電話機7400的方向(縱向或橫向),由此可以對顯示部7402的螢幕顯示進行自動切換。
藉由觸摸顯示部7402或對外殼7401的操作按鈕7403進行操作,切換螢幕模式。或者,可以根據顯示在顯示部7402上的影像的類型而切換螢幕模式。例如,當顯示在顯示部上的影像信號為動態影像的資料時,將螢幕模式切換成顯示模式,而當該影像信號為文字資料時,將螢幕模式切換成輸入模式。
另外,當在輸入模式下藉由獲得顯示部7402的光感測器所檢測的信號並在一定時間內未進行顯示部7402的觸摸操作輸入時,也可以進行控制將畫面模式從 輸入模式切換成顯示模式。
還可以將顯示部7402用作影像感測器。例如,可以藉由用手掌或手指觸摸顯示部7402來拍攝掌紋、指紋等,進行個人識別。另外,還可以藉由將發出近紅外光的背光或發出近紅外光的感測用光源用於顯示部,拍攝手指靜脈、手掌靜脈等。另外,當將本發明的一個實施方式的顯示裝置適用於顯示部7402時,可以防止由於外光反射所導致的可見性的降低,因此可以實現尤其適合在屋外使用的行動電話機。
再者,作為行動電話機(包括智慧手機)的其他結構,也可以採用具有圖7D’1及圖7D’2所示的結構的行動電話機。
在具有圖7D’1及圖7D’2所示的結構的行動電話機中,不僅在外殼7500(1)、外殼7500(2)的第一面7501(1)、第一面7501(2)上,而且還在第二面7502(1)、第二面7502(2)上顯示文字資訊或影像資訊等。借助於這種結構,使用者能夠在將行動電話機收納在上衣口袋中的狀態下容易確認在第二面7502(1)、第二面7502(2)等上顯示的文字資訊或影像資訊等。
圖7E示出護目鏡型顯示器(頭戴顯示器),包括主體7601、顯示部7602以及臂部7603。另外,當將本發明的一個實施方式的顯示裝置適用於顯示部7602時,可以防止由於外光反射所導致的可見性的降低,因此可以實現尤其適合在屋外使用的護目鏡型顯示器。
作為適用顯示裝置的電子裝置,可以舉出圖8A至圖8C所示的能夠折疊的可攜式資訊終端。圖8A示出展開狀態的可攜式資訊終端9310。圖8B示出從展開狀態和折疊狀態中的一個狀態變為另一個狀態的中途的狀態的可攜式資訊終端9310。圖8C示出折疊狀態的可攜式資訊終端9310。可攜式資訊終端9310在折疊狀態下可攜性好,在展開狀態下因為具有無縫拼接的較大的顯示區域所以顯示一覽性強。
顯示部9311由鉸鏈部9313所連接的三個外殼9315來支撐。此外,顯示部9311也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入輸出裝置)。此外,顯示部9311藉由鉸鏈部9313使兩個外殼9315之間彎折,由此可以使可攜式資訊終端9310從展開狀態可逆性地變為折疊狀態。顯示部9311中的顯示區域9312是位於折疊狀態的可攜式資訊終端9310的側面的顯示區域。在顯示區域9312中可以顯示資訊圖示或者使用頻率高的應用軟體或程式的快捷方式等,能夠順利地進行資訊的確認或軟體的開啟。另外,當將本發明的一個實施方式的顯示裝置適用於顯示部9311時,可以防止由於外光反射所導致的可見性的降低,因此可以實現尤其適合在屋外使用的可攜式資訊終端。
圖9A和圖9B示出適用顯示裝置的汽車。就是說,可以與汽車一體地形成顯示裝置。明確而言,可以適用於圖9A所示的汽車的外側的燈5101(包括車身後 部)、輪胎的輪轂5102、車門5103的一部分或整體等。另外,可以適用於圖9B所示的汽車內側的顯示部5104、方向盤5105、變速杆5106、座位5107、倒後鏡5108等。除此之外,也可以適用於玻璃窗的一部分。另外,當將本發明的一個實施方式的顯示裝置適用於上述汽車的一部分時,可以防止由於外光反射所導致的可見性的降低,因此尤其適合在屋外使用。
如上所述,可以適用本發明的一個實施方式的顯示裝置來得到電子裝置或汽車。能夠適用的電子裝置或汽車不侷限於在本實施方式中示出的電子裝置或汽車,在各種領域可以應用。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施例1
在本實施例中,示出對具有反射式液晶元件的顯示器(反射式顯示器)的亮度(反射率)與NTSC的覆蓋率的關係進行模擬的結果。
由於反射式顯示器的光源是外光,所以難以隨意調整光源的亮度。另外,由於外光穿過濾色片兩次,亦即在向顯示器的入射時及在從顯示器的發射時,所以可以說濾色片給反射率帶來的影響非常大。就是說,藉由改變濾色片的厚度,可以控制反射率。
於是,藉由使用液晶配向模擬軟體改變濾色 片的厚度而使顯示器的反射率變化,來計算出反射率與NTSC的覆蓋率的關係。另外,在計算中使用日本Shintech公司製造的LCD Master 1D。下面表1示出計算條件。注意,由於假設發生鏡面反射,所以以入射光為100%表示反射率。
圖10示出獲得的模擬結果。
接著,使用實際的反射式顯示器,對反射率與NTSC的面積比及反射率與NTSC的覆蓋率進行測定。在進行測定時,從極角30度入射光,在直上0度上接受光。由於不發生鏡面反射,所以以標準白板為100%表示反射率。另外,表2示出在該測定中使用的反射式顯示器的面板的條件。
圖11示出測定結果。
在此,在圖10所示的模擬結果與圖11所示的測定結果(實測)之間反射率的定義不同,因此進行校正以可以進行比較。明確而言,以將藉由模擬獲得的NTSC的覆蓋率-反射率曲線擬合至測定結果的曲線的方式用常數乘以對於光源100%的反射率。圖12示出結果。
由圖12所示的結果可知,藉由將NTSC的面積比或NTSC的覆蓋率設定為20%以上且60%以下,可以在具有反射式液晶元件的面板中獲得16%以上且26%以下的發射率。就是說,可知藉由將NTSC的面積比或NTSC的覆蓋率設定為20%以上且60%以下,可以獲得具有反射式液晶元件的顯示器(反射式顯示器)中所需要的亮度(反射率)。
實施例2
在本實施例中,對用於本發明的一個實施方 式的顯示裝置的發光元件的元件結構、製造方法以及特性進行說明。另外,圖13示出本實施例中將說明的發光元件的元件結構,表3示出具體結構。另外,表3還示出與各發光元件組合的濾色片(CF)。發光元件1與CF-R組合,發光元件2與CF-G組合,發光元件3及發光元件4與CF-B組合,圖14示出上述CF的透過特性。並且,下面示出在本實施例中使用的材料的化學式。
《發光元件的製造》
如圖13所示那樣,本實施例所示的發光元件包括如下結構:形成在基板900上的第一電極901;形成在第一電極901上的第一EL層902a;形成在第一EL層902a上的電荷產生層904;形成在電荷產生層904上的第二EL層902b;以及形成在第二EL層902b上的第二電極903。另外,本實施例所說明的發光元件1是主要呈現紅色光的發光元件,記載為發光元件1(R)。另外,發光元件2是主要呈現綠色光的發光元件,記載為發光元件2(G)。另外,發光元件3及發光元件4是主要呈現藍色光的發光元件,分別也記載為發光元件3(B1)、發光元件4(B1.5)。
首先,在基板900上形成第一電極901。電極面積為4mm2(2mm×2mm)。另外,作為基板900使用玻璃基板。另外,第一電極901藉由如下方法形成:首先,利用濺射法以200nm的厚度形成銀(Ag)、鈀(Pd)及 銅(Cu)的合金膜(Ag-Pd-Cu),然後利用濺射法形成ITSO膜來形成。關於ITSO的厚度,在發光元件1(R)中以厚度為110nm的方式形成,在發光元件2(G)中以厚度為45nm的方式形成,在發光元件3(B1)中以厚度為10nm的方式形成,而在發光元件4(B1.5)中以厚度為110nm的方式形成。另外,在本實施例中,第一電極901被用作陽極。此外,第一電極901是具有反射光的功能的反射電極。另外,在本實施例中發光元件3(B1)及發光元件4(B1.5)都是呈現藍色光的發光元件,但是電極間的光學距離不同,發光元件3以電極間的光學距離為1波長的方式進行調整,發光元件4(B1.5)以電極間的光學距離為1.5波長的方式進行調整。
在此,作為預處理,用水對基板的表面進行洗滌,以200℃焙燒1小時,然後進行UV臭氧處理370秒。然後,將基板放入其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並在真空蒸鍍裝置內的加熱室中,以170℃進行60分鐘的真空焙燒,然後對基板進行30分鐘左右的冷卻。
接著,在第一電極901上形成第一電洞注入層911a。首先,將真空蒸鍍裝置內部減壓到10-4Pa,然後將3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)與氧化鉬的重量比為PCPPn:氧化鉬=1:0.5,並且在發光元件1(R)中以厚度為10nm的方式、在發光元件2(G)中以厚度為20nm的方式、在發光元件3(B1) 中以厚度為12.5nm的方式、在發光元件4(B1.5)中以厚度為16nm的方式分別進行共蒸鍍來形成第一電洞注入層911a。
接著,在第一電洞注入層911a上形成第一電洞傳輸層912a。第一電洞傳輸層912a以厚度為10nm的方式使用PCPPn進行蒸鍍來形成。另外,第一發光元件、第二發光元件、第三發光元件以及第四發光元件都同樣。在下面的說明中,在各發光元件同樣時沒有特別的說明。
接著,在第一電洞傳輸層912a上形成發光層(A)913a。
在發光層(A)913a中,作為主體材料使用7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA),作為客體材料(螢光材料)使用N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03),以重量比為cgDBCzPA:1,6BnfAPrn-03=1:0.03且厚度為25nm的方式進行共蒸鍍來形成發光層(A)913a。
接著,在發光層(A)913a上形成第一電子傳輸層914a。第一電子傳輸層914a以cgDBCzPA的厚度為10nm且2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBphen)的厚度為15nm的方式依次蒸鍍cgDBCzPA及NBphen來形成。
接著,在第一電子傳輸層914a上形成第一電 子注入層915a。第一電子注入層915a以厚度為0.1nm的方式使用氧化鋰(Li2O)進行蒸鍍來形成。
接著,在第一電子注入層915a上形成電荷產生層904。電荷產生層904以厚度為2nm的方式使用銅酞青(簡稱:CuPc)進行蒸鍍來形成。
接著,在電荷產生層904上形成第二電洞注入層911b。第二電洞注入層911b以4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)和氧化鉬的重量比為DBT3P-II:氧化鉬=1:0.5且厚度為10nm的方式進行共蒸鍍來形成。
接著,在第二電洞注入層911b上形成第二電洞傳輸層912b。第二電洞傳輸層912b以厚度為15nm的方式使用4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)進行蒸鍍來形成。
接著,在第二電洞傳輸層912b上形成發光層(B)。發光層(B)具有第一發光層(B1)913(b1)與第二發光層(B2)913(b2)的疊層結構。
在第一發光層(B1)913(b1)中,作為主體材料使用2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹啉(簡稱:2mDBTBPDBq-II),作為輔助材料使用N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF),作為客體材料(磷光材料)使用三(4-三級丁基-6-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)3]),以重量比為 2mDBTBPDBq-II:PCBNBB:[Ir(tBuppm)3]=0.8:0.2:0.06且厚度為20nm的方式進行共蒸鍍來形成第一發光層(B1)913(b1)。另外,在第二發光層(B2)913(b2)中,作為主體材料使用2mDBTBPDBq-II,作為客體材料(磷光材料)使用雙{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-P)2(dibm)]),以重量比為2mDBTBPDBq-II:[Ir(dmdppr-P)2(dibm)]=1:0.04且厚度為20nm的方式進行共蒸鍍來形成第二發光層(B2)913(b2)。
接著,在第二發光層(B2)913(b2)上形成第二電子傳輸層914b。第二電子傳輸層914b以2mDBTBPDBq-II的厚度為25nm且Bphen的厚度為15nm的方式依次蒸鍍2mDBTBPDBq-II及Bphen來形成。
接著,在第二電子傳輸層914b上形成第二電子注入層915b。第二電子注入層915b以厚度為1nm的方式使用氟化鋰(LiF)進行蒸鍍而形成。
接著,在第二電子注入層915b上形成第二電極903。以厚度為25nm且體積比為1:0.1的方式共蒸鍍銀(Ag)與鎂(Mg),然後以厚度為70nm的方式利用濺射法形成銦錫氧化鎢(ITO),來形成第二電極903。另外,在本實施例中第二電極903被用作陰極。另外,第二電極903是具有反射光的功能及透過光的功能的半透射.半反射電極。
藉由上述製程,在基板900上形成在一對電極之間夾著EL層的發光元件。另外,上述製程中說明的第一電洞注入層911a、第一電洞傳輸層912a、第一發光層913a、第一電子傳輸層914a、第一電子注入層915a、電荷產生層904、第二電洞注入層911b、第二電洞傳輸層912b、第二發光層913b、第二電子傳輸層914b以及第二電子注入層915b是構成本發明的一個實施方式中的EL層的功能層。另外,在上述製造方法的蒸鍍過程中,都利用電阻加熱法進行蒸鍍。
本實施例中製造的發光元件如圖13所示那樣由基板900及基板905進行密封。另外,在基板905上具有濾色片906。另外,基板900與基板905的密封藉由如下方法進行:在氮氛圍的手套箱內使用密封劑將基板905固定於基板900上,將密封劑塗佈於形成在基板900上的發光元件的周圍,在密封時以6J/cm2照射365nm的紫外光,並且以80℃進行1小時的加熱處理。
本實施例中製造的發光元件都具有從發光元件的第二電極903一側向箭頭的方向發射光的結構。
《發光元件的工作特性》
在此,對製造的各發光元件的工作特性進行測定。該測定在室溫下(在保持為25℃的氛圍中)進行。圖15至圖18示出其結果。另外,圖19示出以2.5mA/cm2的電流密度使電流流過各發光元件時的發射光譜。發射光譜的測 定利用多通道光譜分析儀(由日本濱松光子學株式會社製造的PMA-12)進行。如圖19所示,呈現紅色光的發光元件1(R)的發射光譜在635nm附近具有峰值,呈現綠色光的發光元件2(G)的發射光譜在521nm附近具有峰值,呈現藍色光的發光元件3(B1)及發光元件4(B1.5)的發射光譜在453nm附近具有峰值,各發光元件都呈現窄光譜的形狀。另外,在本實施例的測定結果中,使用可以組合各發光元件與濾色片而獲得的發光。
圖14分別示出組合於發光元件1(R)使用的濾色片(紅色)(CF-R)、組合於發光元件2(G)使用的濾色片(綠色)(CF-G)以及組合於發光元件3(B1)及發光元件4(B1.5)使用的濾色片(藍色)(CF-B)的透過光譜。由圖14可知,CF-R的600nm的穿透率是52%,為60%以下。另一方面,CF-R的650nm的穿透率是89%,為70%以上。另外,CF-G的480nm的穿透率是26%,580nm的穿透率是52%,都為60%以下。另一方面,CF-G的530nm的穿透率是72%,為70%以上。並且,CF-B的510nm的穿透率是60%,為60%以下。另一方面,CF-B的450nm的穿透率是80%,為70%以上。
接著,下面表4示出利用色亮度計(Topcon Technohouse公司製造的BM-5A)對本實施例中製造的發光元件(發光元件1(R)、發光元件2(G)以及發光元件3(B1))的色度(x,y)進行測定的結果。在發光元件 1(R)中以730cd/m2附近的亮度測定其色度,在發光元件2(G)中以1800cd/m2附近的亮度測定其色度,在發光元件3(B1)中以130cd/m2附近的亮度測定其色度。上述亮度比是藉由合成R、G、B的亮度可以獲得D65附近的白色光的亮度比。
根據表4的結果,從上述色度(x,y)計算出的BT.2020的面積比為93%,BT.2020的覆蓋率為91%。另外,BT.2020的面積比為如下面積比:先分別計算出連接BT.2020規格的RGB的各CIE色度座標(x、y)而形成的三角形的面積A以及連接本實施例所示的三個發光元件的各CIE色度座標(x、y)而形成的三角形的面積B,再計算出上述面積比(B/A)。另外,BT.2020的覆蓋率為如下比率:藉由組合本實施例所示的三個發光元件的色度可以實現BT.2020規格的色域(上述三角形的內側)中的多少的比率(%)。
下面表5示出利用色亮度計對本實施例中製造的發光元件中的發光元件1(R)、發光元件2(G)以及發光元件4(B1.5)的色度(x,y)進行測定的結果。在發光元件1(R)中以550cd/m2附近的亮度測定其色度,在發光元件2(G)中以1800cd/m2附近的亮度測定其色度,在發光元件4(B1.5)中以130cd/m2附近的亮度測定其色度。上述亮度比是藉由合成R、G、B的亮度可以獲得D65附近的白色光的亮度比。
根據表5的結果,從上述色度(x,y)計算出的BT.2020的面積比為92%,BT.2020的覆蓋率為90%。如此,即使採用藍色的發光效率得到提高的結構,可以確保非常廣泛的色彩再現性。
由上述結果可知,本實施例中的發光元件1(R)的色度滿足如下範圍:色度x大於0.680且0.720以下,色度y為0.260以上且0.320以下,發光元件2(G)的色度滿足如下範圍:色度x為0.130以上且0.250以下 ,色度y大於0.710且0.810以下,發光元件3(B1)的色度滿足如下範圍:色度x為0.120以上且0.170以下,色度y為0.020以上且小於0.060。關於發光元件1(R),尤其是其色度x大於0.680,由此可知與DCI-P3(Digital Cinema Initiatives)規格(紅色(R)(x,y)=(0.680,0.320)、綠色(G)(x,y)=(0.265,0.690)以及藍色(B)(x,y)=(0.150,0.060))相比,紅色的色度良好。關於發光元件2(G),尤其是其色度y大於0.71,由此可知與DCI-P3規格及NTSC規格相比,綠色的色度良好。另外,關於發光元件3(B1)及發光元件4(B1.5),尤其是其色度y小於0.06,由此可知與DCI-P3規格相比,藍色的色度良好。
另外,從圖19所示的發射光譜的值計算出的各發光元件的色度(x,y)為如下:發光元件1(R)(0.693,0.303),發光元件2(G)(0.202,0.744),發光元件3(B1)(0.139,0.056),發光元件4(B1.5)(0.160,0.057)。由此,在發光元件1(R)、發光元件2(G)以及發光元件3(B1)的組合中,在根據發射光譜計算出色度時,BT.2020的面積比為86%,BT.2020的覆蓋率為84%。另外,在發光元件1(R)、發光元件2(G)以及發光元件4(B1.5)的組合中,在根據發射光譜計算出色度時,BT.2020的面積比為84%,BT.2020的覆蓋率為82%。
實施例3
在本實施例中,對用於本發明的一個實施方式的顯示裝置的發光元件的元件結構、製造方法以及特性進行說明。另外,圖13示出本實施例中將說明的發光元件的元件結構,表6示出具體結構。並且,下面示出在本實施例中使用的材料的化學式。作為濾色片使用圖14所示的濾色片。
《發光元件的製造》
與實施例2同樣地如圖13所示那樣,本實施例所示的發光元件包括如下結構:形成在基板900上的第一電極901;形成在第一電極901上的第一EL層902a;形成在第一EL層902a上的電荷產生層904;形成在電荷產生層904上的第二EL層902b;以及形成在第二EL層902b上的第二電極903。另外,本實施例所說明的發光元件5是主要呈現紅色光的發光元件,記載為發光元件5(R)。另外,發光元件6是主要呈現綠色光的發光元件,記載為發光元件6(G)。另外,發光元件7及發光元件8是主要呈現藍色光的發光元件,分別也記載為發光元件7(B1)、發光元件8(B1.5)。
在本實施例所示的發光元件與實施例2所說明的發光元件之間形成各元件時的層的厚度不同,但是可以使用與實施例2所說明的材料及方法相同的材料及方法,因此關於該材料及方法參照實施例2而在本實施例中 省略其說明。
《發光元件的工作特性》
在此,對製造的各發光元件的工作特性進行測定。該測定在室溫下(在保持為25℃的氛圍中)進行。圖20至圖23示出其結果。另外,圖24示出以2.5mA/cm2的電流密度使電流流過各發光元件時的發射光譜。發射光譜的測定利用多通道光譜分析儀(由日本濱松光子學株式會社製造的PMA-12)進行。如圖24所示,呈現紅色光的發光元件5(R)的發射光譜在635nm附近具有峰值,呈現綠色光的發光元件6(G)的發射光譜在530nm附近具有峰值,呈現藍色光的發光元件7(B1)的發射光譜在464nm附近具有峰值,發光元件8(B1.5)的發射光譜在453nm附近具有峰值,各發光元件都呈現窄光譜的形狀。另外,在本實施例的測定結果中,使用可以組合各發光元件與濾色片而獲得的發光。
接著,下面表7示出利用色亮度計(Topcon Technohouse公司製造的BM-5A)對本實施例中製造的發光元件(發光元件5(R)、發光元件6(G)以及發光元件7(B1))的色度(x,y)進行測定的結果。在發光元件5(R)中以650cd/m2附近的亮度測定色度,在發光元件6(G)中以1900cd/m2附近的亮度測定其色度,在發光元件7(B1)中以140cd/m2附近的亮度測定其色度。上述亮度比是藉由合成R、G、B的亮度可以獲得D65附近的白 色光的亮度比。
根據表7的結果,從上述色度(x,y)計算出的BT.2020的面積比為97%,BT.2020的覆蓋率為95%。
下面表8示出利用色亮度計對本實施例中製造的發光元件中的發光元件5(R)、發光元件6(G)以及發光元件8(B1.5)的色度(x,y)進行測定的結果。在發光元件5(R)中以650cd/m2附近的亮度測定其色度,在發光元件6(G)中以1900cd/m2附近的亮度測定其色度,在發光元件8(B1.5)中以170cd/m2附近的亮度測定其色度。上述亮度比是藉由合成R、G、B的亮度可以獲得D65附近的白色光的亮度比。
根據表8的結果,從上述色度(x,y)計算出的BT.2020的面積比為95%,BT.2020的覆蓋率為93%。如此,即使採用藍色的發光效率得到提高的結構,可以確保非常廣泛的色彩再現性。
由上述結果可知,本實施例中的發光元件5(R)的色度滿足如下範圍:色度x大於0.680且0.720以下,色度y為0.260以上且0.320以下,發光元件6(G)的色度滿足如下範圍:色度x為0.130以上且0.250以下,色度y大於0.710且0.810以下,發光元件7(B1)及發光元件8(B1.5)的色度滿足如下範圍:色度x為0.120以上且0.170以下,色度y為0.020以上且小於0.060。關於發光元件6(G),尤其是其色度y大於0.71,由此與DCI-P3規格及NTSC規格相比,綠色的色度良好。另外,關於發光元件7(B1)及發光元件8(B1.5),尤其是其色度y小於0.06,由此與DCI-P3規格相比,藍色的色度良好。
另外,從圖24所示的發射光譜的值計算出的 各發光元件的色度(x,y)為如下:發光元件5(0.696,0.300),發光元件6(0.185,0.760),發光元件7(0.140,0.048),發光元件8(0.154,0.056)。由此,在發光元件5(R)、發光元件6(G)以及發光元件7(B1)的組合中,在根據發射光譜計算出色度時,BT.2020的面積比為91%,BT.2020的覆蓋率為89%。另外,在發光元件5(R)、發光元件6(G)以及發光元件8(B1.5)的組合中,在根據發射光譜計算出色度時,BT.2020的面積比為88%,BT.2020的覆蓋率為86%。
(參考例)
在本參考例中,說明一種有機金屬錯合物,亦即,雙{4,6-二甲基-2-[5-(4-氰基-2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-dmCP)2(dpm)])(結構式(100))的合成方法,該有機金屬錯合物是可用於本發明的一個實施方式的發光元件的發光層的發光物質,並且發射光譜的峰值為600nm以上且700nm以下。另外,下面示出[Ir(dmdppr-dmCP)2(dpm)]的結構。
〈步驟1:5-羥基-2,3-(3,5-二甲基苯基)吡嗪的合成〉
首先,將5.27g的3,3’,5,5’-四甲基苯偶醯、2.61g的甘氨醯胺鹽酸鹽、1.92g的氫氧化鈉以及50mL的甲醇放入具備回流管的三頸燒瓶中,用氮氣置換燒瓶內的空氣。然後,在80℃下攪拌7小時使其反應。在此,添加2.5mL的12M鹽酸並攪拌30分鐘,然後添加2.02g的碳酸氫鉀並攪拌30分鐘。在對該懸浮液進行吸引過濾之後,使用水、甲醇對所得到的固體進行洗滌,得到目的物的吡嗪衍生物(乳白色粉末,產率為79%)。以下示出步驟1的合成方案(a-1)。
〈步驟2:三氟甲烷磺酸5,6-雙(3,5-二甲基苯基)吡嗪-2-基酯的合成〉
接著,將4.80g的藉由上述步驟1得到的5-羥基-2,3-(3,5-二甲基苯基)吡嗪、4.5mL的三乙基胺以及80mL的脫水二氯甲烷放入三頸燒瓶中,用氮氣置換燒瓶內的空氣。將該燒瓶冷卻到-20℃,滴加3.5mL的三氟甲烷磺酸酐,並在室溫下攪拌17.5小時。接著,將該燒瓶冷卻到0℃,然後,滴加0.7mL的三氟甲烷磺酸酐,並在室溫下攪拌22小時使其反應。對反應溶液添加50mL的水、5mL的1M鹽酸,並添加二氯甲烷,以將包含在反應溶液中的物質萃取於二氯甲烷中。對該二氯甲烷添加飽和碳酸氫鈉水溶液及飽和食鹽水進行洗滌,並添加硫酸鎂進行乾燥。在進行乾燥後對該溶液進行過濾,利用以甲苯:己烷=1:1(體積比)為展開溶劑的矽膠管柱層析對藉由濃縮濾液而得到的殘渣進行純化,以得到目的物的吡嗪衍生物(黃色油,產率為96%)。以下示出步驟2的合成方案(a-2)。
〈步驟3:5-(4-氰基-2,6-二甲基苯基)-2,3-雙(3,5-二甲基苯基)吡嗪(簡稱:Hdmdppr-dmCP)的合成〉
接著,將2.05g的藉由上述步驟2得到的三氟甲烷磺酸5,6-雙(3,5-二甲基苯基)吡嗪-2-基酯、1.00g的4-氰基-2,6-二甲基苯基硼酸、3.81g的磷酸三鉀、40mL的甲苯以及4mL的水放入三頸燒瓶中,用氮氣置換燒瓶內的空氣。藉由在減壓下於燒瓶內進行攪拌,以進行脫氣,然後添加0.044g的三(二亞苄基丙酮)二鈀(0)和0.084g的三(2,6-二甲氧基苯基)膦,回流7小時。對反應溶液添加水,並添加甲苯以將包含在反應溶液中的物質萃取於甲苯中。對該甲苯添加飽和食鹽水進行洗滌,並添加硫酸鎂進行乾燥。在進行乾燥後對該溶液進行過濾,利用以己烷:乙酸乙酯=5:1(體積比)為展開溶劑的矽膠管柱層析對藉由濃縮濾液而得到的殘渣進行純化,以得到目的物的吡嗪衍生物Hdmdppr-dmCP(白色粉末,產率為90%)。以下示出步驟3的合成方案(a-3)。
〈步驟4:二-μ-氯-四{4,6-二甲基-2-[5-(4-氰基-2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}二銥(III)(簡稱:[Ir(dmdppr-dmCP)2Cl]2)的合成〉
接著,將15mL的2-乙氧基乙醇、5mL的水、1.74g的藉由上述步驟3得到的Hdmdppr-dmCP(簡稱)、0.60g的氯化銥水合物(IrCl3.H2O)(日本古屋金屬公司製造)放入到具備回流管的茄形燒瓶中,用氬氣置換燒瓶內的空氣。然後,照射1小時的微波(2.45GHz,100W)來使其反應。在蒸餾而去除溶劑之後,對所得到的殘渣用己烷進行吸引過濾並洗滌,由此得到雙核錯合物[Ir(dmdppr-dmCP)2Cl]2(褐色粉末,產率為89%)。以下示出步驟4的合成方案(a-4)。
〈步驟5:雙{4,6-二甲基-2-[5-(4-氰基-2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-dmCP)2(dpm)])的合成〉
再者,將30mL的2-乙氧基乙醇、0.96g的藉由上述步驟4得到的雙核錯合物[Ir(dmdppr-dmCP)2Cl]2、0.26g的二叔戊醯甲烷(簡稱:Hdpm)以及0.48g的碳酸鈉放入到具備回流管的茄形燒瓶中,用氬氣置換燒瓶內的空氣。然後,照射60分鐘的微波(2.45GHz,100W)。在此,添加0.13g的Hdpm,並對反應容器照射60分鐘的微波(2.45GHz,120W)來使其反應。蒸餾而去除溶劑,利用 以二氯甲烷:己烷=1:1(體積比)為展開溶劑的矽膠管柱層析對所得到的殘渣進行純化。再者,利用以二氯甲烷為展開溶劑的矽膠管柱層析進行純化,然後使用二氯甲烷和甲醇的混合溶劑進行再結晶,由此得到有機金屬錯合物[Ir(dmdppr-dmCP)2(dpm)]的紅色粉末(產率為37%)。利用梯度昇華方法對所得到的0.39g的紅色粉末進行昇華提純。在昇華提純中,在壓力為2.6Pa、氬流量為5mL/min的條件下,以300℃進行加熱。在該昇華提純之後,以85%的產率得到目的物的紅色固體。以下示出步驟5的合成方案(a-5)。
以下示出藉由核磁共振氫譜(1H-NMR)分析在上述步驟5中得到的紅色粉末的結果。由此可知,在本合成例子中得到了以上述結構式(100)表示的有機金屬錯合物[Ir(dmdppr-dmCP)2(dpm)]。
1H-NMR.δ(CD2Cl2):0.91(s,18H),1.41(s,6H),1.95(s,6H),2.12(s,12H),2.35(s,12H),5.63(s,1H),6.49(s,2H),6.86(s,2H),7.17(s,2H),7.34(s,4H),7.43(s,4H),8.15(s,2H)。

Claims (9)

  1. 一種顯示裝置,包括:液晶元件;以及發光元件,其中,在從該液晶元件經過濾色片得到的發光中,NTSC的面積比為20%以上且60%以下,並且,在從該發光元件得到的發光中,BT.2020的面積比為80%以上且100%以下。
  2. 一種顯示裝置,包括:液晶元件;以及發光元件,其中,在從該液晶元件經過濾色片得到的發光中,NTSC的覆蓋率為20%以上且60%以下,並且,在從該發光元件得到的發光中,BT.2020的覆蓋率為75%以上且100%以下。
  3. 一種顯示裝置,包括:液晶元件;以及發光元件,其中,在從該液晶元件得到的發光中,NTSC的覆蓋率為20%以上且60%以下,並且,在從該發光元件得到的發光中,在使用CIE1931色度座標表示的色度(x,y)中,色度x為0.130以上且0.250以下,色度y大於0.710且0.810以下。
  4. 一種顯示裝置,包括:液晶元件;以及發光元件,其中,在從該液晶元件得到的發光中,NTSC的覆蓋率為20%以上且60%以下,並且,在從該發光元件得到的發光中,在使用CIE1931色度座標表示的色度(x,y)中,色度x大於0.680且0.720以下,色度y為0.260以上且0.320以下。
  5. 一種顯示裝置,包括:液晶元件;以及發光元件,其中,在從該液晶元件得到的發光中,NTSC的覆蓋率為20%以上且60%以下,並且,在從該發光元件得到的發光中,在使用CIE1931色度座標表示的色度(x,y)中,色度x為0.120以上且0.170以下,色度y為0.020以上且小於0.060。
  6. 根據申請專利範圍第1至5中任一項之顯示裝置,其中該液晶元件是反射式液晶元件,並且該發光元件是在反射電極與半透射.半反射電極之間具有EL層的發光元件。
  7. 一種電子裝置,包括:申請專利範圍第1至6中任一項之顯示裝置;以及 操作鍵、揚聲器、麥克風或者外部連接部。
  8. 一種行動電話機,包括:申請專利範圍第1至6中任一項之顯示裝置;以及操作鍵、揚聲器、麥克風或者外部連接部。
  9. 一種可攜式資訊終端,包括:申請專利範圍第1至6中任一項之顯示裝置;以及操作鍵、揚聲器、麥克風或者外部連接部。
TW105137475A 2016-08-17 2016-11-16 顯示裝置、電子裝置以及攜帶資訊終端 TWI724060B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-159793 2016-08-17
JP2016159793 2016-08-17

Publications (2)

Publication Number Publication Date
TW201819960A true TW201819960A (zh) 2018-06-01
TWI724060B TWI724060B (zh) 2021-04-11

Family

ID=61191487

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105137475A TWI724060B (zh) 2016-08-17 2016-11-16 顯示裝置、電子裝置以及攜帶資訊終端
TW110110256A TWI746394B (zh) 2016-08-17 2016-11-16 顯示裝置、電子裝置以及攜帶資訊終端

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110110256A TWI746394B (zh) 2016-08-17 2016-11-16 顯示裝置、電子裝置以及攜帶資訊終端

Country Status (4)

Country Link
US (2) US20180052363A1 (zh)
JP (1) JP7044497B2 (zh)
TW (2) TWI724060B (zh)
WO (1) WO2018033804A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695210B (zh) * 2018-07-25 2020-06-01 友達光電股份有限公司 照明裝置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770676B1 (en) * 2005-09-30 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN107146806B (zh) * 2017-05-12 2021-09-28 京东方科技集团股份有限公司 一种oled显示基板及oled显示装置
JP2019033192A (ja) * 2017-08-09 2019-02-28 株式会社ジャパンディスプレイ 発光素子、および発光素子を有する表示装置
GB201806530D0 (en) * 2018-04-21 2018-06-06 Savvy Science Ltd Pixel arrangement comprising a perovskite light emitting diode
WO2020021399A1 (ja) * 2018-07-27 2020-01-30 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
US11737343B2 (en) 2018-09-17 2023-08-22 Excyton Limited Method of manufacturing perovskite light emitting device by inkjet printing
JP2020083007A (ja) * 2018-11-22 2020-06-04 兪樺 阮 変色が可能な車両ランプ

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767264B2 (ja) 1999-08-25 2006-04-19 セイコーエプソン株式会社 液晶表示装置および電子機器
WO2001091098A1 (fr) 2000-05-24 2001-11-29 Hitachi, Ltd. Terminal portable et afficheur commutable entre couleur et noir-et-blanc
JP2002196702A (ja) 2000-12-25 2002-07-12 Sony Corp 画像表示装置
JP4202030B2 (ja) 2001-02-20 2008-12-24 シャープ株式会社 表示装置
JP4176400B2 (ja) 2001-09-06 2008-11-05 シャープ株式会社 表示装置
JP4043864B2 (ja) 2001-09-06 2008-02-06 シャープ株式会社 表示装置及びその駆動方法
JP3898012B2 (ja) 2001-09-06 2007-03-28 シャープ株式会社 表示装置
US7248235B2 (en) 2001-09-14 2007-07-24 Sharp Kabushiki Kaisha Display, method of manufacturing the same, and method of driving the same
JP2003228304A (ja) 2002-01-31 2003-08-15 Toyota Industries Corp 表示装置
TW544944B (en) 2002-04-16 2003-08-01 Ind Tech Res Inst Pixel element structure of sunlight-readable display
JP4122828B2 (ja) 2002-04-30 2008-07-23 日本電気株式会社 表示装置及びその駆動方法
US20060072047A1 (en) 2002-12-06 2006-04-06 Kanetaka Sekiguchi Liquid crystal display
JP3852931B2 (ja) 2003-03-26 2006-12-06 株式会社東芝 発光表示装置
EP1671314A1 (en) 2003-09-30 2006-06-21 Koninklijke Philips Electronics N.V. Multiple primary color display system and method of display using multiple primary colors
KR20070019495A (ko) 2005-08-12 2007-02-15 삼성에스디아이 주식회사 백색 유기 발광 소자 및 그의 제조방법
JP2007122033A (ja) 2005-09-30 2007-05-17 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
EP1770676B1 (en) 2005-09-30 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2007232882A (ja) 2006-02-28 2007-09-13 Casio Comput Co Ltd 表示装置及び電子機器
US7990499B2 (en) * 2006-03-20 2011-08-02 Sharp Kabushiki Kaisha Display device
US7951450B2 (en) 2006-11-10 2011-05-31 Global Oled Technology Llc Red color filter element
US7973902B2 (en) 2006-11-10 2011-07-05 Global Oled Technology Llc Display with RGB color filter element sets
JP2009158140A (ja) 2007-12-25 2009-07-16 Sony Corp エレクトロルミネッセンス素子及びこれを用いた表示装置並びに照明装置
JP4725577B2 (ja) 2007-12-28 2011-07-13 カシオ計算機株式会社 表示装置の製造方法
US8101755B2 (en) 2008-10-23 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex including pyrazine derivative
TWI393950B (zh) 2009-01-08 2013-04-21 Au Optronics Corp 半穿反型顯示面板
US8514352B2 (en) * 2010-12-10 2013-08-20 Sharp Kabushiki Kaisha Phosphor-based display
US9793444B2 (en) 2012-04-06 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9711110B2 (en) 2012-04-06 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Display device comprising grayscale conversion portion and display portion
JP2013221965A (ja) 2012-04-13 2013-10-28 Seiko Epson Corp 電気光学装置
TWI588540B (zh) 2012-05-09 2017-06-21 半導體能源研究所股份有限公司 顯示裝置和電子裝置
TWI650580B (zh) 2012-05-09 2019-02-11 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置
KR102166216B1 (ko) * 2014-02-07 2020-10-15 디아이씨 가부시끼가이샤 컬러 필터용 녹색 안료 조성물 및 컬러 필터
US20150255029A1 (en) 2014-03-07 2015-09-10 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
US20160042696A1 (en) 2014-08-08 2016-02-11 Semiconductor Energy Laboratory Co., Ltd. Display panel, data processing device, program
JP2016038490A (ja) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 表示パネル、表示モジュール、及び電子機器
US9343691B2 (en) 2014-08-08 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2017219552A (ja) * 2014-10-24 2017-12-14 シャープ株式会社 表示装置
US10680017B2 (en) 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
KR20160079687A (ko) 2014-12-26 2016-07-06 삼성전자주식회사 반사방지필름 및 이를 구비한 유기발광장치
US9991471B2 (en) 2014-12-26 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, and electronic device
KR102494418B1 (ko) 2015-04-13 2023-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 패널, 데이터 처리 장치, 및 표시 패널의 제조방법
US9761642B2 (en) * 2015-05-22 2017-09-12 Microsoft Technology Licensing, Llc Transflective OLED display
WO2017025836A1 (en) 2015-08-07 2017-02-16 Semiconductor Energy Laboratory Co., Ltd. Display panel, data processing device, and method for manufacturing display panel
KR20170031620A (ko) 2015-09-11 2017-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제작 방법
WO2017055971A1 (en) 2015-10-01 2017-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695210B (zh) * 2018-07-25 2020-06-01 友達光電股份有限公司 照明裝置

Also Published As

Publication number Publication date
US20200133064A1 (en) 2020-04-30
TWI746394B (zh) 2021-11-11
TWI724060B (zh) 2021-04-11
JP2018032020A (ja) 2018-03-01
US11300826B2 (en) 2022-04-12
TW202129314A (zh) 2021-08-01
WO2018033804A1 (en) 2018-02-22
US20180052363A1 (en) 2018-02-22
JP7044497B2 (ja) 2022-03-30

Similar Documents

Publication Publication Date Title
US11387280B2 (en) Light-emitting device and electronic device
TWI788167B (zh) 發光元件、發光裝置、電子裝置及照明設備
TWI724060B (zh) 顯示裝置、電子裝置以及攜帶資訊終端
TWI803360B (zh) 顯示器裝置、顯示器模組及電子裝置
US20170331065A1 (en) Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
TW202036954A (zh) 發光裝置、照明裝置、顯示裝置、模組及電子機器
JP2023112102A (ja) 発光素子、発光装置、電子機器および照明装置
TW201812396A (zh) 顯示裝置
WO2020229920A1 (ja) 半導体装置、および半導体装置の動作方法
TW202101802A (zh) 顯示裝置、顯示模組、電子裝置及電視機
WO2020222061A1 (ja) 表示装置の動作方法
TWI841368B (zh) 顯示器裝置、顯示器模組及電子裝置