TW201719271A - 遮罩基底、相位轉移遮罩及半導體元件之製造方法 - Google Patents

遮罩基底、相位轉移遮罩及半導體元件之製造方法 Download PDF

Info

Publication number
TW201719271A
TW201719271A TW105125100A TW105125100A TW201719271A TW 201719271 A TW201719271 A TW 201719271A TW 105125100 A TW105125100 A TW 105125100A TW 105125100 A TW105125100 A TW 105125100A TW 201719271 A TW201719271 A TW 201719271A
Authority
TW
Taiwan
Prior art keywords
light
film
phase transfer
mask
phase
Prior art date
Application number
TW105125100A
Other languages
English (en)
Other versions
TWI600961B (zh
Inventor
Osamu Nozawa
Hiroaki Shishido
Takenori Kajiwara
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of TW201719271A publication Critical patent/TW201719271A/zh
Application granted granted Critical
Publication of TWI600961B publication Critical patent/TWI600961B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0652Silicon nitride
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

提供一種遮罩基底,係兼具相對於ArF曝光光線而以既定穿透率來通過的機能及相對於所穿透之ArF曝光光線而產生既定相位差機能,並具備有高ArF耐光性之相位轉移膜。相位轉移膜係具有讓ArF曝光光線以2%以上的穿透率來穿透的機能、及相對於所穿透之ArF曝光光線而產生150度以上,180度以下之相位差機能,並從基板側層積有下層及上層,下層係由矽或於矽含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素所形成,表層以外的上層係由矽及氮,或於該等含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成,下層的彎折率n未達1.8且消光係數k在2.0以上,上層之彎折率n為2.3以上且消光係數k為1.0以下,上層係較下層要厚。

Description

遮罩基底、相位轉移遮罩及半導體元件之製造方法
本發明係關於一種遮罩基底及使用其遮罩基底所製造之相位轉移遮罩。又,本發明係關於一種使用上述相位轉移遮罩的半導體元件之製造方法。
一般而言,半導體製造工序中,會使用光微影法來進行微細圖案的形成。又,此微細圖案的形成通常會使用數片被稱為轉印用遮罩之基板。再將半導體元件之圖案微細化時,除了轉印用遮罩所形成之遮罩圖案的微細化外,仍必須讓光微影所使用之曝光光源的波長短波長化。半導體裝置製造時之曝光光源在近年來已從KrF準分子雷射(波長248nm)朝ArF準分子雷射(波長193nm)進行短波長化。
轉印用遮罩的種類除了以往在透光性基板上具備由鉻系材料所構成之遮光圖案的二元遮罩外,已知有半調型相位轉移遮罩。半調型相位轉移遮罩的相位轉移膜多使用鉬矽(MoSi)系材料。但是,如專利文獻1所揭示,MoSi系膜在近年來發現對ArF準分子雷射之曝光光線的耐受性(即ArF耐光性)較低。專利文獻1中,係對形成有圖案後之MoSi系膜進行電漿處理、UV照射處理、或加熱處理,來在MoSi系膜的圖案表面形成非動態膜,以提高MoSi系膜之ArF耐光性。
專利文獻2中,說明MoSi系膜之ArF耐光性較低是因為膜中的過渡金屬會因為ArF準分子雷射的照射產生光激發而不穩定化。然後,此專利文獻2中,係於形成相位轉移膜的材料使用不含過渡金屬之材料的SiNx。專利文獻2中,在透光性基板上以單層形成SiNx膜來做為相位轉移膜的情況,獲得其相位轉移膜所要求之光學特性的SiNx膜的組成顯示出需要在反應性濺鍍法成膜時以不穩定的成膜條件(過渡模式)來加以成膜。然後,為了解決此技術性課題,專利文獻2的相位轉移膜便為含高穿透層及低穿透層 之層積構造。進一步地,高穿透層係使用在毒化模式區域所成膜之含氮量相對較多的SiN系膜,低穿透層係使用在金屬模式區域所成膜之含氮量相對較少的SiN系膜。
【先前技術文獻】
【專利文獻】
專利文獻1:日本特開2010-217514號公報
專利文獻2:日本特開2014-137388號公報
專利文獻2所揭示之SiN系多層構造的相位轉移膜與以往的MoSi系材料的相位轉移膜相比,大幅地改善了ArF耐光性。在SiN系多層構造的相位轉移膜形成轉印圖案後,累積照射ArF曝光光線時所產生的圖案寬度的CD變化(變胖)與以往的MoSi系材料的相位轉移膜情況相比,會被大幅地抑制。但是,因為轉印圖案的更加微細化、多重圖案技術的使用等之情事,使得含有相位轉移膜之轉印用遮罩的製造難易度更加提高。又,從遮罩基底到製造轉印用遮罩的所需時間也更加變長。然後,由於該等情事,導致轉印用遮罩的價格高漲。因此,便要求含相位轉移遮罩之轉印用遮罩有更加長壽命化。
Si3N4在化學理論上係穩定的材料,ArF耐光性也是矽與氮所構成之材料中的優異性最高。相位轉移膜需要兼具有相對於入射至此相位轉移膜之ArF曝光光線能以既定穿透率穿透的機能,以及給予既定相位差之機能。Si3N4與含氮量較少的SiNx相比,由於ArF曝光光線之波長中的彎折率n較大,故使用Si3N4為相位轉移膜材料的情況,因為能針對ArF曝光光線賦予既定相位差,故可讓必要的膜厚變薄。之後,單獨記載彎折率n的情況,係指相對於ArF曝光光線之波長的彎折率n,單獨記載消光係數k的情況,係指相對於ArF曝光光線之波長的的消光係數k。
因ArF耐光性而成為問題的相位轉移圖案之CD變化最大的原因應該是ArF曝光光線入射至相位轉移膜的內部時,光激發了構成此相位轉移膜之元素。在MoSi系材料的情況,過渡金屬之鉬(Mo)會容易導致光激發,起因於此而從表面使得矽(Si)的氧化大幅進行,使得圖案體積大幅膨脹。因此,MoSi系材料的相位轉移膜在ArF曝光光線照射前後之CD變化(變胖)顯著。在SiN系材料之相位轉移膜的情況,由於不含有過渡金屬,故ArF曝光光線之照 射前後的CD變化較小。但是,雖相位轉移膜中的矽未若過渡金屬般顯著,但仍會因ArF曝光光線之照射而被光激發。
用以製造相位轉移遮罩或轉印用遮罩之遮罩基底的圖案形成用薄膜(含相位轉移膜)係以成為非晶或微晶構造之成膜條件來濺鍍成膜。非晶或微晶構造之薄膜中的Si3N4的鍵結狀態較結晶膜中的Si3N4要弱。因此,非晶或微晶構造之Si3N4的相位轉移膜會容易因ArF曝光光線的照射而讓膜中的矽被光激發。以相位轉移膜為Si3N4結晶膜,便可抑制膜中的矽被光激發。但是,以乾蝕刻將轉印圖案形成於結晶膜時,其圖案側壁的粗度由於越大幅超過作為轉印圖案所容許的LER(Line Edge Roughness)則會越差,故結晶膜便無法適用於圖案形成用薄膜(相位轉移膜)。由於該等情事,僅以專利文獻2所揭示般的SiN系材料的相位轉移膜為基礎來單單調整組成等,將難以完成更長壽命之相位轉移遮罩。
Si3N4係彎折率n較大,相反地,ArF曝光光線的波長中之消光係數k會大幅較小的材料。因此,以Si3N4來形成相位轉移膜,將既定相位差設計為較180要小時,便只能做出穿透率低於20%左右的高穿透率者。若降低SiN系材料的含氮量,則可能製作出既定相位差及既定穿透率的相位轉移膜,但當然地,隨著含氮量降低,ArF耐光性也會下降。因此,在作為較Si3N4所構成之相位轉移膜要低穿透率之相位轉移膜的情況,便需要將相位轉移膜為Si3N4所構成之層及用以調整穿透率之層的層積構造。但是,單僅設置調整穿透率之層的情況,由於此層之ArF耐光性不高,故無法完成更加長壽命化的相位轉移遮罩。
於是,本發明乃係為了解決以往課題者,目的在於提供一種遮罩基底,係在透光性基板上具備相位轉移膜之遮罩基底中,兼具相對於ArF曝光光線而能以既定穿透率穿透之機能,及相對於所穿透之ArF曝光光線能產生既定相位差之機能的相位轉移膜,進一步地具備ArF耐光性較Si3N4所構成之相位轉移膜要高的相位轉移膜。又,目的在於提供一種相位轉移遮罩,係使用此遮罩基底所加以製造。然後,本發明目的在於提供一種半導體元件之製造方法,係使用此般相位轉移遮罩。
為了達成前述課題,本發明具有以下構成。
(構成1)
一種遮罩基底,係在透光性基板上具備相位轉移膜之遮罩基底,該相位轉移膜具有讓ArF準分子雷射之曝光光線以2%以上的穿透率來穿透的機能,以及相對於穿透該相位轉移膜之該曝光光線而與通過和該相位轉移膜之厚度相同距離的空氣中之該曝光光線之間產生150度以上,180以下之相位差機能;該相位轉移膜係含有從該透光性基板側層積有下層及上層的構造;該下層係由矽所構成之材料,或於矽所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該上層除其表層部分以外,係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該下層的彎折率n未達1.8且消光係數k在2.0以上;該上層的彎折率n為2.3以上且消光係數k為1.0以下;該上層厚度係較該下層要厚。
(構成2)
如構成1之遮罩基底,其中該下層厚度為未達12nm。
(構成3)
如構成1或2之遮罩基底,其中該上層厚度為該下層厚度的5倍以上。
(構成4)
如構成1至3任一項之遮罩基底,其中該下層係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成。
(構成5)
如構成1至4任一項之遮罩基底,其中該下層的含氮量為40原子%以下。
(構成6)
如構成1至5任一項之遮罩基底,其中該上層之表層部分係以除了該表層部分而於形成上層之材料添加有氧之材料所形成。
(構成7)
如構成1至6任一項之遮罩基底,其中該上層的含氮量係較50原子%要大。
(構成8)
如構成1至7任一項之遮罩基底,其中該下層係連接於該透光性基板之表面來加以形成。
(構成9)
如構成1至8任一項之遮罩基底,其中該相位轉移膜上係具備遮光膜。
(構成10)
如構成9之遮罩基底,其中該遮光膜係由含鉻材料所構成。
(構成11)
如構成9之遮罩基底,其中該遮光膜係由含過渡金屬及矽的材料所構成。
(構成12)
如構成9之遮罩基底,其中該遮光膜係具有從該相位轉移膜側依序層積有由含鉻材料所構成之層及含過渡金屬與矽之材料所構成之層的構造。
(構成13)
一種相位轉移遮罩,係於透光性基板上具備形成有轉印圖案之相位轉移膜的相位轉移遮罩,該相位轉移膜具有讓ArF準分子雷射之曝光光線以2%以上的穿透率來穿透的機能,以及相對於穿透該相位轉移膜之該曝光光線而與通過和該相位轉移膜之厚度相同距離的空氣中之該曝光光線之間產生150度以上,180以下之相位差機能;該相位轉移膜係含有從該透光性基板側層積有下層及上層的構造;該下層係由矽所構成之材料,或於矽所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該上層除其表層部分以外,係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該下層的彎折率n未達1.8且消光係數k在2.0以上;該上層的彎折率n為2.3以上且消光係數k為1.0以下;該上層厚度係較該下層要厚。
(構成14)
如構成13之相位轉移遮罩,其中該下層厚度為未達12nm。
(構成15)
如構成13或14之相位轉移遮罩,其中該上層厚度為該下層厚度的5倍以上。
(構成16)
如構成13至15任一項之相位轉移遮罩,其中該下層係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成。
(構成17)
如構成13至16任一項之相位轉移遮罩,其中該下層的含氮量為40原子%以下。
(構成18)
如構成13至17任一項之相位轉移遮罩,其中該上層之表層部分係以除了該表層部分而於形成上層之材料添加有氧之材料所形成。
(構成19)
如構成13至18任一項之相位轉移遮罩,其中該上層的含氮量係較50原子%要大。
(構成20)
如構成13至19任一項之相位轉移遮罩,其中該下層係連接於該透光性基板之表面來加以形成。
(構成21)
如構成13至20任一項之相位轉移遮罩,其中該相位轉移膜上係具備形成有遮光圖案之遮光膜。
(構成22)
如構成21之相位轉移遮罩,其中該遮光膜係由含鉻材料所構成。
(構成23)
如構成21之相位轉移遮罩,其中該遮光膜係由含過渡金屬及矽的材料所構成。
(構成24)
如構成21之相位轉移遮罩,其中該遮光膜係具有從該相位轉移膜側依序層積有由含鉻材料所構成之層及含過渡金屬與矽之材料所構成之層的構造。
(構成25)
如構成21至24任一項之相位轉移遮罩,其中未層積有該遮光膜之該相位轉移膜的區域中,相對於從該透光性基板側所入射之該曝光光線的內面反射率為35%以上。
(構成26)
如構成21至25任一項之相位轉移遮罩,其中層積有該遮光膜之該相位轉移膜的區域中,相對於從該透光性基板側所入射之該曝光光線的內面反射率為30%以上。
(構成27)
一種半導體元件之製造方法,係具備使用如構成21至26任一項之相位轉移遮罩,來將轉印圖案曝光轉印至半導體基板上之阻劑膜的工序。
本發明之遮罩基底係在透光性基板上具備相位轉移膜,此相位轉移膜兼具有相對於ArF曝光光線以既定穿透率穿透的機能以及相對於所穿透之ArF曝光光線而產生既定相位差的機能,且能讓ArF耐光性較Si3N4所構成之相位轉移膜要高。
1‧‧‧透光性基板
2‧‧‧相位轉移膜
21‧‧‧下層
22‧‧‧上層
2a‧‧‧相位轉移圖案
3‧‧‧遮光膜
3a,3b‧‧‧遮光圖案
4‧‧‧硬遮罩膜
4a‧‧‧硬遮罩圖案
5a‧‧‧第1阻劑圖案
6b‧‧‧第2阻劑圖案
100‧‧‧遮罩基底
200‧‧‧相位轉移遮罩
圖1係顯示本發明實施形態之遮罩基底構成的剖面圖。
圖2係顯示本發明實施形態之相位轉移遮罩之製造工序的概略剖面圖。
以下,便就本發明實施形態來加以說明。本發明人等在使用相較於MoSi系材料有高ArF耐光性之材料的SiN系材料之相位轉移膜中,就兼具讓ArF曝光光線以既定穿透率來穿透的機能及產生既定相位差之機能,並且更加提高ArF耐光性之方法進行了精心研究。
以往形成相位轉移膜的材料較佳是彎折率n盡可能大,且消光係數k是在不過大不過小的範圍內者。以往的相位轉移膜主要是以在相位轉移膜內部吸收ArF曝光光線而以既定穿透率讓ArF曝光光線穿透,並相對於所穿透之ArF曝光光線來產生既定相位差為設計思想。依以往的相位轉移膜之設計思想,在透光性基板上形成使用Si3N4之相位轉移膜圖案,來製造相位轉移遮罩的情況,從透光性基板側入射至相位轉移膜內的ArF曝光光線會在相位轉移膜內被吸收,並以既定穿透率讓ArF曝光光線從相位轉移 膜射出。ArF曝光光線在此相位轉移膜內被吸收時,膜中的矽會光激發。相位轉移膜中光激發的矽比率越高,則鍵結氧而體積膨脹的矽比率便越高,使得CD變化量變大。
另一方面,相位轉移膜所要求之相對於ArF曝光光線的既定穿透率會較低,僅靠Si3N4層而無法成為其既定穿透率的情況,便需要讓相位轉移膜為含氮量相對較多的Si3N4之高穿透層及含氮量相對較少的SiN之低穿透層的層積構造。此情況,ArF曝光光線在穿透SiN低穿透層時,ArF曝光光線的吸收會較穿透Si3N4之高穿透層時要多。SiN低穿透層由於含氮量較少,故相較於Si3N4高穿透層的矽,低穿透層的矽會較容易光激發,而難以避免低穿透層的CD變化量變大。如上述,即便使用以往相位轉移膜的設計思想,也難以讓SiN系材料的相位轉移膜之ArF耐光性更加提升。
本發明人等為了讓相位轉移膜相對於ArF曝光光線之穿透率為既定值,便將透光性基板與相位轉移膜之介面的反射率(內面反射率)較以往相位轉移膜要為提高,來思考會不會提高相位轉移膜相對於ArF曝光光線的耐光性。從透光性基板側讓ArF曝光光線朝相位轉移膜入射時,藉由讓透光性基板與相位轉移膜之介面所反射的ArF曝光光量較以往要高,便可讓入射至相位轉移膜內部的曝光光量降低。藉此,在相位轉移膜內被吸收的ArF曝光光量即便較以往要少,仍可讓從相位轉移膜所射出的ArF曝光光量等同於以往的相位轉移膜。藉此,在相位轉移膜內部的矽便難以光激發,而可提高此相位轉移膜之ArF耐光性。
單層構造之相位轉移膜中,會難以讓內面反射率較以往的相位轉移膜要高。於是,便對SiN系高穿透層與SiN系低穿透層的層積構造之相位轉移膜來進行檢討。在檢討於高穿透層使用高含氮量之SiN,於低穿透層使用低含氮量之SiN的相位轉移膜時,雖可為滿足既定相位差及既定穿透率條件的膜設計,但卻得知單純地僅靠層積該等層,仍會難以提高相位轉移膜整體的內面反射率。Si3N4般高含氮量的SiN係彎折率n較大,消光系數k較小的材料,即便將該材料使用於配置在相位轉移膜之透光性基板側的下層,仍無法提高相對於ArF曝光光線之內面反射率。因此,Si3N4般高含氮量的SiN乃適用於相位轉移膜的上層。
為了提高相位轉移膜相對於ArF曝光光線之內面反射率,不僅透光性 基板與相位轉移膜下層之介面的反射,最好是也提高構成相位轉移膜下層與上層之介面的反射。為了滿足該等條件,下層係使用彎折率n較小,消光係數k較大的材料。低含氮量的SiN由於具有此般光學特性,故將其使用於相位轉移膜的下層。亦即,遮罩基底係在透光性基板上設有具備層積了低含氮量的SiN系材料之下層及高含氮量的SiN系材料之上層構造的相位轉移膜。
下層由於係以消光係數k較透光性基板要大幅大的材料所形成,故從透光性基板側所照射之ArF曝光光線會在透光性基板與下層的介面以較以往相位轉移膜要高的光量比率來加以反射。然後,上層係由消光係數k係較下層要小,彎折率要大的材料所形成,故入射至下層內部的ArF曝光光線會在下層與上層的介面被部分反射。亦即,此般相位轉移膜會在透光性基板與下層的介面、下層與上層的介面之2處來反射ArF曝光光線,故會較以往相位轉移膜要提高相對於ArF曝光光線之內面反射率。將此般新的設計思想適用於相位轉移膜,來調整形成上層與下層的材料之成膜條件,調整上層及下層之彎折率n、消光係數k及膜厚,便能兼具相對於ArF曝光光線之既定穿透率及既定相位差,而可形成有既定內面反射率之相位轉移膜。藉由為以上般相位轉移膜之構成,便得到可解決前述技術性課題的結論。
亦即,本發明遮罩基底係在透光性基板上具備相位轉移膜之遮罩基底,該相位轉移膜具有讓ArF準分子雷射之曝光光線以2%以上的穿透率來穿透的機能,以及相對於穿透該相位轉移膜之該曝光光線而與通過和該相位轉移膜之厚度相同距離的空氣中之該曝光光線之間產生150度以上,180以下之相位差機能;該相位轉移膜係含有從透光性基板側層積有下層及上層的構造;下層係由矽所構成之材料,或於矽所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;上層除其表層部分以外,係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;下層的彎折率n未達1.8且消光係數k在2.0以上;上層的彎折率n為2.3以上且消光係數k為1.0以下;上層厚度係較下層要厚。
圖1係顯示本發明實施形態相關之遮罩基底100構成的剖面圖。圖1 所示之本發明遮罩基底100係於透光性基板1上具有依序層積相位轉移膜2、遮光膜3及硬遮罩膜4。
透光性基板1除了合成石英玻璃外,可使用石英玻璃、鋁矽玻璃、鈉鈣玻璃、低熱膨脹玻璃(SiO2-TiO2玻璃等)等來形成。該等中,又以合成石英玻璃對ArF準分子雷射光之穿透率較高,而特別適合作為形成遮罩基底之透光性基板1的材料。形成透光性基板1之材料於ArF曝光光線波長(約193nm)之彎折率n較佳為1.5以上,1.6以下,更佳為1.52以上,1.59以下,最佳為1.54以上,1.58以下。
相位轉移膜2被要求相對於ArF曝光光線的穿透率要為2%以上。穿過相位轉移膜2內部的曝光光線與穿過空氣中的曝光光線之間要產生充分的相位轉移效果,則相對於曝光光線的穿透率至少要為2%。相位轉移膜2相對於曝光光線的穿透率較佳為3%以上,更佳為4%以上。另一方面,隨著相位轉移膜2相對於曝光光線之穿透率提高,則提高內面反射率便會變得困難。因此,相位轉移膜2相對於曝光光線之穿透率較佳為30%以下,更佳為20%以下,最佳為10%以下。
相位轉移膜2為了獲得適當的相位轉移效果,相對於所穿透的ArF曝光光線,被要求與通過與此相位轉移膜2厚度同樣距離之空氣中的光線之間所產生的相位差要調整在150度以上,180度以下的範圍。相位轉移膜2之該相位差下限值較佳為155度以上,更佳為160度以上。另一方面,相位轉移膜2之該相位差的上限值較佳為179度以下,更佳為177度以下。這是因為在相位轉移膜2形成圖案時之乾蝕刻時,會因為透光性基板1的微小蝕刻使得相位差增加的影響變小。又,也因為近年來曝光裝置對相位轉移遮罩之ArF曝光光線的照射方式增加了從相對於相位轉移膜2之膜面垂直方向而以既定角度傾斜的方向來入射ArF曝光光線者之故。
相位轉移膜2從讓ArF曝光光線入射至相位轉移膜而抑制矽的光激發之觀點,在透光性基板1上僅存在有相位轉移膜2之狀態中,透光性基板1側(內面側)相對於ArF曝光光線之反射率(內面反射率)被要求至少要在35%以上。所謂在透光性基板1上僅存在相位轉移膜2的狀態係指在從此遮罩基底100來製造相位轉移遮罩200(參照圖2(g))時,相位轉移圖案2a上尚未層積有遮光圖案3b之狀態(未層積有遮光圖案3b之相位轉移圖案2a的區 域)。另一方面,當僅存在有相位轉移膜2之狀態下的內面反射率過高時,在使用從此遮罩基底100所製造之相位轉移遮罩200來對轉印對象物(半導體晶圓上之阻劑膜等)進行曝光轉印時,會因為相位轉移膜2內面側的反射光而對曝光轉印圖像有較大的影響,故不佳。從此觀點,相位轉移膜2相對於ArF曝光光線之內面反射率較佳為45%以下。
相位轉移膜2具有從透光性基板1側層積有下層21及上層22之構造。相位轉移膜2整體至少需要滿足上述穿透率、相位差、內面反射率之各條件。相位轉移膜2要滿足上述條件,下層的彎折率n被要求要未達1.80。下層的彎折率n較佳為1.75以下,更佳為1.70以下。又,下層21的彎折率n較佳為1.00以上,更佳為1.10以上。下層21的消光係數k被要求要為2.00以上。下層21的消光係數k較佳為2.10以上,更佳為2.20以上。又,下層21的消光係數k較佳為2.90以下,更佳為2.80以下。另外,下層21的彎折率n及消光係數k係將下層21整體視作為光學性均勻的單一層所導出的數值。
相位轉移膜2要滿足上述條件,則上層22的彎折率n被要求要為2.30以上。上層22的彎折率n較佳為2.40以上。又,上層22的彎折率n較佳為2.80以下,更佳為2.70以下。上層22的消光係數k被要求在1.00以下。上層22的消光係數k較佳為0.90以下,更佳為0.70以下。又,上層22的消光係數k較佳為0.20以上,更佳為0.30以上。另外,上層22的彎折率n及消光係數k係將包含後述表層部分的上層22整體視作為光學性均勻之單一層所導出的數值。
包含相位轉移膜之薄膜的彎折率n與消光係數k並非僅以其薄膜組成來加以決定。其薄膜的膜密度及結晶狀態亦是左右彎折率n及消光係數k的要因。因此,調整以反應性濺鍍來成膜薄膜時之諸條件,以其薄膜會成為所欲彎折率n及消光係數k的方式來加以成膜。下層21及上層22要在上述彎折率n及消光係數k的範圍,則在以反應性濺鍍來成膜時,便不限於僅調整稀有氣體與反應性氣體(氧氣、氮氣等)的混合氣體之比率。分歧有反應性濺鍍來成膜時之成膜室內的壓力、對濺鍍靶材所施加的電力、靶材及透光性基板1之間的距離等之位置關係等。該等成膜條件係固定的,故便將所形成之下層21及上層22以成為所欲彎折率n及消光係數k之方式來適當 地調整。
相位轉移膜2要滿足上述條件,除了上述下層21及上層22之光學特性外,上層22厚度至少必須要較下層21厚度要厚。上層22為了滿足所要求之光學特性,係使用含氮量較多的材料,相對於ArF耐光性具有相對較高傾向,下層21為了滿足所要求之光學特性係使用含氮量較少的材料,而使ArF耐光性有相對較低的傾向。考量到提高相位轉移膜2之內面反射率,是因為提高了相位轉移膜2之ArF耐光性之故,則具有ArF耐光性相對較低傾向的下層21之厚度則必須要較具有ArF耐光性相對較高傾向的上層22之厚度要薄。
下層21的厚度在滿足相位轉移膜2所要求之既定穿透率、相位差及內面反射率之條件的範圍下,最好是盡量的薄。下層21的厚度較佳為未達12nm,更佳為11nm以下,最佳為10nm以下。又,特別是考量到相位轉移膜2內面反射率這點,則下層21厚度較佳為3nm以上,更佳為4nm以上,最佳為5nm以上。
上層22由於是以ArF耐光性相對較高的材料所形成,故在滿足相位轉移膜2所要求之既定穿透率、相位差及內面反射率之條件的範圍下,上層22厚度相對於相位轉移膜2整體膜厚的比率最好是盡量地大。上層22厚度較佳是下層21厚度的5倍以上,更佳為5.5倍以上,最佳為6倍以上。又,上層22厚度最好是下層21厚度的10倍以下。上層22厚度較佳為80nm以下,更佳為70nm以下,最佳為65nm以下。又,上層22厚度較佳為50nm以上,更佳為55nm以上。
下層21係由矽所構成之材料,或於矽所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成。下層21不含有可能會成為讓相對於ArF曝光光線之耐光性降低原因之過渡金屬。除了過渡金屬以外的金屬元素亦無法否定會成為讓相對於ArF曝光光線之耐光性降低原因的可能性,故最好是不要含有。下層21除了矽以外,亦可含有任何類金屬元素。此類金屬元素中,係含有選自硼、鍺、銻及碲1者以上的元素,由於作為濺鍍靶材能期待提高矽的導電性,故較佳。
下層21亦可含有氧以外的非金屬元素。較佳地係含有選自氮、碳、氟及氫之1種以上的元素。此非金屬元素亦含有氦(He)、氬(Ar)、氪(Kr)及氙(Xe) 等稀有氣體。下層21積極地未含有氧(以X射線電子能譜法等進行組成分析時的含氧量在檢出下限值以下)。這是因為形成下層21之材料中含有氧會讓所產生之下層21的消光係數k降低較其他非金屬元素要大,而大幅降低相位轉移膜2的內面反射率之故。
下層21較佳地,係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成。含氮的矽系材料相較於未含氮的矽系材料,會提高相對於ArF曝光光線之耐光性。又,能抑制在下層21形成相位轉移圖案時之圖案側壁的氧化。但是,隨著形成下層21之材料中的含氮量變多,則彎折率n會變大,消光係數k會變小。因此,形成下層21之材料中的含氮量較佳為40原子%以下,更佳為36原子%以下,最佳為32原子%以下。
上層22除了其表層部分,係以矽及氮所構成之材料,或在矽及氮所構成之材料含有選自除氧以外的非金屬元素及類金屬元素之一種以上元素的材料所形成。所謂上層22的表層部分係指上層22與下層21為相反側之表層部分。以成膜裝置在透光性基板1上成膜相位轉移膜2結束後,便進行膜表面之洗淨處理。此上層22之表層部分會在洗淨處理時暴露在洗淨液或潤洗液,故無關於成膜時之組成而難以避免氧化的進行。又,即便讓相位轉移膜2暴露在大氣中或在大氣中進行加熱處理,上層22表層部分的氧化都會進行。如上述,上層22較佳是彎折率n較高的材料。隨著材料中含氧量的增加,彎折率n會有降低的傾向,故除了表層部分外,成膜時係積極地不讓上層22含有氧(以X射線電子能譜法等進行組成分析時的含氧量在檢出下限值以下)。由於該等情事,上層22的表層部分係以除了該表層部分而於形成上層之材料添加有氧之材料所形成。
上層22的表層部分可以各種氧化處理來加以形成。這是因為可作為讓表層穩定的氧化層之故。此氧化處理,例如舉出有在大氣等含氧之氣體中的加熱處理、含氧氣體中以閃光燈等所致之光照射處理、讓臭氧或氧電漿接觸至上層2表面之處理等。尤其較佳是使用能同時獲得降低相位轉移膜2之膜應力作用的加熱處理或以閃光燈所致之光照射處理。上層22的表層部分較佳係厚度為1nm以上,更佳為1.5nm以上。又,上層22的表層部分較佳係厚度為5nm以下,更佳為3nm以下。
上層22不含有可能會成為讓相對於ArF曝光光線之耐光性降低原因之過渡金屬。除了過渡金屬以外的金屬元素亦無法否定會成為讓相對於ArF曝光光線之耐光性降低原因的可能性,故最好是不要含有。上層22除了矽以外,亦可含有任何類金屬元素。此類金屬元素中,係含有選自硼、鍺、銻及碲1者以上的元素,由於作為濺鍍靶材能期待提高矽的導電性,故較佳。
上層22亦可含有氧以外的非金屬元素。此非金屬元素中,較佳地係含有選自氮、碳、氟及氫之1種以上的元素。此非金屬元素亦含有氦(He)、氬(Ar)、氪(Kr)及氙(Xe)等稀有氣體。上層22較佳為彎折率n較大的材料,矽系材料系含氮量越大則有彎折率n越大的傾向。因此,形成上層22之材料所含有的類金屬元素與非金屬元素之總計含量較佳為10原子%以下,更佳為5原子%以下,最佳為積極性地不含有。另一方面,由於上述理由,形成上層22之材料中的含氮量被要求至少要較形成下層21之材料中的含氮量要多。形成上層22之材料中的含氮量較佳係較50原子%要大,更佳係52原子%以上,最佳係55原子%以上。
下層21較佳地係連接於透光性基板1表面來加以形成。讓下層21構成為與透光性基板1表面連接,便更能獲得因上述相位轉移膜2之下層21及上層22的層積構造所產生的內面反射率效果。若給予提高相位轉移膜2內面反射率之效果的影響微小,則透光性基板1與相位轉移膜2之間亦可設有蝕刻中止膜。此情況,蝕刻中止膜之厚度需要在10nm以下,較佳為7nm以下,更佳為5nm以下。又,從有效地作為蝕刻中止膜的機能之觀點,則蝕刻中止膜的厚度必須為3nm以上。形成蝕刻中止膜之材料的消光係數k需要未達0.1,較佳為0.05以下,更佳為0.01以下。又,此情況,形成蝕刻中止膜之材料的彎折率n至少要為1.9以下,較佳為1.7以下。形成蝕刻中止膜之材料的彎折率n較佳為1.55以上。
形成下層21之材料及除了表層部分而形成上層22之材料較佳係以同樣元素來加以構成。上層22與下層21能藉由使用相同蝕刻氣體的乾蝕刻來圖案化。因此,上層22及下層21最好是在同樣的蝕刻腔室內進行蝕刻。構成形成上層22及下層21之各材料的元素相同時,從上層22朝下層21而乾蝕刻對象改變時,可讓蝕刻腔室內的環境變化較小。藉由相同蝕刻氣體的乾 蝕刻來讓相位轉移膜2圖案化時,下層21蝕刻率相對於上層22蝕刻率的比率較佳為3.0以下,更佳為2.5以下。又,藉由相同蝕刻氣體的乾蝕刻來讓相位轉移膜2圖案化時,下層21蝕刻率相對於上層22蝕刻率的比率較佳為1.0以上。
相位轉移膜2中的下層21及上層22雖係藉由濺鍍來加以形成,但亦可使用DC濺鍍、RF濺鍍及離子束濺鍍等任何濺鍍。考慮到成膜率時,較佳係使用DC濺鍍。在使用導電性較低靶材的情況中,較佳係使用RF濺鍍或離子束濺鍍,但考量到成膜率時,較佳係使用RF濺鍍。
遮罩基底100係在相位轉移膜2上具備遮光膜3。一般而言,二元遮罩中,形成有轉印圖案之區域(轉印圖案形成區域)之外周區域係以在使用曝光裝置來曝光轉印至半導體晶圓上的阻劑膜時,阻劑膜不會受到穿透外周區域之曝光光線的影響的方式,而被要求要確保既定值以上的光學濃度(OD)。關於此點,相位轉移遮罩的情況也是相同的。通常,包含相位轉移遮罩的轉印用遮罩的外周區域,OD會被要求要大於2.0,較佳係OD在2.8以上,更佳係3.0以上。相位轉移膜2具有讓曝光光線以既定穿透率穿過之機能,但僅靠相位轉移膜2卻難以確保既定值的光學濃度。因此,在製造遮罩基底100的階段,必須在相位轉移膜2上層積用以確保不足之光學濃度的遮光膜3。藉由構成此般遮罩基底100,在製造相位轉移遮罩200(參照圖2)的途中,若去除使用相位轉移效果之區域(基本上為轉印圖案形成區域)的遮光膜3,便可製造能在外周區域確保既定值之光學濃度的相位轉移遮罩200。
遮光膜3可使用單層構造及2層以上之層積構造。又,單層構造之遮光膜3及2層以上之層積構造的遮光膜3之各層可為膜或層之厚度方向為幾乎相同的組成的構成,亦可為在層的厚度方向為組成梯度的構成。
圖1所記載形態之遮罩基底100係構成為在相位轉移膜2上不透過其他膜而層積有遮光膜3。此構成情況的遮光膜3需要使用對在相位轉移膜2形成圖案時所使用的石刻氣體具有充分的蝕刻選擇性之材料。此情況的遮光膜3較佳係以含鉻材料來加以形成。形成遮光膜3之含鉻材料除了鉻金屬之外,舉出有在鉻含有選自氧、氮、碳、硼及氟之一者以上的元素之材料。
一般而言,鉻系材料會被氯系氣體及氧氣的混合氣體蝕刻,而鉻金屬 對此蝕刻氣體的蝕刻率並不太高。考量到提高相對於氯系氣體及氧氣之混合氣體的蝕刻氣體之蝕刻率,形成遮光膜3之材料較佳係於鉻含有選自氧、氮、碳、硼及氟之一者以上的元素之材料。又,形成遮光膜3之含鉻材料亦可含有鉬、銦及錫中之一種以上的元素。藉由含有鉬、銦及錫中之一種以上的元素,便可更加速相對於氯系氣體及氧氣之混合氣體的蝕刻率。
又,只要能與形成上層22(尤其是表層部分)的材料之間獲得相對於乾蝕刻之蝕刻選擇性,則遮光膜3亦可以含過渡金屬及矽的材料來形成。含過渡金屬及矽的材料的遮光性能高,可讓遮光膜3的厚度較薄。遮光膜3所含有之過渡金屬舉出有鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鉻(Cr)、鉿(Hf)、鎳(Ni)、釩(V)、鋯(Zr)、釕(Ru)、銠(Rh)、鋅(Zn)、鈮(Nb)、鈀(Pd)等任一者之金屬或該等金屬之合金。遮光膜3所含有之過渡金屬元素以外的金屬元素舉出有鋁(Al)、銦(In)、錫(Sn)及鎵(Ga)等。
另一方面,其他實施形態之遮罩基底100亦可具備有從相位轉移膜2側層積有由含鉻材料所構成之層及由含過渡金屬與矽之材料所構成之層的構造之遮光膜3。此情況,關於含鉻材料及含過渡金屬與矽之材料的具體事項則等同於上述遮光膜3的情況。
遮罩基底100在層積有相位轉移膜2及遮光膜3的狀態中,較佳地,透光性基板1側(內面側)相對於ArF曝光光線之反射率(內面反射率)為30%以上。以含鉻材料形成遮光膜3的情況與以含鉻材料形成遮光膜3之相位轉移膜2側之層的情況,朝遮光膜3入射之ArF曝光光量較多時,鉻會被光激發而容易在相位轉移膜2側產生鉻移動現象。在層積有相位轉移膜2及遮光膜3的狀態中,讓內面反射率相對於ArF曝光光線為30%以上,便可抑制此鉻的移動。又,以含過渡金屬與矽之材料形成遮光膜3的情況,朝遮光膜3入射之ArF曝光光量較多時,過渡金屬會被光激發而容易在相位轉移膜2側產生過渡金屬移動現象。在層積有相位轉移膜2及遮光膜3的狀態中,讓內面反射率相對於ArF曝光光線為30%以上,便可抑制此過渡金屬的移動。
遮罩基底100中,較佳地是構成為將以相對於蝕刻遮光膜3時所使用的蝕刻氣體而具有蝕刻選擇性的材料所形成之硬遮罩膜4進一步地層積在遮光膜3上。硬遮罩膜4基本上不受光學濃度的限制,故硬遮罩膜4的厚度 與遮光膜3的厚度相比可大幅地較薄。然後,有機系材料的阻劑膜只要在此硬遮罩膜4形成圖案的乾蝕刻結束為止期間具有作為蝕刻遮罩之機能的膜厚即可,故可較以往讓厚度大幅地變薄。阻劑膜的薄膜化對阻劑解析度的提升及防止圖案傾倒上具有效果,在對應於微細化要求上極為重要。
此硬遮罩膜4在以含鉻材料形成遮光膜3的情況,較佳地係以含矽材料來形成。另外,此情況的硬遮罩膜4由於具有和有機矽材料的阻劑膜之密接性較低的傾向,故較佳地係對應遮罩膜4表面施以HMDS(Hexamethyldisilazane)處理,來提升表面的密接性。另外,此情況的硬遮罩膜4較佳地係以SiO2、SiN、SiON等來形成。
有,以含鉻材料來形成遮光膜3的情況中,硬遮罩膜4的材料除前述外,亦可使用含鉭材料。此情況中,含鉭材料除鉭金屬外,舉出有在鉭含有選自氮、氧、硼及碳之一者以上之元素的材料。例如,舉出有Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCN等。又,硬遮罩膜4在以含矽材料來形成遮光膜3的情況,較佳地係以前述的含鉻材料來形成。
遮罩基底100中較佳地係連接於硬遮罩膜4表面,來形成100nm以下膜厚之有機系材料的阻劑膜。在對應於DRAM hp32nm世代之微細圖案的情況,會於應形成於硬遮罩膜4之轉印圖案(相位轉移圖案)設有線寬為40nm的SRAF(Sub-Resolution Assist Feature)。但是,即便此情況,由於阻劑圖案的剖面縱寬比可低為1:2.5,故阻劑膜顯影時,可抑制潤洗時等之阻劑圖案的崩壞或脫離。另外,阻劑膜更佳地是膜厚為80nm以下。
圖2係顯示由上述實施形態之遮罩基底100所製造的本發明實施形態相關之相位轉移遮罩200與其製造工序。如圖2(g)所示,相位轉移遮罩200係在遮罩基底100的相位轉移膜2形成有轉印圖案之相位轉移圖案2a,並於遮光膜3形成有遮光圖案3b。於遮罩基底100構成為設有硬遮罩膜4的情況,會在此相位轉移遮罩200的製作途中將硬遮罩膜4去除。
本發明實施形態相關之相位轉移遮罩200的製造方法係使用前述遮罩基底100,具備有藉由乾蝕刻來將轉印圖案形成於遮光膜3的工序、藉由以具有轉印圖案之遮光膜3為遮罩的乾蝕刻來於相位轉移膜2形成轉印圖案之工序、藉由以具有遮光圖案之阻劑膜6b為遮罩的乾蝕刻來於遮光膜3形 成遮光圖案3b之工序。以下,便依圖2所示之製造工序,來說明本發明相位轉移遮罩200之製造方法。另外,此處,係就使用在遮光膜3上層積有硬遮罩膜4之遮罩基底100的相位轉移膜200之製造方法來加以說明。又,係就遮光膜3使用含鉻材料,硬遮罩膜4使用含矽材料的情況來加以闡述。
首先,連接於遮罩基底100之硬遮罩膜4,以旋轉塗布法來形成阻劑膜。接著,對阻劑膜,以電子線來曝光描繪出應形成在相位轉移膜2之轉印圖案(相位轉移圖案)的第1圖案,進一步地,進行顯影處理等之既定處理,來形成具有相位轉移圖案之第1阻劑圖案5a(參照圖2(a))。接著,以第1阻劑圖案5a為遮罩,進行使用氟系氣體的乾蝕刻,來於硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參照圖2(b))。
接著,去除阻劑圖案5a後,以硬遮罩圖案4a為遮罩,進行使用氯系氣體及氧氣之混合氣體的乾蝕刻,來於遮光膜3形成第1圖案(遮光圖案3a)(參照圖2(c))。接著,將遮光圖案3a作為遮罩,進行使用氟系氣體的乾蝕刻,來於相位轉移膜2形成第1圖案(相位轉移圖案2a),且去除硬遮罩圖案4a(參照圖2(d))。
接著,在遮罩基底100上以旋轉塗布法形成阻劑膜。接著,對阻劑膜以電子線曝光描繪出應形成在遮光膜3之圖案(遮光圖案)的第2圖案,進一步地進行顯影處理等之既定處理,來形成具有遮光圖案之第2阻劑圖案6b(參照圖2(e))。接著,以第2阻劑圖案6b為遮罩,進行使用氯系氣體及氧氣之混合氣體的乾蝕刻,來於遮光膜3形成第2圖案(遮光圖案3b)(參照圖2(f))。進一步地,去除地2阻劑圖案6b,經由洗淨等既定處理,來得到相位轉移遮罩200(參照圖2(g))。
前述乾蝕刻所使用之氯系氣體只要含有Cl便無特別限制。例如,舉出有Cl2、SiCl2、CHCl3、CH2Cl2、CCl4、BCl3等。又,前述乾蝕刻所使用之氟系氣體只要含有F便無特限制。例如,舉出有CHF3、CF4、C2F6、C4F8、SF6等。尤其是,不含C的氟系氣體,由於對玻璃基板的蝕刻率較低,故可對玻璃基板的傷害較小。
本發明相位轉移遮罩200係使用前述遮罩基底100來加以製作。因此,形成有轉印圖案之相位轉移膜2(相位轉移圖案2a)相對於ArF曝光光線的穿透率為2%以上,且會讓穿透相位轉移圖案2a之曝光光線與穿透和相位轉移 圖案2a厚度相同距離之空氣中的曝光光線之間的相位差在150度以上,180以下的範圍內。有,此相位轉移遮罩200在未層積有遮光圖案3b之相位轉移圖案2a區域(僅存在有相位轉移圖案2a之透光性基板1上的區域)的內面反射率為35%以上。藉此,便可削減入射至相位轉移膜2內部的ArF曝光光量,可抑制因此ArF曝光光線而讓相位轉移膜2中的矽產生光激發。
相位轉移遮罩200較佳地,未層積有遮光圖案3b之相位轉移圖案2a區域的內面反射率為45%以下。這是使用相位轉移遮罩200來對轉印對象物(半導體晶圓上之阻劑膜等)進行曝光轉印時,因相位轉移圖案2a內面側之反側光而對曝光轉印圖像的影響不會變大的範圍。
相位轉移遮罩200較佳地係層積有遮光圖案3b之相位轉移圖案2a的透光性基板1上區域的內面反射率為30%以上。以含鉻材料形成遮光圖案3b的情況與以含鉻材料形成遮光圖案3b之相位轉移圖案2a側的層之情況,可抑制遮光圖案3b內的鉻移動於相位轉移圖案2a內。又,以含過渡金屬及矽之材料來形成遮光圖案3b的情況,可抑制遮光圖案3b內的過渡金屬移動於相位轉移圖案2a內。
本發明半導體元件之製造方法係使用該相位轉移遮罩200,將轉印圖案曝光轉印至半導體基板上之阻劑膜。相位轉移遮罩200之相位轉移圖案2a相對於ArF曝光光線的耐光性會大幅提升。因此,將此相位轉移遮罩200設置於曝光裝置,從此相位轉移遮罩200之透光性基板1側照射ArF曝光光線來對轉印對象物(半導體晶圓上之阻劑膜等)來繼續進行曝光轉印,也能讓相位轉移圖案2a之CD變化量較小,而可持續以高精度將所欲圖案轉印至轉印對象物。
【實施例】
以下,便藉由實施例來更具體地說明本發明之實施形態。
(實施例1)
[遮罩基底的製造]
準備主表面尺寸為約152mm×約152mm,厚度為約6.35mm之合成石英玻璃所構成透光性基板1。此透光性基板1係將端面及主表面研磨至既定表面粗度,之後,施以既定洗淨及乾燥處理。測定此透光性基板1之光學特性,則彎折率n為1.556,消光係數k為0.00。
接著,將透光性基板1設置於枚葉式RF濺鍍裝置內,使用矽(Si)靶材,以氬(Ar)氣體為濺鍍氣體藉由RF濺鍍,來連接於透光性基板1表面而形成8nm厚度之矽所構成的相位轉移膜2之下層21(Si膜)。接著,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),在下層21形成63nm厚度之矽及氮所構成的相位轉移膜2之上層(SiN膜Si:N=43原子%:57原子%)。藉由以上順序,來連接透光性基板1表面而形成71nm厚度之層積有下層21及上層22之相位轉移膜2。此相位轉移膜2之上層22厚度為下層21厚度之7.9倍。另外,下層21及上層22之組成係藉由X射線電子能譜(XPS)的測定所獲得之結果。以下,關於其他膜亦相同。
接著,對行程有此相位轉移膜2之透光性基板1,為了降低相位轉移膜2之膜應力,以及為了於表層部分形成氧化層而進行加熱處理。使用相位轉移量測定裝置(LaserTech公司製MPM193),測定此相位轉移膜2相對於波長193nm之光線的穿透率及相位差,則穿透率為6.1%,相位差為177.0度(deg)。又,對此相位轉移膜2以STEM(Scanning Electron Microscope)及EDX(Energy Dispersive X-Ray Spectroscopy)進行分析,確認到從上層22表面形成有約2nm左右厚度之表層部分的氧化層。再者,測定此相位轉移膜2之下層21及上層22的各光學特性,則下層21之彎折率n為1.06,消光係數k為2.72,上層22之彎折率n為2.63,消光係數k為0.37。相位轉移膜2相對於波長193nm之光線的內面反射率(透光性1基板側的反射率)為44.1%。
接著,將形成有相位轉移膜2之透光性基板1設置於枚葉式CD濺鍍裝置內,使用鉻(Cr)靶材,以氬(Ar)、二氧化碳(CO2)、氮(N2)及氦(He)之混合氣體為濺鍍氣體,藉由反應性濺鍍(DC濺鍍),在相位轉移膜2上形成46nm厚度之CrOCN所構成之遮光膜3(CrOCN膜Cr:O:C:N=55原子%:22原子%:12原子%:11原子%)。此透光性基板1上層積有相位轉移膜2及遮光膜3的狀態中,相對於波長193nm之光線的內面反射率(透光性基板1側的反射率)為42.7%。測定此相位轉移膜2與遮光膜3之層積構造相對於波長193nm之光線的光學濃度(OD)為3.0以上。又,準備其他透光性基板1,以 同樣成膜條件來僅成膜出遮光膜3,並測定此遮光膜3之光學特性,則彎折率n為1.95,消光係數k為1.53。
接著,於枚葉式RF濺鍍裝置內設置層積有相位轉移膜2及遮光膜3之透光性基板1,使用二氧化矽(SiO2)靶材,以氬(Ar)氣體為濺鍍氣體,藉由RF濺鍍來在遮光膜3上形成5nm厚度之矽及氧所構成之硬遮罩膜4。藉由以上順序,來製造在透光性基板1具備層積有2層構造之相位轉移膜2、遮光膜3及硬遮罩膜4構造之遮罩基底100。
[相位轉移遮罩的製造]
接著,使用此實施例1之遮罩基底100,以以下的順序來製作實施例1之相位轉移遮罩200。首先,對硬遮罩膜4表面施以HMDS處理。接著,藉由旋轉塗布法形成膜厚80nm之由電子束描繪用化學增幅型阻劑所構成的阻劑膜。接著,對此阻劑膜,電子描繪出應形成在相位轉移膜2之相位轉移圖案的第1圖案,進行既定顯影處理及洗淨處理,來形成具有第1圖案之第1阻劑圖案5a(參照圖2(a))。
接著,以第1阻劑圖案5a為遮罩,進行使用CF4氣體的乾蝕刻,來在硬遮罩膜4形成第1圖案(硬遮罩圖案4a)(參照圖2(b))。之後,去除第1阻劑圖案5a。
接著,以硬遮罩圖案4a為遮罩,進行使用氯及氧之混合氣體(氣體流量比Cl2:O2=10:1)的乾蝕刻,來於遮光膜3形成第1圖案(遮光圖案3a)(參照圖2(c))。接著,以遮光圖案3a為遮罩,進行使用氟系氣體(SF6+He)的乾蝕刻,於相位轉移膜2形成第1圖案(相位轉移圖案2a),且同時去除硬遮罩圖案4a(參照圖2(d))。
接著,於遮光圖案3a上,藉由旋轉塗布法形成膜厚150nm之由電子束描繪用化學增幅型阻劑所構成的阻劑膜。接著,對阻劑膜,曝光描繪出應形成在遮光膜之圖案(遮光圖案)的第2圖案,進一步地進行顯影處理等既定處理,來形成具有遮光圖案之第2阻劑圖案5b(參照圖2(e))。接著,以第2阻劑圖案6b為遮罩,進行使用氯及氧之混合氣體(氣體流量比Cl2:O2=4:1)的乾蝕刻,來在遮光膜3形成第2圖案(遮光圖案3b)(參照圖2(f))。進一步地,去除第2阻劑圖案6b,經由洗淨等既定處理,來得到相位轉移遮罩200(參照圖2(g))。另外,對相位轉移膜2進行使用SF6+He之乾蝕刻時,下層21 蝕刻率相對於上層22蝕刻率的比為2.06。
相對於所製作之實施例1的半調型相位轉移遮罩200中未層積有遮光圖案3b之相位轉移圖案2a的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。此照射處理前後之相位轉移圖案2a的CD變化量為1.5nm。此CD變化量與對Si3N4之單層構造所構成之相位轉移圖案做同樣照射處理前後所產生的CD變化量(3.2nm)相比,有被加以改善。
再者,對進行此ArF準分子雷射光之照射處理後的相位轉移遮罩200,使用AIMS193(Carl Zeiss公司製),以波長193nm之曝光光線來進行曝光轉印至半導體元件上之阻劑膜時的曝光轉印圖像之模擬。驗證此模擬所獲得之曝光轉印圖像,則充分滿足設計式樣。由以上情事,可謂此實施例1之遮罩基底所製造之相位轉移遮罩200即便在設置於曝光裝置而於ArF準分子雷射之曝光光線的累積照射量為40kJ/cm2來進行曝光轉印,仍可對半導體元件上之阻劑膜來高精度地進行曝光轉印。
另一方面,對實施例1之半調型相位轉移遮罩200中層積有遮光圖案3b之相位轉移圖案2的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。對進行照射處理後區域的相位轉移圖案2a進行二次離子質譜法(SIMS:Secondary Ion Mass Spectrometry),則相位轉移圖案2a之含鉻量微小。由以上情事,可謂此實施例1之遮罩基底100所製造的相位轉移遮罩200在對層積有遮光圖案3b之相位轉移圖案2a照射ArF準分子雷射之曝光光線時,可充分抑制遮光圖案3b內的鉻在相位轉移圖案2a內移動。
(實施例2)
[遮罩基底的製造]
實施例2的遮罩基底100除了相位轉移膜2以外,係以和實施例1同樣的順序來加以製造。此實施例2之相位轉移膜2係改變形成下層21之材料與膜厚,進一步地改變上層22的膜厚。具體而言,係將透光性基板1設置在枚葉式RF濺鍍裝置內,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來連接於透光性基板1而形成9nm厚度之由矽及氮所構成之相位轉移膜2之下層21(SiN膜Si:N=68原子%: 32原子%)。接著,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來在下層21形成59nm厚度之由矽及氮所構成之相位轉移膜2的上層22(SiN膜Si:N=43原子%:57原子%)。藉由以上順序,來連接透光性基板1表面而形成68nm厚度之層積有下層21及上層22之相位轉移膜2。此相位轉移膜2之上層22厚度為下層21厚度之6.6倍。
又,以與實施例1同樣的處理條件,對此實施例2之相位轉移膜2進行加熱處理。使用相位轉移量測定裝置(LaserTech公司製MPM193),測定此相位轉移膜2相對於波長193nm之光線的穿透率及相位差,則穿透率為6.1%,相位差為177.0度(deg)。又,對此相位轉移膜2以STEM及EDX進行分析,確認到從上層22表面形成有約2nm左右厚度之表層部分的氧化層。再者,測定此相位轉移膜2之下層21及上層22的各光學特性,則下層21之彎折率n為1.48,消光係數k為2.35,上層22之彎折率n為2.63,消光係數k為0.37。相位轉移膜2相對於波長193nm之光線的內面反射率(透光性1基板側的反射率)為39.5%。
藉由以上順序,來製造於透光性基板1上具備層積有SiN之下層21及SiN之上層22所構成的相位轉移膜2、遮光膜3及硬遮罩膜4構造的實施例2之遮罩基底100。另外,此實施例2之遮罩基底100,在透光性基板1上層積有相位轉移膜2及遮光膜3狀態之相對於波長193nm之光線的內面反射率(透光性基板1側的反射率)為37.6%。測定此相位轉移膜2與遮光膜3之層積構造相對於波長193nm之光線的光學濃度(OD)為3.0以上。
[相位轉移遮罩的製造]
接著,使用此實施例2的遮罩基底100,以與實施例1同樣的順序,來製作實施例2的相位轉移遮罩200。另外,對相位轉移膜2進行使用SF6+He之乾蝕刻時的下層21蝕刻率相對於上層22蝕刻率的比為1.09。
相對於所製作之實施例2的半調型相位轉移遮罩200中未層積有遮光圖案3b之相位轉移圖案2a的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。此照射處理前後之相位轉移圖案2a的CD變化量為1.8nm。此CD變化量與對Si3N4之單層構造所構成之相位轉移圖案做同樣照射處理前後所產生的CD變化量(3.2nm)相比,有被加以改善。
再者,對進行此ArF準分子雷射光之照射處理後的相位轉移遮罩200,使用AIMS193(Carl Zeiss公司製),以波長193nm之曝光光線來進行曝光轉印至半導體元件上之阻劑膜時的曝光轉印圖像之模擬。驗證此模擬所獲得之曝光轉印圖像,則充分滿足設計式樣。由以上情事,可謂此實施例2之遮罩基底所製造之相位轉移遮罩200即便在設置於曝光裝置而於ArF準分子雷射之曝光光線的累積照射量為40kJ/cm2來進行曝光轉印,仍可對半導體元件上之阻劑膜來高精度地進行曝光轉印。
另一方面,對實施例2之半調型相位轉移遮罩200中層積有遮光圖案3b之相位轉移圖案2的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。對進行照射處理後區域的相位轉移圖案2a進行二次離子質譜法(SIMS:Secondary Ion Mass Spectrometry),則相位轉移圖案2a之含鉻量微小。由以上情事,可謂此實施例2之遮罩基底100所製造的相位轉移遮罩200在對層積有遮光圖案3b之相位轉移圖案2a照射ArF準分子雷射之曝光光線時,可充分抑制遮光圖案3b內的鉻在相位轉移圖案2a內移動。
(實施例3)
[遮罩基底的製造]
實施例3的遮罩基底100除了相位轉移膜2以外,係以和實施例1同樣的順序來加以製造。此實施例3之相位轉移膜2係改變形成下層21之材料與膜厚,進一步地改變上層22的膜厚。具體而言,係將透光性基板1設置在枚葉式RF濺鍍裝置內,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來連接於透光性基板1而形成10nm厚度之由矽及氮所構成之相位轉移膜2之下層21(SiN膜Si:N=64原子%:36原子%)。接著,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來在下層21形成58nm厚度之由矽及氮所構成之相位轉移膜2的上層22(SiN膜Si:N=43原子%:57原子%)。藉由以上順序,來連接透光性基板1表面而形成68nm厚度之層積有下層21及上層22之相位轉移膜2。此相位轉移膜2之上層22厚度為下層21厚度之5.8倍。
又,以與實施例1同樣的處理條件,對此實施例3之相位轉移膜2進行加熱處理。使用相位轉移量測定裝置(LaserTech公司製MPM193),測定此 相位轉移膜2相對於波長193nm之光線的穿透率及相位差,則穿透率為6.1%,相位差為177.0度(deg)。又,對此相位轉移膜2以STEM及EDX進行分析,確認到從上層22表面形成有約2nm左右厚度之表層部分的氧化層。再者,測定此相位轉移膜2之下層21及上層22的各光學特性,則下層21之彎折率n為1.62,消光係數k為2.18,上層22之彎折率n為2.63,消光係數k為0.37。相位轉移膜2相對於波長193nm之光線的內面反射率(透光性1基板側的反射率)為37.8%。
藉由以上順序,來製造於透光性基板1上具備層積有SiN之下層21及SiN之上層22所構成的相位轉移膜2、遮光膜3及硬遮罩膜4構造的實施例3之遮罩基底100。另外,此實施例3之遮罩基底100,在透光性基板1上層積有相位轉移膜2及遮光膜3狀態之相對於波長193nm之光線的內面反射率(透光性基板1側的反射率)為35.8%。測定此相位轉移膜2與遮光膜3之層積構造相對於波長193nm之光線的光學濃度(OD)為3.0以上。
[相位轉移遮罩的製造]
接著,使用此實施例3的遮罩基底100,以與實施例1同樣的順序,來製作實施例3的相位轉移遮罩200。另外,對相位轉移膜2進行使用SF6+He之乾蝕刻時的下層21蝕刻率相對於上層22蝕刻率的比為1.04。
相對於所製作之實施例3的半調型相位轉移遮罩200中未層積有遮光圖案3b之相位轉移圖案2a的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。此照射處理前後之相位轉移圖案2a的CD變化量為2.0nm。此CD變化量與對Si3N4之單層構造所構成之相位轉移圖案做同樣照射處理前後所產生的CD變化量(3.2nm)相比,有被加以改善。
再者,對進行此ArF準分子雷射光之照射處理後的相位轉移遮罩200,使用AIMS193(Carl Zeiss公司製),以波長193nm之曝光光線來進行曝光轉印至半導體元件上之阻劑膜時的曝光轉印圖像之模擬。驗證此模擬所獲得之曝光轉印圖像,則充分滿足設計式樣。由以上情事,可謂此實施例3之遮罩基底所製造之相位轉移遮罩200即便在設置於曝光裝置而於ArF準分子雷射之曝光光線的累積照射量為40kJ/cm2來進行曝光轉印,仍可對半導體元件上之阻劑膜來高精度地進行曝光轉印。
另一方面,對實施例3之半調型相位轉移遮罩200中層積有遮光圖案3b之相位轉移圖案2的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。對進行照射處理後區域的相位轉移圖案2a進行二次離子質譜法(SIMS:Secondary Ion Mass Spectrometry),則相位轉移圖案2a之含鉻量微小。由以上情事,可謂此實施例3之遮罩基底100所製造的相位轉移遮罩200在對層積有遮光圖案3b之相位轉移圖案2a照射ArF準分子雷射之曝光光線時,可充分抑制遮光圖案3b內的鉻在相位轉移圖案2a內移動。
(實施例4)
[遮罩基底的製造]
實施例4的遮罩基底100除了相位轉移膜2以外,係以和實施例1同樣的順序來加以製造。此實施例4之相位轉移膜2係改變形成下層21之材料與膜厚,進一步地改變上層22的膜厚。具體而言,係將透光性基板1設置在枚葉式RF濺鍍裝置內,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來連接於透光性基板1而形成11nm厚度之由矽及氮所構成之相位轉移膜2之下層21(SiN膜Si:N=60原子%:40原子%)。接著,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來在下層21形成56nm厚度之由矽及氮所構成之相位轉移膜2的上層22(SiN膜Si:N=43原子%:57原子%)。藉由以上順序,來連接透光性基板1表面而形成67nm厚度之層積有下層21及上層22之相位轉移膜2。此相位轉移膜2之上層22厚度為下層21厚度之5.1倍。
又,以與實施例1同樣的處理條件,對此實施例4之相位轉移膜2進行加熱處理。使用相位轉移量測定裝置(LaserTech公司製MPM193),測定此相位轉移膜2相對於波長193nm之光線的穿透率及相位差,則穿透率為6.1%,相位差為177.0度(deg)。又,對此相位轉移膜2以STEM及EDX進行分析,確認到從上層22表面形成有約2nm左右厚度之表層部分的氧化層。再者,測定此相位轉移膜2之下層21及上層22的各光學特性,則下層21之彎折率n為1.76,消光係數k為2.00,上層22之彎折率n為2.63,消光係數k為0.37。相位轉移膜2相對於波長193nm之光線的內面反射率(透光性1基板側的反射率)為35.4%。
藉由以上順序,來製造於透光性基板1上具備層積有SiN之下層21及SiN之上層22所構成的相位轉移膜2、遮光膜3及硬遮罩膜4構造的實施例4之遮罩基底100。另外,此實施例4之遮罩基底100,在透光性基板1上層積有相位轉移膜2及遮光膜3狀態之相對於波長193nm之光線的內面反射率(透光性基板1側的反射率)為33.3%。測定此相位轉移膜2與遮光膜3之層積構造相對於波長193nm之光線的光學濃度(OD)為3.0以上。
[相位轉移遮罩的製造]
接著,使用此實施例4的遮罩基底100,以與實施例1同樣的順序,來製作實施例4的相位轉移遮罩200。另外,對相位轉移膜2進行使用SF6+He之乾蝕刻時的下層21蝕刻率相對於上層22蝕刻率的比為1.00。
相對於所製作之實施例4的半調型相位轉移遮罩200中未層積有遮光圖案3b之相位轉移圖案2a的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。此照射處理前後之相位轉移圖案2a的CD變化量為2.4nm。此CD變化量與對Si3N4之單層構造所構成之相位轉移圖案做同樣照射處理前後所產生的CD變化量(3.2nm)相比,有被加以改善。
再者,對進行此ArF準分子雷射光之照射處理後的相位轉移遮罩200,使用AIMS193(Carl Zeiss公司製),以波長193nm之曝光光線來進行曝光轉印至半導體元件上之阻劑膜時的曝光轉印圖像之模擬。驗證此模擬所獲得之曝光轉印圖像,則充分滿足設計式樣。由以上情事,可謂此實施例4之遮罩基底所製造之相位轉移遮罩200即便在設置於曝光裝置而於ArF準分子雷射之曝光光線的累積照射量為40kJ/cm2來進行曝光轉印,仍可對半導體元件上之阻劑膜來高精度地進行曝光轉印。
另一方面,對實施例4之半調型相位轉移遮罩200中層積有遮光圖案3b之相位轉移圖案2的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。對進行照射處理後區域的相位轉移圖案2a進行二次離子質譜法(SIMS:Secondary Ion Mass Spectrometry),則相位轉移圖案2a之含鉻量微小。由以上情事,可謂此實施例4之遮罩基底100所製造的相位轉移遮罩200在對層積有遮光圖案3b之相位轉移圖案2a照射ArF準分子雷射之曝光光線時,可充分 抑制遮光圖案3b內的鉻在相位轉移圖案2a內移動。
(實施例5)
[遮罩基底的製造]
實施例5的遮罩基底100除了遮光膜3及硬遮罩膜4以外,係以和實施例1同樣的順序來加以製造。此實施例5之遮光膜3係下層及上層之構造,進一步地使用鉬矽系材料於形成下層及上層的材料。具體而言,係將形成有遮光膜3之透光性基板1設置在枚葉式DC濺鍍裝置內,使用鉬(Mo)及矽(Si)的混合靶材(Mo:Si=13原子%:87原子%),以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(DC濺鍍),來連接於相位轉移膜2之上層22而形成27nm厚度之由鉬、矽及氮所構成之遮光膜3之下層(MoSiN膜Mo:Si:N=8原子%:62原子%:30原子%)。接著,使用鉬(Mo)及矽(Si)之混合靶材(Mo:Si=13原子%:87原子%),以氬(Ar)、氧(O2)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(DC濺鍍),來連接於遮光膜3之下層形成13nm厚度之由鉬、矽、氮及氧所構成之遮光膜3的上層(MoSiON膜Mo:Si:O:N=6原子%:54原子%:3原子%:37原子%)。藉由以上順序,來連接於相位轉移膜2表面而形成40nm厚度之層積有下層及上層之遮光膜3。
對此相位轉移膜2及遮光膜3之層積構造測定相對於波長193nm之光線的光學濃度(OD),則在3.0以上。又,準備其他透光性基板1,以同樣成膜條件僅成膜出遮光膜3的下層,並測定此遮光膜3之下層的光學特性,則彎折率n為2.23,消光系數k為2.07。同樣地,準備其他透光性基板1,以同樣成膜條件僅成膜出遮光膜3的上層,並測定此遮光膜3之上層的光學特性,則彎折率n為2.33,消光系數k為0.94。
實施例5的硬遮罩膜5係使用鉻系材料。具體而言,係於枚葉式DC濺鍍裝置內設置形成有相位轉移膜2及遮光膜3的透光性基板1,使用鉻(Cr靶材),使用氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(DC濺鍍),來連接於遮光膜3上層表面而形成有5nm厚度之由鉻及氮所構成之硬遮罩膜4(CrN膜Cr:N=75原子%:25原子%)。
藉由以上順序,來製造於透光性基板1上具備層積有SiN之下層21及SiN之上層22所構成的相位轉移膜2、MoSiN之下層及MoSiON之上層所構成之遮光膜3及CrN之硬遮罩膜4構造的實施例5之遮罩基底100。另外, 此實施例5之遮罩基底100,在透光性基板1上層積有相位轉移膜2及遮光膜3狀態之相對於波長193nm之光線的內面反射率(透光性基板1側的反射率)為43.1%。
[相位轉移遮罩的製造]
接著,使用此實施例5的遮罩基底100,除了使用氟系氣體(SF6+He)作為遮光膜3乾蝕刻時所使用之蝕刻氣體,及使用氯及氧的混合氣體(Cl2+O2)作為硬遮罩膜4之乾蝕刻所使用的蝕刻氣體外,係以和實施例1同樣的順序,來製作實施例5的相位轉移遮罩200。
相對於所製作之實施例5的半調型相位轉移遮罩200中未層積有遮光圖案3b之相位轉移圖案2a的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。此照射處理前後之相位轉移圖案2a的CD變化量為1.5nm。此CD變化量與對Si3N4之單層構造所構成之相位轉移圖案做同樣照射處理前後所產生的CD變化量(3.2nm)相比,有被加以改善。
再者,對進行此ArF準分子雷射光之照射處理後的相位轉移遮罩200,使用AIMS193(Carl Zeiss公司製),以波長193nm之曝光光線來進行曝光轉印至半導體元件上之阻劑膜時的曝光轉印圖像之模擬。驗證此模擬所獲得之曝光轉印圖像,則充分滿足設計式樣。由以上情事,可謂此實施例5之遮罩基底所製造之相位轉移遮罩200即便在設置於曝光裝置而於ArF準分子雷射之曝光光線的累積照射量為40kJ/cm2來進行曝光轉印,仍可對半導體元件上之阻劑膜來高精度地進行曝光轉印。
另一方面,對實施例5之半調型相位轉移遮罩200中層積有遮光圖案3b之相位轉移圖案2的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。對進行照射處理後區域的相位轉移圖案2a進行二次離子質譜法(SIMS:Secondary Ion Mass Spectrometrt),則相位轉移圖案2a之含鉻量微小。由以上情事,可謂此實施例5之遮罩基底100所製造的相位轉移遮罩200在對層積有遮光圖案3b之相位轉移圖案2a照射ArF準分子雷射之曝光光線時,可充分抑制遮光圖案3b內的鉬在相位轉移圖案2a內移動。
(比較例1)
[遮罩基底的製造]
此比較例1之遮罩基底除了相位轉移膜2以外,係以和實施例1同樣的順序來加以製造。此比較例1之相位轉移膜2係改變形成下層21之材料與膜厚,進一步地改變上層22的膜厚。具體而言,係將透光性基板1設置在枚葉式RF濺鍍裝置內,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來連接於透光性基板1表面而形成22nm厚度之由矽及氮所構成之相位轉移膜2之下層21(SiN膜Si:N=52原子%:48原子%)。接著,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來在下層21形成42nm厚度之由矽及氮所構成之相位轉移膜2的上層22(SiN膜Si:N=43原子%:57原子%)。藉由以上順序,來連接透光性基板1表面而形成64nm厚度之層積有下層21及上層22之相位轉移膜2。此相位轉移膜2之上層22厚度為下層21厚度之1.9倍。
又,以與實施例1同樣的處理條件,對此比較例1之相位轉移膜2進行加熱處理。使用相位轉移量測定裝置(LaserTech公司製MPM193),測定此相位轉移膜2相對於波長193nm之光線的穿透率及相位差,則穿透率為6.1%,相位差為177.0度(deg)。又,對此相位轉移膜2以STEM及EDX進行分析,確認到從上層22表面形成有約2nm左右厚度之表層部分的氧化層。再者,測定此相位轉移膜2之下層21及上層22的各光學特性,則下層21之彎折率n為2.39,消光係數k為1.17,上層22之彎折率n為2.63,消光係數k為0.37。相位轉移膜2相對於波長193nm之光線的內面反射率(透光性1基板側的反射率)為19.5%。
藉由以上順序,來製造於透光性基板1上具備層積有SiN之下層21及SiN之上層22所構成的相位轉移膜2、遮光膜3及硬遮罩膜4構造的比較例1之遮罩基底。另外,此比較例1之遮罩基底,在透光性基板1上層積有相位轉移膜2及遮光膜3狀態之相對於波長193nm之光線的內面反射率(透光性基板1側的反射率)為17.8%。測定此相位轉移膜2與遮光膜3之層積構造相對於波長193nm之光線的光學濃度(OD)為3.0以上。
[相位轉移遮罩的製造]
接著,使用此比較例1的遮罩基底,以與實施例1同樣的順序,來製作比較例1的相位轉移遮罩。另外,對相位轉移膜2進行使用SF6+He之乾蝕 刻時的下層21蝕刻率相對於上層22蝕刻率的比為0.96。
相對於所製作之比較例1的半調型相位轉移遮罩中未層積有遮光圖案3b之相位轉移圖案2a的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。此照射處理前後之相位轉移圖案2a的CD變化量為3.2nm。此CD變化量與對Si3N4之單層構造所構成之相位轉移圖案做同樣照射處理前後所產生的CD變化量(3.2nm)並無差異,CD變化量並無法被加以改善。
再者,對進行此ArF準分子雷射光之照射處理後的相位轉移遮罩,使用AIMS193(Carl Zeiss公司製),以波長193nm之曝光光線來進行曝光轉印至半導體元件上之阻劑膜時的曝光轉印圖像之模擬。驗證此模擬所獲得之曝光轉印圖像,則無法充分滿足設計式樣。由以上情事,可謂此比較例1之遮罩基底所製造之相位轉移遮罩在設置於曝光裝置而於ArF準分子雷射之曝光光線的累積照射量為40kJ/cm2來進行曝光轉印時,並無法對半導體元件上之阻劑膜來高精度地進行曝光轉印。
另一方面,對比較例1之半調型相位轉移遮罩中層積有遮光圖案3b之相位轉移圖案2的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。對進行照射處理後區域的相位轉移圖案2a進行二次離子質譜法(SIMS:Secondary Ion Mass Spectrometry),則相位轉移圖案2a之含鉻量與各實施例之結果相比,會大幅增加。由此結果,可謂此比較例1之遮罩基底所製造的相位轉移遮罩在對層積有遮光圖案3b之相位轉移圖案2a照射ArF準分子雷射之曝光光線時,並無法抑制遮光圖案3b內的鉻在相位轉移圖案2a內移動。
(比較例2)
[遮罩基底的製造]
此比較例2之遮罩基底除了相位轉移膜2及遮光膜3以外,係以和實施例1同樣的順序來加以製造。此比較例2之相位轉移膜2係改變為單層構造。具體而言,係將透光性基板1設置在枚葉式RF濺鍍裝置內,使用矽(Si)靶材,以氬(Ar)及氮(N2)之混合氣體為濺鍍氣體,藉由反應性濺鍍(RF濺鍍),來連接於透光性基板1表面而形成60nm厚度之由矽及氮所構成之相位轉移膜2(SiN膜Si:N=43原子%:57原子%)。
測定此相位轉移膜2之光學特性,則彎折率n為2.63,消光係數k為0.337。但是,此單層構造之相位轉移膜2將相位差調整成177.0度(deg)時,穿透率會成為18.1%。由於相位轉移膜2及遮光膜3之層積構造相對於波常193nm之光線的光學濃度(OD)在3.0以上,故遮光膜3的組成及光學特性雖相同,但厚度卻改變為57nm。相位轉移膜2相對於波長193nm之光線的內面反射率(透光性基板1側之反射率)為16.6%。
藉由以上順序,來製造於透光性基板1上具備層積有SiN之單層構造所構成的相位轉移膜2、遮光膜3及硬遮罩膜4構造的比較例2之遮罩基底。另外,此比較例2之遮罩基底,在透光性基板1上層積有相位轉移膜2及遮光膜3狀態之相對於波長193nm之光線的內面反射率(透光性基板1側的反射率)為13.7%。
[相位轉移遮罩的製造]
接著,使用此比較例2的遮罩基底,以與實施例1同樣的順序,來製作比較例2的相位轉移遮罩。
相對於所製作之比較例2的半調型相位轉移遮罩中未層積有遮光圖案3b之相位轉移圖案2a的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。此照射處理前後之相位轉移圖案2a的CD變化量為3.2nm。
再者,對進行此ArF準分子雷射光之照射處理後的相位轉移遮罩,使用AIMS193(Carl Zeiss公司製),以波長193nm之曝光光線來進行曝光轉印至半導體元件上之阻劑膜時的曝光轉印圖像之模擬。驗證此模擬所獲得之曝光轉印圖像,則無法充分滿足設計式樣。由以上情事,可謂此比較例2之遮罩基底所製造之相位轉移遮罩在設置於曝光裝置而於ArF準分子雷射之曝光光線的累積照射量為40kJ/cm2來進行曝光轉印時,並無法對半導體元件上之阻劑膜來高精度地進行曝光轉印。
另一方面,對比較例2之半調型相位轉移遮罩中層積有遮光圖案3b之相位轉移圖案2的區域,以ArF準分子雷射光的累積照射量為40kJ/cm2之方式來進行間歇照射的照射處理。對進行照射處理後區域的相位轉移圖案2a進行二次離子質譜法(SIMS:Secondary Ion Mass Spectrometry),則相位轉移圖案2a之含鉻量與各實施例之結果相 比,會大幅增加。由此結果,可謂此比較例2之遮罩基底所製造的相位轉移遮罩200在對層積有遮光圖案3b之相位轉移圖案2a照射ArF準分子雷射之曝光光線時,並無法抑制遮光圖案3b內的鉻在相位轉移圖案2a內移動。
1‧‧‧透光性基板
100‧‧‧遮罩基底
2‧‧‧相位轉移膜
21‧‧‧下層
22‧‧‧上層
3‧‧‧遮光膜
4‧‧‧硬遮罩膜

Claims (27)

  1. 一種遮罩基底,係在透光性基板上具備相位轉移膜之遮罩基底,該相位轉移膜具有讓ArF準分子雷射之曝光光線以2%以上的穿透率來穿透的機能,以及相對於穿透該相位轉移膜之該曝光光線而與通過和該相位轉移膜之厚度相同距離的空氣中之該曝光光線之間產生150度以上,180以下之相位差機能;該相位轉移膜係含有從該透光性基板側層積有下層及上層的構造;該下層係由矽所構成之材料,或於矽所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該上層除其表層部分以外,係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該下層的彎折率n未達1.8且消光係數k在2.0以上;該上層的彎折率n為2.3以上且消光係數k為1.0以下;該上層厚度係較該下層要厚。
  2. 如申請專利範圍第1項之遮罩基底,其中該下層厚度為未達12nm。
  3. 如申請專利範圍第1或2項之遮罩基底,其中該上層厚度為該下層厚度的5倍以上。
  4. 如申請專利範圍第1或2項之遮罩基底,其中該下層係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成。
  5. 如申請專利範圍第1或2項之遮罩基底,其中該下層的含氮量為40原子%以下。
  6. 如申請專利範圍第1或2項之遮罩基底,其中該上層之表層部分係以除了該表層部分而於形成上層之材料添加有氧之材料所形成。
  7. 如申請專利範圍第1或2項之遮罩基底,其中該上層的含氮量係較50原子%要大。
  8. 如申請專利範圍第1或2項之遮罩基底,其中該下層係連接於該透光性基板之表面來加以形成。
  9. 如申請專利範圍第1或2項之遮罩基底,其中該相位轉移膜上係具備遮光膜。
  10. 如申請專利範圍第9項之遮罩基底,其中該遮光膜係由含鉻材料所構成。
  11. 如申請專利範圍第9項之遮罩基底,其中該遮光膜係由含過渡金屬及矽的材料所構成。
  12. 如申請專利範圍第9項之遮罩基底,其中該遮光膜係具有從該相位轉移膜側依序層積有由含鉻材料所構成之層及含過渡金屬與矽之材料所構成之層的構造。
  13. 一種相位轉移遮罩,係於透光性基板上具備形成有轉印圖案之相位轉移膜的相位轉移遮罩,該相位轉移膜具有讓ArF準分子雷射之曝光光線以2%以上的穿透率來穿透的機能,以及相對於穿透該相位轉移膜之該曝光光線而與通過和該相位轉移膜之厚度相同距離的空氣中之該曝光光線之間產生150度以上,180以下之相位差機能;該相位轉移膜係含有從該透光性基板側層積有下層及上層的構造;該下層係由矽所構成之材料,或於矽所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該上層除其表層部分以外,係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成;該下層的彎折率n未達1.8且消光係數k在2.0以上;該上層的彎折率n為2.3以上且消光係數k為1.0以下;該上層厚度係較該下層要厚。
  14. 如申請專利範圍第13項之相位轉移遮罩,其中該下層厚度為未達12nm。
  15. 如申請專利範圍第13或14項之相位轉移遮罩,其中該上層厚度為該下層厚度的5倍以上。
  16. 如申請專利範圍第13或14項之相位轉移遮罩,其中該下層係由矽及氮所構成之材料,或於矽及氮所構成之材料含有選自氧以外之非金屬元素及類金屬元素之一者以上的元素之材料所形成。
  17. 如申請專利範圍第13或14項之相位轉移遮罩,其中該下層的含氮量為40原子%以下。
  18. 如申請專利範圍第13或14項之相位轉移遮罩,其中該上層之表層部分係以除了該表層部分而於形成上層之材料添加有氧之材料所形成。
  19. 如申請專利範圍第13或14項之相位轉移遮罩,其中該上層的含氮量係較50原子%要大。
  20. 如申請專利範圍第13或14項之相位轉移遮罩,其中該下層係連接於該透光性基板之表面來加以形成。
  21. 如申請專利範圍第13或14項之相位轉移遮罩,其中該相位轉移膜上係具備形成有遮光圖案之遮光膜。
  22. 如申請專利範圍第21項之相位轉移遮罩,其中該遮光膜係由含鉻材料所構成。
  23. 如申請專利範圍第21項之相位轉移遮罩,其中該遮光膜係由含過渡金屬及矽的材料所構成。
  24. 如申請專利範圍第21項之相位轉移遮罩,其中該遮光膜係具有從該相位轉移膜側依序層積有由含鉻材料所構成之層及含過渡金屬與矽之材料所構成之層的構造。
  25. 如申請專利範圍第21項之相位轉移遮罩,其中未層積有該遮光膜之該相位轉移膜的區域中,相對於從該透光性基板側所入射之該曝光光線的內面反射率為35%以上。
  26. 如申請專利範圍第21項之相位轉移遮罩,其中層積有該遮光膜之該相位轉移膜的區域中,相對於從該透光性基板側所入射之該曝光光線的內面反射率為30%以上。
  27. 一種半導體元件之製造方法,係具備使用如申請專利範圍第21至26項中任一項之相位轉移遮罩,來將轉印圖案曝光轉印至半導體基板上之阻劑膜的工序。
TW105125100A 2015-08-14 2016-08-08 A mask substrate, a phase shift mask, and a method of manufacturing the semiconductor device TWI600961B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160097A JP6087401B2 (ja) 2015-08-14 2015-08-14 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法

Publications (2)

Publication Number Publication Date
TW201719271A true TW201719271A (zh) 2017-06-01
TWI600961B TWI600961B (zh) 2017-10-01

Family

ID=58047758

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105125100A TWI600961B (zh) 2015-08-14 2016-08-08 A mask substrate, a phase shift mask, and a method of manufacturing the semiconductor device
TW107118088A TWI689777B (zh) 2015-08-14 2016-08-08 遮罩基底、相位轉移遮罩及半導體元件之製造方法
TW106128536A TWI629556B (zh) 2015-08-14 2016-08-08 遮罩基底、相位轉移遮罩及半導體元件之製造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW107118088A TWI689777B (zh) 2015-08-14 2016-08-08 遮罩基底、相位轉移遮罩及半導體元件之製造方法
TW106128536A TWI629556B (zh) 2015-08-14 2016-08-08 遮罩基底、相位轉移遮罩及半導體元件之製造方法

Country Status (6)

Country Link
US (2) US10114281B2 (zh)
JP (1) JP6087401B2 (zh)
KR (3) KR20220073864A (zh)
SG (3) SG10201911778SA (zh)
TW (3) TWI600961B (zh)
WO (1) WO2017029981A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742288B (zh) * 2017-06-13 2021-10-11 日商信越化學工業股份有限公司 光罩空白基板以及其製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058757B1 (ja) * 2015-07-15 2017-01-11 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6087401B2 (ja) * 2015-08-14 2017-03-01 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
US11327396B2 (en) * 2016-03-29 2022-05-10 Hoya Corporation Mask blank
JP6400763B2 (ja) * 2017-03-16 2018-10-03 Hoya株式会社 マスクブランク、転写用マスクおよび半導体デバイスの製造方法
KR102568807B1 (ko) * 2017-03-28 2023-08-21 호야 가부시키가이샤 위상 시프트 마스크 블랭크 및 그것을 사용한 위상 시프트 마스크의 제조 방법, 그리고 패턴 전사 방법
SG10202103395QA (en) * 2017-06-14 2021-05-28 Hoya Corp Mask blank, method for producing transfer mask and method for producing semiconductor device
US20200285144A1 (en) * 2017-09-21 2020-09-10 Hoya Corporation Mask blank, transfer mask, and method for manufacturing semiconductor device
SG11202002928WA (en) * 2017-11-24 2020-04-29 Hoya Corp Mask blank, phase shift mask, and method of manufacturing semiconductor device
KR20200125586A (ko) * 2017-12-26 2020-11-04 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크 및 반도체 디바이스의 제조 방법
JP7109996B2 (ja) * 2018-05-30 2022-08-01 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP7255512B2 (ja) * 2019-03-29 2023-04-11 信越化学工業株式会社 位相シフトマスクブランク及び位相シフトマスク
CN113809047B (zh) * 2020-06-12 2024-02-06 长鑫存储技术有限公司 半导体结构及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339716B2 (ja) * 1992-07-17 2002-10-28 株式会社東芝 露光用マスクの製造方法
US5547787A (en) 1992-04-22 1996-08-20 Kabushiki Kaisha Toshiba Exposure mask, exposure mask substrate, method for fabricating the same, and method for forming pattern based on exposure mask
JP2001201842A (ja) * 1999-11-09 2001-07-27 Ulvac Seimaku Kk 位相シフトフォトマスクブランクス及び位相シフトフォトマスク並びに半導体装置の製造方法
JP3818171B2 (ja) * 2002-02-22 2006-09-06 Hoya株式会社 位相シフトマスクブランク及びその製造方法
DE10307518B4 (de) 2002-02-22 2011-04-14 Hoya Corp. Halbtonphasenschiebermaskenrohling, Halbtonphasenschiebermaske und Verfahren zu deren Herstellung
US7556892B2 (en) 2004-03-31 2009-07-07 Shin-Etsu Chemical Co., Ltd. Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method
JP4348536B2 (ja) * 2004-03-31 2009-10-21 信越化学工業株式会社 位相シフトマスクブランク、位相シフトマスク及びパターン転写方法
US7651823B2 (en) * 2004-06-16 2010-01-26 Hoya Corporation Optically semitransmissive film, photomask blank and photomask, and method for designing optically semitransmissive film
JP2006078825A (ja) * 2004-09-10 2006-03-23 Shin Etsu Chem Co Ltd フォトマスクブランクおよびフォトマスクならびにこれらの製造方法
JP2010217514A (ja) 2009-03-17 2010-09-30 Toppan Printing Co Ltd フォトマスクの製造方法
US9625806B2 (en) 2013-01-15 2017-04-18 Hoya Corporation Mask blank, phase-shift mask, and method for manufacturing the same
JP6005530B2 (ja) 2013-01-15 2016-10-12 Hoya株式会社 マスクブランク、位相シフトマスクおよびこれらの製造方法
JP6185721B2 (ja) * 2013-01-29 2017-08-23 Hoya株式会社 マスクブランク、マスクブランクの製造方法、転写用マスクの製造方法、および半導体デバイスの製造方法
KR102261621B1 (ko) * 2014-12-26 2021-06-04 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법
JP6087401B2 (ja) * 2015-08-14 2017-03-01 Hoya株式会社 マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742288B (zh) * 2017-06-13 2021-10-11 日商信越化學工業股份有限公司 光罩空白基板以及其製造方法

Also Published As

Publication number Publication date
TW201743128A (zh) 2017-12-16
JP2017037278A (ja) 2017-02-16
US10606164B2 (en) 2020-03-31
KR20180030471A (ko) 2018-03-23
SG11201800548TA (en) 2018-02-27
SG10201806936XA (en) 2018-09-27
KR20220073864A (ko) 2022-06-03
KR102402659B1 (ko) 2022-05-26
WO2017029981A1 (ja) 2017-02-23
JP6087401B2 (ja) 2017-03-01
TWI629556B (zh) 2018-07-11
SG10201911778SA (en) 2020-01-30
TW201833658A (zh) 2018-09-16
US20190018312A1 (en) 2019-01-17
TWI689777B (zh) 2020-04-01
KR101809424B1 (ko) 2017-12-14
KR20170044110A (ko) 2017-04-24
US10114281B2 (en) 2018-10-30
TWI600961B (zh) 2017-10-01
US20180143528A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
TWI600961B (zh) A mask substrate, a phase shift mask, and a method of manufacturing the semiconductor device
JP6297734B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6073028B2 (ja) マスクブランク、位相シフトマスク及び位相シフトマスクの製造方法、並びに半導体装置の製造方法
JP6271780B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
WO2017010452A1 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
CN111344633B (zh) 掩模坯料、相移掩模及制造方法、半导体器件的制造方法
JP6490786B2 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
TWI791837B (zh) 遮罩基底、相移遮罩及半導體元件之製造方法
WO2019230313A1 (ja) マスクブランク、位相シフトマスクおよび半導体デバイスの製造方法
JP6896694B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法