TW201711027A - 時序電路 - Google Patents

時序電路 Download PDF

Info

Publication number
TW201711027A
TW201711027A TW105128179A TW105128179A TW201711027A TW 201711027 A TW201711027 A TW 201711027A TW 105128179 A TW105128179 A TW 105128179A TW 105128179 A TW105128179 A TW 105128179A TW 201711027 A TW201711027 A TW 201711027A
Authority
TW
Taiwan
Prior art keywords
node
voltage
pmos transistor
response
nmos transistor
Prior art date
Application number
TW105128179A
Other languages
English (en)
Other versions
TWI692772B (zh
Inventor
黃鉉澈
金珉修
Original Assignee
三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子股份有限公司 filed Critical 三星電子股份有限公司
Publication of TW201711027A publication Critical patent/TW201711027A/zh
Application granted granted Critical
Publication of TWI692772B publication Critical patent/TWI692772B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit
    • H03K3/356121Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit with synchronous operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)

Abstract

在一種時序電路中,第一級用以因應於時脈而對第一節點的電壓進行充電,且因應於所述時脈、第二節點的電壓、及資料而對所述第一節點的所述電壓進行放電;第二級用以因應於所述時脈而對所述第二節點的所述電壓進行充電,且因應於所述時脈及邏輯訊號而對所述第二節點的所述電壓進行放電;組合邏輯用以基於所述第一節點的所述電壓、第二節點的所述電壓、及所述資料來產生所述邏輯訊號;以及鎖存電路用以因應於所述時脈而鎖存所述第二節點的所述電壓。

Description

時序電路及其操作方法
本發明概念的示例性實施例是有關於時序電路及/或所述時序電路的操作方法。
時序電路(例如,正反器(flip-flop))在半導體積體電路的數位電路中用作資料儲存元件。時序電路在由時脈訊號確定的時間點處對輸入訊號進行採樣,且將經採樣的輸入訊號改變為輸出訊號。時序電路用於半導體記憶體裝置(例如,動態隨機存取記憶體(dynamic random access memory,DRAM))、處理器、電腦等中。
本發明概念的一或多個示例性實施例提供相對高速的時序電路及/或所述時序電路的操作方法。
至少一個示例性實施例提供一種時序電路,所述時序電路包括:第一級,用以因應於時脈而對第一節點的電壓進行充電,所述第一級更用以因應於所述時脈、第二節點的電壓、及資料而對所述第一節點的所述電壓進行放電;第二級,用以因應於所述時脈而對所述第二節點的所述電壓進行充電,所述第二級更用以因應於所述時脈及邏輯訊號而對所述第二節點的所述電壓進行放電;組合邏輯,用以基於所述第一節點的所述電壓、所述第二節點的所述電壓、及所述資料來產生所述邏輯訊號;以及鎖存電路,用以因應於所述時脈而鎖存所述第二節點的所述電壓。所述組合邏輯更用以產生所述邏輯訊號而使得(i)當所述第一節點的所述電壓放電時所述第二節點的所述電壓不放電、或者(ii)當所述第二節點的所述電壓放電時所述第一節點的所述電壓不放電。
至少一個其他示例性實施例提供一種時序電路,所述時序電路包括:第一級;第二級;組合邏輯;及鎖存電路。所述第一級包括:第一電晶體,具有連接至第一節點的第一端子;第二電晶體,用以因應於第二節點的電壓而將所述第一節點連接至電源供應端子;第三電晶體,用以因應於掃描輸入而將所述第一電晶體的第二端子連接至電源供應端子;第四電晶體,用以因應於掃描賦能訊號而將所述第一電晶體的所述第二端子連接至所述電源供應端子;第五電晶體,用以因應於所述時脈而將第一連接節點連接至所述第一節點;第六電晶體,具有連接至所述第一節點的第一端子;以及第七電晶體,用以因應於所述掃描賦能訊號而將第二連接節點連接至所述第六電晶體的第二端子。所述第二級包括:第八電晶體,用以因應於所述時脈而將所述第二節點連接至所述電源供應端子;第九電晶體,用以因應於所述第一節點的電壓而將所述第二節點連接至所述電源供應端子;第十電晶體,具有連接至所述第二節點的第一端子;以及第十一電晶體,用以因應於所述時脈而將接地端子連接至所述第十電晶體的第二端子。所述組合邏輯,用以基於資料、所述第一節點的所述電壓、及所述第二節點的電壓產生所述邏輯訊號,所述組合邏輯更用以輸出所述邏輯訊號至所述第一連接節點。所述鎖存電路用以因應於所述時脈而鎖存所述第二節點的所述電壓。
至少一個其他示例性實施例提供一種時序電路的操作方法,所述方法包括:因應於時脈而對第一節點及第二節點中的至少一者進行充電;因應於所述時脈而對所述第一節點的電壓進行放電;且因應於所述時脈及邏輯訊號而對所述第二節點的電壓進行放電。所述邏輯訊號是根據所述第一節點的所述電壓、所述第二節點的所述電壓、及資料的邏輯組合而產生。當所述第一節點的所述電壓放電時所述第二節點的所述電壓不放電,且當所述第二節點的所述電壓放電時所述第一節點的所述電壓不放電。
根據至少某些示例性實施例,所述方法可更包括:因應於所述時脈而鎖存對應於所述第二節點的所述電壓的資料;對所述被鎖存的資料進行反相;因應於掃描賦能訊號而形成掃描路徑;及/或因應於重設訊號而重設所述第一節點的電壓及所述第二節點的電壓。
至少一個其他示例性實施例提供一種處理器,所述處理器包括第一時序電路及第二時序電路。所述第二時序電路串聯連接至所述第一時序電路。所述第一時序電路及所述第二時序電路中的每一者用以:因應於第一節點的電壓、第二節點的電壓、及資料而產生邏輯訊號;且因應於所述邏輯訊號而判斷是否對所述第一節點的所述電壓或所述第二節點的所述電壓進行放電。所述第一時序電路及所述第二時序電路中的每一者更用以使得(i)當所述第一節點的所述電壓放電時所述第二節點的所述電壓不放電,且(ii)當所述第二節點的所述電壓放電時所述第一節點的所述電壓不放電。
至少一個其他示例性實施例提供一種時序電路,所述時序電路包括:第一級電路;第二級電路;以及組合邏輯電路,所述組合邏輯電路耦合於所述第一級電路的第一節點與所述第二級電路的第二節點之間。所述組合邏輯電路用以基於所述第一節點處的電壓、所述第二節點處的電壓、及輸入資料而控制所述第一節點的及所述第二節點的放電,所述組合邏輯更用以控制所述第一節點的及所述第二節點的放電以使得在第一時間間隔期間所述第一節點放電且在第二時間間隔期間所述第二節點放電,所述第一時間間隔與所述第二時間間隔是不同的且不交疊的時間間隔。
藉由參照以下示例性實施例的詳細說明及附圖,本發明概念將變得更加易於理解。然而,本發明概念可實施為諸多不同形式,而不應被視為僅限於本文中所述的示例性實施例。確切而言,提供該些示例性實施例是為了使本發明將透徹及完整並向熟習此項技術者充分傳達本發明概念的概念,且本發明概念將僅由隨附申請專利範圍所界定。在本說明書通篇中,相同的參考編號指代相同的元件。
在以下說明中,可參照操作的動作及符號表示(例如,以流程圖表、流程圖、資料流程圖、結構圖、方塊圖等的形式)來闡述說明性實施例,所述操作可被實作為程式模組或功能性過程,所述程式模組或功能性過程包括實行特定任務或實作特定抽象資料類型的常式、程式、物件、組件、資料結構等。可在現有電子系統(例如,顯示驅動器、系統晶片(System-on-Chip,SoC)裝置、系統晶片系統、電子裝置(例如個人數位助理(personal digital assistant,PDA)、智慧型電話、平板個人電腦(personal computer,PC)、膝上型電腦等))中使用現有硬體來實作所述操作。此種現有硬體可包括一或多個中央處理單元(Central Processing Unit,CPU)、數位訊號處理器(digital signal processor,DSP)、應用專用積體電路(application-specific-integrated-circuit,ASIC)、系統晶片、現場可程式化閘陣列(field programmable gate array,FPGA)、電腦等。
進一步,一或多個示例性實施例可為(或包括)硬體、韌體、執行軟體的硬體或其任意組合。此類硬體可包括被構造成專用機器的一或多個中央處理單元、系統晶片、數位訊號處理器、應用專用積體電路、現場可程式化閘陣列、電腦等以實行本文中所闡述的功能以及該些元件的任何其他眾所習知的功能。在至少某些情形中,中央處理單元、系統晶片、數位訊號處理器、應用專用積體電路、現場可程式化閘陣列一般而言可被稱作處理電路、處理電路系統、處理器及/或微處理器。
儘管流程圖表可將操作描述為順序性的過程,但所述操作中的許多操作可並列地、共同地或同時地實行。此外,所述操作的次序可重新排列。當過程的操作完成時所述過程即可結束,但亦可進行未包括於圖中的附加步驟。過程可與方法、功能、程序、次常式、次程式等對應。當過程對應於功能時,其結束可對應於所述功能返回至調用功能(calling function)或主功能。
如本文所揭露,用語「儲存媒體」、「電腦可讀取儲存媒體」或「非暫時性電腦可讀取儲存媒體」可表示一或多個用於儲存資料的裝置,包括用於儲存資訊的唯讀記憶體(read only memory,ROM)、隨機存取記憶體(random access memory,RAM)、磁性隨機存取記憶體、核心記憶體、磁碟儲存媒體、光學儲存媒體、快閃記憶體裝置及/或其他有形機器可讀取媒體。用語「電腦可讀取媒體」可包括但不限於可攜式或固定式儲存裝置、光學儲存裝置、以及能夠儲存、容納或載送一或多個指令及/或資料的各種其他媒體。
此外,示例性實施例的至少某些部分可由硬體、軟體、韌體、中間軟體(middleware)、微碼、硬體描述語言、或其任意組合實作。當實作於軟體、韌體、中間軟體或微碼中時,用於實行必要任務的程式碼或碼段可儲存於例如電腦可讀取儲存媒體等機器或電腦可讀取媒體中。當實作於軟體中時,可將一或多個處理器、一或多個處理電路、或一或多個處理單元程式化以實行必要任務,藉此被轉變成專用的一或多個處理器或一或多個電腦。
碼段可表示程序、功能、次程式、程式、常式、次常式、模組、軟體包、類別、或指令、資料結構或程式敘述(program statement)的任意組合。碼段可藉由傳送及/或接收資訊、資料、自變數、參數或記憶體內容而耦合至另一碼段或硬體電路。可藉由任意適合的方式(包括記憶體共享、訊息傳送、符記(token)傳送、網路傳輸等)來傳送、轉發、或傳輸資訊、自變數、參數、資料等。
如在本文中所論述,電晶體的''端''可亦被稱作電晶體的''端子''。
圖1是說明根據本發明概念的示例性實施例的時序電路的圖式。
參照圖1,時序電路100可包括第一級110、第二級120、組合邏輯130、及鎖存電路140。在一個實例中,時序電路100可為正反器。
第一級110可包括兩個PMOS電晶體P11與P12以及NMOS電晶體N11。第一級110的第一PMOS電晶體P11可連接於電源供應端子VDD與第一節點NET1之間且可因應於時脈CLK而被導通或關斷。第一級110的第二PMOS電晶體P12可連接於電源供應端子VDD與第一節點NET1之間且可因應於第二節點NET2的電壓而被導通或關斷。第一級110的NMOS電晶體N11可連接於電源供應端子VDD與第一節點NET1之間且可因應於時脈CLK而被導通或關斷。第一級110可因應於時脈CLK及第二節點NET2的電壓來確定第一節點NET1的電壓及第一連接節點CN1的電壓。此處,第一連接節點CN1可連接至組合邏輯130的輸出端子。
第二級120可與第一級110互補,且可包括兩個PMOS電晶體P21與P22及兩個NMOS電晶體N21與N22。第二級120的第一PMOS電晶體P21可連接於電源供應端子VDD與第二節點NET2之間,且可因應於時脈CLK而被導通或關斷。第二級120的第二PMOS電晶體P22可連接於電源供應端子VDD與第二節點NET2之間,且可因應於第一節點NET1的電壓而被導通或關斷。第二級120的第一NMOS電晶體N21可連接於第二節點NET2與第二連接節點CN2之間,且可因應於邏輯訊號LS而被導通或關斷。亦即,舉例而言,第一NMOS電晶體N21的一端連接至第二節點NET2且另一端連接至第二連接節點CN2。第二級120的第二NMOS電晶體N22可連接於第二連接節點CN2與接地端子GND之間且可因應於時脈CLK而被導通或關斷。亦即,舉例而言,第二NMOS電晶體可因應於時脈CLK而將接地端子GND連接至第一NMOS電晶體N21的另一端。
第二級120可因應於時脈CLK、第一節點NET1的電壓、及邏輯訊號LS來確定第二節點NET2的電壓。在至少一個示例性實施例中,第一節點NET1的電壓可在設定的時間段及/或時間間隔期間(例如,在特定持續時間中)與第二節點NET2的電壓互補。
在圖1中針對彼此串聯連接的第一NMOS電晶體N21及第二NMOS電晶體N22例示了本發明概念的示例性實施例。然而,本發明概念的範圍及精神不應僅限於此。舉例而言,與時脈CLK相關聯的NMOS電晶體可連接至第二節點NET2,且與邏輯訊號LS相關聯的NMOS電晶體可連接至接地端子GND。
組合邏輯130可接收第一節點NET1的電壓、第二節點NET2的電壓、及資料D,且可利用第一節點NET1的電壓、第二節點NET2的電壓、及資料D而在內部實行邏輯運算。因此,可實作組合邏輯閘130以產生邏輯訊號LS。組合邏輯130可由各種類型的邏輯電路來實作。
可實作鎖存電路140以因應於時脈CLK而鎖存第二節點NET2的電壓。鎖存電路140可輸出經鎖存的資料Q或/Q。
以下闡述了根據本發明概念的示例性實施例的時序電路100的概念性操作。當時脈CLK位於低位準時,可以高位準的電壓(例如,VDD)對第一節點NET1及第二節點NET2進行充電。亦即,舉例而言,當時脈CLK位於低位準時,可對第一節點NET1及第二節點NET2進行充電,而無論資料D如何(或作為另外一種選擇,獨立於資料D)。然後,可基於資料D及時脈CLK來判斷是否對第一節點NET1進行放電或是否對第二節點NET2進行放電,且可根據判斷結果而將與第二節點NET2的電壓對應的資料鎖存於鎖存電路140中。
在至少一個示例性實施例中,關於第一節點NET1的放電操作可與關於第二節點NET2的放電操作互補。舉例而言,可基於資料D的狀態而藉由對第一節點NET1及第二節點NET2中的一者進行放電來確定時序電路100的輸出值(例如,Q或/Q)。
在至少一個示例性實施例中,當一個節點(例如,NET2)放電時,關於另一節點(例如,NET1)的放電操作可被抑制、防止及/或阻止(例如,完全阻止),且反之亦然。舉例而言,當第一節點NET1及第二節點NET2中的一者放電時,組合邏輯130可抑制、防止及/或阻止對其中另一者的放電直至被放電的節點再次充電。此時,PMOS電晶體P12及PMOS電晶體P22中的一者可導通,且可將另一節點連接至電源供應端子VDD。
傳統上,基於脈衝的時序電路可因應於時脈具有低狀態而對節點進行充電,且可判斷是否保持(或維持)節點的電壓狀態或是否基於利用時脈、高狀態時脈、及資料狀態所產生的脈衝而對所述節點進行放電。所述基於脈衝的時序電路可相對快速地運作。然而,所述基於脈衝的時序電路可易於發生時脈變化。
另一方面,根據本發明概念的至少一個示例性實施例的時序電路100可判斷(例如,互補地判斷)是否基於邏輯訊號LS而對節點NET1及節點NET2進行放電,所述是否對節點NET1及節點NET2進行放電是根據節點NET1及節點NET2的電壓及資料D的狀態、以及時脈CLK來判斷的。因此,相較於傳統時序電路,根據本發明概念的至少一個示例性實施例的時序電路100可降低及/或最小化由於時脈變化而造成的影響。
此外,傳統的基於脈衝的時序電路可由具有3堆疊結構(3-stack structure)的NMOS電晶體來實作以對節點進行放電。另一方面,根據至少一個示例性實施例的時序電路100可由具有2堆疊結構的NMOS電晶體N21及N22來實作以對第二節點NET2進行放電。因此,相較於傳統時序電路,根據本發明概念的至少一個示例性實施例的時序電路100可藉由提高放電速度來實行高速鎖存操作。
傳統上,時序電路可由於設置時間及時脈至輸出(clock to output,CQ)延遲而影響系統的時脈頻率。因此,當使用其中設置時間及時脈至輸出延遲相對小(例如,極小)的相對高效能時序電路時,可相對易於提高時脈頻率。根據本發明概念的至少一個示例性實施例的時序電路100可減少設置時間及/或時脈至輸出延遲,此可提高時脈頻率。
圖2是說明圖1中所示的組合邏輯130的示例性實施例的電路圖。
參照圖2,組合邏輯130可包括反相器131和及-或-反相器(AOI)閘132。
反相器131可接收第一節點NET1的電壓且可對第一節點NET1的電壓進行反相。及-或-反相器閘132可被實作成藉由對第二節點NET2的電壓、資料D、及反相器131的輸出值執行及-或-反相器閘操作來產生邏輯訊號LS。如圖2中所示,可連接及-或-反相器閘132的輸出端子至第一連接節點CN1。
將針對圖3及圖4闡述根據自組合邏輯130輸出的邏輯訊號LS形成的所述第一節點及所述第二節點的放電路徑、及放電操作。
圖3是說明圖1中所示的第一節點NET1的示例性放電路徑的電路圖。為便於闡述,及-或-反相器閘132可包括連接至第一連接節點CN1的放電路徑。在至少一個示例性實施例中,可由串聯連接的NMOS電晶體N12及N13來實作放電路徑。NMOS電晶體N12可因應於資料D而被導通,且NMOS電晶體N13可因應於第二節點NET2的電壓而被導通。此處,圖3中所示的串聯連接的NMOS電晶體N12及N13的次序是實例。然而,本發明概念的範圍及精神不應僅限於此。舉例而言,與第二節點NET2的電壓相關聯的NMOS電晶體可連接至第一連接節點CN1,且與資料D相關聯的NMOS電晶體可連接至接地端子GND。同時,圖3中所示的第一節點NET1的放電路徑是實例。然而,本發明概念的範圍及精神不應僅限於此。
參照圖1至圖3,以下闡述了關於第一節點NET1的放電操作。當資料D具有高位準且第二節點NET2的電壓具有高位準時,可因應於時脈CLK具有高位準而對第一節點NET1的電壓進行放電。此時,圖2中所示的組合邏輯130可產生具有低位準的邏輯訊號LS。由於第一連接節點CN1的電壓是低位準,在第一節點NET1的電壓放電的同時,邏輯訊號LS可維持為低位準。因此,第二節點NET2的電壓可不基本地放電。
圖4是說明圖1中所示的第二節點NET2的示例性放電路徑的電路圖。
參照圖4,可由串聯連接的NMOS電晶體N21及N22來實作第二節點NET2的放電路徑。
參照圖1至圖4,以下闡述了關於第二節點NET2的示例性放電操作。當第一節點NET1的電壓為高位準、第二節點NET2的電壓為低位準且資料D具有低位準時,組合邏輯130的及-或-反相器閘132可產生具有高位準的邏輯訊號LS。參照圖1中所示的時序電路100,第二節點NET2的電壓可因應於邏輯訊號LS具有高位準及時脈CLK具有高位準而放電。在相同或實質上相同的時間處(例如,同時地/或併發地),可因應於具有低位準的第二節點NET2的電壓而由電源供應端子VDD對第一節點NET1進行充電,且電源供應端子VDD可保持或維持高位準電壓。儘管第二節點NET2被放電,然而可抑制、防止及/或阻止(例如,基本地阻止)第一節點NET1的放電。
如參照圖3及圖4所闡述,當對第一節點NET1及第二節點NET2中的一者實行放電操作時,可基於自組合邏輯130提供的邏輯訊號LS而抑制、防止及/或阻止(例如,基本地阻止)對其中另一節點的放電操作。
圖5是說明圖1中所示的鎖存電路140的示例性實施例的電路圖。
參照圖1至圖5,鎖存電路140可包括PMOS電晶體P41、NMOS電晶體N41及N42、以及緩衝器BUF。PMOS電晶體P41可因應於第二節點NET2的電壓而將電源供應端子VDD連接至輸出節點OUT。NOMS電晶體N41可連接至輸出節點OUT,且可因應於時脈CLK而運作。NMOS電晶體N42可因應於第二節點NET2的電壓而將NMOS電晶體N41的汲極端子連接至接地端子GND。緩衝器BUF可緩衝輸出節點OUT的電壓。在至少一個示例性實施例中,緩衝器BUF可因應於時脈CLK而被啟用或可因應於第二節點NET2的電壓的反相型式而被啟用。
如圖5中所示串聯連接的NMOS電晶體N41及N42的次序是實例。然而,本發明的範圍及精神不應僅限於此。舉例而言,串聯連接的NMOS電晶體N41及N42的位置可互換。
根據本發明概念的至少一個示例性實施例的時序電路可實作成接收掃描訊號。所述時序電路可被用作用於掃描測試操作的掃描鏈(scan chain)的一部分。
圖6是說明根據本發明概念的另一示例性實施例的時序電路的圖式。
參照圖6,時序電路200可包括第一級210、第二級220、組合邏輯230、及鎖存電路240。相較於圖1中所示的第一級110,時序電路200的第一級210可更包括:PMOS電晶體P13及P14以及NMOS電晶體N12及N13,被連接成接收與掃描訊號相關聯的掃描輸入SI及掃描賦能訊號SE;以及NMOS電晶體N14,被連接成接收第二節點NET2的電壓。第一級210的配置是實例,且本發明的範圍及精神不應僅限於此。舉例而言,第一PMOS電晶體P11以及第三PMOS電晶體P13及第四PMOS電晶體P14的位置可互換。
此外,相較於圖1及圖2中所示的組合邏輯130,時序電路200的組合邏輯230可包括及-或-反相器閘232,及-或-反相器閘232額外地接收掃描賦能訊號SE的反相型式(例如,/SE)。
第二級220可相同於或實質上相同於圖1中所示的第二級120。
鎖存電路240可相似於圖1中所示的鎖存電路140,但可更包括耦合至鎖存器242的輸出的反相器244。鎖存器242可相同於或實質上相同於圖1所示的鎖存電路140。反相器244可對鎖存器242的輸出進行反相。
本發明概念的至少一個示例性實施例被例示為將掃描輸入SI及掃描賦能訊號SE輸入至圖6中所示的時序電路200的第一級210。然而,本發明概念的範圍及精神不應僅限於此。舉例而言,根據本發明概念的至少一個示例性實施例可被實作成使得掃描輸入SI及掃描賦能訊號SE被輸入至組合邏輯。
圖7是說明根據本發明概念的又一示例性實施例的時序電路的圖式。
參照圖7,時序電路300可包括第一級310、第二級320、組合邏輯330及鎖存電路340。
相較於圖6中所示的時序電路200,時序電路300可包括組合邏輯330,組合邏輯330被配置成不同於時序電路200以額外地接收掃描輸入SI及掃描賦能訊號SE以及產生邏輯訊號LS。
組合邏輯330可包括反相器331、及-或-反相器閘332、及多工器333。多工器333可被實作成因應於掃描賦能訊號SE來選擇資料D及掃描輸入SI中的一者作為及-或-反相器閘332的輸入。圖7中所示的組合邏輯330的配置是實例,且本發明概念的範圍及精神不應僅限於此。
第一級310及第二級320可分別相同於或實質上相同於第一級110及第二級120。鎖存電路340可包括鎖存器342及反相器344。鎖存器342及反相器344可分別相同於或實質上相同於鎖存器242及反相器244。
針對被實作成具有共享結構的資料路徑與掃描路徑而闡述了本發明概念的至少某些示例性實施例。然而,本發明概念的範圍及精神不應僅限於此。舉例而言,根據本發明概念的示例性實施例的時序電路可由其中資料路徑與掃描路徑被分開的結構來實作。
圖8是說明根據本發明概念的再一示例性實施例的時序電路的圖式。
參照圖8,時序電路400可包括第一級410、第二級420、組合邏輯430及鎖存電路440。
第一級410藉由與圖7所示的時序電路300不同的配置來接收掃描輸入SI,且組合邏輯430藉由與圖7所示的時序電路300不同的配置來接收資料D。
第一級410可包括:第一PMOS電晶體P11,因應於時脈CLK而將第一節點NET1連接至第三PMOS電晶體P13與第四PMOS電晶體P14二者的共用節點;第二PMOS電晶體P12,因應於第二節點NET2而將第一節點NET1連接至電源供應端子VDD;第三PMOS電晶體P13,因應於掃描輸入SI而將第一PMOS電晶體P11的一端連接至電源供應端子VDD;第四PMOS電晶體P14,因應於掃描賦能訊號SE而將第一PMOS電晶體P11的所述一端連接至電源供應端子VDD;第一NMOS電晶體N11,因應於時脈CLK而將第一連接節點CN1連接至第一節點NET1;第二NMOS電晶體N12,因應於掃描輸入SI而將第三NMOS電晶體N13的一端連接至第一節點NET1;以及第三NMOS電晶體N13,因應於掃描賦能訊號SE而將第二連接節點CN2連接至第二NMOS電晶體N12的所述一端。第一級410的配置是實例,且本發明概念的範圍及精神不應僅限於此。舉例而言,串聯連接的第二NMOS電晶體N12及第三NMOS電晶體N13的位置可互換。
組合邏輯430可包括:反相器431,對第一節點NET1的電壓進行反相;PMOS電晶體P31,因應於第一節點NET1的反相電壓/NET1而將PMOS電晶體P31、P32及P33的共用節點連接至第一連接節點CN1;PMOS電晶體P32,因應於資料D而將PMOS電晶體P31的一端連接至電源供應端子VDD;PMOS電晶體P33,因應於反相掃描賦能訊號/SE而將PMOS電晶體P31的所述一端連接至電源供應端子VDD;PMOS電晶體P34,因應於第二節點NET2的電壓而將PMOS電晶體P31的所述一端連接至電源供應端子VDD;NMOS電晶體N31,因應於第一節點NET1的反相電壓/NET1而將接地端子GND連接至第一連接節點CN1;NMOS電晶體N32,因應於資料而將NMOS電晶體N33的一端連接至第一連接節點CN1;NMOS電晶體N33,因應於反相掃描賦能訊號/SE而將第二連接節點CN2連接至NMOS電晶體N32;以及NMOS電晶體N34,因應於第二節點NET2的電壓而將接地端子GND連接至第二連接節點CN2。組合邏輯430的配置是實例,且本發明概念的範圍及精神不應僅限於此。舉例而言,串聯連接的PMOS電晶體P31與PMOS電晶體P32、P33及P34的位置可互換。此外,NMOS電晶體N32、N33及N34的位置可以各種方式互換。
第二級420可相同於或實質上相同於第二級120。鎖存電路440可包括鎖存器442及反相器444。鎖存器442及反相器444可分別相同於或實質上相同於鎖存器242及反相器244。
不同於圖7中所示的時序電路300,如參照圖8所闡述,時序電路400可由其中掃描路徑與資料路徑分開的結構來實作。
圖9是說明圖8所示的時序電路400中的示例性掃描路徑的圖式。
參照圖8及圖9,當掃描賦能訊號SE位於高位準時,可形成掃描路徑。即使將時序電路400的各組件之中的PMOS電晶體P14及P33以及NMOS電晶體N11、N13、N32、N33(其是無意義的或不運作的)移除,亦可根據具有高位準的掃描賦能訊號SE而形成與圖8中所示者相同或實質上相同的掃描路徑。根據本發明概念的示例性實施例的掃描路徑可包括由圖8所示的電晶體P31、P32、P34及N31構成的反相器434。掃描路徑的反相器434可不出現於資料路徑上。因此,時序電路400可被設計成使得掃描路徑以較資料路徑慢的速度運作。
根據本發明概念的至少一個示例性實施例的時序電路可被實作成接收重設訊號。
圖10是說明根據本發明概念的再一示例性實施例的時序電路的圖式。
參照圖10,時序電路500可包括第一級510、第二級520、組合邏輯530、及鎖存電路550。
第一級510及組合邏輯530可分別相同於或實質上相同於第一級410及組合邏輯430。
第二級520被配置成不同於圖8中所示的時序電路400的第二級以接收重設訊號R。
第二級520可包括因應於重設訊號R而連接電源供應端子VDD與PMOS電晶體P21及P22二者的共用節點的PMOS電晶體P23、以及因應於重設訊號R而連接接地端子GND與第二節點NET2的NMOS電晶體N23。此處,重設訊號R可被輸入至鎖存器542的重設埠(reset port)。
鎖存電路550可包括鎖存器542及反相器544。鎖存器542及反相器544可分別相同於或實質上相同於鎖存器242及反相器244。
根據本發明概念的至少一個示例性實施例的時序電路可由其中圖2至圖10所示的及-或-反相器閘被改變為各種形式的結構來實作。
圖11是說明其中圖8中所示的時序電路400的及-或-反相器閘經過改變的時序電路的示例性實施例的電路圖。
參照圖11,時序電路600可包括具有不同於圖8中所示的時序電路400的連接方式的PMOS電晶體P34。PMOS電晶體P34可因應於第二節點NET2的電壓而將電源供應端子VDD連接至第一連接節點CN1。
圖12是說明其中圖8中所示的時序電路400的及-或-反相器閘經過改變的時序電路的另一示例性實施例的電路圖。
參照圖12,時序電路700可包括具有不同於圖8中所示的時序電路400的連接方式的NMOS電晶體N31。NMOS電晶體N31可因應於第一節點NET1的反相電壓/NET1而將第一連接節點CN1連接至第二連接節點CN2。
圖13是說明其中圖8中所示的時序電路400的及-或-反相器閘經過改變的時序電路的另一示例性實施例的電路圖。
參照圖13,時序電路800可包括具有不同於圖8中所示的時序電路400的連接方式的PMOS電晶體P34及NMOS電晶體N31。PMOS電晶體P34可因應於第二節點NET2的電壓而將電源供應端子VDD連接至第一連接節點CN1。NMOS電晶體N31可因應於第一節點NET1的反相電壓/NET1而將第一連接節點CN1連接至第二連接節點CN2。
針對利用組合邏輯的一部分的圖1至圖13所示時序電路中的第一級的放電路徑闡述了本發明概念的示例性實施例。然而,本發明概念的範圍及精神不應僅限於此。舉例而言,根據本發明概念的至少某些示例性實施例的時序電路可在第一級中包括與所述組合邏輯無關的放電路徑。
圖14是說明根據本發明概念的再一示例性實施例的時序電路的圖式。
參照圖14,時序電路900可包括第一級910、第二級920、組合邏輯930及鎖存電路940。第二級920、組合邏輯930及鎖存電路940可分別相同於或實質上相同於第二級120、組合邏輯130及鎖存電路140。
時序電路900的第一級910可相似於圖1中的第一級110,但可更包括連接於第一連接節點CN1與接地端子GND之間的放電電路192。可藉由不與組合邏輯930相關聯的放電電路192來實行對第一級910的第一節點NET1的放電操作。
如在圖14中所示,放電電路192可包括:NMOS電晶體N15,因應於資料D而將NMOS電晶體N17的一端連接至第一連接節點CN1;並聯連接至NMOS電晶體N15的NMOS電晶體N16;以及NMOS電晶體N17,因應於第二節點NET2的電壓而將接地端子GND連接至NMOS電晶體N15及N16二者的共用節點。在至少一個示例性實施例中,NMOS電晶體N16的閘極端子可連接至組合邏輯930的輸出端子。圖14中所示的放電電路是實例,且本發明概念的範圍及精神不應僅限於此。
圖15是說明根據本發明概念的示例性實施例的時序電路的操作方法的流程圖。以下,將參照圖1至圖15闡述時序電路的操作方法。
參照圖15,可因應於時脈CLK、資料D、或邏輯訊號LS而以電源供應電壓來對第一節點NET1的電壓及/或第二節點NET2的電壓進行充電(S110)。可因應於時脈CLK而對第一節點NET1的電壓進行放電(S120)。可因應於資料D、時脈CLK、及邏輯訊號LS而對第二節點NET2的電壓進行放電。此處,邏輯訊號LS可自參照圖1至圖14所闡述的組合邏輯產生。組合邏輯可產生邏輯訊號LS以使得當第二節點NET2的電壓放電時第一節點NET1的電壓不放電或使得當第一節點NET1的電壓放電時第二節點NET2的電壓不放電。
然後,可鎖存與是否對第二節點NET2的電壓進行放電對應的資料,且所述時序電路可輸出經鎖存的資料作為結果值(例如,Q或/Q)。在至少一個示例性實施例中,可能夠對經鎖存的資料進行反相。
此外,時序電路可因應於重設訊號R而重設第一節點NET1的電壓或第二節點NET2的電壓。
同時,參照圖15闡述了資料的鎖存操作。然而,根據本發明概念的至少一個示例性實施例的時序電路可因應於掃描賦能訊號SE而形成掃描路徑,藉此使對輸入至時序電路的掃描輸入SI進行鎖存成為可能。
在參照圖15所闡述的時序電路的操作方法中,步驟或操作的所示次序或者數目不應限制本發明概念的範圍及精神。舉例而言,步驟S120及步驟S130可按次序實行或並列地實行。
圖16是說明根據本發明概念的示例性實施例的時序電路的示例性操作時序的時序圖。以下,將參照圖15及圖16闡述時序電路的操作。
如圖16中所示,組合邏輯可控制第一級處的第一節點及第二級處的第二節點的放電以使得在第一時間間隔期間所述第一節點放電且在第二時間間隔期間所述第二節點放電,其中所述第一時間間隔與所述第二時間間隔是不同的且不交疊的時間間隔。
參照圖15及圖16,在間隔T1期間(在S110處),可因應於低位準的時脈CLK、低位準的資料D、及高位準的邏輯訊號LS而對第二節點NET2的電壓進行充電。在此種情形中,第一節點NET1的電壓可維持為高位準。在間隔T2期間(在S130處),可因應於時脈CLK具有高位準、資料D具有低位準、及邏輯訊號LS具有高位準而對第二節點NET2的電壓進行放電。在間隔T3期間(在S110處),當假設資料D轉變時,邏輯訊號LS可自高位準轉變為低位準。此時,可因應於時脈CLK具有低位準、資料D在轉變之前具有低位準、及邏輯訊號LS在轉變之前具有高位準而對第二節點NET2的電壓進行充電。此外,第一節點NET1的電壓可持續地或實質上持續地維持為高位準。在間隔T4期間(在S130處),可完成資料D的轉變。可因應於時脈CLK具有高位準、資料D具有高位準、及邏輯訊號LS具有低位準而對第一節點NET1的電壓進行放電。此時,第二節點NET2的電壓可維持為高位準。在此種情形中,輸出端子Q可輸出對應於第二節點NET2的電壓的具有高位準的電壓。在間隔T5期間(在S110處),可因應於時脈CLK具有低位準、資料D具有高位準、及邏輯訊號LS具有低位準而對第一節點NET1的電壓進行充電。此時,第二節點NET2的電壓可維持為高位準,且輸出端子Q可維持為高位準。圖16中所示的時序是實例,且本發明概念的範圍及精神不應僅限於此。
根據本發明概念的至少某些示例性實施例的時序電路可應用於固態驅動機(SSD)的至少一種配置中。
圖17是說明根據本發明概念的示例性實施例的固態驅動機的方塊圖。
參照圖17,固態驅動機1000可包括多個非揮發性記憶體1100及固態驅動機控制器1200。
非揮發性記憶體1100可被實作成視需要接收外部高電壓Vppx。非揮發性記憶體1100可包括分別連接至多個通道CH1至CHi的多個非揮發性記憶體封裝。在此實例中,'i'是2或大於2的整數。
固態驅動機控制器1200可分別經由通道CH1至通道CHi連接至非揮發性記憶體1100。固態驅動機控制器1200可包括至少一個處理器1210、緩衝記憶體1220、錯誤修正碼(error correction code,ECC)電路1230、主機介面(host interface)1240、及非揮發性記憶體介面1250。
處理器1210可被實作成處理固態驅動機控制器1200的整體運作。處理器1210可包括多個時序電路FF1及時序電路FF2。此處,時序電路FF1及時序電路FF2中的每一者可由參照圖1及圖16所闡述的時序電路來實作。本發明概念的示例性實施例被例示為串聯連接的時序電路FF1及時序電路FF2的數目為2。然而,本發明概念的範圍及精神不應僅限於此。
緩衝記憶體1220可暫時地儲存在固態驅動機控制器1200的運作中所使用的資料。緩衝記憶體1220可包括多個記憶體行,所述多個記憶體行儲存資料或命令。此處,多個記憶體行可利用各種方法被映射至快取(cache)行。本發明概念的至少某些示例性實施例被例示為圖17中的緩衝記憶體1220排列於固態驅動機控制器1200中。然而,本發明概念的範圍及精神可不僅限於此。舉例而言,根據本發明概念的示例性實施例的緩衝記憶體1220可放置於固態驅動機控制器1200之外。
錯誤修正碼電路1230可計算在寫入操作期間欲被程式化的資料的錯誤修正碼的值,可基於所述錯誤修正碼的值來修正在讀取操作期間讀取的資料,及/或可修正自非揮發性記憶體1100修復的錯誤。本發明概念的示例性實施例是針對以扇區(sector)來偵測及修正錯誤的錯誤修正碼電路1230來例示。然而,本發明概念的範圍及精神可不僅限於此。
錯誤修正碼電路1230可在自非揮發性記憶體1100接收的資料中或在用於修正錯誤位元的錯誤修正碼(ECC)中產生失效位元(fail bit)。錯誤修正碼電路1230可實行被提供至非揮發性記憶體1100的錯誤修正編碼且可產生增加有奇偶校驗位元(parity bit)的資料。所述奇偶校驗位元可儲存於非揮發性記憶體1100中。此外,錯誤修正碼電路1230可對自非揮發性記憶體1100輸出的資料實行錯誤修正解碼。錯誤修正碼電路1230可利用奇偶校驗位元修正錯誤。儘管圖中未示出,然而可於固態驅動機控制器1200中更包括碼記憶體,所述碼記憶體儲存用於固態驅動機控制器1200的運作的碼資料。所述碼記憶體可由非揮發性記憶體來實作。
主機介面1240可提供用於介接外部裝置的介面功能。主機介面1240可藉由以下元件連接至外部主機:並列高階技術附接(parallel advanced technology attachment,PATA)匯流排、串列高階技術附接(serial advanced technology attachment,SATA)匯流排、小型電腦系統介面(small computer system interface,SCSI)、通用串列匯流排(universal serial bus,USB)、快速周邊組件互連(Peripheral Component Interconnect Express,PCIe)、安全數位(secure digital,SD)、串列附接小型電腦系統介面(serial attached SCSI,SAS)、通用快閃儲存器(universal flash storage,UFS)、嵌式多媒體卡(embedded multimedia card,eMMC)、多媒體卡(multimedia card,MMC)、反及介面等。非揮發性記憶體介面1250可在固態驅動機控制器1200與非揮發性記憶體1100之間提供介面功能。儘管圖中未示出,然而固態驅動機控制器1200可安裝無線通訊功能(例如,WiFi)。
由於高速時序電路FF1及FF2被應用至處理器1210,因此根據本發明概念的至少一個示例性實施例的固態驅動機1000可包括處理器1210。因此,固態驅動機1000可以相對高的時脈頻率運作。
圖18是說明根據本發明概念的示例性實施例的電子裝置2000的方塊圖。
參照圖18,電子裝置2000可包括至少一個處理器2100、緩衝記憶體2200、碼記憶體2300、非揮發性記憶體介面2600、非揮發性記憶體裝置2700、及主機介面2800。電子裝置2000可為以下裝置中的一者或其兩者或更多者的組合:資料儲存媒體(例如,固態驅動機(SSD)、記憶條(memory stick)、通用快閃儲存器(UFS)裝置)、記憶卡(例如,安全數位(SD)、多媒體卡(MMC)、嵌式多媒體卡(eMMC)等)、智慧卡、行動裝置(例如,智慧型電話及GalaxyTM系列)、智慧型電話、平板個人電腦(PC)、行動電話、視訊電話、電子書閱讀機、桌上型個人電腦、膝上型個人電腦、筆記型電腦、個人數位助理(personal digital assistant,PDA)、可攜式多媒體播放機(portable multimedia player,PMP)、音訊層3(MP3)播放機、行動醫療裝置(mobile medical device)、電子手鐲、電子項鏈、電子應用配件(appcessory)、相機、可穿戴裝置、電子鐘、手錶、家電(例如,冰箱、空調、真空吸塵器、烤箱、微波烤箱、洗滌機、空氣清潔器等)、人工智慧機器人、電視(television,TV)、數位視訊碟(digital video disk,DVD)播放機、音訊系統、各種醫療裝置(例如,磁共振血管造影(magnetic resonance angiography,MRA)相機、磁共振成像(magnetic resonance imaging,MRI)相機、電腦斷層掃描(computed tomography,CT)相機、超聲機器(ultrasonic machine)等)、導航裝置、全球定位系統(global positioning system,GPS)接收器、事件資料記錄器(event data recorder,EDR)、飛行資料記錄器(flight data recorder,FDR)、機上盒(set-top box)、電視機盒(例如,三星HomeSyncTM、AppleTVTM、或googleTVTM)、電子辭典、汽車資訊娛樂裝置、船舶電子設備(例如,船舶導航系統、迴轉羅盤 (gyrocompass)等)、航空電子系統(avionics system)、安全裝置、電子服裝、電子鑰匙(electronic key)、攝錄影機(camcorder)、遊戲機、頭戴式顯示器(head-mounted display)、平板顯示裝置、電子相框、電子相冊、傢具或者建築或結構的包括通訊功能的部分、電子板、電子簽章接收裝置、或投影儀。
處理器2100可被實作成控制電子裝置2000的整體運作。此處,處理器2100可為中央處理單元、應用處理器、圖形處理器等。在至少一個示例性實施例中,處理器2100可包括安全處理器或安全元件(secure element,SE)等。舉例而言,處理器2100可具有防篡改(tamper-resistant)功能以保護其免於例如微探測(micro-probing)、軟體攻擊、竊聽、故障產生等篡改攻擊。在至少一個示例性實施例中,處理器2100可包括至少兩個串聯連接的時序電路FF1及FF2。此處,時序電路FF1及FF2中的每一者可由參照圖1及圖15所闡述的時序電路來實作。在至少一個示例性實施例中,時序電路FF1及FF2中的每一者可由相同或實質上相同類型的時序電路來實作。在至少一個其他示例性實施例中,時序電路FF1及FF2中的每一者可由不同類型的時序電路來實作。
緩衝記憶體2200可根據處理器2100的控制來運作。緩衝記憶體2200可暫時地儲存由處理器2100處理的資料或可緩衝被傳輸至非揮發性記憶體裝置2700的資料、或自非揮發性記憶體裝置2700傳輸的資料。在至少一個示例性實施例中,緩衝記憶體2200可為隨機存取記憶體(RAM)、靜態隨機存取記憶體(static random access memory,SRAM)、及相變隨機存取記憶體(phase-change random access memory,PRAM)。
碼記憶體2300可被實作成儲存碼及/或用於管理或操作電子裝置2000的應用。在至少一個示例性實施例中,碼記憶體2300可為唯讀記憶體(ROM)或相變隨機存取記憶體。可藉由非揮發性記憶體介面2600來實行與非揮發性記憶體裝置2700的資料交換。主機介面2800可藉由以下元件連接至外部主機:並列高階技術附接(PATA)匯流排、串列高階技術附接(SATA)匯流排、小型電腦系統介面(SCSI)、通用串列匯流排(USB)、快速周邊組件互連(PCIe)、安全數位(SD)、串列附接小型電腦系統介面(SAS)、通用快閃儲存器、嵌式多媒體卡、多媒體卡、反及介面等。
儘管圖中未示出,然而電子裝置2000可安裝無線通訊功能(例如,Wi-Fi)。同時,電子裝置2000可更包括未在圖18中示出的組件、或可不包括圖18中所示的組件中的至少一者(加密處理電路(cryptographic processing circuit)除外)。
圖19是說明根據本發明概念的示例性實施例的行動裝置3000的方塊圖。
參照圖19,行動裝置3000可包括處理器(應用處理器/數據機應用處理器(AP/ModAP))3100、儲存裝置3200、顯示/觸控模組3300、及緩衝記憶體3400。
處理器3100可被實作成控制行動裝置3000的整體運作及與外部裝置的有線通訊/無線通訊。舉例而言,處理器3100可為應用處理器(AP)、積體數據機應用處理器(本文中稱作「數據機應用處理器(ModAP)」)等。處理器3100可包括參照圖1至圖14所闡述的至少兩個時序電路FF1及FF2。
在至少一個示例性實施例中,處理器3100的時序電路FF1及FF2可由參照圖1及圖6所闡述的時序電路來實作。在至少一個其他示例性實施例中,處理器3100可包括因應於掃描訊號而串聯連接以實行掃描測試的第一時序電路FF1及第二時序電路FF2。此處,第一時序電路FF1及第二時序電路FF2中的每一者可由接收參照圖6至圖13所闡述的掃描輸入SI及掃描賦能訊號SE的時序電路來實作。
緩衝記憶體3400可被實作成暫時地儲存當行動裝置3000實行處理操作時所需的資料。顯示/觸控模組3300可被實作成顯示自處理器3100處理的資料或自觸控面板接收資料。儲存裝置3200可被實作成儲存使用者的資料。儲存裝置3200可為嵌式多媒體卡、固態驅動機、通用快閃儲存器等。
根據本發明概念的一或多個示例性實施例的時序電路及/或所述時序電路的操作方法可藉由根據互補節點的電壓以及資料的狀態以互補方式判斷是否因應於邏輯訊號及時脈而對節點的電壓進行放電來抑制及/或最小化由於時脈變化造成的影響。
根據本發明概念的一或多個示例性實施例的時序電路及/或所述時序電路的操作方法可藉由由2堆疊結構的NMOS電晶體來實作而提高放電速度。因此,可以相對高的速度來實行鎖存操作。
根據本發明概念的一或多個示例性實施例的時序電路及/或所述時序電路的操作方法可藉由縮短設置時間或時脈至輸出延遲來達成時脈頻率的提高。
因此,應理解,本文中所闡述的示例性實施例並非限制性的而是例示性的。儘管已參照示例性實施例闡述了本發明概念,然而對熟習此項技術者將顯而易見的是,可在不背離本發明概念的精神及範圍的條件下作出各種變化及潤飾。
100、200、300、400、500、600、700、800、900‧‧‧時序電路
110、210、310、410、510、910‧‧‧第一級
120、220、320、420、520、920‧‧‧第二級
130、230、330、430、530、930‧‧‧組合邏輯
131、244、331、344、431、434、444、544‧‧‧反相器(INV)
132、232、332‧‧‧及-或-反相器閘
140、240、340、440、550、940‧‧‧鎖存電路
192‧‧‧放電電路
242、342、442、542‧‧‧鎖存器
333‧‧‧多工器(MUX)
1000‧‧‧固態驅動機
1100‧‧‧非揮發性記憶體(NVM)
1200‧‧‧固態驅動機控制器
1210、2100、3100‧‧‧處理器
1220、2200、3400‧‧‧緩衝記憶體
1230‧‧‧錯誤修正碼電路
1240、2800‧‧‧主機介面
1250、2600‧‧‧非揮發性記憶體介面
2000‧‧‧電子裝置
2300‧‧‧碼記憶體
2700‧‧‧非揮發性記憶體裝置
3000‧‧‧行動裝置
3200‧‧‧儲存裝置
3300‧‧‧顯示/觸控模組
BUF‧‧‧緩衝器
CH1、CH2、CH3、CHi‧‧‧通道
CLK‧‧‧時脈
CN1‧‧‧第一連接節點
CN2‧‧‧第二連接節點
D‧‧‧資料
FF1‧‧‧高速時序電路、時序電路、第一時序電路
FF2‧‧‧高速時序電路、時序電路、第二時序電路
GND‧‧‧接地端子
LS‧‧‧邏輯訊號
N11、N21‧‧‧NMOS電晶體/第一NMOS電晶體
N12、N22‧‧‧NMOS電晶體/第二NMOS電晶體
N13‧‧‧NMOS電晶體/第三NMOS電晶體
N14、N15、N16、N17、N23、N32、N33、N34、N41、N42‧‧‧NMOS電晶體
N31‧‧‧NMOS電晶體/電晶體
NET1‧‧‧第一節點/節點
NET2‧‧‧第二節點/節點
OUT‧‧‧輸出節點
P11、P21‧‧‧PMOS電晶體/第一PMOS電晶體
P12、P22‧‧‧PMOS電晶體/第二PMOS電晶體
P13‧‧‧PMOS電晶體/第三PMOS電晶體
P14‧‧‧PMOS電晶體/第四PMOS電晶體
P23、P41‧‧‧PMOS電晶體
P31、P32、P33、P34‧‧‧PMOS電晶體/電晶體
Q‧‧‧經鎖存的資料/輸出端子
R‧‧‧重設訊號
S110、S120、S130‧‧‧步驟
SE‧‧‧掃描賦能訊號
SI‧‧‧掃描輸入
T1、T2、T3、T4、T5‧‧‧間隔
VDD‧‧‧電源供應端子
Vppx‧‧‧外部高壓
/NET1‧‧‧第一節點的反相電壓
/Q‧‧‧經鎖存的資料
/SE‧‧‧反相掃描賦能訊號
藉由參照圖閱讀以下說明,示例性實施例將變得顯而易見,其中除非另有規定,否則通篇各種圖中相同的參考編號指代相同的部件,且其中: 圖1是說明根據本發明概念的示例性實施例的時序電路的圖式。 圖2是說明圖1中所示的組合邏輯的示例性實施例的電路圖。 圖3是說明圖1中所示的第一節點的示例性放電路徑的電路圖。 圖4是說明圖1中所示的第一節點的另一示例性放電路徑的電路圖。 圖5是說明圖1中所示的鎖存電路的示例性實施例的電路圖。 圖6是說明根據本發明概念的另一示例性實施例的時序電路的圖式。 圖7是說明根據本發明概念的又一示例性實施例的時序電路的圖式。 圖8是說明根據本發明概念的再一示例性實施例的時序電路的圖式。 圖9是說明圖8中的時序電路中的示例性掃描路徑的圖式。 圖10是說明根據本發明概念的再一示例性實施例的時序電路的圖式。 圖11是說明其中及-或-反相器(AND-OR-Inverter,AOI)閘經過改變的時序電路的示例性實施例的電路圖。 圖12是說明其中及-或-反相器閘經過改變的時序電路的另一示例性實施例的電路圖。 圖13是說明其中及-或-反相器閘經過改變的時序電路的再一示例性實施例的電路圖。 圖14是說明根據本發明概念的再一示例性實施例的時序電路的圖式。 圖15是說明根據本發明概念的示例性實施例的時序電路的操作方法的流程圖。 圖16是說明根據本發明概念的示例性實施例的時序電路的示例性操作時序的時序圖。 圖17是說明根據本發明概念的示例性實施例的固態驅動機(solid state drive,SSD)的方塊圖。 圖18是說明根據本發明概念的示例性實施例的電子裝置的方塊圖。 圖19是說明根據本發明概念的示例性實施例的行動裝置的方塊圖。
100‧‧‧時序電路
110‧‧‧第一級
120‧‧‧第二級
130‧‧‧組合邏輯
140‧‧‧鎖存電路
CLK‧‧‧時脈
CN1‧‧‧第一連接節點
CN2‧‧‧第二連接節點
D‧‧‧資料
GND‧‧‧接地端子
LS‧‧‧邏輯訊號
N11、N21‧‧‧NMOS電晶體/第一NMOS電晶體
N22‧‧‧NMOS電晶體/第二NMOS電晶體
NET1‧‧‧第一節點/節點
NET2‧‧‧第二節點/節點
OUT‧‧‧輸出節點
P11、P21‧‧‧PMOS電晶體/第一PMOS電晶體
P12、P22‧‧‧PMOS電晶體/第二PMOS電晶體
Q‧‧‧經鎖存的資料/輸出端子
VDD‧‧‧電源電壓端子
/Q‧‧‧經鎖存的資料

Claims (20)

  1. 一種時序電路,包括: 第一級,用以因應於時脈而對第一節點的電壓進行充電,且因應於所述時脈、第二節點的電壓、及資料而對所述第一節點的所述電壓進行放電; 第二級,用以因應於所述時脈而對所述第二節點的所述電壓進行充電且因應於所述時脈及邏輯訊號而對所述第二節點的所述電壓進行放電; 組合邏輯,用以使用所述第一節點的所述電壓、所述第二節點的所述電壓、及所述資料來產生所述邏輯訊號;以及 鎖存電路,用以因應於所述時脈而鎖存所述第二節點的所述電壓, 其中所述組合邏輯產生所述邏輯訊號而使得當所述第一節點的所述電壓放電時所述第二節點的所述電壓不放電、或者當所述第二節點的所述電壓放電時所述第一節點的所述電壓不放電。
  2. 如申請專利範圍第1項所述的時序電路,其中所述第一級包括: 第一PMOS電晶體,用以因應於所述時脈而將所述第一節點連接至電源供應端子; 第二PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述第一節點連接至所述電源供應端子;以及 第一NMOS電晶體,用以因應於所述時脈而將第一連接節點連接至所述第一節點。
  3. 如申請專利範圍第2項所述的時序電路,其中所述第二級包括: 第一PMOS電晶體,用以因應於所述時脈而將所述第二節點連接至所述電源供應端子; 第二PMOS電晶體,用以因應於所述第一節點的所述電壓而將所述第二節點連接至所述電源供應端子; 第一NMOS電晶體,因應於所述邏輯訊號而將一端連接至所述第二節點;以及 第二NMOS電晶體,用以因應於所述時脈而將接地端子連接至所述第二級的所述第一NMOS電晶體的另一端, 其中所述第一連接節點連接至所述第二級的所述第一NMOS電晶體的閘極端子。
  4. 如申請專利範圍第2項所述的時序電路,其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相;以及 及-或-反相器閘,用以接收所述第二節點的所述電壓、所述資料、及所述反相器的輸出值並產生所述邏輯訊號。
  5. 如申請專利範圍第4項所述的時序電路,其中所述及-或-反相器閘包括: 第一NMOS電晶體,因應於所述邏輯訊號而將一端連接至所述第二節點;以及 第二NMOS電晶體,用以因應於所述時脈而將接地端子連接至所述及-或-反相器閘的所述第一NMOS電晶體的另一端。
  6. 如申請專利範圍第1項所述的時序電路,其中所述鎖存電路包括: 第一PMOS電晶體,用以因應於所述第二節點的所述電壓而將輸出節點連接至電源供應端子; 第一NMOS電晶體,因應於所述時脈而將一端連接至所述輸出節點;以及 第二NMOS電晶體,用以因應於所述第二節點的所述電壓而將所述鎖存電路的所述第一NMOS電晶體的另一端連接至接地端子;以及 緩衝器,用以緩衝所述輸出節點的電壓。
  7. 如申請專利範圍第6項所述的時序電路,其中所述鎖存電路更包括: 反相器,用以對所述輸出節點的所述電壓進行反相。
  8. 如申請專利範圍第1項所述的時序電路,其中所述第一級包括: 第一PMOS電晶體,因應於所述時脈而將一端連接至所述第一節點; 第二PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述第一節點連接至電源供應端子; 第三PMOS電晶體,用以因應於掃描輸入而將所述第一級的所述第一PMOS電晶體的另一端連接至所述電源供應端子; 第四PMOS電晶體,用以因應於掃描賦能訊號而將所述第一級的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第一NMOS電晶體,用以因應於所述時脈而將第一連接節點連接至所述第一節點; 第二NMOS電晶體,因應於所述掃描輸入而將一端連接至所述第一節點; 第三NMOS電晶體,因應於所述掃描賦能訊號而將一端連接至所述第一級的所述第二NMOS電晶體的另一端;以及 第四NMOS電晶體,因應於所述第二節點的所述電壓而將所述第一級的所述第三NMOS電晶體的另一端連接至接地端子, 其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相;以及 及-或-反相器閘,用以接收所述反相器的輸出值、反相掃描賦能訊號、所述第二節點的所述電壓、及所述資料並產生所述邏輯訊號,且 其中所述第一連接節點連接至所述及-或-反相器閘的輸出端子。
  9. 如申請專利範圍第1項所述的時序電路,其中所述第一級包括: 第一PMOS電晶體,用以因應於所述時脈而將所述第一節點連接至電源供應端子, 第二PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述第一節點連接至所述電源供應端子,以及 第一NMOS電晶體,用以因應於所述時脈而將第一連接節點連接至所述第一節點, 其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相,以及 多工器,用以因應於掃描賦能訊號而選擇所述資料或掃描輸入中的一者,以及 及-或-反相器閘,用以接收所述多工器的輸出值、所述第二節點的所述電壓、及所述反相器的輸出值並產生所述邏輯訊號,且 其中所述第一連接節點連接至所述及-或-反相器閘的輸出端子。
  10. 如申請專利範圍第1項所述的時序電路,其中所述第一級包括: 第一PMOS電晶體,因應於所述時脈而將一端連接至所述第一節點; 第二PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述第一節點連接至電源供應端子; 第三PMOS電晶體,用以因應於掃描輸入而將所述第一級的所述第一PMOS電晶體的另一端連接至所述電源供應端子; 第四PMOS電晶體,用以因應於掃描賦能訊號而將所述第一級的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第一NMOS電晶體,用以因應於所述時脈而將第一連接節點連接至所述第一節點; 第二NMOS電晶體,因應於所述掃描輸入而將一端連接至所述第一節點;以及 第三NMOS電晶體,用以因應於所述掃描賦能訊號而將第二連接節點連接至所述第一級的所述第二NMOS電晶體的另一端,且 其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相; 第一PMOS電晶體,因應於所述反相器的輸出值而將一端連接至所述第一連接節點; 第二PMOS電晶體,用以因應於所述資料而將所述組合邏輯的所述第一PMOS電晶體的另一端連接至所述電源供應端子, 第三PMOS電晶體,用以因應於反相掃描賦能訊號而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子, 第四PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子, 第一NMOS電晶體,用以因應於所述反相器的所述輸出值而將所述接地端子連接至所述第一連接節點, 第二NMOS電晶體,因應於所述資料而將一端連接至所述第一連接節點, 第三NMOS電晶體,用以因應於所述反相掃描賦能訊號而將所述組合邏輯的所述第二NMOS電晶體的另一端連接至所述第二連接節點,以及 第四NMOS電晶體,用以因應於所述第二節點的所述電壓而將所述接地端子連接至所述第二連接節點。
  11. 一種時序電路,包括: 第一級,包括: 第一PMOS電晶體,因應於時脈而將一端連接至第一節點, 第二PMOS電晶體,用以因應於第二節點的電壓而將所述第一節點連接至電源供應端子, 第三PMOS電晶體,用以因應於掃描輸入而將所述第一PMOS電晶體的另一端連接至所述電源供應端子, 第四PMOS電晶體,用以因應於掃描賦能訊號而將所述第一PMOS電晶體的所述一端連接至所述電源供應端子, 第一NMOS電晶體,用以因應於所述時脈而將第一連接節點連接至所述第一節點, 第二NMOS電晶體,因應於所述掃描輸入而將一端連接至所述第一節點,以及 第三NMOS電晶體,用以因應於所述掃描賦能訊號而將第二連接節點連接至所述第二NMOS電晶體的另一端; 第二級,包括: 第一PMOS電晶體,用以因應於所述時脈而將所述第二節點連接至所述電源供應端子, 第二PMOS電晶體,用以因應於所述第一節點的電壓而將所述第二節點連接至所述電源供應端子, 第一NMOS電晶體,因應於邏輯訊號而連接至所述第二節點,以及 第二NMOS電晶體,用以因應於所述時脈而將接地端子連接至所述第二級的所述第一NMOS電晶體的另一端; 組合邏輯,用以接收資料、所述第一節點的所述電壓、及所述第二節點的電壓並產生所述邏輯訊號,其中輸出所述邏輯訊號的所述組合邏輯的輸出端子連接至所述第一連接節點;以及 鎖存電路,用以因應於所述時脈而鎖存所述第二節點的所述電壓。
  12. 如申請專利範圍第11項所述的時序電路,其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相; 第一PMOS電晶體,因應於所述反相器的輸出值而將一端連接至所述第一連接節點; 第二PMOS電晶體,用以因應於所述資料而將所述組合邏輯的所述第一PMOS電晶體的另一端連接至所述電源供應端子; 第三PMOS電晶體,用以因應於所述掃描賦能訊號的反相型式而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第四PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第一NMOS電晶體,用以因應於所述反相器的所述輸出值而將所述接地端子連接至所述第一連接節點; 第二NMOS電晶體,因應於所述資料而將一端連接至所述第一連接節點; 第三NMOS電晶體,用以因應於所述反相掃描賦能訊號而將所述組合邏輯的所述第二NMOS電晶體的另一端連接至所述第二連接節點;以及 第四NMOS電晶體,用以因應於所述第二節點的所述電壓而將所述接地端子連接至所述第二連接節點。
  13. 如申請專利範圍第11項所述的時序電路,其中所述第二級更包括: 第三PMOS電晶體,用以因應於重設訊號而將所述第二級的所述第一PMOS電晶體的所述一端連接至所述電源供應端子,且因應於所述重設訊號而將所述第二級的所述第二PMOS電晶體的一端連接至所述電源供應端子;以及 第三NMOS電晶體,用以因應於所述重設訊號而將所述接地端子連接至所述第二節點。
  14. 如申請專利範圍第11項所述的時序電路,其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相; 第一PMOS電晶體,因應於所述反相器的輸出值而將一端連接至所述第一連接節點; 第二PMOS電晶體,用以因應於所述資料而將所述組合邏輯的所述第一PMOS電晶體的另一端連接至所述電源供應端子; 第三PMOS電晶體,用以因應於掃描賦能訊號的反相型式而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第四PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述第一連接節點連接至所述電源供應端子; 第一NMOS電晶體,用以因應於所述反相器的所述輸出值而將所述接地端子連接至所述第一連接節點; 第二NMOS電晶體,因應於所述資料而將一端連接至所述第一連接節點; 第三NMOS電晶體,用以因應於所述反相掃描賦能訊號而將所述組合邏輯的所述第二NMOS電晶體的另一端連接至所述第二連接節點;以及 第四NMOS電晶體,用以因應於所述第二節點的所述電壓而將所述接地端子連接至所述第二連接節點。
  15. 如申請專利範圍第11項所述的時序電路,其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相; 第一PMOS電晶體,因應於所述反相器的輸出值而將一端連接至所述第一連接節點; 第二PMOS電晶體,用以因應於所述資料而將所述組合邏輯的所述第一PMOS電晶體的另一端連接至所述電源供應端子; 第三PMOS電晶體,用以因應於掃描賦能訊號的反相型式而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第四PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第一NMOS電晶體,用以因應於所述反相器的所述輸出值而將所述第二連接節點連接至所述第一連接節點; 第二NMOS電晶體,因應於所述資料而將一端連接至所述第一連接節點; 第三NMOS電晶體,用以因應於所述反相掃描賦能訊號而將所述組合邏輯的所述第二NMOS電晶體的另一端連接至所述第二連接節點;以及 第四NMOS電晶體,用以因應於所述第二節點的所述電壓而將所述接地端子連接至所述第二連接節點。
  16. 如申請專利範圍第11項所述的時序電路,其中所述組合邏輯包括: 反相器,用以對所述第一節點的所述電壓進行反相; 第一PMOS電晶體,因應於所述反相器的輸出值而將一端連接至所述第一連接節點; 第二PMOS電晶體,用以因應於所述資料而將所述組合邏輯的所述第一PMOS電晶體的另一端連接至所述電源供應端子; 第三PMOS電晶體,用以因應於掃描賦能訊號的反相型式而將所述組合邏輯的所述第一PMOS電晶體的所述一端連接至所述電源供應端子; 第四PMOS電晶體,用以因應於所述第二節點的所述電壓而將所述第一連接節點連接至所述電源供應端子; 第一NMOS電晶體,用以因應於所述反相器的所述輸出值而將所述第二連接節點連接至所述第一連接節點; 第二NMOS電晶體,因應於所述資料而將一端連接至所述第一連接節點; 第三NMOS電晶體,用以因應於所述反相掃描賦能訊號而將所述組合邏輯的所述第二NMOS電晶體的另一端連接至所述第二連接節點;以及 第四NMOS電晶體,用以因應於所述第二節點的所述電壓而將所述接地端子連接至所述第二連接節點。
  17. 一種時序電路,包括: 第一級電路; 第二級電路;以及 組合邏輯電路,耦合於所述第一級電路處的第一節點與所述第二級電路處的第二節點之間,所述組合邏輯電路用以基於所述第一節點處的電壓、所述第二節點處的電壓、及輸入資料而控制所述第一節點的及所述第二節點的放電,所述組合邏輯更用以控制所述第一節點的及所述第二節點的放電以使得在第一時間間隔期間所述第一節點放電且在第二時間間隔期間所述第二節點放電,所述第一時間間隔與所述第二時間間隔是不同的且不交疊的時間間隔。
  18. 如申請專利範圍第17項所述的時序電路,更包括: 鎖存電路,用以因應於時脈訊號而鎖存所述第二節點處的所述電壓。
  19. 如申請專利範圍第17項所述的時序電路,其中 所述組合邏輯電路更用以產生邏輯訊號以控制所述第一節點的及所述第二節點的所述放電,所述邏輯訊號是基於所述第一節點處的所述電壓、所述第二節點處的所述電壓、及所述輸入資料而產生。
  20. 如申請專利範圍第19項所述的時序邏輯電路,其中 所述第一級電路用以基於時脈訊號而對所述第一節點進行充電; 所述第一級電路用以基於所述時脈訊號、所述第二節點處的所述電壓、及所述輸入資料而對所述第一節點進行放電; 所述第二級用以基於所述時脈訊號而對所述第二節點進行充電;以及 所述第二級用以基於所述時脈訊號及所述邏輯訊號而對所述第二節點進行放電。
TW105128179A 2015-09-07 2016-09-01 時序電路 TWI692772B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150126420A KR102353028B1 (ko) 2015-09-07 2015-09-07 시퀀셜 회로 및 그것의 동작 방법
KR10-2015-0126420 2015-09-07

Publications (2)

Publication Number Publication Date
TW201711027A true TW201711027A (zh) 2017-03-16
TWI692772B TWI692772B (zh) 2020-05-01

Family

ID=58055311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105128179A TWI692772B (zh) 2015-09-07 2016-09-01 時序電路

Country Status (5)

Country Link
US (1) US10038428B2 (zh)
KR (1) KR102353028B1 (zh)
CN (1) CN106505994B (zh)
DE (1) DE102016115935A1 (zh)
TW (1) TWI692772B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941881B1 (en) * 2017-03-23 2018-04-10 Qualcomm Incorporated Apparatus and method for latching data including AND-NOR or OR-NAND gate and feedback paths
KR102369635B1 (ko) * 2017-09-06 2022-03-03 삼성전자주식회사 증가된 네거티브 셋업 시간을 갖는 시퀀셜 회로
CN112397131A (zh) * 2019-08-12 2021-02-23 长鑫存储技术有限公司 数据采样电路
CN110932713B (zh) * 2019-11-11 2023-05-16 东南大学 用于卷积神经网络硬件加速器的时序弹性电路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735034B2 (ja) * 1995-06-14 1998-04-02 日本電気株式会社 クロック信号分配回路
TW505804B (en) * 1998-02-19 2002-10-11 Hitachi Ltd Liquid crystal display device
US20040153926A1 (en) * 2002-10-30 2004-08-05 Abdel-Hafez Khader S. Method and apparatus for testing asynchronous set/reset faults in a scan-based integrated circuit
US7157930B2 (en) 2003-12-22 2007-01-02 Matsushita Electric Industrial Co., Ltd. Scan flip flop, semiconductor device, and production method of semiconductor device
US6972605B1 (en) 2004-03-25 2005-12-06 Sun Microsystems, Inc. High speed semi-dynamic flip-flop circuit
KR101045295B1 (ko) 2004-04-29 2011-06-29 삼성전자주식회사 Mtcmos 플립-플롭, 그를 포함하는 mtcmos회로, 및 그 생성 방법
JP2007028532A (ja) 2005-07-21 2007-02-01 Matsushita Electric Ind Co Ltd フリップフロップ回路
CN100550639C (zh) * 2005-10-14 2009-10-14 威盛电子股份有限公司 多米诺输出锁存器
CN101091314B (zh) 2005-10-18 2010-05-19 松下电器产业株式会社 半导体集成电路
US7665001B2 (en) * 2006-09-25 2010-02-16 Wisconsin Alumni Research Foundation Progressive random access scan circuitry
KR101573343B1 (ko) 2009-06-16 2015-12-02 삼성전자주식회사 플립플롭 회로 및 이를 구비하는 컴퓨터 시스템
US8593194B2 (en) 2010-11-30 2013-11-26 Marvell Israel (M.I.S.L) Ltd. Race free semi-dynamic D-type flip-flop
KR101736437B1 (ko) * 2010-12-02 2017-05-17 삼성전자주식회사 플립플롭 회로
US8508275B2 (en) 2011-10-11 2013-08-13 Oracle International Corporation Semi-dynamic flip-flop with partially floating evaluation window
KR101928271B1 (ko) * 2012-03-16 2018-12-13 삼성전자 주식회사 스캔 플립-플롭, 이의 동작 방법, 및 이를 포함하는 데이터 처리 장치들
US8975949B2 (en) * 2013-03-14 2015-03-10 Samsung Electronics Co., Ltd. Integrated clock gater (ICG) using clock cascode complimentary switch logic
TWI508450B (zh) 2013-04-10 2015-11-11 Mstar Semiconductor Inc 半動態正反器
EP3629476A1 (en) * 2013-05-08 2020-04-01 QUALCOMM Incorporated Flip-flop for reducing dynamic power

Also Published As

Publication number Publication date
US20170070215A1 (en) 2017-03-09
TWI692772B (zh) 2020-05-01
KR20170029700A (ko) 2017-03-16
CN106505994B (zh) 2020-08-07
CN106505994A (zh) 2017-03-15
KR102353028B1 (ko) 2022-01-20
US10038428B2 (en) 2018-07-31
DE102016115935A1 (de) 2017-03-09

Similar Documents

Publication Publication Date Title
US10333498B2 (en) Low-power, small-area, high-speed master-slave flip-flop circuits and devices including same
US9252754B2 (en) Scan flip-flop, method thereof and devices having the same
TWI692772B (zh) 時序電路
TWI648953B (zh) 正反器與半導體電路
US9059693B2 (en) Clock gating circuit
US10348299B2 (en) Clock gating circuit operates at high speed
CN106026990B (zh) 半导体电路
JP5866488B1 (ja) インテリジェントデュアルデータレート(ddr)メモリコントローラ
KR20170036544A (ko) 메모리 시스템 및 이의 동작 방법
US11431326B2 (en) Semiconductor device
US10320369B2 (en) Sequential circuits and operating methods thereof
JPWO2009037770A1 (ja) メモリ回路およびメモリ回路のデータ書き込み・読み出し方法
US9081556B2 (en) Power on reset detector
KR20150019618A (ko) 반도체 회로
TWI701904B (zh) 半導體電路