TW201619427A - 矽基礎膜及其形成方法 - Google Patents

矽基礎膜及其形成方法 Download PDF

Info

Publication number
TW201619427A
TW201619427A TW104135889A TW104135889A TW201619427A TW 201619427 A TW201619427 A TW 201619427A TW 104135889 A TW104135889 A TW 104135889A TW 104135889 A TW104135889 A TW 104135889A TW 201619427 A TW201619427 A TW 201619427A
Authority
TW
Taiwan
Prior art keywords
group
linear
branched
plasma
nitro
Prior art date
Application number
TW104135889A
Other languages
English (en)
Other versions
TWI575099B (zh
Inventor
新建 雷
艾紐帕馬 馬里卡裘南
馬修 R 麥當勞
滿超 蕭
Original Assignee
氣體產品及化學品股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 氣體產品及化學品股份公司 filed Critical 氣體產品及化學品股份公司
Publication of TW201619427A publication Critical patent/TW201619427A/zh
Application granted granted Critical
Publication of TWI575099B publication Critical patent/TWI575099B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Abstract

本文揭露的是矽基礎膜及其組合物和方法。該等矽基礎膜含有<50原子%的矽。在一態樣中,該等矽基礎膜具有一組成SixCyNz,其中藉由XPS測量時x係約0至約55,y係約35至約100,而且z係約0至約50原子重量(wt.)百分比(%)。在另一態樣中,該等矽基礎膜係利用至少一包含二矽原子、至少一Si-Me基團及介於該等矽原子之間的伸乙基或伸丙基鍵聯之有機矽前驅物例如1,4-二矽雜戊烷來沉積。

Description

矽基礎膜及其形成方法 相關申請案之交互參照
本案請求2014年,11月3日申請的申請案第62/074,219號之權益。在此以引用的方式將該申請案第62/074,219號的揭示內容併入。
本文揭露的是含矽或矽基礎介電膜或材料,及其形成方法和組合物。
本文所述的矽基礎介電膜包括,但不限於,非化學計量碳化矽、非晶矽、碳氮化矽或氮化矽以供用於不同電子應用。在某些具體實施例中,該等介電膜包括除矽和碳之外的其他元素。這些其他元素有時候可經由沉積製程依據膜產生的應用或希望的最終性質故意加於該組合混合物。舉例來說,該元素氮(N)可被加於該等矽基礎膜以形成碳氮化物或氮化矽膜以便提供一定的介電效能例如,但不限於,較低洩漏電流。然而,依據應用,該膜中的某些元素甚至是於較低濃度水準也不想要。
碳化矽膜常使用前驅物1,4-二矽雜丁烷(1,4-DSB)來沉積。美國專利公開案第2010/233886號描述包含Si的矽基礎膜,例如,但不限於,氮化矽、氧碳化矽、碳化矽及其組合,之形成方法,該等矽基礎膜顯現下列特性中的至少一者:低耐濕式蝕刻性、6.0或以下的介電常數,及/或能忍受高溫、快速熱退火製程。
儘管先前技藝已經揭露使用1,4-二矽雜丁烷當含矽膜的化學氣相沉積(CVD)的前驅物例如,根據X-射線光電子光譜法(XPS)矽含量高於約55%的碳化矽膜,但是仍然需要沉積矽含量低於約55%的碳化矽膜或材料。咸相信由1,4-二矽雜丁烷所沉積的SiC膜的矽含量高於>55% Si的原因是因為該Si鍵結於其本身而形成Si-Si鍵。這些Si-Si鍵使該膜易在後繼製程集成步驟例如,舉例來說,暴露於O2電漿處理或灰化,期間受到損傷。因而,此技藝需要發展替代性前驅物及其使用方法以提供含矽膜,其中藉由XPS測量時該膜的矽含量低於約55%。吾人也想要有高密度(2克/立方釐米(g/cc)或更高的密度)的堅固膜以忍受集成期間的其他處理步驟。
本文所述的組合物及方法滿足此技藝需求中的一或多者。本文所述的是用於形成包含矽、碳、任意地氮及其組合的矽基礎介電材料或膜之方法及前驅物。在某些具體實施例中,該等矽基礎膜實質上不含氧,或替換地包含藉由X-射線光電子光譜法(XPS)測量時約0至約11原子重量百分 比的氧。在一態樣中,該等矽基礎膜具有此組成SixCyNz,其中藉由XPS測量時x係約0至約55,y係約35至約100,而且z係約0至約50原子重量(wt.)百分比(%)。在另一態樣中,該等矽基礎膜具有一組成SixCy,其中x係約0至約55而且y係約35至約100原子重量%。於各個不同態樣中,本文所述的矽基礎膜含有藉由X-射線光電子光譜法(XPS)測量時約55原子重量%或更少的矽。該等矽基礎膜中的碳及任意地氮的原子重量%能藉由改變沉積條件例如溫度,添加氮來源,或其組合,同時使該材料或膜中保持約55原子重量%或更少的矽而被調整。
在一態樣中,提供一種將矽基礎膜形成於基材表面的至少一部分上之方法,該方法包含:將該基材提供於反應器中;將至少一具有下列式A至D的有機矽前驅物化合物引進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及有機胺基具有式NR1R2,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基,而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選自氫原子及甲基(CH3);而且R6係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;及藉由沉積製程將該膜形成於該表面的至少一部分上,該沉積製程係選自由化學氣相沉積(CVD)、低壓化學氣相沉積(LPCVD)、電漿強化化學氣相沉積(PECVD)、循環式化學氣相 沉積(CCVD)、電漿強化循環式化學氣相沉積(PECCVD)、原子層沉積(ALD)及電漿強化原子層沉積(PEALD)所組成的群組,其中該矽基礎膜包含藉由XPS測量時約0至約50原子重量百分比矽。在一態樣中,該沉積製程包含LPCVD。在另一態樣中,該沉積製程包含PECVD。還有,在另一態樣中,該沉積製程包含PEALD或PECCVD。
在另一態樣中,提供一種用於沉積矽基礎膜之組合物,該組合物包含:至少一包含二矽原子的有機矽前驅物,其係選自由以下所組成的群組:1-氯-1,4-二矽雜戊烷、1-氯-1,5-二矽雜己烷、1,5-二氯-1,5-二矽雜己烷、2,6-二氯-2,6-二矽雜庚烷、1-二甲基胺基-1,4-二矽雜戊烷、1-二乙基胺基-1,4-二矽雜戊烷、1-二異丙基胺基-1,4-二矽雜戊烷、1-二甲基胺基-1,5-二矽雜己烷、1-二乙基胺基-1,5-二矽雜己烷、1-二異丙基胺基-1,5-二矽雜己烷、2-二甲基胺基-2,5-二矽雜己烷、2-二乙基胺基-2,5-二矽雜己烷、2-二異丙基胺基-2,5-二矽雜己烷、2-二甲基胺基-2,6-二矽雜庚烷、2-二乙基胺基-2,6-二矽雜庚烷、2-二異丙基胺基-2,6-二矽雜庚烷、1,4-雙(二甲基胺基)-1,4-二矽雜戊烷、1,4-雙(二乙基胺基)-1,4-二矽雜戊烷、1,5-雙(二甲基胺基)-1,5-二矽雜己烷、1,5-雙(二乙基胺基)-1,5-二矽雜己烷、2,5-雙(二甲基胺基)-2,5-二矽雜己烷、2,5-雙(二乙基胺基)-2,5-二矽雜己烷、2,6-雙(二甲基胺基)-2,6-二矽雜庚烷、2,6-雙(二乙基胺基)-2,6-二矽雜庚烷、1,2-二甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2-甲基-1- 氮-2,5-二矽雜環戊烷、1-第三丁基-2-甲基-1-氮-2,5-二矽雜環戊烷、1,2-二甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-第三丁基-2-甲基-1-氮-2,5-二矽雜環己烷、1,2,5-三甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-第三丁基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1,2,6-三甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷及1-第三丁基-2,6-二甲基-1-氮-2,6-二矽雜環己烷。
本文所述的是矽基礎介電膜及用於形成該等矽基礎介電膜的方法及組合物。在整個說明書中,本文所用的措辭“矽基礎膜”及“介電膜”可相互交換而且表示包含矽、碳及任意氮和氫(其可能存於該膜中但是無法藉由XPS測得)的膜,該膜係選自由化學計量或非化學計量碳化矽、碳氮化矽及其混合物所組成的群組。在某些具體實施例中,該等矽基礎膜不含氧或“實質上不含”氧。在這些具體實施例中,本文所用的措辭“實質上不含”意指包含藉由XPS測量時2原子重量%(at.wt.%)或更少、或1at.wt.%或更少、或0.5at.wt.5%或更少氧的膜。
該等矽基礎介電膜顯現下列特性中的至少一或多者:與熱氧化矽相比相對較低濕式蝕刻速率(例如當暴露於 稀HF時);較低洩漏電流;良好晶圓內不均勻度,該均勻度能藉由測量該等晶圓的不同區域(例如5點圖)及標準偏差計算獲得;保形性;對氣相製程的耐性(例如,舉例來說,氧化性電漿);及其組合。有關後面的特性,與熱氧化矽相比該等矽基礎膜顯現非常小到沒改變的性質及膜結構。除了前述以外,該等矽基礎膜提供下列優點中的一或多者:高熱安定性(例如耐尖端退火處理步驟的能力,其中此目的係於介於約600至1000℃的一或更多溫度下進行)、環境安定性(例如在周遭環境中暴露1至24小時之後顯現折射率(RI)或其他膜性質的少許改變或10%或更少、5%或更少、2%或更少或1%或更少變化)、包括富碳膜在內的可調整組成(矽<50原子%而且碳含量等於或高於該矽含量的摻碳及/或氮非晶矽基礎膜)及其組合。
在一特定具體實施例中,本文所述的矽基礎膜顯現低蝕刻速率(或測不到的蝕刻速率)、高密度(例如具有2.0g/cc或更高的膜密度)、減量的Si-Si鍵(例如,藉由拉曼(Raman)光譜術測量時<5%的總鍵結量)及藉由XPS測量時少於50原子重量%的矽。
在集成加工時,光阻劑剝除係不可或缺的步驟。該光阻劑移除一般利用氧(O2)電漿乾式灰化步驟來實行。與該光阻劑相鄰的含矽介電膜的性質可能在該O2電漿處理期間衰退。碰到的共同問題是以下當中的一或多者:膜氧化、碳損失、膜收縮、膜緻密化及/或在膜後期剝除時提高的濕氣吸收量。這些效應可能藉由以下當中的一或多者測量:藉由灰化 前後的值測定該膜的折射率(RI)之變化;藉由XPS測量時由該膜的碳at.wt.%降低所示的減降碳含量;比其灰化前k值更高的介電常數(k);比其灰化前密度更高的密度;及比其灰化前厚度更低的灰化後膜厚度。預期高密度(例如,2g/cc或更高)及良好Si-C-Si碳化物鍵結(由FTIR光譜約800cm-1下的峰見到)的膜將會提供較好的耐氧灰化性(oxygen ashing resistance)。
本文所述的含矽介電膜顯現以下特性中的一或多者的+或-20%或更少、15%或更少、10%或更少、5%或更少、2%或更少變化量:當比較氧灰化處理步驟、溫度尖端退火製程及/或暴露於周遭空氣介於1至24小時前後的相同特性時的折射率、介電常數、密度、厚度、耐濕式蝕刻性、膜厚度或其組合。
本文所述的含矽介電膜係由包含有機矽前驅物化合物的組合物來沉積,該前驅物化合物包含二矽原子、至少一Si-Me基團及至少一C2或C3鍵聯。該C2或C3鍵聯係二基鏈,其係選自由烷-1,2-二基、烷-1,3-二基所組成的群組。烷-1,2-二基、烷-1,3-二基的二基鏈的實例包括,但不限於,伸乙基(-CH2CH2-)、經取代的伸乙基(-CHMeCH2-、-CH(Me)CH(Me)-)、伸丙基(-CH2CH2CH2-)及經取代的伸丙基。該等有機矽化合物的實例包括1,4-二矽雜戊烷(“1,4-DSP”)及其他具有類似結構的有機矽化合物。由本文所述的前驅物沉積的矽基礎介電膜顯示具有優於其他前驅物例如1-4-二矽雜丁烷(“1,4-DSB”)的獨特膜性質,例如富含碳(例如,具有高 於40原子%的碳)及調整碳化矽膜中的Si、C含量或調整結果產生的碳氮化矽膜中的Si、C和N含量之能力。
為了形成包含矽、碳和任意氮的介電膜,在某些具體實施例中,吾人所欲為該有機矽前驅物不含氧。在某些具體實施例中,也希望該等前驅物的反應性高到足以於相當低溫度(例如,600℃或更低)下沉積膜。儘管希望前驅物反應性,該前驅物也應該夠安定而不會隨著時間衰退或改變到任何顯著製程(例如,少於每年1%改變量)。本文所述的矽原子之間有伸乙基或伸丙基橋的有機矽化合物,例如但不限於1,4-DSP,具有使該等C-Si鍵於高溫下分裂的特別傾向。當一矽基團自該伸乙基橋斷裂時,該橋部-頭部碳原子上便形成自由基或陽離子。另一個設置於β-位置上的矽透過超共軛使該自由基或陽離子安定化,也就是說,Si-C鍵填滿的δ-軌域將電子供予空的或單佔有的p-軌域。這也被稱為β-矽效應。此超共軛中間物伴隨著第二Si-C鍵斷裂而分解。最後的結果是伸乙基或伸丙基橋呈揮發性副產物排出,並且產生當中有些具有Si-Me基團的化學反應性矽物種,由此與其他反應性矽物種反應而使矽基礎膜沉積於基材上。不欲被任何理論所限,該Si-Me能被併入最終產生的矽基礎膜,由此提供比沒有任何Si-Me基團的1,4-二矽雜丁烷所沉積的比較膜更高的碳含量。
在一態樣中,用於沉積包含矽、碳及任意氮膜的介電膜之組合物包含:至少一具有下列式A至D的有機矽化合物: 於以上式A至D中,X1及X2各自獨立地選自氫原子、鹵素原子及具有式NR1R2的有機胺基,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選自氫原子及甲基(CH3):而且R6係選自氫原子、 線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基。
於本文所述的式中及整個說明書中,本文所用的措辭“線性烷基”表示具有1至10或3至6個碳原子之線性官能基。示範線性烷基包括,但不限於,甲基(Me)、乙基(Et)、丙基(n-Pr)、異丙基(iso-Pr或iPr)、丁基(n-Bu)、異丁基(iBu)、第二丁基(sBu)、第三丁基(tBu)、戊基、異戊基、第三戊基(amyl)、己基、異己基及新己基。於本文所述的式及整個說明書中,本文所用的措辭“分支烷基”表示具有3至10或3至6個碳原子之分支官能基。示範分支烷基包括,但不限於,異丙基(iso-Pr或iPr)、異丁基(iBu)、第二丁基(sBu)、第三丁基(tBu)、異戊基、第三戊基(amyl)、異己基及新己基。
於本文所述的式及整個說明書中,本文所用的措辭“環狀烷基”表示具有3至10或4至10個原子或5至10個原子的環狀官能基。示範環狀烷基包括,但不限於,環丁基、環戊基、環己基及環辛基。
於本文所述的式及整個說明書中,本文所用的措辭“芳基”表示具有5至12個碳原子或6至10個碳原子的芳香族環狀官能基。示範芳基包括,但不限於,苯基、苯甲基、氯苯甲基、甲苯基及鄰-二甲苯基。
於本文所述的式及整個說明書中,本文所用的措辭“烯基”表示具有一或更多碳-碳雙鍵並且具有3至10或3至6或3至4個碳原子的基團。
於本文所述的式及整個說明書中,本文所用的措辭“炔基”表示具有一或更多碳-碳叁鍵並且具有3至10或3至6個或3至4個碳原子的基團。
於本文所述的式及整個說明書中,本文所用的措辭“二烷基胺基”表示有二烷基接附於一氮原子並且具有2至10或2至6或2至4個碳原子的基團。
於本文所述的式及整個說明書中,本文所用的措辭“拉電子基團”描述從該Si-N鍵牽引電子的原子或基團。適合的拉電子基團或取代基的實例包括,但不限於,腈基(CN)。於某些具體實施例中,拉電子取代基可能毗鄰或近鄰式A至D任一者中的N。拉電子基團的其他非限定例包括F、Cl、Br、I、CN、NO2、RSO/及或RSO2,其中R可能是C1至C10烷基例如,但不限於,甲基或另一基團。
在以上式及整個說明書中,本文所用的措辭“不飽和”意指該官能基、取代基、環或橋具有一或更多碳雙或叁鍵。不飽和環的實例可能是,但不限於,芳香族環例如苯基環。本文所用的措辭“飽和”意指該官能基、取代基、環或橋沒有一或更多雙或叁鍵。
在某些具體實施例中,該烷基、烯基、炔基、二烷基胺基、芳基及/或拉電子基團中的一或多者可為經取代或有一或更多原子或原子團被取代換掉,舉例來說,氫原子。示範取代基包括,但不限於,氧、硫、鹵素原子(例如,F、Cl、I或Br)、氮、烷基及磷。在其他具體實施例中,該烷基、烯基、炔基、二烷基胺基、芳基及/或拉電子基團中的一或更 多者可未經取代。
在某些具體實施例中,該前驅物中的R1及R2係有機胺基NR1R2而且係依式A-B連結以形成一環結構。在這些具體實施例中,R2不是氫。舉例來說,在R1和R2係連在一起以形成一環的具體實施例中,R2具有連於R1的不飽和鍵(而非氫取代基)。因此,在此實例中R2可選自C1至C10烯基部分或線性或分支C1至C10炔基部分。在這些具體實施例中,該化合物的環結構可能是不飽和例如,舉例來說,環狀烷基環,或飽和的,舉例來說,芳基環。再者,在這些具體實施例中,該環結構也可能經取代或未經取代。在一特定具體實施例中,該有機矽化合物包含脂肪族、經取代的環例如具有5至10個碳原子及至少一氮原子的雜原子環狀官能基。R1及R2係依式A-B連結以形成一環結構的示範有機胺基NR1R2包括,但不限於,2,6-二甲基六氫吡啶基、六氫吡啶基、2-甲基-吡咯啶基、2,5-二甲基-吡咯啶基。在其他具體實施例中,R1及R2沒依式A-B連結。
在某些具體實施例中,該有機矽前驅物化合物具有本文所述的式A。這些特定具體實施例的示範化合物包括,但不限於:1-氯-1,4-二矽雜戊烷、1,4-二氯-1,4-二矽雜戊烷、1-二甲基胺基-1,4-二矽雜戊烷、1-二乙基胺基-1,4-二矽雜戊烷、1-甲基乙基胺基-1,4-二矽雜戊烷、1-二正丙基胺基-1,4-二矽雜戊烷、1-二異丙基胺基-1,4-二矽雜戊烷、1-異丙基胺基-1,4-二矽雜戊烷、1-第二丁基胺基-1,4-二矽雜戊烷、1-第三丁基胺基-1,4-二矽雜戊烷、1-(2,6-二甲基六氫吡啶基)-1,4-二矽 雜戊烷、1-六氫吡啶基-1,4-二矽雜戊烷、1-(環己基-異丙基胺基)-1,4-二矽雜戊烷、1-(正丙基-異丙基胺基)-1,4-二矽雜戊烷、1,4-雙(二甲基胺基)-1,4-二矽雜戊烷、1,4-雙(二乙基胺基)-1,4-二矽雜戊烷、1,4-雙(甲基乙基胺基)-1,4-二矽雜戊烷、1,4-雙(二正丙基胺基)-1,4-二矽雜戊烷、1,4-雙(二異丙基胺基)-1,4-二矽雜戊烷、1,4-雙(異丙基胺基)-1,4-二矽雜戊烷、1,4-雙(第二丁基胺基)-1,4-二矽雜戊烷、雙(第三丁基胺基)-1,4-二矽雜戊烷、1,4-雙(2,6-二甲基六氫吡啶基)-1,4-二矽雜戊烷、1,4-雙(六氫吡啶基)-1,4-二矽雜戊烷、1,4-雙(環己基-異丙基胺基)-1,4-二矽雜戊烷、1,4-雙(正丙基-異丙基胺基)-1,4-二矽雜戊烷、2-氯-2,5-二矽雜己烷、2,5-二氯-二矽雜己烷、2-二甲基胺基-2,5-二矽雜己烷、2-二乙基胺基-2,5-二矽雜己烷、2-甲基乙基胺基-2,5-二矽雜己烷、2-二正丙基胺基-2,5-二矽雜己烷、2-二異丙基胺基-2,5-二矽雜己烷、2-異丙基胺基-2,5-二矽雜己烷、2-第二丁基胺基-2,5-二矽雜己烷、2-第三丁基胺基-2,5-二矽雜己烷、2-(2,6-二甲基六氫吡啶基)-2,5-二矽雜己烷、2-六氫吡啶基-2,5-二矽雜己烷、2-(環己基-異丙基胺基)-2,5-二矽雜己烷、2-(正丙基-異丙基胺基)-2,5-二矽雜己烷、2,5-雙(二甲基胺基)-2,5-二矽雜己烷、2,5-雙(二乙基胺基)-2,5-二矽雜己烷、2,5-雙(甲基乙基胺基)-2,5-二矽雜己烷、2,5-雙(二正丙基胺基)-2,5-二矽雜己烷、2,5-雙(二異丙基胺基)-2,5-二矽雜己烷、2,5-雙(異丙基胺基)-2,5-二矽雜己烷、2,5-雙(第二丁基胺基)-2,5-二矽雜己烷、2,5-雙(第三丁基胺基)-2,5-二矽雜己烷、2,5-雙(2,6-二甲基六氫吡啶基)-2,5-二 矽雜己烷、2,5-雙(1-六氫吡啶基)-2,5-二矽雜己烷、2,5-雙(環己基-異丙基胺基)-2,5-二矽雜己烷、2,5-雙(正丙基-異丙基胺基)-2,5-二矽雜己烷及其組合。
在某些具體實施例中,該有機矽前驅物化合物具有本文所述的式B。這些特定具體實施例的示範化合物包括,但不限於:1-氯-1,5-二矽雜己烷、1,5-二氯-1,5-二矽雜己烷、1-二甲基胺基-1,5-二矽雜己烷、1-二乙基胺基-1,5-二矽雜己烷、1-甲基乙基胺基-1,5-二矽雜己烷、1-二正丙基胺基-1,5-二矽雜己烷、1-二異丙基胺基-1,5-二矽雜己烷、1-異丙基胺基-1,5-二矽雜己烷、1-第二丁基胺基-1,5-二矽雜己烷、1-第三丁基胺基-1,5-二矽雜己烷、1-(2,6-二甲基六氫吡啶基)-1,5-二矽雜己烷、1-六氫吡啶基-1,5-二矽雜己烷、1-(環己基-異丙基胺基)-1,5-二矽雜己烷、1-(正丙基-異丙基胺基)-1,5-二矽雜己烷、1,5-雙(二甲基胺基)-1,5-二矽雜己烷、1,5-雙(二乙基胺基)-1,5-二矽雜己烷、1,5-雙(甲基乙基胺基)-1,5-二矽雜己烷、1,5-雙(二正丙基胺基)-1,5-二矽雜己烷、1,5-雙(二異丙基胺基)-1,5-二矽雜己烷、1,5-雙(異丙基胺基)-1,5-二矽雜己烷、1,5-雙(第二丁基胺基)-1,5-二矽雜己烷、1,5-雙(第三丁基胺基)-1,5-二矽雜己烷、1,5-雙(2,6-二甲基六氫吡啶基)-1,5-二矽雜己烷、1,5-雙(1-六氫吡啶基)-1,5-二矽雜己烷、1,5-雙(環己基-異丙基胺基)-1,5-二矽雜己烷、1,5-雙(正丙基-異丙基胺基)-1,5-二矽雜己烷、2-氯-2,6-二矽雜庚烷、2,6-二氯-二矽雜庚烷、2-二甲基胺基-2,6-二矽雜庚烷、2-二乙基胺基-2,6-二矽雜庚烷、2-甲基乙基胺基-2,6-二矽雜庚烷、2-二正丙基胺基 -2,6-二矽雜庚烷、2-二異丙基胺基-2,6-二矽雜庚烷、2-異丙基胺基-2,6-二矽雜庚烷、2-第二丁基胺基-2,6-二矽雜庚烷、2-第三丁基胺基-2,6-二矽雜庚烷、2-(2,6-二甲基六氫吡啶基)-2,6-二矽雜庚烷、2-六氫吡啶基-2,6-二矽雜庚烷、2-(環己基-異丙基胺基)-2,6-二矽雜庚烷、2-(正丙基-異丙基胺基)-2,6-二矽雜庚烷、2,6-雙(二甲基胺基)-2,6-二矽雜庚烷、2,6-雙(二乙基胺基)-2,6-二矽雜庚烷、2,6-雙(甲基乙基胺基)-2,6-二矽雜庚烷、2,6-雙(二正丙基胺基)-2,6-二矽雜庚烷、2,6-雙(二異丙基胺基)-2,6-二矽雜庚烷、2,6-雙(異丙基胺基)-2,6-二矽雜庚烷、2,6-雙(第二丁基胺基)-2,6-二矽雜庚烷、2,6-雙(第三丁基胺基)-2,6-二矽雜庚烷、2,6-雙(2,6-二甲基六氫吡啶基)-2,6-二矽雜庚烷、2,6-雙(1-六氫吡啶基)-2,6-二矽雜庚烷、2,6-雙(環己基-異丙基胺基)-2,6-二矽雜庚烷、2,6-雙(正丙基-異丙基胺基)-2,6-二矽雜庚烷及其組合。
在某些具體實施例中,該有機矽前驅物化合物具有本文所述的式C。這些特定具體實施例的示範化合物包括,但不限於:1,2-二甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-第二丁基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-第三丁基-2-甲基-1-氮-2,5-二矽雜環戊烷、1,2,5-三甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-第二丁基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-第三丁基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷及其組合。
在某些具體實施例中,該有機矽前驅物化合物具有本文所述的式D。這些特定具體實施例的示範化合物包括,但不限於:2-二甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-第二丁基-2-甲基-1-氮-2,6-二矽雜環己烷、1-第三丁基-2-甲基-1-氮-2,6-二矽雜環己烷、1,2,6-三甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷、1-第二丁基-2,6-二甲基-1-氮-2,6-二矽雜環己烷、1-第三丁基-2,6-二甲基-1-氮-2,6-二矽雜環己烷及其組合。
用以形成本文所述的含矽材料介電膜的方法係沉積製程。用於本文所揭露的方法之適當沉積製程實例包括,但不限於,循環式CVD(CCVD)、熱化學氣相沉積、電漿強化化學氣相沉積(“PECVD”)、高密度PECVD、光子輔助CVD、電漿-光子輔助(“PPECVD”)、低溫化學氣相沉積、化學輔助氣相沉積、熱絲化學氣相沉積、液體聚合物前驅物的CVD、由超臨界流體來沉積及低能CVD(LECVD)。在某些具體實施例中,該等膜係藉由原子層沉積(ALD)、電漿強化ALD(PEALD)或電漿強化循環式CVD(PECCVD)製程來沉積。如本文所用的,該措辭“化學氣相沉積製程”表示使基材暴露於一或更多揮發性前驅物,該等前驅物於該基材表面上反應及/或分解以產生預期沉積的任何製程。如本文所用的,該措辭“原子層沉積製程”表示把材料的膜沉積於變化組成的基材上之自限性(例如,各反應周期所沉積膜材料量恆定)連續表面化 學。儘管本文所用的前驅物、試劑及來源有時候可能被描述成“氣態”,但是咸了解該等前驅物可能是液態或固態,該等前驅物係經由直接汽化、起泡或昇華利用或沒用惰性氣體輸送至該反應器中。在一些案例中,該等經汽化的前驅物能通過電漿產生器。在一態樣中,該沉積製程包含LPCVD。在另一態樣中,該沉積製程包含PECVD。本文所用的措辭“反應器”包括,但不限於,反應艙或沉積艙。
在某些具體實施例中,本文所揭露的方法藉由運用ALD或CCVD方法在引進該反應器以前及/或期間分開該等前驅物而避免該等前驅物的預反應。關此,利用沉積技術例如ALD或CCVD方法來沉積該含矽膜。在一具體實施例中,該膜係經由ALD製程藉由使該基材表面輪流暴露於該含矽前驅物、含氧來源、含氮來源或其他前驅物或試劑中的其一或更多者而沉積。膜成長藉由表面反應的自限性控制、各前驅物或試劑的脈衝時間長度及沉積溫度來進行。然而,一旦該基材的表面達到飽和,該膜生長便停止。
依據該沉積方法,在某些具體實施例中,該一或更多矽基礎前驅物可以預定莫耳體積或約0.1至約1000微莫耳引進該反應器。在各個不同具體實施例中,該矽基礎前驅物可經歷預定時期或約0.001至約500秒引進該反應器。
本文所揭露的沉積方法可能涉及一或更多洗淨氣體。該洗淨氣體,其係用以洗掉沒消耗的反應物及/或反應副產物,係不會與該等前驅物反應的惰性氣體。示範惰性氣體包括,但不限於,Ar、N2、He、氖、H2及其混合物。在某 些具體實施例中,洗淨氣體例如Ar係於介於約10至約2000sccm的流速下供入該反應器經歷約0.1至1000秒,藉以洗淨該未反應的材料和可能留在該反應器中的任何副產物。
在某些具體實施例中,該有機矽前驅物係以不摻雜方式,或在沒有其他試劑或載運氣體(carrier gas)的情形,在某些沉積條件之下引進以形成固體。在各個不同具體實施例中,可運用氬、氮及/或其他氣體流當載運氣體以協助在該前驅物脈衝的期間將該至少一矽基礎前驅物的蒸氣運送至該反應艙。
該至少一矽前驅物可以各種不同方式運送至該反應艙例如CVD或ALD反應器中。在一具體實施例中,可利用液體遞送系統。在一可供選擇的具體實施例中,可運用合併液體輸送及閃蒸(flash vaporization)處理單元,例如,舉例來說,明尼蘇達州,休爾瓦的MSP股份有限公司所製造的渦輪汽化器,使低揮發性材料能夠以容積測流方式輸送,導致可再現的輸送及沉積而不會使該前驅物熱分解。在液體運送配方中,本文所述的前驅物可以純液體形式輸送,或替換地,可以溶劑配方或其組合物方式運用。因此,在某些具體實施例中,該等前驅物配方可包括可能想要的適合特性而且在特定最終用途應用中有優點的溶劑組分以將膜形成於基材上。
該反應艙中的沉積溫度介於100℃至700℃。示範沉積溫度包括下列端點中的一或多者:100℃、150℃、200℃、250℃、300℃、350℃、400℃、450℃、500℃、550℃、 600℃、650℃及700℃。適當沉積溫度範圍的實例包括但不限於,100℃至400℃、200°至450℃或300°至600℃。
在某些具體實施例中,在該沉積製程的期間該反應艙內的壓力介於約0.5至約10托耳,或約0.5至約2托耳,或約0.5至約5托耳。關於PECVD沉積製程,在該沉積製程期間的壓力可介於約2至約6托耳。關於LPCVD沉積製程,在該沉積製程期間的壓力可介於約0.25至約1.25托耳或約10托耳。
把能量施加於該前驅物、其他無氧來源、還原劑、其他前驅物或其組合中的至少一者以引發反應並且將該矽基礎膜或塗層形成於該基材上。此能量可藉由,但不限於,熱、電漿、脈衝電漿、螺旋電漿、高密度電漿、誘導耦合電漿、X-射線、電子束、光子及遠距電漿方法,來提供。在某些具體實施例中,二次射頻頻率來源可用以變更該基材表面處的電漿特徵。在該沉積涉及電漿的具體實施例中,該電漿產生的製程可包含該電漿直接在該反應器中產生的直接電漿產生製程,或替換地電漿在該反應器外部產生並且供應至該反應器中的遠距電漿產生製程。
在典型ALD、PEALD、CVD或PECCVD製程中,最初在暴露於該前驅物的反應艙之加熱器段上加熱基材例如氧化矽基材,以使該錯合物能化學吸附於該基材的表面上。
在一態樣中,提供一種將矽基礎膜形成於基材表面的至少一部分上之方法,該方法包含:將該基材提供於反應器中; 將至少一具有下列式A至D的有機矽前驅物化合物引進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及具有式NR1R2的有機胺基,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取 代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選自氫原子及甲基(CH3);而且R6係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;及藉由沉積製程將該膜形成於該表面的至少一部分上,該沉積製程係選自由以下所組成的群組:化學氣相沉積(CVD)、低壓化學氣相沉積(LPCVD)、電漿強化化學氣相沉積(PECVD)、循環式化學氣相沉積(CCVD)、電漿強化循環式化學氣相沉積(PECCVD)、原子層沉積(ALD)及電漿強化原子層沉積(PEALD),其中該矽基礎膜包含藉由XPS測量時約0至約50原子重量百分比矽。在一態樣中,該沉積製程包含LPCVD。在另一態樣中,該沉積製程包含PECVD。
在另一態樣中,提供一種將具有式SixCyNz的矽基礎膜形成於基材的至少一表面上之方法,其中藉由XPS測量時x係約0至55,y係35至約100,而且z係0至50原子重量(wt.)百分比(%),該方法包含:將該基材的至少一表面提供於反應艙中;將至少一具有下列式A至D的有機矽前驅物化合物引進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及具有式NR1R2的有機胺基,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選自氫原子及甲基(CH3);而且R6係選自氫原子、線性C1至C10 烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;及任意地將選自由氨、肼、單烷基肼、二烷基肼、一級胺、二級胺、三級胺及其混合物所組成的群組之含氮前驅物引進該反應艙;任意地將選自由乙烯、丙烯、乙炔、丙炔、環己烷、環辛烷及其混合物所組成的群組之含碳前驅物引進該反應艙;及藉由包含低壓化學氣相沉積(LPCVD)的沉積製程將該矽基礎膜形成於該至少一表面上。在某些具體實施例中,該LPCVD沉積係於介於約200℃至600℃中的一或更多溫度下進行。在各個不同具體實施例中,該等矽基礎膜中的碳和氮的原子重量%能藉由改變該LPCVD沉積條件例如溫度,添加含氮前驅物或其組合而調整。
在本文所述的方法之又另一具體實施例中,提供一種利用沉積程序沉積含矽膜之方法,該含矽膜係選自由碳化矽、氮化矽及碳氮化矽所組成的群組,該方法包含:a.將基材置於被加熱至介於周遭溫度至約700℃的一或更多溫度的反應器中;b.將至少一具有下列式A至D的有機矽前驅物化合物引進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及具有式NR1R2的有機胺基,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;而且取代基R3、R4及R5各自獨立地選自氫原子及甲基(CH3);而且R6係選自氫原子、 線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;及c.以洗淨氣體洗淨該反應器;d.將含電漿的來源提供於該反應器中以與該至少一有機矽前驅物化合物至少部分反應並且將該含矽膜沉積於該基材上;及e.以洗淨氣體洗淨該反應器,其中重複進行步驟b至e直到獲得該含矽膜的預期厚度為止。在一些具體實施例中,該含電漿來源可以至少一氮來源的形式被引進該反應器及/或可附帶地存於該沉積製程使用的其他前驅物中。
在上述方法中,步驟b至e定義一個周期而且該(等)周期能重複進行直到獲得預期的膜厚度為止。該膜的厚度介於約0.1Å至約1000Å,或約0.1Å至約100Å,或約0.1Å至約10Å。
在某些具體實施例中,該含矽介電膜包含氮。適合的含氮來源氣體可包括,舉例來說,氨、肼、單烷基肼、二烷基肼、一級胺、二級胺、三級胺、氮電漿、氮/氫、氮/氦、氮/氬電漿、氨電漿、氮/氨電漿、氨/氦電漿、氨/氬電漿、氨/氮電漿、NF3電漿、有機胺電漿及其混合物。示範單烷基肼包括,但不限於,甲基肼、第三丁基肼。示範二烷基肼包括,但不限於,1,1-二甲基肼。示範一級胺包括,但不限於,甲基胺、乙基胺、異丙基胺及第三丁基胺。示範二級胺包括, 但不限於,二甲基胺、二乙基胺及二異丙基胺。示範三級胺包括,但不限於,三甲基胺、三乙基胺及吡啶。在一特定具體實施例中,該含氮來源不含氫以免將更多氫引進最終的氮化矽而且係選自由氮電漿、氮/氦、氮/氬電漿及其組合所組成的群組。
該等含碳前驅物能選自由甲烷、乙烷、乙炔、乙烯、丙烷、丙烯、丙炔、丁烷、丁烯、丁二烯、苯基乙炔、環烴例如環戊烷、環己烷所組成的群組。
在其他具體實施例中,該電漿係選自由氫電漿、氦電漿、氖電漿、氬電漿、氙電漿、氫/氦電漿、氫/氬電漿及其混合物所組成的群組。關於碳氮化矽的沉積,該含氮來源能另外包含碳而且係選自由有機胺電漿例如甲基胺電漿、二甲基胺電漿、三甲基胺電漿、乙基胺電漿、二乙基胺電漿、三乙基胺電漿及伸乙二胺電漿所組成的群組。
咸了解本文所述的方法的步驟可依照多變的順序進行,可依序地或同時地進行(例如,於另一步驟至少一部分的期間),及依其任何組合進行。供應該等前驅物和其他來源氣體(含氮來源氣體和含碳來源)的個別步驟可藉由變化其供應時期來進行以改變結果產生的矽基礎膜的化學計量組成。
關於多組分矽基礎膜,其他前驅物例如矽基礎前驅物、含氮前驅物、還原劑或其他試劑可輪流引進該反應艙。
在某些具體實施例中,結果產生的含矽膜或塗層能暴露於沉積後處理例如,但不限於,電漿處理、化學處理、 紫外線曝光、電子束曝光、熱及/或其他處理以引發該膜的一或更多性質。在一特定具體實施例中,該矽基礎膜係於介於約500℃至1000℃中的一或更多溫度下進行熱退火。在某些具體實施例中,本文所述的含矽膜的介電常數為10或更小、9或更小、7或更小、6或更小或5或更小。然而,預期具有其他介電常數(例如,更高或更低)的膜能依據該膜的希望最終用途形成。利用本文所述的有機矽前驅物和方法形成的含矽膜之實例具有此配方SixCyNz,其中以原子百分比重量%計Si介於約51%至約100%或約55%至約85%;C介於約0%至約50%或約5%至約25%;N介於約0%至約50%或約0%至25%,其中,舉例來說,藉由XPS或其他裝置測定時,x+y+z=100原子重量百分比,
在又另一態樣中,有述及一種用以儲存並且運送本文所述之具有式A至D的有機矽前驅物化合物的容器。在一特定具體實施例中,該容器包含至少一裝配適當閥和配件的可加壓容器(較佳由不銹鋼製成),以使該至少一有機矽前驅物能運送至該反應器供CVD、LPCVD或ALD製程用。在各個不同具體實施例中,將該至少一具有至少二SiH3基團的有機矽前驅物裝入包含不銹鋼的可加壓容器中,而且該前驅物的純度係98重量%或更高或99.5重量%或更高,其適用於大多數半導體應用。在某些具體實施例中,必要的話這樣的容器也可具有用於混合該至少一有機矽前驅物與一或更多其他前驅物的裝置。在各個不同具體實施例中,該(等)容器的內容物能與另一前驅物預先混合。或者,該至少一有機矽前驅物 及/或其他前驅物能被保持於獨立容器或具有分離裝置的單一容器中,該分離裝置係用於使該有機胺基矽烷前驅物與其他前驅物在儲存的期間保持分開。
關於包含溶劑及本文所述的至少一有機矽前驅物的組合物中使用至少一有機矽前驅物的那些具體實施例,所挑選的溶劑或其混合物不會與該矽前驅物反應。在該組合物中以重量百分比計的溶劑量介於0.5重量%至99.5重量%或10重量%至75重量%。在各個不同具體實施例中,該溶劑具有類似於該至少一有機矽的沸點之沸點(b.p.)或介於該溶劑的沸點與該至少一有機矽前驅物的沸點之間的差異係40℃或更少,30℃或更少,或20℃或更少,或10℃或更少。或者,該等沸點之間的差異介於下列端點中之任一或更多者:0、10、20、30或40℃。沸點差異適合範圍的實例包括,但不限於,0至40℃、20°至30℃或10°至30℃。該等組合物的適合溶劑的實例包括,但不限於,醚(例如1,4-二噁烷、二丁基醚)、三級胺(例如吡啶、1-甲基六氫吡啶、1-乙基六氫吡啶、N,N'-二甲基六氫吡嗪、N,N,N',N'-四甲基伸乙二胺)、腈化物(例如苯甲腈)、烷(例如辛烷、壬烷、十二烷、乙基環己烷)、芳香族烴(例如甲苯、均三甲苯)、三級胺基醚(例如雙(2-二甲基胺基乙基)醚)或其混合物。
如先前提及的,該至少一有機矽前驅物的純度水準高到足以為可靠半導體製造所接受。在某些具體實施例中,本文所述的至少一有機矽包含少於2重量%,或少於1重量%,或少於0.5重量%下列雜質中的一或多者:游離胺類、 游離鹵化物或鹵素離子及較高分子量物種。較高純度水準的本文所述的有機矽前驅物能透過下列製程中的一或多者獲得:純化、吸附及/或蒸餾。具有至少二SiH3基團的有機矽前驅物的雜質可能來自所用的原料、所用的溶劑、副反應或副產物。舉例來說,1,4-DSP能藉由1,1,1,4,4,4-六氯二矽雜丁烷或1,4-烷氧基二矽雜丁烷任一者在溶劑中金屬氫化物或四氫化鋰鋁存在的情形下的還原反應製備。在某些具體實施例中,含氧溶劑例如四氫呋喃、聚乙烯醚(gylimes)或任何其他副產物,必須經由純化製程去除以排除任何氧摻入所得的矽基礎膜中的可能性。在一些案例中,該等副產物可能是能當沉積矽基礎膜的摻雜劑使用的有機矽化合物。
本文所述的膜可適合於用作鈍化層或犧牲層,例如但不限於,蝕刻停止層(etch stop)或密封阻障層(hermetic barrier)。本文所述的膜也能用於固態電子裝置中,例如邏輯電路、記憶體、發光二極體(LED)、平面裝置、圖案化裝置、電腦晶片、光學裝置、磁性資訊儲存裝置、支撐材料或基材上的塗層、微機電系統(MEMS)、奈米機電系統、薄膜電晶體(TFT)和液晶顯示器(LCD)。
如先前提及的,本文所述的方法可用以將含矽膜沉積於基材的至少一部位上。適合基材的實例包括但不限於,矽、SiO2、Si3N4、OSG、FSG、碳化矽、氫化碳化矽、氮化矽、氫化氮化矽、碳氮化矽、氫化碳氮化矽、硼氮化物、抗反射塗層、光阻劑、撓性基材、有機聚合物、多孔性有機和無機材料、金屬類例如銅和鋁,及擴散阻障層例如但不限 於TiN、Ti(C)N、TaN、Ta(C)N、Ta、W或WN。該等膜與種種不同後繼處理步驟例如,舉例來說,化學機械平坦化(CMP)和各向異性蝕刻製程均相容。
下列實施例舉例說明了本文所述的用於製備選自式A至D的有機矽前驅物以及用於沉積本文所述的含矽膜的方法,但不意圖以任何方式限制本發明。
工作實施例 實施例1. 1-氯-1,4-二矽雜戊烷、4-氯-1,4-二矽雜戊烷及1,4-二氯-1,4-二矽雜戊烷的合成。
在FeCl3觸媒(少於0.001g)存在的情形下將試劑1,4-二矽雜戊烷(0.50g,4.8mmol)及第三丁基氯(0.25g,2.7mmol)合併。等到攪拌過夜之後,藉由氣體層析-質譜術(GC-MS)發現到反應混合物含有下列產物:除了1-氯-1,4-二矽雜戊烷、4-氯-1,4-二矽雜戊烷及1,4-二氯-1,4-二矽雜戊烷以外,還有其他產物(參見表1的質譜數據)。
實施例2. 1-二甲基胺基-1,4-二矽雜戊烷、4-二甲基胺基-1,4-二矽雜戊烷及1,4-雙(二甲基胺基)-1,4-二矽雜戊烷之合成。
將THF(2mL)中含LiNMe2(0.15g,2.9mmol)的溶液快速加於1,4-二矽雜戊烷(0.30g,2.9mmol)並且攪拌過夜。過濾結果得到的淡灰色漿料而且藉由GC-MS發現到無色濾液中含有1-二甲基胺基-1,4-二矽雜戊烷、4-二甲基胺基-1,4-二矽雜戊烷及1,4-雙(二甲基胺基)-1,4-二矽雜戊烷當主 要產物(參見表1的質譜數據)。
實施例3. 1-二乙基胺基-1,4-二矽雜戊烷、4-二乙基胺基-1,4-二矽雜戊烷及1,4-雙(二乙基胺基)-1,4-二矽雜戊烷之合成。
在Ca[N(SiMe3)2]2觸媒(0.01g,0.03mmol)存在的情形下將試劑1,4-二矽雜戊烷(0.22g,2.1mmol)及二乙基胺(0.05g,0.68mmol)合併。觀察到立即起泡。經過4小時之後,藉由GC-MS探查反應溶液並且發現到其含有1-二乙基胺基-1,4-二矽雜戊烷及4-二乙基胺基-1,4-二矽雜戊烷當主要產物及1,4-雙(二乙基胺基)-1,4-二矽雜戊烷當次要產物(參見表1的質譜數據)。
實施例4. 1-二異丙基胺基-1,4-二矽雜戊烷及4-二異丙基胺基-1,4-二矽雜戊烷之合成。
將試劑1,4-二矽雜戊烷(0.16g,1.5mmol)及N-亞異丙基-異丙基胺(0.05g,0.50mmol)合併並且加於THF(1mL)中含(Ph3P)3RhCl觸媒(0.02g,0.02mmol)的攪拌混合物。等到攪拌該反應過夜之後,藉由GC-MS探查產生的淡橙色溶液並且發現到其含有1-二異丙基胺基-1,4-二矽雜戊烷及4-二異丙基胺基-1,4-二矽雜戊烷當主要產物(參見表1的質譜數據)。
實施例5. 1-第三丁基胺基-1,4-二矽雜戊烷、4-第三丁基胺基-1,4-二矽雜戊烷及1-第三丁基-2-甲基-1-氮-2,5-二矽雜環戊 烷之合成。
在THF(1mL)中Ru3(CO)12觸媒(0.01g,0.02mmol)存在的情形下將試劑1,4-二矽雜戊烷(0.50g,4.8mmol)及第三丁基胺(0.35g,4.8mmol)合併。等到攪拌該反應經過3天之後,藉由GC-MS探查產生的溶液並且發現到其含有1-第三丁基胺基-1,4-二矽雜戊烷、4-第三丁基胺基-1,4-二矽雜戊烷及1-第三丁基-2-甲基-1-氮-2,5-二矽雜環戊烷(參見表1的質譜數據)。
上述式A至D的其他官能化有機矽前驅物係經由實施例1至5的類似方式製造並且藉由質譜術(MS)來描述其特徵。將各自以1,4-二矽雜戊烷為基礎的前驅物的分子量(MW)、結構及對應主要MS斷片峰提供於表1以確認其身份。
實施例6. 低壓化學氣相沉積-LPCVD
採用德國ATV有限公司製造的LPCVD爐,利用該前驅物1,4-二矽雜丁烷(1,4-DSB)或1,4-二矽雜戊烷(1,4-DSP)在不摻雜或有一或更多反應物及/或稀釋劑的情形於不同溫度下沉積矽基礎膜。該LPCVD反應器係具有3個獨立溫控區而且能處理25個晶圓的水平熱壁式石英反應器。將該前驅物(及若有的話,反應物或稀釋氣體)注入該艙的一側。該前驅物運送至該爐中係透過蒸氣吸引(vapor draw)並且使用質流控制器(MFC)來計量該蒸氣流量。典型的流速係20至25sccm的前驅物。前驅物流量也以物理方式藉由測量初次沉積之後消耗的液體量來證明。沉積的期間將反應器保持於一固定壓力,在此案例中1000毫托耳。所有含矽膜皆被沉積於中等電阻率(8至12Ωcm)的單晶矽晶圓基材上。各沉積由被置於凹槽2、凹槽10至15及凹槽23的八(8)個測驗晶圓來代表大規模製造時的一整批。剩下的凹槽被仿晶圓(dummy wafer)及遮擋晶圓(baffle wafer)(其沒用於測量)佔著。利用真空泵將未反應的材料及任何副產物抽出。
將各膜沉積的數據彙總於表2至表4。在表中,“ND”意指未偵測。等到該等膜沉積被沉積之後,利用Rudolph FOCUS Ellipsometer FE-IVD(旋轉補償片橢圓儀)藉由將該膜的數據擬合於預定物理模型(例如,Lorentz Oscillator模型)來測量該介電膜的折射率及厚度。也使用SCI FilmTek 2000SE反射計來證明這些膜的厚度及高度吸收特性帶來的折射率。收集正向入射、偏光70度反射及70度光譜橢圓儀數據並且用以計算測定膜的厚度及折射率。
藉由配備有多通道板檢測器(MCD)和聚焦型Al單色X-射線源的PHI 5000VersaProbe光譜儀執行XPS來收集原子組成數據。於117.4eV通能(Pass Energy)、1.000eV/Step及50msec/step停頓時間(dwell time)下執行低解析度全範圍掃描。於23.50eV通能、0.100eV/Step及100msec/step停頓時間下執行高解析度多重掃描。分析區係直徑200微米配合45°的量測角。離子槍設定係2kV/2uA/4x4光柵(raster)。數據利用供應商提供的軟體來收集;利用透射函數修正的面靈敏度因子(Area Sensitivity Factors;ASF),用Casa XPS來整理數據。使用熱長成的SiO2當參考物而且對系統偵測極限沒指示對於系統偵測極限的任何C%或N%。
所有密度測量皆利用X-射線反射率(XRR)完成。將各樣品安裝於垂直取向的材料研究繞射儀(MRD)晶圓固持器上。利用Cu-K輻射當X-射線源、自動Ni束衰減器、銅鏡及及入射光束的4-重Ge(311)晶體單光儀來進行XRR。該入射光束也被掩蔽到10mm使該光束覆蓋區(beam footprint)將只能從樣品反射。反射光束利用三軸光學元件對準並且經由氣體游離正比計數偵檢器(gas ionization proportional count detector)對反射光束進行偵測。利用低解析度光學元件來掃描標稱層厚度<200nm的樣品。利用高解析度光學元件來掃描標稱層厚度>200nm的樣品。利用0.0010的步階大小及1s/step的計數時間越過0.20002q0.6500的範圍掃描樣品。
表2及3分別地提供關於該等前驅物1,4-二矽雜丁烷(1,4-DSB)及1,4-二矽雜戊烷(1,4-DSP)的沉積結果。表2提供的沉積結果在沒使用反應物的的情形下獲得。如表2顯示的,獲得了良好的沉積速率而且3或更高的高折射率(RI)指示高矽含量(結晶性碳化矽的折射率係為約2.8)。表3顯示使用1,4-二矽雜戊烷(1,4-DSP)在類似條件之下的沉積結果。如所示沉積在沒有反應物的情形下;或有N2或H2當反應物的情形下完成。表3顯示出獲得良好的沉積速率而且折射率指示沒有高矽含量。
表4顯示使用使用1,4-DSP沉積的膜性質的細節。於550℃下,該等膜的碳含量係>38%而且密度係約2.2g/cc或更高。該等膜中的氧含量可能起因於暴露於周遭空氣中而且能藉由添加反應物或稀釋劑來調整。矽含量係<52%(藉由XPS測量時)。
為表4中的所有樣品測量傅利葉轉換紅外線光譜術(FTIR)光譜。該光譜大體上指出於約760cm-1的強烈Si-C-Si峰;於約1000cm-1(歸屬於Si-CH2-Si還有Si-O-Si)的峰及於約2100cm-1(歸屬於Si-H)的小峰。沒見到其他鍵結。各速率係藉由將表3中的最後二樣品浸於0.5% HF溶液(1:100比率的49% HF:H2O)中經過300秒。測到的膜厚度沒有改變,顯示該等膜能耐得住稀HF的蝕刻。
對選自實施例6(表4,條件1及3)的樣品進行O2灰化處理。設備係PVA TePla MetroLine Etcher M4L電漿灰化蝕刻器(用於蝕刻、剝除、清潔及表面處理的批次式電漿系統)。工作程序係去除光阻劑的標準基線氧灰化程序。
- 功率:200W
- He流量:100sccm
- O2流量:300sccm
- 壓力:600毫托耳
- 時間:10分鐘
將各樣品分成兩片:一半以該氧灰化處理程序來處理,而剩下的樣品留下來當對照組。所有樣品的膜性質使用X-射線光譜術(XPS)及X-射線反射率(XRR)來定義其特徵。以下表5及6顯示二膜在灰化前後的結果。據觀察膜折射率沒有測得到的變化。該膜厚度顯示非常小的變化,也在實驗誤差範圍以內。同樣地XPS組成(O、Si、C %)沒有顯著變化而且密度變化在實驗誤差範圍以內。

Claims (18)

  1. 一種將矽基礎膜形成於基材表面的至少一部分上之方法,該方法包含:將該基材的至少一表面提供於反應器中;將至少一具有下列式A至D的有機矽前驅物化合物引進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及具有式NR1R2的有機胺基,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基而且R2係選自氫原子、線性C1至C10 烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選自氫原子及甲基(CH3);而且R6係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;及藉由沉積製程將該矽基礎膜形成於該至少一表面上,該沉積製程係選自由以下所組成的群組:化學氣相沉積(CVD)、低壓化學氣相沉積(LPCVD)、電漿強化化學氣相沉積(PECVD)、循環式化學氣相沉積(CCVD)、電漿強化循環式化學氣相沉積(PECCVD)、原子層沉積(ALD)及電漿強化原子層沉積(PEALD),其中該矽基礎膜包含藉由X-射線光電子光譜法(XPS)測量時約0至約50原子重量百分比矽。
  2. 如申請專利範圍第1項之方法,其中該形成步驟係於介於約100℃至650℃中的一或更多溫度下進行。
  3. 如申請專利範圍第1項之方法,其中該矽基礎膜係選自由碳化矽膜、氮化矽膜及碳氮化矽膜所組成的群組。
  4. 如申請專利範圍第1項之方法,其中該沉積製程係LPCVD。
  5. 如申請專利範圍第1項之方法,其中該沉積製程包含PECVD。
  6. 如申請專利範圍第1項之方法,其其另外包含:提供含氮前驅物而且,其中該含氮前驅物的量對該至少一有機矽前驅物的量之比率介於約0.25至約1。
  7. 一種將具有式SixCyNz的矽基礎膜形成於基材的至少一表面上之方法,其中藉由XPS測量時x係約0至約55,y係約35至約100,而且z係約0至約50原子重量(wt.)百分比(%),該方法包含:將該基材的至少一表面提供於反應艙中;將至少一具有下列式A至D的有機矽前驅物化合物引進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及具有式NR1R2的有機胺基,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選自氫原子及甲基(CH3);而且R6係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;及任意地將選自由氨、肼、單烷基肼、二烷基肼、一級胺、二級胺、三級胺及其混合物所組成的群組之含氮前驅物提供於該反應艙中;及 藉由包含低壓化學氣相沉積(LPCVD)的沉積製程將該矽基礎膜形成於該至少一表面上。
  8. 如申請專利範圍第7項之方法,其中該至少一矽前驅物係1,4-二矽雜戊烷。
  9. 如申請專利範圍第7項之方法,其中該形成步驟係於介於約100℃至650℃中的一或更多溫度下進行。
  10. 如申請專利範圍第7項之方法,其中該方法另外包含提供含氮前驅物而且,其中該含氮前驅物的量對該至少一有機矽前驅物的量之比率介於約0.25至20。
  11. 如申請專利範圍第7項之方法,其中該矽基礎膜係選自由碳化矽、氮化矽及碳氮化矽所組成的群組。
  12. 如申請專利範圍第7項之方法,其另外包含一退火步驟。
  13. 一種將矽基礎膜形成於基材的至少一表面上之方法,該方法包含:將該基材的至少一表面提供於反應艙中;將至少一具有下列式A至D的有機矽前驅物化合物引進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及具有式NR1R2的有機胺基,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選自氫原子及甲基(CH3);而且R6係選自氫原子、線性C1至C10 烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;任意地將選自由氨、肼、單烷基肼、二烷基肼、一級胺、二級胺、三級胺及其混合物所組成的群組之含氮前驅物提供於該反應艙中;及藉由包含電漿強化化學氣相沉積(PECVD)的沉積製程將該矽基礎膜形成於該至少一表面上,其中該無氧的矽基礎膜包含藉由XPS測量時約0至約50原子重量百分比矽。
  14. 如申請專利範圍第13項之方法,其中該形成步驟係於介於約100℃至650℃中的一或更多溫度下進行。
  15. 一種用於氣相沉積矽基礎膜之組合物,該組合物包含:至少一包含二矽原子的有機矽前驅物,其係選自由以下所組成的群組:1-氯-1,4-二矽雜戊烷、1-氯-1,5-二矽雜己烷、1,5-二氯-1,5-二矽雜己烷、2,6-二氯-2,6-二矽雜庚烷、1-二甲基胺基-1,4-二矽雜戊烷、1-二乙基胺基-1,4-二矽雜戊烷、1-二異丙基胺基-1,4-二矽雜戊烷、1-二甲基胺基-1,5-二矽雜己烷、1-二乙基胺基-1,5-二矽雜己烷、1-二異丙基胺基-1,5-二矽雜己烷、2-二甲基胺基-2,5-二矽雜己烷、2-二乙基胺基-2,5-二矽雜己烷、2-二異丙基胺基-2,5-二矽雜己烷、2-二甲基胺基-2,6-二矽雜庚烷、2-二乙基胺基-2,6-二矽雜庚烷、2-二異丙基胺基-2,6-二矽雜庚烷、1,4-雙(二甲基胺基)-1,4-二矽雜戊烷、1,4- 雙(二乙基胺基)-1,4-二矽雜戊烷、1,5-雙(二甲基胺基)-1,5-二矽雜己烷、1,5-雙(二乙基胺基)-1,5-二矽雜己烷、2,5-雙(二甲基胺基)-2,5-二矽雜己烷、2,5-雙(二乙基胺基)-2,5-二矽雜己烷、2,6-雙(二甲基胺基)-2,6-二矽雜庚烷、2,6-雙(二乙基胺基)-2,6-二矽雜庚烷、1,2-二甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-第三丁基-2-甲基-1-氮-2,5-二矽雜環戊烷、1,2-二甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-第三丁基-2-甲基-1-氮-2,5-二矽雜環己烷、1,2,5-三甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-第三丁基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1,2,6-三甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷及1-第三丁基-2,6-二甲基-1-氮-2,6-二矽雜環己烷。
  16. 一種利用沉積製程沉積含矽膜之方法,該含矽膜係選自由碳化矽、氮化矽及碳氮化矽所組成的群組,該沉積製程係選自電漿強化原子層沉積及電漿強化循環式化學氣相沉積,該方法包含以下步驟:a.將基材置於被加熱至介於約20℃至約400℃的一或更多溫度的反應器中;b.將至少一具有下列式A至D的有機矽前驅物化合物引 進該反應器: 其中X1及X2各自獨立地選自氫原子、鹵素原子及有機胺基具有式NR1R2,其中R1係選自線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基,而且R2係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C6烯基、線性或分支C3至C6炔基、C1至C6二烷基胺基、C6至C10芳基、線性C1至C6氟化烷基、分支C3至C6氟化烷基、拉電子基團及C4至C10芳基而且任意地,其中R1及R2係連在一起形成選自經取代或未經取代的芳香族環或經取代或未經取代的脂肪族環中之環;R3、R4及R5各自獨立地選 自氫原子及甲基(CH3);而且R6係選自氫原子、線性C1至C10烷基、分支C3至C10烷基、環狀C3至C10烷基、線性或分支C3至C10烯基、線性或分支C3至C10炔基、C1至C6二烷基胺基、拉電子基團及C6至C10芳基;c.以洗淨氣體洗淨該反應器;d.將含電漿的來源提供於該反應器中以與該至少一有機矽前驅物化合物至少部分反應並且將該含矽膜沉積於該基材上;及e.以洗淨氣體洗淨該反應器,其中重複進行步驟b至e直到獲得該含矽膜的預期厚度為止。
  17. 如申請專利範圍第16項之方法,其中該含電漿來源係選自由氫電漿、氦電漿、氖電漿、氬電漿、氙電漿、氫/氦電漿、氫/氬電漿、氮電漿、氮/氫、氮/氦、氮/氬電漿、氨電漿、氮/氨電漿、氨/氦電漿、氨/氬電漿、NF3電漿、甲基胺電漿、二甲基胺電漿、三甲基胺電漿、乙基胺電漿、二乙基胺電漿、三甲基胺電漿、伸乙二胺電漿及其混合物所組成的群組。
  18. 如申請專利範圍第16項之方法,其中該有機矽前驅物係選自由以下所組成的群組:1-氯-1,4-二矽雜戊烷、1-氯-1,5-二矽雜己烷、1,5-二氯-1,5-二矽雜己烷、2,6-二氯-2,6-二矽雜庚烷、1-二甲基胺基-1,4-二矽雜戊烷、1-二乙基胺基-1,4-二矽雜戊烷、1-二異丙基胺基-1,4-二矽雜戊烷、1-二甲基胺基-1,5-二矽 雜己烷、1-二乙基胺基-1,5-二矽雜己烷、1-二異丙基胺基-1,5-二矽雜己烷、2-二甲基胺基-2,5-二矽雜己烷、2-二乙基胺基-2,5-二矽雜己烷、2-二異丙基胺基-2,5-二矽雜己烷、2-二甲基胺基-2,6-二矽雜庚烷、2-二乙基胺基-2,6-二矽雜庚烷、2-二異丙基胺基-2,6-二矽雜庚烷、1,4-雙(二甲基胺基)-1,4-二矽雜戊烷、1,4-雙(二乙基胺基)-1,4-二矽雜戊烷、1,5-雙(二甲基胺基)-1,5-二矽雜己烷、1,5-雙(二乙基胺基)-1,5-二矽雜己烷、2,5-雙(二甲基胺基)-2,5-二矽雜己烷、2,5-雙(二乙基胺基)-2,5-二矽雜己烷、2,6-雙(二甲基胺基)-2,6-二矽雜庚烷、2,6-雙(二乙基胺基)-2,6-二矽雜庚烷、1,2-二甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2-甲基-1-氮-2,5-二矽雜環戊烷、1-第三丁基-2-甲基-1-氮-2,5-二矽雜環戊烷、1,2-二甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2-甲基-1-氮-2,6-二矽雜環己烷、1-第三丁基-2-甲基-1-氮-2,5-二矽雜環己烷、1,2,5-三甲基-1-氮-2,5-二矽雜環戊烷、1-正丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-異丙基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1-第三丁基-2,5-二甲基-1-氮-2,5-二矽雜環戊烷、1,2,6-三甲基-1-氮-2,6-二矽雜環己烷、1-正丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷、1-異丙基-2,6-二甲基-1-氮-2,6-二矽雜環己烷及1-第三丁基-2,6-二甲基-1-氮-2,6-二矽雜環己烷。
TW104135889A 2014-11-03 2015-10-30 矽基礎膜及其形成方法 TWI575099B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462074219P 2014-11-03 2014-11-03
US14/924,098 US9879340B2 (en) 2014-11-03 2015-10-27 Silicon-based films and methods of forming the same

Publications (2)

Publication Number Publication Date
TW201619427A true TW201619427A (zh) 2016-06-01
TWI575099B TWI575099B (zh) 2017-03-21

Family

ID=54476767

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104135889A TWI575099B (zh) 2014-11-03 2015-10-30 矽基礎膜及其形成方法

Country Status (6)

Country Link
US (2) US9879340B2 (zh)
EP (1) EP3023514B1 (zh)
JP (1) JP6183725B2 (zh)
KR (1) KR101856143B1 (zh)
CN (2) CN105568249A (zh)
TW (1) TWI575099B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753794B (zh) * 2016-03-23 2022-01-21 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 形成含矽膜之組成物及其製法與用途
CN109477214A (zh) * 2016-07-19 2019-03-15 应用材料公司 可流动含硅膜的沉积
US9865456B1 (en) * 2016-08-12 2018-01-09 Micron Technology, Inc. Methods of forming silicon nitride by atomic layer deposition and methods of forming semiconductor structures
US10464953B2 (en) * 2016-10-14 2019-11-05 Versum Materials Us, Llc Carbon bridged aminosilane compounds for high growth rate silicon-containing films
US20180148833A1 (en) * 2016-11-25 2018-05-31 Applied Materials, Inc. Methods for depositing flowable silicon containing films using hot wire chemical vapor deposition
CN106887392A (zh) * 2017-03-21 2017-06-23 南通明芯微电子有限公司 半绝缘多晶硅薄膜的制备方法
CN109585264B (zh) * 2018-08-26 2020-12-22 合肥安德科铭半导体科技有限公司 一种氮化硅薄膜的可流动化学气相沉积方法
US10985010B2 (en) * 2018-08-29 2021-04-20 Versum Materials Us, Llc Methods for making silicon and nitrogen containing films
CN112805405B (zh) * 2018-09-24 2024-04-23 弗萨姆材料美国有限责任公司 用于制备含硅和氮的膜的方法
WO2020072625A1 (en) * 2018-10-03 2020-04-09 Versum Materials Us, Llc Methods for making silicon and nitrogen containing films
US11171141B2 (en) 2019-03-04 2021-11-09 Applied Materials, Inc. Gap fill methods of forming buried word lines in DRAM without forming bottom voids
TWI736189B (zh) * 2019-04-02 2021-08-11 美商蓋列斯特科技股份有限公司 氧族矽環戊烷

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923716A (en) 1988-09-26 1990-05-08 Hughes Aircraft Company Chemical vapor desposition of silicon carbide
KR960012710B1 (ko) 1993-10-11 1996-09-24 한국화학연구소 단일 유기규소 화합물을 이용한 탄화규소 막의 제조
TW285753B (zh) 1995-01-04 1996-09-11 Air Prod & Chem
US5879775A (en) 1996-12-12 1999-03-09 Eastman Kodak Compnay Protective inorganic and DLC coatings for plastic media such as plastic cards
US6054379A (en) 1998-02-11 2000-04-25 Applied Materials, Inc. Method of depositing a low k dielectric with organo silane
US6171945B1 (en) 1998-10-22 2001-01-09 Applied Materials, Inc. CVD nanoporous silica low dielectric constant films
US6245690B1 (en) 1998-11-04 2001-06-12 Applied Materials, Inc. Method of improving moisture resistance of low dielectric constant films
US6890850B2 (en) 2001-12-14 2005-05-10 Applied Materials, Inc. Method of depositing dielectric materials in damascene applications
US6838393B2 (en) 2001-12-14 2005-01-04 Applied Materials, Inc. Method for producing semiconductor including forming a layer containing at least silicon carbide and forming a second layer containing at least silicon oxygen carbide
US20030194496A1 (en) 2002-04-11 2003-10-16 Applied Materials, Inc. Methods for depositing dielectric material
US6858548B2 (en) 2002-04-18 2005-02-22 Applied Materials, Inc. Application of carbon doped silicon oxide film to flat panel industry
US7056560B2 (en) 2002-05-08 2006-06-06 Applies Materials Inc. Ultra low dielectric materials based on hybrid system of linear silicon precursor and organic porogen by plasma-enhanced chemical vapor deposition (PECVD)
US6897163B2 (en) * 2003-01-31 2005-05-24 Applied Materials, Inc. Method for depositing a low dielectric constant film
US20050227017A1 (en) * 2003-10-31 2005-10-13 Yoshihide Senzaki Low temperature deposition of silicon nitride
US20050277302A1 (en) 2004-05-28 2005-12-15 Nguyen Son V Advanced low dielectric constant barrier layers
FR2887252A1 (fr) 2005-06-21 2006-12-22 Air Liquide Procede de formation d'un film dielectrique et nouveaux precurseurs pour la mise en oeuvre de ce procede
WO2007120797A1 (en) * 2006-04-13 2007-10-25 Bridgestone Corporation Composition including multiple functionalized polymers
US8530361B2 (en) 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
US7560167B2 (en) * 2006-09-01 2009-07-14 Momentive Performance Materials Inc. Composition containing anti-misting component
US8765233B2 (en) 2008-12-09 2014-07-01 Asm Japan K.K. Method for forming low-carbon CVD film for filling trenches
US8703624B2 (en) 2009-03-13 2014-04-22 Air Products And Chemicals, Inc. Dielectric films comprising silicon and methods for making same
JP4379637B1 (ja) * 2009-03-30 2009-12-09 Jsr株式会社 有機ケイ素化合物の製造方法
KR20130135261A (ko) 2010-11-03 2013-12-10 어플라이드 머티어리얼스, 인코포레이티드 실리콘 카바이드 및 실리콘 카보나이트라이드 막들을 증착하기 위한 장치 및 방법들
WO2013039881A2 (en) 2011-09-13 2013-03-21 Applied Materials, Inc. Carbosilane precursors for low temperature film deposition
JP5969253B2 (ja) * 2012-02-10 2016-08-17 東京応化工業株式会社 表面処理剤及び表面処理方法
US20130224964A1 (en) 2012-02-28 2013-08-29 Asm Ip Holding B.V. Method for Forming Dielectric Film Containing Si-C bonds by Atomic Layer Deposition Using Precursor Containing Si-C-Si bond
US9243324B2 (en) 2012-07-30 2016-01-26 Air Products And Chemicals, Inc. Methods of forming non-oxygen containing silicon-based films

Also Published As

Publication number Publication date
CN116180042A (zh) 2023-05-30
US10422034B2 (en) 2019-09-24
US9879340B2 (en) 2018-01-30
EP3023514B1 (en) 2023-10-25
TWI575099B (zh) 2017-03-21
EP3023514A1 (en) 2016-05-25
US20160122869A1 (en) 2016-05-05
JP6183725B2 (ja) 2017-08-23
JP2016135842A (ja) 2016-07-28
CN105568249A (zh) 2016-05-11
US20180119276A1 (en) 2018-05-03
KR101856143B1 (ko) 2018-05-10
KR20160052418A (ko) 2016-05-12

Similar Documents

Publication Publication Date Title
TWI575099B (zh) 矽基礎膜及其形成方法
KR102067473B1 (ko) 유기아미노디실란 전구체 및 이를 포함하는 막을 증착시키는 방법
JP6777680B2 (ja) 有機アミノシラン前駆体およびこれを含む膜の堆積方法
KR101950952B1 (ko) 실리콘 함유 막을 제조하는 방법
JP6864086B2 (ja) 酸化ケイ素膜の堆積のための組成物及び方法
TWI614261B (zh) 氮雜-多矽烷前驅物及包含氮雜-多矽烷前驅物的膜沉積方法
TWI496934B (zh) 用於沉積碳摻雜含矽膜的組合物及方法
TWI504775B (zh) 不含氧的矽基膜及其形成方法
TWI623543B (zh) 含硼化合物、組合物及含硼膜的沉積方法
TWI491760B (zh) 有機胺基矽烷前驅物及其膜的沉積方法
KR20180069769A (ko) 실리콘 옥사이드 필름의 증착을 위한 조성물 및 방법
JP6882468B2 (ja) 表面フィーチャを充填する低k膜を作るための前駆体および流動性CVD法
KR102153564B1 (ko) 컨포멀한 금속 또는 메탈로이드 실리콘 니트라이드 막을 증착시키는 방법
JP2022518595A (ja) ケイ素含有膜のための組成物及びその組成物を使用する方法
EP2363512A1 (en) Methods to prepare silicon-containing films