TW201518309A - 製備銦烷氧化物化合物之方法,可由該方法製備之銦烷氧化物化合物及其用途 - Google Patents

製備銦烷氧化物化合物之方法,可由該方法製備之銦烷氧化物化合物及其用途 Download PDF

Info

Publication number
TW201518309A
TW201518309A TW103121565A TW103121565A TW201518309A TW 201518309 A TW201518309 A TW 201518309A TW 103121565 A TW103121565 A TW 103121565A TW 103121565 A TW103121565 A TW 103121565A TW 201518309 A TW201518309 A TW 201518309A
Authority
TW
Taiwan
Prior art keywords
indium
formula
compound
alkyl
trihalide
Prior art date
Application number
TW103121565A
Other languages
English (en)
Other versions
TWI632150B (zh
Inventor
Juergen Steiger
Duy Vu Pham
Anita Neumann
Alexey Merkulov
Arne Hoppe
Dennis Fruehling
Original Assignee
Evonik Industries Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Industries Ag filed Critical Evonik Industries Ag
Publication of TW201518309A publication Critical patent/TW201518309A/zh
Application granted granted Critical
Publication of TWI632150B publication Critical patent/TWI632150B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本發明關於一種銦烷氧化物化合物,其可藉由在通式ROH之醇(其中R=烷基)存在下令三鹵化銦InX3(其中X=F、Cl、Br、I)與相對於該三鹵化銦為8:1至20:1之莫耳比的式R'2NH之二級胺(其中R'=烷基)反應而製備;其製備方法;及其用於製造含氧化銦層或(半)導體層之用途。

Description

製備銦烷氧化物化合物之方法,可由該方法製備之銦烷氧化物化合物及其用途
本發明關於一種製備銦烷氧化物化合物之方法,可由該方法製備之銦烷氧化物化合物及其用途。
由於利用印刷及其他液體沉積法製造半導體電子組件層可以連續操作沉積半導體,故能使製造成本遠低於許多其他方法(例如化學氣相沉積(CVD))。此外,在相對低處理溫度之情況下,亦變得可能在撓性基板上作業,及可能(特別是在非常薄之層的情況下,尤其是在氧化半導體(oxidic semiconductor)之情況下)獲致印刷層的光學透明度。應暸解此處及下文之半導體層意指在通道長度為20μm、閘極-源極電壓50V及源極-汲極電壓50V下之組件的電荷載子遷移率為1至50cm2/Vs之層。
由於待利用印刷法製造之組件層的材料關鍵性地決定特定層性質,其選擇對於含有此組件層之任何組件具有重 要影響。印刷半導體層之重要參數為其特定電荷載子遷移率,及在其製造過程中所使用之可印刷前驅物的加工性及處理溫度。該等材料應具有良好電荷載子遷移率及可從溶液且在明顯低於500℃之溫度下製造,以適用於多種應用及基板。許多新穎應用同樣需要的是所獲得之半導體層的光學透明度。
由於氧化銦(氧化銦(III),In2O3)具有介於3.6與3.75eV之間的大能帶隙(針對藉由氣相沉積所施加之層測得,H.S.Kim,P.D.Byrne,A.Facchetti,T.J.Marks;J.Am.Chem.Soc.2008,130,12580-12581),因此為廣泛使用之半導體。厚度數百奈米的薄膜在550nm下大於90%的可見光譜範圍中可另外具有高透明度。在極有序之氧化銦單晶中,另外可能測得至高達160cm2/Vs之電荷載子遷移率。然而,迄今尚未能藉由從溶液處理獲致此等值(H.Nakazawa、Y.Ito、E.Matsumoto、K.Adachi、N.Aoki、Y.Ochiai;J.Appl.Phys.2006,100,093706;及A.Gupta、H.Cao、Parekh、K.K.V.Rao、A.R.Raju、U.V.Waghmare;J.Appl.Phys.2007,101,09N513)。
氧化銦特別經常與氧化錫(IV)(SnO2)一起使用作為半導體混合氧化物ITO。因ITO層在可見光譜範圍中具有較高導電性同時具有透明度之故,其用途之一係用於液晶顯示器(LCD),尤其是作為「透明電極」。該等通常經摻雜之金屬氧化物層係特別藉由高成本氣相沉積方法在高度真空下工業製造。因塗覆ITO之基板的重要經濟利益 之故,目前存在一些含氧化銦層的塗覆方法,特別是以溶膠-凝膠技術為基礎者。
原則上,有兩種經由印刷法製造氧化銦半導體的選項:1)粒子概念,其中(奈米)粒子存在於可印刷分散液中,且在印刷操作之後藉由燒結操作將其轉化成所希望之半導體層,及2)前驅物概念,其中在印刷適當組成物之後,至少一種可溶性或可分散性前驅物係轉化成含氧化銦層。相較於使用前驅物,粒子概念有兩個顯著的缺點:首先,粒子分散液具有膠體不穩定性,其使得必須使用分散添加劑(其不利於後續層之性質);其次,許多可用粒子(例如因鈍化層所致)藉由燒結僅不完全地形成層,使得該等層中仍發生一些微粒結構。在其粒子邊界,存在相當高粒子-粒子電阻,此降低電荷載子之遷移率及提高一般層之電阻。
目前有各種前驅物以供製造氧化銦層。例如,除了銦鹽之外,可能使用銦烷氧化物(全同配位體化合物(homoleptic compound),即,只具有銦及烷氧化物基團)作為前驅物以供製造含氧化銦層。
例如,Marks等人描述使用包含溶於甲氧基乙醇中之InCl3及鹼性單乙醇胺(MEA)的含前驅物組成物所製造的組分。在旋塗該組成物之後,藉由在400℃熱處理而獲得對應氧化銦層(H.S.Kim、P.D.Byrne、A.Facchetti、T.J.Marks;J.Am.Chem.Soc.2008,130,12580-12581及補充資訊)。
WO 2011/072887 A1描述用於製備銦(III)鹵素二烷氧化物之方法及其用於製造含氧化銦層的用途。用於從銦(III)鹵素二烷氧化物製造含氧化銦層之方法係揭示於WO 2011/073005 A2。
然而,銦(III)鹵素二烷氧化物迄今仍未形成具有夠好之電性質的含氧化銦層。銦側氧基烷氧化物形成較佳層性質,例如具有以下通式之化合物:In6O2X6(OR)6(R'CH(O)COOR")2(HOR)x(HNR"'2)y、In7O2(OH)(OR)12X4(ROH)x及MxOy(OR)Z[O(R'O)eH]aXbYc[R"OH]d,彼等係揭示於WO 2012/010427 A1、WO 2012/010464 A1及在本申請案之優先權日期尚未公開之德國申請案DE 10 2012 209918。
雖然已知該等改良,但仍需要有關層形成性質及所獲得之層的性質之改良。更特別的是,適用之前驅物應:- 具有良好加工性,尤其是在空氣下之加工性,- 均勻地轉化成氧化物,- 在最小溫度下轉化成氧化物,及- 形成具有優異電性質之層。
該需求之複雜側寫係由一種銦烷氧化物化合物滿足,該銦烷氧化物化合物可藉由在通式ROH之醇(其中R=烷基)存在下令
- 三鹵化銦InX3(其中X=F、Cl、Br、I)
- 與相對於該三鹵化銦之莫耳比為8:1至20:1的式R'2NH之二級胺(其中R'=烷基)反應而製備。
在反應中使用相對於三鹵化銦為8:1至15:1之莫耳比,更佳為8:1至12:1之莫耳比的二級胺時,可以銦烷氧化物化合物製造特別良好的層。
應暸解本發明上下文中之銦烷氧化物化合物意指具有至少一個銦原子及至少一個烷氧基(alkoxide radical)的化合物,其可經由上述在醇存在下之三鹵化物與二級胺的反應製備。由根據本發明方法可獲得之該等溶解的化合物之結構測定有其困難。然而,假設所得之化合物為經鹵化銦側氧基烷氧化物化合物。對應之固態結構係藉由X射線結構分析測定。假設該等化合物之相似結構亦存在溶液中。銦側氧基烷氧化物為可以離子形式存在且係側氧基橋接之銦團簇,其中不由側氧基配位之價係至少部分由烷氧基配位。就可由本發明方法獲得之銦烷氧化物化合物而言,假設彼等在合成後通常以鹽形成存在,尤其是以配位至陽離子之經鹵化的銦側氧基烷氧化物陰離子之形式存在。
特佳之製程產物為具有以下通式之銦烷氧化物化合物[In6(O)(OR)12X6]2-Am z(ROH)x(其中R=烷基,X=F、Cl、Br、I,A=陽離子,z=陽離子價,m.z=2且x=0至10,其尤其可使用為9:1至10:1之比的二級胺製備。該化合物可由醇分子ROH配位,及該反應中亦隨意地存在其他溶劑。
典型陽離子為銨離子[NHyR4-y]+,較佳為式[NH2R2]+之銨離子。
特佳之化合物為[In6(O)(OMe)12Cl6]2-[NH2R2]+ 2(MeOH)2,其可藉由使用InCl3、Me2NH(後者之比為9:1至10:1)及MeOH(甲醇)製備。其經由X射線結構分析測定之結構係示於圖1。
本發明另外提供一種用於製備銦烷氧化物化合物之方法,其中在通式ROH之醇(其中R=烷基)存在下令
- 三鹵化銦InX3(其中X=F、Cl、Br、I)
- 與相對於該三鹵化銦之莫耳比為8:1至20:1的式R'2NH之二級胺(其中R'=烷基)反應。
式InX3之三鹵化銦為熟習本領域之人士已知且可在市面購得。
式R'2NH(其中R'=烷基)之二級胺同樣形成先前技術的一部分。較佳地,烷基R'為式CnH2n+1(其中n=1至10)之直鏈、支鏈或環狀C1至C10烷基。一或二種二級胺之兩個R'基團亦可一起形成伸烷基CnH2n。對應之可用化合物為例如二甲胺、二乙胺、二丙胺、吡咯啶、哌啶及吡咯。較佳之R'基團為甲基、乙基、正丙基及異丙基。最佳地,R'基團為甲基,原因係此形成特別良好之產率及特別安定的化合物。
所使用之醇ROH較佳為具有式CnH2n+1(其中n=1至10)之直鏈、支鏈或環狀C1至C10烷基者。較佳之R基團亦為甲基、乙基、正丙基及異丙基。最佳地,R基團為 甲基。
烷氧化銦較佳係以所有組分之總質量為基準計為0.1至50重量%,更佳為1至25重量%,最佳為2至10重量%的比例使用。
三鹵化銦可溶解(即,解離)或以分子等級與溶劑分子/醇分子錯合,或分散於液相中。
所使用之醇ROH較佳係以所有組分之總質量為基準計為50至99.9重量%,更佳為75至99重量%,最佳為80至96重量%的比例使用。
反應混合物可進一步包括至少一種相對於反應為惰性之液態溶劑或分散液介質,即,在反應條件下不與三鹵化銦反應之溶劑/分散介質或各種溶劑/分散介質的混合物。 較佳可使用者為非質子性溶劑,尤其是選自非質子性非極性溶劑之群組者,即,烷類、經取代烷類、烯類、炔類、芳族化合物(不具或具有脂族或芳族取代基)、鹵化烴類及四甲基矽氧烷;及非質子性極性溶劑之群組,即醚類、芳族醚類、經取代之醚類、酯類或酸酐類、酮類、三級胺類、硝甲烷、DMF(二甲基甲醯胺)、DMSO(二甲亞碸)或碳酸丙二酯。
若至少一種相對於反應為惰性之此液態溶劑或分散介質存在於反應混合物中,其比例以所有組分之總質量為基準計較佳為1至50重量%,更佳為1至25重量%,最佳為1至10重量%。
較佳地,在反應中使用相對於三鹵化銦為8:1至15:1 之莫耳比,更佳為8:1至12:1之莫耳比的二級胺,原因係可以特別高功率製備具有特別良好之層製造適用性的銦烷氧化物化合物。
較佳地,本發明之方法係藉由最初將三鹵化銦載入醇ROH來進行。該二級胺係以氣態形式、液態形式或溶於溶劑(尤其是包含ROH作為溶劑)來添加。
較佳情況同樣係在SATP條件(25℃及1.013巴)下添加。
由於反應可以此方式特別有效率地受控制且形成特別良好的銦烷氧化物化合物,二烷基胺係以每小時與每莫耳鹵化銦為0.5至5莫耳,較佳係小時與每莫耳鹵化銦為1.15至2.60莫耳之速率添加。
更佳地,反應混合物係在添加所有組分之後予以加熱。較佳地,將反應混合物在1至10小時期間內加熱至40與70℃之溫度。更佳地,將反應混合物在1至5小時期間內加熱至45與60℃之溫度。之後,將該反應混合物冷卻。
在反應已結束時,將通常沉澱出之產物或產物混合物與反應組成物之其他成分分離。此較佳係藉由過濾進行。較佳地,分離之產物混合物另外經乾燥及使用適當溶劑清洗。
特別良好之銦烷氧化物化合物係當在分離及隨意乾燥及/或溶劑之後所獲的產物或產物混合物再結晶之結果。較佳地,再結晶係在該化合物之合成中亦使用的醇ROH 中進行。較佳地,再結晶係藉由將分離之產物或產物混合物溶解於沸騰醇中,然後在-30至0℃之溫度下再結晶來進行。將上澄液溶劑丟棄,而結晶產物可進一步使用。
本發明之化合物特別有利地適用於尤其是利用濕式化學方法進行的具有經改良電性質之含氧化銦塗層的製造。此改良令人意外之處在於通常在具有最小結晶傾向的物質當中尋找金屬氧化物之前驅物。然而本發明之化合物中的許多者為已具有微晶結構之團簇化合物。所希望之金屬氧化物層具有之非晶形特徵亦應大於結晶特徵,以具有特定良好電性質。與預期相反的是,使用本發明化合物可製造特別均勻的層。
應暸解此情況下之含氧化銦塗層意指含氧化銦層及基本上包含氧化銦以及其他多層及/或金屬氧化物之層。應暸解本發明前後文中之含氧化銦層意指可從所提及之銦烷氧化物製造的金屬層,其基本上具有銦原子或離子,該等銦原子或離子基本上以氧化物形式存在。隨意地,氧化銦層亦包括來自不完全轉化之鹵素或烷氧化物組分及/或氮、氫及/或碳。此亦適用於基本上包含氧化銦及其他金屬及/或金屬氧化物之層,但其條件係亦包括其他金屬及/或金屬氧化物。
本發明化合物另外具有可特別有效率地用於製造電子組件之導電性或半導體氧化銦塗層,尤其是用於製造(薄膜)電晶體、二極體或太陽能電池的優點。
以下實例目的係進一步說明本發明之主題,且質本身 無任何限制效果。
圖1顯示[In6(O)(OMe)12Cl6]2-[NH2R2]+ 2(MeOH)2之經由X射線結構分析測定之結構。
發明實例 合成
在30l之無殘留水分的反應器中,藉由攪拌將1.30kg之氯化銦(III)(InCl3,5.9莫耳)懸浮在17.38kg之乾燥甲醇及保護性氣體氣氛中。在室溫下利用質量流控制器計量加入二甲胺(2.57kg,57莫耳)(0.86kg/h,約4小時),其過程中可觀察到稍微放熱反應。然後,使反應混合物保持在50℃之溫度2小時,冷卻至室溫及過濾之。過濾器殘留物係以4x500ml之乾燥甲醇清洗,且在減壓下(0.1毫巴)乾燥8小時。將該材料溶解於沸騰甲醇中且於-20℃予以結晶。
製造調合物
將所獲得之材料以50mg/ml之濃度溶解於1-甲氧基-2-丙醇中。所獲得之濃縮物係如下調配:1份濃縮物對2份1-甲氧基-2-丙醇對1份乙醇。於此調合物中另外添加3重量%之四氫呋喃甲醇(THFA)。所使用之所有溶劑均 為無水的(<200ppm H2O),且混合係在惰性條件(同樣為無水)下進行。所獲得之調合物最終經過200nm PTFE過濾器過濾。
塗覆
以100μl上述調合物濕潤邊緣長度為約15mm且具有厚度為約200nm之氧化矽塗層及ITO/金的指狀結構之經摻雜矽基板。然後以2000rpm進行旋塗(30秒)。在此塗覆操作之後,直接以來自汞燈且在150至300nm之波長範圍內的UV輻射照射該經塗覆之基板10分鐘。隨後,該基板係在350℃之溫度的熱板上加熱1小時。在轉化之後,可於套手工作箱中在2 VDS下測定μFET場效移動性之值(線性範圍)為=14cm2/Vs。
比較實例 合成
在500ml之無殘留水分的玻璃圓底燒瓶中,在保護氣體氣氛下藉由攪拌將5.0g之氯化銦(III)(InCl3,22.5毫莫耳)溶解於250ml乾燥甲醇中,留下<10重量%(以起始重量為基準計)之InCl3殘留物。二甲胺鹼(5.0g,對應於111毫莫耳)之計量添加係利用質量流控制器來控制,且在5小時期間於室溫下以根據InCl3為基準的化學計量之量添加,觀察到在開始時有些微放熱反應。隨後,該溶液完全蒸發,以250ml之乾燥甲醇收集殘留固 體,在保護氣體(N2)下過濾,以乾燥甲醇重複清洗(清洗10次)及在室溫減壓(<10毫巴)下乾燥12小時。產物產率為>80莫耳%之氯二甲氧化銦(III)(indium(III)chlordimethoxide)。
製造調合物
將所獲得之材料以50mg/ml之濃度溶解於1-甲氧基-2-丙醇中。所獲得之濃縮物係如下調配:1份濃縮物對2份1-甲氧基-2-丙醇對1份乙醇。於此調合物中另外添加3重量%之四氫呋喃甲醇(THFA)。所使用之所有溶劑均為無水的(<200ppm H2O),且混合係在惰性條件(同樣為無水)下進行。所獲得之調合物最終經過200nm PTFE過濾器過濾。
以100μl上述調合物濕潤邊緣長度為約15mm且具有厚度為約200nm之氧化矽塗層及ITO/金的指狀結構之經摻雜矽基板。然後以2000rpm進行旋塗(30秒)。在此塗覆操作之後,直接以來自汞燈且在150至300nm之波長範圍內的UV輻射照射該經塗覆之基板10分鐘。隨後,該基板係在350℃之溫度的熱板上加熱1小時。在轉化之後,可於套手工作箱中在2 VDS下測定μFET場效移動性之值(線性範圍)為=8cm2/Vs。

Claims (13)

  1. 一種銦烷氧化物化合物其可藉由在通式ROH之醇(其中R=烷基)存在下令- 三鹵化銦InX3(其中X=F、Cl、Br、I)- 與相對該三鹵化銦之莫耳比為8:1至20:1的式R'2NH之二級胺(其中R'=烷基)反應而製備。
  2. 如申請專利範圍第1項之銦烷氧化物化合物,其可藉由其中該二級胺以相對於該三鹵化銦為8:1至15:1,較佳為8:1至12:1之莫耳比存在的方法製備。
  3. 一種以下通式之化合物:[In6(O)(OR)12X6]2-Am z(ROH)x其中R=烷基,X=F、Cl、Br、I,A=陽離子,z=陽離子價,m.z=2且x=0至10。
  4. 如申請專利範圍第3項之化合物,其具有通式[In6(O)(OMe)12Cl6]2-[NH2R2]+ 2(MeOH)2
  5. 一種製備銦烷氧化物化合物之方法,其中在通式ROH之醇(其中R=烷基)存在下令- 三鹵化銦(InX3其中X=F、Cl、Br、I)- 與相對該三鹵化銦之莫耳比為8:1至20:1的式R'2NH之二級胺(其中R'=烷基)反應。
  6. 如申請專利範圍第5項之方法,其中該莫耳比為8:1至15:1,較佳為8:1至12:1。
  7. 如申請專利範圍第6項之方法,其中該三鹵化銦最初係加入醇ROH中,且該二級胺係以氣態形式、液態 形式或溶於溶劑中來添加。
  8. 如申請專利範圍第7項之方法,其中該二烷基胺係以每小時與每莫耳InX3為0.5至5莫耳之速率添加。
  9. 如申請專利範圍第5至8項中任一項之方法,其中於添加所有組分之後,於1至10小時期間將該反應混合物加熱至介於40與70℃之間的溫度。
  10. 如申請專利範圍第5至8項中任一項之方法,其中將所形成之銦烷氧化物化合物與該反應組成物的其他成分分離且再結晶。
  11. 如申請專利範圍第9項之方法,其中將所形成之銦烷氧化物化合物與該反應組成物的其他成分分離且再結晶。
  12. 一種如申請專利範圍第1至4項中任一項之化合物或可根據如申請專利範圍第5至11項中任一項之方法製造的產物之用途,其係用於製造含氧化銦塗層。
  13. 一種如申請專利範圍第1至4項中任一項之化合物或可根據如申請專利範圍第5至11項中任一項之方法製造的產物之用途,其係用於製造電子組件之半導體層或導電層,尤其是用於製造(薄膜)電晶體、二極體或太陽能電池。
TW103121565A 2013-06-25 2014-06-23 製備銦烷氧化物化合物之方法,可由該方法製備之銦烷氧化物化合物及其用途 TWI632150B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013212017.6A DE102013212017A1 (de) 2013-06-25 2013-06-25 Verfahren zur Herstellung von Indiumalkoxid-Verbindungen, die nach dem Verfahren herstellbaren Indiumalkoxid-Verbindungen und ihre Verwendung
??102013212017.6 2013-06-25

Publications (2)

Publication Number Publication Date
TW201518309A true TW201518309A (zh) 2015-05-16
TWI632150B TWI632150B (zh) 2018-08-11

Family

ID=50792427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103121565A TWI632150B (zh) 2013-06-25 2014-06-23 製備銦烷氧化物化合物之方法,可由該方法製備之銦烷氧化物化合物及其用途

Country Status (9)

Country Link
US (1) US9802964B2 (zh)
EP (1) EP3013838B1 (zh)
JP (1) JP6373373B2 (zh)
KR (1) KR102141350B1 (zh)
CN (1) CN105492447B (zh)
DE (1) DE102013212017A1 (zh)
RU (1) RU2656103C2 (zh)
TW (1) TWI632150B (zh)
WO (1) WO2014206634A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212019A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Formulierungen zur Herstellung Indiumoxid-haltiger Schichten, Verfahren zu ihrer Herstellung und ihre Verwendung
CN112480906A (zh) * 2020-11-24 2021-03-12 苏州星烁纳米科技有限公司 一种铟氧簇合物及其制备方法、由其制备的量子点及该量子点的制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243091A (ja) * 1985-04-22 1988-10-07 ストウフア− ケミカル カンパニ− 金属アルコキシドの製法
FR2659649B1 (fr) * 1990-03-16 1992-06-12 Kodak Pathe Preparation d'alkoxydes d'indium solubles dans les solvants organiques.
JP2831431B2 (ja) * 1990-04-10 1998-12-02 株式会社ジャパンエナジー 高純度金属アルコキサイドの製造方法
JPH07258277A (ja) * 1994-03-25 1995-10-09 Kooriyama Kasei Kk スズ(iv)テトラアルコキシドからハロゲンを除去する方法
AUPP027497A0 (en) * 1997-11-07 1997-12-04 Sustainable Technologies Australia Limited Preparation of metal alkoxides
RU2181389C2 (ru) * 1999-06-29 2002-04-20 Омский научно-исследовательский институт приборостроения Способ получения прозрачной электропроводящей пленки на основе оксидов индия и олова
KR100627631B1 (ko) * 2005-02-18 2006-09-25 한국화학연구원 휘발성 인듐 아미노 알콕사이드 화합물 및 그 제조 방법
GB2454019B (en) * 2007-10-27 2011-11-09 Multivalent Ltd Improvements in or relating to synthesis of gallium and indium alkoxides
DE102009009337A1 (de) 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
DE102009009338A1 (de) * 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indiumalkoxid-haltige Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102009028801B3 (de) 2009-08-21 2011-04-14 Evonik Degussa Gmbh Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
TWI395730B (zh) * 2009-11-13 2013-05-11 Univ Nat Kaohsiung Applied Sci Indium tin oxide compound coating liquid and its manufacturing method and application
DE102009054997B3 (de) 2009-12-18 2011-06-01 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102009054998A1 (de) * 2009-12-18 2011-06-22 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von Indiumchlordialkoxiden
DE102010031592A1 (de) * 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010043668B4 (de) 2010-11-10 2012-06-21 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102012209918A1 (de) 2012-06-13 2013-12-19 Evonik Industries Ag Verfahren zur Herstellung Indiumoxid-haltiger Schichten
WO2014077785A1 (en) * 2012-11-14 2014-05-22 Chiang Mai University Process for the preparation of liquid tin(ii) alkoxides
DE102013212019A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Formulierungen zur Herstellung Indiumoxid-haltiger Schichten, Verfahren zu ihrer Herstellung und ihre Verwendung

Also Published As

Publication number Publication date
US20160159824A1 (en) 2016-06-09
JP2016530225A (ja) 2016-09-29
CN105492447A (zh) 2016-04-13
US9802964B2 (en) 2017-10-31
RU2016101945A (ru) 2017-07-28
JP6373373B2 (ja) 2018-08-15
DE102013212017A1 (de) 2015-01-08
KR20160024388A (ko) 2016-03-04
KR102141350B1 (ko) 2020-08-06
EP3013838A1 (de) 2016-05-04
WO2014206634A1 (de) 2014-12-31
EP3013838B1 (de) 2017-05-10
RU2656103C2 (ru) 2018-05-31
TWI632150B (zh) 2018-08-11
CN105492447B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
TWI519510B (zh) 用以製備氯二烷醇銦之方法
JP5864434B2 (ja) 酸化インジウム含有層の形成方法、この方法により形成された酸化インジウム含有層および該酸化インジウム含有層の使用
JP5933540B2 (ja) 酸化インジウム含有層を製造するためのインジウムオキソアルコキシド
TWI548642B (zh) 用於製備含有氧化銦之層的烷醇側氧基銦(indium oxo alkoxide)
TWI567232B (zh) 含氧化銦的層之製法
TWI631100B (zh) 用於製造含氧化銦層之調合物、製造彼等之方法及彼等之用途
TWI632150B (zh) 製備銦烷氧化物化合物之方法,可由該方法製備之銦烷氧化物化合物及其用途
KR101603969B1 (ko) 금속 산화물 전구체 화합물 및 이를 이용한 코팅액
KR20160116180A (ko) 금속 산화물 전구체 화합물, 이를 포함하는 코팅액 및 이를 사용하여 제작된 산화물 박막 트랜지스터 소자

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees