TW201504473A - 合金化熔融鍍鋅鋼板及其製造方法 - Google Patents

合金化熔融鍍鋅鋼板及其製造方法 Download PDF

Info

Publication number
TW201504473A
TW201504473A TW103117666A TW103117666A TW201504473A TW 201504473 A TW201504473 A TW 201504473A TW 103117666 A TW103117666 A TW 103117666A TW 103117666 A TW103117666 A TW 103117666A TW 201504473 A TW201504473 A TW 201504473A
Authority
TW
Taiwan
Prior art keywords
phase
plating
plating layer
mass
steel sheet
Prior art date
Application number
TW103117666A
Other languages
English (en)
Other versions
TWI502099B (zh
Inventor
Masao Kurosaki
Jun Maki
Shintaro Yamanaka
Hiroyuki Tanaka
Original Assignee
Nippon Steel & Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel & Sumitomo Metal Corp filed Critical Nippon Steel & Sumitomo Metal Corp
Publication of TW201504473A publication Critical patent/TW201504473A/zh
Application granted granted Critical
Publication of TWI502099B publication Critical patent/TWI502099B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12882Cu-base component alternative to Ag-, Au-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • Y10T428/12924Fe-base has 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本發明係一種衝壓成形性良好之合金化熔融鍍鋅鋼板,其特徵在於包含鍍覆層,該鍍覆層含有7.2~10.6質量%之Fe、0.2~0.4質量%之Al及0.1質量%之Ni等,且餘部由Zn及雜質所構成;鍍覆層之垂直截面上,ζ相之平均厚度為0.2μm以下,鄰接基鐵而存在之Γ相之平均厚度為0.5μm以下,前述Γ相內,含有在前述Γ相內之比例為0.5質量%以上之Ni等,鄰接Γ相而存在之相為Γ1相與δ相之混合相,下式所定義之δ相比率為10%以上。δ相比率=(δ相/Γ相接觸界面長度)/(δ相/Γ相接觸界面長度+Γ1相/Γ相接觸界面長度)×100,其中,δ相/Γ相接觸界面長度為δ相與Γ相接觸之界面的長度,Γ1相/Γ相接觸界面長度則為Γ1相與Γ相接觸之界面的長度。

Description

合金化熔融鍍鋅鋼板及其製造方法 技術領域
本發明有關於一種使用於汽車、家電產品、建築材料等之衝壓成形之合金化熔融鍍鋅鋼板及其製造方法,特別是有關於一種擦動性(耐剝落性)、耐粉碎性及化成處理性良好之合金化熔融鍍鋅鋼板及其製造方法。
背景技術
合金化熔融鍍鋅鋼板與鍍鋅鋼板相較,其焊接性及塗裝性更良好。因此,合金化熔融鍍鋅鋼板不僅使用於汽車車體用途,亦泛用於家電產品、建築材料等廣泛之用途範疇。使用於上述用途之合金化熔融鍍鋅鋼板通常則經衝壓成形再使用。
合金化熔融鍍鋅鋼板之製造方法則在於鋼板表面上實施熔融鋅鍍覆後,立即予以加熱保持在鋅之熔點以上,而使鋼板中之Fe擴散至鍍覆層中。其次,使其與Zn進行合金化反應,而生成Zn-Fe合金相。然而,上述合金化熔融鍍鋅鋼板具有衝壓成形性劣於冷軋鋼板之缺點。
衝壓成形性較差之原因則在合金化熔融鍍鋅層之組織。即,藉使鋼板中之Fe擴散至鍍覆層中與Zn進行合 金化反應而形成之Zn-Fe合金鍍覆層一如圖1之模式顯示般,通常為由形成於基鐵10上之Γ相11、Γ1相12、δ1相13及ζ相14所構成之鍍覆層。且,上述鍍覆層隨著Fe濃度之降低,將依序變化為Γ相→Γ1相→δ相→ζ相。
該等相之硬度則為:Γ1相依維克氏硬度而最高約為505Hv,接著,Γ相約為326Hv,δ相約為284~300Hv,ζ相約為200Hv。尤其,鄰近鋼板表面之鍍覆層領域(鍍覆鋼板界面)中存在之T相及Γ1相為硬質,鍍覆層之上部領域則生成軟質之ζ相。
ζ相為軟質,易與衝壓模具黏著,摩擦係數大,擦動性不佳。因此,ζ相乃在進行強力之衝壓成形後,導致鍍覆層對模具黏著並剝離之現象(以下稱為剝落)之原因。且,Γ相及Γ1相為硬質而具脆性,故為衝壓成形時導致鍍覆層呈粉狀而剝離之現象(以下稱為粉碎)之原因。
合金化熔融鍍鋅鋼板之衝壓成形時,擦動性良好甚為重要。因此,就擦動性之觀點而,鍍覆層以高合金化且高硬度、熔點高、不易黏著之高Fe濃度之薄膜為有效,但易導致粉碎。
另,為避免粉碎,而採用已低合金化且抑制Γ相及Γ1相之生成之低Fe濃度之鍍覆層,則擦動性不佳,易導致剝落。
為改善合金化熔融鍍鋅鋼板之衝壓成形性,則須兼顧擦動性與粉碎之相反性質。
迄今,改善合金化熔融鍍鋅鋼板之衝壓成形性之 技術,已提案有一種於高Al鍍浴中,依與該Al濃度之關係而規定之高浸入板溫進行鍍覆而抑制合金化反應,然後於高頻感應加熱方式之合金爐中,進行合金化處理以使出側板溫大於495℃~520℃,而製造以δ1為主體之合金化熔融鍍鋅鋼板之方法(參照諸如專利文獻1)。且,亦已提案一種實施熔融Zn鍍覆,並立即在460~530℃之溫度區中加以保持2~120秒後,再依5℃/秒以上之冷卻速度加以冷卻至250℃以下,而形成δ1單相之合金化鍍覆層之合金化熔融鍍鋅鋼板之製造方法(參照諸如專利文獻2)。進而,亦已提案一種為兼顧表面擦動性與耐粉碎性,而在合金化熔融鍍鋅鋼板之製造時之合金化處理中,基於乘法而累計加熱、冷卻中之溫度(T)與時間(t)後之溫度分布而決定合金化處理之溫度模式之合金化熔融鍍鋅鋼板之製造方法(參照諸如專利文獻3)。
該等習知技術均控制合金化之程度而使合金化熔融鍍鋅層硬質化,並兼顧合金化熔融鍍鋅鋼板之衝壓成形時所欠缺之耐粉碎性與耐剝落性。
且,已提案有一種表面平坦部對擦動性之影響甚大,故藉控制表面平坦部,即可使表層上存在大量ζ相之鍍覆薄膜亦具有良好之耐粉碎性,而製得擦動性良好之合金化熔融鍍鋅鋼板之技術(參照諸如專利文獻4)。
該技術可降低合金化度,而使表層上存在大量ζ相之鍍覆薄膜亦具有良好之耐粉碎性,並製得擦動性良好之合金化熔融鍍鋅鋼板。然而,因耐剝落性(耐擦動性)不足, 故推論其需要進而改善耐擦動性。
進而,此外,已廣泛運用塗布高黏度之潤滑油之方法作為用於提昇鋅系鍍覆鋼板之衝壓成形性之方法。然而,潤滑油為高黏性,故有在塗裝步驟時發生去脂不良所致之塗裝瑕疵,且因衝壓時之油量耗盡而導致衝壓功能不安定等問題。
因此,已提案有於鋅系鍍覆鋼板表面上形成以ZnO為主體之氧化膜之技術(參照諸如專利文獻5),以及形成Ni氧化物之氧化膜之技術(參照諸如專利文獻6)。然而,該等氧化膜則有化成處理性不佳之問題。
故而,已有提案形成Mn系氧化物薄膜作為已改善化成處理性之薄膜之技術(參照諸如專利文獻7)。然而,該等形成氧化物系薄膜之技術均未具體檢討與合金化熔融鍍鋅層之組織之關係。
專利文獻8雖已提案預鍍技術,但僅就耐粉碎性加以評價,並未就耐剝落性進行任何改善。且,專利文獻9雖已提案Γ 2相之應用,但僅就耐粉碎性加以評價,並未就耐剝落性進行任何改善。進而,專利文獻10雖已就耐粉碎性與擦動性進行評價,但實際上亦存在於使板厚減小之衝壓成形時更須提高安定性之狀況。
先行技術文獻 專利文獻
專利文獻1:日本專利特開平09-165662號公報
專利文獻2:日本專利特開2007-131910號公報
專利文獻3:日本專利特開2005-054199號公報
專利文獻4:日本專利特開2005-048198號公報
專利文獻5:日本專利特開昭53-060332號公報
專利文獻6:日本專利特開平03-191093號公報
專利文獻7:日本專利特開平03-249182號公報
專利文獻8:日本專利特開2010-265525號公報
專利文獻9:日本專利特開平10-306361號公報
專利文獻10:國際公開第2010/089910號
發明概要
本發明有鑑於習知技術之現狀,而以提供可兼顧衝壓成形時之耐剝落性(表面擦動性)與耐粉碎性之合金化熔融鍍鋅鋼板及其製造方法為目的。
合金化熔融鍍鋅之合金化處理時,若進行高合金化處理,將生成較多Γ相及Γ1相,而使衝壓成形時之耐剝落性(表面擦動性)良好,但耐粉碎性則不佳。
另,合金化處理時若進行低合金化處理,則生成較少Γ相及Γ1相,並增加ζ相,而使衝壓成形時之耐粉碎性良好,但表面擦動性(耐剝落性)則不佳。合金化熔融鍍鋅鋼板中並無法避免Γ相及Γ1相之生成。
因此,本發明人等人即著重於鋼板附近之鍍覆顯微組織,並就不易傳播龜裂之組織之形成加以致力研究。 其結果,已發現若充分利用預鍍而調整合金化時之熱量輸入,並將Γ相內含有之預鍍金屬之含有率維持在一定值以上,即可實現可抑制加工時之龜裂傳播並具備良好耐粉碎性之鍍覆組織,進而若將鍍覆層之含鐵率控制在預定範圍內,則可製得耐剝落性亦良好之鍍層。
進而,已發現若對應鍍覆鋼板所承受之加工程度而調整所實施之預鍍量,則可獲致充分提昇耐粉碎性之效果。
本發明乃基於上述發現而完成,其要點如下。
(1)本發明係一種合金化熔融鍍鋅鋼板,其特徵在於包含有:基鐵;及鍍覆層,含有7.2~10.6質量%之Fe、0.2~0.4質量%之Al及總計0.1質量%以上之選自由Ni、Co、Cu及In所構成群組之1種或2種以上,且餘部由Zn及雜質所構成;前述鍍覆層係形成於前述基鐵的表面上,前述鍍覆層之垂直截面上,ζ相之平均厚度為0.2μm以下,鄰接前述基鐵而存在之Γ相之平均厚度為0.5μm以下,前述Γ相內,含有總計在前述Γ相內之比例為0.5質量%以上之選自由前述Ni、Co、Cu及In所構成群組之1種或2種以上,鄰接前述Γ相而存在之相為Γ1相與δ相之混合相,下式(1)所定義之δ相比率為10%以上。
δ相比率=(δ相/Γ相接觸界面長度)/(δ相/Γ相接觸界面長度+Γ1相/Γ相接觸界面長度)×100…(1)
其中,δ相/Γ相接觸界面長度為δ相與Γ相接觸之界面的長度,Γ1相/Γ相接觸界面長度則為Γ1相與Γ相接觸之界 面的長度。
(2)本發明係一種合金化熔融鍍鋅鋼板之製造方法,係製造承受板厚減少率(%)為5%以上之衝壓加工的合金化熔融鍍鋅鋼板;該方法之特徵在於包含以下步驟:依據下式(2),基於前述合金化熔融鍍鋅鋼板之衝壓加工時的板厚減少率(%)算出必要之預鍍量(g/m2),對基鐵實施總計為前述算出必要之預鍍量(g/m2)以上之含有選自由Ni、Co、Cu及In所構成群組之1種或2種以上的預鍍後,浸漬於含有0.1~0.3質量%之Al之鍍浴中而進行鋅鍍覆之步驟;及,接著在加熱爐出側已達最高到達溫度後,於保溫爐中進行緩冷卻時,在300以上且低於800之範圍內調整以下式(3)算出之溫度積分值S而實施合金化處理之步驟。
必要預鍍量(g/m2)=0.0222×板厚減少率(%)-0.0625…(2)
S=(T11-T0)×t1/2+((T11-T0)+(T12-T0))×t2/2+((T12-T0)+(T21-T0))×△t/2+((T21-T0)+(T22-T0))×t3/2+(T22-T0)×t4/2…(3)
其中,T0:420(℃),T11:加熱爐出側之鋼板溫度(℃),T12:保溫爐之冷卻帶入側之鋼板溫度(℃),T21:冷卻帶出側之鋼板溫度(℃), T22:保溫爐出側之鋼板溫度(℃),t1:從T0至加熱爐出側之處理時間(秒),t2:從加熱爐出側至保溫爐之冷卻帶入側之處理時間(秒),△t:從保溫爐之冷卻帶入側至冷卻帶出側之處理時間(秒),t3:從保溫爐之冷卻帶出側至保溫爐出側之處理時間(秒),t4:從驟冷帶入側至T0之處理時間(秒)。
依據本發明,即可提供可兼顧衝壓成形時之耐粉碎性及耐剝落性(表面擦動性)之合金化熔融鍍鋅鋼板及其製造方法。
10‧‧‧基鐵
11‧‧‧Γ相
12‧‧‧Γ1
13‧‧‧δ1
14‧‧‧ζ相
圖1係模式地顯示Zn-Fe合金鍍覆層之相構造。
圖2係顯示溫度積分值(S)與鍍覆層之Fe濃度(質量%)之關係。
圖3係顯示成形高度(mm)與加工後之板厚減少率(%)之關係。
圖4係顯示板厚減少率(%)與預鍍量(g/m2)之關係下之粉碎評價結果。
圖5A係顯示業經預鍍之基鐵與鍍覆層之界面附近之鍍覆層之顯微組織之態樣。
圖5B係顯示未經預鍍之基鐵與鍍層之界面附近之鍍覆 層之顯微組織之態樣。
圖6係顯示預鍍量(g/m2)與δ相比率(%)之關係。
圖7係顯示變更預鍍量(g/m2)後之溫度積分值S與Γ相內所含有之預鍍金屬之濃度之關係。
圖8係顯示Γ相內之預鍍金屬含有率與δ相比率之關係。
圖9係顯示變更預鍍量(g/m2)後之鍍覆層中含有之預鍍金屬之含有率與ζ相之厚度之關係。
圖10係顯示含Ni及不含Ni時之Fe-Al-Zn系之狀態。
圖11係顯示預鍍量(g/m2)與鍍覆層中之預鍍金屬濃度之關係。
圖12係顯示鍍覆層中之Fe濃度與Γ相之厚度之關係。
圖13係顯示在各板厚減少率下之耐粉碎性良好之δ相比率。
用以實施發明之形態
合金化熔融鍍鋅鋼板通常乃將已於退火爐中業經退火之鋼板浸漬於熱浸鍍鋅浴(鍍槽)中,而對鋼板表面施予鋅鍍覆後,再於加熱爐中予以加熱至最高到達溫度,並於加熱後,在保溫爐中進行緩冷卻,再於冷卻帶中進行驟冷而製成。
此時,將依合金化處理時之合金化溫度等而決定合金化度。合金化度較低時,將生成較多ζ相,並抑制Γ相及Γ1相之生成。其結果,ζ相將增厚,Γ相及Γ1相則減薄。 另,合金化度較高時,Γ相及Γ1相則生成較多,並抑制ζ相之生成。其結果,Γ相及Γ1相將增厚,ζ相則減薄。
其次,合金化度較高時,Γ相及Γ1相將於與基鐵之界面上厚實成長,故將導致合金化熔融鍍鋅鋼板之衝壓成形時發生粉碎,即,若合金化度較高,鍍覆層之Fe濃度大於11.0質量%,則Γ相及Γ1相將厚實成長而導致粉碎之發生。如圖12所示,可知若鍍覆層之Fe濃度較高,則Γ相之厚度將大於導致粉碎發生之限度之0.5μm而增大。另,若合金化度較低,ζ相之生成量將增加,並成長於鍍覆層表面,而導致衝壓成形時發生剝落。
本發明人等人則在粉碎及剝落之根本原因在於鍍覆層之組織之概念之下,著重於基鐵與鍍覆層之界面附近之鍍覆層之顯微組織,而致力研究衝壓加工時不易發生龜裂傳播之組織之形成方法。
且,本發明人充分利用熱力學而進行解析,已發現如圖10所示,若對鍍覆層添加Ni等元素,則可控制Γ1相、δ相及ζ相之生成。如圖10所示,不含Ni時與含有0.5質量%之Ni時相較,含Ni時,將自Fe2Al5轉變為Fe2Al5+Ni2Al3,而促進合金化。且,藉Ni之影響,可使Γ1相難以生成,並略微擴大δ相出現之領域。進而,並使ζ相亦難以生成。依據以上之結果,而著重於藉對鍍覆層添加Ni等元素,而控制生成於與基鐵之界面附近之Γ相及Γ1相之顯微組織。
其結果,則發現若對鋼板施以預鍍,並對應衝壓加工時之加工程度而調整預鍍量,即可控制生成於與基鐵 之界面附近之Γ相及Γ1相之顯微組織,而可形成加工性良好之鍍覆層。
進而,已發現若適當調整合金化時之熱量輸入量,並控制鍍覆層之Fe濃度,即可兼顧耐粉碎性與耐剝落性。本發明即基於上述發現而完成。以下,即詳細說明之。
本發明可使用超低碳鋼,諸如IF鋼、含Ti、Nb之超低碳Ti鋼、超低碳Ti-Nb鋼等鋼板作為用於鍍覆之鋼板。 且,亦可使用含有適量之強化元素之Si、Mn或P之高強度鋼板。
首先,為確認Fe濃度之不同所導致之耐粉碎性及耐剝落性之不同,而進行以下之實驗。
使用超低碳Ti-Nb鋼之鋼板作為代表例,並準備未對該鋼板實施預鍍者與已預先使用硫酸Ni浴而業經0.2g/m2之Ni預鍍者。然後,於10%H2-N2環境中,在800℃下進行90秒之還原、退火處理,接著,加以浸漬於含有0.13質量%之Al之460℃之Zn鍍浴中3秒,而實施了Zn鍍覆。
然後,藉氣體抹拭法而將Zn之附著量調整成固定為45g/m2,並將附著有Zn之鋼板裝入加熱爐中,在加熱爐出側之鋼板溫度(T11)已達最高到達溫度後,於保溫爐中進行緩冷卻時,則改變藉下式(3)而算出之溫度積分值S而進行合金化處理。
S=(T11-T0)×t1/2+((T11-T0)+(T12-T0))×t2/2+((T12-T0)+(T21-T0))×△t/2 +((T21-T0)+(T22-T0))×t3/2+(T22-T0)×t4/2…(3)
其中,T0:420(℃)
T11:加熱爐出側之鋼板溫度(℃)
T12:保溫爐之冷卻帶入側之鋼板溫度(℃)
T21:冷卻帶出側之鋼板溫度(℃)
T22:保溫爐出側之鋼板溫度(℃)
t1:從T0至加熱爐出側之處理時間(秒)
t2:從加熱爐出側至保溫爐之冷卻帶入側之處理時間(秒)
△t:從保溫爐之冷卻帶入側至冷卻帶出側之處理時間(秒)
t3:從保溫爐之冷卻帶出側至保溫爐出側之處理時間(秒)
t4:從驟冷帶入側至T0之處理時間(秒)
接著,自業經合金化處理之鍍覆鋼板切下35φ之試驗片,並於內含抑制劑之鹽酸中溶解鍍覆層而進行化學分析,並測定鍍覆層中之Fe、Ni及Al之量。
鍍覆層之耐粉碎性及耐剝落性則藉以下之方法加以評價。
(耐粉碎性)
首先,自鍍覆鋼板切下寬40mm、長250mm之試驗片。其次,使用曲柄壓機,而以r=5mm之半圓珠之模具將試驗 片加工成衝頭肩部半徑5mm、衝模肩部半徑5mm、成形高度35mm。接著,以測微計測定衝壓加工後之板厚,並藉(原板厚-加工後板厚)×100/(原板厚)算出衝壓加工時之板厚減少率(%),板厚減少率則為10%。且,加工時並測定鍍層之剝離量,而依以下基準評價耐粉碎性。
評價基準
鍍層剝離量小於5g/m2:◎
鍍層剝離量5g/m2以上且小於10g/m2:○
鍍層剝離量10g/m2以上且小於15g/m2:△
鍍層剝離量15g/m2以上:×
(耐剝落性)
首先,自鍍覆鋼板切下寬17mm、長300mm之試驗片。其次,對試驗片依塗油量1g/m2塗布NOX-RUST530F-40(PARKER INDUSTRIES,INC.)作為塗油。然後,使用方形珠肩部R1.0/3.0mm之模具,依表面壓力100~600kgf進行擦動試驗,並測定拉拔負載。其次,由表面壓力與拉拔負載之關係求出摩擦係數。另,擦動長度設為200mm。求得之摩擦係數則依以下基準予以評價。
評價基準
摩擦係數小於0.5:◎
摩擦係數0.5以上且小於0.6:○
摩擦係數0.6以上且小於0.8:△
摩擦係數0.8以上:×
進而,以調查鍍覆層之相構造為目的,而以掃瞄 型電子顯微鏡(SEM)觀察鍍覆層之垂直截面,並測定鍍覆層中之Γ相及ζ相之平均厚度。且,藉EPMA(Electron Probe MicroAnalyzer)進行分析而測定Γ相內含有之Ni量。進而,以內含抑制劑之鹽酸溶解鍍覆層,並進行化學分析而求出鍍層相之平均Ni濃度。
表1中已就各種溫度積分值S一併顯示鍍覆層之Fe濃度(質量%)(以下將鍍覆層之含Fe量稱為Fe濃度)、鍍覆層之平均Ni濃度(質量%)(以下稱為鍍覆層之含Ni量)、Γ相內比例之Γ相中含有之Ni濃度(質量%)、Γ相之平均厚度、ζ相之平均厚度、耐粉碎性之評價及耐剝落性之評價之評價結果。
表1
未實施預鍍時,溫度積分值S之值較低,若鍍覆層之Fe濃度低於8.5質量%,則軟質之ζ相之厚度將增加,而使耐剝落性降低。反之,溫度積分值S提高,而使鍍覆層之Fe濃度昇高,則可改善耐剝落性,但Γ相之厚度將增加而使耐粉碎性降低。如上所述,未實施預鍍時,並未發現可滿足耐剝落性及耐粉碎性雙方之條件。另,若進行預鍍,則將促進合金化,而在較低之溫度積分值S下提高鍍覆層之Fe濃度。為滿足耐剝落性,鍍覆層之ζ相厚度須為0.2μm以下,此時之Fe濃度則須確保為8.2質量%以上。且,耐粉碎性在溫度積分值S為800以上時將劣化。
鍍層相之平均Ni濃度將隨溫度積分值S之增加而徐緩昇高,溫度積分值S為800時則為最大值而後則再減少。另,Γ相內之Ni濃度在溫度積分值S為800時將急劇減少而降至0.5質量以下。此則可推論為伴隨合金化之進行而將逐漸形成含有預鍍層之基鐵與Zn相反應並合金化而成之鍍層相,但溫度積分值S若為800以上,則業經預鍍之金屬之消耗將結束而轉向進行與不含預鍍金屬之基鐵之反應,故鍍層相之平均Ni濃度將徐緩降低,形成於距離基鐵最近側之Γ相內之Ni濃度則急劇降低。由上可知,實施0.2g/m2之預鍍後,為滿足耐剝落性及耐粉碎性之雙方,必須確保8.2質量%以上之鍍覆層之Fe濃度,並在溫度積分值S小於800之條件下進行合金化處理,進而確保Γ相內之Ni濃度在Γ相內之比例為2.0質量%以上。
接著,以確認預鍍之效果為目的,而進行以下之 實驗。首先,藉電解處理而在0~2.0g/m2之範圍內改變預鍍量,並對鋼板實施包括選自由Ni、Co、Cu及In所構成群組之1種或2種以上作為預鍍種類之預鍍。實施預鍍後,則藉上述鍍覆方法進行熱浸鍍,並改變藉上式(3)而算出之溫度積分值S以進行合金化處理。
實施Zn鍍覆之方法則採用以對鋼板在退火前實施預鍍,並於退火後直接實施熱浸鍍之方法,以及退火後暫時冷卻鋼板而實施預鍍,然後在還原環境中提高鋼板溫度而實施熱浸鍍之方法。
自業經合金化處理之鍍覆鋼板切下35φ之試驗片,並加以浸漬於內含抑制劑之鹽酸而溶解鍍覆層且進行化學分析,而測定了鍍覆層之Fe濃度。
圖2即顯示測定結果。可知溫度積分值S愈大,且,預鍍量愈大,愈可促進合金化。且,可知預鍍量若大於1.0g/m2,合金化促進效果將飽和。在溫度積分值S小於800之條件下,鍍覆層之Fe濃度不致大於10.6質量%,故鍍覆層之Fe濃度之上限為10.6質量%。且,Fe濃度小於7.2時,不拘預鍍量,均無法將ζ相之厚度控制在0.2μm以下,故Fe濃度之下限為7.2質量%。
即便混合選自由Ni、Co、Cu及In所構成群組之1種或2種以上而實施預鍍,若整體之預鍍量相同,則預鍍之效果並無差異。且,對預鍍層添加選自由其它之Cr、Mo、Nb、Fe等所構成群組之1種或2種以上,預鍍之效果亦無改變。
又,藉電解處理方法而進行之預鍍之均一性最為良好,預鍍之效果表現為最佳,但採用置換析鍍方法亦已確認同等之預鍍效果。預鍍所使用之液體中含有鍍覆元素即可,並無特別之限制。
舉例言之,預鍍所使用之液體可為硫酸鹽、氯化物鹽、硝酸鹽、蟻酸鹽及醋酸鹽中之任一種,對於預鍍之效果並無差別。且,於退火前進行預鍍及於退火後進行預鍍,對於預鍍之效果亦無差別。
以下,以確認加工為實際零件時之變形發生之狀況下之預鍍之效果為目的,而藉以下之方法評價了預鍍後業經鍍覆之鍍覆鋼板之耐粉碎性。
自鍍覆鋼板切下寬40mm×長250mm之試驗片,並藉r=5mm之半圓緣之模具予以加工成衝頭肩部半徑5mm、衝模肩部半徑5mm、成形高度20~65mm。
以測微計測定衝壓加工後之板厚,並藉(原板厚-加工後板厚)×100/(原板厚)算出衝壓加工時之板厚減少率(%)。
又,衝壓加工時,則測定已剝離之鍍覆量,並依以下基準評價耐粉碎性。
評價基準
鍍覆剝離量小於5g/m2:◎
鍍覆剝離量5g/m2以上且小於10g/m2:○
鍍覆剝離量10g/m2以上且小於15g/m2:△
鍍覆剝離量15g/m2以上:×
圖3顯示成形高度(mm)與板厚減少率(%)之關係。如圖3所示,可知成形高度(mm)若增大,板厚減少率(%)將增加,加工程度較高。且,可知增加相當於實際零件之加工時之板厚減少率為5%以上。
圖4則顯示板厚減少率(%)與預鍍量(g/m2)之關係下之耐粉碎性之評價結果。
如圖4所示,可知加工程度較低時,即,板厚減少率(%)較小時,少量之預鍍量即可獲致良好之耐粉碎性,但板厚減少率(%)若提高,則獲致良好之耐粉碎性所需之預鍍量亦將增加。
又,圖4中,可知求出可實現良好之耐粉碎性所需之預鍍量(g/m2)與板厚減少率(%)之關係,則下式將成立。
必要預鍍量(g/m2)=0.0222×板厚減少率(%)-0.0625
進而,以確認藉預鍍而提昇耐粉碎性之機制為目的,而調查了預鍍量改變後之基鐵與鍍覆層之界面之組織。首先,使用聚焦離子束裝置(Focused Ion Beam System),而自上述試驗片切下組織觀察用之薄片,再以200kV-場發射穿透式電子顯微鏡(FE-TEM)觀察基鐵與鍍覆層之界面附近之鍍覆層之顯微組織。
拍攝界面附近之鍍覆層之顯微組織後,接著就鍍覆層之各結晶粒藉X射線繞射而進行構造解析,並採用能量色散X射線分析(EDS)而進行成分分析,以識別構成鍍覆層之相(Γ相、Γ1相、δ相、ζ相)。
圖5A及圖5B則顯示基鐵與鍍覆層之界面附近之鍍覆層之顯微組織之態樣。圖5A顯示業經預鍍之顯微組織,圖5B顯示未經預鍍之顯微組織。另,業經預鍍乃業經0.6g/m2之Ni預鍍。
如圖5A及圖5B所示,業經預鍍與未經預鍍之雙方情況下,基鐵與鍍覆層之界面上均連續地存在Γ相。
若著重於鄰接Γ相之相,則未經預鍍者如圖5B所示般而全部為Γ1相。另,業經預鍍者則如圖5A所示般併存有Γ1相與δ相之2種相。
因此,已依循以下之定義式而測定鄰接Γ相之δ相之比率(以下稱為δ相比率)。
δ相比率(%)=(δ相/Γ相接觸界面長度)/(δ相/Γ相接觸界面長度+Γ1相/Γ相接觸界面長度)×100
其中,δ相/Γ相接觸界面長度為δ相與Γ相之接觸界面之長度,Γ1相/Γ相接觸界面長度則為Γ1相與Γ相之接觸界面之長度。
未經預鍍者之δ相比率為0%,相對於此,業經0.6g/m2之Ni預鍍者之δ相比率約為50%。
又,就改變預鍍量(g/m2)而製成之試驗片亦同樣切下組織觀察用之薄片,並測定了δ相比率(%)。圖6即顯示在溫度積分值S為600時進行合金化處理後之預鍍量(g/m2)與δ相比率(%)之關係。且,圖7顯示預鍍量(g/m2)改變後之溫度積分值S與Γ相內含有之預鍍金屬之濃度之關係。進而,圖8則顯示Γ相內之預鍍金屬含有率與δ相比率之關係。又, 就改變預鍍量(g/m2)而製成之試驗片調查鍍覆層中之平均預鍍金屬濃度之結果則顯示於圖11。
如圖6所示,在溫度積分值S為600時進行合金化處理後,伴隨預鍍量(g/m2)之增加,δ相比率(%)亦將增加,預鍍量為1g/m2時,δ相比率則高達100%,預鍍量為1g/m2以上時,δ相比率(%)則為固定。且,即便實施包括選自由Ni、Co、Cu及In所構成群組之1種或2種以上之預鍍,該傾向亦相同。又,由圖7可知,若在溫度積分值S小於800時進行合金化處理,則Γ相內之預鍍金屬之含量之比率將隨預鍍授予量而增加。其次,如圖8所示,可知δ相比率對應Γ相內之預鍍金屬之含量之比率而增加。
業經包括上述4元素之至少1種之預鍍後,δ相比率(%)將增加之理由雖尚未確定,但可推論上述4元素就熱力學而言,具有可使Γ1相不安定,卻使δ相安定之作用。
另,觀察實施預鍍後再業經Zn鍍覆之鍍覆鋼板之衝壓加工後之鍍覆層之截面,則可知導致粉碎之鍍覆層之龜裂將優先傳播於Γ相及Γ1相之接觸界面上,並停滯於Γ相與δ相之接觸界面上。
此則可推論乃因Γ1相之硬度依維克氏硬度約為505Hv而極為堅硬,相對於此,δ相之維克氏硬度為284~300Hv,Γ相之維克氏硬度為326Hv,龜裂最易傳播於硬度差甚大之Γ1相與Γ相之接觸界面上之故。
又,獲致良好之耐粉碎性所需之預鍍量對應板厚減少率(%)而增加之理由則可推論乃因板厚減少率(%)較大 時,須提高δ相比率(%)以形成難以傳播龜裂之接觸界面之故。進而,檢討之結果,則已知良好之領域雖隨加壓時之板厚減少率而改變,但δ相比率一如圖13所示,最低亦須為10%。另,其細節則留待後述。
又,以與前述相同之方法調查了業經預鍍之鍍覆層之耐剝落性(耐表面擦動性)。圖9則顯示預鍍量(g/m2)改變後之鍍覆層中含有之預鍍金屬之含有率與ζ相之厚度之關係。未經預鍍時,鍍覆層之Fe濃度若低於8.5質量%,則軟質之ζ相之厚度將大於0.2μm而增加,並使耐剝落性降低。因此,為提高耐剝落性,須使ζ相之厚度在0.2μm以下。
另,業經預鍍時,相同Fe濃度下之ζ相之厚度將對應鍍覆層中含有之預鍍金屬濃度而減少。可知滿足確保良好之耐剝落性之條件之ζ相之厚度為0.2μm以下之條件之Fe濃度亦將對應鍍覆層中含有之預鍍金屬濃度而降低。
實施Zn鍍覆時,則藉含有適量之Al之鍍浴進行之。鍍覆層之Al含量若大於0.4質量%,則過多的Al將抑制合金化,故即便提高溫度積分值S亦將不進行合金化,並使鍍覆層之Fe濃度降低而增大ζ相之厚度,故耐剝落性將降低。另,鍍覆層之Al含量若小於0.2質量%,將於易於成長ζ相之低溫下進行合金化反應,故即便將鍍覆層之Fe濃度保持為預定值,亦將殘留ζ相,並使耐剝落性降低。如上所述,而將鍍覆層之Al含量設為0.2質量%~0.4質量%。且,Al較Zn更易吸附於基鐵上,故為將Al含量設在上述之範圍內,而加以浸漬於含有0.1質量%~0.3質量%之Al之Zn鍍浴中而進行Zn 鍍覆。
又,如圖8所示,若增大預鍍量(g/m2),並使Γ相內之選自由Ni、Co、Cu及In所構成群組之1種或2種以上之含量在Γ相內之比例大於10質量%,則δ相比率將為100%而為固定值,並使預鍍之效果飽和。因此,宜將選自由Ni、Co、Cu及In所構成群組之1種或2種以上在Γ相內含量之總計上限設為Γ相內比例之10質量%,為此,預鍍量之上限由圖7可知,須調整為1g/m2。且,一如前述,溫度積分值S若為800以上,耐粉碎性將劣化,故如圖7所示,將選自由Ni、Co、Cu及In所構成群組之1種或2種以上之在Γ相內之含量之總計下限設為Γ相內比例之0.5質量%。
鍍覆層中含有以上之元素,殘部則為Zn及雜質。在此,則例示製程中包含之物質等作為雜質。
表1所示之例中,已說明未經Ni預鍍與業經0.2g/m2之Ni預鍍之例。如圖2所示,為製得所欲之Fe濃度之鍍覆層,必須調整預鍍量(g/m2)與溫度積分值S。業經預鍍時,為發揮良好之耐剝落性,須使ζ相之厚度為0.2μm以下,並可由圖9所示之關係求出所需之鍍覆層之Fe濃度。此時,鍍覆層內之預鍍金屬之含有率可對應預鍍授予量而由圖11所示之關係加以決定。如上而求出之用於獲致所需之Fe濃度之溫度積分值S之下限值可對應預鍍量而由圖2所示之關係加以求出。即,溫度積分值S之下限值設為對應前述所實施之預鍍量而算出以使ζ相之平均厚度為0.2μm以下之鍍覆層內之Fe濃度之下限值所對應之溫度積分值。此時,溫 度積分值S若為800以上,則耐粉碎性將劣化,故須在小於800之範圍內求出溫度積分值S。另,預鍍量為1g/m2以上時,可使ζ相厚度為0.2μm以下之條件,由圖9可知乃Fe為7.2質量%以上,此時之溫度積分值S由圖2可知其為300左右。由上而將本發明所使用之溫度積分值S之下限設為300。
如上所述,為製造本發明之合金化熔融鍍鋅鋼板,須在製造前如上述般先決定預鍍條件與合金化之條件。以下,則舉具體例說明製造方法中條件之決定方式。
首先,若決定加工部位之形狀,則可知加工所致之板厚減少率。在此,則考量2個構件(部位A、B),並將部位A之板厚減少率設為10%,而將部位B之板厚減少率設為20%。此時,如圖4之點A、B所示,可知在衝壓加工後獲致良好之耐粉碎性(進入○以上之領域)所需之必要預鍍量可由前述式(2)加以算出,部位A為0.16g/m2,部位B則為0.38g/m2。藉此,舉例言之,即可決定部位A之預鍍量為0.2g/m2,部位B之預鍍量則為0.4g/m2
又,如前所述,溫度積分值S若為800以上,則耐粉碎性將劣化。進而,ζ相之厚度若大於0.2μm,則耐剝落性將劣化,故以滿足該等條件為前提而決定製造條件。
首先,決定可使ζ相之厚度為0.2μm以下之條件。前述步驟中一旦求出預鍍量,即可由圖11所示之關係求出鍍覆層中之預鍍金屬之含量。此時,預鍍金屬之含量視為在鍍覆層內大致均一擴散有預鍍金屬。如圖11之點A、B所示,部位A含有約0.44質量%之預鍍金屬,部位B則含有約 0.88質量%之預鍍金屬。
一旦決定鍍覆層中之預鍍金屬,即可由圖9所示之關係求出可使ζ相為0.2μm以下之鍍覆層中之Fe濃度之下限值。如圖9之點A、B所示,部位A之Fe濃度之下限值約為7.6質量%,部位B之Fe濃度之下限值則約為7.3質量%。
一旦如上而決定Fe濃度之下限值,即可由圖2所示之關係求出可實現之溫度積分值S之下限值。如圖2之點A、B所示,部位A之預鍍量為0.2g/m2而Fe濃度之下限值約為7.6質量%,故溫度積分值S之下限值約為480。另,部位B之預鍍量為0.4g/m2而Fe濃度之下限值約為7.3質量%,故溫度積分值S之下限值約為400。
由上,而可將部位A之溫度積分值S設為480以上且小於800,並將部位B之溫度積分值S設為400以上且小於800。因此,諸如合金化處理時將部位A之溫度積分值S設為600而將部位B之溫度積分值S設為750時,將如圖2之點A'、B'所示,使部位A之鍍覆層之Fe濃度約為8.2質量%,並使部位B之鍍覆層之Fe濃度約為9.3質量%。
又,使部位A之溫度積分值S為600並使部位B之溫度積分值S為750時,Γ相內之預鍍金屬之濃度將如圖7之點A、B所示,依Γ相內之比例而使部位A約為2.1質量%,部位B則約為4.1質量%。且,一旦求出Γ相內之預鍍金屬之濃度,則可由圖8所示之關係求出δ相比率。如圖8之點A、B所示,部位A之δ相比率約為25%,部位B之δ相比率則約為44%。
如上所述而可決定製造方法之條件。在此,則參照圖13說明就對應加工程度(板厚減少率)而決定可獲致良好之耐粉碎性之界面構造。圖13所示之關係可由圖4所示之各種板厚減少率之耐粉碎性之評價結果及圖6所示之預鍍量與δ相比率之關係加以算出。可知板厚減少率愈大,為獲致良好之耐粉碎性,愈須減少脆弱之界面,並提高δ相比率。舉例言之,部位A之板厚減少率為10%,故為獲致良好之耐粉碎性,須使δ相比率為約18%以上,部位B之板厚減少率為20%,故為獲致良好之耐粉碎性須使δ相比率為約42%以上。為製得上述界面構造,可由圖6所示之關係求出預鍍量,並與圖4所示之值大致一致。由上,必要預鍍量亦可由圖13及圖6所示之關係加以求出。
如上而可決定上述條件以製造合金化熔融鍍鋅鋼板。首先,在進行適當之熱處理後,進行已決定如上之預鍍。接著,在進行熔融鋅鍍覆後,依已決定如上之條件進行合金化處理。合金化時,則宜將加熱速度{(T11-T0)/t1}設在30℃/s至60℃/s之範圍內。加熱速度(平均加熱速度)若小於30℃/s,可能使鍍覆層之Fe濃度提高而使ζ相增厚,並使耐粉碎性、耐剝落性均劣化。且,加熱速度若大於60℃/s,則預鍍金屬之濃度容易降低,而無法適當地控制δ相比率。
實施例
以下,說明本發明之實施例,但實施例之條件乃為確認本發明之可實施性及效果而採用之一條件例,本發明並不受限於該一條件例。在未逸脫本發明之要點且可達 成本發明之目的之限度內,本發明可採用各種條件。
(預鍍)
實施預鍍之方法乃藉試樣並採用電解處理方法或置換析鍍方法而進行。電解處理方法乃使用含有選自由Ni、Co、Cu及In所構成群組之1種或2種以上之離子之硫酸浴或氯化物浴而進行電解處理,以對鋼板實施預鍍。且,置換析鍍方法則藉硫酸而將含有選自由Ni、Co、Cu及In所構成群組之1種或2種以上之離子之50℃之水溶液調整成pH=1.5,並將鋼板浸漬於該水溶液中10秒,而置換析出金屬,以對鋼板實施預鍍。另,乃藉試樣而在鋼板之退火前或退火後實施預鍍。
(熱浸鍍)
對業經預鍍之鋼板在10%H2-N2環境中進行800℃、90秒之還原、退火處理,再加以浸漬於含有0.1~0.3質量%之Al之460℃之Zn鍍浴中3秒而實施Zn鍍覆。
實施鍍覆後,再藉氣體抹拭法將Zn鍍覆之附著量調整成45g/m2而為固定,並在加熱爐出側之鋼板溫度(T11)已達最高到達溫度後,在保溫爐中進行緩冷卻時,改變藉前述式(3)而算出之溫度積分值S而進行鍍覆鋼板之合金化處理。且,將加熱爐出側之鋼板溫度(T11)昇至最高到達溫度之前之加熱速度設在30℃/s以上之範圍內而進行處理。
(鍍覆層之相構造)
已以掃瞄型電子顯微鏡(SEM)觀察鍍覆層之垂直截面,並測定鍍覆層之Γ相及ζ相之平均厚度。
(基鐵、鍍層界面之鍍層顯微組織)
使用聚焦離子束裝置(Focused Ion Beam System)自試驗片切下組織觀察用之薄片,並以200kV-場發射穿透式電子顯微鏡(FE-TEM)觀察了基鐵與鍍覆層之界面附近之鍍覆層之顯微組織。
拍攝基鐵與鍍覆層之界面附近之鍍覆層之顯微組織後,就鍍覆層之各結晶粒藉X射線繞射進行構造解析,且,採用能量色散X射線分析(EDS)而進行成分分析,並識別鍍覆層之相(Γ相、Γ1相、δ相及ζ相)。且,以內含抑制劑之鹽酸溶解鍍覆層,並進行化學分析而求出鍍層相之平均Ni濃度。
進而,依循以下之定義式測定了鄰接Γ相之δ相之比率。
δ相比率(%)=(δ相/Γ相接觸界面長度)/(δ相/Γ相接觸界面長度+Γ1相/Γ相接觸界面長度)×100
(耐粉碎性)
自鍍覆鋼板切下寬40mm×長250mm之試驗片,並使用曲柄壓機而藉r=5mm之半圓緣之模具予以加工成衝頭肩部半徑5mm、衝模肩部半徑5mm、成形高度5~65mm。加工時,則測定已剝離之鍍層量,並依以下基準加以評價。
評價基準
鍍層剝離量小於5g/m2:◎
鍍層剝離量5g/m2以上且小於10g/m2:○
鍍層剝離量10g/m2以上且小於15g/m2:△
鍍層剝離量15g/m2以上:×
(板厚減少率(%))
使用測微計測定加工後之鍍覆鋼板之板厚,並藉(原板厚-加工後板厚)×100/(原板厚)算出板厚減少率(%)。
(擦動性)
就摩擦係數已在樣本尺寸=17mm×300mm、拉伸速度:500mm/min、方緣肩部R:1.0/3.0mm、擦動長度:200mm、塗油:NOX-RUST530F-40(PARKER INDUSTRIES,INC.)塗油量1g/m2之條件下,在表面壓力100~600kgf之間進行了擦動試驗。
已測定拉拔負載,並自表面壓力與拉拔負載之關係求出摩擦係數。求出之摩擦係數則依以下基準加以評價。
評價基準
摩擦係數小於0.5:◎
摩擦係數0.5以上且小於0.6:○
摩擦係數0.6以上且小於0.8:△
摩擦係數0.8以上:×
表2即彙整顯示以上之試驗結果。
表2
如No.1~11之發明例所示,已確保對應板厚減少率之必要預鍍量(g/m2),並將溫度積分值S調整在小於800之適當範圍內,亦將鍍覆層之Fe濃度確保為8.0以上。其結果,即可將ζ相之厚度控制在目標值以下,並製得耐粉碎性及耐剝落性良好之合金化熔融鍍鋅鋼板。
又,如No.12~18之發明例所示,即便預鍍量增加至必要量以上,預鍍之效果亦無差異,而可製得耐粉碎性及耐剝落性良好之合金化熔融鍍鋅鋼板。
另,未經預鍍之鍍覆鋼板一如No.19般,板厚減少率若為5%,則即便將鍍覆層之Fe濃度維持在預定範圍內,亦無法獲致充分之加工性。
又,如No.20及21之比較例所示,溫度積分值S較低而合金化不充分時,鍍覆層之Fe濃度較低且ζ相之厚度增加,而使耐剝落性降低。
反之,如No.22及23之比較例所示,溫度積分值S大於800時,Γ相內之預鍍金屬含有率低於0.5%,δ相比率則無法確保最低為10%,而使耐粉碎性降低。
如No.24之比較例所示,鍍覆層之Al濃度較高時,過多之Al已抑制合金化。其結果,即便溫度積分值S提高亦將不進行合金化,鍍覆層之Fe濃度亦較低,且ζ相之厚度較厚,而使耐剝落性降低。
如No.25之比較例所示,鍍覆層之Al濃度較低時,已於易成長ζ相之低溫下進行合金化反應。其結果,即便將鍍覆層之Fe濃度維持在預定值,亦已殘留ζ相,並使耐剝落 性降低。
又,如No.27之比較例所示,使用選自Ni、Co、Cu、In之元素以外之物質作為預鍍之金屬,已使耐粉碎性降低。
No.26由於預鍍量相對於板厚減少率(%)而不足,故一旦進行大於容許量之加工,即導致耐粉碎性不足之結果。
又,比較例之No.28則不拘合金化時之加熱速度降至25℃/s,且Γ相之厚度更大,而亦殘留較厚之ζ相,結果導致耐粉碎性、耐剝落性均不佳。此則可推論乃因極度降低加熱速度而進行合金化反應後,鋼板界面附近之擴散反應極端地進行,使Γ相成長而鍍層表層附近之擴散反應則無進展,故而殘留ζ相。
產業上之可利用性
本發明可充分應用於汽車、家電產品、建築材料等範疇。

Claims (2)

  1. 一種合金化熔融鍍鋅鋼板,其特徵在於包含有:基鐵;及鍍覆層,含有7.2~10.6質量%之Fe、0.2~0.4質量%之Al及總計0.1質量%以上之選自由Ni、Co、Cu及In所構成群組之1種或2種以上,且餘部由Zn及雜質所構成;前述鍍覆層係形成於前述基鐵的表面上,前述鍍覆層之垂直截面上,ζ相之平均厚度為0.2μm以下,鄰接前述基鐵而存在之Γ相之平均厚度為0.5μm以下,前述Γ相內,含有總計在前述Γ相內之比例為0.5質量%以上之選自由前述Ni、Co、Cu及In所構成群組之1種或2種以上,鄰接前述Γ相而存在之相為Γ1相與δ相之混合相,下式(1)所定義之δ相比率為10%以上,δ相比率=(δ相/Γ相接觸界面長度)/(δ相/Γ相接觸界面長度+Γ1相/Γ相接觸界面長度)×100…(1)其中,δ相/Γ相接觸界面長度為δ相與Γ相接觸之界面的長度,Γ1相/Γ相接觸界面長度則為Γ1相與Γ相接觸之界面的長度。
  2. 一種合金化熔融鍍鋅鋼板之製造方法,係製造承受板厚減少率(%)為5%以上之衝壓加工的合金化熔融鍍鋅鋼板;該方法之特徵在於包含以下步驟:依據下式(2),基於前述合金化熔融鍍鋅鋼板之衝壓加工時的板厚減少率(%)算出必要之預鍍量(g/m2),對基 鐵實施總計為前述算出必要之預鍍量(g/m2)以上之含有選自由Ni、Co、Cu及In所構成群組之1種或2種以上的預鍍後,浸漬於含有0.1~0.3質量%之Al之鍍浴中而進行鋅鍍覆之步驟;及接著於加熱爐出側已達最高到達溫度後,在保溫爐中進行緩冷卻時,在300以上且低於800之範圍內調整以下式(3)算出之溫度積分值S而實施合金化處理之步驟;必要預鍍量(g/m2)=0.0222×板厚減少率(%)-0.0625…(2)S=(T11-T0)×t1/2+((T11-T0)+(T12-T0))×t2/2+((T12-T0)+(T21-T0))×△t/2+((T21-T0)+(T22-T0))×t3/2+(T22-T0)×t4/2…(3)其中,T0:420(℃),T11:加熱爐出側之鋼板溫度(℃),T12:保溫爐之冷卻帶入側之鋼板溫度(℃),T21:冷卻帶出側之鋼板溫度(℃),T22:保溫爐出側之鋼板溫度(℃),t1:從T0至加熱爐出側之處理時間(秒),t2:從加熱爐出側至保溫爐之冷卻帶入側之處理時間(秒),△t:從保溫爐之冷卻帶入側至冷卻帶出側之處理時 間(秒),t3:從保溫爐之冷卻帶出側至保溫爐出側之處理時間(秒),t4:從驟冷帶入側至T0之處理時間(秒)。
TW103117666A 2013-05-20 2014-05-20 Alloyed molten galvanized steel sheet and manufacturing method thereof TWI502099B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013106312 2013-05-20

Publications (2)

Publication Number Publication Date
TW201504473A true TW201504473A (zh) 2015-02-01
TWI502099B TWI502099B (zh) 2015-10-01

Family

ID=51933616

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103117666A TWI502099B (zh) 2013-05-20 2014-05-20 Alloyed molten galvanized steel sheet and manufacturing method thereof

Country Status (9)

Country Link
US (1) US10040270B2 (zh)
JP (1) JP6011724B2 (zh)
KR (1) KR101727424B1 (zh)
CN (1) CN105209655B (zh)
BR (1) BR112015028001A2 (zh)
CA (1) CA2911442C (zh)
MX (1) MX2015014999A (zh)
TW (1) TWI502099B (zh)
WO (1) WO2014189063A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483590A (zh) * 2015-12-20 2016-04-13 安徽伟宏钢结构集团股份有限公司 一种钢构件热浸镀锌工艺

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082036A1 (en) 2017-10-24 2019-05-02 Arcelormittal METHOD FOR MANUFACTURING COATED STEEL SHEET
WO2018115945A1 (en) * 2016-12-21 2018-06-28 Arcelormittal A method for the manufacture of a galvannealed steel sheet
EP3583155B1 (en) 2017-02-20 2024-05-08 Dow Silicones Corporation Room-temperature-curable silicone composition and electric/electronic apparatus
WO2018203097A1 (en) * 2017-05-05 2018-11-08 Arcelormittal A method for the manufacturing of liquid metal embrittlement resistant galvannealed steel sheet
US11466354B2 (en) 2017-10-24 2022-10-11 Arcelormittal Method for the manufacture of a coated steel sheet
RU2738130C1 (ru) * 2017-10-24 2020-12-08 Арселормиттал Способ изготовления гальванизированной и отожженной листовой стали
JP2021503549A (ja) 2017-11-17 2021-02-12 アルセロールミタル 液体金属脆化耐性のある亜鉛メッキ鋼板の製造方法
TWI816787B (zh) 2018-06-06 2023-10-01 美商陶氏有機矽公司 可濕氣固化有機聚矽氧烷組成物及電氣/電子設備
CN110180957B (zh) * 2018-06-28 2020-11-03 镕凝精工新材料科技(上海)有限公司 一种镀锌钢板的热处理方法及热冲压工艺

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043428B2 (ja) 1976-11-10 1985-09-27 新日本製鐵株式会社 溶接性に優れた合金化亜鉛鉄板
JP2745428B2 (ja) * 1989-11-30 1998-04-28 日新製鋼株式会社 X線回折法による高加工用合金化亜鉛めつき鋼板の加工性能評価方法
JPH03191093A (ja) 1989-12-19 1991-08-21 Nippon Steel Corp プレス性、化成処理性に優れた亜鉛系めっき鋼板
US5525431A (en) 1989-12-12 1996-06-11 Nippon Steel Corporation Zinc-base galvanized sheet steel excellent in press-formability, phosphatability, etc. and process for producing the same
JPH0713307B2 (ja) 1990-02-28 1995-02-15 新日本製鐵株式会社 プレス成形性、化成処理性に優れた亜鉛系めっき鋼板
JP2642284B2 (ja) * 1992-08-18 1997-08-20 新日本製鐵株式会社 高強度高延性合金化溶融Znめっき鋼板
JPH07243017A (ja) * 1994-03-01 1995-09-19 Kobe Steel Ltd 摺動変形性に優れる合金化溶融亜鉛めっき鋼板の製造方法
JP2770824B2 (ja) 1996-08-30 1998-07-02 日本鋼管株式会社 プレス成形性および耐パウダリング性の優れた合金化溶融亜鉛めっき鋼板の製造方法
JP3223840B2 (ja) * 1997-05-02 2001-10-29 日本鋼管株式会社 合金化溶融亜鉛めっき鋼板
TWI239357B (en) * 1999-07-15 2005-09-11 Jfe Steel Corp Galvannealed steel sheet and method for manufacturing the same
EP1288325B1 (en) * 2000-04-24 2014-10-15 JFE Steel Corporation Method for production of galvannealed sheet steel
JP3912014B2 (ja) 2001-02-05 2007-05-09 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
JP4085876B2 (ja) 2003-04-23 2008-05-14 住友金属工業株式会社 熱間プレス成形品およびその製造方法
WO2004094684A1 (ja) 2003-04-23 2004-11-04 Sumitomo Metal Industries, Ltd. 熱間プレス成形品およびその製造方法
JP4039332B2 (ja) 2003-07-29 2008-01-30 Jfeスチール株式会社 耐パウダリング性、摺動性および塗装後鮮映性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP4146307B2 (ja) 2003-08-01 2008-09-10 新日本製鐵株式会社 合金化溶融亜鉛メッキ鋼板の製造方法
JP4551268B2 (ja) * 2005-04-20 2010-09-22 新日本製鐵株式会社 合金化溶融亜鉛メッキ鋼板の製造方法
BRPI0610540B1 (pt) 2005-04-20 2017-01-17 Nippon Steel & Sumitomo Metal Corp método de produção de chapa de aço recozida após galvanização de imersão a quente
JP4716856B2 (ja) 2005-11-10 2011-07-06 日新製鋼株式会社 延性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法
KR100742833B1 (ko) * 2005-12-24 2007-07-25 주식회사 포스코 내식성이 우수한 고 망간 용융도금강판 및 그 제조방법
CN101597735A (zh) * 2008-06-05 2009-12-09 张永金 热镀锌工艺助镀液在线循环工艺
TWI396772B (zh) 2009-02-03 2013-05-21 Nippon Steel & Sumitomo Metal Corp 合金化熔融鍍鋅鋼板及其製造方法
JP5584998B2 (ja) 2009-05-15 2014-09-10 新日鐵住金株式会社 外観、プレス成形性に優れた合金化溶融亜鉛めっき鋼板の製造方法
WO2012004889A1 (ja) * 2010-07-09 2012-01-12 新日本製鐵株式会社 溶融亜鉛系めっき鋼板
JP5578116B2 (ja) * 2011-03-08 2014-08-27 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483590A (zh) * 2015-12-20 2016-04-13 安徽伟宏钢结构集团股份有限公司 一种钢构件热浸镀锌工艺
CN105483590B (zh) * 2015-12-20 2018-06-15 安徽伟宏钢结构集团股份有限公司 一种钢构件热浸镀锌工艺

Also Published As

Publication number Publication date
BR112015028001A2 (pt) 2017-07-25
KR20150140346A (ko) 2015-12-15
CN105209655A (zh) 2015-12-30
JP6011724B2 (ja) 2016-10-19
CN105209655B (zh) 2017-12-29
JPWO2014189063A1 (ja) 2017-02-23
MX2015014999A (es) 2016-02-05
US20160082701A1 (en) 2016-03-24
US10040270B2 (en) 2018-08-07
CA2911442C (en) 2017-09-12
TWI502099B (zh) 2015-10-01
KR101727424B1 (ko) 2017-04-14
WO2014189063A1 (ja) 2014-11-27
CA2911442A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
TWI502099B (zh) Alloyed molten galvanized steel sheet and manufacturing method thereof
US9963755B2 (en) Hot-pressed member
JP6004102B2 (ja) ホットスタンプ成形体およびホットスタンプ成形体の製造方法
EP2495347B1 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method therefor
TWI511875B (zh) Molten galvanized steel sheet
KR101679159B1 (ko) 용융 아연 도금 강판
KR20150093227A (ko) 용융 아연 도금 강판
JP5348431B2 (ja) 熱間プレス部材
KR20140128414A (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
JP5578116B2 (ja) 合金化溶融亜鉛めっき鋼板及びその製造方法
US20160158822A1 (en) Hot-pressed member and method of manufacturing the same
JP7453583B2 (ja) Alめっきホットスタンプ鋼材
CN113969336B (zh) 一种热镀锌钢板的制造方法、钢板及车用构件
JP2020041177A (ja) 熱間プレス用鋼板
EP4116457B1 (en) Hot pressed member and method of producing same. and coated steel sheet for hot press forming
WO2021234790A1 (ja) ホットスタンプ成形体及びその製造方法並びにAlめっき鋼板
JP2015094024A (ja) ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板
TW201837208A (zh) 熱沖壓成形體

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees