TW201413792A - 摻雜鉍之半絕緣第iii族氮化物晶圓及其製造方法 - Google Patents

摻雜鉍之半絕緣第iii族氮化物晶圓及其製造方法 Download PDF

Info

Publication number
TW201413792A
TW201413792A TW102130324A TW102130324A TW201413792A TW 201413792 A TW201413792 A TW 201413792A TW 102130324 A TW102130324 A TW 102130324A TW 102130324 A TW102130324 A TW 102130324A TW 201413792 A TW201413792 A TW 201413792A
Authority
TW
Taiwan
Prior art keywords
group iii
semi
wafer
iii nitride
doped
Prior art date
Application number
TW102130324A
Other languages
English (en)
Other versions
TWI602222B (zh
Inventor
Tadao Hashimoto
Edward Letts
Sierra Hoff
Original Assignee
Sixpoint Materials Inc
Seoul Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sixpoint Materials Inc, Seoul Semiconductor Co Ltd filed Critical Sixpoint Materials Inc
Publication of TW201413792A publication Critical patent/TW201413792A/zh
Application granted granted Critical
Publication of TWI602222B publication Critical patent/TWI602222B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • C30B7/105Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本發明揭示一種摻雜鉍(Bi)之半絕緣GaxAlyIn1-x-yN晶圓(0≦x≦1,0≦x+y≦1)。該半絕緣晶圓之電阻係數係104 ohm-cm或更大。雖然很難獲得第III族氮化物之單晶錠,但氨熱法可生長位錯/晶界密度小於105 cm-2之第III族氮化物之高定向多或單晶錠。本發明亦揭示一種製造該半絕緣第III族氮化物塊晶及晶圓之方法。

Description

摻雜鉍之半絕緣第III族氮化物晶圓及其製造方法 [相關申請案之交叉參考]
本申請案主張由Tadao Hashimoto、Edward Letts及Sierra Hoff於2012年8月24日申請之名為「BISMUTH-DOPED SEMI-INSULATING GROUP III NITRIDE WAFER AND ITS PRODUCTION METHOD」且代理案號係SIXPOI-013USPRV1之美國臨時專利申請案第61/693,122號之優先權,該申請案之全文係以引用方式併入本文中,就如同在下文中完全闡述一般。
本申請案係與以下美國專利申請案相關: 由Kenji Fujito、Tadao Hashimoto及Shuji Nakamura於2005年7月8日申請之名為「METHOD FOR GROWING GROUP III-NITRIDE CRYSTALS IN SUPERCRITICAL AMMONIA USING AN AUTOCLAVE」且代理案號係30794.0129-WO-01(2005-339-1)之PCT實用新型專利申請案第US2005/024239號; 由Tadao Hashimoto、Makoto Saito及Shuji Nakamura於2007年4月6日申請之名為「METHOD FOR GROWING LARGE SURFACE AREA GALLIUM NITRIDE CRYSTALS IN SUPERCRITICAL AMMONIA AND LARGE SURFACE AREA GALLIUM NITRIDE CRYSTALS」且代理案號係30794.179-US-U1(2006-204)之美國實用新型專利申請案第11/784,339號,該申請案根據35 U.S.C.Section 119(e)主張由Tadao Hashimoto、Makoto Saito及Shuji Nakamura於2006年4月7日申請之名為「METHOD FOR GROWING LARGE SURFACE AREA GALLIUM NITRIDE CRYSTALS IN SUPERCRITICAL AMMONIA AND LARGE SURFACE AREA GALLIUM NITRIDE CRYSTALS」且代理案號係30794.179-US-P1(2006-204)之美國臨時專利申請案第60/790,310號的權益; 由Tadao Hashimoto及Shuji Nakamura於2007年9月19日申請之名為「GALLIUM NITRIDE BULK CRYSTALS AND THEIR GROWTH METHOD」且代理案號係30794.244-US-P1(2007-809-1)之美國實用新型專利申請案第60/973,662號;由Tadao Hashimoto於2007年10月25日申請之名為「METHOD FOR GROWING GROUP III-NITRIDE CRYSTALS IN A MIXTURE OF SUPERCRITICAL AMMONIA AND NITROGEN,AND GROUP III-NITRIDE CRYSTALS GROWN THEREBY」且代理案號係30794.253-US-U1(2007-774-2)之美國實用新型專利申請案第11/977,661號;由Tadao Hashimoto、Edward Letts及Masanori Ikari於2008年2月25日申請之名為「METHOD FOR PRODUCING GROUP III-NITRIDE WAFERS AND GROUP III-NITRIDE WAFERS」且代理案號係62158-30002.00之美國實用新型專利申請案第61/067,117號;由Edward Letts、Tadao Hashimoto及Masanori Ikari於2008年6月4日申請之名為「METHODS FOR PRODUCING IMPROVED CRYSTALLINITY GROUP III-NITRIDE CRYSTALS FROM INITIAL GROUP III-NITRIDE SEED BY AMMONOTHERMAL GROWTH」且代理案號係62158-30004.00之美國實用新型專利申請案第61/058,900號;由Tadao Hashimoto、Edward Letts及Masanori Ikari於2008年6月4 日申請之名為「HIGH-PRESSURE VESSEL FOR GROWING GROUP III NITRIDE CRYSTALS AND METHOD OF GROWING GROUP III NITRIDE CRYSTALS USING HIGH-PRESSURE VESSEL AND GROUP III NITRIDE CRYSTAL」且代理案號係62158-30005.00之美國實用新型專利申請案第61/058,910號;由Tadao Hashimoto、Masanori Ikari及Edward Letts於2008年6月12日申請之名為「METHOD FOR TESTING III-NITRIDE WAFERS AND III-NITRIDE WAFERS WITH TEST DATA」且代理案號係62158-30006.00之美國實用新型專利申請案第61/131,917號;該等申請案之全文係以引用方式併入本文中,就如同在下文中完全闡述一般。
本發明係關於一種用於各種裝置(包括電子裝置,例如電晶體)之半導體晶圓。更特定言之,本發明係關於一種由第III族氮化物組成的複合半導體晶圓。
(注意:本專利申請案參考如藉由括號內之數字(例如[x])所指示之若干公開案及專利案。此等公開案及專利案之列表可見於標題為「參考文獻」之部分中。)
氮化鎵(GaN)及其相關第III族氮化物合金係各種電子裝置(例如微波功率電晶體及日盲式光探測器)的重要材料。然而,大多數此等裝置係磊晶生長於異質基板(或晶圓)(例如藍寶石及碳化矽)上,因為GaN晶圓與此等異質磊晶基板相比極為昂貴。第III族氮化物的異質磊晶生長導致高度缺陷或甚至破裂的薄膜,從而阻礙獲得高端電子裝置(例如高功率微波電晶體)。
為解決所有因異質磊晶而引起的基本問題,必須使用自塊狀第 III族氮化物晶錠切割的第III族氮化物晶圓。對於大多數裝置而言,GaN晶圓係有利,因為其相對容易控制該晶圓的傳導性且GaN晶圓將提供與裝置層之最小晶格/熱失配。然而,由於高熔點及在高溫下的高氮蒸氣壓,因此難以生長GaN晶錠。目前,大多數市售GaN晶圓係由稱為氫化物氣相磊晶法(HVPE)之方法製得。HVPE係氣相法,其難以將位錯密度減小至小於105cm-2
為獲得位錯及/或晶界密度小於105cm-2之高品質GaN晶圓,已開發稱為氨熱生長之新穎方法[1-6]。最近,可藉由氨熱生長獲得位錯及/或晶界密度小於105cm-2之高品質GaN晶圓。然而,藉由該氨熱法生長獲得的GaN晶錠通常顯示n型傳導性,此係不利於高電子遷移率電晶體(HEMT)。由於高頻率操作,傳導基板導致該基板中之高電容損失。為提高電晶體的性能,對半絕緣晶圓存在極大需求。
本發明揭示一種摻雜鉍(Bi)之半絕緣GaxAlyIn1-x-yN晶圓(0x1,0x+y1)。該半絕緣晶圓之電阻係數係104ohm-cm或更大。雖然很難獲得第III族氮化物之單晶錠,但氨熱法可生長位錯/晶界密度小於105cm-2之第III族氮化物之高定向多晶錠。
1‧‧‧摻雜Bi之GaN塊晶
現在參照圖式,其中相同的參考數字在全文中代表相應的部件:圖1係製造摻雜Bi之半絕緣第III族氮化物晶圓之典型製程流程。
圖2係摻雜Bi之GaN塊晶之照片。
在該圖中,各數字代表如下:1.摻雜Bi之GaN塊晶
概述
本發明之半絕緣基板提供適用於製造基於GaN之高頻率電晶體(例如高電子遷移率電晶體(HEMT))的性質。由於缺少第III族氮化物之單晶基板,因此已在所謂的異質磊晶基板(例如藍寶石、矽及碳化矽)上製造基於GaN之高頻率電晶體。由於該等異質磊晶基板之化學及物理性質與第III族氮化物不同,因此該裝置包含在該異質磊晶基板與裝置層之間的界面處產生的高密度位錯(108~1010cm-2)。該等位錯使裝置的性能及可靠性劣化,因此已開發由單晶第III族氮化物(例如GaN及AlN)組成之基板。目前,大多數市售GaN基板係利用氫化物氣相磊晶法(HVPE)製得,該方法難以將位錯密度減小至低於105cm-2。雖然HVPE-GaN基板之位錯密度比異質磊晶基板上的GaN薄膜低幾個數量級,但該位錯密度仍比電子學中之典型矽裝置高幾個數量級。為實現更高裝置性性能,需要低位錯密度。為獲得低於105cm-2的位錯密度,迄今為止已開發使用超臨界氨之氨熱生長法。目前,該氨熱法可製造位錯密度小於105cm-2的GaN晶圓。然而,該氨熱生長通常產生具有高含量電子之晶體,因此基板係n型或n+型。為將低缺陷氨熱晶圓用於電晶體應用,需要提高電阻係數。
本發明之技術描述
預期本發明之半絕緣基板係藉由氨熱生長使低位錯第III族基板之效益最大化。為獲得基於GaN的半絕緣基板,已提出摻雜過渡金屬[7]。然而,所揭示之方法係集中於HVPE上,且不適用於位錯密度低於105cm-2之高品質塊晶。為獲得低位錯第III族氮化物塊晶,必須使用塊體生長方法(例如氨熱法)。然而,過渡金屬的摻雜效率在氨熱生長中係低效。因此,吾人尋求一種可與氨熱法相容且將實現第III族氮化物基板的半絕緣特性的新穎摻雜劑。在吾人的研究中,發現Bi適於摻雜於氨熱生長中。
用於製備摻雜Bi之半絕緣第III族氮化物晶圓的典型製程流程呈 現於圖1。藉由使用氨熱法或其他塊體生長法(例如助熔劑法、高壓溶液生長),生長摻雜Bi之第III族氮化物塊晶。該摻雜Bi之第III族氮化物塊晶應大至足以切割成晶圓。另外,該摻雜Bi之第III族氮化物塊晶應係位錯及/或晶界密度小於105cm-2之高定向多或單晶。藉由多線鋸將該摻雜Bi之第III族氮化物塊晶切割成晶圓,且然後藉由磨削、研磨及抛光加工該等晶圓。藉由使用塊體生長法(如氨熱法),可達成小於105cm-2之位錯密度。在商業用途中,直徑大於1"且厚度大於200微米的基板係有利。將上方形成裝置層或結構之表面拋光至原子級。該拋光方法通常係由以金剛石工具磨削、以金剛石漿液研磨及以膠態矽石抛光所組成。最終晶圓可視需要具有保護層以使加工表面免受化學、物理及/或機械損傷。
實例1
使用多晶GaN作為營養物、超臨界氨作為溶劑、鈉(相對於氨為4.5莫耳%)作為礦化劑及元素Bi(相對於營養物為6%)作為摻雜劑,藉由氨熱法生長GaN塊晶。將元素Bi與礦化劑放置在一起。生長溫度係500至600℃且生長時間達到4天。於c-平面GaN晶種上生長大於200微米厚的GaN(圖2)。晶體尺寸係約10mm2。藉由X射線繞射法對晶體品質進行特徵分析。002繞射的半高全寬(FWHM)係231arcsec,且201繞射的FWHM係485arcsec。雖然未測量其他平面(例如011、110、013、020、112、004、022、121、006)的繞射,但預期具有相似的FWHM數值。即使摻雜Bi,晶體品質亦未顯著退化。藉由雙探針法測量GaN晶體之電阻係數。該等探針之間隔距離係2.5mm,且外加電壓係10V。電路中之電流係低於安培計之檢測極限(10微安)。由此實驗,吾人估算出電阻係數為104ohm-cm或更高。如圖2所示,晶體顏色係深棕色或黑色。顯然地,在可見光波長範圍內之光學吸收係數係高於10cm-1。雖然未測量此特定晶體的位錯密度,但根據X射線FWHM,吾 人估計位錯密度為約105cm-2或更小。
優點及改良
本發明提供位錯密度低於105cm-2之半絕緣第III族氮化物晶圓。Bi係藉由氨熱生長法生長半絕緣第III族氮化物塊晶的有效摻雜劑。即使大量摻雜Bi,晶體品質也不會顯著退化。預期由切割該摻雜Bi之第III族氮化物塊晶所製造的晶圓係適用於電子裝置(例如HEMT)。
可能的改變
雖然較佳實施例已描述GaN基板,但該基板可為各種組成之第III族氮化物合金,例如AlN、AlGaN、InN、InGaN或GaAlInN。
雖然較佳實施例已描述氨熱生長法作為塊體生長法,但亦可使用其他生長方法,例如高壓溶液生長法、助熔劑生長法、氫化物氣相磊晶法、物理氣相傳輸法或昇華生長法。
雖然較佳實施例已描述c-平面GaN,但亦可使用其他定向,例如a-面、m-面及各種半極性面。另外,該表面可自此等定向稍微誤切(偏離切割)。
雖然較佳實施例已描述金屬Bi作為摻雜劑,但可使用摻雜Bi之第III族氮化物(例如摻雜Bi之多晶GaN、摻雜Bi之非晶型GaN、摻雜鉍之單晶GaN)以更好地控制摻雜濃度。
雖然上文已論述摻雜Bi之第III族氮化物晶體,但其他元素(例如硫、硒、銻、錫或鉛或其任何組合)可作為代替用於半絕緣第III族氮化物晶體之鉍或與其組合的摻雜劑。
參考文獻
以下參考文獻係以引用的方式併入本文中:
[1] R. Dwiliski, R. Doradziski, J. Garczyski, L. Sierzputowski, Y. Kanbara,美國專利案第6,656,615號。
[2] R. Dwiliski, R. Doradziski, J. Garczyski, L. Sierzputowski, Y. Kanbara,美國專利案第7,132,730號。
[3] R. Dwiliski, R. Doradziski, J. Garczyski, L. Sierzputowski, Y. Kanbara,美國專利案第7,160,388號。
[4] K. Fujito, T. Hashimoto, S. Nakamura,國際專利申請案號PCT/US2005/024239、WO07008198。
[5] T. Hashimoto, M. Saito, S. Nakamura,國際專利申請案號PCT/US2007/008743、WO07117689。另外參見US20070234946、2007年4月6日申請之美國申請案第11/784,339號。
[6] D' Eyelyn,美國專利案第7,078,731號。
[7] Vaudo等人,美國專利案第7,170,095號。
上述參考文獻各係以全文引用的方式併入本文中,就如同在文中完全闡述一般,且特定言之係關於所描述之使用氨熱法及使用此等氮化鎵基板之製造方法。
1‧‧‧摻雜Bi之GaN塊晶

Claims (19)

  1. 一種包含GaxAlyIn1-x-yN(0x1,0x+y1)之半絕緣晶圓,其表面積大於10mm2且厚度大於200微米,其中該GaxAlyIn1-x-yN係經鉍摻雜。
  2. 如請求項1之半絕緣晶圓,其中該晶圓之電阻係數大於104ohm-cm。
  3. 如請求項1或2之半絕緣晶圓,其中該晶體係藉由切割在超臨界氨中生長之GaxAlyIn1-x-yN(0x1,0x+y1)塊狀晶錠所製得。
  4. 如請求項1至3中任一項之半絕緣晶圓,其中該晶圓包含具有線缺陷及晶界密度小於105cm-2之高定向多或單晶GaxAlyIn1-x-yN(0x1,0x+y1)。
  5. 如請求項1至4中任一項之半絕緣晶圓,其中該晶圓係GaN。
  6. 如請求項1至5中任一項之半絕緣晶圓,其中該摻雜鉍之GaxAlyIn1-x-yN之電阻係數為大於約104ohm-cm。
  7. 如請求項1至6中任一項之半絕緣晶圓,其中該摻雜鉍之GaxAlyIn1-x-yN之位錯及/或晶界密度為小於105cm-2
  8. 如請求項1至7中任一項之半絕緣晶圓,其中該摻雜鉍之GaxAlyIn1-x-yN係位於第III族氮化物基板上之層。
  9. 如請求項1至7中任一項之半絕緣晶圓,其中該晶圓係整體包含摻雜鉍之GaxAlyIn1-x-yN。
  10. 一種電子、光學或光電子裝置,其係在如請求項1至9中任一項之晶圓上形成。
  11. 一種生長表面積大於10mm2且厚度大於200微米的摻雜鉍之第III族氮化物塊晶之方法,其包括:(a)將含第III族元素之營養物置於高壓反應器中; (b)將礦化劑置於該高壓反應器中;(c)將至少一個晶種置於該高壓反應器中;(d)將含鉍摻雜劑置於該高壓反應器中;(e)將氨置於該高壓反應器中;(f)密封該高壓反應器;(g)對該氨提供足夠熱以形成超臨界態氨;及(h)使第III族氮化物在該晶種上結晶。
  12. 如請求項11之方法,其中該含鉍摻雜劑係選自金屬鉍及摻雜鉍之第III族氮化物。
  13. 如請求項11或12之方法,其中於該晶種上結晶的該第III族氮化物係GaN。
  14. 如請求項11至13中任一項之方法,其中該晶種係GaN。
  15. 如請求項11至14中任一項之方法,其中該礦化劑包含鹼金屬。
  16. 如請求項11至15中任一項之方法,其中該礦化劑包含鈉。
  17. 如請求項11至16中任一項之方法,其中存在足夠量的該含鉍摻雜劑,以使該結晶型第III族氮化物半絕緣。
  18. 一種製造摻雜鉍之第III族氮化物半絕緣晶圓的方法,其包括如請求項11至17中任一項所闡述來生長摻雜鉍之第III族氮化物塊晶及切割該塊晶以形成該晶圓。
  19. 如請求項18之方法,其另外包括抛光該晶圓之欲用於製造裝置之表面。
TW102130324A 2012-08-24 2013-08-23 摻雜鉍之半絕緣第iii族氮化物晶圓及其製造方法 TWI602222B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261693122P 2012-08-24 2012-08-24
US13/781,543 US9255342B2 (en) 2006-04-07 2013-02-28 Bismuth-doped semi-insulating group III nitride wafer and its production method

Publications (2)

Publication Number Publication Date
TW201413792A true TW201413792A (zh) 2014-04-01
TWI602222B TWI602222B (zh) 2017-10-11

Family

ID=47989353

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102130324A TWI602222B (zh) 2012-08-24 2013-08-23 摻雜鉍之半絕緣第iii族氮化物晶圓及其製造方法

Country Status (7)

Country Link
US (2) US9255342B2 (zh)
EP (1) EP2888390A1 (zh)
JP (2) JP6457389B2 (zh)
KR (1) KR102062901B1 (zh)
CN (1) CN104781456B (zh)
TW (1) TWI602222B (zh)
WO (1) WO2014031152A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102062901B1 (ko) 2012-08-24 2020-01-06 서울반도체 주식회사 비스무트 도핑된 반절연성 3족 질화물 웨이퍼 및 그의 제조 방법
US10134883B2 (en) 2016-12-23 2018-11-20 Sixpoint Materials, Inc. Electronic device using group III nitride semiconductor and its fabrication method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929770A (zh) * 1972-07-17 1974-03-16
JP3680337B2 (ja) * 1995-02-14 2005-08-10 昭和電工株式会社 発光ダイオード
US6139629A (en) 1997-04-03 2000-10-31 The Regents Of The University Of California Group III-nitride thin films grown using MBE and bismuth
US7560296B2 (en) * 2000-07-07 2009-07-14 Lumilog Process for producing an epitalixal layer of galium nitride
US6562124B1 (en) * 1999-06-02 2003-05-13 Technologies And Devices International, Inc. Method of manufacturing GaN ingots
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
MY141883A (en) 2001-06-06 2010-07-16 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
JP3690326B2 (ja) * 2001-10-12 2005-08-31 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法
CA2464083C (en) 2001-10-26 2011-08-02 Ammono Sp. Z O.O. Substrate for epitaxy
JP4513264B2 (ja) * 2002-02-22 2010-07-28 三菱化学株式会社 窒化物単結晶の製造方法
US7098487B2 (en) 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
US7170095B2 (en) 2003-07-11 2007-01-30 Cree Inc. Semi-insulating GaN and method of making the same
PL368483A1 (en) * 2004-06-11 2005-12-12 Ammono Sp.Z O.O. Monocrystals of nitride containing gallium and its application
KR100848380B1 (ko) * 2004-06-11 2008-07-25 암모노 에스피. 제트오. 오. 갈륨 함유 질화물의 벌크 단결정 및 그의 어플리케이션
WO2006010075A1 (en) 2004-07-09 2006-01-26 Cornell Research Foundation, Inc. Method of making group iii nitrides
US7316746B2 (en) * 2005-03-18 2008-01-08 General Electric Company Crystals for a semiconductor radiation detector and method for making the crystals
US8709371B2 (en) 2005-07-08 2014-04-29 The Regents Of The University Of California Method for growing group III-nitride crystals in supercritical ammonia using an autoclave
JP4631071B2 (ja) * 2005-10-26 2011-02-16 株式会社リコー 窒化ガリウム結晶の結晶成長装置および窒化ガリウム結晶の製造方法
US7897490B2 (en) * 2005-12-12 2011-03-01 Kyma Technologies, Inc. Single crystal group III nitride articles and method of producing same by HVPE method incorporating a polycrystalline layer for yield enhancement
US20070234946A1 (en) 2006-04-07 2007-10-11 Tadao Hashimoto Method for growing large surface area gallium nitride crystals in supercritical ammonia and lagre surface area gallium nitride crystals
JP2009536605A (ja) * 2006-05-08 2009-10-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア アルミニウムを含むiii族窒化物半導体化合物の成長方法及び材料。
JP4320455B2 (ja) * 2006-09-20 2009-08-26 株式会社 東北テクノアーチ 半導体デバイスの製造方法
JP4462330B2 (ja) * 2007-11-02 2010-05-12 住友電気工業株式会社 Iii族窒化物電子デバイス
TWI460323B (zh) * 2008-06-04 2014-11-11 Sixpoint Materials Inc 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶
EP2286007B1 (en) * 2008-06-12 2018-04-04 SixPoint Materials, Inc. Method for testing gallium nitride wafers and method for producing gallium nitride wafers
EP2267197A1 (en) * 2009-06-25 2010-12-29 AMMONO Sp.z o.o. Method of obtaining bulk mono-crystalline gallium-containing nitride, bulk mono-crystalline gallium-containing nitride, substrates manufactured thereof and devices manufactured on such substrates
US20110217505A1 (en) * 2010-02-05 2011-09-08 Teleolux Inc. Low-Defect nitride boules and associated methods
KR102062901B1 (ko) 2012-08-24 2020-01-06 서울반도체 주식회사 비스무트 도핑된 반절연성 3족 질화물 웨이퍼 및 그의 제조 방법

Also Published As

Publication number Publication date
JP2019011245A (ja) 2019-01-24
KR102062901B1 (ko) 2020-01-06
TWI602222B (zh) 2017-10-11
US9435051B2 (en) 2016-09-06
US20160130720A1 (en) 2016-05-12
WO2014031152A1 (en) 2014-02-27
US9255342B2 (en) 2016-02-09
EP2888390A1 (en) 2015-07-01
US20140054589A1 (en) 2014-02-27
JP2015530967A (ja) 2015-10-29
KR20150092083A (ko) 2015-08-12
CN104781456A (zh) 2015-07-15
JP6457389B2 (ja) 2019-01-23
CN104781456B (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
KR101247476B1 (ko) 탄화규소 단결정 잉곳, 이것으로부터 얻어지는 기판 및 에피택셜 웨이퍼
TWI429797B (zh) 第 iii 族氮化物半導體結晶基板及半導體元件
US20140209925A1 (en) Methods for producing improved crystallinity group iii-nitride crystals from initial group iii-nitride seed by ammonothermal growth
US9670594B2 (en) Group III nitride crystals, their fabrication method, and method of fabricating bulk group III nitride crystals in supercritical ammonia
EP2245218B1 (en) Method for producing group iii nitride wafers and group iii nitride wafers
JP2007519591A5 (zh)
KR101812736B1 (ko) Iii 족 질화물 웨이퍼 및 제작 방법과 시험 방법
JP6526811B2 (ja) Iii族窒化物結晶を加工する方法
EP3094766B1 (en) Group iii nitride bulk crystals and fabrication method
KR20150092082A (ko) 질화갈륨과 금속 산화물의 복합체 기판
JP5212343B2 (ja) 炭化珪素単結晶インゴット、これから得られる基板及びエピタキシャルウェハ
US20110217505A1 (en) Low-Defect nitride boules and associated methods
JP2019011245A (ja) ビスマスでドープされた半絶縁iii族窒化物ウエハおよびその生産方法
Hanser et al. Growth and fabrication of 2 inch free-standing GaN substrates via the boule growth method
JP2015530967A5 (zh)
US8741748B1 (en) Method to grow group III-nitrides on copper using passivation layers
JP2000247790A (ja) 半導体素子用基板及び半導体素子並びに窒素化合物半導体単結晶基板の製造方法