CN104781456B - 掺杂铋的半绝缘第iii族氮化物晶片和其制造方法 - Google Patents

掺杂铋的半绝缘第iii族氮化物晶片和其制造方法 Download PDF

Info

Publication number
CN104781456B
CN104781456B CN201380048113.2A CN201380048113A CN104781456B CN 104781456 B CN104781456 B CN 104781456B CN 201380048113 A CN201380048113 A CN 201380048113A CN 104781456 B CN104781456 B CN 104781456B
Authority
CN
China
Prior art keywords
chip
iii
semi
insulating
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380048113.2A
Other languages
English (en)
Other versions
CN104781456A (zh
Inventor
桥本忠朗
艾德华·里特斯
锡拉·霍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seoul Semiconductor Co Ltd
Uncommon Baud Co
Original Assignee
Seoul Semiconductor Co Ltd
Uncommon Baud Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seoul Semiconductor Co Ltd, Uncommon Baud Co filed Critical Seoul Semiconductor Co Ltd
Publication of CN104781456A publication Critical patent/CN104781456A/zh
Application granted granted Critical
Publication of CN104781456B publication Critical patent/CN104781456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • C30B7/105Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds

Abstract

本发明揭示一种掺杂铋(Bi)的半绝缘晶片GaxAlyIn1‑x‑yN(0≤x≤1,0≤x+y≤1)。所述半绝缘晶片具有104ohm‑cm或更大的电阻率。虽然很难获得第III族氮化物的单晶锭,但氨热法可生长位错/晶界密度小于105cm‑2的第III族氮化物的高定向多晶或单晶锭。本发明还揭示制造所述半绝缘第III族氮化物块晶和晶片的方法。

Description

掺杂铋的半绝缘第III族氮化物晶片和其制造方法
相关申请案的交叉参考
本申请案主张由桥本忠朗(Tadao Hashimoto)、艾德华·里特斯(Edward Letts)和锡拉·霍夫(Sierra Hoff)于2012年8月24日申请的标题为“掺杂铋的半绝缘第III族氮化物晶片和其制造方法(BISMUTH-DOPED SEMI-INSULATING GROUP III NITRIDE WAFERAND ITS PRODUCTION METHOD)”且代理案号为SIXPOI-013USPRV1的第61/693,122号美国临时专利申请案的优先权,所述申请案的全文以引用方式并入本文中,就如同在下文中完全阐述一般。
本申请案与以下美国专利申请案有关:
由藤户健司(Kenji Fujito)、桥本忠朗和中村修二(Shuji Nakamura)于2005年7月8日申请的标题为“使用高压釜在超临界氨中生长第III族氮化物晶体的方法(METHODFOR GROWING GROUP III-NITRIDE CRYSTALS IN SUPERCRITICAL AMMONIA USING ANAUTOCLAVE)”且代理案号为30794.0129-WO-01(2005-339-1)的PCT实用新型专利申请案第US2005/024239号;
由桥本忠朗、齐藤真(Makoto Saito)和中村修二于2007年4月6日申请的标题为“在超临界氨中生长大表面积氮化镓晶体的方法和大表面积氮化镓晶体(METHOD FORGROWING LARGE SURFACE AREA GALLIUM NITRIDE CRYSTALS IN SUPERCRITICAL AMMONIAAND LARGE SURFACE AREA GALLIUM NITRIDE CRYSTALS)”且代理案号为30794.179-US-U1(2006-204)的美国实用新型专利申请案第11/784,339号,所述申请案根据35U.S.C.第119条第(e)项主张由桥本忠朗、齐藤真和中村修二于2006年4月7日申请的标题为“在超临界氨中生长大表面积氮化镓晶体的方法和大表面积氮化镓晶体(METHOD FOR GROWING LARGESURFACE AREA GALLIUM NITRIDE CRYSTALS IN SUPERCRITICAL AMMONIA AND LARGESURFACE AREA GALLIUM NITRIDE CRYSTALS)”且代理案号为30794.179-US-P1(2006-204)的第60/790,310号美国临时专利申请案的权益;
由桥本忠朗和中村修二于2007年9月19日申请的标题为“氮化镓块晶和其生长方法(GALLIUM NITRIDE BULK CRYSTALS AND THEIR GROWTH METHOD)”且代理案号为30794.244-US-P1(2007-809-1)的美国实用新型专利申请案第60/973,662号;
由桥本忠朗于2007年10月25日申请的标题为“在超临界氨与氮的混合物中生长第III族氮化物晶体的方法,和通过所述方法生长的第III族氮化物晶体(METHOD FORGROWING GROUP III-NITRIDE CRYSTALS IN A MIXTURE OF SUPERCRITICAL AMMONIA ANDNITROGEN,AND GROUP III-NITRIDE CRYSTALS GROWN THEREBY)”且代理案号为30794.253-US-U1(2007-774-2)的美国实用新型专利申请案第11/977,661号;
由桥本忠朗、艾德华·里特斯和碇真宪(Masanori Ikari)于2008年2月25日申请的标题为“制造第III族氮化物晶片的方法和第III族氮化物晶片(METHOD FOR PRODUCINGGROUP III-NITRIDE WAFERS AND GROUP III-NITRIDE WAFERS)”且代理案号为62158-30002.00的美国实用新型专利申请案第61/067,117号;
由艾德华·里特斯、桥本忠朗和碇真宪(Masanori Ikari)于2008年6月4日申请的标题为“通过氨热生长从初始第III族氮化物晶种制造高结晶度第III族氮化物晶体的方法(METHODS FOR PRODUCING IMPROVED CRYSTALLINITY GROUP III-NITRIDE CRYSTALS FROMINITIAL GROUP III-NITRIDE SEED BY AMMONOTHERMAL GROWTH)”且代理案号为62158-30004.00的美国实用新型专利申请案第61/058,900号;
由桥本忠朗、艾德华·里特斯和碇真宪于2008年6月4日申请的标题为“用于生长第III族氮化物晶体的高压容器和使用高压容器生长第III族氮化物晶体的方法和第III族氮化物晶体(HIGH-PRESSURE VESSEL FOR GROWING GROUP III NITRIDE CRYSTALS ANDMETHOD OF GROWING GROUP III NITRIDE CRYSTALS USING HIGH-PRESSURE VESSEL ANDGROUP III NITRIDE CRYSTAL)”且代理案号为62158-30005.00的美国实用新型专利申请案第61/058,910号;
由桥本忠朗、碇真宪和艾德华·里特斯于2008年6月12日申请的标题为“用于测试第III族氮化物晶片的方法和具有测试数据的第III族氮化物晶片(METHOD FOR TESTINGIII-NITRIDE WAFERS AND III-NITRIDE WAFERS WITH TEST DATA)”且代理案号为62158-30006.00的美国实用新型专利申请案第61/131,917号;
这些申请案的全文以引用方式并入本文中,就如同在下文中完全阐述一般。
技术领域
本发明关于一种用于各种装置(包括电子装置,例如晶体管)的半导体晶片。更明确地,本发明关于一种由第III族氮化物组成的复合半导体晶片。
背景技术
(注意:本专利申请案参考如通过括号内的数字(例如[x])所指示的若干公开案和专利案。这些公开案和专利案的列表可见于标题为“参考文献”的部分中。)
氮化镓(GaN)和其相关第III族氮化物合金是各种电子装置(例如微波功率晶体管和日盲式光检测器)的重要材料。然而,这些装置中的大多数外延生长于异质衬底(或晶片)(例如蓝宝石和碳化硅)上,因为GaN晶片与这些异质外延衬底相比极为昂贵。第III族氮化物的异质外延生长导致高度缺陷或甚至破裂的薄膜,从而阻碍获得高端电子装置,例如高功率微波晶体管。
为解决所有因异质外延而引起的基本问题,必须使用自块状第III族氮化物晶锭切割的第III族氮化物晶片。对于大多数装置而言,GaN晶片是有利的,因为相对容易控制所述晶片的传导性并且GaN晶片将提供与装置层的最小晶格/热失配。然而,由于高熔点和在高温下的高氮蒸气压,因此难以生长GaN晶锭。目前,大多数市售GaN晶片由称为氢化物气相外延法(HVPE)的方法制得。HVPE是气相法,其难以将位错密度减小到小于105cm-2
为获得位错和/或晶界密度小于105cm-2的高质量GaN晶片,已开发称为氨热生长的新型方法[1-6]。最近,可通过氨热生长获得位错和/或晶界密度小于105cm-2的高质量GaN晶片。然而,通过所述氨热法生长的GaN晶锭通常显示n型传导性,此不利于高电子迁移率晶体管(HEMT)。由于高频率操作,传导性衬底导致所述衬底中的高度电容损失。为提高晶体管的性能,对半绝缘晶片存在极大需求。
发明内容
本发明揭示一种掺杂铋(Bi)的半绝缘晶片GaxAlyIn1-x-yN(0≤x≤1,0≤x+y≤1)。所述半绝缘晶片具有104ohm-cm或更大的电阻率。虽然很难获得第III族氮化物的单晶锭,但氨热法可生长位错/晶界密度小于105cm-2的第III族氮化物的高定向多晶锭。
附图说明
现在参照图式,其中相同的参考数字在全文中代表相应的部件:
图1为制造掺杂Bi的半绝缘第III族氮化物晶片的典型工艺流程。
图2为掺杂Bi的GaN块晶的照片。
在所述图中,每一数字代表以下:
1.掺杂Bi的GaN块晶
具体实施方式
概述
本发明半绝缘衬底提供适用于制造基于GaN的高频率晶体管(例如高电子迁移率晶体管(HEMT))的特性。由于缺少第III族氮化物的单晶衬底,因此已在所谓的异质外延衬底(例如蓝宝石、硅和碳化硅)上制造基于GaN的高频率晶体管。由于所述异质外延衬底在化学和物理性质上与第III族氮化物不同,因此所述装置包含在所述异质外延衬底与装置层之间的界面处产生的高位错密度(108~1010cm-2)。此类位错使装置的性能和可靠性劣化,因此已开发由单晶第III族氮化物(例如GaN和AlN)组成的衬底。目前,大多数市售GaN衬底是使用氢化物气相外延法(HVPE)制得,所述工艺难以将位错密度减小到低于105cm-2。虽然HVPE-GaN衬底的位错密度比异质外延衬底上的GaN薄膜低几个数量级,但所述位错密度仍比电子学中的典型硅装置高几个数量级。为实现更高装置性能,需要更低位错密度。为获得低于105cm-2的位错密度,迄今为止已开发利用超临界氨的氨热生长法。目前,所述氨热法可制造位错密度小于105cm-2的GaN晶片。然而,所述氨热生长通常产生具有高含量电子的晶体,因此衬底为n型或n+型。为将低缺陷氨热晶片用于晶体管应用,需要提高电阻率。
本发明的技术描述
预期本发明半绝缘衬底可通过氨热生长使低位错第III族衬底的益处最大化。为获得基于GaN的半绝缘衬底,已提出掺杂过渡金属[7]。然而,所揭示的方法集中于HVPE,并且不适用于位错密度低于105cm-2的高质量块晶。为获得低位错第III族氮化物块晶,必须使用块体生长方法,例如氨热法。然而,过渡金属的掺杂效率在氨热生长中并不有效。因此,我们寻求一种可与氨热法相容并且将在第III族氮化物衬底中实现半绝缘特性的新型掺杂剂。在我们的研究中,我们发现Bi适用于掺杂于氨热生长中。
用于制备掺杂Bi的半绝缘第III族氮化物晶片的典型工艺流程呈现于图1中。通过使用氨热法或其它块体生长法(例如助熔剂法、高压溶液生长)生长掺杂Bi的第III族氮化物块晶。所述掺杂Bi的第III族氮化物块晶应大到足以切割成晶片。另外,所述掺杂Bi的第III族氮化物块晶应为位错和/或晶界密度小于105cm-2的高定向多晶或单晶。用多线锯将所述掺杂Bi的第III族氮化物块晶切割成晶片,并且随后通过磨削、研磨和抛光加工晶片。通过使用块体生长法,例如氨热法,可获得小于105cm-2的位错密度。就商业用途而言,直径大于1″并且厚度大于200微米的衬底是有利的。将上面形成装置层或结构的表面抛光到原子级。所述抛光工艺通常由用金刚石工具磨削、用金刚石浆液研磨和用胶态硅石抛光组成。最终晶片任选地可具有保护层以使加工过的表面免受化学、物理和/或机械损伤。
实例1
使用多晶GaN作为营养物、超临界氨作为溶剂、钠(相对于氨为4.5摩尔%)作为矿化剂和元素Bi(相对于营养物为6%)作为掺杂剂,用氨热法生长GaN块晶。将元素Bi与矿化剂放置在一起。生长温度为500℃到600℃之间并且生长时间达到4天。于c-平面GaN晶种上生长大于200微米厚的GaN(图2)。晶体尺寸约为10mm2。通过X射线衍射法对晶体质量进行表征。002衍射的半高全宽(FWHM)为231arcsec,并且201衍射的FWHM为485arcsec。虽然未测量来自其它平面(例如011、110、013、020、112、004、022、121、006)的衍射,但预期其具有相似的FWHM数值。即使掺杂Bi,晶体质量亦没有显著退化。通过双探针法测量GaN晶体的电阻率。探针的间隔距离为2.5mm,并且外加电压为10V。电路中的电流低于安培计的检测极限(10微安)。由此实验,我们估算出电阻率为104ohm-cm或更高。如图2中所示,晶体颜色为深棕色或黑色。显然地,在可见光波长范围内的光学吸收系数高于10cm-1。虽然未测量此特定晶体的位错密度,但根据X射线FWHM,我们估计位错密度为约105cm-2或更小。
优点和改良
本发明提供位错密度低于105cm-2的半绝缘第III族氮化物晶片。Bi是通过氨热生长法生长半绝缘第III族氮化物块晶的高效掺杂剂。即使大量掺杂Bi,晶体质量亦没有显著退化。预期通过切割所述掺杂Bi的第III族氮化物块晶所制造的晶片适用于电子装置,例如HEMT。
可能的改变
虽然优选实施例已描述GaN衬底,但所述衬底可为各种组成的第III族氮化物合金,例如AlN、AlGaN、InN、InGaN或GaAlInN。
虽然优选实施例已描述氨热生长法作为块体生长法,但亦可使用其它生长方法,例如高压溶液生长法、助熔剂生长法、氢化物气相外延法、物理气相传输法或升华生长法。
虽然优选实施例已描述c-平面GaN,但亦可使用其它定向,例如a-面、m-面和各种半极性面。另外,所述表面可以从这些定向稍微误切(偏离切割)。
虽然优选实施例已描述金属Bi作为掺杂剂,但可使用掺杂Bi的第III族氮化物(例如掺杂Bi的多晶GaN、掺杂Bi的非晶型GaN、掺杂Bi的单晶GaN)以更好地控制掺杂浓度。
虽然上文已论述掺杂Bi的第III族氮化物晶体,但其它元素(例如硫、硒、锑、锡或铅或其任何组合)可充当代替用于半绝缘第III族氮化物晶体的铋或与其组合的掺杂剂。
参考文献
以下参考文献以引用的方式并入本文中:
[1]罗伯特·德威林斯基(R.),罗曼·多拉辛斯基(R.),哲兹·卡兹尼斯基(J.),莱哲克·西芝普陶斯基(L.Sierzputowski),神原康雄(Y.Kanbara),第6,656,615号美国专利案。
[2]罗伯特·德威林斯基,罗曼·多拉辛斯基,哲兹·卡兹尼斯基,莱哲克·西芝普陶斯基,神原康雄,第7,132,730号美国专利案。
[3]罗伯特·德威林斯基,罗曼·多拉辛斯基,哲兹·卡兹尼斯基,莱哲克·西芝普陶斯基,神原康雄(Y.Kanbara),第7,160,388号美国专利案。
[4]藤户健司(K.Fujito),桥本忠朗(T.Hashimoto),中村修二(S.Nakamura),国际专利申请案号PCT/US2005/024239、WO07008198。
[5]桥本忠朗,齐藤真(M.Saito),中村修二,国际专利申请案号PCT/US2007/008743、WO07117689。另外参见US20070234946、2007年4月6日申请的第11/784,339号美国申请案。
[6]D′·艾琳(D′Eyelyn),第7,078,731号美国专利案。
[7]阿乌多(Vaudo)等人,第7,170,095号美国专利案。
上述每一参考文献的全文以引用的方式并入本文中,就如同在本文中完全阐述一般,并且特定言之是关于所描述的使用氨热法和使用这些氮化镓衬底的制造方法。

Claims (18)

1.一种包含GaxAlyIn1-x-yN的半绝缘晶片,其具有大于10mm2的表面积和大于200微米的厚度,其中所述GaxAlyIn1-x-yN掺杂有足够量的铋以使所述晶片半绝缘,且其中所述晶片的电阻率大于104ohm-cm,其中0≤x≤1且0≤x+y≤1。
2.根据权利要求1所述的半绝缘晶片,其中所述晶片在可见光波长范围内的吸收系数高于10cm-1
3.根据权利要求1或2所述的半绝缘晶片,其中所述晶片通过切割在超临界氨中生长的GaxAlyIn1-x-yN块状晶锭而制得。
4.根据权利要求1或2所述的半绝缘晶片,其中所述晶片包含线缺陷和晶界密度小于105cm-2的高定向多晶或单晶GaxAlyIn1-x-yN。
5.根据权利要求1或2所述的半绝缘晶片,其中所述晶片为GaN。
6.根据权利要求3所述的半绝缘晶片,其中所述掺杂铋的GaxAlyIn1-x-yN具有小于105cm-2的位错和/或晶界密度。
7.根据权利要求1或2所述的半绝缘晶片,其中所述掺杂铋的GaxAlyIn1-x-yN为位于第III族氮化物衬底上的层。
8.根据权利要求1或2所述的半绝缘晶片,其中所述晶片在整个所述晶片上包含掺杂铋的GaxAlyIn1-x-yN。
9.一种电子、光学或光电子装置,其形成于根据权利要求1到8中任一权利要求的晶片上。
10.一种生长掺杂铋的第III族氮化物块晶的方法,所述块晶具有大于10mm2的表面积、大于200微米的厚度和大于104ohm-cm的电阻率,所述方法包含:
(a)将含第III族元素的营养物放置在高压反应器中;
(b)将矿化剂放置在所述高压反应器中;
(c)将至少一个晶种放置在所述高压反应器中;
(d)将足够量的含铋掺杂剂放置在所述高压反应器中;
(e)将氨放置在所述高压反应器中;
(f)密封所述高压反应器;
(g)对所述氨提供足够热以形成超临界态氨;和
(h)使第III族氮化物在所述晶种上结晶以使结晶第III族氮化物半绝缘。
11.根据权利要求10所述的方法,其中所述含铋掺杂剂选自金属铋和掺杂铋的第III族氮化物。
12.根据权利要求10或11所述的方法,其中在所述晶种上结晶的所述第III族氮化物为GaN。
13.根据权利要求10或11所述的方法,其中所述晶种为GaN。
14.根据权利要求10或11所述的方法,其中所述矿化剂含有碱金属。
15.根据权利要求14所述的方法,其中所述矿化剂含有钠。
16.根据权利要求10或11所述的方法,其中所述块晶在可见光波长范围内的吸收系数高于10cm-1
17.一种制造掺杂铋的第III族氮化物半绝缘晶片的方法,其包含根据权利要求10到16中任一权利要求所述来生长掺杂铋的第III族氮化物块晶和切割所述块晶以形成所述晶片。
18.根据权利要求17所述的方法,其另外包含抛光所述晶片的其上待用于制造装置的表面。
CN201380048113.2A 2012-08-24 2013-02-28 掺杂铋的半绝缘第iii族氮化物晶片和其制造方法 Active CN104781456B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261693122P 2012-08-24 2012-08-24
US61/693,122 2012-08-24
PCT/US2013/028416 WO2014031152A1 (en) 2012-08-24 2013-02-28 A bismuth-doped semi-insulating group iii nitride wafer and its production method

Publications (2)

Publication Number Publication Date
CN104781456A CN104781456A (zh) 2015-07-15
CN104781456B true CN104781456B (zh) 2018-01-12

Family

ID=47989353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380048113.2A Active CN104781456B (zh) 2012-08-24 2013-02-28 掺杂铋的半绝缘第iii族氮化物晶片和其制造方法

Country Status (7)

Country Link
US (2) US9255342B2 (zh)
EP (1) EP2888390A1 (zh)
JP (2) JP6457389B2 (zh)
KR (1) KR102062901B1 (zh)
CN (1) CN104781456B (zh)
TW (1) TWI602222B (zh)
WO (1) WO2014031152A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781456B (zh) 2012-08-24 2018-01-12 希波特公司 掺杂铋的半绝缘第iii族氮化物晶片和其制造方法
US10355115B2 (en) 2016-12-23 2019-07-16 Sixpoint Materials, Inc. Electronic device using group III nitride semiconductor and its fabrication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973063A (zh) * 2004-06-11 2007-05-30 阿莫诺公司 块状单晶含镓氮化物及其应用
WO2007133512A2 (en) * 2006-05-08 2007-11-22 The Regents Of The University Of California Methods and materials for growing iii-nitride semiconductor compounds containing aluminum
WO2009149300A1 (en) * 2008-06-04 2009-12-10 Sixpoint Materials High-pressure vessel for growing group iii nitride crystals and method of growing group iii nitride crystals using high-pressure vessel and group iii nitride crystal
WO2009151642A1 (en) * 2008-06-12 2009-12-17 Sixpoint Materials, Inc. Method for testing group-iii nitride wafers and group iii-nitride wafers with test data
CN101988213A (zh) * 2009-06-25 2011-03-23 阿莫诺公司 块状单晶含镓氮化物、其获得方法、其制造的衬底以及在该衬底上制造的器件

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929770A (zh) * 1972-07-17 1974-03-16
JP3680337B2 (ja) * 1995-02-14 2005-08-10 昭和電工株式会社 発光ダイオード
US6139629A (en) 1997-04-03 2000-10-31 The Regents Of The University Of California Group III-nitride thin films grown using MBE and bismuth
US7560296B2 (en) * 2000-07-07 2009-07-14 Lumilog Process for producing an epitalixal layer of galium nitride
US6562124B1 (en) * 1999-06-02 2003-05-13 Technologies And Devices International, Inc. Method of manufacturing GaN ingots
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
MY141883A (en) 2001-06-06 2010-07-16 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
JP3690326B2 (ja) * 2001-10-12 2005-08-31 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法
ATE452999T1 (de) 2001-10-26 2010-01-15 Ammono Sp Zoo Substrat für epitaxie
JP4513264B2 (ja) * 2002-02-22 2010-07-28 三菱化学株式会社 窒化物単結晶の製造方法
US7098487B2 (en) 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
US7170095B2 (en) 2003-07-11 2007-01-30 Cree Inc. Semi-insulating GaN and method of making the same
EP1769105B1 (en) * 2004-06-11 2014-05-14 Ammono S.A. Bulk mono-crystalline gallium nitride and method for its preparation
WO2006010075A1 (en) 2004-07-09 2006-01-26 Cornell Research Foundation, Inc. Method of making group iii nitrides
US7316746B2 (en) * 2005-03-18 2008-01-08 General Electric Company Crystals for a semiconductor radiation detector and method for making the crystals
WO2007008198A1 (en) 2005-07-08 2007-01-18 The Regents Of The University Of California Method for growing group iii-nitride crystals in supercritical ammonia using an autoclave
JP4631071B2 (ja) * 2005-10-26 2011-02-16 株式会社リコー 窒化ガリウム結晶の結晶成長装置および窒化ガリウム結晶の製造方法
JP2009519202A (ja) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Iii族窒化物製品及び同製品の作製方法
JP2009533303A (ja) 2006-04-07 2009-09-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 大表面積窒化ガリウム結晶の成長
JP4320455B2 (ja) * 2006-09-20 2009-08-26 株式会社 東北テクノアーチ 半導体デバイスの製造方法
JP4462330B2 (ja) * 2007-11-02 2010-05-12 住友電気工業株式会社 Iii族窒化物電子デバイス
US20110217505A1 (en) * 2010-02-05 2011-09-08 Teleolux Inc. Low-Defect nitride boules and associated methods
CN104781456B (zh) 2012-08-24 2018-01-12 希波特公司 掺杂铋的半绝缘第iii族氮化物晶片和其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973063A (zh) * 2004-06-11 2007-05-30 阿莫诺公司 块状单晶含镓氮化物及其应用
WO2007133512A2 (en) * 2006-05-08 2007-11-22 The Regents Of The University Of California Methods and materials for growing iii-nitride semiconductor compounds containing aluminum
WO2009149300A1 (en) * 2008-06-04 2009-12-10 Sixpoint Materials High-pressure vessel for growing group iii nitride crystals and method of growing group iii nitride crystals using high-pressure vessel and group iii nitride crystal
WO2009151642A1 (en) * 2008-06-12 2009-12-17 Sixpoint Materials, Inc. Method for testing group-iii nitride wafers and group iii-nitride wafers with test data
CN101988213A (zh) * 2009-06-25 2011-03-23 阿莫诺公司 块状单晶含镓氮化物、其获得方法、其制造的衬底以及在该衬底上制造的器件

Also Published As

Publication number Publication date
EP2888390A1 (en) 2015-07-01
JP2015530967A (ja) 2015-10-29
US9255342B2 (en) 2016-02-09
CN104781456A (zh) 2015-07-15
US9435051B2 (en) 2016-09-06
US20140054589A1 (en) 2014-02-27
KR20150092083A (ko) 2015-08-12
JP6457389B2 (ja) 2019-01-23
TW201413792A (zh) 2014-04-01
KR102062901B1 (ko) 2020-01-06
JP2019011245A (ja) 2019-01-24
TWI602222B (zh) 2017-10-11
US20160130720A1 (en) 2016-05-12
WO2014031152A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
CN102257189B (zh) 低缺陷密度的独立式氮化镓基底的制造以及由其制造的器件
KR101247476B1 (ko) 탄화규소 단결정 잉곳, 이것으로부터 얻어지는 기판 및 에피택셜 웨이퍼
KR101444954B1 (ko) Ⅰⅰⅰ족 질화물 반도체 결정 기판 및 반도체 디바이스
KR102654261B1 (ko) Ga2O3계 단결정 기판
CN104781057B (zh) 第iii族氮化物晶片和其制造方法
US9670594B2 (en) Group III nitride crystals, their fabrication method, and method of fabricating bulk group III nitride crystals in supercritical ammonia
WO2008048303A2 (en) Group iii nitride articles and methods for making same
US20160215410A1 (en) Seed selection and growth methods for reduced-crack group iii nitride bulk crystals
D’Evelyn et al. Bulk GaN crystal growth by the high-pressure ammonothermal method
EP2924150B1 (en) ß-GA2O3-BASED SINGLE CRYSTAL SUBSTRATE
CN101988213A (zh) 块状单晶含镓氮化物、其获得方法、其制造的衬底以及在该衬底上制造的器件
CN107002278B (zh) 第iii族氮化物晶体、其制造方法和在超临界氨气中制造块状第iii族氮化物晶体的方法
Zhang et al. Preparation and characterization of AlN seeds for homogeneous growth
EP3094766B1 (en) Group iii nitride bulk crystals and fabrication method
KR20200033982A (ko) 13족 질화물 복합 기판, 반도체 소자, 및 13족 질화물 복합 기판의 제조 방법
CN104781456B (zh) 掺杂铋的半绝缘第iii族氮化物晶片和其制造方法
Hanser et al. Growth and fabrication of 2 inch free-standing GaN substrates via the boule growth method
JP2015530967A5 (zh)
KR20130113308A (ko) 실리콘 에피택셜 웨이퍼 및 그 제조방법
WO2023153154A1 (ja) Iii族元素窒化物半導体基板、エピタキシャル基板および機能素子
CN107208305A (zh) 裂缝减少的iii族氮化物块状晶体的种晶选择和生长方法
KR20240050310A (ko) Ga2O3계 단결정 기판
Gupta et al. Growth of Large Diameter 6H SI and 4H n+ SiC Single Crystals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant