TW201402458A - 乾式硏磨微粒材料的方法 - Google Patents

乾式硏磨微粒材料的方法 Download PDF

Info

Publication number
TW201402458A
TW201402458A TW102117000A TW102117000A TW201402458A TW 201402458 A TW201402458 A TW 201402458A TW 102117000 A TW102117000 A TW 102117000A TW 102117000 A TW102117000 A TW 102117000A TW 201402458 A TW201402458 A TW 201402458A
Authority
TW
Taiwan
Prior art keywords
composition
graphene
metal
particulate
substance
Prior art date
Application number
TW102117000A
Other languages
English (en)
Other versions
TWI589524B (zh
Inventor
In-Hwan Do
Michael Knox
Scott L Murray
Robert M Privette
Original Assignee
In-Hwan Do
Michael Knox
Scott L Murray
Robert M Privette
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by In-Hwan Do, Michael Knox, Scott L Murray, Robert M Privette filed Critical In-Hwan Do
Publication of TW201402458A publication Critical patent/TW201402458A/zh
Application granted granted Critical
Publication of TWI589524B publication Critical patent/TWI589524B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crushing And Grinding (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Non-Insulated Conductors (AREA)
  • Catalysts (AREA)
  • Conductive Materials (AREA)

Abstract

藉由介質球磨研磨製造之石墨烯具有極小粒子尺寸、相對較高之表面積及獨特縱橫比。其獨特地適合於藉由塗佈或混合其他微粒製造奈米複合物或塗層。可用該高表面積且相對較低縱橫比的石墨烯塗佈金屬或金屬氧化物或一起形成複合物。若所添加之微粒大於該石墨烯,則其經石墨烯塗佈,且若其具有大致相同的尺寸,則形成奈米複合物。該等奈米複合物適用於製造電極,尤其適用於電池及超級電容器應用。

Description

乾式研磨微粒材料的方法
敬啟者:在此特告知:吾人,即居住於密歇根州英厄姆縣東蘭辛市之韓國公民Inhwan Do、居住於密歇根州英厄姆縣東蘭辛市之美國公民Michael Knox、居住於密歇根州英厄姆縣東蘭辛市之美國公民Scott Murray及居住於密歇根州英厄姆縣東蘭辛市之美國公民Robert M.Privette發明了一種新且新穎的乾式研磨微粒材料的方法,下文是說明書。
本發明涉及具有金屬或金屬氧化物之石墨烯片晶奈米複合物及塗佈有金屬或金屬氧化物之奈米石墨烯片晶。該等經塗佈及複合之微粒適用作電極且適用於電應用。
石墨係由呈高度結構化片晶之許多層碳形成。此等片晶在與石墨上部結構分離時總稱為石墨烯。石墨烯具有引人關注之化學、物理及電特性。此等特性使石墨烯成為評價極高的產物。如微粒直徑、微粒寬度及表面積所界定之石墨烯之品質決定其工業效用。宜用金屬微粒塗佈或複合石墨烯以用於電應用。
總部設於密歇根州蘭辛(Lansing,Michigan)之Xg Sciences公司藉由高能量的以塑膠為介質的乾式機械研磨方法製造一種「C」級石墨烯。等級型號特性使其獨特地適合於用奈米微粒塗佈或與奈米微粒混合以 形成適用於電極之材料。
申請人知道,如顯示用矽處理石墨烯之濕式方法之2011年5月12日公開之美國專利公開案2011/0111303 A1。
此外,專利權人知道,闡述用於研磨微粒材料之濕式方法的在Peukert等人名下之EP2275385,其中研磨介質為釔穩定二氧化鋯。
藉由介質球磨研磨製造之石墨烯具有極小粒子尺寸及相對較高的表面積。其獨特地適合於藉由塗佈或混合其他微粒來製造奈米複合物或塗層。可用高表面積且相對較低縱橫比的石墨烯塗佈金屬或金屬氧化物或一起形成複合物。本文中,發明者咸信,本發明之材料具有獨特縱橫比。與矽混合之磨碎的石墨之縱橫比十分接近1,來自GO方法之石墨烯、外延生長石墨烯或來自夾層加熱方法之石墨烯均具有極高縱橫比。本發明之中等縱橫比石墨烯較佳塗佈1至4μm的微粒且較佳與甚至更小的奈米微粒混合。
基於縱橫比、粒子尺寸及/或表面積之拉曼光譜(Raman spectroscopy),本發明提供獨特的石墨烯。
基於由拉曼光譜及量測峰高度計算之下表,產生下表。
天然石墨具有極高G/D比率。磨碎成非晶形粉末之石墨具有如下G/D比率,本發明之材料的G/D比率起始時較高且隨著材料之加工程度愈高愈接近於2。非晶形石墨亦具有至2000cm-1之G峰紅移。雖然本發明之材料可具有較小紅移,但根據數據之品質,很難確定。極高表面積及縱橫比證實其主要為石墨烯奈米片晶。
機械剝落石墨烯不同於磨碎的石墨,不同之處在於其維持強結晶sp2結構。因為石墨磨碎成非晶形,所以G與D拉曼譜線之比率接近於2,且G線由1560cm-1紅移至2000cm1。G峰稱為石墨烯峰。D峰稱為擾亂峰。石墨磨碎的程度愈高,G峰降低愈多且D峰增強愈多。
若所添加之微粒大於石墨烯,則其用石墨烯塗佈,且若其約有大致相同的尺寸,則形成奈米複合物。奈米複合物適用於製造電極,尤其適用於電池及電容器應用。
【發明詳述】
因此,在一個具體實例中,提供一種乾式研磨微粒材料的方法,,其中至少一種微粒材料為層狀材料,該方法係在非層狀材料存在下以獲得組成物,其中層狀材料剝落且其中非層狀材料與剝落之材料複合。
剝落之材料的粒子尺寸10μm×5nm厚或更小。另外,除控制研磨介質之硬度外,乾式研磨藉由控制研磨介質之表面能來控制。
在一個第二具體實例中,提供一種乾式研磨微粒材料的方法,其中至少一種微粒材料為層狀材料,該方法係在選自由i.陶瓷、ii.玻璃及iii.石英組成之群的微粒材料存在下以獲得組成物,其中層狀材料剝落且其中微粒材料經剝落之材料塗佈。
剝落之材料的粒子尺寸為500nm更小。另外,除控制研磨介質之硬度外,乾式研磨藉由控制研磨介質之表面能來控制。
在一個第四具體實例中,存在一種藉由第一具體實例獲得之複合產物及一種藉由第二具體實例獲得之經塗佈產物。
藉由本發明方法製造之石墨烯之縱橫比相對較窄但大於石 墨。就本發明而言,大於5且小於200之縱橫比較佳,且大於10且小於25之縱橫比更佳。
小(亦即厚度為1至5奈米且直徑為50至100奈米)、高表面積(大於500 BET)、中等縱橫比石墨烯具有對用小金屬或金屬氧化物微粒塗佈而言獨特之尺寸。
適用於本發明之金屬為類金屬矽及金屬錫、鐵、鎂、錳、鋁、鉛、金、銀、鈦、鉑、鈀、釕、銅、鎳、銠及任何以上金屬之混合物。
適用於本發明之塑膠研磨介質之按布氏硬度量表(Brinell Scale)之硬度在3至100之範圍內。塑膠研磨介質係選自基本上由以下組成之群:聚縮醛、聚丙烯酸酯(諸如甲基丙烯酸甲酯)、聚碳酸酯、聚苯乙烯、聚丙烯、聚乙烯、聚四氟乙烯、聚乙烯-醯亞胺、聚氯乙烯、聚胺-醯亞胺、酚醛樹脂及基於甲醛之熱固性樹脂及任何所指定塑膠之混合物。
適用於本發明之微粒金屬氧化物為選自以下之金屬氧化物:矽、錫、鐵、鎂、錳、鋁、鉛、金、銀、鈦、鉑、鈀、釕、銅、鎳、銠、鎢、鈷、鉬及任何上文所指定金屬氧化物之混合物,其中該等金屬及金屬氧化物粒子之尺寸為100μm或更小。粒子尺寸較佳為10μm或更小,且粒子尺寸最佳為5μm或更小。
金屬碳化物、金屬氮化物以及非層狀材料均適用於本發明。
適用於本發明之石墨烯之厚度較佳為5nm或更小。
圖1為Si/石墨烯電池效能圖(200-250m2/g,100分鐘加工時間)。
實施例1
將2g天然石墨及1g微米級Si(1至4μm)裝載至65ml不鏽鋼研磨容器中且在24g聚甲基丙烯酸甲酯球存在下進行研磨。聚甲基丙烯酸甲酯球由兩種不同尺寸組成,亦即直徑為1/4吋及3/8吋。高能量研磨機在<1500rpm下運轉且其夾持速度為每分鐘1060個循環。聚甲基丙烯 酸甲酯球可用聚碳酸酯、聚苯乙烯、聚丙烯、聚乙烯、聚四氟乙烯、聚乙烯亞胺、聚氯乙烯及聚醯胺亞胺替換以控制固定研磨時間之研磨效率、石墨烯尺寸、孔隙分佈及表面積、Si與石墨烯表面之間的接觸品質。所製造之Si/石墨烯複合物之表面積可視研磨時間(60至500分鐘)及Si/石墨烯組成及球材料之類型而定,在100m2/g至700m2/g不等。
對Si/石墨烯(200至250m2/g,100分鐘加工)樣品作為鋰離子電池之陽極的電池效能之結果繪製在下文中。Si/石墨烯在100mA/g下經35個循環顯示高電容量(>800mAh/g,電極負載),由此支持以低成本、簡單、節省時間、環保、可撓性的方式來製造用於能量應用之高效能之基於石墨烯的複合材料。一些容量波動係歸因於溫度變化。
實施例2
將2g天然石墨及1g奈米級金屬氧化物(Fe2O3、NiO、CoO3、MnO3)裝載於65ml不鏽鋼研磨容器中且在24g聚甲基丙烯酸甲酯球存在下研磨。產物可用作鋰電池之陽極材料及超級電容器之電極。

Claims (41)

  1. 一種乾式研磨微粒材料之方法,其中至少一種該等微粒材料為層狀材料,該方法係在非層狀材料存在下進行以獲得組成物,其中該層狀材料剝落且其中該非層狀材料與該剝落之材料複合,該剝落之材料的粒子尺寸為10μm×5nm厚或更小,且其中除控制該研磨介質之硬度外,該乾式研磨係藉由控制該研磨介質之表面能來控制。
  2. 如申請專利範圍第1項之方法,其中該非層狀材料係選自基本上由以下組成之群:i.微粒金屬,及ii.微粒金屬氧化物。
  3. 如申請專利範圍第1項之方法,其中該層狀材料為石墨。
  4. 如申請專利範圍第1項之方法,其中該研磨介質之表面能基本上等於該層狀材料之表面能。
  5. 如申請專利範圍第1項之方法,其中該研磨介質之按布氏硬度量表(Brinell Scale)計之硬度在3至100之範圍內。
  6. 如申請專利範圍第1項之方法,其中該剝落之材料之縱橫比大於約25。
  7. 如申請專利範圍第1項之方法,其中該剝落之材料之縱橫比為5至200。
  8. 如申請專利範圍第1項之方法,其中該剝落之材料之尺寸在50nm至10μm之範圍內。
  9. 如申請專利範圍第1項之方法,其中該剝落之材料之厚度為1nm至5nm。
  10. 如申請專利範圍第1項之方法,其中該研磨介質為塑膠材料。
  11. 如申請專利範圍第10項之方法,其中該塑膠係選自基本上由以下組成之群:i.聚甲基丙烯酸甲酯, ii.聚碳酸酯,iii.聚苯乙烯,iv.聚丙烯,v.聚乙烯,vi.聚四氟乙烯,vii.聚乙烯亞胺,viii.聚氯乙烯,ix.聚胺-醯亞胺,及x. i至ix中任一者之合金。
  12. 如申請專利範圍第2項之方法,其中該等微粒金屬係選自基本上由以下組成之群:i.矽,ii.錫,iii.鐵,iv.鎂,v.錳,vi.鋁,vii.鉛,viii.金,ix.銀,x.鈦,xi.鉑,xii.鈀,xiii.釕,xiv.銅, xv.鎳,xvi.銠,及xvii. i至xvi中任一者之合金。
  13. 如申請專利範圍第2項之方法,其中該等微粒金屬氧化物係選自基本上由以下者之氧化物組成之群:i.矽,ii.錫,iii.鐵,iv.鎂,v.錳,vi.鋁,vii.鉛,viii.金,ix.銀,x.鈦,xi.鉑,xii.鈀,xiii.釕,xiv.銅,xv.鎳,xvi.銠,及xvii. i至xvi中任一者之合金。
  14. 如申請專利範圍第1項之方法,其中該微粒非層狀材料之尺寸小於100μm。
  15. 如申請專利範圍第1項之方法,其中該等微粒為金屬碳化物。
  16. 如申請專利範圍第1項之方法,其中該等微粒材料為金屬氮化物。
  17. 一種產物,其係由如申請專利範圍第1項之方法製造。
  18. 一種電極,其係由如申請專利範圍第17項之產物製造。
  19. 一種催化劑,其係由如申請專利範圍第17項之產物製造。
  20. 一種塗層,其係由如申請專利範圍第17項之產物製造。
  21. 一種電子組件,其係由如申請專利範圍第17項之產物製造。
  22. 一種導熱組件,其係由如申請專利範圍第17項之產物製造。
  23. 一種乾式研磨微粒材料之方法,其中至少一種該等微粒材料為層狀材料,該方法係在選自由i.陶瓷、ii.玻璃及iii.石英組成之群的微粒材料存在下進行以獲得組成物,其中該層狀材料剝落且其中該微粒材料經該剝落之材料塗佈,該剝落之材料的粒子尺寸為500nm或更小,且其中除控制該研磨介質之硬度外,該乾式研磨係藉由控制該研磨介質之表面能來控制。
  24. 一種乾式研磨微粒材料之方法,其中至少一種該等微粒材料為層狀材料,該方法係在選自由i.陶瓷、ii.玻璃及iii.石英組成之群的微粒材料存在下進行以獲得組成物,其中該層狀材料剝落且其中該微粒材料經該剝落之材料塗佈,該剝落之材料的粒子尺寸為10μm或更大且其中除控制該研磨介質之硬度外,該乾式研磨係藉由控制該研磨介質之表面能來控制。
  25. 一種包含與石墨烯複合之微粒的物質之組成物,其中該等粒子係選自基本上由金屬粒子及金屬氧化物粒子組成之群,其中該等金屬及金屬氧化物粒子之尺寸為100μm或更小。
  26. 如申請專利範圍第25項之物質之組成物,其中該等金屬及金屬氧化物粒子之尺寸為100μm或更小。
  27. 如申請專利範圍第25項之物質之組成物,其中該等金屬及金屬氧化物 粒子之尺寸為10μm或更小。
  28. 如申請專利範圍第25項之物質之組成物,其中該等金屬及金屬氧化物粒子之尺寸為1μm或更小。
  29. 如申請專利範圍第25項之物質之組成物,其中該石墨烯之厚度小於5nm。
  30. 如申請專利範圍第25項之物質之組成物,其中該石墨烯為單層厚度。
  31. 如申請專利範圍第25項之物質之組成物,其中該石墨烯之氧含量為10原子量%或更小。
  32. 如申請專利範圍第25項之物質之組成物,其中該金屬係選自基本上由鐵、鎂、鈷、鉬及鉛組成之群。
  33. 如申請專利範圍第25項之物質之組成物,其中該金屬氧化物係選自基本上由氧化鐵、氧化鎂、氧化鈷、氧化鉬及氧化鉛組成之氧化物的群。
  34. 如申請專利範圍第25項之物質之組成物,其中該石墨烯粒子之尺寸小於5μm。
  35. 如申請專利範圍第25項之物質之組成物,其中該石墨烯之表面積大於約300m2/g BET。
  36. 如申請專利範圍第25項之物質之組成物,其中該等金屬粒子大於與其複合之石墨烯。
  37. 如申請專利範圍第25項之物質之組成物,其中該金屬粒子之尺寸與其所組合之石墨烯基本上相同。
  38. 如申請專利範圍第25項之物質之組成物,其為奈米複合物。
  39. 一種電極,其係由如申請專利範圍第25項之組成物製造。
  40. 一種電池,其包含至少一個如申請專利範圍第39項之電極。
  41. 一種電容器,其包含如申請專利範圍第39項之電極。
TW102117000A 2012-05-18 2013-05-14 乾式硏磨微粒材料的方法 TWI589524B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/474,860 US20130309495A1 (en) 2012-05-18 2012-05-18 Process of dry milling particulate materials
PCT/US2013/038967 WO2013173053A1 (en) 2012-05-18 2013-05-01 Process of dry milling particulate materials

Publications (2)

Publication Number Publication Date
TW201402458A true TW201402458A (zh) 2014-01-16
TWI589524B TWI589524B (zh) 2017-07-01

Family

ID=49581534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102117000A TWI589524B (zh) 2012-05-18 2013-05-14 乾式硏磨微粒材料的方法

Country Status (7)

Country Link
US (2) US20130309495A1 (zh)
EP (2) EP4404227A3 (zh)
JP (2) JP6618800B2 (zh)
KR (1) KR102107868B1 (zh)
CN (1) CN104582855B (zh)
TW (1) TWI589524B (zh)
WO (1) WO2013173053A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079389B2 (en) 2012-05-18 2018-09-18 Xg Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
EP2854204B1 (en) 2013-09-30 2017-06-14 Samsung Electronics Co., Ltd Composite, carbon composite including the composite, electrode, lithium battery, electroluminescent device, biosensor, semiconductor device, and thermoelectric device including the composite and/or the carbon composite
CN103801298A (zh) * 2014-01-26 2014-05-21 同济大学 石墨烯负载镍纳米粒子复合材料的水热快速合成法
AU2015271619B2 (en) 2014-06-06 2019-05-09 Nanoxplore Inc. Large scale production of thinned graphite, graphene, and graphite-graphene composites
CN104091915B (zh) * 2014-07-17 2016-07-06 浙江大学 一种高容量和循环稳定的电化学贮钠复合电极及制备方法
KR20170057437A (ko) 2014-10-06 2017-05-24 엑스지 사이언시즈, 인크. 리튬 이온 배터리를 위한 lif-임베디드 sig 파우더
CA2969854C (en) 2014-12-09 2022-11-01 Group Nanoxplore Inc. Large scale production of oxidized graphene
GB2536465A (en) 2015-03-18 2016-09-21 Univ Loughborough Conformal coating, composition and method for the mitigation of growth of metallic crystalline structures
US10878976B2 (en) 2015-06-19 2020-12-29 Hamilton Sundstrand Corporation Composites and methods of making composite materials
CN105047255B (zh) * 2015-07-30 2017-03-22 江苏国瓷泓源光电科技有限公司 一种含高分散石墨烯的晶硅太阳能电池铝浆及其制备方法
US11772975B2 (en) * 2015-12-03 2023-10-03 Global Graphene Group, Inc. Chemical-free production of graphene materials
US9926427B2 (en) * 2015-12-10 2018-03-27 Nanotek Instruments, Inc. Chemical-free production of graphene-reinforced polymer matrix composites
WO2017134316A1 (es) * 2016-02-01 2017-08-10 Eficiencia Energética Aplicada, S.L. Procedimiento de obtención de un producto grafénico, producto grafénico y su uso
US10850496B2 (en) * 2016-02-09 2020-12-01 Global Graphene Group, Inc. Chemical-free production of graphene-reinforced inorganic matrix composites
US9899672B2 (en) * 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications
US10170749B2 (en) * 2016-06-07 2019-01-01 Nanotek Instruments, Inc. Alkali metal battery having an integral 3D graphene-carbon-metal hybrid foam-based electrode
CN106582994B (zh) * 2016-11-04 2019-03-29 成都新柯力化工科技有限公司 一种连续制备石墨烯浆料的装置及生产方法
EP3324419B1 (en) 2016-11-18 2020-04-22 Samsung Electronics Co., Ltd. Porous silicon composite cluster structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
IT201700000211A1 (it) * 2017-01-02 2018-07-02 Breton Spa Graphene and other 2D materials as layered “shells” supported on “core” nanoparticle carriers
CN109103454A (zh) * 2018-07-05 2018-12-28 何亚龙 锂电池用石墨烯导电浆料及其制备方法
HUE065162T2 (hu) 2018-10-25 2024-05-28 Samsung Electronics Co Ltd Pórusos szilíciumtartalmú kompozit, ezt tartalmazó karbon kompozit, és ezeket tartalmazó elektród, lítium akkumulátor és elektronikai eszköz
CN110143587A (zh) * 2019-05-27 2019-08-20 西安交通大学 一种使石墨烯均匀负载微纳米粒子的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145705A (ja) * 1997-05-27 1999-02-16 Tdk Corp 非水電解質電池用電極の製造方法
US6620550B2 (en) * 2001-01-23 2003-09-16 The Gillette Company Battery cathode and method of manufacture therefor
GB0200259D0 (en) * 2002-01-07 2002-02-20 Univ Reading The Encapsulated radioactive nuclide microparticles and methods for their production
US20040150312A1 (en) * 2002-11-26 2004-08-05 Mcelrath Kenneth O. Carbon nanotube particulate electron emitters
US20040137327A1 (en) * 2003-01-13 2004-07-15 Gross Karl J. Synthesis of carbon/silicon composites
KR100745733B1 (ko) * 2005-09-23 2007-08-02 삼성에스디아이 주식회사 음극 활물질, 그의 제조방법 및 이를 채용한 리튬 전지
US7906238B2 (en) * 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP5182776B2 (ja) * 2006-04-27 2013-04-17 日立粉末冶金株式会社 改質黒鉛を用いる黒鉛層間化合物及び触媒並びにそれらの製造方法
FR2901491B1 (fr) 2006-05-24 2009-03-20 Coatex Sas Procede de broyage a sec de materiaux contenant un minerai carbonate
US8262981B2 (en) * 2006-12-18 2012-09-11 Schott Corporation Ceramic material product and method of manufacture
US7785498B2 (en) * 2007-07-19 2010-08-31 Nanotek Instruments, Inc. Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
EP2276698A1 (en) * 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
US8075794B2 (en) * 2008-07-01 2011-12-13 Teledyne Scientific & Imaging, Llc Magnetic graphite nanoplatelets
US8257867B2 (en) * 2008-07-28 2012-09-04 Battelle Memorial Institute Nanocomposite of graphene and metal oxide materials
WO2010036648A1 (en) * 2008-09-26 2010-04-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Nanoscale silicon-based compositions and methods of preparation
EP2275385B1 (en) 2009-07-15 2015-11-04 Friedrich-Alexander-Universität Erlangen-Nürnberg Method of producing platelets comprising a layered material
WO2011057074A2 (en) 2009-11-06 2011-05-12 Northwestern University Electrode material comprising graphene-composite materials in a graphite network
KR101190185B1 (ko) * 2010-02-24 2012-10-15 주식회사 엘지화학 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
CN102214817A (zh) * 2010-04-09 2011-10-12 清华大学 一种碳/硅/碳纳米复合结构负极材料及其制备方法
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
US10886526B2 (en) * 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites

Also Published As

Publication number Publication date
US20130309495A1 (en) 2013-11-21
EP2849887B1 (en) 2024-03-20
EP4404227A2 (en) 2024-07-24
KR102107868B1 (ko) 2020-05-07
WO2013173053A1 (en) 2013-11-21
JP6618800B2 (ja) 2019-12-11
US20160256873A1 (en) 2016-09-08
EP2849887A1 (en) 2015-03-25
JP2018134639A (ja) 2018-08-30
KR20150035536A (ko) 2015-04-06
CN104582855A (zh) 2015-04-29
CN104582855B (zh) 2019-09-10
JP2015526264A (ja) 2015-09-10
EP2849887A4 (en) 2016-01-06
EP4404227A3 (en) 2024-08-21
TWI589524B (zh) 2017-07-01
US10232377B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
TWI589524B (zh) 乾式硏磨微粒材料的方法
Song et al. Core-shell Ag@ C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption
Wang et al. Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability
Xia et al. Hierarchical heterostructures of Ag nanoparticles decorated MnO 2 nanowires as promising electrodes for supercapacitors
JP6209641B2 (ja) 薄片状黒鉛結晶集合物
Wang et al. Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis
Kamali et al. Towards large scale preparation of graphene in molten salts and its use in the fabrication of highly toughened alumina ceramics
Liu et al. A universal strategy for the hierarchical assembly of functional 0/2D nanohybrids
Qin et al. One-step synthesis of CuO@ brass foil by dealloying method for low-cost flexible supercapacitor electrodes
Hu et al. Preparation and mechanical properties of Si3N4 nanocomposites reinforced by Si3N4@ rGO particles
TW201806854A (zh) 用於奈米結構化碳化物化合物之碳化物-至-碳轉化的方法、裝置及電極
Zhang et al. Improvement of mechanical properties, microscopic structures, and antibacterial activity by Ag/ZnO nanocomposite powder for glaze-decorated ceramic
Durmus et al. Synthesis and micro-structural characterization of graphene/strontium hexaferrite (SrFe12O19) nanocomposites
Kan et al. Molten salt synthesis of porous chromium carbide/carbon biomorphic ceramics for Pb2+ removal from water
Dassanayake et al. One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles
Wang et al. Interface structure and properties of CNTs/Cu composites fabricated by electroless deposition and spark plasma sintering
JP2015107881A (ja) 機械的信頼性の高い熱電ナノ複合材料及びその製造方法
Szabó et al. Magnetically modified single and turbostratic stacked graphenes from tris (2, 2′-bipyridyl) iron (II) ion-exchanged graphite oxide
JP6376560B2 (ja) メソポーラスナノ球状粒子製造方法
JP2010500477A (ja) 固溶体粉末を含む混合粉末とそれを用いた焼結体、固溶体粉末を含む混合サ−メット粉末とそれを用いたサ−メット、及びそれらの製造方法
Smovzh et al. Synthesis of hollow nanoparticles γ-Al 2 O 3
WO2016101260A1 (zh) 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池
González et al. Hybrids of Graphite, Graphene and Graphene Oxide
Meščeriakovas Synthesis, characteristics and application of doped carbon structures
Pandey et al. Novel three phase dielectric composites comprising cerium oxide nanoparticles, graphene nanoplatelets and poly (vinylidene fluoride)