CN104582855B - 干磨粒状材料的方法 - Google Patents

干磨粒状材料的方法 Download PDF

Info

Publication number
CN104582855B
CN104582855B CN201380025858.7A CN201380025858A CN104582855B CN 104582855 B CN104582855 B CN 104582855B CN 201380025858 A CN201380025858 A CN 201380025858A CN 104582855 B CN104582855 B CN 104582855B
Authority
CN
China
Prior art keywords
composition
graphene
matter
plastics
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380025858.7A
Other languages
English (en)
Other versions
CN104582855A (zh
Inventor
I·杜
迈克尔·克诺克斯
斯科特·默里
罗伯特·M·普里维特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN104582855A publication Critical patent/CN104582855A/zh
Application granted granted Critical
Publication of CN104582855B publication Critical patent/CN104582855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Crushing And Grinding (AREA)
  • Catalysts (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

通过介质球磨制备的石墨烯具有非常小的颗粒尺寸、相对高的表面积和独特的长径比。其独特地适合于通过涂覆或混合其它颗粒来制备纳米复合物。可用高表面积、相对低长径比的石墨烯涂覆金属或金属氧化物或者将金属或金属氧化物与高表面积、相对低长径比的石墨烯成形为复合物。如果添加的颗粒大于石墨烯,那么用石墨烯涂覆它们,并且如果它们为大约相同的近似尺寸,那么形成纳米复合物。该纳米复合物对于制备特别是用于蓄电池和超电容器应用的电极是有用的。

Description

干磨粒状材料的方法
致有关人士:
是我们居住在密歇根州Ingham郡东兰辛市的韩国公民Inhawan Do、居住在密歇根州Ingham郡东兰辛市的美国公民Michael Knox、居住在密歇根州Ingham郡东兰辛市的美国公民Scott Murray、和居住在密歇根州Ingham郡东兰辛市的美国公民Robert M.Privette发明了新型和新颖的干磨粒状材料的方法
以下是其申请文件。
背景技术
本发明涉及具有金属或金属氧化物的石墨烯薄层纳米复合物,和纳米涂覆有金属或金属氧化物的石墨烯薄层。涂覆和复合的颗粒作为电极并且对于电应用是有用的。
石墨通过处于高度结构化的薄层状态的许多碳层形成。当从石墨超结构(superstructure)分离时,这些薄层统称为石墨烯。石墨烯具有令人关注的化学、物理和电性质。这些性质使石墨烯成为非常贵重的产品。由颗粒直径、颗粒宽度、和表面积限定的石墨烯品质确定了其工业适用性。对于电应用,用金属颗粒涂覆或复合石墨烯是有利的。
总部位于密歇根兰辛的Xg Sciences,Inc.通过高能量、塑料介质、干燥的机械碾末方法制备了“C”级石墨烯。级别尺寸特性使得其独特地适合于用纳米颗粒涂覆或与纳米颗粒混合以形成用于电极的有用材料。
申请人意识到2011年5月12日出版的美国专利公开2011/0111303A1显示了用硅处理石墨烯的湿式方法。
此外,专利权人还意识到以Peukert等人名义的EP2275385,其中提出用于研磨粒状材料的湿式方法,其中研磨介质为钇稳定的氧化锆。
发明内容
通过介质球磨制备的石墨烯具有非常小的颗粒尺寸与相对高的表面积。其独特地适合于通过涂覆或混合其它颗粒来制备纳米复合物。可用高表面积、相对低长径比的石墨烯涂覆金属或金属氧化物或者将金属或金属氧化物与高表面积、相对低长径比的石墨烯成形为复合物。在本文中发明人认为本发明的材料具有独特的长径比。与硅混合的磨碎石墨具有相当接近1的长径比,来自GO方法的石墨烯、等轴生长的石墨烯、或来自插层加热方法的石墨烯具有非常高的长径比。本发明的适中长径比的石墨烯较好地涂覆1-4微米颗粒并且较好地与甚至更小的纳米颗粒混合。
基于拉曼光谱学与长径比、颗粒尺寸、和/或表面积,提供本发明中独特的石墨烯。
基于从拉曼光谱学和测量的峰高计算的以下表格,生成以下表格。
天然石墨具有非常高的G/D比例。研磨成非晶粉末的石墨具有该G/D比例。本发明的材料从高的开始,并且加工的材料越多则趋于2。非晶石墨还具有G峰红移至2000cm-1。本发明的材料可具有小的红移,但是从数据的品质其难以确定。非常高的表面积和长径比确认其主要为石墨烯纳米薄层。
机械剥离的石墨烯不同于磨碎石墨:其保持强烈的晶态sp2结构。随着石墨被研磨成非晶的,G与D拉曼谱线的比例趋于2并且G谱线从1560cm-1红移至2000cm-1。将G峰称作石墨烯峰。D峰称作无序峰。石墨研磨的越多,G峰减少和D峰增加的越多。
如果添加的颗粒比石墨烯大,那么用石墨烯涂覆它们,并且如果它们为大约相同的近似尺寸,那么形成纳米复合物。该纳米复合物对于制备特别是用于蓄电池和电容器应用的电极是有用的。
附图说明
图1是Si/石墨烯的蓄电池性能的图表(200-250m2/g,100分钟加工时间)。
本发明
因此,在一个实施方案中,存在干磨粒状材料的方法,其中在非层状材料的存在下,至少一种粒状材料是层状材料,以获得组合物,其中将该层状材料剥离并且其中将该非层状材料与该剥离的材料复合。
剥离的材料具有10微米乘5nm厚或更小的颗粒尺寸。此外,除了控制碾磨介质的硬度以外,还通过控制碾磨介质的表面能来控制干磨。优选地,碾磨介质具有的表面能基本上等于层状材料的表面能。
在第二实施方案中,存在干磨粒状材料的方法,其中在选自i.陶瓷、ii.玻璃、iii.石英的粒状材料的存在下,至少一种粒状材料为层状材料,以获得组合物,其中将该层状材料剥离并且其中用该剥离的材料涂覆粒状材料。
剥离的材料具有500纳米或更小的颗粒尺寸。此外,除了控制碾磨介质的硬度以外,还通过控制碾磨介质的表面能来控制干磨。
在第四实施方案中,存在通过第一实施方案获得的复合产品和通过第二实施方案获得的涂覆产品。
在一个实施方案中,本发明提供一种在非层状材料的存在下剥离粒状材料以获得组合物的方法,其中至少一种粒状材料是层状材料,其中将所述层状材料剥离并且其中将该非层状材料与该剥离的材料复合,该剥离的材料具有10微米乘5nm厚或更小的颗粒尺寸,并且其中除了使用塑料碾磨介质控制碾磨介质的硬度以外还通过控制碾磨介质的表面能来控制剥离,其中该剥离的材料具有10-25的长径比,其中该非层状材料选自基本上由以下材料组成的组:
i.粒状金属,和
ii.粒状金属氧化物,
其中该层状材料为石墨,和
其中该碾磨介质具有的表面能基本上等于层状材料的表面能。
在本发明的一个实施方案中,提供了一种物质组合物,其包含复合有石墨烯的颗粒,其中该颗粒选自基本上由金属颗粒和金属氧化物颗粒组成的组,其中该金属和金属氧化物颗粒具有100微米或更小的尺寸,所述物质组合物由如权利要求1所述的方法制造,其中该剥离的材料具有10-25的长径比。
在本发明的一个实施方案中,金属和金属氧化物颗粒具有1微米或更小的尺寸。
本发明还提供一种电极,所述的电极由前述组合物制造。本发明还涉及包含该电极的电容器
具体实施方式
通过本发明的方法制备的石墨烯具有相对窄的、比石墨大的长径比。对于本发明,高于5和低于200的长径比是优选的并且更优选的是高于10和低于25的长径比。
小的(即1-5纳米厚和50-100纳米直径)、高表面积(高于500BET)、适中长径比的石墨烯是用于用小的金属或金属氧化物颗粒涂覆的独特尺寸。
在本发明中有用的金属是类金属硅、和金属锡、铁、镁、锰、铝、铅、金、银、钛、铂、钯、钌、铜、镍、铑、及任何上述的合金。
在本发明中有用的塑料碾磨介质具有在布氏标度中3-100的硬度。塑料碾磨介质选自基本上由聚缩醛、聚丙烯酸酯例如甲基丙烯酸甲酯、聚碳酸酯、聚苯乙烯、聚丙烯、聚乙烯、聚四氟乙烯、聚环乙亚胺、聚氯乙烯、聚胺-酰亚胺、基于酚类和甲醛的热固性树脂、以及任何指定的塑料的合金。
在本发明中有用的粒状金属氧化物是选自硅、锡、铁、镁、锰、铝、铅、金、银、钛、铂、钯、钌、铜、镍、铑、钨、钴、钼的氧化物、和任何上述指定的金属氧化物的合金,其中金属和金属氧化物颗粒具有100微米或更小的尺寸。优选的是10微米或更小的颗粒尺寸,并且最优选的是5微米或更小的颗粒尺寸。
在本发明中金属碳化物、金属氮化物以及非层状材料是有用的。
在本发明中有用的石墨烯优选具有5nm或更小的厚度。
实施例
实施例1
将两克天然石墨和1g微米尺寸的Si(1-4μm)装载到65ml不锈钢研磨容器中并且在24g聚甲基丙烯酸甲酯球的存在下进行碾磨。聚甲基丙烯酸甲酯球由两种不同的尺寸即直径1/4英寸和3/8英寸构成。以<1500rpm操作高能研磨机并且其夹持速度(clamp speed)为1060次循环/分钟。可用聚碳酸酯、聚苯乙烯、聚丙烯、聚乙烯、聚四氟乙烯、聚环乙亚胺、聚氯乙烯和聚胺-酰亚胺替代聚甲基丙烯酸甲酯球以控制在固定的碾磨时间下的表面积、和碾磨效率、石墨烯尺寸、孔隙率分布、Si与石墨烯表面之间的接触品质。取决于碾磨时间(60-500分钟)和Si/石墨烯组成以及球材料的类型,所制备的Si/石墨烯复合物的表面积可为100m2/g-700m2/g不等。
下文将Si/石墨烯(200-250m2/g,100分钟加工)样品作为用于锂离子蓄电池的阳极的蓄电池性能的结果绘图。Si/石墨烯在100mA/g下在35次循环内显示高容量(>800mAh/g,电极负载),这支持了低成本、简单、省时、环境友好、灵活的方法以制备用于能量应用的高性能石墨烯基复合物材料。容量的一些波动是由温度的变化所致。
实施例2
将两克天然石墨和1g纳米尺寸的金属氧化物(Fe2O3、NiO、CoO3、MnO3)装载到65ml不锈钢研磨容器中并且在24g聚甲基丙烯酸甲酯球的存在下进行碾磨。产物可用作用于锂蓄电池的阳极材料和用于超电容器的电极。

Claims (28)

1.一种在非层状材料的存在下剥离粒状材料以获得组合物的方法,其中至少一种粒状材料是层状材料,其中将所述层状材料剥离并且其中将该非层状材料与该剥离的材料复合,该剥离的材料具有10微米乘5nm厚或更小的颗粒尺寸,并且其中除了使用塑料碾磨介质控制塑料碾磨介质的硬度以外还通过控制塑料碾磨介质的表面能来控制剥离,其中该剥离的材料具有10-25的长径比,其中该非层状材料选自基本上由以下材料组成的组:
i.粒状金属,和
ii.粒状金属氧化物,
其中该层状材料为石墨,和
其中该塑料碾磨介质具有的表面能基本上等于层状材料的表面能。
2.如权利要求1所述的方法,其中该塑料碾磨介质在布氏标度中具有3-100的硬度。
3.如权利要求1所述的方法,其中该剥离的材料具有50nm-10微米的尺寸。
4.如权利要求1所述的方法,其中该塑料碾磨介质选自基本上由以下组成的组:
i.聚甲基丙烯酸甲酯,
ii.聚碳酸脂,
iii.聚苯乙烯,
iv.聚丙烯,
v.聚乙烯,
vi.聚四氟乙烯,
vii.聚环乙亚胺,
viii.聚氯乙烯,
ix.聚胺-酰亚胺,和
x.i-ix中任何合金。
5.如权利要求1所述的方法,其中该粒状金属选自基本上由以下组成的组:
i.硅,
ii.锡,
iii.铁,
iv.镁,
v.锰,
vi.铝,
vii.铅,
viii.金,
ix.银,
x.钛,
xi.铂,
xii.钯,
xiii.钌,
xiv.铜,
xv.镍,
xvi.铑,和
xvii.i-xvi中任何的合金。
6.如权利要求1所述的方法,其中该粒状金属氧化物选自基本上由以下的氧化物组成的组:
i.硅,
ii.锡,
iii.铁,
iv.镁,
v.锰,
vi.铝,
vii.铅,
viii.金,
ix.银,
x.钛,
xi.铂,
xii.钯,
xiii.钌,
xiv.铜,
xv.镍,
xvi.铑,和
xvii.i-xvi中任何的合金。
7.如权利要求1所述的方法,其中非层状材料具有小于100微米的尺寸。
8.一种物质组合物,其包含复合有石墨烯的颗粒,其中该颗粒选自基本上由金属颗粒和金属氧化物颗粒组成的组,其中该金属颗粒和金属氧化物颗粒具有100微米或更小的尺寸,所述物质组合物由如权利要求1所述的方法制造,其中该剥离的材料具有10-25的长径比。
9.如权利要求8所述的物质组合物,其中该金属颗粒和金属氧化物颗粒具有10微米或更小的尺寸。
10.如权利要求8所述的物质组合物,其中该金属颗粒和金属氧化物颗粒具有1微米或更小的尺寸。
11.如权利要求8所述的物质组合物,其中石墨烯小于5nm厚。
12.如权利要求8所述的物质组合物,其中石墨烯为单层厚的。
13.如权利要求8所述的物质组合物,其中石墨烯的氧含量为10原子%或更少。
14.如权利要求8所述的物质组合物,其中该金属颗粒选自基本上由铁、镁、钴、钼和铅组成的组。
15.如权利要求8所述的物质组合物,其中该金属氧化物颗粒选自基本上由氧化铁、氧化镁、氧化钴、氧化钼、和氧化铅组成的氧化物组。
16.如权利要求8所述的物质组合物,其中该石墨烯具有小于500纳米的颗粒尺寸。
17.如权利要求8所述的物质组合物,其中该石墨烯具有大于500m2/g BET的表面积、1-5纳米的厚度和50-100纳米的直径。
18.如权利要求8所述的物质组合物,其中该金属颗粒比与它们进行复合的石墨烯大。
19.如权利要求8所述的物质组合物,其为纳米复合物。
20.一种电极,其由权利要求8的组合物制造。
21.一种蓄电池,其包含至少一个如权利要求20所述的电极。
22.一种电容器,其包含如权利要求20所述的电极。
23.通过权利要求1的在非层状材料的存在下剥离粒状材料以获得组合物的方法制备的产品,其中至少一种粒状材料是层状材料,其中将所述层状材料剥离并且其中将所述非层状材料与所述剥离的材料复合,所述剥离的材料具有10微米乘5nm厚或更小的颗粒尺寸,其中该剥离的材料具有10-25的长径比,并且其中除了使用塑料碾磨介质控制所述塑料碾磨介质的硬度以外还通过控制所述塑料碾磨介质的表面能来控制所述剥离,所述硬度在布氏标度中为3-100。
24.一种电极,其由如权利要求23所述的产品制备。
25.一种催化剂,其由如权利要求23所述的产品制备。
26.一种涂料,其由如权利要求23所述的产品制备。
27.一种电子部件,其由如权利要求23所述的产品制造。
28.一种导热部件,其由如权利要求23所述的产品制造。
CN201380025858.7A 2012-05-18 2013-05-01 干磨粒状材料的方法 Active CN104582855B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/474,860 2012-05-18
US13/474,860 US20130309495A1 (en) 2012-05-18 2012-05-18 Process of dry milling particulate materials
PCT/US2013/038967 WO2013173053A1 (en) 2012-05-18 2013-05-01 Process of dry milling particulate materials

Publications (2)

Publication Number Publication Date
CN104582855A CN104582855A (zh) 2015-04-29
CN104582855B true CN104582855B (zh) 2019-09-10

Family

ID=49581534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380025858.7A Active CN104582855B (zh) 2012-05-18 2013-05-01 干磨粒状材料的方法

Country Status (7)

Country Link
US (2) US20130309495A1 (zh)
EP (2) EP4404227A3 (zh)
JP (2) JP6618800B2 (zh)
KR (1) KR102107868B1 (zh)
CN (1) CN104582855B (zh)
TW (1) TWI589524B (zh)
WO (1) WO2013173053A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079389B2 (en) 2012-05-18 2018-09-18 Xg Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
EP2854204B1 (en) 2013-09-30 2017-06-14 Samsung Electronics Co., Ltd Composite, carbon composite including the composite, electrode, lithium battery, electroluminescent device, biosensor, semiconductor device, and thermoelectric device including the composite and/or the carbon composite
CN103801298A (zh) * 2014-01-26 2014-05-21 同济大学 石墨烯负载镍纳米粒子复合材料的水热快速合成法
AU2015271619B2 (en) 2014-06-06 2019-05-09 Nanoxplore Inc. Large scale production of thinned graphite, graphene, and graphite-graphene composites
CN104091915B (zh) * 2014-07-17 2016-07-06 浙江大学 一种高容量和循环稳定的电化学贮钠复合电极及制备方法
KR20170057437A (ko) 2014-10-06 2017-05-24 엑스지 사이언시즈, 인크. 리튬 이온 배터리를 위한 lif-임베디드 sig 파우더
CA2969854C (en) 2014-12-09 2022-11-01 Group Nanoxplore Inc. Large scale production of oxidized graphene
GB2536465A (en) 2015-03-18 2016-09-21 Univ Loughborough Conformal coating, composition and method for the mitigation of growth of metallic crystalline structures
US10878976B2 (en) 2015-06-19 2020-12-29 Hamilton Sundstrand Corporation Composites and methods of making composite materials
CN105047255B (zh) * 2015-07-30 2017-03-22 江苏国瓷泓源光电科技有限公司 一种含高分散石墨烯的晶硅太阳能电池铝浆及其制备方法
US11772975B2 (en) * 2015-12-03 2023-10-03 Global Graphene Group, Inc. Chemical-free production of graphene materials
US9926427B2 (en) * 2015-12-10 2018-03-27 Nanotek Instruments, Inc. Chemical-free production of graphene-reinforced polymer matrix composites
WO2017134316A1 (es) * 2016-02-01 2017-08-10 Eficiencia Energética Aplicada, S.L. Procedimiento de obtención de un producto grafénico, producto grafénico y su uso
US10850496B2 (en) * 2016-02-09 2020-12-01 Global Graphene Group, Inc. Chemical-free production of graphene-reinforced inorganic matrix composites
US9899672B2 (en) * 2016-05-17 2018-02-20 Nanotek Instruments, Inc. Chemical-free production of graphene-encapsulated electrode active material particles for battery applications
US10170749B2 (en) * 2016-06-07 2019-01-01 Nanotek Instruments, Inc. Alkali metal battery having an integral 3D graphene-carbon-metal hybrid foam-based electrode
CN106582994B (zh) * 2016-11-04 2019-03-29 成都新柯力化工科技有限公司 一种连续制备石墨烯浆料的装置及生产方法
EP3324419B1 (en) 2016-11-18 2020-04-22 Samsung Electronics Co., Ltd. Porous silicon composite cluster structure, method of preparing the same, carbon composite using the same, and electrode, lithium battery, and device each including the same
IT201700000211A1 (it) * 2017-01-02 2018-07-02 Breton Spa Graphene and other 2D materials as layered “shells” supported on “core” nanoparticle carriers
CN109103454A (zh) * 2018-07-05 2018-12-28 何亚龙 锂电池用石墨烯导电浆料及其制备方法
HUE065162T2 (hu) 2018-10-25 2024-05-28 Samsung Electronics Co Ltd Pórusos szilíciumtartalmú kompozit, ezt tartalmazó karbon kompozit, és ezeket tartalmazó elektród, lítium akkumulátor és elektronikai eszköz
CN110143587A (zh) * 2019-05-27 2019-08-20 西安交通大学 一种使石墨烯均匀负载微纳米粒子的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563049C (zh) * 2005-09-23 2009-11-25 三星Sdi株式会社 负极活性材料及其制备方法以及使用该材料的锂电池
CN100573982C (zh) * 2001-01-23 2009-12-23 吉莱特公司 电池阴极及其制造方法
CN101849302A (zh) * 2007-11-05 2010-09-29 纳米技术仪器公司 用于锂离子电池的纳米石墨烯薄片基复合阳极组合物
CN102112393A (zh) * 2008-07-28 2011-06-29 巴特尔纪念研究院 石墨烯和金属氧化物材料的纳米复合材料

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145705A (ja) * 1997-05-27 1999-02-16 Tdk Corp 非水電解質電池用電極の製造方法
GB0200259D0 (en) * 2002-01-07 2002-02-20 Univ Reading The Encapsulated radioactive nuclide microparticles and methods for their production
US20040150312A1 (en) * 2002-11-26 2004-08-05 Mcelrath Kenneth O. Carbon nanotube particulate electron emitters
US20040137327A1 (en) * 2003-01-13 2004-07-15 Gross Karl J. Synthesis of carbon/silicon composites
US7906238B2 (en) * 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP5182776B2 (ja) * 2006-04-27 2013-04-17 日立粉末冶金株式会社 改質黒鉛を用いる黒鉛層間化合物及び触媒並びにそれらの製造方法
FR2901491B1 (fr) 2006-05-24 2009-03-20 Coatex Sas Procede de broyage a sec de materiaux contenant un minerai carbonate
US8262981B2 (en) * 2006-12-18 2012-09-11 Schott Corporation Ceramic material product and method of manufacture
US7785498B2 (en) * 2007-07-19 2010-08-31 Nanotek Instruments, Inc. Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
EP2276698A1 (en) * 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
US8075794B2 (en) * 2008-07-01 2011-12-13 Teledyne Scientific & Imaging, Llc Magnetic graphite nanoplatelets
WO2010036648A1 (en) * 2008-09-26 2010-04-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Nanoscale silicon-based compositions and methods of preparation
EP2275385B1 (en) 2009-07-15 2015-11-04 Friedrich-Alexander-Universität Erlangen-Nürnberg Method of producing platelets comprising a layered material
WO2011057074A2 (en) 2009-11-06 2011-05-12 Northwestern University Electrode material comprising graphene-composite materials in a graphite network
KR101190185B1 (ko) * 2010-02-24 2012-10-15 주식회사 엘지화학 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
CN102214817A (zh) * 2010-04-09 2011-10-12 清华大学 一种碳/硅/碳纳米复合结构负极材料及其制备方法
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
US10886526B2 (en) * 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100573982C (zh) * 2001-01-23 2009-12-23 吉莱特公司 电池阴极及其制造方法
CN100563049C (zh) * 2005-09-23 2009-11-25 三星Sdi株式会社 负极活性材料及其制备方法以及使用该材料的锂电池
CN101849302A (zh) * 2007-11-05 2010-09-29 纳米技术仪器公司 用于锂离子电池的纳米石墨烯薄片基复合阳极组合物
CN102112393A (zh) * 2008-07-28 2011-06-29 巴特尔纪念研究院 石墨烯和金属氧化物材料的纳米复合材料

Also Published As

Publication number Publication date
US20130309495A1 (en) 2013-11-21
EP2849887B1 (en) 2024-03-20
EP4404227A2 (en) 2024-07-24
KR102107868B1 (ko) 2020-05-07
WO2013173053A1 (en) 2013-11-21
JP6618800B2 (ja) 2019-12-11
US20160256873A1 (en) 2016-09-08
EP2849887A1 (en) 2015-03-25
JP2018134639A (ja) 2018-08-30
KR20150035536A (ko) 2015-04-06
CN104582855A (zh) 2015-04-29
JP2015526264A (ja) 2015-09-10
EP2849887A4 (en) 2016-01-06
EP4404227A3 (en) 2024-08-21
TW201402458A (zh) 2014-01-16
TWI589524B (zh) 2017-07-01
US10232377B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
CN104582855B (zh) 干磨粒状材料的方法
Jadhav et al. Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application
Thiagarajan et al. Facile methodology of sol-gel synthesis for metal oxide nanostructures
CN102300807B (zh) 石墨材料
KR101606401B1 (ko) 다층 그래핀 피복 기판의 제조 방법
Rocha et al. Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route
CN107502066A (zh) 一种石墨烯/金属纳米带复合导电油墨及其制备方法和应用
JP6968057B2 (ja) 抵抗変化型メモリデバイスに用いるメモリ構造及びデータ記憶デバイスの製造に用いる方法
Wei et al. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example
Jadhav et al. Structural and electrical properties of ZnO: Ag core-shell nanoparticles synthesized by a polymer precursor method
TW201806854A (zh) 用於奈米結構化碳化物化合物之碳化物-至-碳轉化的方法、裝置及電極
Mao et al. Large-scale synthesis of AgNWs with ultra-high aspect ratio above 4000 and their application in conductive thin film
KR102164300B1 (ko) 그래핀 분리 방법, 그래핀 분리 장치, 그래핀층 형성 방법, 및, 그래핀층 형성 장치
Rianto et al. Analysis of crystal structure of Fe3O4 thin films based on iron sand growth by spin coating method
Bao et al. Zn-doped Tin monoxide nanobelt induced engineering a graphene and CNT supported Zn-doped Tin dioxide composite for Lithium-ion storage
JP7138904B2 (ja) 薄層黒鉛の製造方法
CN106044809A (zh) 一种完全分散α氧化铝纳米颗粒的制备方法
CN106103337A (zh) 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池
JP2021513005A (ja) ゲルマニウム結晶
EP3246286A1 (en) Method for producing sheets of graphene
CN204454597U (zh) 一种吨级生产石墨烯的类机械剥离装置
Zaldi EFFECT OF COMPOSITION VARIATION ON CRYSTAL SIZE OF MnO-Fe₂O₃/PS NANOCOMPOSITE LAYER AS SELF CLEANING
Straue et al. Profile Rod Technique: Continuous Manufacture of Submicrometer‐Thick Ceramic Green Tapes and Coatings Demonstrated for Nanoparticulate Zinc Oxide Powders
US20050229499A1 (en) Fixed abrasive grinding/polishing tool
CAMERA Self organisation of gold particles in Langmuir layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant