WO2016101260A1 - 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池 - Google Patents

纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池 Download PDF

Info

Publication number
WO2016101260A1
WO2016101260A1 PCT/CN2014/095128 CN2014095128W WO2016101260A1 WO 2016101260 A1 WO2016101260 A1 WO 2016101260A1 CN 2014095128 W CN2014095128 W CN 2014095128W WO 2016101260 A1 WO2016101260 A1 WO 2016101260A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
nanopowder
nano
electrode
particles
Prior art date
Application number
PCT/CN2014/095128
Other languages
English (en)
French (fr)
Inventor
黄汉璋
何铭祥
邹易谚
廖建翔
Original Assignee
恒耀能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒耀能源股份有限公司 filed Critical 恒耀能源股份有限公司
Priority to CN201480002404.2A priority Critical patent/CN106103337A/zh
Priority to PCT/CN2014/095128 priority patent/WO2016101260A1/zh
Publication of WO2016101260A1 publication Critical patent/WO2016101260A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to a spheroidized nanopowder having a rigid structure and a method of fabricating the same, and more particularly to a spheroidized nanopowder having a rigid structure which can be used for an electrode and a battery including the electrode.
  • Powder materials science is the most active part of the field of materials science. More than 75% of new materials (including nanomaterials) in the world are obtained through the research and development of powder materials. At present, emerging technologies such as precision ceramics, superconducting materials and energy materials are rooted in powder preparation technology. The industry has developed such a variety of new materials using such powder preparation techniques, and thus the powder preparation technology has attracted attention.
  • Nanomaterials have been the subject of recent research in the development of new materials and product characteristics by scientists and industry, and have become the main research objects in the chemical, chemical and materials industries. As the amount of particle size changes, it will cause a qualitative change in the properties of the particles under certain conditions. A change in macroscopic physical properties due to a decrease in particle size is referred to as a small size effect.
  • the smaller size of the nano-microparticles means that their specific surface area is significantly increased, making their optical, thermal, magnetic and mechanical properties different from micron or centimeter-sized particles.
  • Metals appear black in nanometer size because metal nanoparticles have a low reflectance of light (usually less than 1%) and a particle size of about a few microns can be completely extinguished.
  • the metal nano-particles can be used as high-efficiency conversion materials such as photothermal and photoelectric, and the solar energy can be efficiently converted into heat energy or electric energy.
  • the melting point of the solid material at a large particle size is a fixed value at normal temperature and normal pressure, but its melting point is remarkably lowered after ultrafine refinement, especially when the particle diameter is less than 10 nm.
  • silver has a conventional melting point of 670 ° C, but silver nano-particles may have a melting point of less than 100 ° C. Therefore, the conductive paste made of ultrafine silver powder can be sintered at a low temperature, and the substrate of the assembly does not have to be made of a ceramic material resistant to high temperature, and even plastic can be used.
  • the magnetic properties of small-sized nano-microparticles are significantly different from those of large-sized particles.
  • the coercivity of large-sized pure iron is about 80 amps/meter; and when the size of iron particles is reduced to less than 2 ⁇ 10 -2 micrometers, the coercive force can be increased by a thousand times; if the size of iron particles When further reduced to less than about 6 x 10 -3 microns, the coercive force is reduced to zero and exhibits superparamagnetism.
  • Magnetic nano-particles with high coercivity make magnetic nano-particles composed of iron or other metals can be prepared into magnetic storage magnetic powder with high storage density, which is widely used in magnetic tapes, magnetic disks, magnetic cards and magnetic keys.
  • Ceramic materials are brittle under external pressure under normal conditions, but nano-ceramic materials made of nano-microparticles have good toughness. This is because the nano-ceramic material has a rather confusing interface of atoms. The atoms are easily migrated under the condition of external force deformation and exhibit excellent toughness and certain ductility, making the ceramic material different from the usual ceramic materials. Mechanical properties. The metal exhibiting nano-grain is 3-5 times harder than the conventional coarse-grain metal.
  • the nano-powder After the nano-powder is spheroidized, it has a great help to the material properties.
  • the irregularly shaped powder particles When the irregularly shaped powder particles are mixed, severe agglomeration and particle bridging occur, and when the particles are stacked and filled, there is a large gap between the particles, so the powder bulk density is low.
  • the spheroidized particles of a regular shape When the spheroidized particles of a regular shape are stacked and filled, the contact faces between the particles are small, there is no agglomeration and particle bridging, the voids between the particles are small, and the powder bulk density is high.
  • the pulverization of the powder particles for the battery material can effectively increase the material bulk density and the volume specific capacity.
  • the spheroidized material also has excellent fluidity, dispersibility and workability, and is very advantageous for coating the electrode material slurry and the electrode sheet, and improving the quality of the electrode sheet.
  • Spherical nanopowders with higher bulk density and enhanced particle strength play an important role in the application of materials.
  • spherical particles with insufficient strength are subjected to very large compressive stress during the preparation process and are broken, which will seriously affect the adhesion of the battery pole pieces; on the other hand, the regular spherical particle surface is more serious. It is easy to coat a complete, uniform and strong decorative layer, so spherical materials are more promising to further improve the overall performance through surface modification.
  • US 2009/0212267 A1 discloses a high-strength nano-spherical powder in which a grinding medium having a smaller particle size, such as a grinding medium having an average particle diameter of less than about 250 ⁇ m, less than about 150 ⁇ m, less than about 100 ⁇ m or even less than about 10 ⁇ m, is used. Particles having an average particle diameter of less than 100 nm are ground.
  • a grinding medium having a smaller particle size such as a grinding medium having an average particle diameter of less than about 250 ⁇ m, less than about 150 ⁇ m, less than about 100 ⁇ m or even less than about 10 ⁇ m
  • the Korean Patent Publication No. 2007-0081831 discloses a relatively strong secondary particle made by using a dry mixed nanosized primary particle, which has a problem of uniformity in the dry dispersion preparation process.
  • European Patent Publication No. EP 2 362 972 B1 discloses a nano-spheroidized powder produced by wet coprecipitation, in which co-precipitation requires high production cost and technology, and precise control of temperature, pH, concentration, and type of chelating agent is required. Parameters such as rotational speed, and subsequent preparation processes such as cleaning, filtration, drying, and sintering are complicated.
  • the method for fabricating a spheroidized nano-powder having a rigid structure disclosed in the present invention uses a larger-sized grinding medium, which has the advantages of relatively small wear rate, easier maintenance, and is more suitable for mass production.
  • the average particle diameter D50 of the nanopowder particles after grinding may be less than 100 nm.
  • the preparation method of the invention is simple, and only the grinding, spray drying and sintering can complete the preparation of the spherical nano powder with rigid structure.
  • the spheroidized nanopowder having a rigid structure is also referred to as a nanopowder.
  • One aspect of the present invention provides a method for fabricating a spheroidized nanopowder having a rigid structure, comprising: preparing a mixture having a predetermined slurry solid content containing a precursor powder and a grinding medium; and using the grinding medium to The precursor powder is subjected to wet grinding to obtain the nano-powder, wherein when the average particle diameter D50 of the primary particles generated in the wet grinding reaches 100 nm, the solid content of the slurry is still 40% to 60 %.
  • Another aspect of the present invention provides a lithium iron phosphate or lithium iron manganese cathode material comprising the spheroidized nano powder having a rigid structure obtained by the above production method.
  • Still another aspect of the present invention provides a battery comprising an electrode, wherein the electrode comprises the spheroidized nanopowder having a rigid structure obtained by the above-described manufacturing method.
  • Still another aspect of the present invention provides a battery comprising an electrode, wherein the electrode comprises a spheroidized nanopowder having a rigid structure, and the electrode has a compaction density of greater than or equal to 2.0 g/cm 3 .
  • Another aspect of the present invention provides a method of fabricating a spheroidized nanopowder having a rigid structure, comprising: providing at least two precursor powders, the at least two precursor powders having a plurality of particles; Adding a substance dispersing the at least two precursor powders to the precursor powder to obtain an intermediate; wetly grinding the intermediate such that the plurality of particles are ground into primary particles having a nanometer-scale particle size; and a spray The wet ground intermediate is dried.
  • a further aspect of the present invention provides a method of producing a spheroidized nanopowder having a rigid structure, comprising: providing a precursor powder; and performing the precursor powder on a grinding medium having a diameter of 0.3 mm to 0.5 mm. Wet grinding to obtain primary particles as the primary embryo particles of the nanopowder, wherein the primary particles have an average particle diameter D50 as low as 100 nm.
  • Yet another aspect of the present invention provides a method of producing a spheroidized nanopowder having a rigid structure, comprising: providing a precursor powder; carbonizing the precursor powder to form an intermediate product; The product is sintered to form the nanopowder, wherein the nanopowder has a carbon content of less than 2.5% after the sintering process.
  • the spheroidized nano powder with rigid structure of the invention can be applied to the fields of batteries and the like, and has excellent properties and high application value.
  • FIG. 1 shows a scanning electron micrograph of an electrode sheet fabricated into a battery having a rigid structure of spheroidized LiFePO 4 nanopowder according to an embodiment of the present invention, wherein
  • FIG. 1(a) is a scanning electron microscope (SEM) image showing a 1000-fold magnification of a compressive stress without stress stress when the spheroidized LiFePO 4 nanopowder having a rigid structure of the present invention is fabricated into an electrode sheet of a battery;
  • SEM scanning electron microscope
  • Fig. 1(b) is a scanning electron microscope of 1000 times magnification subjected to compressive stress (compaction density 2.0 g/cm 3 ) when the spheroidized LiFePO 4 nanopowder having a rigid structure of the present invention is fabricated into an electrode sheet of a battery.
  • Fig. 1(c) is a scanning electron micrograph showing a 5000-fold magnification of a compressive stress without stress stress when the spheroidized LiFePO 4 nanopowder having a rigid structure of the present invention is formed into an electrode sheet of a battery;
  • Fig. 1(d) is a scanning electron microscope of 5000 times magnification subjected to compressive stress (compaction density 2.0 g/cm 3 ) when the spheroidized LiFePO 4 nanopowder having a rigid structure of the present invention is fabricated into an electrode sheet of a battery.
  • a method of spheroidizing nano-powder having a rigid structure produced by the method of the present invention is exemplified by making a LiFePO 4 powder material.
  • Li 2 CO 3 :FePO 4 powder having an equivalent ratio of 0.9-1.1:1.0 was added to deionized water, and 0.5%-6% (w/w) of the additive was added.
  • the additives include, but are not limited to, an adsorption group copolymer, an alkylhydroxy ammonium salt of a polyfunctional polymer, a polyammonium methacrylate salt, or a combination thereof.
  • the aforementioned added additives have a function in this system to help form a rigid spherical nanostructure.
  • the solid content of the slurry can reach 40% to 60%, and it is uniformly stirred and sent to a grinder for wet grinding.
  • a zirconia ball having a diameter of 0.3 mm to 0.5 mm is added to the grinding barrel to achieve a filling rate of 50-85% (v/v).
  • the average particle diameter D50 to be ground until the particles are 0.1 to 0.3 ⁇ m it is sent to a spray dryer for spray drying.
  • a spheroidized secondary particle powder having an average particle diameter D50 of 1 to 20 ⁇ m was obtained.
  • oxygen-free sintering was carried out by introducing nitrogen (N 2 ) or argon (Ar), and the temperature was raised to 600-800 ° C for 2-6 hours to obtain a nano-sphericized LiFePO 4 powder having a rigid structure.
  • the nano-sphericized LiFePO 4 powder has a carbon content of less than 2% after the solid state sintering process.
  • the nano-sphericized LiFePO 4 powder having a rigid structure has a BET specific surface area of 5 to 15 m 2 /g and a tap density of more than 1.0 g/cm 3 .
  • Coin cell test 85-90% (w/w) of nano-powder prepared according to Example 1 of the present invention and conductive carbon black (for example, 1-5% (w/w) Super P and 1-5% (w/w) KS6 (TIMCAL) and 5-8% (w/w) polyvinylidene fluoride binder (PVDF Binder) were mixed into a 100% (w/w) mixture. The mixture was mixed and applied into an electrode sheet as shown in Fig. 1 (a) and Fig. 1 (c) under a scanning electron microscope. 1(a) and FIG.
  • FIG. 1(c) are scanning electron microscopes of 1000 times and 5000 times of uncompressed stress when the spheroidized LiFePO 4 nanopowder having a rigid structure is formed into a battery sheet of the rigid structure.
  • Figure. When the compacted density of the electrode sheet after rolling is greater than 2.0 g/cm 3 , the nano powder can still maintain a spherical shape, that is, no deformation or cracking (see FIG. 1( b ) and FIG. 1 ). (d), wherein, FIG. 1(b) and FIG. 1(d) are respectively subjected to compressive stress (compact density 2.0) when the spheroidized LiFePO 4 nanopowder having a rigid structure is fabricated into an electrode sheet of a battery.
  • Adding a proper proportion of water-soluble organic carbon or inorganic carbon 4-10% (w/w) the slurry solid content can reach 40-60%, uniformly stirring and feeding into a grinder for wet grinding as in Example 1.
  • a zirconia ball having a diameter of 0.3 mm to 0.5 mm is added to the grinding barrel to achieve a filling rate of 50-85% (v/v).
  • the average particle diameter D50 to be ground until the particles are 0.1 to 0.3 ⁇ m it is sent to a spray dryer for spray drying. After the spray drying, a spherical secondary particle powder having an average particle diameter D50 of 1 to 20 ⁇ m was obtained.
  • oxygen-free sintering was carried out by introducing nitrogen or argon gas, and the temperature was raised to 600-800 ° C for 2-6 hours to obtain a nano-sphericized LiFe X Mn 1-X PO 4 powder having a rigid structure.
  • the carbon content after the solid state sintering process is less than 2.5%.
  • the nano-sphericized LiFe X Mn 1-X PO 4 powder having a rigid structure has a BET specific surface area of 5 to 25 m 2 /g and a tap density of more than 1.0 g/cm 3 .
  • the nano powder prepared according to Example 2 of the present invention is 85-90% (w/w) and conductive carbon black (for example, 1-5% (w/w) Super P and 1-5% (w/w) KS6) and 5-8% (w/w) polyvinylidene fluoride binder are mixed into a 100% (w/w) mixture, and the mixture is mixed. It is coated into an electrode sheet.
  • the compacted density of the electrode sheet after rolling is greater than 2.0 g/cm 3 , the nano powder can still maintain a spherical shape, that is, no deformation and no crack (results not shown).
  • the electrode sheet was assembled into a coin-type battery for electrical testing, and the specific capacity at a constant current charge of 0.1 C was greater than 160 mAh/g, and the specific capacity at 5 C discharge was greater than 135 mAh/g.
  • a method for producing a nano powder comprising:
  • the precursor powder is subjected to wet grinding using the grinding medium to obtain the nano-powder, wherein when the average particle diameter D50 of the primary particles generated in the wet grinding reaches 100 nm, the solid content of the slurry Still up to 40% to 60%.
  • a lithium iron phosphate or lithium iron manganese cathode material comprising the nanopowder obtained according to the production method according to any one of embodiments 1 to 7.
  • a battery comprising an electrode, wherein the electrode comprises the nanopowder obtained according to the production method of any one of embodiments 1-7.
  • a battery comprising an electrode, wherein the electrode comprises a spherical nanopowder, and the electrode has a compaction density greater than or equal to 2.0 g/cm ⁇ 3> .
  • a method of making a nanopowder comprising:
  • the wet ground intermediate is spray dried.
  • a method of making a nanopowder comprising:
  • the precursor powder is subjected to wet grinding with a grinding medium having a diameter of 0.3 mm to 0.5 mm to obtain primary particles as the primary embryo particles of the nano powder, wherein the primary particles have a low average particle diameter D50 To 100nm.
  • a method of making a nanopowder comprising:
  • the intermediate product is sintered to form the nanopowder, wherein the nanopowder has a carbon content of less than 2.5% after the sintering process.
  • the precursor powder is one selected from the group consisting of Li 2 CO 3 , FePO 4 , MnPO 4 , and combinations thereof.
  • the preparation method used in the present invention is very simple, and is mainly subjected to three steps of wet grinding, spray drying and sintering, and mass production can be easily realized.
  • the primary particles can be ground to less than 100 nm using only a conventional grinder and a grinding medium having a diameter of 0.3 mm to 0.5 mm. Therefore, capital expenditure can be significantly reduced.
  • the spheroidized nanometer powder with rigid structure of the invention can overcome the shearing force, compressive stress, thermal stress and the like which are subjected to the subsequent powder processing without being broken, can maintain the complete spherical particles, and the surface is easy to be coated completely, A uniform and firm modification layer to further improve the overall performance of the nanopowder.
  • the nano powder of the invention is applied to a battery
  • the electrode can overcome the problem of poor adhesion of spherical materials that the industry has long been unable to solve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种具刚性结构的球形化纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池。该纳米粉体的制备方法使用较大尺寸的研磨介质,制备方法简易,但可制作出高强度纳米球形粉体。

Description

纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池 技术领域
本发明涉及具刚性结构的球形化纳米粉体及其制作方法,特别是关于可用于电极及包含该电极的电池的具刚性结构的球形化纳米粉体。
背景技术
粉体材料科学是材料科学领域中最活跃的部分,当前世界上超过75%的新材料(包括纳米材料)均经由粉体材料科学研究与开发所获得。目前新兴的精密陶瓷、超导材料、能源材料等技术均根源于粉体制备技术。工业界利用此类粉体制备技术开发成各种新材料,因而使粉体制备技术深受瞩目。
纳米材料为近来科学家与工业界发展新材料与提升产品特性所竭力钻研的课题,并且已成为化学、化工及材料界的主要研究对象。随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。纳米微颗粒的尺寸变小代表其比表面积显著增加,从而使其光学、热学、磁学与力学等性质迥异于微米或厘米尺寸的颗粒。
(1)特殊的光学性质
金属在纳米尺寸都呈现黑色,是因为金属纳米微颗粒对光的反射率很低(通常可低于l%),大约数微米的粒径就能完全消光。利用此特性可以将金属纳米微颗粒作为高效率的光热、光电等转换材料,高效率地将太阳能转变为热能或电能。
(2)特殊的热学性质
固态物质在大尺寸粒径时的熔点在常温常压下为固定值,但超细微化后其熔点却显著降低,尤其当粒径小于10纳米时尤为显著。例如,银的常规熔点为670℃,但银纳米微颗粒的熔点可低于100℃。因此,超细微银粉制成的导电浆料可以进行低温烧结,此时组件的基片不必采用耐高温的陶瓷材料,甚至可采用塑料。
(3)特殊的磁学性质
小尺寸的纳米微颗粒的磁性与大尺寸颗粒的磁性显著地不同。例如:大尺寸的纯铁矫顽力约为80安/米;而当铁粒子的尺寸减小到2×10-2微米以下时,其矫顽力可增加1千倍;若铁粒子的尺寸进一步减小至大约小于6×10-3微米时,其矫顽力反而降低到零,呈现出超顺磁性。利用磁性纳米微颗粒具有高矫顽力的特性,由铁或其它金属所组成的磁性纳米微颗粒可制备成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等。
(4)特殊的力学性质
陶瓷材料在常态下受外在压力呈现脆性,但是由纳米微颗粒压制成的纳米陶瓷材料却具有良好的韧性。这是因为纳米陶瓷材料具有原子排列相当混乱的接口,原子在外力变形的条件下很容易迁移而表现出甚佳的韧性与一定的延展性,使陶瓷材料具有异于通常情况下的陶瓷材料的力学性质。呈现纳米晶粒的金属要比通常情况的粗晶粒金属硬3-5倍。
纳米粉体球形化后,对材料特性有很大的帮助。不规则形状的粉体粒子混合时发生严重的团聚与粒子架桥现象,颗粒在堆积填充时,粒子间存在较大的空隙,因此粉体堆积密度较低。规则形状的球形化粒子堆积填充时,粒子间接触面小,没有团聚与粒子架桥现象,粒子间的空隙较少,粉体堆积密度较高。例如,用于电池材料的粉体颗粒进行球形化后可有效地提高材料堆积密度与体积比容量。不仅如此,球形化的材料还具有优异的流动性、分散性与可加工性,十分有利于制作电极材料浆料与电极片的涂布,提升电极片质量。
堆积密度较高且粒子强度增强的球形化纳米粉体在材料的应用上扮演重要角色。例如,在电池材料的应用上,强度不够的球形粒子在制备过程中受到非常大的压应力而发生破裂,将对电池极片的附着性产生严重影响;另一方面,规则的球形颗粒表面较容易包覆完整、均匀且牢固的修饰层,因此球形材料更有希望通过表面修饰进一步改善综合性能。
US 2009/0212267 A1公开一种高强度纳米球形粉体,其中使用粒径较小的研磨介质,例如平均粒径小于约250μm、小于约150μm、小于约100μm或甚至小于约10μm的研磨介质,以研磨出平均粒径小于100nm的粒子。但使用较小研磨介质的生产成本较高,且磨耗率较大不易大量生产。
欧洲专利公告案EP 2362972B1中提及韩国专利公开案2007-0081831公开一种使用干法混合纳米化的一次粒子制成的较坚固的二次粒子,其干法分散制备过程会有均匀性问题。而欧洲专利公告案EP 2362972 B1公开一种采用湿法共沉淀的方式生产的纳米球形化粉体,其中共沉淀需较高的生产成本及技术,需精确控制温度、pH、浓度、螯合剂种类、转速等参数,且后续的清洗、过滤、干燥、烧结等制备过程较复杂。
本发明申请人鉴于现有技术中的不足,经过悉心试验与研究,并本着锲而不舍的精神,终构思出本发明,能够克服先前技术的不足,以下为本发明的简要说明。
发明内容
本发明公开的具刚性结构的球形化纳米粉体制作方法使用较大尺寸的研磨介质,其具有磨耗率相对较小、较易维护且较适合放量生产的优点。研磨后纳米粉体粒子的平均粒径D50一样可小于100nm。此外,本发明制备方法简易,只需研磨、喷雾干燥及烧结即可完成具刚性结构的球形化纳米粉体的制作。该具刚性结构的球形化纳米粉体亦简称纳米粉体。
本发明的一个方面在于提供一种具刚性结构的球形化纳米粉体的制作方法,包含:制备含有前驱物粉体及研磨介质的具有预定浆料固含量的混合物;以及利用该研磨介质对该前驱物粉体进行湿法研磨,以得到该纳米粉体,其中当在进行该湿法研磨中所产生的一次粒子的平均粒径D50达到100nm时,该浆料固含量仍达40%至60%。
本发明的另一个方面在于提供一种磷酸锂铁或磷酸锂铁锰正极材料,包含上述制作方法所获得的具刚性结构的球形化纳米粉体。
本发明的再一个方面在于提供一种包含电极的电池,其中该电极包含上述制作方法所获得的具刚性结构的球形化纳米粉体。
本发明的又一个方面在于提供一种包含电极的电池,其中该电极包含具刚性结构的球形化纳米粉体,且该电极的压实密度大于或等于2.0g/cm3
本发明的另一个方面在于提供一种制作具刚性结构的球形化纳米粉体的方法,包含:提供至少两种前驱物粉体,该至少两种前驱物粉体具复数粒子;于该至少两种前驱物粉体中添加分散该至少两种前驱物粉体的物质,以获得中间物;湿法研磨该中间物,使得该复数粒子被研磨成具有纳米等级的粒径的一次粒子;以及喷雾干燥该经湿法研磨的中间物。
本发明的再一方面在于提供一种制作具刚性结构的球形化纳米粉体的方法,包含:提供前驱物粉体;以及以直径为0.3mm-0.5mm的研磨介质对该前驱物粉体进行湿法研磨,以获得一次粒子,作为该纳米粉体的初胚粒子,其中该一次粒子的平均粒径D50可低至100nm。
本发明的又一方面在于提供一种制作具刚性结构的球形化纳米粉体的方法,包含:提供前驱物粉体;对该前驱物粉体进行加碳,以形成中间产物;以及对该中间产物进行烧结,以形成该纳米粉体,其中该纳米粉体在该烧结过程后的碳含量低于2.5%。
本发明的具刚性结构的球形化纳米粉体可应用于电池等领域,具有优异性质及极高的应用价值。
附图说明
图1显示了根据本发明的实施例,具刚性结构的球形化LiFePO4纳米粉体制作成电池的电极片的扫描电镜图,其中,
图1(a)为将本发明的具刚性结构的球形化LiFePO4纳米粉体制作成电池的电极片时未受到压应力的1000倍放大的扫瞄式电子显微镜(SEM)图;
图1(b)为将本发明的具刚性结构的球形化LiFePO4纳米粉体制作成电池的电极片时受到压应力(压实密度2.0g/cm3)的1000倍放大的扫瞄式电子显微镜图;
图1(c)为将本发明的具刚性结构的球形化LiFePO4纳米粉体制作成电池的电极片时未 受到压应力的5000倍放大的扫瞄式电子显微镜图;
图1(d)为将本发明的具刚性结构的球形化LiFePO4纳米粉体制作成电池的电极片时受到压应力(压实密度2.0g/cm3)的5000倍放大的扫瞄式电子显微镜图。
具体实施方式
本发明可由以下的实施例说明而得到,然而本发明的实施并非可由下列实施例而被限制其实施型态,本领域技术人员仍可依据下列实施例的精神推演出其它实施例,该等实施例皆当属于本发明的范围。
实施例1
根据本发明的方法制作的具刚性结构的球形化纳米粉体的方法,实施例1以制作LiFePO4粉体材料为例。加入当量比0.9-1.1:1.0的Li2CO3:FePO4粉体于去离子水中,并添加0.5%-6%(w/w)的添加剂。较佳地,添加剂包括但不限于吸附基团共聚物、多官能聚合物的烷羟基铵盐、聚甲基丙烯酸铵盐或其组合。前述所添加的添加剂在此系统内具有帮助形成刚球形纳米结构的功能。再加入适当比例的水溶性有机碳(包括但不限于葡萄糖、柠檬酸、水杨酸)或无机碳(包括但不限于乙炔黑、碳黑Super P(TIMCAL公司))4-8%(w/w),浆料固含量可达40%至60%,均匀搅拌后送入研磨机中进行湿法研磨。将直径为0.3mm-0.5mm的氧化锆球加入研磨桶内,达到50-85%(v/v)的填充率。待研磨至粒子的平均粒径D50为0.1-0.3μm时,送至喷雾干燥机进行喷雾干燥。喷雾干燥后得到平均粒径D50为1-20μm的球形化二次粒子粉体。接着通入氮气(N2)或氩气(Ar)进行无氧烧结,并升温至600-800℃烧结2-6小时,得到具刚性结构的纳米球形化LiFePO4粉体。该纳米球形化LiFePO4粉体在固态烧结过程后的碳含量小于2%。该具刚性结构的纳米球形化LiFePO4粉体的BET比表面积为5-15m2/g,振实密度大于1.0g/cm3
硬币型电池测试(coin cell test):将依据本发明实施例1制作的纳米粉体85-90%(w/w)与导电碳黑(例如1-5%(w/w)的Super P及1-5%(w/w)的KS6(TIMCAL公司))及5-8%(w/w)的聚偏二氟乙烯黏结剂(PVDF Binder)混合成100%(w/w)的混合物。将该混合物混浆涂布成电极片,其在扫描电子显微镜下如图1(a)及图1(c)所示。其中,图1(a)及图1(c)分别为本发明的具刚性结构的球形化LiFePO4纳米粉体制作成电池的电极片时未受压应力的1000倍及5000倍放大的扫描电子显微镜图。当该电极片经碾压后的压实密度(compacted density)大于2.0g/cm3时,该纳米粉体仍能够维持球形,即不变形,亦无破裂(如图1(b)及图1(d)所示),其中,图1(b)及图1(d)分别为本发明的具刚性结构的球形化LiFePO4纳米粉体制作成电池的电极片时受到压应力(压实密度2.0g/cm3)的1000倍及5000倍放大的扫描电子显微镜图。将该电极片组装成硬币型电池进行电性测试,可得在0.1C定电流充电时的比容 量大于160mAh/g,在5C放电时的比容量大于135mAh/g。
实施例2
实施例2以制作LiFeXMn1-XPO4粉体材料为例(X=0.2-0.5)。将当量比1.0-1.05:X(0.2-0.5):1-X(0.5-0.8)的Li2CO3:FePO4:MnPO4粉体加入去离子水中,并添加0.5%-6%(w/w)的添加剂如同实施例1。再加入适当比例的水溶性有机碳或无机碳4-10%(w/w),浆料固含量可达40-60%,均匀搅拌后送入研磨机中进行湿法研磨如同实施例1,将直径为0.3mm-0.5mm的氧化锆球加入研磨桶内,达到50-85%(v/v)的填充率。待研磨至粒子的平均粒径D50为0.1-0.3μm时,送至喷雾干燥机进行喷雾干燥。使得喷雾干燥后得到平均粒径D50为1-20μm的球形化二次粒子粉体。接着通入氮气或氩气进行无氧烧结,并升温至600-800℃烧结2-6小时,得到具刚性结构的纳米球形化LiFeXMn1-XPO4粉体。固态烧结过程后的碳含量小于2.5%。该具刚性结构的纳米球形化LiFeXMn1-XPO4粉体的BET比表面积为5-25m2/g,振实密度大于1.0g/cm3
硬币型电池测试:如同实施例1所述,将依据本发明实施例2制作的纳米粉体85-90%(w/w)与导电碳黑(例如1-5%(w/w)的Super P及1-5%(w/w)的KS6)及5-8%(w/w)的聚偏二氟乙烯黏结剂混合成100%(w/w)的混合物,并将该混合物混浆涂布成电极片。当该电极片经碾压后的压实密度大于2.0g/cm3时,该纳米粉体仍能够维持球形,即不变形,亦无破裂(结果未示出)。将该电极片组装成硬币型电池进行电性测试,可得到0.1C定电流充电时的比容量大于160mAh/g,在5C放电时的比容量大于135mAh/g。
实施例
1.一种纳米粉体的制作方法,包含:
制备含有前驱物粉体及研磨介质的具有预定浆料固含量的一混合物;以及
利用该研磨介质对该前驱物粉体进行湿法研磨,以得到该纳米粉体,其中当在进行该湿法研磨中所产生的一次粒子的平均粒径D50达到100nm时,该浆料固含量仍达40%至60%。
2.如实施例1所述的制作方法,其中该研磨介质的一直径介于0.3mm至0.5mm之间。
3.如实施例2所述的制作方法,其中该研磨介质为氧化锆。
4.如实施例1-3其中之一所述的制作方法,进一步包括:在进行湿法研磨时加入添加剂。
5.如实施例4所述的制作方法,其中该添加剂是选自由吸附基团共聚物、多官能聚合物的烷羟基铵盐、聚甲基丙烯酸铵盐及其组合所组成的群组其中之一。
6.如实施例1-5其中之一所述的制作方法,进一步包括:在完成湿法研磨后再进行喷雾干燥程序。
7.如实施例6所述的制作方法,进一步包括:在完成该喷雾干燥程序后进行烧结程序。
8.一种磷酸锂铁或磷酸锂铁锰正极材料,包含根据实施例1-7其中之一所述的制作方法所获得的纳米粉体。
9.一种包含电极的电池,其中该电极包含根据实施例1-7其中之一所述的制作方法所获得的纳米粉体。
10.一种包含电极的电池,其中该电极包含球形的纳米粉体,且该电极的压实密度大于或等于2.0g/cm3
11.一种制作纳米粉体的方法,包含:
提供至少两种前驱物粉体,该至少两种前驱物粉体具复数粒子;
于该至少两种前驱物粉体中添加分散该至少两种前驱物粉体的物质,以获得中间物;
湿法研磨该中间物,使该复数粒子被研磨成具有纳米等级的粒径的一次粒子;以及
喷雾干燥该经湿法研磨的中间物。
12.如实施例11所述的方法,更包含在该喷雾干燥后进行烧结,且该一次粒子的一平均粒径可低至100nm。
13.一种制作纳米粉体的方法,包含:
提供一前驱物粉体;以及
以直径为0.3mm-0.5mm的研磨介质对该前驱物粉体进行湿法研磨,以获得一一次粒子,作为该纳米粉体的初胚粒子,其中该一次粒子的平均粒径D50可低至100nm。
14.如实施例13所述的方法,其中该研磨介质为氧化锆球。
15.一种制作纳米粉体的方法,包含:
提供前驱物粉体;
对该前驱物粉体进行加碳,以形成中间产物;以及
对该中间产物进行烧结,以形成该纳米粉体,其中该纳米粉体在该烧结过程后的碳含量低于2.5%。
16.如实施例15所述的方法,其中该前驱物粉体是选自包含Li2CO3、FePO4、MnPO4及其组合所组成的群组其中之一。
由上可知,本发明所使用的制备方法非常简易,主要经过湿法研磨、喷雾干燥与烧结三个步骤,可轻易实现大量生产。经由有效控制浆料黏度,只需使用一般的研磨机与直径为0.3mm-0.5mm的研磨介质,即可将一次粒子研磨至小于100nm。因此可以有效地大幅降低资本支出。本发明的具刚性结构的球形化纳米粉体可以克服后续粉体加工所承受的剪切力、压应力、热应力等而不致于破碎,可保持完整的球形颗粒,表面较容易包覆完整、均匀且牢固的修饰层,以进一步改善纳米粉体的综合性能。本发明的纳米粉体应用于电池 的电极时可克服业界长久以来无法解决的球形材料加工附着力不佳的问题。
本发明实属难能的创新发明,深具产业价值,因此依法提出申请。此外,本发明可以由本领域技术人员做任何修改,但不脱离如所附权利要求所要保护的范围。

Claims (16)

  1. 一种纳米粉体的制作方法,包含:
    制备含有前驱物粉体及研磨介质的具有预定浆料固含量的混合物;以及
    利用所述研磨介质对所述前驱物粉体进行湿法研磨,以得到所述纳米粉体,其中,当在进行所述湿法研磨中所产生的一次粒子的平均粒径D50达到100nm时,所述浆料固含量仍达40%至60%。
  2. 如权利要求1所述的制作方法,其中所述研磨介质的直径介于0.3mm至0.5mm之间。
  3. 如权利要求2所述的制作方法,其中所述研磨介质为氧化锆。
  4. 如权利要求1所述的制作方法,进一步包括:在进行所述湿法研磨时加入添加剂。
  5. 如权利要求4所述的制作方法,其中所述添加剂是选自由吸附基团共聚物、多官能聚合物的烷羟基铵盐、聚甲基丙烯酸铵盐及其组合所组成的群组其中之一。
  6. 如权利要求1所述的制作方法,进一步包括:在完成所述湿法研磨后再进行喷雾干燥程序。
  7. 如权利要求6所述的制作方法,进一步包括:在完成所述喷雾干燥程序后进行烧结程序。
  8. 一种磷酸锂铁或磷酸锂铁锰正极材料,包含根据权利要求1所述的制作方法所获得的纳米粉体。
  9. 一种包含电极的电池,其中所述电极包含根据权利要求1所述的制作方法所获得的纳米粉体。
  10. 一种包含电极的电池,其中所述电极包含球形的纳米粉体,且所述电极的压实密度大于或等于2.0g/cm3
  11. 一种制作纳米粉体的方法,包含:
    提供至少两种前驱物粉体,该至少两种前驱物粉体具复数粒子;
    向所述至少两种前驱物粉体中添加分散所述该至少两种前驱物粉体的物质,以获得中间物;
    湿法研磨所述中间物,使得所述复数粒子被研磨成具有纳米等级的粒径的一次粒子;以及
    喷雾干燥经湿法研磨的中间物。
  12. 如权利要求11所述的方法,进一步包含在该喷雾干燥后进行烧结,且所述一次粒子的平均粒径可低至100nm。
  13. 一种制作纳米粉体的方法,包含:
    提供前驱物粉体;以及
    以直径为0.3mm-0.5mm的研磨介质对该前驱物粉体进行湿法研磨,以获得一次粒子,作为所述纳米粉体的初胚粒子,其中所述一次粒子的平均粒径D50可低至100nm。
  14. 如权利要求13所述的方法,其中所述研磨介质为氧化锆球。
  15. 一种制作纳米粉体的方法,包含:
    提供前驱物粉体;
    对所述前驱物粉体进行加碳,以形成中间产物;以及
    对所述中间产物进行烧结,以形成所述纳米粉体,其中所述纳米粉体的碳含量低于2.5%。
  16. 如权利要求15所述的方法,其中所述前驱物粉体是选自包含Li2CO3、FePO4、MnPO4及其组合所组成的群组其中之一。
PCT/CN2014/095128 2014-12-26 2014-12-26 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池 WO2016101260A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480002404.2A CN106103337A (zh) 2014-12-26 2014-12-26 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池
PCT/CN2014/095128 WO2016101260A1 (zh) 2014-12-26 2014-12-26 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095128 WO2016101260A1 (zh) 2014-12-26 2014-12-26 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池

Publications (1)

Publication Number Publication Date
WO2016101260A1 true WO2016101260A1 (zh) 2016-06-30

Family

ID=56148988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095128 WO2016101260A1 (zh) 2014-12-26 2014-12-26 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池

Country Status (2)

Country Link
CN (1) CN106103337A (zh)
WO (1) WO2016101260A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115924875A (zh) * 2022-12-23 2023-04-07 上海纳米技术及应用国家工程研究中心有限公司 一种高压实磷酸锰铁锂正极材料的制备方法及其产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315871A (ja) * 2005-05-10 2006-11-24 Pentax Corp リン酸カルシウム系化合物ナノ粒子、その分散液およびそれらの製造方法
US20080138710A1 (en) * 2005-05-10 2008-06-12 Ben-Jie Liaw Electrochemical Composition and Associated Technology
CN102208644A (zh) * 2011-04-28 2011-10-05 侯春平 用作锂离子电池正极材料的复合磷酸锰锂及其制备方法和锂离子电池
US20120046387A1 (en) * 2010-08-19 2012-02-23 Keng Te Chu Slurry for preparing boron nitride aggregates of spherical geometry and application thereof
CN103050697A (zh) * 2012-12-31 2013-04-17 中山火炬职业技术学院 一种高倍率锂离子电池正极材料微米级LiFePO4/C的制备方法
CN103258995A (zh) * 2013-06-06 2013-08-21 郑州瑞普生物工程有限公司 磷酸铁锂材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081696B (zh) * 2007-05-15 2010-08-25 深圳市贝特瑞电子材料有限公司 锂离子动力电池用磷酸铁锂材料及其制备方法
CN102208621A (zh) * 2011-04-21 2011-10-05 浙江美思锂电科技有限公司 一种适于工业化生产的纳米磷酸铁锂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315871A (ja) * 2005-05-10 2006-11-24 Pentax Corp リン酸カルシウム系化合物ナノ粒子、その分散液およびそれらの製造方法
US20080138710A1 (en) * 2005-05-10 2008-06-12 Ben-Jie Liaw Electrochemical Composition and Associated Technology
US20120046387A1 (en) * 2010-08-19 2012-02-23 Keng Te Chu Slurry for preparing boron nitride aggregates of spherical geometry and application thereof
CN102208644A (zh) * 2011-04-28 2011-10-05 侯春平 用作锂离子电池正极材料的复合磷酸锰锂及其制备方法和锂离子电池
CN103050697A (zh) * 2012-12-31 2013-04-17 中山火炬职业技术学院 一种高倍率锂离子电池正极材料微米级LiFePO4/C的制备方法
CN103258995A (zh) * 2013-06-06 2013-08-21 郑州瑞普生物工程有限公司 磷酸铁锂材料的制备方法

Also Published As

Publication number Publication date
CN106103337A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
KR101113976B1 (ko) 자기조립된 전극 활물질-탄소 나노튜브 복합체와 그 제조 방법 및 이를 포함하는 이차전지
CN101847714B (zh) 锂离子电池用碳包覆核壳结构纳米合金负极材料的制备方法
Wang et al. Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability
Deng et al. One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries
JP6625646B2 (ja) 粉末、このような粉末を含む電極および電池
CN104157866B (zh) 用于高倍率锂离子电池的、具有分级微/纳米结构的金属/非金属共掺杂的钛酸锂球体
KR100905691B1 (ko) 탄소나노섬유를 혼성화시킨 리튬 이차전지용 음극 활물질
JP7420836B2 (ja) 電極材料用のシリカ粒子及びその製造方法と適用
JP2020507547A (ja) リチウムイオン電池のアノード材料のためのコア−シェル複合粒子
JP2008027912A (ja) カーボンナノファイバーと混成したリチウム二次電池用アノード活物質
WO2019019410A1 (zh) 改性无锂负极、其制备方法和含有其的锂离子电池
CN101636861A (zh) 颗粒阴极材料的制备方法及通过该方法制备的材料
CN111755669A (zh) 一种复合材料、其制备方法及用途
US20100173203A1 (en) Cathode composition for lithium ion battery and method for fabricating the same
Zhou et al. Structural design and material preparation of carbon-based electrodes for high-performance lithium storage systems
CN113636532A (zh) 一种改性磷酸锰铁锂正极材料,其制备方法及锂离子电池
Ullah et al. Recent trends in graphene based transition metal oxides as anode materials for rechargeable lithium-ion batteries
CN116053466A (zh) 磷酸锰铁锂正极材料及其制备方法、电极材料、电极及锂离子电池
KR101235596B1 (ko) 리튬 전이금속 인산화물 나노입자, 분산용액, 박막과 이를 이용한 리튬이차전지 및 그 제조방법
WO2016101260A1 (zh) 纳米粉体的制作方法、包含该纳米粉体的电极及包含该电极的电池
Guan et al. Core-shell structure and 3D CNTs networks promote Si@ Cu nanoparticle anodes with enhanced reversible capacity and cyclic performance for Li-ion batteries
CN117133913A (zh) 磷酸铁锂前驱体、磷酸铁锂材料及其制备方法和应用
CN111689525A (zh) 一种正硅酸盐系正极材料包覆三元材料的制备方法
TWI538285B (zh) 奈米粉體的製作方法、包含該奈米粉體的電極及包含該電極的電池
CN107317010A (zh) 一种包覆型磷酸铁锂材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908828

Country of ref document: EP

Kind code of ref document: A1