TW201303977A - 新型熱處理設備 - Google Patents

新型熱處理設備 Download PDF

Info

Publication number
TW201303977A
TW201303977A TW101120494A TW101120494A TW201303977A TW 201303977 A TW201303977 A TW 201303977A TW 101120494 A TW101120494 A TW 101120494A TW 101120494 A TW101120494 A TW 101120494A TW 201303977 A TW201303977 A TW 201303977A
Authority
TW
Taiwan
Prior art keywords
pulse
energy
substrate
pulses
laser
Prior art date
Application number
TW101120494A
Other languages
English (en)
Other versions
TWI547978B (zh
Inventor
Stephen Moffatt
Douglas E Holmgren
Samuel C Howells
Edric Tong
Bruce E Adams
Jiping Li
Aaron Muir Hunter
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201303977A publication Critical patent/TW201303977A/zh
Application granted granted Critical
Publication of TWI547978B publication Critical patent/TWI547978B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping

Abstract

本發明大體而言係關於光學系統,該光學系統能夠跨越包含於基材之表面上的退火區域可靠地遞送數量均勻之能量。該光學系統經調適以在基材之表面上之所要區域上遞送或投射具有所要二維形狀的數量均勻之能量。用於光學系統之能量源通常為複數個雷射,該複數個雷射經組合以形成能量場。

Description

新型熱處理設備
本文所描述之實施例係關於熱處理之設備及方法。更特定言之,本文所描述的設備及方法係關於半導體基材之雷射熱處理。
熱處理常用於半導體工業。在許多轉換環境(包括摻雜、活化以及閘極源、汲極及通道結構之退火、矽化、結晶、氧化等轉換環境)中,半導體基材受到熱處理。多年來,熱處理技術已從簡單的爐烘焙發展至日益快速增長的各種形式的熱處理,諸如RTP、尖波退火及雷射退火。
習知雷射退火處理使用雷射發射器,該等雷射發射器可為具有光學器件的半導體或固態雷射,該等光學器件聚焦、散焦或將雷射光不同地成像成所要形狀。常見方法係將雷射光成像成線或薄矩形影像。跨越基材掃描雷射光(或將基材移動至雷射光下方)以處理基材之整個表面。
隨著裝置幾何形狀持續縮減,諸如熱處理之半導體製造工藝挑戰在於發展增加之精度。在許多情況下,正在研究脈衝雷射製程以針對基材減少總熱預算及減少能量曝露之深度及持續時間。然而在產生具有能提供所要處理效能之時間形狀的雷射脈衝的同時,對於跨越基材之 表面的均勻處理所需之均勻度依然存在挑戰。因此,仍舊需要用於半導體基材之熱處理之新設備及方法。
揭示用於基材熱處理之系統。該系統具有通常為複數個雷射之能量源,用於產生施加於基材之能量場。使用脈衝控制模組組合及計量能量以形成組合能量脈衝。在脈衝成形模組中調整組合能量脈衝之時間形狀。在均勻器中調整能量之空間分佈。已調整的能量脈衝接著穿過用於沿著能量脈衝之光徑觀察基材的成像系統。
每一能量源通常遞送至少約10毫瓦的高功率能量脈衝,持續時間為約100奈秒或更少。脈衝控制模組具有組合光學器件,同時具有用於每一脈衝路徑之衰減器,該組合光學器件將兩個能量脈衝組合成一個能量脈衝。診斷模組量測脈衝之能量含量及時間形狀,用於反饋至將控制訊號發送至衰減器的控制器。在具有分光器及反射鏡路徑之脈衝形成器中時間地調整組合脈衝,該等分光器將每一脈衝分成複數個子脈衝,該等反射鏡路徑沿著具有不同長度的光徑發送子脈衝,在出口處重新組合子脈衝。在具有至少兩個微透鏡陣列之均勻器中空間地調整脈衝。成像系統具有光學元件,該光學元件捕獲自基材反射之光並將該光發送至成像器。本文所描述的處理模組可提供成型能量場,該成型能量場時間地經去相關且具有僅僅約4%的能量強度之空間標準差。
第1圖為用於基材之雷射處理的系統100之平面圖。系統100包含:具有複數個脈衝雷射源之能量模組102,該等脈衝雷射源產生複數個脈衝雷射脈衝;脈衝控制模組104,脈衝控制模組104將個別脈衝雷射脈衝組合成組合脈衝雷射脈衝,並控制該等組合脈衝雷射脈衝之強度、頻率特徵及偏光性特徵;脈衝成形模組106,脈衝成形模組106調整組合脈衝雷射脈衝之脈衝的時間輪廓;均勻器108,均勻器108調整脈衝之空間能量分佈,將組合脈衝雷射脈衝重疊成單個均勻能量場;孔構件116,孔構件116從能量場移除殘留邊緣不均勻度;及對準模組118,對準模組118允許雷射能量場與安置於基材支撐110上之基材的精度對準。控制器112耦接至能量模組102以控制雷射脈衝之產生,脈衝控制模組104控制脈衝特徵,且基材支撐110控制基材相對於能量場之移動。外殼114通常包覆系統100之操作組件。
雷射可為能夠形成短脈衝(例如持續時間小於約100奈秒)之任何類型的雷射,該雷射具有高功率雷射輻射。通常,使用大於約30M2的具有超過500個空間模態之高形態雷射。雖然頻繁地使用諸如Nd:YAG、Nd:玻璃、鈦-藍寶石或其他稀土摻雜晶體雷射之固態雷射,但是亦可使用諸如準分子雷射之氣體雷射,例如XeCl2、ArF或KrF雷射。例如可籍由q-開關(被動或主動)、增益 開關或模態鎖定切換雷射。亦可鄰近雷射之輸出使用泡克耳斯盒(Pockels cell)以籍由中斷由雷射放射的束形成脈衝。通常,可用於脈衝雷射處理之雷射能夠產生雷射輻射之脈衝,該等脈衝具有約100毫焦耳與約10焦耳之間的能量含量,持續時間為約1奈秒與約100微秒之間,通常約為1焦耳的能量含量和8奈秒的持續時間。雷射可具有約200奈米與約2,000奈米之間的波長,諸如約400奈米與約1,000奈米之間,例如約532奈米。在一個實施例中,雷射為q-切換倍頻Nd:YAG雷射。所有雷射可在相同波長上操作,或雷射之一或更多者可在自能量模組102中之其他雷射的不同波長上操作。可放大雷射以產生所要的功率水平。大多數情況下,放大媒體將為與雷射媒體相同或類似的成分。每一個別雷射脈衝通常被自身放大,但在一些實施例中,全部雷射脈衝可在組合後被放大。
遞送至基材的典型雷射脈衝為多個雷射脈衝之組合。在控制時間及彼此的控制關係中產生多個脈衝,以使得當組合該等多個脈衝時,雷射輻射之單個脈衝導致單個脈衝具有受控制的時間及空間能量輪廓(該輪廓具有受控制的能量上升、持續時間、及衰減)及受控制的能量不均勻度之空間分佈。控制器112可具有脈衝產生器,例如耦接至電壓源之電子計時器,該電子計時器耦接至每一雷射,例如耦接至每一雷射之每一開關,以控制自每一雷射產生脈衝。
安排複數個雷射以便每一雷射產生進入脈衝控制模組104中的脈衝,該脈衝控制模組104可具有一或更多個脈衝控制器105。第2A圖為根據一個實施例之脈衝控制器200A之平面圖。如上結合第1圖所述之一或更多個脈衝控制器105可各為諸如第2A圖所圖示之脈衝控制器200A之脈衝控制器。使用包含於外殼299中之光學器件以防止光污染,脈衝控制器200A將自能量模組102接收之第一輸入脈衝224A及自能量模組102接收之第二輸入脈衝224B組合成一個輸出雷射脈衝238。該兩個輸入雷射脈衝224A/B經由安置於外殼299之開口中之輸入透鏡202A及202B進入脈衝控制器200A。在第2A圖之實施例中,兩個輸入透鏡202A/B沿著外殼299之一個表面對準,雷射脈衝224A/B以實質地平行方向進入外殼299。
將兩個輸入脈衝224A/B引導至將兩個脈衝組合成一個脈衝238之組合光學器件208。組合光學器件具有:第一進入表面207A,該第一進入表面207A定向成垂直於入射脈衝226A之進入路徑;及第二進入表面207B,該第二進入表面207B定向成垂直於入射脈衝226B之進入路徑,以避免在進入組合光學器件208之後輸入脈衝226A/B之任何折射。第2A圖之組合光學器件208為具有選擇表面209之晶體,該選擇表面209經定向以使得第一及第二入射脈衝226A/B各以接近45°的角撞擊選擇表面209。選擇表面209有選擇地根據光之性質與光互 動。組合光學器件208之選擇表面209可反射第一入射脈衝226A且透射第二入射脈衝以產生組合脈衝228。為促進脈衝之組合,調適入射脈衝226A/B中之每一者以按特定方式與選擇表面209互動。
在一個實施例中,選擇表面209為偏光表面。偏光表面可具有偏光性之線性軸線,以使得平行於偏光表面之軸線偏光入射脈衝226B允許待由偏光表面透射之入射脈衝226B,且垂直於偏光表面之軸線偏光入射脈衝226A允許待由偏光表面反射之入射脈衝226A。將兩個入射脈衝226A/B對準至偏光表面上之相同斑點產生自組合光學器件208之第一出口表面207C出現之垂直於表面207C的組合脈衝228以避免組合脈衝228之任何折射。或者,選擇表面209可為圓形偏光器,相對於用於反射的圓形偏光器之指向圓形地偏光入射脈衝226A,且在與用於透射的圓形偏光器相同的指向中圓形地偏光入射脈衝226B。在另一實施例中,入射脈衝226A/B可具有不同波長,且選擇表面209可經配置以諸如使用電介質反射鏡反射一個波長之光及透射另一波長之光。
在偏光實施例中,使用偏光濾光器206A/B完成入射脈衝226A/B之偏光。偏光濾光器206A/B偏光待由組合光學器件208之選擇表面209有選擇地反射或透射之輸入脈衝224A/B。偏光濾光器206A/B可為波片,例如半波片或四分之一波片,偏光軸線定向成彼此垂直以產生 用於在選擇表面209處之選擇反射及透射之垂直偏光的光。可例如使用旋轉致動器205A/B獨立地調整每一偏光濾光器206A/B之軸線,以將入射脈衝226A/B之偏光與選擇表面209之偏光軸線精密地對準,或提供輸入脈衝226A/B之偏光軸線與選擇表面209之偏光軸線之間的所要偏角。
調整入射脈衝226A/B之偏光軸線控制組合脈衝228之強度,因為根據Malus定律,偏光濾光器透射入射光,Malus定律認為由偏光濾光器透射之光的強度與入射強度及濾光器之偏光軸線與入射光之偏光軸線之間的角之余弦的平方成比例。因此,旋轉偏光濾光器206A以便偏光濾光器206A之偏光軸線背離垂直於選擇表面209之偏光軸線的方向,導致入射脈衝226A之部分透射穿過選擇表面209。同樣地,旋轉偏光濾光器206B以便偏光濾光器206B之偏光軸線背離平行於選擇表面209之軸線的方向,導致入射脈衝226B之部分自選擇表面209反射。將來自入射脈衝226A/B中之每一者之「非選擇的光」組合成拒絕脈衝230,該拒絕脈衝230經由第二出口表面207D退出組合光學器件208並進入脈衝傾卸場210。以此方式,偏光濾光器中之每一者作為減光器開關以衰減穿過偏光濾光器之脈衝之強度。
應注意,將由組合光學器件208組合之兩個脈衝226A/B引導至選擇表面209之相對側以用於選擇反射及透射。因此,籍由反射器204沿著引出第一輸入脈衝 202A之路徑將第一輸入脈衝202A引導至選擇表面209之反射側,同時將第二輸入脈衝202B引導至選擇表面209之透射側。可自然地使用反射器之任何組合以在脈衝控制模組104中沿著所要路徑控制光。
組合脈衝228與第一分離器212互動,該第一分離器212將組合脈衝228分離成輸出脈衝238及取樣脈衝232。分離器212可為部分反射鏡或脈衝分離器。將取樣脈衝232引導至診斷模組233,該診斷模組233分析取樣脈衝232之性質以表現輸出脈衝238之性質。在第2A圖之實施例中,診斷模組233具有兩個偵測器216及218,該兩個偵測器216及218分別偵測脈衝之時間形狀及脈衝之總能量含量。第二分離器214形成用於輸入至個別偵測器之第一脈衝236及第二脈衝234。時間形狀偵測器216為強度監視器,該強度監視器在非常短的時間範圍內將監視器上之光入射之強度形成訊號。時間形狀偵測器上之光脈衝入射可具有自1皮秒(psec)至100奈秒之總持續時間,因此可為光二極體或光二級體陣列之時間形狀偵測器在該等時間範圍之有用的再分處顯現強度訊號。能量偵測器218可為熱電裝置(諸如熱電偶),該熱電裝置將入射電磁輻射轉換成可經量測以指示能量取樣脈衝234之能量含量之電壓。因為第一分離器212及第二分離器214基於第一分離器212及第二分離器214之透射部分對入射光之已知部分進行取樣,可根據能量取樣脈衝234之能量含量計算輸出脈衝238之能量 含量。
可將來自診斷模組233之訊號發送至第1圖之控制器112,該控制器112可調整雷射操作或脈衝控制操作以獲得所要結果。回應於來自時間形狀偵測器216之結果,控制器112可調整耦接至每一雷射的主動q-開關的電子計時器以控制脈衝時序。更快地循環主動q-開關產生更短脈衝,且反之亦然。控制器112可耦接至旋轉致動器205A/B,以基於來自能量偵測器218之結果,籍由調整穿過偏光濾光器206A/B之光的偏光角調整輸出脈衝238之強度。以此方式,可獨立地控制輸出脈衝238之持續時間及能量含量。控制器112亦可經配置以調整至每一雷射之功率輸入。
若需要,則輸出脈衝238可由光閘220中斷。若將中斷自脈衝控制模組104出現之雷射能量以對在脈衝控制模組104之後的組件做出調整,可提供光閘220(如第2A圖及第2B圖中示意地圖示)作為安全裝置。輸出脈衝238經由輸出透鏡222退出脈衝控制模組104。
輸出脈衝238為兩個入射脈衝226A/B之組合。因此,輸出脈衝238具有表現兩個入射脈衝226A/B之性質之組合的性質。在如上所述之偏光實例中,輸出脈衝238可具有橢圓偏光,該橢圓偏光表現根據選擇表面209處的入射脈衝226A/B中之每一者的透射/反射度具有不同強度之兩個垂直偏光入射脈衝226A/B之組合。在一實例中,在選擇表面209處使用入射波長以組合兩個脈 衝,輸出脈衝238將具有根據兩個入射脈衝之個別的強度表現兩個入射脈衝226A/B之組合波長的波長。
舉例而言,可安置1,064奈米之反射電介質反射鏡於組合光學器件208之選擇表面209處。入射脈衝226A可具有用於自選擇表面209反射之接近1,064奈米的波長及強度A,且入射脈衝226B可具有用於透射穿過選擇表面209之532奈米的波長及強度B。組合脈衝228將為具有入射脈衝226A/B之波長及強度的兩個光子之同向傳播雙脈衝,總能量含量為兩個脈衝能量之和。
第2B圖為根據另一實施例之脈衝控制模組200B之平面圖。如上結合第1圖所述之一或更多個脈衝控制器105可各為諸如脈衝控制器200B或脈衝控制器200A之脈衝控制器。脈衝控制器200B與脈衝控制器200A相同,但具有下列差異。在第2B圖之實施例中,輸入透鏡202A並非位於鄰接外殼299之相同表面上的輸入透鏡202B。在第2B圖中,輸入透鏡202A位於外殼299之表面上,該表面與輸入透鏡202B位於之表面實質地垂直,在此實施例中輸入透鏡202A位於矩形外殼之相鄰壁面上。因此,第一輸入脈衝224A經由第一輸入透鏡202A(第2B圖之頁面的方向)進入且籍由反射器轉移至第2B圖之平面中,該反射器在第2B圖之視圖中由第一輸入透鏡202A隱藏。反射器240及反射器242定位輸入脈衝224B進入偏光器206B,從而說明在任何所要路徑上定位脈衝之反射器之使用。將脈衝導向在脈衝控制模組 104周圍可在定位雷射能量源受空間所限的情況下有助。
第2C圖及第2D圖為圖示具有多個脈衝控制器200A/B之實施例的示意圖。在第2C圖之實施例中,具有第2A圖之脈衝控制器200A之配置的兩個脈衝控制器與四個雷射源102A至102D對準以形成兩個組合脈衝238。在第2D圖之實施例中,形成具有位於彼此之間的所要距離「d」之兩個組合脈衝238。兩個脈衝控制器200C/D沿著第2D圖之平面接受來自兩個能量源102A及102C之輸入脈衝,且垂直於第2D圖之平面接受來自第2D圖之視圖中不可見的兩個能量源之輸入脈衝。兩個脈衝控制器200C/D與脈衝控制器200B相同,但具有下列差異。脈衝控制器200D經配置以使用輸出反射器254引導輸出脈衝244穿過輸出透鏡246。輸出透鏡246將輸出脈衝244引導至脈衝控制器200C之輸入透鏡248中至脈衝控制器200C之反射器250及輸出透鏡252。以此方式,當退出脈衝控制模組104(第1圖)時,兩個輸出脈衝238可定位於相距彼此任何所要距離「d」。對於大多數實施例而言,距離「d」將介於約1毫米與約1,000毫米之間,諸如小於50毫米,例如約35毫米。如第2D圖所示,距離「d」可小於脈衝控制器200C之尺寸。
第2E圖為第2D圖之設備之示意性俯視圖,圖示其中以直角關係配置能量源102之實施例。在第2E圖中可 見的能量源102B/D在第2D圖中為不可見。能量源102A/B產生用於在脈衝控制器200C中之處理之輸入脈衝224A/B,同時能量源102C/D產生用於在脈衝控制器200D中之處理之輸入脈衝224C/D。如第2D圖所圖示安排脈衝控制器200C/D之輸出脈衝,籍由所要距離「d」將該等輸出脈衝分開,該距離「d」在第2E圖中為不可見。應注意,在一些實施例中,脈衝控制器200A至脈衝控制器200D可為脈衝組合器。
一或更多個脈衝退出脈衝控制模組104並進入脈衝成形模組106,脈衝成形模組106具有一或更多個脈衝成形器107,如第1圖示意地圖示。第3A圖為脈衝成形器306之一個實施例之示意圖。脈衝成形模組106之一或更多個脈衝成形器107可各為諸如脈衝成形器306之脈衝成形器。第3A圖之脈衝成形器可包含複數個反射鏡352(例如,如所圖示之16個反射鏡)及複數個分離器(例如,元件符號350A至元件符號350E),使用該等元件延遲雷射能量脈衝之部分以提供具有所要特徵(例如,脈衝寬度及輪廓)之混合脈衝。在一個實例中,進入脈衝成形模組之雷射能量脈衝302可為空間相干的。在穿過第一分離器350A之後,雷射能量之脈衝分成兩個成分,或子脈衝354A、子脈衝354B。不考慮各種光學組件中之損失,根據第一分離器350A中之透射反射比,第一子脈衝354A中某一百分比(亦即,X%)之雷射能量轉移至第二分離器350B,且當第二子脈衝354B 在撞擊第二分離器350B之前由多個反射鏡352反射時,第二子脈衝354B之某一百分比(亦即,1-X%)之能量沿著路徑A至E(亦即,部分A至E)行進。
在一個實例中,選擇第一分離器350A之透射反射比以便將脈衝之能量之70%反射,且使脈衝之能量之30%透射穿過分離器。在另一實例中,選擇第一分離器350A之透射反射比以便將脈衝之能量之50%反射,且使脈衝之能量之50%透射穿過分離器。路徑A至E之長度,或部分A至E之長度之和(亦即,如第3A圖所圖示,總長=A+B+C+D+E),將控制子脈衝354A與子脈衝354B之間的延遲。通常籍由調整第一子脈衝354A與第二子脈衝354B之間的路線長度之差異,可實現每公尺路徑長度差異之約3.1奈秒(ns)之延遲。
遞送至第二脈衝350B之第一子脈衝354A中之能量經分離成第二子脈衝356A及第二子脈衝356B,該第二子脈衝356A直接地透射至第三分離器350C,該第二子脈衝356B在撞擊第三分離器350C前沿著路徑F至J傳輸。在第二脈衝350B中遞送之能量亦分離成第三子脈衝358A及第三子脈衝358B,該第三子脈衝358A直接地透射至第三分離器350C,該第三子脈衝358B在撞擊第三分離器350C前沿著路徑F至J傳輸。當子脈衝之每一者撞擊後續分離器(亦即,元件符號350D至元件符號350E)及反射鏡352直到子脈衝全部重新組合在最後分離器350E中時,繼續分離及延遲子脈衝中之每一 者之過程,該最後分離器350E經調適以主要地將能量遞送至熱處理設備100中之下一組件。最後分離器350E可為偏光分離器,該分離器調整自延遲區域或自先前分離器接收之子脈衝中之能量之偏光,以便將能量之偏光以所要之方向引導。
在一個實施例中,波片364定位於偏光類型之最後分離器350E前以便可以子脈衝所沿路徑360旋轉分離器350E之偏光。在不調整偏光之情況下,則能量之部分將由最後脈衝分離器反射而不能與另一分支重新組合。在一個實例中,脈衝成形器306中之全部能量為S-偏光的,且因此非偏光立方體分離器將輸入脈衝分離,但為偏光立方體之最後分離器組合接收之能量。子脈衝所沿路徑360中之能量將使該能量之偏光旋轉至P,該能量直接穿過偏光脈衝分離器,同時另一子脈衝所沿路徑362中之能量為S-偏光的且因此經反射以形成組合脈衝。
在一個實施例中,最後脈衝分離器350E包含非偏光分離器及反射鏡,該反射鏡經定位以組合自延遲區域或自先前分離器接收之能量。在此情況下,分離器欲將能量之部分投射至所要點,將已接收的能量之另一部分透射至該所要點,且反射鏡將引導剩下量的能量透射穿過分離器至相同的所要點。應注意,可籍由在本文所圖示之配置中添加脈衝分離類型組件及反射鏡來改變分離及延遲脈衝之次數以獲得所要脈衝持續時間及所要脈衝輪 廓。儘管第3A圖圖示脈衝成形器設計,該脈衝成形器設計使用具有分離器及反射鏡之四個脈衝延遲區域,但是此配置不欲限制本發明之範疇。
第3B圖圖示各種子脈衝之能量與時間圖之實例,該等子脈衝已穿過雙脈衝延遲區域脈衝成形器,該雙脈衝延遲區域類似於第3A圖所圖示之脈衝成形器之前兩個脈衝延遲區域。如第3B圖所圖示,遞送至脈衝成形器(第3A圖)之輸入的脈衝列圖案307具有等於t1之個別脈衝持續時間。在此情況下,圖案307A為第一脈衝列,圖案307B為第二脈衝列,圖案307C為第三脈衝列,且圖案307D為第四脈衝列,該第四脈衝列退出第3A圖之脈衝成形器306。通常,因為由於第3A圖所圖示之脈衝成形過程,原始圖案307之脈衝之此性質將保持相對不變,所以子脈衝中之每一者之持續時間將為約t1。參閱第3B圖,可知圖案307A之脈衝行進最短距離且圖案307D之脈衝將行進最長距離穿過脈衝成形器306。在一個實例中,四個圖案之和將遞送具有脈衝之合成能量輪廓312,該等脈衝具有持續時間t2,t2比初始脈衝之持續時間t1長。合成能量輪廓312將亦具有與原始脈衝307相比更低的每單位時間平均能量。第3C圖圖示曝露至具有作為時間函數的輪廓312之脈衝能量的基材之表面區域之預期溫度輪廓曲線。應注意,根據系統中所選擇的分離器中之每一者的透射反射比,可調整子脈衝之能量以遞送所要脈衝輪廓。舉例而言,籍由選擇更多可透 射的而非可反射的分離器之組合,合成能量輪廓312之輪廓將具有更高的起動能量,該起動能量將在合成輪廓脈衝312之末端下降。應注意,儘管第3B圖圖示具有相同振幅之矩形形狀脈衝,但是此不欲限制本發明之範疇,因為可使用其他脈衝形狀遞送具有更合意輪廓之合成能量輪廓312。
第3D圖示意地圖示本發明之另一實施例,本實施例用以籍由使用兩個或兩個以上同步能量源(例如,雷射源102A至雷射源102D)遞送所要脈衝輪廓,該等同步能量源具有發送穿過脈衝控制模組106且發送至脈衝成形器306之輸出,該等同步能量源各如上結合第1圖至第3C圖論述。在此配置中,控制器112使雷射源102A至雷射源102D之輸出同步以形成同步脈衝304作為至脈衝成形器306之輸入,以便自脈衝成形器306出現之合成脈衝312將具有所要輪廓。合成脈衝312可包含產生於脈衝伸展器總成306中之自雷射源102A至雷射源102D中之每一者遞送的同步脈衝中之每一者的子脈衝中之每一者之合成。因為可使用任何脈衝輪廓提供最佳化退火製程,所以由子脈衝307A-至子脈衝307D形成的第3C圖所圖示之合成脈衝312之輪廓或形狀不欲限制本發明之範疇。如第3E圖及第3F圖所圖示,可藉由改變脈衝同步實現替代合成脈衝形狀,該第3E圖及第3F圖圖示不同的脈衝同步及不同的合成脈衝形狀312及溫度輪廓311。
第3G圖示意地圖示脈衝成形器320之另一實施例,展示用於脈衝成形之進一步技術。在第3G圖之脈衝成形器320中,至少一些反射器自基準322或324移動以改變穿過脈衝成形器320之光的光徑。可設定反射鏡之位移為所要距離「X」以獲得用於子脈衝之特定的時間位移。通常將成對地移動反射鏡,在給定的反射鏡對中之每一反射鏡具有距離基準幾乎相等之位移。反射鏡對之位移可自然地不同以獲得任何所要脈衝形狀。在一個實施例中,第一反射鏡對之位移x1為約10毫米,第二反射鏡對之位移x2為約7.5毫米,第三反射鏡對之位移x3為約20毫米,且第四反射鏡對之位移x4為約15毫米。
在另一實施例中,可將自複數個雷射發出之全部脈衝引導至脈衝成形器中,而不首先穿過組合器。光學器件可用以使得脈衝密切實體鄰近以使得該等脈衝全部撞擊脈衝成形器(例如第3A圖及第3D圖之脈衝成形器350A或脈衝成形器306A)之第一分離器。可將脈衝安排在具有小於脈衝成形器之第一分離器的截面尺寸之尺寸的配置中,例如方形配置,以使得脈衝全部行進穿過第一分離器。
將來自脈衝成形模組106之成形脈衝發送至均勻器108中。第4A圖為根據一個實施例之均勻器400之示意圖。第1圖之均勻器108可為第4A圖之均勻器400。光束積分器總成410包含一對微透鏡陣列404及406以及透鏡408,該等微透鏡陣列404及406以及透鏡408均 勻化穿過此積分器總成之能量。應注意,術語微透鏡陣列,或蠅眼透鏡,通常旨在描述包含多個鄰接透鏡之積分透鏡陣列。如所設計,使用非相干源或寬的部分相干源,光束積分器總成410通常最好地工作,該非相干源或部分相干源的空間相干性長度比單個微透鏡陣列之尺寸小得多。簡而言之,光束積分器總成410籍由在位於透鏡408之背焦平面之平面處重疊微透鏡陣列之放大的影像來均勻化光束。可校準透鏡408以最小化像差,包括場畸變。
影像場之大小為第一微透鏡陣列之孔的形狀之放大的型式,其中放大因數由F/f1給定,其中f1為第一微透鏡陣列404中之微透鏡的焦距且F為透鏡408之焦距。在一個實例中,具有約175毫米焦距之透鏡408及具有4.75毫米焦距之微透鏡陣列中之微透鏡用於形成11平方毫米場影像。
儘管可使用此等組件之許多不同組合,大體上最有效的均勻器將具有第一微透鏡陣列404及第二微透鏡陣列406,且兩者相同。第一微透鏡陣列404及第二微透鏡陣列406通常間隔一距離,以便遞送至第一微透鏡陣列404之能量密度(瓦特/平方毫米)增加或聚焦於第二微透鏡陣列406上。然而當能量密度超過光學組件及/或放置於光學組件上之光學塗層之損壞閾值時,此舉可對第二微透鏡陣列406造成損壞。通常第二微透鏡陣列406與第一微透鏡陣列404相距距離d2,距離d2等於第一微透鏡 陣列404中之微透鏡之焦距。
在一個實例中,每一微透鏡陣列404、微透鏡陣列406包含7921個微透鏡(亦即,89x89陣列),該等微透鏡為方形且具有約300微米之邊緣長度。透鏡408或傅立葉透鏡通常用以整合自微透鏡陣列404、微透鏡陣列406接收的影像,且與第二微透鏡陣列406相距距離d3
在使用相干源或部分相干源之應用中,當使用光束積分器總成410時,各種干涉及繞射假影可能成為問題,因為該等假影在投射的光束之視野場中產生高強度區域或斑點,該等高強度區域或斑點可能超過各種光學組件之損壞閾值。因此,由於透鏡或干涉假影之配置,光束積分器總成410及系統中之各種光學組件之使用壽命已成為關鍵設計及製造考慮事項。
隨機漫射器402可放置於光束均勻器總成400前面或內部以便關於輸入能量A1改良輸出能量A5之均勻度。在此配置中,在能量A2、能量A3及能量A4分別由第一微透鏡陣列404、第二微透鏡陣列406及透鏡408接收及均勻化之前,輸入能量A1藉由放置隨機漫射器402來漫射。隨機漫射器402將致使輸入能量(A1)之脈衝遍及角(α1)之更廣範圍而分佈以減少投射光束之對比度,且因此改良脈衝之空間均勻度。隨機漫射器402通常致使穿過隨機漫射器402之光傳播以便由第二微透鏡陣列406接收之能量A3之輻射照度(瓦/平方公分)與不使用散射器相比更小。亦使用漫射器隨機化撞擊每一微透 鏡陣列之光束的相位。此額外隨機相位籍由展開不使用漫射器觀察的高強度斑點來改良空間均勻度。一般而言,隨機漫射器402為窄角光學漫射器,該窄角光學漫射器經選擇以便隨機漫射器402不會以大於之前放置的透鏡之接受角的角漫射脈衝中已接收的能量。
在一個實例中,選擇隨機漫射器402以便漫射角α1小於第一微透鏡陣列404或第二微透鏡陣列406中的微透鏡之接受角。在一個實施例中,隨機漫射器402包含單個散射器,諸如在第一微透鏡陣列404之前放置的0.5°至5°漫射器。在另一實施例中,隨機漫射器402包含兩個或兩個以上漫射板,諸如0.5°至5°漫射板,該等漫射板相距所要距離以進一步展開及均勻化脈衝之投射能量。在一個實施例中,隨機漫射器402可與第一微透鏡陣列404相距距離d1以便第一微透鏡陣列404可接收輸入能量A1中遞送的實質全部能量。
第4B圖為根據另一實施例之均勻器450之示意圖。第1圖之均勻器108可為第4B圖之均勻器450。除以下態樣之外,均勻器450與均勻器400相同。可使用第三微透鏡陣列412代替使用隨機漫射器402以改良輸出能量之均勻度。
再次參閱第1圖,來自均勻器108之能量通常安排在諸如方形或矩形形狀的圖案中,該圖案近似適合基材表面上之待退火之區域。應用於能量的處理及重新安排導致具有以下強度的能量場:該強度偏離平均值僅僅約 15%,諸如小於約12%,例如小於約8%。然而靠近能量場之邊緣,由於整個設備中的各種的邊界條件,可保存更顯著的非均勻度。可使用孔構件116移除該等邊緣非均勻度。孔構件116通常為具有開口的不透明物體,能量可以像該開口一樣的剖面形狀穿過該開口。
第5圖為根據一個實施例之孔構件500之側視圖。第1圖之孔構件116可為第5圖之孔構件500。孔構件500具有對已選擇形式的能量(諸如具有已選擇波長之光或雷射輻射)實質透明的第一構件502。可為不透明的或反射的能量阻隔構件504形成於界定開口508的第一構件502之表面之部分上方,能量將以開口508之形狀穿過開口508。第二構件506安置於第一構件502及能量阻隔構件504上方,覆蓋開口508。第二構件506亦對待透射穿過孔構件500的能量實質透明,且可與第一構件502為相同材料。孔構件500之邊緣由覆蓋物510封閉,該覆蓋物510確保微粒不進入開口508。
定位孔構件500以使得能量阻隔構件504在入射在孔構件500上的能量之焦平面512處,確保能量場之精確截斷。因為開口508定位在能量之焦平面處,所以收集在開口中的任何粒子,例如在第一構件502之表面上,投射影子在已透射能量場中,導致基材之不均勻處理。用第二構件506覆蓋開口508且封閉孔構件500之邊緣確保附著於孔構件500之任何粒子足夠遠離焦平面以在最後能量場中不對準焦點,以便減小由於粒子之陰影的 最後能量場之強度變化。
第一構件502及第二構件506通常由相同材料製得,該相同材料通常為玻璃或石英。能量阻隔構件504可為不透明的或反射的材料,諸如金屬、白色油漆或電介質反射鏡。可形成及成形能量阻隔構件504,且使用諸如加拿大香脂的適當黏合劑將已形成且已成形的能量阻隔構件504塗敷於第一構件502上。或者,可在第一構件502上沉積能量阻隔構件504且接著蝕刻能量阻隔構件504以提供開口508。通常使用黏合劑將第二構件506塗敷於能量阻隔構件504上。
覆蓋物510可為氣體可滲透的或氣體不可滲透的材料。覆蓋物可為黏合劑或使用黏合劑塗敷的堅硬材料。或者,可籍由熔化熔融第一構件502及第二構件506之邊緣與能量阻隔構件504之邊緣來形成覆蓋物。
為避免孔構件500之折射效應,由能量阻隔構件504之內部邊緣514界定的開口508之側壁可為錐形的、角形的或傾斜的,以匹配自均勻器108出現之光子的傳播方向。
第5B圖為根據另一實施例之孔構件520之側視圖。第1圖之孔構件116可為第5B圖之孔構件520。除了孔構件520不具中心開口508之外,孔構件520與第5A圖之孔構件500相同。孔構件520包含透射式構件522,能量阻隔構件504嵌入透射式構件522中。減少孔構件520中之不同媒介之間的介面數目可減少折射效應。能 量阻隔構件504之內部邊緣514在第5B圖之實施例中圖示為錐形,如如上結合第5A圖所描述。
第5B圖之孔構件520可籍由以下步驟得到:蝕刻或研磨圍繞第一透射式構件之中央台的環形架子,使用諸如加拿大香脂之無光學活性黏合劑將環形能量阻隔構件黏合至環形架子,且接著將第二透射式構件黏合至能量阻隔構件及第一透射式構件之中央台。或者,能量阻隔構件可黏合至不具中央台的第一透射式構件,且第二透射式構件藉由以下步驟形成:在能量阻隔構件及第一透射式構件之曝露部分上沉積材料;用透射式材料填充中央開口。透射式材料之沉積在此項技術中為熟知的,且透射式材料之沉積可使用任何已知沉積或塗覆製程而實施。
孔構件可具有不同大小。可將具有更小孔的孔構件定位於鄰近具有更大孔的孔構件以減少透射能量場之大小。可再次移除更小孔構件以使用更大孔。可提供具有不同大小的多個孔構件以允許改變能量場之大小以退火具有不同大小的區域之。或者,單個孔構件可具有變化的孔大小。可在透明外殼中形成兩個矩形通道,且兩對不透明的或反射的經致動半波片安置在矩形通道中以使得一對半波片會聚於透明外殼之中央部分。該對半波片可經定向沿著垂直軸線移動以便藉由在矩形通道中將每對半波片移動更靠近或進一步分開來形成具有變化大小的矩形孔。
孔構件500及孔構件520可放大或減少以任何所要方式穿過孔的光之影像。孔構件可具有1:1的放大因數,該放大因數本質上無放大率,或可藉由約1.1:1與約5:1之間的因數(例如約2:1或約4:1)減小影像。減小大小可有利於一些實施例,因為可籍由減小大小銳化影像能量場之邊緣。放大約1:1.1與約1:5之間的因素(例如約1:2)可有利於一些實施例籍由增加影像能量場之覆蓋區域來改良效率及處理量。
再次參閱第1圖,成影光學器件118自孔構件116接收成形的、平滑的及截斷的能量場,且將該能量場投射至安置於基材支撐110之工作表面120上的基材上。第6圖為根據一個實施例之成像系統600之示意圖。第1圖之成像系統118可為第6圖之成像系統600。成像系統118具有透射模組602及偵測模組616。透射模組602具有第一透射光學器件610及第二透射光學器件614,取樣光學器件612安置於第一透射光學器件610與第二透射光學器件614之間。
取樣光學器件612具有反射表面618,反射表面618光學地耦接至基材支撐及偵測模組616。來自孔構件116之能量進入透射光學器件602,穿過第一透射光學器件610、取樣光學器件612及第二透射光學器件614以照明安置於基材支撐110之工作表面上之基材。自基材反射的能量穿過第二透射光學器件614往回行進,且自取樣光學器件612之反射表面620反射。將反射能量引導至 偵測光學器件616。
偵測光學器件616具有第一導向光學器件604、第二導向光學器件606及偵測器608。可操作第一導向光學器件604及第二導向光學器件606以在偵測器608上的所要位置中定位自基材反射的能量場。此舉允許以增加精度成像偵測器608處的能量場之各種部分。偵測器608可為光二極體陣列或CCD矩陣,允許與基材互動的能量場之可視化。當基材由能量場照明時,可使用成像系統600觀察基材上之標記以促進將能量場與基材上之所要結構對準。或者,當基材未由能量場照明時,可提供恆定低強度周圍光源以促進經由成像系統600觀察基材。可根據使用成像系統600之觀察對基材之x、y、z及θ定位進行游標調整以獲得精確對準、能量之集中及用於處理基材之第一退火區域之基材。在控制器112之引導下籍由基材支撐110自動地執行後續定位。
可提供診斷工具以在退火過程中指示基材之性質。成像模組118或成像模組600可具有一或更多個溫度感測器618,用於指示作為溫度函數之由基材發射之輻射之強度。可使用高溫計達到該等目的。成像模組118或成像模組600亦可具有一或更多個表面吸收監視器622,用於指示基材之吸收性的變化。籍由量測用於退火基材之波長中的反射光之強度,表面吸收監視器622將自更具反射的狀態至更具吸收性的狀態之間的狀態下的改變形成訊號,且反之亦然。可使用反射計達到該等目的。 在一些實施例中,提供兩個或兩個以上溫度感測器及兩個或兩個以上表面吸收監視器可允許比較用於經改良準確度之兩個或兩個以上讀數。
儘管兩個診斷工具618及622圖示於第6圖之成像模組600中,但是可在位置中安置任何數目的診斷工具以監視基材之情況。在一些實施例中,可安置聲音偵測器或光聲偵測器或聲音偵測器及光聲偵測器兩者,以偵測基材上之退火能量之聲音效應。來自基材之聲音回應可用於指示基材材料之狀態改變,諸如相變。在一個實施例中,偵聽裝置可偵測基材部分之熔化。
使用本文揭示的方法將熱能耦合至安置於基材支撐之工作表面上之基材中。籍由以短脈衝對基材之表面之連續部分以約0.2焦耳/平方公分與約1.0焦耳/平方公分之間的平均強度施加電磁能來產生熱能,短脈衝之持續時間為約1奈秒與約100奈秒之間,諸如約5奈秒與約50奈秒之間,例如約10奈秒。複數個此類脈衝可施加於基材之每一部分以在下一脈衝到達之前允許穿過基材之熱能完全消散,該等脈衝之間的持續時間為約500奈秒與約1毫秒之間,諸如約1微秒與約500微秒之間,例如約100微秒。能量場通常覆蓋的面積為約0.1平方公分與約10.0平方公分之間,例如約6平方公分,從而每一脈衝的功率輸送為約0.2MW與約10GW之間。在大多數的應用中,每一脈衝輸送的功率將為約10MW與約500MW之間。輸送的功率密度通常為約2MW/平方公分 與約1GW/平方公分之間,諸如約5MW/平方公分與約100MW/平方公分之間,例如約10MW/平方公分。施加於每一脈衝中之能量場具有的強度之空間標準差僅僅為平均強度之約4%,諸如小於約3.5%,例如小於約3.0%。
可使用具有複數個雷射的能量源102完成退火基材最需要的高功率及均勻度能量場之輸送,該複數個雷射發射容易被待退火的基材吸收之輻射。在一個態樣中,基於複數個倍頻的Nd:YAG雷射使用具有波長為約532奈米的雷射輻射。可將具有約50MW之個別功率輸出之四個此類雷射一起用於矽基材之適當退火。
可藉由中斷能量束之產生或傳播來形成能量脈衝。可籍由跨越束之光徑安置快速光閘來中斷能量束。光閘可為在施加電壓後能夠在10奈秒或更少的時間內自透明變化至反射的LCD電池。光閘亦可為旋轉穿孔片,其中穿孔之大小及間隔耦合至所選擇的旋轉速率以經由開口透射具有所選擇持續時間之能量脈衝。此裝置可附接至能量源本身或與能量源間隔開。可使用主動或被動q-開關或增益開關。亦可鄰近雷射定位泡克耳斯盒以籍由中斷由雷射發射的雷射光束來形成脈衝。若希望,則可將多個脈衝產生器耦接至能量源以形成具有不同持續時間之脈衝週期序列。舉例而言,可將q-開關施加於雷射源且可跨越由q-開關雷射產生的脈衝之光徑定位具有與q-開關之週期性相似的週期性之旋轉光閘以形成具有不同持續時間的脈衝之週期圖案。
藉由增加脈衝的空間及時間模態之數目來減少脈衝之自相關。無論是空間相關還是時間相關,相關是不同光子在相位方面有關係的程度。若波長相同的兩個光子穿過空間以相同方向傳播,且此兩個光子之電場矢量同時指向相同方向,則不考慮空間關係,彼等光子時間相關。若該兩個光子(或兩個光子的電場矢量)位於垂直於傳播方向的平面中的相同點處,則不考慮任何時間相位關係,此兩個光子空間相關。
相關與相干有關係,且幾乎可替換地使用該等術語。光子之相關產生了減少能量場之均勻度的干涉圖案。相干長度定義為距離,超過該距離空間的或時間的相干或相關降到某一閾值以下。
可籍由以下步驟使脈衝中之光子時間上去相關:使用連續分離器將脈衝分離成許多子脈衝,且使每一子脈衝沿著具有不同光徑長度的不同路徑傳播,以使得任何兩個光徑長度之間的不同大於原始脈衝之相干長度。此舉很大程度上確保:由於歸因於與行進距離相干的自然下降的不同路徑長度,最初相關的光子可能具有不同相位。舉例而言,Nd:YAG雷射及Ti:藍寶石雷射通常產生具有幾毫米的數量級之相干長度的脈衝。分離此類脈衝及沿著具有超過幾毫米的長度差異之路徑發送每一脈衝之部分將產生時間去相關。沿著具有不同長度的多反射路徑發送子脈衝為一種可使用的技術。沿著具有由不同折射率界定的不同有效長度的多折射路徑發送子脈衝為 另一種技術。結合第3A圖、第3D圖及第3G圖所描述的脈衝成形模組可用於脈衝之時間去相關。
可籍由自脈衝產生能量場及重疊能量場之部分來獲得空間去相關。舉例而言,可將能量場之部分單獨地成像至相同區域上以形成空間去相關影像。此舉很大程度上確保將任何最初相關光子在空間上分開。在一個實例中,可將方形能量場分成方形部分之棋盤樣式8x8取樣,且成像至場上的每一方形部分與原始能量場大小相同以使得全部影像重疊。重疊影像之數目更多,去相關的能量更多,產生更均勻的影像。第4A圖及第4B圖之均勻器400及均勻器450可有利於空間上去相關脈衝。
在如上所述之去相關操作之後成像的雷射脈衝通常具備具有均勻能量強度的截面。根據精確實施例,根據上述過程處理的脈衝能量場之截面能量強度可具有約3.0%或更小的標準差,諸如約2.7%或更小,例如約2.5%。能量場之邊緣區域將展示衰減能量強度,該衰減能量強度可根據小於能量場之尺寸之約10%的尺寸衰減e分之1,諸如小於能量場之尺寸之約5%,例如小於能量場之約1%。可使用諸如第5A圖及第5B圖之孔構件500及孔構件520之孔截斷邊緣區域,或可允許邊緣區域在處理區域外照明基材,例如在基材上的裝置區域之間的切割空間。
若截斷能量場,則通常跨越脈衝之光徑定位孔構件以修整不均勻的邊緣區域。為獲得影像之整齊截斷,孔位 於靠近能量場之焦平面處。可籍由將孔內部邊緣錐形化來最小化孔內部邊緣之折射效應以匹配脈衝中光子的傳播方向。可籍由插入或移除具有所要大小及/或形狀之孔構件來使用具有不同孔大小及形狀之多個可移除孔構件改變孔之大小及/或形狀。或者,可使用可變的孔構件。
可將能量場引導至基材之部分以退火基材。若希望,則可籍由沿著能量場之光徑觀察基材表面來將能量場與諸如基材表面上的對準標記之結構對準。可將來自基材的反射光捕獲並引導至觀察裝置,諸如相機或CCD矩陣。諸如單向反射鏡之反射表面,如第6圖之成像系統600中之反射表面,可沿著能量場之光徑安置以捕獲反射光。
可籍由在處理期間觀察由基材發射、反射或透射的輻射來監視基材之熱態。由基材發射的輻射指示基材之溫度。由基材反射或透射的輻射指示基材之吸收性,該吸收性轉而使基材之物理結構中的自反射的狀態至吸收性的狀態的改變形成訊號,且反之亦然。可籍由比較使用多個裝置之結果改良來自此類裝置的訊號之準確度。
熱處理設備可具有:電磁能量源,可操作該電磁能量源以產生電磁能之脈衝;光學系統,該光學系統包含脈衝組合器、脈衝成形器、均勻器及經定位以接收來自源的電磁能之脈衝的孔構件;基材支撐,可操作該基材支撐以關於光學系統移動基材;及成像系統,可操作該成像系統以沿著光學系統之光徑觀察基材。
用於組合電磁能之脈衝的設備可具有:第一能量輸入端;第二能量輸入端;第一光學器件,該第一光學器件用於將第一性質給予第一能量;第二光學器件,該第二光學器件用於將第二性質給予第二能量;選擇表面,該選擇表面基於第一性質及第二性質反射或透射能量;導向光學器件,該導向光學器件用於將第一能量導向至選擇表面之第一側上的第一位置且將第二能量導向至選擇表面之相對選擇表面之第一側的第二側上的第二位置,其中第一位置與第二位置對準;及診斷模組,該診斷模組光學地耦接至選擇表面。
熱處理系統可具有:複數個雷射能量源,該等雷射能量源各具有耦接至電子計時器之主動q-開關;至少兩個組合器,該等組合器光學地耦接至雷射能量源,每一組合器具有選擇光學器件,該選擇光學器件具有選擇表面;光學系統,該光學系統將來自雷射能量源之光引導至選擇表面之相對側;及均勻器,該均勻器包含至少三個微透鏡陣列。
基材處理系統可具有:電磁能量源;光學系統,該光學系統用於集中電磁能;及孔構件,該孔構件具有嵌入該孔構件中的反射部分,反射部分具有開口,電磁能投射穿過該開口,反射部分之表面定位於電磁能之焦平面處。
可籍由將電磁能之場引導至基材之部分來處理基材,電磁能之場包含來自複數個雷射之光,已籍由穿過組合 光學器件之選擇表面之兩側來組合該複數個雷射,該複數個雷射已在時間上去相關、在空間上去相關且穿過光學地耦接至基材的反射器。
亦可籍由以下步驟處理基材:將電磁能之場引導至基材之部分,該場包含來自兩個或兩個以上雷射之脈衝光;使用光二極體偵測場之時間形狀;使用熱電偵測器偵測場之能量含量;基於由光二極體偵測的時間形狀調整雷射中之一或更多者之脈衝時序;且基於由熱電偵測器偵測的場之能量含量衰減雷射中之一或更多者。
亦可籍由以下步驟處理基材:籍由組合來自兩個或兩個以上雷射之偏光及在時間上及空間上對光去相關,形成具有僅僅為約3%的強度不均勻度之空間標準差及至少為約0.2焦耳/平方公分的能量含量的能量場;將該能量場以脈衝引導至之基材表面之第一部分;移動基材;且將能量場引導至基材表面之第二部分。
亦可籍由以下步驟處理基材:將電磁能之成形的場經由光學地耦接至基材之反射器引導至基材;籍由觀察使用反射器自基材反射的光來偵測基材及能量場之對準;及調整基材與能量場之對準。
儘管前述內容針對本發明之實施例,但是可設計其他及進一步實施例而不偏離本發明的基本範疇,且本發明之範疇由下述申請專利範圍決定。
100‧‧‧系統/熱處理設備
102‧‧‧能量源/雷射源/能量模組
102A‧‧‧能量源
102B‧‧‧能量源
102C‧‧‧能量源
102D‧‧‧能量源
104‧‧‧脈衝控制模組
105‧‧‧脈衝控制器
106‧‧‧脈衝成形模組
107‧‧‧脈衝成形器
108‧‧‧均勻器
110‧‧‧基材支撐
112‧‧‧控制器
114‧‧‧外殼
116‧‧‧孔構件
118‧‧‧成像模組/成像系統/成像光學器件
120‧‧‧工作表面
200A‧‧‧脈衝控制器
200B‧‧‧脈衝控制模組/ 脈衝控制器
200C‧‧‧脈衝控制器
200D‧‧‧脈衝控制器
202A‧‧‧第一輸入脈衝/輸入透镜
202B‧‧‧第二輸入脈衝/輸入透鏡
204‧‧‧反射鏡
205B‧‧‧旋轉致動器
205A‧‧‧旋轉致動器
206A‧‧‧偏光濾光器
206B‧‧‧偏光器
207A‧‧‧第一進入表面
207B‧‧‧第二進入表面
207C‧‧‧第一出口表面
207D‧‧‧第二出口表面
208‧‧‧組合光學器件
209‧‧‧選擇表面
210‧‧‧傾卸場
212‧‧‧第一分離器
214‧‧‧第二分離器
216‧‧‧時間形狀偵測器
218‧‧‧能量偵測器
220‧‧‧光閘
222‧‧‧輸出透鏡
224A‧‧‧第一輸入脈衝/輸入脈衝
224C‧‧‧輸入脈衝
224B‧‧‧第二輸入脈衝/輸入脈衝
224D‧‧‧輸入脈衝
226A‧‧‧入射脈衝
226B‧‧‧入射脈衝
228‧‧‧組合脈衝
230‧‧‧被拒絕脈衝
232‧‧‧取樣脈衝
233‧‧‧診斷模組
234‧‧‧第二脈衝/能量取樣脈衝
236‧‧‧第一脈衝
238‧‧‧輸出脈衝/組合脈衝/輸出雷射脈衝
240‧‧‧反射器
242‧‧‧反射器
244‧‧‧輸出脈衝
246‧‧‧輸出透鏡
248‧‧‧輸入透鏡
250‧‧‧反射器
252‧‧‧輸出透鏡
254‧‧‧輸出反射器
299‧‧‧外殼
302‧‧‧雷射能量脈衝
304‧‧‧同步脈衝
306‧‧‧脈衝成形器
306A‧‧‧脈衝成形器
306B‧‧‧脈衝成形器
306C‧‧‧脈衝成形器
306D‧‧‧脈衝成形器
306E‧‧‧脈衝成形器
307‧‧‧原始圖案/脈衝列圖案/原始脈衝
307A‧‧‧圖案/子脈衝
307B‧‧‧子脈衝/圖案
307C‧‧‧圖案/子脈衝
307D‧‧‧圖案/子脈衝
311‧‧‧溫度輪廓
312‧‧‧輪廓
320‧‧‧脈衝成形器
322‧‧‧基準
324‧‧‧基準
350A‧‧‧第一分離器
350B‧‧‧第二分離器
350C‧‧‧第三分離器
350D‧‧‧後續分離器
350E‧‧‧最後分離器
352‧‧‧反射鏡
354A‧‧‧第一子脈衝
354B‧‧‧第二子脈衝
356A‧‧‧第二子脈衝
358A‧‧‧第三子脈衝
356B‧‧‧第二子脈衝
358B‧‧‧第三子脈衝
360‧‧‧路徑
362‧‧‧路徑
364‧‧‧波片
400‧‧‧均勻器
402‧‧‧隨機漫射器
404‧‧‧第一微透鏡陣列
406‧‧‧第二微透鏡陣列
408‧‧‧透鏡
410‧‧‧光束積分器總成
412‧‧‧第三微透鏡陣列
450‧‧‧均勻器
500‧‧‧孔構件
502‧‧‧第一構件
504‧‧‧能量阻隔構件
506‧‧‧第二構件
508‧‧‧開口
510‧‧‧覆蓋物
512‧‧‧焦平面
514‧‧‧內部邊緣
520‧‧‧孔構件
522‧‧‧透射式構件
600‧‧‧成像模組/成像系統
602‧‧‧透射模組
604‧‧‧第一控制光學器件
606‧‧‧第二控制光學器件
608‧‧‧偵測器
610‧‧‧第一透射光學器件
612‧‧‧取樣光學器件
614‧‧‧第二透射光學器件
616‧‧‧偵測模組
618‧‧‧溫度感測器
620‧‧‧反射表面
622‧‧‧表面吸收監視器
A‧‧‧路徑
A1‧‧‧輸入能量
A2‧‧‧能量
A3‧‧‧能量
A4‧‧‧能量
A5‧‧‧輸出能量
B‧‧‧路徑
C‧‧‧路徑
D‧‧‧路徑
d‧‧‧距離
d1‧‧‧距離
d2‧‧‧距離
d3‧‧‧距離
E‧‧‧路徑
F‧‧‧路徑
G‧‧‧路徑
H‧‧‧路徑
I‧‧‧路徑
J‧‧‧路徑
t2‧‧‧持續時間
α‧‧‧角
因此,可詳細理解本發明之上述特徵結構之方式,即以上簡要總結之本發明的更特定描述可參閱實施例獲得,其中某些實施例圖示於附圖中。然而應注意,該等附圖僅圖示本發明的典型實施例,且因此不應視為限制本發明之範疇,因為本發明可允許其它等效之實施例。
第1圖為根據一個實施例之熱處理設備之示意圖。
第2A圖及第2B圖為根據兩個實施例之脈衝控制器之平面圖。
第2C圖至第2E圖為根據三個實施例之脈衝控制器及能量源之不同配置的示意圖。
第3A圖為根據一個實施例之脈衝成形器之示意圖。
第3B圖及第3C圖為圖示使用第3A圖之脈衝成形器的脈衝時序及脈衝能量輪廓之圖式。
第3D圖為根據另一實施例之第3A圖之脈衝成形器的示意圖。
第3E圖及第3F圖為圖示使用第3D圖之脈衝成形器的脈衝時序及脈衝能量輪廓之圖式。
第3G圖為根據另一實施例之脈衝成形器之示意圖。
第4A圖及第4B圖為根據兩個實施例之均勻器的示意圖。
第5A圖及第5B圖為孔構件之兩個實施例的側視圖。
第6圖為根據另一實施例之成像系統600之示意圖。
為了促進理解,在可能情況下已使用相同元件符號表示為諸圖所共有之相同元件。應瞭解,揭示於一個實施 例中之元件可有益地使用於其他實施例而不再特別敘述。
100‧‧‧系統/熱處理設備
102‧‧‧能量源/雷射源/能量模組
104‧‧‧脈衝控制模組
105‧‧‧脈衝控制器
106‧‧‧脈衝成形模組
107‧‧‧脈衝成形器
108‧‧‧均勻器
110‧‧‧基材支撐
112‧‧‧控制器
114‧‧‧外殼
116‧‧‧孔構件
118‧‧‧成像模組/成像系統/成像光學器件
120‧‧‧工作表面

Claims (15)

  1. 一種用於熱處理一基材之設備,該設備包含:一電磁能量源,可操作該電磁能量源以產生電磁能之脈衝;一光學系統,該光學系統包含一脈衝組合器、一脈衝成形器、一均勻器及一孔構件,該孔構件經定位以接收來自該源之電磁能之脈衝;一基材支撐,可操作該基材支撐以相對於該光學系統移動一基材;及一成像系統,可操作該成像系統以沿著該光學系統之一光徑觀察該基材。
  2. 如請求項1所述之設備,其中該脈衝組合器包含:一第一偏光器,該第一偏光器用於偏光一第一脈衝;一第二偏光器,該第二偏光器用於偏光一第二脈衝;及具有一偏光表面之一組合光學器件,其中將該第一脈衝及該第二脈衝引導至該偏光表面之相對側。
  3. 如請求項1或2所述之設備,其中該成像系統包含:一反射器,該反射器將自一基材反射之光有選擇地反射至一觀察光學器件。
  4. 如請求項1所述之設備,該設備進一步包含一第二脈衝組合器。
  5. 如請求項1或2所述之設備,其中該電磁能之源包含至少兩個脈衝雷射。
  6. 一種用於組合電磁能之脈衝之設備,該設備包含:一第一能量輸入端;一第二能量輸入端;一第一光學器件,該光學器件用於將一第一性質給予至該第一能量;一第二光學器件,該第二光學器件用於將一第二性質給予至該第二能量;一選擇表面,該選擇表面基於該第一性質及該第二性質反射或透射能量;一導向光學器件,該導向光學器件用於將該第一能量導向至該選擇表面之一第一側上之一第一位置且將該第二能量導向至與該選擇表面之該第一側相對的該選擇表面之一第二側上的一第二位置,其中該第一位置與該第二位置對準;及一診斷模組,該診斷模組光學地耦接至該選擇表面。
  7. 如請求項6所述之設備,其中該診斷模組包含一能量偵測器及一強度輪廓偵測器。
  8. 如請求項7所述之設備,其中該能量偵測器為一熱電裝 置且該強度輪廓偵測器包含一光二極體。
  9. 如請求項6至8中之任一項所述之設備,其中該選擇表面為一偏光表面。
  10. 一種熱處理系統,該系統包含:複數個雷射能量源,該等雷射能量源各具有耦接至一電子計時器之一主動q-開關;光學地耦接至該雷射能量源之至少兩個組合器,每一組合器具有一選擇光學器件,該選擇光學器件具有一選擇表面;一光學系統,該光學系統將光自該等雷射能量源引導至該選擇表面之相對側;及一均勻器,該均勻器包含至少兩個微透鏡陣列。
  11. 如請求項10所述之熱處理系統,其中該等至少兩個組合器中之每一者將兩個能量脈衝組合成一個能量脈衝,且該等組合能量脈衝由小於該等組合器中之一者的一尺寸的一距離分開。
  12. 如請求項10或11所述之熱處理系統,其中該選擇表面為一偏光表面。
  13. 一種用於處理一基材之系統,該系統包含: 一電磁能之源;一光學系統,該光學系統用於聚焦該電磁能;及一第一孔構件,該第一孔構件具有嵌入該第一孔構件中之一反射部分,該反射部分具有一開口,該電磁能投射穿過該開口,該反射部分之一表面定位在該電磁能之一焦平面處。
  14. 如請求項13所述之系統,其中該孔構件為石英且該反射部分為一電介質反射鏡。
  15. 如請求項13或14所述之系統,該系統進一步包含一第二孔構件,該第二孔構件具有與該第一孔構件之該開口不同大小之一開口。
TW101120494A 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝之設備 TWI547978B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161500727P 2011-06-24 2011-06-24
US13/194,775 US8569187B2 (en) 2011-06-24 2011-07-29 Thermal processing apparatus
US13/194,552 US20120325784A1 (en) 2011-06-24 2011-07-29 Novel thermal processing apparatus

Publications (2)

Publication Number Publication Date
TW201303977A true TW201303977A (zh) 2013-01-16
TWI547978B TWI547978B (zh) 2016-09-01

Family

ID=47360854

Family Applications (4)

Application Number Title Priority Date Filing Date
TW101120494A TWI547978B (zh) 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝之設備
TW107145005A TWI700736B (zh) 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝之設備
TW106128051A TWI654669B (zh) 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝 之設備
TW105115758A TWI600063B (zh) 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝之設備

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW107145005A TWI700736B (zh) 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝之設備
TW106128051A TWI654669B (zh) 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝 之設備
TW105115758A TWI600063B (zh) 2011-06-24 2012-06-07 用於熱處理基材之設備與系統以及用於組合電磁能脈衝之設備

Country Status (7)

Country Link
US (3) US8569187B2 (zh)
EP (1) EP2724364B1 (zh)
JP (3) JP6096184B2 (zh)
KR (1) KR101987398B1 (zh)
CN (2) CN103597587B (zh)
TW (4) TWI547978B (zh)
WO (1) WO2012177743A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292090B2 (en) 2015-10-30 2022-04-05 Seurat Technologies, Inc. Additive manufacturing system and method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9498845B2 (en) 2007-11-08 2016-11-22 Applied Materials, Inc. Pulse train annealing method and apparatus
US8569187B2 (en) * 2011-06-24 2013-10-29 Applied Materials, Inc. Thermal processing apparatus
FR2989388B1 (fr) * 2012-04-17 2019-10-18 Saint-Gobain Glass France Procede d'obtention d'un substrat muni d'un revetement
JP2015521368A (ja) * 2012-04-18 2015-07-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated アドバンスアニールプロセスにおいて粒子を低減させる装置および方法
US9146337B2 (en) 2013-03-11 2015-09-29 Applied Materials, Inc. Apparatus for speckle reduction, pulse stretching, and beam homogenization
US9390926B2 (en) * 2013-03-11 2016-07-12 Applied Materials, Inc. Process sheet resistance uniformity improvement using multiple melt laser exposures
CN105643107B (zh) 2013-03-12 2019-03-01 应用材料公司 在激光退火系统中用于控制边缘轮廓的定制光瞳光阑形状
KR102163606B1 (ko) * 2013-03-27 2020-10-08 고쿠리쓰다이가쿠호진 규슈다이가쿠 레이저 어닐링 장치
CN105453231B (zh) * 2013-08-08 2019-06-11 应用材料公司 用于使用耗尽光束形成亚微米特征结构的反应物的光子活化
US9958709B2 (en) 2013-08-16 2018-05-01 Applied Materials, Inc. Dynamic optical valve for mitigating non-uniform heating in laser processing
US11204506B2 (en) * 2014-03-05 2021-12-21 TeraDiode, Inc. Polarization-adjusted and shape-adjusted beam operation for materials processing
US9889524B2 (en) * 2014-03-05 2018-02-13 TeraDiode, Inc. Polarization-adjusted beam operation for materials processing
JP6430142B2 (ja) * 2014-04-25 2018-11-28 浜松ホトニクス株式会社 レーザ加工モニタ及びレーザ加工装置
US10239155B1 (en) * 2014-04-30 2019-03-26 The Boeing Company Multiple laser beam processing
CN106663629B (zh) * 2014-07-21 2020-01-10 应用材料公司 扫描脉冲退火装置及方法
US10095114B2 (en) 2014-11-14 2018-10-09 Applied Materials, Inc. Process chamber for field guided exposure and method for implementing the process chamber
CN106158609B (zh) * 2015-03-31 2019-07-23 上海微电子装备(集团)股份有限公司 一种激光退火装置及其退火方法
US9864276B2 (en) 2015-04-07 2018-01-09 Applied Materials, Inc. Laser annealing and electric field
JP6920316B2 (ja) * 2016-09-06 2021-08-18 ギガフォトン株式会社 レーザ装置およびレーザアニール装置
HUE064074T2 (hu) * 2016-11-18 2024-02-28 Ipg Photonics Corp Összeállítás és eljárás anyagok lézeres feldolgozására
US10012544B2 (en) * 2016-11-29 2018-07-03 Cymer, Llc Homogenization of light beam for spectral feature metrology
CN110214364A (zh) * 2017-02-02 2019-09-06 三菱电机株式会社 热处理装置、热处理方法和半导体装置的制造方法
JP7254444B2 (ja) * 2018-02-13 2023-04-10 旭化成株式会社 金属配線の製造方法及び金属配線製造装置
JP7048372B2 (ja) * 2018-03-20 2022-04-05 株式会社Screenホールディングス 熱処理装置および熱処理方法
JP7328427B2 (ja) 2018-03-28 2023-08-16 株式会社東京精密 板厚の測定装置及び板厚の測定方法
WO2019199601A1 (en) * 2018-04-12 2019-10-17 Mattson Technology, Inc. Low thermal budget annealing
JP2022518411A (ja) 2019-01-18 2022-03-15 アプライド マテリアルズ インコーポレイテッド 電界誘導フォトレジストパターン形成工程のためのフィルム構造
CN110767576B (zh) * 2019-10-17 2022-10-21 上海华力集成电路制造有限公司 激光退火设备及激光退火工艺
GB2593456B (en) * 2020-03-18 2024-02-28 Thermo Fisher Scient Ecublens Sarl Double-pulse laser system
US11429026B2 (en) 2020-03-20 2022-08-30 Applied Materials, Inc. Lithography process window enhancement for photoresist patterning
US11909091B2 (en) 2020-05-19 2024-02-20 Kymeta Corporation Expansion compensation structure for an antenna

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663513A (en) * 1985-11-26 1987-05-05 Spectra-Physics, Inc. Method and apparatus for monitoring laser processes
KR950034479A (ko) 1994-05-24 1995-12-28 오노 시게오 조명광학계
JP3435247B2 (ja) * 1995-02-28 2003-08-11 株式会社東芝 レーザ光照射装置及びレーザ光照射方法
US5975703A (en) * 1996-09-30 1999-11-02 Digital Optics International Image projection system
JP4322373B2 (ja) * 1999-11-15 2009-08-26 日本電気株式会社 膜体部改質装置及び膜体部改質方法
US6366308B1 (en) * 2000-02-16 2002-04-02 Ultratech Stepper, Inc. Laser thermal processing apparatus and method
US6639177B2 (en) 2001-03-29 2003-10-28 Gsi Lumonics Corporation Method and system for processing one or more microstructures of a multi-material device
JP3903761B2 (ja) 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
JP2003124137A (ja) 2001-10-10 2003-04-25 Fujitsu Ltd 半導体製造装置
JP2004063924A (ja) 2002-07-31 2004-02-26 Mitsubishi Heavy Ind Ltd レーザアニール方法及び装置
US6747245B2 (en) 2002-11-06 2004-06-08 Ultratech Stepper, Inc. Laser scanning apparatus and methods for thermal processing
SG137674A1 (en) * 2003-04-24 2007-12-28 Semiconductor Energy Lab Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device
JP4467571B2 (ja) * 2003-09-19 2010-05-26 アプライド マテリアルズ インコーポレイテッド 無電解堆積のエンドポイントを検出するための装置および方法
JP2005116729A (ja) 2003-10-07 2005-04-28 Sharp Corp レーザ加工装置およびレーザ加工方法
US7813406B1 (en) 2003-10-15 2010-10-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Temporal laser pulse manipulation using multiple optical ring-cavities
WO2005074002A2 (en) * 2004-01-29 2005-08-11 Applied Materials Israel, Ltd. Focusing system and method for a charged particle imaging system
JP4610201B2 (ja) * 2004-01-30 2011-01-12 住友重機械工業株式会社 レーザ照射装置
US8110775B2 (en) 2004-06-18 2012-02-07 Electro Scientific Industries, Inc. Systems and methods for distinguishing reflections of multiple laser beams for calibration for semiconductor structure processing
US20090011614A1 (en) * 2004-06-18 2009-01-08 Electro Scientific Industries, Inc. Reconfigurable semiconductor structure processing using multiple laser beam spots
US20060114948A1 (en) * 2004-11-29 2006-06-01 Lo Ho W Workpiece processing system using a common imaged optical assembly to shape the spatial distributions of light energy of multiple laser beams
JP2006185933A (ja) * 2004-12-24 2006-07-13 Advanced Lcd Technologies Development Center Co Ltd レーザアニール方法およびレーザアニール装置
US7279721B2 (en) 2005-04-13 2007-10-09 Applied Materials, Inc. Dual wavelength thermal flux laser anneal
JP2006344844A (ja) * 2005-06-10 2006-12-21 Sony Corp レーザ処理装置
JP2007059431A (ja) 2005-08-22 2007-03-08 Mitsubishi Electric Corp 半導体装置の製造方法及びレーザ加工装置
JP4956987B2 (ja) 2005-12-16 2012-06-20 株式会社島津製作所 レーザー結晶化装置及び結晶化方法
US7569463B2 (en) 2006-03-08 2009-08-04 Applied Materials, Inc. Method of thermal processing structures formed on a substrate
WO2007137995A2 (en) * 2006-06-01 2007-12-06 Universite De Liege A thermal detector
JP5000944B2 (ja) * 2006-08-02 2012-08-15 株式会社ディスコ レーザー加工装置のアライメント方法
JP4677392B2 (ja) 2006-10-30 2011-04-27 住友重機械工業株式会社 パルスレーザ熱処理装置とその制御方法
US20090323739A1 (en) * 2006-12-22 2009-12-31 Uv Tech Systems Laser optical system
US20080316748A1 (en) * 2007-06-21 2008-12-25 Carl Zeiss Laser Optics Gmbh Illumination system
US8148663B2 (en) * 2007-07-31 2012-04-03 Applied Materials, Inc. Apparatus and method of improving beam shaping and beam homogenization
US20090034072A1 (en) * 2007-07-31 2009-02-05 Dean Jennings Method and apparatus for decorrelation of spatially and temporally coherent light
US8332922B2 (en) * 2007-08-31 2012-12-11 Microsoft Corporation Transferable restricted security tokens
US20090120924A1 (en) * 2007-11-08 2009-05-14 Stephen Moffatt Pulse train annealing method and apparatus
US8723073B2 (en) * 2008-02-07 2014-05-13 Cymer, Llc Illumination apparatus and method for controlling energy of a laser source
US8674257B2 (en) * 2008-02-11 2014-03-18 Applied Materials, Inc. Automatic focus and emissivity measurements for a substrate system
US8178818B2 (en) 2008-03-31 2012-05-15 Electro Scientific Industries, Inc. Photonic milling using dynamic beam arrays
US7982160B2 (en) 2008-03-31 2011-07-19 Electro Scientific Industries, Inc. Photonic clock stabilized laser comb processing
US7919348B2 (en) * 2008-06-13 2011-04-05 Aptina Imaging Corporation Methods for protecting imaging elements of photoimagers during back side processing
CN102414787B (zh) * 2009-09-02 2014-05-21 Wi-A株式会社 激光反射掩模以及其制造方法
TWI575630B (zh) * 2011-06-10 2017-03-21 應用材料股份有限公司 脈衝循環器
US8569187B2 (en) * 2011-06-24 2013-10-29 Applied Materials, Inc. Thermal processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292090B2 (en) 2015-10-30 2022-04-05 Seurat Technologies, Inc. Additive manufacturing system and method
US11666971B1 (en) 2015-10-30 2023-06-06 Seurat Technologies, Inc. Additive manufacturing system and method

Also Published As

Publication number Publication date
JP6321237B2 (ja) 2018-05-09
TWI654669B (zh) 2019-03-21
US10181409B2 (en) 2019-01-15
JP2017135390A (ja) 2017-08-03
JP6290997B2 (ja) 2018-03-07
EP2724364A4 (en) 2015-09-30
US20140138362A1 (en) 2014-05-22
CN103597587A (zh) 2014-02-19
US8569187B2 (en) 2013-10-29
CN106141424A (zh) 2016-11-23
TWI547978B (zh) 2016-09-01
JP2014525141A (ja) 2014-09-25
TW201926423A (zh) 2019-07-01
EP2724364B1 (en) 2020-04-29
WO2012177743A3 (en) 2013-04-04
TW201812868A (zh) 2018-04-01
TW201637079A (zh) 2016-10-16
WO2012177743A2 (en) 2012-12-27
EP2724364A2 (en) 2014-04-30
KR101987398B1 (ko) 2019-06-10
US20120329178A1 (en) 2012-12-27
US20120325784A1 (en) 2012-12-27
TWI700736B (zh) 2020-08-01
JP2017041637A (ja) 2017-02-23
CN103597587B (zh) 2016-08-17
JP6096184B2 (ja) 2017-03-15
CN106141424B (zh) 2018-05-29
KR20140039300A (ko) 2014-04-01
TWI600063B (zh) 2017-09-21

Similar Documents

Publication Publication Date Title
TWI547978B (zh) 用於熱處理基材之設備與系統以及用於組合電磁能脈衝之設備
US9953851B2 (en) Process sheet resistance uniformity improvement using multiple melt laser exposures
JP2014525141A5 (zh)
TWI582466B (zh) 用於改良同調光的能源的均勻性的裝置及用於產生均勻照明場的裝置
WO2013146197A1 (ja) レーザアニール装置及びレーザアニール方法
US9146337B2 (en) Apparatus for speckle reduction, pulse stretching, and beam homogenization