JP2007059431A - 半導体装置の製造方法及びレーザ加工装置 - Google Patents

半導体装置の製造方法及びレーザ加工装置 Download PDF

Info

Publication number
JP2007059431A
JP2007059431A JP2005239447A JP2005239447A JP2007059431A JP 2007059431 A JP2007059431 A JP 2007059431A JP 2005239447 A JP2005239447 A JP 2005239447A JP 2005239447 A JP2005239447 A JP 2005239447A JP 2007059431 A JP2007059431 A JP 2007059431A
Authority
JP
Japan
Prior art keywords
laser
semiconductor substrate
laser beam
semiconductor device
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005239447A
Other languages
English (en)
Inventor
Yoshimizu Takeno
祥瑞 竹野
Masaru Nakajima
優 中島
Nobuhiko Omori
暢彦 大森
Tamio Matsumura
民雄 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005239447A priority Critical patent/JP2007059431A/ja
Publication of JP2007059431A publication Critical patent/JP2007059431A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】半導体装置の性能を向上することが可能な技術を提供する。
【解決手段】半導体基板であるウェハ25内に、リン等のn型不純物やボロン等のp型不純物を導入する。そして、ウェハ25に対してその裏面25a側から入射レーザ光6を照射し、それによってウェハ25内の不純物を活性化する。入射レーザ光6は、ウェハ25に対する照射タイミングを互いにずらして重畳された複数のパルスレーザ光1,2から成る。このような入射レーザ光6を使用して不純物の活性化を行うことによって、ウェハ25の溶融を抑制しつつ、当該ウェハ25に対して長時間レーザ光を照射することができる。その結果、半導体装置の性能が向上する。
【選択図】図1

Description

本発明は、レーザ光を使用して不純物を活性化する工程を含む半導体装置の製造方法及び当該製造方法で使用することが可能なレーザ加工装置に関する。
絶縁ゲート型バイポーラトランジスタ(以後、「IGBT」と呼ぶ)等を備える半導体装置の製造工程では、裏面からウェハに不純物を導入し、当該ウェハに対してレーザ光を照射することによって不純物を活性化する工程が行われる。
例えば、特許文献1に記載の技術では、不純物を活性化する際に使用するレーザ光としてYAGレーザの第3高調波等を使用し、これによって、ウェハの表面に形成された表面構造に熱影響を与えることを防止している。また、特許文献1の技術では、不純物を活性化する際に、レーザ光の照射と低温での電気炉加熱とを併用することも行われている。
一方で、特許文献2には、アモルファスシリコン膜から大きな結晶粒を有するシリコン膜を形成することが可能なレーザ加工装置が開示されている。特許文献2の技術では、アモルファスシリコン膜を第1のパルスレーザ光により溶融し、その後、第2のパルスレーザ光により冷却速度を遅らせて結晶化速度を緩やかにし、結晶粒を成長させている。
特開2003−59856号公報 特開2003−68644号公報
上述の特許文献1の技術では、ウェハ内の不純物を十分に活性化しようとするとウェハが溶融し、半導体装置の電気的特性が劣化することがある。一方、ウェハの溶融を防止するためにレーザ光の出力を低下させると、ウェハ内に深く導入された不純物を十分に活性化できないという問題が生じる。いずれにしても、特許文献1の技術では、半導体装置の性能の劣化を生じることがある。
また、上述の特許文献2のレーザ加工装置では、レーザ光が照射面で反射し、その反射光がレーザ発振器内に入射したり、当該レーザ発振器の筺体に照射して、レーザ光の出力が変動することがある。したがって、特許文献2のレーザ加工装置を仮にウェハ内の不純物の活性化に使用した場合であっても、レーザ光の出力が不十分であるために不純物の活性化を十分に行うことができず、あるいはレーザ光の出力が高くなりすぎてウェハが溶融してしまい、半導体装置の性能が劣化することがある。
そこで、本発明は上述の問題に鑑みて成されたものであり、半導体装置の性能を向上することが可能な技術を提供することを目的とする。
この発明の第1の半導体装置の製造方法は、(a)第1の主面と、当該第1の主面とは反対側に位置する第2の主面とを有する半導体基板内に不純物を導入する工程と、(b)前記半導体基板にレーザ光を照射することによって前記不純物を活性化する工程とを備え、前記レーザ光は、前記半導体基板に対する照射タイミングを互いにずらして重畳された複数のパルスレーザ光から成る。
また、この発明の第2の半導体装置の製造方法は、(a)第1の主面と、当該第1の主面とは反対側に位置する第2の主面とを有する半導体基板内に前記第2の主面側から第1不純物を導入する工程と、(b)前記半導体基板にレーザ光を照射することによって前記第1不純物を活性化する工程と、(c)前記工程(b)の後に、前記第2の主面側から前記第1不純物よりも浅く第2不純物を前記半導体基板内に導入する工程と、(d)前記半導体基板にレーザ光を照射することによって前記第2不純物を活性化する工程とを備える。
また、この発明の第1のレーザ加工装置は、レーザ光を出力するレーザ発振器と、加工対象物における照射対象面に前記レーザ光を照射する光学系とを備え、前記光学系を通過した前記レーザ光は、前記照射対象面に対して斜め方向から入射する。
また、この発明の第2のレーザ加工装置は、レーザ光を出力するレーザ発振器と、加工対象物における照射対象面に前記レーザ光を照射する光学系と、前記レーザ発振器の出力端から前記照射対象面までの光軸上に設けられ、前記レーザ光が通過する通過孔を有する光遮蔽部材とを備える。
この発明の第1の半導体装置の製造方法によれば、半導体基板に対する照射タイミングを互いにずらして重畳された複数のパルスレーザ光から成るレーザ光を使用して不純物の活性化を行っているため、半導体基板の溶融を抑制しつつ、半導体基板に対して長時間レーザ光を照射することができる。その結果、半導体基板の溶融を抑制しつつ、半導体基板内の不純物を十分に活性化することができ、半導体装置の性能が向上する。
また、この発明の第2の半導体装置の製造方法によれば、第1不純物よりも浅く導入される第2不純物を半導体基板に導入する前に、第1不純物をレーザ光を使用して活性化している。一般的に、不純物が導入されていると、レーザ光はその不純物が導入されている領域で吸収されやすくなるため、当該領域よりも深く進入しにくくなる。したがって、第1及び第2不純物を導入した後にそれらをまとめて活性化すると、浅く導入された第2不純物が存在する領域でレーザ光が吸収されて、深く導入されている第1不純物を十分に活性化できない可能性がある。本発明では、浅く導入される第2不純物を半導体基板に導入する前に第1不純物をレーザ光を使用して活性化しているため、第1不純物を十分に活性化することができる。その結果、半導体装置の性能が向上する。
また、この発明の第1のレーザ加工装置によれば、レーザ光を照射対象面に対して斜め方向から入射しているため、当該レーザ光の照射対象面での反射光がレーザ発振器の内部に入射したり、レーザ発振器に照射することを抑制できる。したがって、レーザ光の出力変動を低減できる。よって、本発明に係るレーザ加工装置を半導体基板内の不純物を活性化する際に使用することによって、出力が安定したレーザ光を半導体基板に照射することができ、半導体基板の溶融を抑制しつつ不純物を十分に活性化することができる。その結果、半導体装置の性能を向上することができる。
また、この発明の第2のレーザ加工装置によれば、光遮蔽部材が設けられているため、レーザ光の照射対象面での反射光がレーザ発振器に照射することを抑制できる。したがって、温度上昇によるレーザ光の出力変動を低減できる。よって、本発明に係るレーザ加工装置を半導体基板内の不純物を活性化する際に使用することによって、出力が安定したレーザ光を半導体基板に照射することができ、半導体基板の溶融を抑制しつつ不純物を十分に活性化することができる。その結果、半導体装置の性能を向上することができる。
図1は本発明の実施の形態に係るレーザ加工装置の構成を示す模式図である。本実施の形態に係るレーザ加工装置では、例えば、シリコン等から成る半導体基板内に導入されたリンやボロン等の不純物を活性化することができる。
図1に示されるように、本実施の形態に係るレーザ加工装置は、2台のレーザ発振器11,12と、当該レーザ発振器11,12からそれぞれ出力されるパルスレーザ光1,2を重畳し、入射レーザ光6として加工対象物における照射対象面に照射する光学系60とを備えている。本実施の形態では、入射レーザ光6をウェハ25にその裏面25a側から照射し、当該ウェハ25内の不純物を活性化する。したがって、ウェハ25が加工対象物となり、当該ウェハ25の裏面25aが照射対象面となる。
本実施の形態では、パルスレーザ光1,2のそれぞれは、図1の紙面に対して平行な方向に偏光面を有する直線偏光である。そして、パルスレーザ光1,2はそれぞれ可視光であって、それぞれの波長は400nm以上600nm未満に設定される。パルスレーザ光1,2は、例えば、Nd:YLFレーザの第2高調波であり、その波長は537nmである。また、パルスレーザ光1,2としては、Nd:YAGレーザの第2高調波や、Nd:YVO4レーザの第2高調波を使用しても良い。
光学系60は、直線偏光のレーザ光の偏光面を回転させる出力調整機構13,14と、レーザ光のビーム径を広げるビーム拡大光学系15,16と、2つのレーザ光を同軸上に結合する結合光学系17と、直線偏光のレーザ光を円偏光に変換する1/4波長板19と、レーザ光を部分的に透過しつつ、その大部分を反射する部分透過ミラー20と、レーザ光のエネルギー分布を均一化するホモジナイザ22と、レーザ光を所定のビーム径に集光する集光レンズ23,24と、全反射ミラー51〜55とを備えている。出力調整機構13,14のそれぞれは、1/2波長板と、当該1/2波長板を回転させる回転機構とを備えている。結合光学系17は偏光ビームプリズムから成る。
更に、本実施の形態に係るレーザ加工装置は、レーザ光を遮蔽することが可能な光遮蔽部材8,9と、レーザ光の進行を遮断することが可能なシャッター18aと、シャッター18aを移動させるシャッター駆動機構18bと、シャッター駆動機構18bの動作を制御するシャッターコントローラ35と、レーザ光を電気信号に変換するパワーモニタヘッド21と、加工対象物であるウェハ25を載置する載物台26と、載物台26を支持する2軸移動テーブル27と、2軸移動テーブルの移動を制御するテーブルコントローラ37と、レーザ発振器11,12に電源をそれぞれ供給する電源装置31,32と、出力調整機構13,14における回転機構の動作をそれぞれ制御する出力調整機構コントローラ33,34と、タイミング調整装置36と、出力調整機構コントローラ33,34、シャッターコントローラ35、タイミング調整装置36及びテーブルコントローラ37の動作を制御する制御用コンピュータ38と、不要なレーザ光を吸収するダンパー41,42とを備えている。
光遮蔽部材8,9はそれぞれ板状のレーザ光吸収部材から成り、それらの中央付近にはレーザ光が通過する円形の通過孔8a,9aがそれぞれ設けられている。光遮蔽部材8は、その通過孔8aにパルスレーザ光1が通過するように、レーザ発振器11の出力端から入射レーザ光6が照射される照射対象面までの光軸上に配置される。本実施の形態では、光遮蔽部材8はレーザ発振器11の出力端近傍に配置されている。同様に、光遮蔽部材9は、その通過孔9aにパルスレーザ光2が通過するように、レーザ発振器12の出力端から入射レーザ光6が照射される照射対象面までの光軸上に配置される。本実施の形態では、光遮蔽部材9はレーザ発振器12の出力端近傍に配置されている。なお、図1では光遮蔽部材8,9の断面構造を示している。
次に、本実施の形態に係るレーザ加工装置の動作について説明する。レーザ発振器11から出力されたパルスレーザ光1は、光遮蔽部材8の通過孔8aを通過し、全反射ミラー51で全反射して出力調整機構13に入射する。レーザ発振器12から出力されたパルスレーザ光2は、光遮蔽部材9の通過孔9aを通過し、全反射ミラー52で全反射して出力調整機構14に入射する。
出力調整機構13に入射した直線偏光のパルスレーザ光1は、当該出力調整機構13の1/2波長板に入射し、当該1/2波長板によってその偏光面が回転してビーム拡大光学系15に入射する。出力調整機構14に入射した直線偏光のパルスレーザ光2は、当該出力調整機構14の1/2波長板に入射し、当該1/2波長板によってその偏光面が回転してビーム拡大光学系16に入射する。
出力調整機構コントローラ33は、制御用コンピュータ38の命令に従って、出力調整機構13の回転機構の動作を制御する。これにより、出力調整機構13の1/2波長板が回転し、出力調整機構13でのパルスレーザ光1の偏光面の回転量が変化する。同様に、出力調整機構コントローラ34は、制御用コンピュータ38の命令に従って、出力調整機構14の回転機構の動作を制御し、これにより、出力調整機構14の1/2波長板が回転し、出力調整機構14でのパルスレーザ光2の偏光面の回転量が変化する。
ビーム拡大光学系15に入射したパルスレーザ光1は、そのビーム径が拡大され、その後全反射ミラー53で全反射して結合光学系17に入射する。ビーム拡大光学系16に入射したパルスレーザ光2は、そのビーム径が拡大され、その後全反射ミラー54で全反射して結合光学系17に入射する。
結合光学系17は、パルスレーザ光1の偏光面が図1の紙面に平行な場合には当該パルスレーザ光1をほぼ透過し、パルスレーザ光1の偏光面が図1の紙面に垂直な場合には当該パルスレーザ光1をほとんど反射する。また、結合光学系17は、パルスレーザ光2の偏光面が図1の紙面に平行な場合には当該パルスレーザ光2をほとんど透過し、パルスレーザ光2の偏光面が図1の紙面に垂直な場合には当該パルスレーザ光2をほとんど反射する。そして、結合光学系17で反射されたパルスレーザ光1と、結合光学系17を透過したパルスレーザ光2とは同軸上に重畳される。以後、結合光学系17で重畳されたパルスレーザ光1,2を「重畳レーザ光10」と呼ぶ。
このように、本実施の形態では、出力調整機構13においてパルスレーザ光1の偏光面を任意に回転させることができ、結合光学系17ではパルスレーザ光1の偏光面の向きによって当該パルスレーザ光1を透過したり反射したりするため、出力調整機構13と結合光学系17とでパルスレーザ光1の強度を任意に調整することができる。同様に、出力調整機構14においてパルスレーザ光2の偏光面を任意に回転させることができ、結合光学系17ではパルスレーザ光2の偏光面の向きによって当該パルスレーザ光2を透過したり反射したりするため、出力調整機構14と結合光学系17とでパルスレーザ光2の強度を任意に調整することができる。したがって、出力調整機構13,14と結合光学系17とによって、パルスレーザ光1,2の強度を独立して調整し、それらを重畳することができる。なお、結合光学系17を透過したパルスレーザ光1と、結合光学系17で反射したパルスレーザ光2とを含む不要なレーザ光3はダンパー41で吸収される。
結合光学系17から出力された重畳レーザ光10は、1/4波長板19に入射し、当該1/4波長板19で直線偏光から円偏光に変換される。そして、円偏光に変換された重畳レーザ光10は部分透過ミラー20でその99%以上が反射し、その後全反射ミラー55で全反射してホモジナイザ22に入射する。結合光学系17から出力された重畳レーザ光10のうち部分透過ミラー20を透過した1%以下のレーザ光5は、パワーモニタヘッド21に入射する。パワーモニタヘッド21は、フォトダイオードから成り、入射した重畳レーザ光10を電気信号に変換して制御用コンピュータ38に入力する。制御用コンピュータ38は、パワーモニタヘッド21から受け取った電気信号をモニタし、当該信号を記憶するとともに、当該信号から重畳レーザ光10の出力波形と平均出力強度を取得する。
ホモジナイザ22に入射した重畳レーザ光10は、当該ホモジナイザ22でそのエネルギー分布が均一化され、その後集光レンズ23で集光される。集光レンズ23で集光された重畳レーザ光10は、集光レンズ24で更に集光されて、所定のビーム径を有する入射レーザ光6としてウェハ25の裏面25aに照射する。その結果、ウェハ25内で熱が発生してその中の不純物が活性化される。
本実施の形態では、入射レーザ光6は、照射対象面に対して斜め方向から入射する。図2は、入射レーザ光6が照射対象面であるウェハ25の裏面25aに入射する様子を示す図である。図2に示されるように、入射レーザ光6は、ウェハ25の裏面25aの垂直方向に対して角度θを成して当該裏面25aに入射する。この角度θは1度程度が望ましい。
このように、入射レーザ光6を照射対象面に対して斜め方向から入射させることによって、図2に示されるように、入射レーザ光6の照射対象面での反射光7は、入射レーザ光6の入射方向に沿って進行することはなく、当該入射方向と角度2θを成して進行する。よって、当該反射光7がレーザ発振器11,12内部に入射することを抑制できる。その結果、パルスレーザ光1,2における出力エネルギーの変動やパルス波形の変動を低減できる。更には、レーザ発振器11,12の筺体に反射光7が照射されることも抑制できるため、当該筺体の温度上昇によって生じるパルスレーザ光1,2のビーム位置の変動や出力強度の変動を抑制できる。
また本実施の形態では、上述のような光遮蔽部材8,9が設けられているため、レーザ発振器11,12に向かう反射光7を当該光遮蔽部材8,9で遮蔽することができる。したがって、反射光7がレーザ発振器11,12の筺体に照射されることを抑制でき、当該筺体の温度上昇によって生じるパルスレーザ光1,2のビーム位置の変動や出力強度の変動を低減することができる。ここで光遮蔽部材8,9は、入射レーザ光6のビーム径に対する反射光7のビーム径の割合ができるだけ大きくなる場所に設置することが望ましい。これにより、レーザ発振器11,12に入射する反射光7の出力を最小にできるため、パルスレーザ光1,2における出力エネルギーの変動やパルス波形の変動を最小にできる。
なお本実施の形態では、パルスレーザ光1,2の出力を安定化させるために、入射レーザ光6を照射対象面に対して斜め方向から入射させる技術と、光遮蔽部材8,9を設ける技術とを併用しているが、どちらか一方の技術だけを使用してパルスレーザ光1,2の出力を安定化させても良い。
テーブルコントローラ37は、制御用コンピュータ38から移動開始命令が出力されると2軸移動テーブル27の移動を開始し、移動停止命令が出力されると2軸移動テーブルの移動を停止する。そして、テーブルコントローラ37は、制御用コンピュータ38が出力する移動経路情報に従って2軸移動テーブル27を移動させる。これにより、2軸移動テーブル27によって支持されている載物台26上のウェハ25は平面内を移動し、入射レーザ光6がウェハ25の裏面25a上を走査する。
本実施の形態では、制御用コンピュータ38は、取得した重畳レーザ光10の出力波形が基準波形からずれた場合には、あるいは取得した重畳レーザ光10の平均出力強度が基準値よりも大きくなった場合には、シャッターコントローラ35にその旨を通知し、当該シャッターコントローラ35は、シャッター駆動機構18bを制御してシャッター18aを移動し、結合光学系17から出力される重畳レーザ光10が1/4波長板19に入射されるのを当該シャッタ−18aで遮断する。それと同時に、制御用コンピュータ38は、テーブルコントローラ37に命令して2軸移動テーブル27の移動を停止させ、更に、本レーザ加工装置のオペレータに異常を通知する。なお、重畳レーザ光10はシャッター18aで反射されるが、その不要な反射光4はダンパー42で吸収される。
また、制御用コンピュータ38は、タイミング調整装置36に、レーザ発振器11,12のそれぞれの発振タイミングに関する情報を出力する。タイミング調整装置36は、当該情報に基づいて、電源装置31,32のそれぞれに固有のタイミングでトリガ信号を出力する。電源装置31,32は、トリガ信号を受け取るとレーザ発振器11,12にそれぞれ電源を供給する。これにより、レーザ発振器11,12からは独立したタイミングでパルスレーザ光1,2がそれぞれ出力され、結合光学系17で重畳される。
次に、図1に示されるレーザ加工装置を用いて製造される半導体装置の一例について説明する。図3は本実施の形態に係る半導体装置100の構造を示す断面図である。本実施の形態に係る半導体装置100は、IGBTを備える縦型構造の電力用半導体装置であって、モータ制御などに使用される。
図3に示されるように、本実施の形態に係る半導体装置100は、スイッチングセルとしてのIGBTが複数形成されているセル領域150と、当該IGBTのゲートにゲート電圧を伝達するための配線が形成されているゲートライン領域160と、本半導体装置100の耐圧を向上させるための構造を有するガードリング領域170とを備えている。セル領域150中のIGBTにはワイヤがボンディングされ、当該ワイヤには定格電流が供給される。ガードリング領域170は、本半導体装置100が備える半導体基板101の周縁に沿って形成されており、セル領域150及びゲートライン領域160はガードリング領域170で取り囲まれている。例えば、半導体基板101はシリコンから成り、ウェハから切り出されたチップ状態のn-型の半導体基板である。
セル領域150では、半導体基板101の表面101a内にp+型の不純物領域であるIGBTのベース領域102が互いに離れて複数形成されている。そして、セル領域150の各ベース領域102の上面内にはn+型の不純物領域であるIGBTのエミッタ領域103が互いに離れて2つ形成されている。
またセル領域150では、半導体基板101におけるベース領域102及びエミッタ領域103が形成されていない領域と、エミッタ領域103とで挟まれたベース領域102上にIGBTのゲート絶縁膜105が形成されており、その上にはIGBTのゲート電極106が形成されている。一つのゲート絶縁膜105及びその上のゲート電極106は、互いに隣り合う2つのベース領域102にまたがって形成されている。したがって、当該2つのベース領域102に挟まれる半導体基板101の表面101a上にもゲート絶縁膜105及びゲート電極106が形成されている。
ゲートライン領域160及びガードリング領域170のそれぞれでは、半導体基板101上にシリコン酸化膜104が選択的に形成されている。また、セル領域150、ゲートライン領域160及びガードリング領域170には層間絶縁膜107が形成されている。セル領域150では、ゲート絶縁膜105及びゲート電極106を覆いつつエミッタ領域103が露出するように半導体基板101上に層間絶縁膜107が形成されている。ゲートライン領域160では、シリコン酸化膜104が部分的に露出するよう当該シリコン酸化膜104上と半導体基板101上に層間絶縁膜107が形成されている。ガードリング領域170では、半導体基板101の表面101aが部分的に露出するように、シリコン酸化膜104を覆って層間絶縁膜107が半導体基板101上に形成されている。
セル領域150、ゲートライン領域160及びガードリング領域170には、チタン等から成る電極パターン108と、アルミニウム等から成る電極パターン109とが形成されている。セル領域150では、層間絶縁膜107上と、当該層間絶縁膜107から露出しているエミッタ領域103上とに電極パターン108が形成されており、当該電極パターン108上に電極パターン109が形成されている。ゲートライン領域160では、層間絶縁膜107上と、当該層間絶縁膜107から露出しているシリコン酸化膜104上とに電極パターン108が形成されており、当該電極パターン108上に電極パターン109が形成されている。ガードリング領域170では、半導体基板101の表面101aが部分的に露出するように層間絶縁膜107を覆って電極パターン108が半導体基板101上に形成されており、電極パターン108が部分的に露出するように半導体基板101上と電極パターン108上とに電極パターン109が形成されている。
ゲートライン領域160及びガードリング領域170には、シリコン窒化膜等から成る保護膜110と、ポリイミド等から成る保護膜111とで構成される、2層構造のパッシベーション膜112が形成されている。ゲートライン領域160では、電極パターン109上に保護膜110,111がこの順で積層されている。ガードリング領域170では、電極パターン108,109上に保護膜110,111がこの順で積層されている。また、セル領域150では、電極パターン109が部分的に露出するように当該電極パターン109上に保護膜113が形成されている。
半導体基板101の裏面101b上には、n+型の不純物領域であるn+バッファ層115が全面に形成されている。n+バッファ層115上には、p+型の不純物領域であるp+コレクタ層116が全面に形成されている。p+コレクタ層116上には、例えば、アルミニウム、チタン、ニッケル及び金などの複数の金属が積層されたコレクタ電極117が全面に形成されている。そして、図3に示される構造は図示しないモールド樹脂で覆われている。
以上のような構造を有する本実施の形態に係る半導体装置100では、ゲートライン領域160の電極パターン108,109が、セル領域150のゲート電極106にゲート電圧を伝達するための配線として機能する。そして、ガードリング領域170では、電極パターン108,109によって、半導体基板101の表面101a付近の電界が緩和され、これにより本半導体装置100の耐圧が向上する。
また、保護膜110は、本半導体装置100を外的汚染から保護するために設けられたものであり、半導体装置100の表面に水分などが付着してイオン化することによりデバイス特性が劣化したり、本来絶縁されるべき箇所がショートし破損することを防止している。一方、保護膜111は、上述の図示しないモールド樹脂と、電極パターン108を構成するアルミニウム等との熱膨張率の違いによりヒートサイクル(繰り返しの熱作用)において電極パターン108に生じる歪みを防止し、当該電極パターン108が破損することを防止するために設けられている。なお、保護膜111を設けずに保護膜110のみでパッシベーション膜112を形成しても良い。
次に、図3に示される半導体装置100の製造方法について説明する。図4は本実施の形態に係る半導体装置100の製造方法を示すフローチャートである。まず、図4のステップs1に示されるように、ウェハ状態の半導体基板101を準備して、その一方の主面である表面101aが上側を向くように配置する。そして、ステップs2に示されるように、半導体基板101の表面101aに所定の構造を形成する。ステップs2では、まず、半導体基板101の表面101a内に不純物をイオン注入法により導入し、その後アニール処理を行い、ベース領域102及びエミッタ領域103を形成する。そして、半導体基板101の表面101a上にシリコン酸化膜104及びゲート絶縁膜105を形成し、その後層間絶縁膜107を全面に形成する。次に、層間絶縁膜107内にコンタクトホールを開口し、電極パターン108,109を順次形成する。その後、保護膜110,111から成るパッシベーション膜112を形成し、保護膜113を形成する。これにより、半導体基板101の表面101aに形成される表面構造が完成する。
次に、半導体基板101の他方の主面である裏面101bが上側を向くように当該半導体基板101を裏返して、その表面101a側に異物付着防止用の保護テープを貼り付けた後、ステップs3に示されるように、半導体基板101をその裏面101b側から研削して所望の厚さに設定する。そして、保護テープを剥離する。
次に、ステップs4に示されるように、n+バッファ層115を形成するために、半導体基板101にその裏面101b側からリン等のn型不純物をイオン注入法により導入する。そして、ステップs5に示されるように、p+コレクタ層116を形成するために、半導体基板101にその裏面101b側からボロン等のp型不純物をイオン注入法により導入する。このとき、当該p型不純物は、n+バッファ層115を形成するためのn型不純物よりも浅く半導体基板101に導入される。
次に、ステップs6に示されるように、図1に示されるレーザ加工装置を使用して、半導体基板101にその裏面101b側からレーザ光を照射して、ステップs5で導入したn型不純物と、ステップs6で導入したp型不純物を活性化する。
ステップs6では、まず、半導体基板101をその裏面101b側が上側に向くように図1の載物台26に載置する。そして、2軸移動テーブル27を移動させながら、入射レーザ光6を半導体基板101の裏面101bに照射する。これにより、入射レーザ光6が半導体基板101の裏面101b上を走査し、ステップs5,6で導入された半導体基板101内のn型及びp型不純物が活性化する。その結果、n+バッファ層115とp+コレクタ層116とが完成する。なお、半導体基板101が上述のウェハ25に相当し、半導体基板101の裏面101bがウェハ25の裏面25aに相当する。
次に、ステップs7に示されるように、複数の金属をp+コレクタ層116上に蒸着して、積層構造を有するコレクタ電極117を形成する。その後、ウェハ状態の半導体基板101をダイシングし、チップ状態の半導体基板101を形成する。そして、ワイヤボンディング等を行い、半導体基板101をモールド樹脂で覆うことによって、本半導体装置100が完成する。
次に、ステップs6で使用される本実施の形態の入射レーザ光6について説明する。図5は、時間経過に伴う入射レーザ光6及びパルスレーザ光1,2の強度変化を示す図である。図5の横軸は時間を、縦軸は強度をそれぞれ示している。図5中の波形210は入射レーザ光6の強度波形を示しており、波形201はパルスレーザ光1の強度波形を示しており、波形202はパルスレーザ光2の強度波形を示している。
半導体基板101内の不純物を活性化する際、入射レーザ光6の強度を、不純物が活性化するために最低限必要な強度P1以上に設定する必要がある。一方で、入射レーザ光6の強度をあまり上げすぎると、半導体基板101が熱により溶融する。一般的に、半導体基板101が深さ0.1μm程度まで溶融することは許容できることから、半導体基板101が深さ0.1μm程度以上溶融するのに最低限必要な強度P2以下に入射レーザ光6の強度を設定する必要がある。
図5の波形201,202にも示されるように、一般的にパルスレーザ光の出力波形は三角波であるため、一つのパルスレーザ光のみを使用して不純物を活性化する場合、当該パルスレーザ光の強度を強度P2以下に設定すると、強度P1以上となる時間が短くなり、半導体基板内の不純物を十分に活性化することが困難である。
そこで、本実施の形態では、図5に示されるように、パルスレーザ光2の半導体基板101に対する照射タイミングを、パルスレーザ光1のそれよりも時間tdだけ遅延させて両者を重畳することによって入射レーザ光6を生成する。これにより、入射レーザ光6の強度を強度P2以下に抑えつつ、当該強度が強度P1以上となる時間teを十分に確保することができる。このような入射レーザ光6を半導体基板101の裏面101bに照射することによって、当該半導体基板101内の不純物を十分に活性化することができる。なお、遅延時間tdは、電源装置31,32に入力されるタイミング調整装置36からのトリガ信号の出力タイミングを調整することによって任意に設定することができる。また、時間teは、遅延時間tdやパルスレーザ光1,2の強度等を変更することによって、任意の値に調整することができる。
このように、本実施の形態では、半導体基板101に対する照射タイミングを互いにずらして重畳された複数のパルスレーザ光1,2から成る入射レーザ光6を使用して不純物の活性化を行っているため、半導体基板101の溶融を抑制しつつ、半導体基板101に対して長時間レーザ光を照射することができる。その結果、半導体基板101の溶融を抑制しつつ、半導体基板101内の不純物を十分に活性化することができ、本半導体装置100の性能が向上する。
また図5に示されるように、本実施の形態では、入射レーザ光6の波形210において、時間的に早くピークとなる第1ピーク値PP1が、それよりも時間的に後にピークとなる第2ピーク値PP2以下となるように、遅延時間td及びパルスレーザ光1,2の強度が設定されている。
一般的に、半導体基板101でのレーザ光の吸収率は、当該半導体基板101の温度が上昇するほど高くなる。したがって、第1ピーク値PP1が第2ピーク値PP2よりも高いと、入射レーザ光6の強度が第1ピーク値PP1を示す活性化熱処理の初期段階において半導体基板101の温度が上昇し、レーザ光の吸収率が上がり、入射レーザ光6が第2ピーク値PP2を示す活性化熱処理の後半に半導体基板101の温度が上昇しすぎて、当該半導体基板101が溶融する可能性がある。
本実施の形態では、第1ピーク値PP1が第2ピーク値PP2以下に設定されているため、活性化熱処理の初期段階ではそれほどレーザ光の吸収率が上昇せず、活性化熱処理の後半においても基板温度の過剰な上昇を抑制することができる。その結果、半導体基板101の溶融を確実に防止することができ、半導体装置100の性能を更に向上することができる。
また本実施の形態では、上述のように、パルスレーザ光1,2のそれぞれの波長を400nm以上に設定している。このように、パルスレーザ光1,2のそれぞれの波長を400nm以上に設定することによって、両者が重畳されて成る入射レーザ光6が半導体基板101内に進入しやすくなる。そのため、例えば、n+バッファ層115用のn型不純物のように、半導体基板101の裏面101bから深さ1μm程度の位置に存在する不純物を十分に活性化することができる。
一方で、パルスレーザ光1,2のそれぞれの波長を600nm以上に設定すると、入射レーザ光6の半導体基板101内への進行深さが大きくなりすぎるため、半導体基板101全体が加熱されて、半導体基板101における照射対象面(裏面101b)とは反対側の表面101aに形成された表面構造の温度が上昇しすぎて、本半導体装置100の電気的特性が劣化する可能性がある。
以上のことから、本実施の形態のように、パルスレーザ光1,2のそれぞれの波長を400nm以上600nm未満に設定することによって、半導体基板101内の不純物を適切に活性化しつつ、入射レーザ光6の半導体基板101への進入深さを適切に調整することができ、上述のステップs2で形成された所定の構造の温度上昇を抑制できる。よって、半導体装置100の電気的特性の劣化を防止できる。
また、本実施の形態では、入射レーザ光6を照射対象面に対して斜め方向から入射することによって、当該入射レーザ光6の照射対象面での反射光7がレーザ発振器11,12の内部に入射したり、レーザ発振器11,12の筺体に照射することを抑制できる。そのため、パルスレーザ光1,2の出力変動を抑制できる。よって、本実施の形態に係るレーザ加工装置を半導体基板101内の不純物を活性化する際に使用することによって、出力が安定した入射レーザ光6を半導体基板101に照射することができ、半導体基板101の溶融を抑制しつつ不純物を十分に活性化することができる。その結果、半導体装置100の性能を向上することができる。
また本実施の形態では、光遮蔽部材8,9を設けることによって反射光7がレーザ発振器11,12の筺体に照射されることを抑制できるため、パルスレーザ光1,2の出力変動を低減することができる。よって、半導体基板101の溶融を抑制しつつ不純物を十分に活性化することができ、半導体装置100の性能を向上することができる。
なお、入射レーザ光6を用いて不純物が活性化された半導体装置100と、入射レーザ光6を用いる替わりに電気炉で900℃、30分間熱処理することにより不純物が活性化された半導体装置100とを比較すると、活性化されたn型不純物やp型不純物の濃度に差は見られなかった。
上述の図4に示される製造方法では、n+バッファ層115用のn型不純物と、p+コレクタ層116用のp型不純物とを導入した後に、両方の不純物をまとめて活性化していたが、不純物を導入するごとに活性化処理を行っても良い。図6はこの場合の本半導体装置100の製造方法を示すフローチャートである。まず、上述のステップs1〜s4を実行する。次に、ステップs16に示されるように、半導体基板101にその裏面101b側から入射レーザ光6を照射して、ステップs4で導入されたn型不純物を活性化する。そして、上述のステップs5を実行して、p型不純物を半導体基板101内に導入する。
次に、ステップs26に示されるように、半導体基板101にその裏面101b側から入射レーザ光6を照射して、ステップs5で導入されたp型不純物を活性化する。そして、ステップs7を実行して、コレクタ電極117を形成する。その後、ウェハ状態の半導体基板101をダイシングし、チップ状態の半導体基板101を形成する。そして、ワイヤボンディング等を実行し、半導体基板101をモールド樹脂で覆うことによって、本半導体装置100が完成する。
一般的に、半導体基板に不純物が導入されていると、レーザ光はその不純物が導入されている領域で吸収されやすくなるため、レーザ光は当該領域よりも深く進入しにくくなる。したがって、図4に示される製造方法のように、n型不純物とp型不純物とを導入した後にそれらをまとめて活性化すると、より深い位置に存在するn型不純物を十分に活性化することができない可能性がある。
図6に示される製造方法では、浅く導入されるp型不純物を半導体基板101に導入する前にn型不純物を入射レーザ光6を使用して活性化しているため、入射レーザ光6がn型不純物が導入されている領域まで到達しやすくなり、n型不純物を十分に活性化することができる。その結果、本半導体装置100の性能が向上する。
例えば、パルスレーザ光1,2として、パルス半値幅(パルス強度が最大強度の1/2となる強度でのパルス時間長)がともに200nsのものを使用し、パルスレーザ光1の強度とパルスレーザ光2の強度との比を1:1に設定し、ステップs16での遅延時間tdを600ns、ステップs26での遅延時間tdを200nsに設定することによって、n+バッファ層115用のn型不純物と、p+コレクタ層116用のp型不純物とを十分に活性化することができる程度の時間teを確保することができるとともに、入射レーザ光6の出力波形210における第1ピーク値PP1を第2ピーク値PP2よりも小さくすることができる。また、パルスレーザ光1,2として、パルス半値幅がともに500nsのものを使用し、パルスレーザ光1の強度とパルスレーザ光2の強度との比を1:0.8に設定し、ステップs16,s26での遅延時間tdをともに800nsに設定することによっても同様のことが言え、パルスレーザ光1としてパルス半値幅が500nsのものを使用し、パルスレーザ光2としてパルス半値幅が200nsのものを使用し、パルスレーザ光1の強度とパルスレーザ光2の強度との比を1:1.2に設定し、ステップs16,s26での遅延時間tdをともに1μsに設定することによっても同様のことが言える。
なお、パルスレーザ光1,2として、Nd:YLFレーザの第2高調波、Nd:YAGレーザの第2高調波及びNd:YVO4レーザの第2高調波のいずれを使用した場合であっても、それらのパルス半値幅を200nsや500nsに設定可能である。
また、パルスレーザ光1,2のそれぞれのパルス半値幅は100ns以上5μs未満が望ましい。パルス半値幅が100nsよりも小さくなると、半導体基板101の裏面101bから深さ1μm程度の領域まで熱が十分に届かず、当該領域に存在する不純物を十分に活性化できない可能性があり、またパルス半値幅が5μs以上になると、半導体基板101の表面101aまで熱が伝達し、表面構造に対して熱によるダメージを与える可能性があるからである。
また、遅延時間tdはパルスレーザ光1,2のパルス半値幅にも依存するが、遅延時間tdの値は、200ns以上で、第1ピーク値PP1が第2ピーク値PP2以下となるように、パルスレーザ光1,2のパルス半値幅及び強度比にあわせて設定する方が好ましい。
また、パルスレーザ光1,2のそれぞれにおいては、パルスの繰り返し周波数をkHzオーダから10kHzオーダの間に設定する方が好ましい。パルスの繰り返し周波数が高くなりすぎると、パルスの発生間隔が短くなり、半導体基板101の冷却時間が十分に確保できず、当該半導体基板101に蓄熱が生じ、当該半導体基板101が溶融する可能性があり、またパルスの繰り返し周波数が低すぎると活性化処理時間が長くなるからである。
本発明の実施の形態に係るレーザ加工装置の構成を示す図である。 本発明の実施の形態に係る入射レーザ光がウェハに入射する様子を示す側面図である。 本発明の実施の形態に係る半導体装置の構造を示す断面図である。 本発明の実施の形態に係る半導体装置の製造方法を示すフローチャートである。 本発明の実施の形態に係る入射レーザ光及びパルスレーザ光の時間経過に伴う強度変化を示す図である。 本発明の実施の形態に係る半導体装置の製造方法の変形例を示すフローチャートである。
符号の説明
1,2 パルスレーザ光、6 入射レーザ光、8,9 光遮蔽部材、8a,9a 通過孔、11,12 レーザ発振器、25 ウェハ、25a 裏面、60 光学系、101 半導体基板、101a 表面、101b 裏面、210 波形。

Claims (7)

  1. (a)第1の主面と、当該第1の主面とは反対側に位置する第2の主面とを有する半導体基板内に不純物を導入する工程と、
    (b)前記半導体基板にレーザ光を照射することによって前記不純物を活性化する工程と
    を備え、
    前記レーザ光は、前記半導体基板に対する照射タイミングを互いにずらして重畳された複数のパルスレーザ光から成る、半導体装置の製造方法。
  2. 請求項1に記載の半導体装置の製造方法であって、
    時間経過に伴う前記レーザ光の強度変化を示す波形は、第1強度ピーク値と、当該第1強度ピーク値よりも時間的に後にピークとなり、かつ当該第1ピーク値以上である第2強度ピーク値とを含む、半導体装置の製造方法。
  3. 請求項1及び請求項2のいずれか一つに記載の半導体装置の製造方法であって、
    (c)前記工程(b)の前に、前記半導体基板の前記第1の主面に所定の構造を形成する工程を更に備え、
    前記工程(b)では、前記第2の主面側から前記半導体基板に前記レーザ光が照射され、
    前記複数のパルスレーザ光のそれぞれの波長は、400nm以上600nm未満である、半導体装置の製造方法。
  4. 請求項3に記載の半導体装置の製造方法であって、
    前記複数のパルスレーザ光のそれぞれは、Nd:YAGレーザの第2高調波、Nd:YLFレーザの第2高調波及びNd:YVO4レーザの第2高調波のいずれかである、半導体装置の製造方法。
  5. (a)第1の主面と、当該第1の主面とは反対側に位置する第2の主面とを有する半導体基板内に前記第2の主面側から第1不純物を導入する工程と、
    (b)前記半導体基板にレーザ光を照射することによって前記第1不純物を活性化する工程と、
    (c)前記工程(b)の後に、前記第2の主面側から前記第1不純物よりも浅く第2不純物を前記半導体基板内に導入する工程と、
    (d)前記半導体基板にレーザ光を照射することによって前記第2不純物を活性化する工程と
    を備える、半導体装置の製造方法。
  6. レーザ光を出力するレーザ発振器と、
    加工対象物における照射対象面に前記レーザ光を照射する光学系と
    を備え、
    前記光学系を通過した前記レーザ光は、前記照射対象面に対して斜め方向から入射する、レーザ加工装置。
  7. レーザ光を出力するレーザ発振器と、
    加工対象物における照射対象面に前記レーザ光を照射する光学系と、
    前記レーザ発振器の出力端から前記照射対象面までの光軸上に設けられ、前記レーザ光が通過する通過孔を有する光遮蔽部材と
    を備える、レーザ加工装置。
JP2005239447A 2005-08-22 2005-08-22 半導体装置の製造方法及びレーザ加工装置 Pending JP2007059431A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239447A JP2007059431A (ja) 2005-08-22 2005-08-22 半導体装置の製造方法及びレーザ加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239447A JP2007059431A (ja) 2005-08-22 2005-08-22 半導体装置の製造方法及びレーザ加工装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010263443A Division JP2011066443A (ja) 2010-11-26 2010-11-26 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2007059431A true JP2007059431A (ja) 2007-03-08

Family

ID=37922689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239447A Pending JP2007059431A (ja) 2005-08-22 2005-08-22 半導体装置の製造方法及びレーザ加工装置

Country Status (1)

Country Link
JP (1) JP2007059431A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267095A (ja) * 2008-04-25 2009-11-12 Japan Steel Works Ltd:The 半導体製造方法
JP2010212530A (ja) * 2009-03-12 2010-09-24 Fuji Electric Systems Co Ltd 半導体素子の製造方法
JP2010272587A (ja) * 2009-05-19 2010-12-02 Japan Steel Works Ltd:The 半導体不純物の活性化方法
JP2010283325A (ja) * 2009-05-07 2010-12-16 Sumitomo Heavy Ind Ltd 半導体素子の製造方法及びレーザアニール装置
JP2011060868A (ja) * 2009-09-07 2011-03-24 Japan Steel Works Ltd:The レーザアニール装置およびレーザアニール方法
JP2011233709A (ja) * 2010-04-27 2011-11-17 Japan Steel Works Ltd:The 結晶材料改質装置および結晶材料の改質方法
JP2011243836A (ja) * 2010-05-20 2011-12-01 Sumitomo Heavy Ind Ltd レーザアニール方法及びレーザアニール装置
US8084814B2 (en) 2008-01-23 2011-12-27 Fuji Electric Co., Ltd. Semiconductor device and method of producing the same
JP2012009603A (ja) * 2010-06-24 2012-01-12 Fuji Electric Co Ltd 半導体装置の製造方法
JP2013058610A (ja) * 2011-09-08 2013-03-28 Sumitomo Heavy Ind Ltd 半導体装置の製造方法
JP2013138252A (ja) * 2013-03-08 2013-07-11 Japan Steel Works Ltd:The レーザアニール方法
JP2017041637A (ja) * 2011-06-24 2017-02-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 新規の熱処理装置
WO2023095188A1 (ja) * 2021-11-24 2023-06-01 Jswアクティナシステム株式会社 レーザ照射装置、レーザ照射方法、及び半導体デバイスの製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183216A (ja) * 1992-01-07 1993-07-23 Ryoden Semiconductor Syst Eng Kk レーザ光照射装置
JPH10275781A (ja) * 1992-10-21 1998-10-13 Semiconductor Energy Lab Co Ltd レーザー処理方法
JP2000269161A (ja) * 1999-03-18 2000-09-29 Japan Steel Works Ltd:The レーザ光照射装置
JP2000349042A (ja) * 1999-06-03 2000-12-15 Toshiba Corp 半導体素子の製造方法と製造装置
JP2001057345A (ja) * 1999-08-19 2001-02-27 Toshiba Corp レーザプロセス及びレーザプロセス装置
JP2003243304A (ja) * 2001-12-11 2003-08-29 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2004349269A (ja) * 2003-01-15 2004-12-09 Sharp Corp 結晶化半導体薄膜の製造方法ならびにその製造装置
JP2004354604A (ja) * 2003-05-28 2004-12-16 Semiconductor Energy Lab Co Ltd 光学部品およびレーザ光照射装置
JP2005223301A (ja) * 2003-06-24 2005-08-18 Fuji Electric Device Technology Co Ltd 半導体素子の製造方法
JP2005268487A (ja) * 2004-03-18 2005-09-29 Fuji Electric Device Technology Co Ltd 半導体素子の製造方法および半導体素子の製造装置
JP2006059876A (ja) * 2004-08-17 2006-03-02 Fuji Electric Device Technology Co Ltd 半導体素子の製造方法
WO2007015388A1 (ja) * 2005-08-03 2007-02-08 Phoeton Corp. 半導体装置の製造方法および半導体装置の製造装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183216A (ja) * 1992-01-07 1993-07-23 Ryoden Semiconductor Syst Eng Kk レーザ光照射装置
JPH10275781A (ja) * 1992-10-21 1998-10-13 Semiconductor Energy Lab Co Ltd レーザー処理方法
JP2000269161A (ja) * 1999-03-18 2000-09-29 Japan Steel Works Ltd:The レーザ光照射装置
JP2000349042A (ja) * 1999-06-03 2000-12-15 Toshiba Corp 半導体素子の製造方法と製造装置
JP2001057345A (ja) * 1999-08-19 2001-02-27 Toshiba Corp レーザプロセス及びレーザプロセス装置
JP2003243304A (ja) * 2001-12-11 2003-08-29 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2004349269A (ja) * 2003-01-15 2004-12-09 Sharp Corp 結晶化半導体薄膜の製造方法ならびにその製造装置
JP2004354604A (ja) * 2003-05-28 2004-12-16 Semiconductor Energy Lab Co Ltd 光学部品およびレーザ光照射装置
JP2005223301A (ja) * 2003-06-24 2005-08-18 Fuji Electric Device Technology Co Ltd 半導体素子の製造方法
JP2005268487A (ja) * 2004-03-18 2005-09-29 Fuji Electric Device Technology Co Ltd 半導体素子の製造方法および半導体素子の製造装置
JP2006059876A (ja) * 2004-08-17 2006-03-02 Fuji Electric Device Technology Co Ltd 半導体素子の製造方法
WO2007015388A1 (ja) * 2005-08-03 2007-02-08 Phoeton Corp. 半導体装置の製造方法および半導体装置の製造装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10068998B2 (en) 2008-01-23 2018-09-04 Fuji Electric Co., Ltd. Semiconductor device and method of producing the same
US8084814B2 (en) 2008-01-23 2011-12-27 Fuji Electric Co., Ltd. Semiconductor device and method of producing the same
JP2009267095A (ja) * 2008-04-25 2009-11-12 Japan Steel Works Ltd:The 半導体製造方法
JP2010212530A (ja) * 2009-03-12 2010-09-24 Fuji Electric Systems Co Ltd 半導体素子の製造方法
JP2010283325A (ja) * 2009-05-07 2010-12-16 Sumitomo Heavy Ind Ltd 半導体素子の製造方法及びレーザアニール装置
JP2010272587A (ja) * 2009-05-19 2010-12-02 Japan Steel Works Ltd:The 半導体不純物の活性化方法
JP2011060868A (ja) * 2009-09-07 2011-03-24 Japan Steel Works Ltd:The レーザアニール装置およびレーザアニール方法
JP2011233709A (ja) * 2010-04-27 2011-11-17 Japan Steel Works Ltd:The 結晶材料改質装置および結晶材料の改質方法
JP2011243836A (ja) * 2010-05-20 2011-12-01 Sumitomo Heavy Ind Ltd レーザアニール方法及びレーザアニール装置
JP2012009603A (ja) * 2010-06-24 2012-01-12 Fuji Electric Co Ltd 半導体装置の製造方法
US9418852B2 (en) 2010-06-24 2016-08-16 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor device
JP2017041637A (ja) * 2011-06-24 2017-02-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 新規の熱処理装置
JP2017135390A (ja) * 2011-06-24 2017-08-03 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 新規の熱処理装置
US10181409B2 (en) 2011-06-24 2019-01-15 Applied Materials, Inc. Thermal processing apparatus
JP2013058610A (ja) * 2011-09-08 2013-03-28 Sumitomo Heavy Ind Ltd 半導体装置の製造方法
JP2013138252A (ja) * 2013-03-08 2013-07-11 Japan Steel Works Ltd:The レーザアニール方法
WO2023095188A1 (ja) * 2021-11-24 2023-06-01 Jswアクティナシステム株式会社 レーザ照射装置、レーザ照射方法、及び半導体デバイスの製造方法

Similar Documents

Publication Publication Date Title
JP2007059431A (ja) 半導体装置の製造方法及びレーザ加工装置
KR101123911B1 (ko) 특별히 맞추어진 전력 프로파일을 구비한 레이저 펄스를 사용하여 링크 처리를 하는 방법 및 레이저 시스템
US8309474B1 (en) Ultrafast laser annealing with reduced pattern density effects in integrated circuit fabrication
JP4590880B2 (ja) 半導体素子の製造方法
JP5105984B2 (ja) ビーム照射装置、及び、レーザアニール方法
WO2014030519A1 (ja) 加工対象物切断方法
JP2007123300A (ja) 不純物活性化方法、レーザアニール装置、半導体装置とその製造方法
WO2011018989A1 (ja) レーザ加工装置及びレーザ加工方法
WO2014030518A1 (ja) 加工対象物切断方法
JP6167358B2 (ja) レーザアニール装置及びレーザアニール方法
TW200304175A (en) Laser annealing device and thin-film transistor manufacturing method
WO2008024212A2 (en) Fast axis beam profile shaping by collimation lenslets
KR20140006032A (ko) 복수의 맞춤 레이저 펄스 형태들을 사용하여 워크피스를 레이저 프로세싱하기 위한 방법들 및 시스템들
US11482826B2 (en) Optical processing apparatus, optical processing method, and optically-processed product production method
US9302348B2 (en) Ultrafast laser annealing with reduced pattern density effects in integrated circuit fabrication
CN109686686B (zh) 激光热处理装置及激光热处理方法
JP2010212530A (ja) 半導体素子の製造方法
WO2011148788A1 (ja) レーザアニール方法及び装置
JP5178046B2 (ja) 半導体装置の作製方法
JP2004111584A (ja) 半導体装置の製造方法
TW201238190A (en) Methods and systems for link processing using laser pulses with optimized temporal power profiles and polarizations
JP5517832B2 (ja) レーザアニール装置及びレーザアニール方法
JP2000349042A (ja) 半導体素子の製造方法と製造装置
JP2011066443A (ja) 半導体装置の製造方法
JP4799825B2 (ja) レーザ照射方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301