TW201130735A - Process for preparing hexachlordisilan - Google Patents

Process for preparing hexachlordisilan Download PDF

Info

Publication number
TW201130735A
TW201130735A TW099141843A TW99141843A TW201130735A TW 201130735 A TW201130735 A TW 201130735A TW 099141843 A TW099141843 A TW 099141843A TW 99141843 A TW99141843 A TW 99141843A TW 201130735 A TW201130735 A TW 201130735A
Authority
TW
Taiwan
Prior art keywords
manufacturing
polydecane
chemical formula
chlorinated
carried out
Prior art date
Application number
TW099141843A
Other languages
English (en)
Inventor
Norbert Auner
Christian Bauch
Sven Holl
Rumen Deltschew
Seyed-Javad Mohsseni-Ala
Gerd Lippold
Thoralf Gebel
Original Assignee
Spawnt Private Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spawnt Private Sarl filed Critical Spawnt Private Sarl
Publication of TW201130735A publication Critical patent/TW201130735A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10773Halogenated silanes obtained by disproportionation and molecular rearrangement of halogenated silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Materials For Photolithography (AREA)

Description

201130735 六、發明說明: 【發明所屬之技術領域】 • 本發明係有關於六氯二矽烷(ShCle)的製造方法。 . 【先前技術】 六氣二石夕烧(Hexachlordisilan)為石夕的製程、氣化、 以及製造其衍生物等化學程序中的一項重要的前驅物。目 前已知有許多的製程可用來製造六氣二矽烷。 然而目前已知的六氣二矽烷的製造方法通常具有以 下一項缺點’即所產生之六氯二矽烷會混有其它之寡聚物 (Oligomeren),因此其製程需要多增加額外且成本昂貴的 分離步驟來取出所需之六氯二矽烷。 舉例來說,歐洲專利第EP 283 905號所提出之製造 方法為利用銅催化方法於140至300°C的溫度下來將矽轉 變成ShCl6和ShCl8與SiCh的混合物。此方法所產生 之寡聚石夕烧(Oligosilanen)的含量會達到40%以上,依所 用之矽的量的多少而有所不同。因此要獲得六氯二矽烷, 便必須要使用前述之額外的分離步驟。 英國專利第GB 702 349號所揭露的製造方法為利用 SiCU/Cl2與矽化合物或矽合金(例如CaSi2)的氣體混合物 於90至250°C的溫度下進行作用,藉以將其轉變成高氣 化之寡聚石夕烧(perchlorierter Oligosilane)。利用此方 法所生成之產物混合物中,Si2Cl6的含量為40至55%之重 量百分比。因此要將其分離出來,便必須要使用前述之額 外的分離步驟。 3 95067 201130735 史邁瑟(M. Schmeisser)和佛司(P. Voss)於無機及普 通化學期刊 Zeitschrift fiir anorganische und allgemeine Chemie 334(1964) 50所揭露的製造方法為將 高氯化的聚石夕烧(perch lorier ter Poly si lane)與氯氣混 合後,於60°C的溫度下進行作用,可將其分解成高氯化 之寡聚梦烧SinCl2n+2(n^2)。只是此寡聚石夕烧在大約 200 C的溫度時會產生茂化現象(Abreaktion)而轉變成 SiCh。
波尼茲(E. Bonitz)於化學報刊(Chemische Brichte) 94( 1961 )220 和應用化學期刊(Angewandte Chemie)78 (1976)475所揭露之製造方法為將研磨成粉狀之caSi2M 至適當之CL溶劑後,於小於6(Tc的溫度下進行作用,可 令其固體物質產生矽,再接著從含氣之產物SiClx(x<l) 轉變成SiCl。若使用較高的溫度,則會生成具有可溶性之 SiCh(l<x<2)。最終即可獲得化合物SinChn+2。SiC1的氧 化作用則是利用微細化之過渡金屬(例如Fe,Cu,或Ni) 來進行。 德國專利第DE 1079607號和第DE 1132901號所揭露 的製造方法為將研磨成粉狀之矽或矽合金(例如矽鐵合金) 與具有催化作用的金屬材質或金屬化合物混懸於稀釋劑 中’即可令其中之石夕成份定量性地與氣氣反應而生成 SinCl2n+2(n^2)。由於高氯化的聚石夕燒與減的氧化分離作 用係在:是很高的溫度下進行,因此可提供一種可行 法為令南氯化之寡聚石夕烧的混合物的產能可依所用之石夕的 201130735 量的不同來將其提高。於產生之 有甚高之比率。然而由於此混合確實, 石夕院仍具有大於25%之重量百分比^成㈣I聚 其中分離出六氯二魏,仍舊必料要從 的分離步驟。 之額外的昂貴 波尼兹(E Bonitz)的製程方法需要施行活性 (Akt1Vlerung),也就是要應用到一 户用 集的研磨步驟,其中,包括使用:術上“叩貴及密 之體之稀釋劑來處理含有 2原料,再進錢料有催化相的金肺質或金屬化 合物。 【發明内容】 本發明的課題即在於提供一種可行之六氯二 製造方法,其於實際應用上不僅特_於實施,且^ 使用之梦的量的大小來特別提供更高的產[ 又斤 前述之課題的-_決方法”本發明所提出的六 氣-石夕烧的製造方法,其特徵在於將化學式為训 0. 2至0. 8)的氯化聚錢利用氣化作用來進行氧化八施 化學式S分析式為SiGlx(x=〇.2至G.8)的氯化聚 烧,由於其x<i,因此具有一種高度之網狀交互鍵 構性質,造成其化合物中形成—種空間較大㈣^的、、、。 中心之矽原子係鍵結至一或數個氯替代原子 木,且 (chlor-Substituenten),或者是中心之矽原子不是 氯替代原子,而疋鍵結至其它的中心石夕原子咬 至
Kx<2:rt::, 95067 5 201130735 而言’其化合物則僅具有較為鬆散的網狀交互鍵結性,因 其中平均而言每叫时原子均至少鍵結至—個氯替代原 子此類型之聚石夕烧的特徵例如為具有一平面狀的二度空 間的結構,可相比為—種鏈狀及/或環狀之化合物,而^ G2的,形下則會進而顯現出網狀交互鍵結的結構性質。 目則有-項令人驚奇的發現為具有高度之網狀交互 鍵結性且化學式為⑽^㈣^至㈣的氣化聚錢的氧 化^解作職不是產生多種產物的混合物,而是僅只有產 生六氯二石夕垸(Si2Ch)。然而此處所謂之“僅只有,,的語 意係於此定義為指其產物仍可能含有極為少量的SiCld/ 或極少量之不溶性之殘留物質。 本說明書以上至此所謂之具有高度網狀交互鍵結性 ^具有前述之化學式的氣化聚魏,可依其組成及結構而 寿冉為含氣化物的矽(chl〇ridhaltiges Silicium)。此種含 氣化物的㈣氧化分解作用即可因此幾乎僅只有單獨地產 生六氣二矽烷。而只有利用不完全的反應結束方式,或者 是例如提前中止反應過程,才可產生具有較長之鏈結的的 矽烷。 刖述之氯化作用可特別利用氣化媒介來具體實施,藉 以將氣釋放或轉移為分子形式或原子形式。特別適合用來 作為此亂化媒介的物質為氯氣(Cl),但亦可考慮使用含氯 之化合物,例如非金屬性之氣化物或互豳化物 (Interhalogenverbindungen)。 就原料而5,可使用電漿化學程序(piasmachemisches 95067 6 201130735
Verfahre)或加熱處理所製成之含氣之聚矽烷 (Chlorpolysilan) ’例如(SiCl2)x,經由熱分解作用所生 成之化學式為SiClx且χ=0.2至0.8的氣化聚碎烧。此熱 分解作用及處理後所產生之含氯化物的矽,視其所用之後 處理程序而定’可能如前所述般地含有SiCh及/或少量之 不溶性的殘留物質。此化學式為SiClx且x = 0.2至0.8的 氣化聚矽烷可特別按照第WO 09/143825 A2號所揭露之方 法來製造’且其說明書中即完整包含所需之特性求法及合 成方法的完整敘述。於此方法中,氯化聚石夕炫係於反應室 中特別透過連續性之熱處理來將其分解,且此熱分解處理 程序係於35(TC至1200。(:的溫度範圍中進行。 利用電漿化學程序所製造成的氯化聚矽烷,例如 (SiClOx,可特別地與純化合物形態或多種化合物之混合 形態的鹵化的聚矽烷(halogeniertes Polysilan)之間形 成直接之Si-Si鍵結,其中,可使用函素或使用鹵素與 氫來作為替代原子(Substituenten),且其中,替代原子相 對於石夕原子的組成比率至少為1:1。此外, a.聚石夕炫中的氫(H)的含量比率小於2個原子百分比 (2 Atom-%); b·聚石夕烧幾乎不包含分支之鏈結及環狀結構,其中,短 鏈、、之刀支結構,特別疋新六氯石夕烧(Ne〇hexasuan) 、新五 乳石夕燒(Neopentasilan)、異四氯石夕烧(is〇tetrasiian)、異 五氯矽烷(Isopentasilan)和異六氣矽烷(Is〇hexasilan) 等向_化衍生物的總合含量相對於產物之混合體的總量的 7 95067 201130735 比率為低於1% ; C. Ilfl〇/Il32的拉曼分子振動頻譜 (Raman-Molekiilschwingungsspektrum)顯現出大於 1 的 值,其中,Ιι。。為100 cm_1之波數的拉曼強度,而Im則為 132 cnT1之波數的拉曼強度; d· 29Si-NMR核磁共振頻譜可看出產物之特徵信號所代 表的化學位移,於替代物為氯的情況下,為+ 15 ppm至-7 ppm 〇 上述之分支結構的佔有率可藉由分析其中之第三和 第四個矽原子的29Si-NMR頻譜信號來求得。短鏈結的部分 代表鹵化的聚石夕烧的部分,其中,所有的石夕烧均具有六個 石夕原子。根據本發明的另一實施例,此氣化之短鍵結型發 烷的成份比率可利用以下之方法來快速地求得。首先將 +23ppm至-13ppm的範圍設定至29Si-NMR頻譜(此範圍係特 別用來尋求第一和第二個石夕原子的頻譜信號);再接著分別 針對以下之高氣化衍生物:新六氣矽烷(Neohexasilar〇、 新五氯矽烷(Neopentasilan)、異四氯矽烷 (Isotetrasilan)、異五氣石夕烧(iSOpentasiian)、和異六 氯矽烷(Isohexasilan) ’來將其第三和第四個矽原子的頻 譜信號分別設定為-18ppm至-33ppm的範圍和-73ppm至 -93ppm的範圍。藉此即可定出各個成份的含量比率為 I kurskettung : I prilBar/sekundar (註:I kurskeUung 代表短鏈結部分的信 號強度,而I primar/sekundar代表第一和第二個石夕原子的信號強 度)。此比率就前述之高氣化衍生物,即新六氯矽烷 8 95067 201130735 (Neohexasi lan)、新五氯石夕烧(Neopentasi lan)、異四氣石夕 院(Isotetrasilan)、異五氯石夕烧(Isopentasilan)、和異 六氯石夕烧(Isohexasilan)而言,其值為小於1:1〇〇。 此外,長鏈結之函化的聚石夕烷的合成方法及特性求法 可參閱專利申請案第W0 2009/143823 A2號,其說明書中 即完整包含所需之合成方法及特性求法的完整敘述。 再者,我們亦可如第W0 2006/125425 A1號所述般地 改使用1¾鹵化的聚石夕烧,其說明書亦同樣地完整包含所需 之特性求法及合成方法的完整敘述。但要注意的一點是, 此方法所用的電漿具有較高的能量密度,因此會令測定物 產生不同的頻譜。 以熱處理方式製造出的含氯之聚矽烷 (Chlorpolysilan),例如(SiClOx,可特別地與純化合物 形態或多種化合物之混合形態的氣化聚石夕烧 (choloriertes Polysilan)之間形成一直接之 Si-Si 鍵 結,其中,可使用氯或使用氣與氫來作為替代原子;且其 中,替代原子相對於矽原子的組成比率至少為1:1。此外, a. 聚矽烷形成環狀及鏈狀結構,並具有一高比率的分 支結構,其比率值相對於產物混合體的總量為大於1% ; b. Ilfl〇/Il32的拉曼分子振動頻譜顯現出小於1的值, 其中,Ιιοο為對應於100 cnf1的拉曼強度,而h32則為對應 於132 cm_1的拉曼強度; c. 29Si的NMR頻譜可看出產物之特徵信號所代表的化 學位移為+23 ppm 至-13 ppm、-18 ppm 至-33 ppm、以及-73 9 95067 201130735 ppm 至-93 ppm 〇 上述之分支結構的鹵化的聚矽烷(halogenierten Polysilane)的合成方法及特性求法可參閱專利申請案 第W0 2009/143823 A2號,其說明書中即完整包含所需之 合成及特性求法的完整敛述。 本發明所提出的製造方法係利用氯(Cl 2)來進行氧化 分離,其較佳實施方式為施行於80至145。(:的溫度範圍, 特別是110至130°C的溫度範圍,例如120Ϊ的溫度。於此 溫度範圍中,我們可視六氣二矽烷的需求產量而定,來選 擇性地獲得最佳之高產能。 上述之氧化分離作用可特別地於1 〇 〇 hPa至10 0 0 0 hPa 的壓力範圍下來進行,且其較佳實施方式為施行於常壓 (1000 hPa)至再多300 hPa (即1300 hPa)的壓力範圍。 於有必要的情況下,可將上述之氧化分離作用所生成 之產物再更進一步對其施行冷凝(Auskondensation)及/或 蒸條(Destination)。於一般情況下,此更進一步的處理 步驟並非完全為必要,因本發明所提出的製造方法相較於 先前技術即已可幾乎單獨地僅只有產生所需之六氯二矽 烧。 本發明的一種較佳實施方式為採用化學式為SiClx且 x=〇. 5至〇. 7之具有高度網狀交互鍵結構造的氯化聚矽烷。 此類型之氯化聚石夕烧由於具有高反應性,因此具有特別適 於應用的優點。 本發明的另一實施方式為所使用之氣化聚矽烷不僅 10 95067 201130735 包含石夕和氣,並另外包含有氫。此特點可令一 製造具有產能更高的優點。氫含量原則上、虱二矽烷的 百分比(Atom%),且通常低於工個原子百八超過5個原子 法可利用1H—賺核磁共振頻譜分析及依^二其值的求 將測量值與已知之混合物的成份比率作比疋準則來 實際的結果顯示’本發明所提出的c 最終產物中所包含的六氣二魏的含量比率^所生成的 ’◦之重量百分比’甚至可達到大於7。%之=於 於特別的情況下甚至可再進而達到大於議之重量刀百1 比。此最終產物所含之其它物質大部分為SiCh ς 之固體物質,且此些物質無法被蒸顧掉。其它種類的氯化 石夕烧’例如SiCh和ShCl6,則通常僅有極低的含量美 本上^致小於5%之重量百分比,大多數的情況下為小於土找 之重篁百分比,而通常甚至有小於1%之重量百分比的情 況。此比率值可利用從溶劑所取得之2 9 s i _ N M R核磁共=頻 s普來求得。 , 本發明所提出之製造方法的—較佳實施方式為其處 理過程係於無催化劑的情況下來進行,因此不需要特別另 外施加催化劑(Kata 1 y sat or ),亦即不必如先前技術般地必 須另外施加金屬性之催化劑。此外,一般而言也不需要利 用既有存在之催化劑,無論是既有存在之物質(例如既有存 在於裝置中之物質),或是既有存在於原料中之物質(例如 因受污染而存在)。此特點即不同於現有之先前技術(即波 尼茲(E· Bonitz)所揭露之技術)。 95067 11 201130735 根據本發明的作法,具有高度之網狀交互鍵結性的氯 化聚矽烷可另外於氧化分離的過程中,不需施行前驅之活 性化步驟(Aktiverung),亦即不僅不需要施行前驅之物理 性的活性化步驟,例如將材料磨成粉狀來增加其表面接觸 面積,或是另外將其鈍性的上表面層移除;另外也不需要 進行化學性的活性化步驟,例如蝕刻處理❶此特點即不同 於現有之先前技術(即波尼茲(E· Bonitz)所揭露之技術)。 【實施方式】 以下即利用一個比較例及二個實施例來解釋說明本 發明所提出之製造方法。 NMR核磁共振頻譜量測係於室溫下利用一台布魯克公 司(Bruker)的AV 400 NMR頻譜儀來施行,且其中使用 zg30脈波程式及59·6 MHz和79.5 MHz (僅用於第二實施 例)的量測頻率,並利用CeDe為溶劑(若未另有提供的情況 下),以此來進行一固態性之NMR核磁共振頻譜分析程序。 IR紅外線頻譜的量測則是利用布魯克公司(Bruker)之品 牌型號為Bruker Optics IFS48的儀器,其配備有ATR之 測量單元(即所謂之“金製閘口,,(G〇lden Gate),鑽石窗 口、單反射)。固態性之NMR核磁共振頻譜分析則是利用布 魯克公司(Bruker)之型號為DSX-400的NMR頻譜分析儀 器。量測的條件則是一方面為使用29Si HPDec、79. 5 MHz、 旋轉頻率=7000 Hz、外部參考值為TMS=0 ppm ;而另一方 面則使用1Η及400 MHz的zg4pm· 98脈波程式、旋轉頻率 =31115 Hz 之 2. 5 mm 的 MAS 探頭、參考值為 TMS=0 ppm。 12 95067 201130735 此量測程序係於室溫下進行。 [比較例] 首先將62公克之具有高黏性的聚矽烷(siCl2)xK ι2〇 °c的溫度下加熱;接著以攪拌方式來加入氣氣。經過19 小時(19 h)後’反應所形成的混合物不再吸收氣氣。 29Si-NMR頻譜分析顯示反應後的液體包含有Si2Cl6、 ShClr異-ShCho、新-SisCl!2、以及其它種類的氯化寡聚 石夕烧(Oligosilanen)。再接著對反應後的混合物進行蒸館 處理之後’可獲得54%之重量百分比(Gewichts-%)的 ShCle和25%之重量百分比的siaCI〆相對於產物之混合物 的總體而言)。 第一實施例 將(SiCl2)x混至SiCh的溶液於小於45(TC的溫度下進 行處理後,可被分解成紅色之化合物SiClu。將此種物質 取出9公克懸浮於55公克的ShCle中,再於120°C的溫 度下導入氣氣。經過1〇小時(1〇 h)後,反應所形成的混 合物不再吸收氣氣。29Si-NMR頻譜分析結果顯示,除了偵 測到一高強度之ShCU的信號之外,另外僅偵測到一非常 微弱之SiCl4的信號。 其它種類的氯化矽烷則大多僅有極少的含量。再接著 對產物進行蒸餾處理之後,可產生一部分比率為8%的 SiCh及少量之ShCle,以及另一部分之比率為85%的 ShCU。蒸餾後所留下之7%的殘留物則大部分為shCl6以 及少量的不溶性之固體物質。 13 95067 201130735 第二實施例 將上述之方法製造出的材料取出21· 〇2公克並將其 懸浮於45. 93公克之Si3Ch溶劑中,再於12『c的溫度下 加入氣氣。經過37. 5小時(37.5 h)後,將燒杯中的内含 物經由29Si,R頻譜分析後的結果顯示,除了原先所使用 的shch之外,另僅含有Shci6和Sicl4。其它種類的氯 化石夕烧則大多僅有極少的含量。 將前述之比較例與第-和第二實施例作一比較的結 果顯示,按照本發明的作法將具有高度網狀交互鍵結之結 構性質的氯化聚石夕院’以選擇性方式經由氧化分離作用處 理後’即可獲得六氣二石夕烧,而其它種類的氣化石夕烧則大 多僅產生極少的量。若使用具有高黏性的聚氣化矽烷 (SiCl2)x,則反之會獲得數種產物的混合物。 後附圖式中的第1圖和第2圖為含氣化物之矽的IR 紅外線頻譜圖;其中,第丨圖顯示SiCh μ至SiCh ”之化 合物的頻譜圖,而第2圖則顯示SiClfl.7的頻譜圖。 第3圖和第4圖顯示化學式為SiCh 7之含氣化物之矽 的固態式29Si-NMR核磁共振頻譜圖。第5圖顯示化學式為 siciu之含氣化物之矽的固態式lH_NMR核磁共振頻譜圖。 第6圖顯示含氣化物之矽與氯氣轉變成Si2Ch之反應 過程所獲得之混合物的固態式29Si_NMR核磁共振頻譜圖。 2 7圖顯示含氯化物之矽與氣氣反應後轉變成Si3Ch所獲 知·之混合物的固態式29Si_NMR核磁共振頻譜圖;其中,波 形車乂寬的彳5號中大約對應於_1 ppm的最大強度部分係於 14 95067 201130735 NMR導管的玻璃上作回導;而-19 ppm所對應的信號均係 代表 SiCl4。 ’、 * 【圖式簡單說明】 第1圖顯不SiCl。·。5至SiCl。·。7之化合物的頻譜圖. 第2圖則顯示SiClo.·?的頻譜圖; 第3圖和第4圖顯示化學式為SiCl"之含氣化物之石夕 的固態式29Si-NMR核磁共振頻譜圖; 第5圖顯示化學式為SiCl。·7之含氣化物之梦的固態式 W-NMR核磁共振頻譜圖; 第6圖顯示含氯化物之矽與氯氣轉變成Si2Cle之反應 過程所獲得之混合物的固態式29Si-NMR核磁共振頻譜圖; 以及 第7圖顯示含氯化物之矽與氯氣反應後轉變成Si3Cl7 所獲得之混合物的固態式29Si-NMR核磁共振頻譜圖。 【主要元件符號說明】 無 15 95067

Claims (1)

  1. 201130735 七、申請專利範圍: h 一種六氯二矽烷(ShCh)的製造方法,其中,係將化學 式為SiClx(x=〇.2至0.8)的氣化聚矽烷經由氯化作用 來進行氧化分離作用。 2.如申請專利範圍第丨項所述之製造方法,其中,該氯化 作用係利用氯氣來實施。 3·如申請專利範圍第2項所述之製造方法,其中,該氧化 分離作用係實施於80至145°C的溫度範圍,特別是11〇 至130Ϊ的溫度範圍。 4. 如申請專利範圍第1項至第3項中任一項所述之製造方 法,其中,該氧化分離作用係實施於常壓至常壓加3〇〇 mbar的壓力範圍。 5. 如申請專利範圍第1項至第4項中任一項所述之製造方 法,其中,透過該氧化分離作用所獲得之最終產物係進 而再對其進行蒸餾。 6. 如申請專利範圍第1項至第5項中任一項所述之製造方 法,其中,其原料係使用(Sicl2)x經熱分解作用後所生 成之化學式為SiClx且x=〇. 2至0. 8的氯化聚矽烷。 7·如申睛專利範圍第1項至第6項中任一項所述之製造方 法,其中,其原料係使用電漿化學程序所製成之 (SiCl2)x經熱分解作用後所生成之化學式為sicixix = 〇. 2至〇. 8的氯化聚矽烷。 &如申凊專利範圍第1項至第7項中任一項所述之製造方 法,其中,其原料係使用熱處理程序所製成之(Sici2)x 1 95067 201130735 經熱分解作用後所生成之化學式為SiClx且χ=0. 2至 0.8的氯化聚矽烷。 9 ·如申請專利範圍第1項至第8項中任一項所述之製造方 法,其中,化學式為SiClx的氯化聚矽烷於應用上係使 用 x=0. 5 至 〇. 7。 10.如申請專利範圍第丨項至第9項中任一項所述之製造方 法,其中,最終產物中所包含之六氣二石夕烧的含量具有 大於60%之重量百分比。 如申請專利範圍第丨項至第1〇項中任一項所述之製造 方法,其中,其過程係於無催化劑的環境下進行。 如申請專利範圍第丨項至第π項巾任—項所述之製造 方法,其中,其過程進行中未施加催化劑。 13.如申請專利範圍第1項至第12項中卜項所述之製造 =法二其t,該氯化聚魏於氧化分離仙的過財 她行前驅之活性化步驟。 95067 2
TW099141843A 2009-12-02 2010-12-02 Process for preparing hexachlordisilan TW201130735A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009056438A DE102009056438B4 (de) 2009-12-02 2009-12-02 Verfahren zur Herstellung von Hexachlordisilan

Publications (1)

Publication Number Publication Date
TW201130735A true TW201130735A (en) 2011-09-16

Family

ID=43514052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141843A TW201130735A (en) 2009-12-02 2010-12-02 Process for preparing hexachlordisilan

Country Status (6)

Country Link
US (1) US9278865B2 (zh)
EP (1) EP2507173B1 (zh)
JP (1) JP5739445B2 (zh)
DE (1) DE102009056438B4 (zh)
TW (1) TW201130735A (zh)
WO (1) WO2011067331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011173A (zh) * 2012-12-18 2013-04-03 江南大学 六氯乙硅烷的合成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056436B4 (de) * 2009-12-02 2013-06-27 Spawnt Private S.À.R.L. Chloridhaltiges Silicium
DE102013207441A1 (de) * 2013-04-24 2014-10-30 Evonik Degussa Gmbh Verfahren zur Herstellung von Hexachlordisilan durch Spaltung von höheren Polychlorsilanen wie Octachlortrisilan
DE102013111124A1 (de) * 2013-10-08 2015-04-09 Spawnt Private S.À.R.L. Verfahren zur Herstellung von chlorierten Oligosilanen
DE102014007685B4 (de) * 2014-05-21 2022-04-07 Sven Holl Verfahren zur Herstellung von Hexachlordisilan
EP3233728A1 (de) * 2014-12-15 2017-10-25 Nagarjuna Fertilizers and Chemicals Limited Verfahren zur herstellung von chlorierten oligosilanen
CN106698441A (zh) * 2015-08-03 2017-05-24 新特能源股份有限公司 一种多晶硅生产中的残液及渣浆的处理方法
DE102020118028A1 (de) 2020-07-08 2022-01-13 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Verfahren zur Herstellung von Silicium-Nanopartikeln

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB702349A (en) 1950-07-08 1954-01-13 British Thomson Houston Co Ltd Improvements in and relating to the preparation of chloropolysilanes
DE1079607B (de) 1958-12-04 1960-04-14 Basf Ag Verfahren zur Herstellung von Silicium, Siliciumlegierungen, Silicium-Metall-Gemischen und Siliciden mit einem Gehalt an Katalysatoren fuer die Synthese von Siliciumverbindungen
DE1132901B (de) 1960-03-23 1962-07-12 Basf Ag Verfahren zur Herstellung von pyrophorem Silicium und Polysiliciumhalogeniden
JPH0688773B2 (ja) 1985-03-08 1994-11-09 三井東圧化学株式会社 ヘキサクロロジシランの製造方法
DE3623493A1 (de) * 1985-07-11 1987-01-15 Toa Gosei Chem Ind Verfahren zur herstellung von siliciumhexachlorid
JPS63233007A (ja) 1987-03-23 1988-09-28 Mitsubishi Metal Corp クロロポリシランの製造方法
KR100731558B1 (ko) 2000-08-02 2007-06-22 미쯔비시 마테리알 폴리실리콘 가부시끼가이샤 육염화이규소의 제조 방법
US7740822B2 (en) 2005-04-07 2010-06-22 Toagosei Co., Ltd. Method for purification of disilicon hexachloride and high purity disilicon hexachloride
DE102005024041A1 (de) 2005-05-25 2006-11-30 City Solar Ag Verfahren zur Herstellung von Silicium aus Halogensilanen
US7976807B2 (en) 2006-03-07 2011-07-12 Kanken Techno Co., Ltd. Method for detoxifying HCD gas and apparatus therefor
DE102006034061A1 (de) 2006-07-20 2008-01-24 REV Renewable Energy Ventures, Inc., Aloha Polysilanverarbeitung und Verwendung
DE102007007874A1 (de) 2007-02-14 2008-08-21 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Silane
JP5397580B2 (ja) 2007-05-25 2014-01-22 三菱マテリアル株式会社 トリクロロシランの製造方法と製造装置および多結晶シリコンの製造方法
DE102007000841A1 (de) 2007-10-09 2009-04-16 Wacker Chemie Ag Verfahren zur Herstellung von hochreinem Hexachlordisilan
KR101538168B1 (ko) 2007-11-30 2015-07-20 미쓰비시 마테리알 가부시키가이샤 전환 반응 가스의 분리 회수 방법
DE102008025260B4 (de) 2008-05-27 2010-03-18 Rev Renewable Energy Ventures, Inc. Halogeniertes Polysilan und thermisches Verfahren zu dessen Herstellung
DE102008025261B4 (de) 2008-05-27 2010-03-18 Rev Renewable Energy Ventures, Inc. Halogeniertes Polysilan und plasmachemisches Verfahren zu dessen Herstellung
RU2500618C2 (ru) 2008-05-27 2013-12-10 Спонт Прайват С.А.Р.Л. Галогенидсодержащий кремний, способ его получения и его применение

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011173A (zh) * 2012-12-18 2013-04-03 江南大学 六氯乙硅烷的合成方法

Also Published As

Publication number Publication date
WO2011067331A1 (de) 2011-06-09
JP2013512838A (ja) 2013-04-18
US20130017138A1 (en) 2013-01-17
JP5739445B2 (ja) 2015-06-24
US9278865B2 (en) 2016-03-08
EP2507173A1 (de) 2012-10-10
DE102009056438B4 (de) 2013-05-16
EP2507173B1 (de) 2017-08-09
DE102009056438A1 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
TW201130735A (en) Process for preparing hexachlordisilan
Kharlamov et al. Features of the synthesis of carbon nitride oxide (g-C3N4) O at urea pyrolysis
CA2725366C (en) Halogenated polysilane and thermal process for producing the same
JP5658143B2 (ja) ハロゲン化ポリシラン及びこれを製造するためのプラズマ化学処理
Hu et al. Influence of solvothermal synthesis on the photocatalytic degradation activity of carbon nitride under visible light irradiation
Czosnek et al. Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods
US20130216465A1 (en) Polysilanes of medium chain length and a method for the production of same
Amoros et al. Synthesis and characterization of SiC/MC/C ceramics (M= Ti, Zr, Hf) starting from totally non-oxidic precursors
JPS60204607A (ja) 立方晶窒化ホウ素の合成法
Sriram et al. Interaction of solvent and the nature of adducts on the chemical synthesis of molybdenum nitride powders
Bechelany et al. Ceramic nanocomposites prepared via the in situ formation of a novel TiZrN2 nanophase in a polymer-derived Si3N4 matrix
Malumbres et al. Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation
Zhou Ternary Si-Metal-N ceramics: single-source-precursor synthesis, nanostructure and properties characterization
JP5667203B2 (ja) 塩素含有ケイ素
Ghosh et al. Building block syntheses of site-isolated vanadyl groups in silicate oxides
Athar Soft chemical approach for the synthesis and characterization of aluminium copper oxide (CuAl2O4) nanopowder
JPH0354105A (ja) 僅かな炭素含量を有するケイ素ジイミドの製法
Kurt et al. Sepiolite-PAN intercalation used as Si3N4 forming precursor
Esfandiari et al. Sustainable catalysts for efficient triazole synthesis: an immobilized triazine-based copper-NNN pincer complex on TiO 2
Riu et al. SiC fiber derived from the polycarbosilane prepared from the catalytic process
Kharlamov et al. Gas-phase reactions of formation of silicon carbide nanofilaments from silicon and carbon powders
Ermakova et al. Carbon‐Rich Plasma‐Deposited Silicon Oxycarbonitride Films Derived from 4‐(Trimethylsilyl) morpholine as a Novel Single‐Source Precursor
KR950001659B1 (ko) 디실라알칸화합물의 열분해에 의한 베타형 탄화규소 미세분말의 제조방법
Jackson The production of nitride thin films and nanocrystalline composites via a sol-gel methodology
Yoshimura et al. Synthesis of palladium nanoparticles in a ceramic matrix using radiation grafting method