TW200927657A - Indium oxide target - Google Patents

Indium oxide target Download PDF

Info

Publication number
TW200927657A
TW200927657A TW097138073A TW97138073A TW200927657A TW 200927657 A TW200927657 A TW 200927657A TW 097138073 A TW097138073 A TW 097138073A TW 97138073 A TW97138073 A TW 97138073A TW 200927657 A TW200927657 A TW 200927657A
Authority
TW
Taiwan
Prior art keywords
indium
film
relative
value
range
Prior art date
Application number
TW097138073A
Other languages
Chinese (zh)
Other versions
TWI461365B (en
Inventor
Seiichiro Takahashi
Norihiko Miyashita
Original Assignee
Mitsui Mining & Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co filed Critical Mitsui Mining & Smelting Co
Publication of TW200927657A publication Critical patent/TW200927657A/en
Application granted granted Critical
Publication of TWI461365B publication Critical patent/TWI461365B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Conductive Materials (AREA)

Abstract

This invention provides a sputtering target having a sintered oxide which contains indium, and optional tin, and an additive element (excluding Ba, Mg, and Y) which has an oxygen bonding energy in the range of 100-350kJ/mol, the additive element being in the amount of from 0. 0001 mole or more to less than 0. 10 mole with respect to 1 mole of the indium.

Description

200927657 、 六、發明說明: 【發明所屬之技術領域】 本發明有關一種氧化銦系乾,由該靶可容易製得非晶 形膜(amorphous film),而該非晶形膜可藉由弱酸蝕刻 (weak acid etching)而容易進行圖案化(patterning),更 可容易使其結晶化,又,再經結晶化之膜可製造低電阻, 且穿透率尚的透明導電膜。 【先前技術】 ο ;氧化銦氧化錫(In2〇3_Sn〇2的複合氧化物,以下, 簡稱 ιτο」)膜之可' g 土 &、头 > 道史脫、 先牙透尚,且導電性高,故作為 泛採用為液晶顯示裳置或防止玻璃結露用 發外線反射料,惟有難於製成非晶形膜之問題。 ⑽)透明知撤銦-氧化辞 稱帶黃色之問題。種膜較™膜之透明性為劣,而有 ❹ 種於::膜二2請人’作為透明導電膜而先前提案有一 導電膜(參考專^文H預=件下_之非晶形的透明 向之問題。 )$有添加石夕而成為高電阻化傾 範圍)[專利文獻丨]日本特議5韻49號公㈣請專利 【發明内容】 [發明所欲解決之課題] 鑑於如此情况,本發明之課題在於提供-種氧化銦系 320650 3 200927657 =由該乾可容易製得非晶形 酸蝕刻而念且、 非日日形祺可藉由弱 經結晶化之膜^圖案化更可今易使其結晶化’再者, [用以解_^=㈣阻、且穿料高的透日轉電膜。 ο :獲知三為解決上_題_過種種研究之結果 優異的非晶形胺魏姻系透明導電膜,係低電阻且透明性 且可容“!而可藉由弱_刻即容易進行圖案化, _783)ΓΘ曰化之事實,而先行提出申請(日本特願画- 、,,:、而獲知,可成膜為此種非晶形膜之添加元素,不僅 疋a,尚存在有種種類似的元素,如以氧鍵能(呵卿^ 作在1〇0至350 kJ(千焦耳)/m〇1(莫耳)範圍之元素 、、、元素,則成為可成膜為非晶形膜之氧化銦系把, 終於完成本發明。 =發明之第i狀態係—種氧化銦_,其特徵為具 ,^有氧化銦與視需要之錫,且_丨莫耳含有氧鍵能 0至350 kJ/mol範圍之添加元素(但,此(鎖)、啦 則除外)〇._莫耳以上_以下之氧化物 蒌口體。 、於此種第1狀態下’藉由含有預定的添加元素,則可 成膜為非晶形膜。 士發明之第2狀態係於第!狀態所記载之氧化姻系無 中,前述添加元素係選自Sr(銘)、Li(兹)、La(鑭)、以及 Ca(鈣)所成群組之至少一種之氧化銦系靶。 320650 4 200927657 於此種第2狀態下,如含有 群组之5小^ s啕邀自化、1^、1^、匚&所成 群、且之至夕—種,則可成膜為非晶形膜。 銦月,弟3狀態係於第1或第2狀態所記載之氧化 系^相對於铜1莫耳含有錫〇至0.3莫耳之氧化銦 需要第】狀態下’可成膜為以氧化錮為主體,而視 而要3有錫之透明導電膜。 ❹ 銦系二第2或第3狀態所記載之氧化 莫耳之莫錫料tbyu對於銦1 (;)21 ^ )-2^1xl〇 )^^^-L^(-2.5xl〇-lLn(x)_5.7xl〇-1)0^ 以下的靶圍之氧化銦系靶。 於此種第4狀離下p + 可成A韭曰^ 〜、了成膜為:在未滿loot:成膜時 了成為非日B形膜,然後,在1G(rc至剔。C下退火處理 (annealing)時,可結晶化之膜。 本U之第5狀態係於第2或第3狀態所記载之氧化 銦系乾中,前述添加分去i e 、、兀素為Sr,而相對於銦1莫耳之錫的 莫耳比y為:相對於銦!莫耳之Sr的莫耳比以χ表時 (-4. lxl〇-2Ln(x)~Q ?νΐη'^ΛΑ ^ 〇 )的值以上且(-2.9χ1〇-1η(χ)-.7x10 )的值以下的範圍之氧化銦系靶。 可成第5狀態下,可成膜為:在未滿1〇(rC成膜時 可結晶化後,在靴至靴下退火處理時, 本發明之第6狀態係於第2或第3狀態所記載之氧化 320650 200927657 銦系财,前縣加元素為Li,而相對於銦丨莫耳之錫的 莫耳比y ’係在相對於銦i莫耳之u的莫耳比以χ表示時 之(-1. 6x10-lLn(x)-5. 9x10—1)的值以上且(_2. 5χ1 ⑴ -5. 7x10’的值以下的範圍之氧化銦系靶。 於此種第6狀態下’可成膜為:在未滿1〇{Γ(:成膜時 可成為非晶形膜,然後,在1〇〇。〇至3〇〇乞下退火處理時, 可結晶化之膜。 ❹本發明之第7狀態係於第2或第3狀態所記載之氧化 銦系乾中,前述添加元素為La,而相對於銦1莫耳之錫的 莫耳比y,係在相對於銦】莫耳之La的莫耳比以χ表示時 之(~6· 7xl〇 2Ln(x)—2· 2χ1〇_1)的值以上且(UxliTLnU) -7.7x10—〇的值以下的範圍之氧化銦系靶。 、 於此種第7狀態下’可成膜為:在未滿loot成膜時 可成為非晶形膜’紐.,在⑽。3_τ退火處理時, 可結晶化之膜。 ❹ 本發明之第8狀態係於第2或第3狀態所記載之氧化 銦系乾中,前述添加元素為C;a,而相對於銦!莫耳之锡的 莫耳比y,係在相對於銦丨莫耳之Ca的莫耳比以x表示時 之(-4·1χ1〇1η⑴_9·3χ1〇-2)的值以上且㈠如…⑴ 〜5.7x1ο1)的值以下的範圍之氧化銦系靶。 於此種第8狀態下’可成膜為:在未滿嘗c成膜時 成為非晶形膜’然後’在1〇代至抑代下退火處理時, 可結晶化之膜。 本發明之第9狀態’為一種氧化銦系無,其係具備含 320650 6 200927657 有氧化銦與錫,且含有選自Sr、Li、La、以及^所成群 組之至少-種添加元素的氧化⑯炮燒體之氧化姻系靶,盆 特徵為: /' 如前述添加元素為Sr時,則相對於銦i莫耳之錫的莫 耳比y,係在相對於銦i莫耳之Sr的莫耳比以义表示時之 (-4. 1x10 2Ln(x)-9· 2xlG.2)的值以上且(_2. 9xl()_lLn⑴— 6. 7xl0_1)的值以下的範圍; ❹ 如前述添加元素為Li時,則相對於銦1莫耳之錫的莫 耳比7 ’係在相對於紹莫耳之u _耳比以χ表示時之 (-1. 6X10 1η(χ)-5. 9x10-) ^ T ^ (_2 5xl〇-Ln(x)- 5. 7x10 )的值以下的範圍; 如前述添加元素為“時,則相對於錮1莫耳之錫的莫 耳比y,係在相對於⑷莫耳之La的莫耳比以χ表示時之 _ Ln〇〇_2· 2χί〇-〇 的值以上且(_3.3χΐ{Γ^χ)_ ❹ 7. 7x10 )的值以下的範圍; 1 Mg加元素為Ca時,則相對於銦 耳⑷表科之 5·7χ10-1)^^τ^ιι^α^^〇( 2,5x10 Ln(x)~ 下成態樣中’可成膜為下述之膜:於未滿 處理時可:=非晶形膜’然後,在lorc至下退火 靶中本=二弟10態樣’為如第9態樣所記載之氧化銦系 % r 相對於銦1苴:g:且ΛΑ & 冥耳之錫的莫耳比y係在相對於銦1莫 320650 7 200927657 耳之前述添加元素之莫耳比以x表示時之卜9 3χ1〇'η(幻 -2. 1x10 〇的值以上且(_2. 5xl〇-iLn(x)_5· 7χ1〇〇值以下 的範圍。 於此種第10狀態下,可成膜為:在未滿1〇〇〇c成膜時 可成為非晶形膜,然後,在loot至30(TC下退火處理時, 可結晶化之膜。. ' [發明之效果]BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indium oxide-based dry film from which an amorphous film can be easily produced, and the amorphous film can be etched by a weak acid (weak acid) Etching is easy to perform patterning, and it is easy to crystallize, and a film which is crystallized can be used to produce a transparent conductive film having a low electrical resistance and a good transmittance. [Prior Art] ο ; Indium oxide tin oxide (composite oxide of In2〇3_Sn〇2, hereinafter referred to as ιτο) film can be 'g earth&, head> Dao Shi, first teeth, and conductive It is high in nature, so it is used as a liquid crystal display to prevent the glass from being exposed or to prevent the glass from being exposed. However, it is difficult to form an amorphous film. (10)) The problem of transparent indium-oxidation is yellow. The film is inferior to the transparency of the TM film, and there is a kind of film in the film: 2: 2, please as a transparent conductive film and previously proposed a conductive film (refer to the special text H pre-forms under the amorphous _ transparent To the problem.) $ Adding Shi Xi and becoming a high-resistance tilting range. [Patent Document 丨] Japanese Special Report 5 Yun 49 No. 49 (4) Please Patent [Invention] [The subject to be solved by the invention] In view of this situation, An object of the present invention is to provide an indium oxide system 320650 3 200927657 = an amorphous acid etching can be easily obtained from the dry film, and a non-Japanese-shaped film can be patterned by weak crystallization. It is easy to crystallize 'again, [to solve the problem of _^=(4) resistance, and the high-transmission day-transfer film. ο : It is known that the amorphous amorphous amine-based transparent conductive film which is excellent in the results of various researches is low-resistance, transparent and can accommodate "! and can be easily patterned by weak _ , _783) The fact of deuteration, and the first application (Japan's special painting -,,,:, and know, can be formed into the addition of such an amorphous film, not only 疋a, there are still various similar An element, such as an element capable of forming a film as an amorphous film, with an oxygen bond energy (a element of 1,0 to 350 kJ (kJ)/m〇1 (mole)) The indium system finally completes the present invention. The first state of the invention is indium oxide, characterized by having indium oxide and tin as needed, and _丨莫耳 contains oxygen bond energy of 0 to 350 kJ. Adding elements in the range of /mol (except for this (lock), ah) 蒌._mol or more _ below the oxide gargle. In this first state, 'by containing predetermined additive elements, The film can be formed into an amorphous film. The second state of the invention is based on the oxidized marriage system described in the first state, and the added element The element is an indium oxide-based target selected from the group consisting of Sr (Ming), Li (Li), La (Y), and Ca (Calcium). 320650 4 200927657 In this second state, if The group of 5 small ^ s啕 invites self-chemical, 1^, 1^, 匚 & group, and the eve-type, can form a film into an amorphous film. Indium month, brother 3 state is in the first The oxidation system described in the first or second state is required to form a film of bismuth oxide with respect to the copper oxide containing tin bismuth to 0.3 m of indium oxide. Transparent conductive film. 铟 Indium-based second or third state of oxidized Moir Mo tin tbyu for indium 1 (;) 21 ^ ) - 2^1xl 〇) ^ ^ ^ - L ^ (-2.5 xl〇-lLn(x)_5.7xl〇-1) 0^ The following target is an indium oxide-based target. In this fourth form, p + can be formed into A韭曰^~, and the film formation is: Less than loot: When the film is formed, it becomes a non-Japanese B-shaped film, and then, when it is annealed at 1 G (rc to C.C), the film can be crystallized. The fifth state of U is the second or In the indium oxide-based dry liquid described in the third state, the addition is divided into RIE and the halogen is Sr, and the phase is The molar ratio y of the tin of indium 1 is: relative to the molar ratio of Sr of indium! Mohr to the surface (-4. lxl〇-2Ln(x)~Q?νΐη'^ΛΑ ^ 〇 Indium oxide-based target having a value equal to or greater than the value of (-2.9χ1〇-1η(χ)-.7x10). In the fifth state, the film can be formed to be less than 1 〇 (rC When the film is crystallizable, the sixth state of the present invention is the oxidation of 320650 200927657 in the second or third state, and the former element is Li, and is relative to indium. The molar ratio y ' of the moir tin is greater than the value of -1. 6x10-lLn(x)-5. 9x10-1 when the molar ratio of u relative to the indium i molar is expressed by χ And an indium oxide-based target having a range of (2. 5χ1 (1) -5. 7x10' or less). In such a sixth state, the film can be formed into a film that is less than 1 〇{Γ(: when formed into a film, it can be an amorphous film, and then, when it is annealed at 1 〇〇 to 3 〇〇乞, it can be In the indium oxide-based dryness described in the second or third aspect, the additive element is La, and the molar ratio y with respect to the tin of the indium 1 mol, It is greater than the value of (~6·7xl〇2Ln(x)—2·2χ1〇_1) when the molar ratio of La relative to the indium of Mo is above 且 and (UxliTLnU) -7.7x10—〇 Indium oxide-based target in the range below the value. In the seventh state, the film can be formed into an amorphous film which is formed when the film is not filled with loot, and can be crystallized during the annealing treatment of (10). The eighth aspect of the present invention is the indium oxide-based dry material according to the second or third aspect, wherein the additive element is C;a, and the molar ratio of indium to moir tin is y. Is a value equal to or greater than the value of (-4·1χ1〇1η(1)_9·3χ1〇-2) when the molar ratio of Ca of indium oxime is represented by x and (i) the value below (1) to 5.7x1 ο1) Indium oxide targetIn such an eighth state, the film can be formed into a film which can be crystallized when it is not subjected to film formation by c, and then becomes an amorphous film after annealing treatment from 1 to the next. The ninth state of the present invention is a type of indium oxide-free, which is characterized in that it contains 320650 6 200927657 having indium oxide and tin, and contains at least one kind of additive element selected from the group consisting of Sr, Li, La, and ^. The oxidized marriage target of the oxidized 16 cannon is characterized by: /' If the additive element is Sr, the molar ratio y relative to the tin of indium i mole is in Sr relative to the indium i molar. The molar ratio is expressed by the meaning of (-4. 1x10 2Ln(x)-9· 2xlG.2) and the range below (2. 9xl()_lLn(1) - 6. 7xl0_1); ❹ as described above When the additive element is Li, the molar ratio 7' of the tin relative to the indium 1 molar is expressed as -1 (-1. 6X10 1η(χ)-5. 9x10-) ^ T ^ (_2 5xl 〇 - Ln (x) - 5. 7x10 ) The value below the range; as the above added element is "hour, then relative to the molar ratio of 锢 1 Mo tin y, The value of _ Ln 〇〇 2· 2 χ 〇 〇 〇 且 且 相对 相对 相对 相对 相对 相对 La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La La The range of 1; when Mg plus element is Ca, it is relative to indium (4) 5·7χ10-1)^^τ^ιι^α^^〇( 2,5x10 Ln(x)~ The following film can be formed into the following film: when not fully processed: = amorphous The film 'then, then in the lorc to the lower annealed target, the inversion of the indium oxide type as shown in the ninth aspect is relative to the indium 1 苴:g: and ΛΑ & The molar ratio is greater than the value of the above-mentioned additive element with respect to the indium 1 320650 7 200927657 ear, and is represented by x 9 3χ1〇'η (the value of the magical - 2. 1x10 且 and above (_2. 5xl〇 -iLn(x)_5· The range below 7χ1〇〇. In this 10th state, the film can be formed into an amorphous film when film formation is less than 1〇〇〇c, and then it is loot to 30 (film which can be crystallized when annealing under TC. ' [Effect of the invention]

〇 如採用本發明,可發揮提供氧化銦系靶之效果,藉由 作成於氧化銦中添加氧鍵能在100至350 kJ/mol範圍之添 #元素之膜,即可容易製得非晶形膜,而該非晶形膜係可 =由弱酸㈣而容易進行圖案化,更可容易使其結晶化, 者,經結晶化之膜係成膜為低電阻、且穿透率高的透明 導電性膜。 【實施方式】 為了形成本發明之氧化銦系透明導電膜所用之氧化1 、’係為以氧化銦為主體,視f要而含有錫者,且含 發鏠能在刚至350 kJ/mQl範圍之添加元素之氧化物燒 或者1It加7"素似魏化物衫、或者作純合氧化物 飞者作為ϋ錢存在㈣,並残❹㈣定。 之此氧化銦系革巴.,係指具備有氧化銦系燒結體之1 (印咐除藉4崎形㈣料㈣所使狀濺鑛』For example, according to the present invention, an effect of providing an indium oxide-based target can be exerted, and an amorphous film can be easily produced by adding a film of an element having an oxygen bond in the range of 100 to 350 kJ/mol. On the other hand, the amorphous film system can be easily patterned by a weak acid (tetra), and can be easily crystallized. The crystallized film is formed into a transparent conductive film having low electrical resistance and high transmittance. [Embodiment] The oxidation 1 and ' used for forming the indium oxide-based transparent conductive film of the present invention are those in which indium oxide is mainly used, and tin is contained, and the hair can be contained in the range of just 350 kJ/mQl. Adding elemental oxide or 1It plus 7" is similar to a Weixiang shirt, or as a pure oxide oxide, as a money (4), and a residue (4). In this case, the indium oxide is a smear. It is a sintered body having an indium oxide sintered body (the ink is splashed by the 4th (four) material (4).

Plat即㈣⑷之外,尚包含藉由離子電鍍Cic lnS)形成透明導電膜所使用 片狀元件㈣et))者。 離子電鑛順亦稱』 320650 8 200927657 氧鍵能在100至350 kJ/mol範圍之添加元素,係與先 前所申請之鋇同樣,為具有將氧化銦系透明導電膜作成非 晶形膜之作用者,可例示:Ba(氧鍵能:138 kJ/mol)、Sr(氧 鍵能:134 kJ/mol)、Li(氧鍵能:151 kJ/mol)、La(氧鍵 能:242 kJ/mol)、Ca(氧鍵能:134 kJ/mol)、Mg(氧鍵能: 155 kJ/mol)、Y(氧鍵能:209 kj/mol)等。 ❹ 〇 在此,氧鍵能大的元素係以單獨氧化物即容易玻璃化 (玻璃形成元素)者,添加於氧化銦系透明導電膦中時,由 於與氧的結合力強之故,即使在退火處理後其最適氧氣分 壓(optimum oxygen partial pressure)亦不致於變化, 又具有電氣光學特性幾乎不會因退火處理而改善之特 !·生&quot;而氧鍵月匕在1〇〇至35〇 kJ/m〇1的較低範圍之元素,則 與氧的、、’”力小,而推測會顯示成為非晶形膜之作用。在 ^氧鍵月、84 ^/&quot;^或K(氧鍵能.:54 kJ/mol)雖 ::鍵:二:添加於氧化銦系透明導電膜中時,由於對 考Γ本,^務―有不良影響或損及耐環境性因而不合適(參 考本’南務者’破璃的誘惑~非晶形體的科學入門—產聿 圖書(股)社,第34至36頁)。 ’科千入門Μ業 添加元素的含量,以設為相對於铜含 加的效果並不顯著,如較此量為少時則添 明導電膜的電阻會增高之傾多時财所形成之透 向。在此,由上if二 Q及帶黃色之程度會脉之傾 1 亡氣化銦系乾所形成之透明導電膜中的 添加兀素的含I,係成為與 π祕㈣ 之用之乳化銦系靶中的含量 320650 9 200927657 Λ 同樣之含量。 又,錫的含量,係相對於銦丨莫耳作成〇至〇. 3莫耳 的範圍。含有錫的情形,以相對於銦丨莫耳含有Q.001至 0.3莫耳的範圍較佳。如在此範圍内,則可適當控制氧化 銦系濺鍍靶的載電子(carrier electr〇n)的密度和遷移率 (mobility)而可使保持導電性於良好的範圍。又,如添加 超過上述範圍,則由於有降低氧化銦系濺鍍靶的載電子的 0遷移率、且有導電性劣化之傾向因而不合適。在此,由上 述之氧化銦系濺鍍靶所形成之透明導電膜中的錫含量,係 成為與所使用之氧化銦系濺鍍靶中的含量同樣之含量。 由於此種氧化銦系濺鍍靶,具有能實施DC磁控濺鍍 (DC magnetron sputtering)的程度的電阻之故,能以較廉 '價的DC磁控濺鍍實施濺鍍,當然,亦可採用高頻磁控濺鍍 裝置。. 藉由採用此種氧化銦系靶,即可形成同一組成的氧化 ©錮系透明導電膜。此種氧化銦系透明導電膜的組成分析, 亦可將單膜全量溶解後,利用ICP(感應式耦合電漿)加以 分析。又,如膜本身形成元件結構時等,則按照需要,利 用FIB(聚焦離子束)等,裁切所相當的部分的剖面,採用 附屬於SEM(掃瞄式電子顯微鏡)或TEM(透射電子顯微鏡) 等的70素分析裝置(EDS(能量色散分光計)或wds(波長色散 光譜儀)、奥袼電子分光法(Auger electr〇n spectr〇sc〇py) 等)亦可加以特定。 由於從此種本發明之氧化銦系靶所成膜之氧化錮系透 320650 10 200927657 m定量之預定之添加元素之故,雖視其含 篁,、’惟在室溫以上而較結晶化溫度為低的溫度 例如,低於的溫度條件、較佳為低於15代的條件、 更佳為低於_c:的溫.度條件下實施成膜,即可以非晶形 的狀態成膜。又,此種非S形脫 ,u、 此種非日日形膜,具有以弱酸性钱刻劑 (etchant)即可進行㈣之優點。在此,本說明書中, Ο 係包含於®·㈣巾者,㈣製_定圖_者。/ 又,所得透明導電膜的電阻率,會因所添加元素的種 類、含量而異,惟通常電阻率為1〇&gt;&lt;1〇_4至i傭%· 再者’使用氧化銦系靶所成膜之膜的結晶化溫度,係 •因所含有之添加元素的種類、含量而有所異,隨著含量之 上升而上升,如依10(TC至3〇『c的溫度條件實施退火處 理’即可使其結晶化。由於此種.温度區域係在通常的半導 體製邊過程中所使用之故’因而亦可在此種製程中使其結 ❹晶化。於此溫度範圍之中,較佳為在1〇m 3〇〇&lt;t下使其 結晶化、更佳為在15G°C至25『c下使其結晶化、最佳為在 200°C至250°C下使其結晶化。 在此,退火處理’係指於大氣環境中、環境氣體中、 真空中,在所需溫度下進行一定時間的加熱之意。其一定 時間’ 一般係指從數分鐘至數小時程度,惟工業上,如所 得效果相同時’則較隹為較短時間者。 如此方式經由退火處理所結晶化後的透明導電膜,短 波長側的穿透率會提升,例如,波長4〇〇至5〇〇nm的平均 320650 11 200927657 穿透率將成為85%以上。又,藉此,在IZ〇(銦鋅氧化物) 成為問題之膜會帶黃色的問題亦不會存在。在此,一般而 言,短波長侧的穿透率愈高愈佳。 另一面,結晶化之透明導電膜之蝕刻耐性將獲提升, 以致對非晶形膜能進行4虫刻的弱酸性钱刻劑即不再能進行 • 蝕刻。因而可提升後續過程中之耐腐蝕性、或元件本身的 耐環境性。 Q 於此,在本發明中,由於改變氧化銦系靶中添加元素 的含量,即可將採用該靶成膜後的膜的結晶化溫度設定為 所期望溫度之故,因而在成膜後可作成防止遭受結晶化溫 度以上的溫度的熱處理之方式,維持非晶形狀態之方式, 亦可作成經成膜並圖案化後,於進行結晶化之溫度以上的 ' 溫度實施熱處理而使其結晶化,以改變耐蝕刻特性之方式。 在此,如添加元素為Sr的情形,在未達i〇〇°c下成骐 時會成為非晶形膜,然後,在100X;至3〇〇°c下實施退火處 〇 理時,可形成結晶化膜之組成範圍,係相對於銦1莫耳之 锡的莫耳比y(莫耳),為在相對於銦1莫耳之sr的莫耳比 以X表示時之(-4· ΙχΙΟΛηΟΟ-9. 2χ1(Γ2)的值以上且(_2. 9 ΧίΟΊι^χ^δ^χΙΟ-1)的值以下的範圍。 又,於此種範圍中,特別是,如相對於銦丨莫耳之锡 的莫耳比y(莫耳),為在相對於銦丨莫耳之Sr的莫耳比以 X表示時之㈠.2x1Q—WxH.wr)以上的範圍,、則成為 退火處理溫度在未滿20(TC時不會結晶化,而經2〇〇。〇以上 的退火處理時可形成結晶化之膜之範圍,故考慮成膜程序 320650 12 200927657 « (process)時為更合適者。 再者’於上述之範圍中,如在相對於 莫耳比y,為0. 15莫耳以上且〇 28莫耳γ莫耳之錫的 能成膜為經25(TC退火處理後的電阻率从下的情形,則 以下的膜,而為更合適者。 ' 〇xlO 4Q . cn] ❹ 如添加元素為Li的情形,在1〇(rc以 晶形膜,然後,在10CTC至3〇〇。〇下實施、艮成膜時成為非 膜為結晶化膜之組成範圍,係相對於鋼理時,會成 比y(莫耳),為在相對於銦1莫耳之Li 、耳之錫的莫耳 時之(―1. 6χ10'η〇〇-5. 9X10—1)的值以上且,耳比以x表示 -5· 7x10’的值以下的範圍。 ο 又,於此種範圍中,特別是,如 的莫耳比y(莫耳),為在相對於錮丨莫耳、鋼1莫耳之錫 X表示時之(-7.咖Ήχ)-1.6χ1()、上的莫耳比以 退火處理溫度在未滿2〇(rc時不會处曰、靶圍,則成為 的退火處理賴成膜W狀;;以上 時為更合適者。 号慮成膜程序 再者’於上述之制中,如在相對於銦U '耳為0.28莫耳以下且相對於銦J莫耳之Li的莫耳 =on下的㈣’則成為經25Qt退火處理後能 ^為電阻率在3. 〇χ1〇-4Ω ·⑽以下的膜者,而為更合適 者。 曰/如添加元素為La的情形,在1〇〇t以下成膜時成為非 晶形膜,然後,在⑽。匚至3〇{rc下實施退火處理時,能成 13 320650 200927657In addition to (4) and (4), Plat includes a sheet-like element (4) et) used for forming a transparent conductive film by ion plating Cic lnS). Ionizing electricity is also known as "320650 8 200927657" The addition of an oxygen bond in the range of 100 to 350 kJ/mol is the same as that of the previously applied bismuth, and has an effect of making an indium oxide transparent conductive film into an amorphous film. It can be exemplified by Ba (oxygen bond energy: 138 kJ/mol), Sr (oxygen bond energy: 134 kJ/mol), Li (oxygen bond energy: 151 kJ/mol), and La (oxygen bond energy: 242 kJ/mol) ), Ca (oxygen bond energy: 134 kJ/mol), Mg (oxygen bond energy: 155 kJ/mol), Y (oxygen bond energy: 209 kj/mol), and the like. ❹ 〇 , , , , , , , , , , , , , , , , , , , , , 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易 容易After the annealing treatment, the optimum oxygen partial pressure does not change, and the electro-optical properties are hardly improved by the annealing treatment. · Health &quot; and the oxygen bond is at 1〇〇 to 35 The element of the lower range of 〇kJ/m〇1 is smaller than the oxygen and '' force, and it is presumed to show the effect of becoming an amorphous film. In the oxygen bond month, 84 ^/&quot;^ or K ( Oxygen bond energy: 54 kJ/mol) Although:: bond: 2: When added to an indium oxide-based transparent conductive film, it is not suitable due to adverse effects or damage to environmental resistance. Refer to the temptation of the 'Southerners' broken glass ~ the scientific introduction of amorphous body - 聿 聿 Books (shares), pp. 34-36). The content of the added elements of the 千 Μ Μ , , , , The effect of copper addition is not significant. If the amount is less than this, the resistance of the conductive film will increase. The formation of a halogen in the transparent conductive film formed by the upper two Q and the yellowish degree of the veins. The content of the emulsified indium-based target used in the π-sec (4) is the same as the content of 320650 9 200927657 。. Further, the content of tin is in the range of 莫. 3 moles with respect to the indium bismuth. In the case, it is preferable to contain a range of Q.001 to 0.3 mol with respect to the indium lanthanum. If it is within this range, the density of the electron carrier (carrier electr) of the indium oxide sputtering target can be appropriately controlled. The mobility is maintained in a good range. When the addition exceeds the above range, the mobility of the carrier electrons of the indium oxide-based sputtering target is lowered, and the conductivity is deteriorated. Here, the tin content in the transparent conductive film formed by the above-described indium oxide sputtering target is the same as the content in the indium oxide sputtering target to be used. Sputter target with DC magnetron sputtering (DC magn Etron sputtering) can be sputtered at a lower cost DC magnetron sputtering. Of course, a high frequency magnetron sputtering device can also be used. By using such an indium oxide target, An oxidized iridium-based transparent conductive film having the same composition can be formed. The composition analysis of the indium oxide-based transparent conductive film can also be performed by ICP (inductively coupled plasma) after the single film is completely dissolved. When the film itself is formed into an element structure, the section of the corresponding portion is cut by a FIB (focusing ion beam) or the like as needed, and is attached to an SEM (scanning electron microscope) or a TEM (transmission electron microscope). A 70-cell analysis device (EDS (Energy Dispersion Spectrometer) or wds (Wavelength Dispersive Spectrometer), Auger electr〇n spectr〇sc〇py, etc.) can also be specified. Since the cerium oxide film formed by the indium oxide-based target of the present invention has a predetermined amount of added elements, it is considered to contain yttrium, and it is more than room temperature and the crystallization temperature is The film is formed into a film in a state of being amorphous, for example, a temperature lower than the temperature condition, preferably less than 15 generations, and more preferably a temperature lower than _c:. Further, such a non-S-shaped release, u, and such a non-day-shaped film have the advantage of being able to perform (4) with a weakly acidic etchant. Here, in the present specification, the Ο is included in the ® (4) towel, and the (4) system _ fixed image _. Further, the specific resistance of the obtained transparent conductive film varies depending on the type and content of the added elements, but the specific resistance is usually 1 〇 > <1 〇 _ 4 to i serv % · Further 'uses indium oxide The crystallization temperature of the film formed by the target varies depending on the type and content of the added element, and increases as the content increases. For example, the temperature is 10 (TC to 3 〇C). Annealing treatment can be crystallized. Since this temperature region is used in the usual semiconductor edge-making process, it can also be crystallized in such a process. Preferably, it is crystallized at 1 〇 m 3 〇〇 &lt; t, more preferably crystallization at 15 ° C to 25 ° C, preferably at 200 ° C to 250 ° C Here, the annealing treatment refers to the heating in the atmosphere, in the ambient gas, in the vacuum, at a desired temperature for a certain period of time. The certain time 'generally means from minutes to numbers. The degree of hour, but industrially, if the effect is the same, then it is shorter than the shorter one. The transparent conductive film crystallized by the annealing treatment has an improved transmittance on the short-wavelength side. For example, the average wavelength of 4,650 to 5 nm at a wavelength of 4 〇〇 to 5 〇〇 nm will be 85% or more. In the case where IZ〇 (indium zinc oxide) is a problem, the film will not have a yellow color. Here, in general, the higher the transmittance on the short-wavelength side, the better. On the other hand, the crystallization is transparent. The etching resistance of the conductive film will be improved, so that the amorphous film can be etched by the weakly acidic ink engraving agent, thereby improving the corrosion resistance in the subsequent process or the environment resistance of the component itself. In the present invention, since the content of the additive element in the indium oxide-based target is changed, the crystallization temperature of the film formed by the target film can be set to a desired temperature, and thus the film is formed. After that, it can be formed into a heat-resistant manner at a temperature higher than the crystallization temperature, and the amorphous state can be maintained. After the film is formed and patterned, the heat treatment is performed at a temperature higher than the temperature at which the crystallization is performed. In order to change the etching resistance. Here, if the additive element is Sr, it will become an amorphous film when it is not 〇〇c, and then at 100X; to 3〇〇°c. When the annealing treatment is performed, the composition range of the crystallized film can be formed, which is the molar ratio y (mole) of the tin of the indium 1 molar, and is the molar ratio of the sr relative to the indium 1 molar. In the case of X, the value of (-4· ΙχΙΟΛηΟΟ-9. 2χ1 (Γ2) is equal to or greater than (_2. 9 ΧίΟΊι^χ^δ^χΙΟ-1). Further, in this range, Yes, if the molar ratio y (mole) relative to the tin of indium bismuth is above (1). 2x1Q-WxH.wr) when the molar ratio of Sr relative to the indium bismuth is represented by X In the range, the annealing treatment temperature is less than 20 (TC does not crystallize, but passes through 2 〇〇. When the above annealing treatment can form a range of crystallized film, it is more appropriate to consider the film forming procedure 320650 12 200927657 « (process). Further, in the above range, as in the range of 0.15 m or more and 〇28 mol γ mol of tin relative to the molar ratio y, the film formation is 25 (the resistivity after TC annealing treatment) From the next case, the following film, and more suitable. ' 〇xlO 4Q . cn] ❹ If the additive element is Li, at 1 〇 (rc is a crystalline film, then, at 10 CTC to 3 〇〇. When the film is formed under the armpit and the film is formed into a film, the composition range of the film is not the film, and it is a ratio of y (mole) to the steel, and is the tin of the ear and the tin of the ear. In the range of Mohr's time (-1.6.10χ10'η〇〇-5. 9X10-1), the ratio of the ear to x is equal to or less than the value of -5·7x10'. ο Also, in this range, In particular, such as Moerby y (mole), in the case of the tin X relative to the 锢丨moer, steel 1 Mo (-7. Curry) - 1.6 χ 1 (), on the Mo When the annealing treatment temperature is less than 2 〇 (the rc is not in the rc, the target is formed, the annealing treatment is formed into a film W shape; the above is more suitable. In the system, as in the relative to the indium U' ear 0.28 Moules and below (4) with respect to the Mo of the indium J Moer's Mo == is a film which can be a resistivity of 3. 〇χ1〇-4 Ω · (10) or less after annealing by 25Qt, and更/ If the additive element is La, it becomes an amorphous film when it is formed under 1〇〇t, and then it can be 13 320650 200927657 when it is annealed under (10) 匚 to 3〇{rc.

•V 膜為結晶化膜之组成範圍,係相對於銦丨莫 比y,為在相對於銦i莫耳之La的莫耳I &lt;錫的莫耳 (-6. 7XHTLOO—2. 2χΐη的值以上 X表示時之 -7. 7xl0_1)的值以下的範圍。 '3x10 Ln(x) ο 又,於此種範圍中,特別是,如相對於 的莫耳比y(莫耳),為在相對於麵1莫耳之τ莫耳之錫 X表示時之(-8.7xl〇.2Ln(x)-2.()Xir)以上^莫耳比以 退火處理溫度在未滿2Q(rc時不會結晶化’,則成為 的退火處理時能成膜為結晶化膜之範圍 2QG C以上 時會更合適。 号慮成膜程序 再者,於上述之範圍中,如在相對於 莫耳比K莫耳)為0.23莫耳以下的情形 莫耳之錫的 退火處理後能成膜電阻率在3·0χ1(Γ4Ω·、、為組25〇C 而更合適。 cm以下的膜者, ❹ 如添加元素為Ca的情形,在1〇〇。〇以 , 晶形的膜,然後,在靴至戰下實^成躁時 成膜為結晶化膜之組成範圍,係相對於銦2處癦鍚的;: 耳比y,為在相對於銦2莫耳之c 、耳之_ 5· 7x10 )的值以下的範圍。 Χ1ϋ 又,於此種範圍中’特別是,如相认 的莫耳比y(莫耳),為在相對於銦id:錫 以示時之&quot;.她 退火處理溫度在未滿晶化,:::二 320650 14 200927657 ·» 的退火處理時能成膜為結晶化膜之範圍,故考庹 時會更合適。 ‘“成膜程序 再者,於上述之範園中,如在相對於銦丨 莫耳比y(莫耳)為0.28莫耳以下的情形,則成為經25〇χ: 退火處理後能成膜為電阻率在3·0χ1(Γ4Ω · cm以下的膜 者,而更合適。 、 如此,由於添加添加元素之結果而可獲得預定的效 ❹‘果,惟如添加元素不相同時則可獲得預定效果之範圍多少 會不相同,惟就上述之Sr、Li、La以及Ca元素所共通之 範圍而言,在未達1〇〇。(:成膜時成為非晶形膜,然後,在 100°C至300°C下實施退火處理時能成膜為結晶化膜之組成 ' 範圍’係相對於銦1莫耳之錫的莫耳比y,為在相對於銦1 莫耳之添加元素的莫耳比以X表示時之(-9. 3xl(T2Ln(x) -2. ΙχΗΓ1)的值以上且(-2. 5xlO-1Ln(x)-5· 7xl0_1)的值以下 的範圍。 ❿ 其次,就有關本發明之氧化銦系乾的製造方法加以說 明,惟僅為例示用者,製造方法並不因例示者而有所限定。 首先,就構成本發明之氧化銦系靶之起始原料而言, 一般採用構成元素的氧化物,惟亦可將此等的單體、化合 物、複合氧化物等作為原料使用。如使用單體、化合物時, 則預先經過能使其成為氧化物之程序。 將此等原料叙’按所需要的調配率加以混(合、成型之 方法並不特別加以限定,可採用向來周知的各種濕式法或 乾式法。 15 320650 200927657• V film is the composition range of the crystallized film, relative to the indium 丨moby y, is the molar of the molar relative to the indium i Mo, the tin of the tin (-6. 7XHTLOO-2. 2χΐη The value above X represents the range below the value of -7. 7xl0_1). '3x10 Ln(x) ο Again, in this range, in particular, as opposed to the molar ratio y (mole), when expressed in relation to the tin X of the horn of the surface 1 -8.7xl〇.2Ln(x)-2.()Xir) or more. The molar ratio of the annealing treatment is less than 2Q (the crystal will not crystallize when rc), and the film can be crystallized during the annealing treatment. It is more suitable when the film is in the range of 2QG C or more. In the above range, if it is 0.23 moles or less relative to the molar ratio, it is annealed. The post-forming film resistivity is 3·0χ1 (Γ4Ω·, which is more suitable for the group 25〇C. The film below cm is ,, for example, when the additive element is Ca, in the case of 1〇〇. Then, when the boot is in the battle, the film is formed into a crystallized film, which is in the range of the indium 2; the ear ratio y is in the c, the ear relative to the indium 2 The value of _ 5· 7x10 ) is below the range. Χ1ϋ Also, in this range 'especially, such as the recognized Moerby y (mole), in relation to the indium id: tin, when the annealing temperature is not full, ::: Two 320650 14 200927657 ·» The annealing process can form a film into the range of the crystallized film, so it will be more suitable when testing. 'The film-forming procedure, in the above-mentioned garden, if it is 0.28 mol or less with respect to indium 丨 molar ratio y (mole), it becomes 25 〇χ: film formation after annealing treatment It is more suitable for a film having a resistivity of 3·0χ1 (Γ4Ω·cm or less), and thus, a predetermined effect can be obtained as a result of adding an additive element, but if the added elements are not the same, the reservation can be obtained. The range of effects will vary somewhat, but in the range common to the above-mentioned Sr, Li, La, and Ca elements, it is less than 1 (. (: It becomes an amorphous film at the time of film formation, and then, at 100 ° C When the annealing treatment is carried out at 300 ° C, the composition of the film can be formed into a crystallized film. The 'range' is a molar ratio y with respect to the tin of indium 1 mole, and is a molar element added with respect to the indium 1 molar. The value is equal to or greater than the value of -9. 3xl (T2Ln(x) -2. ΙχΗΓ1) and the value of (-2. 5xlO-1Ln(x)-5·7xl0_1) is less than or equal to the value of X. The method for producing the indium oxide-based dry material of the present invention will be described, but is merely illustrative, and the production method is not limited by the examples. First, as the starting material of the indium oxide-based target of the present invention, an oxide of a constituent element is generally used, but such a monomer, a compound, a composite oxide, or the like may be used as a raw material. In the case of a compound, a procedure which can be used as an oxide is carried out in advance. The method of mixing and blending the raw materials into the desired blending ratio is not particularly limited, and various wet types known from the prior art can be used. Law or dry method. 15 320650 200927657

V 乾式法而5 ’可例舉·’冷屋(㈤dpi_ess如)法或熱麗 (Hot Pressing)法等。於冷黯_,將混合粉填充於成型 模中以製作成型體並加以锻燒。熱塵法中,則將混合粉在 成型模内加以锻燒、燒結。 濕式法而言’較佳為例如,採用過濾式成型法(來考日 本特開平11 一286002公報)。此種過濾式成型法,係使用自 陶竟原料漿料將水分減壓排水以製得成型體用之非水溶性 ❹材料所成之過濾式成型模,該成型膜係由··具^個以上 排水孔之成型用下模、與載置於該成型用下模上之具有通 水性之過滤器、與介由密封該過滤器用之密封材而從上面 侧夹持之成型用模框所構成,並按能分別分解之方式组裝 ^有前述成型用下模、成型用模框、密封材、以及過滤 '斋,而僅從該過濾器面側減壓排除漿料中的水分之過濾式 成型模,以調製由混合粉、離子交換水以及有機添加劑^ 成之漿料,並將此聚料注入於過遽式成型模中,僅從該過 ❹滤器面侧進行聚料中的水分之減壓排除以製作成型體,並 將所得陶瓷成型體乾燥脫脂後,加以煅燒。 以冷壓法或熱壓法成型者的煅燒溫度,較佳為13〇〇至 二,’更佳為1500至’其環境為大氣環境、氧 虱裱境、非氧化性環境、或者真空環境等。另一方面,在 熱壓f的情形,較佳為在l_t:附近使其H而其環境 為非氧化性環境或真空環境等。另外,於各方法中婉锻燒 ,’則施加為達預定尺寸之成契、加工用之機械加;:,以 作成鈀ο 320650 16 200927657 Λ, 【實施方式】 [實施例] 以下,依據將藏鍵革巴作為例之實施例說明本發明内 容,惟本發明並不因實施例而有所限定。 (濺鍍靶製造例l)(Sr-IT0) (添加 Sr 之 ΙΤ0、Sr=0. 02-Sn=〇. 1) 準備純度&gt;99. 99%的In2〇3粉、,以及純度&gt;99. 9% ❹的SrC〇3粉。首先,按In2〇3粉65. 3重量%及化(:〇3粉34. 7 重畺%的比例準備全量200g,在乾燥狀態下進行球磨(ball mi 11)混合’在大氣中120(rc下預煅燒3小時,製得計丨n2〇4 粉。 接著,按上述SrIn2〇4粉2. 2重量%、“.粉86· 6重量 %以及Sn〇2粉11.2重量%的比例準備全量約1〇kg(公斤) (各金屬原子的組成為 In=88. 〇 at %,STi=1〇 〇 at %、Sr=2 〇 at.%)、將此以球磨進行混合。然後,添加pVA(聚乙烯醇) ❿水溶液作為黏合劑(binder)並混合、乾燥,加以冷壓而製 得成型體。將此成型體,在大氣中6〇〇它下,按小時 之速度升溫10小時進行脫脂,接著,在氧氣環境下,在 1550 C下煅燒8小時,製得燒結體。關於煅燒條件,具體 而言,係於從室溫至80(rc止按2〇(rc/小時之速度升溫, k 800 c至1550°C止按400°C/小時之速度升溫,保持8小 時後,從155(TC至室溫止按10(rC/M、時之速度加以冷卻乏 條件然後,加工該燒結體而製得乾。此時的密度為7 〇 $ cm3 。 §/ 320650 17 200927657 濺鍍靶 同樣方式1造Sr=G.〇_The V dry method is exemplified by the 'cold house (five) dpi_ess method or the hot press method. In the cold 黯, the mixed powder is filled in a molding die to prepare a molded body and calcined. In the hot dust method, the mixed powder is calcined and sintered in a molding die. For the wet method, it is preferable to use, for example, a filter molding method (Japanese Patent Application Laid-Open No. Hei 11-286002). The filtration molding method is a filtration molding die obtained by dewatering and dewatering water from a ceramic raw material slurry to obtain a water-insoluble cerium material for a molded body, and the molding film is made of a material. The molding die for forming the above-mentioned drainage hole, the water-passing filter placed on the lower mold for molding, and the molding frame which is sandwiched from the upper surface by sealing the sealing material for the filter And the assembly, the mold for molding, the molding die, the sealing material, and the filter, and the filtration of the moisture in the slurry only from the side of the filter Forming a mold to prepare a slurry of mixed powder, ion-exchanged water, and an organic additive, and injecting the aggregate into the over-molding mold, and only performing moisture in the aggregate from the side of the filter The reduced pressure is removed to prepare a molded body, and the obtained ceramic formed body is dried and degreased, and then calcined. The calcination temperature of the person formed by cold pressing or hot pressing is preferably 13 to 2, and more preferably 1500 to 'the environment is atmospheric environment, oxygen environment, non-oxidizing environment, or vacuum environment, etc. . On the other hand, in the case of the hot pressing f, it is preferable to make H in the vicinity of l_t: and the environment is a non-oxidizing environment or a vacuum environment. In addition, in each method, simmering, 'is applied to a predetermined size, mechanical processing for processing;:, to make palladium ο 320650 16 200927657 Λ, [Embodiment] [Examples] The present invention is described by way of example of the invention, but the invention is not limited by the examples. (sputter target production example 1) (Sr-IT0) (addition of Sr ΙΤ0, Sr=0. 02-Sn=〇. 1) Preparation purity &gt;99. 99% of In2〇3 powder, and purity&gt; 99. 9% bismuth SrC〇3 powder. First, according to the In2〇3 powder 65. 3 wt% and the ratio of (: 〇 3 powder 34.7 畺 畺 %), prepare a full amount of 200 g, and perform ball milling in a dry state (ball mi 11 mixing) in the atmosphere 120 (rc The pre-calcination was carried out for 3 hours to obtain a 丨n2〇4 powder. Next, the total amount of the SrIn2〇4 powder was 2.2% by weight, “.86.6% by weight of the powder, and 11.2% by weight of the Sn〇2 powder. 1〇kg (kg) (The composition of each metal atom is In=88. 〇at %, STi=1〇〇at %, Sr=2 〇at.%), and this is mixed by ball milling. Then, pVA ( Polyvinyl alcohol) An aqueous solution of hydrazine is used as a binder, mixed, dried, and cold pressed to obtain a molded body. The molded body is heated at a rate of 10 hours in the air for 10 hours to degrease. Next, calcination was carried out at 1550 C for 8 hours in an oxygen atmosphere to obtain a sintered body. Regarding the calcination conditions, specifically, from room temperature to 80 (rc was 2 〇 (rc/hour, temperature was raised, k 800 c to 1550 ° C, then press 400 ° C / hour to increase the temperature, after 8 hours, from 155 (TC to room temperature stop 10 (rC / M, the speed of the cooling is lacking) Member then processing the obtained sintered body dry. At this time, a density of 7 billion $ cm3. § / 320650 17 200927657 same manner as a sputtering target made Sr = G.〇_

Sr:0. 01、Sr=〇. 〇5 的 又 [表1] 同樣方式 製造如表1中所示組成的濺鍍靶。Sr: 0.01, Sr = 〇. 〇5 Further [Table 1] A sputtering target having the composition shown in Table 1 was produced in the same manner.

(添加 Li 之 no、Li=0. 02-Sn=0. 1) 準備純度&gt;99. 99%的In2〇3粉、Sn〇2粉’以及純度&gt;99· 9% 18 320650 200927657 χ. 的 Li2C〇3 粉。 首先,按In2〇3粉79. 0重量%及Li2C〇3粉21. 0重量%的 比例準備全量200g,在乾燥狀態下進行球磨混合,在大氣 中1000°C下預煅燒3小時,製得LiIn〇2粉。 接著,除按上述Li In〇2粉2. 2重量%、In2〇3粉86. 8重 量%以及Sn〇2粉11.0重量%的比例準備全量約1.0kg(各金 屬原子的組成為 In=88. 0 at. %,Sn=10. 0 at. %、Li=2. 0 at. %) 以外,其餘則按Sr-ITO(Sr=0. 02)同樣方式而製作靶。但, 煅燒溫度為1450°C。此時的密度為6. 85g/cm3。 以同樣方式,製造如下述表2中所示組成的濺鍍靶。 ❿ 19 320650 200927657 [表2] 試樣 組成 Cat%) 相對於In(銦 [莫 )1莫耳之比例 耳] 編號 — in S n L i Li s η b 1 9 4. 5 5. 〇 0. 5 0 . 0 0 5 ο. 0 5 3^ b 2 8 9. 5 10, 0 0. 5 - 0. 0 0 6 0 1 12 b 3 8 4. 5 1 5. 0 0. 5 0. 0 0 6 0 1 7 8 b 4 - .一 7 9. 5 2 0.0 0. 5 0 . 0 0 6 0 2 5 2 b 5 9 4. 0 5. 0 1. 0 0. Oil 0 0 5 3 b 6 8 9. 0 10.0 1. 0 0 . Oil 0 1 12 b 7 8 4. 0 15.0 1 . 0 0 . 0 12 0 1 7 9 b 8 7 9. 0 2 0.0 1. 0 0 . 0 13 0 2 5 3 b 9 _______ 9 3. 0 5. 0 2. 0 0. 0 2 2 0 0 5 4 b 1 0 8 8· 0 10. 0 2. 0 0. 0 2 3 0 1 1 4 b 1 1 8 3. 0 15.0 2. 0 0. 0 2 4 0 1 8 1 b 1 2 7 8. 0 2 0.0 2 . 0 0. 0 2 6 0 2 5 6 b 1 3 9 2. 0 5. 0 3. 0 0 · 0 3 3 0 0 5 4 b 1 4 .——~ 8 7. 0 10.0 3.0 0. 0 3 4 0 1 15 b 1 5 8 2. 0 15.0 3. 〇 0. 0 3 7 0 1 8 3 b 1 6 ------ 7 7. 0 2 0. 0 3. 0 0 . 0 3 9 0 2 6 0 b 1 7 9 〇. 0 5. 0 5. 0 0 . 0 5 6 0 0 5 6 b 1 8 8 5· 0 10.0 5. 0 0. 0 5 9 0 1 18 b 1 9 8 0. 0 15.0 5. 0 0. 0 6 3 0 1 8 8 b 2 0 7 5. 0 2 0.0 5 . 0 0. 0 6 7 0 2 6 7 b 2 1 8 5. 0 5. 0 10· 0 0 . 118 0 0 5 9 b 2 2 so. 0 10.0 10 · 0 0 . 12 5 0 1 2 5 b 2 3 _^--- 7 5. 0 Γ5. 0 10 · 0 0. 13 3 0 2 0 0 b 2 4 7 〇 . 0 2 0.0 1 0 _ 0 0 . 14 3 0 2 8 6 b 2 5 89. 995 10. 000 0· 005 0. 000056 0. 111117 b 2 6 82. 800 17. 000 〇. 200 0. 002415 0. 205314 b 2 7 89. 900 10.000 0, 100 0. 001112 0. 111235 b 2 8 84. 900 15.000 0. 100 0.001178 0. 176678 b 2 9 82.000 17. 000 L000 0.012195 0.207317 b 3 0 80. 000 __.-- 18.000 2.000 0. 025000 0. 225000(Adding Li no, Li=0. 02-Sn=0. 1) Preparing purity &gt;99. 99% of In2〇3 powder, Sn〇2 powder 'and purity>99·9% 18 320650 200927657 χ. Li2C〇3 powder. First, a total amount of 200 g of In2〇3 powder of 79.0% by weight and Li2C〇3 powder of 21. 0% by weight is prepared, and the mixture is ball-milled in a dry state, and pre-calcined at 1000 ° C for 3 hours in the atmosphere. LiIn〇2 powder. Next, a total amount of about 1.0 kg is prepared in addition to the above-mentioned Li In〇2 powder 2.2% by weight, In2〇3 powder 86.8 wt%, and Sn〇2 powder 11.0 wt% (the composition of each metal atom is In=88). 0 at. %, Sn=10. 0 at. %, Li=2. 0 at. %) The target was produced in the same manner as Sr-ITO (Sr=0. 02). However, the calcination temperature was 1450 °C. The density at this time was 6.85 g/cm3. In the same manner, a sputtering target having a composition as shown in Table 2 below was fabricated. ❿ 19 320650 200927657 [Table 2] Sample composition Cat%) Relative to In (indium [mole) 1 molar ratio ear] No. — in S n L i Li s η b 1 9 4. 5 5. 〇0. 5 0 . 0 0 5 ο. 0 5 3^ b 2 8 9. 5 10, 0 0. 5 - 0. 0 0 6 0 1 12 b 3 8 4. 5 1 5. 0 0. 5 0. 0 0 6 0 1 7 8 b 4 - . -7 9. 5 2 0.0 0. 5 0 . 0 0 6 0 2 5 2 b 5 9 4. 0 5. 0 1. 0 0. Oil 0 0 5 3 b 6 8 9. 0 10.0 1. 0 0 . Oil 0 1 12 b 7 8 4. 0 15.0 1 . 0 0 . 0 12 0 1 7 9 b 8 7 9. 0 2 0.0 1. 0 0 . 0 13 0 2 5 3 b 9 _______ 9 3. 0 5. 0 2. 0 0. 0 2 2 0 0 5 4 b 1 0 8 8· 0 10. 0 2. 0 0. 0 2 3 0 1 1 4 b 1 1 8 3. 0 15.0 2. 0 0. 0 2 4 0 1 8 1 b 1 2 7 8. 0 2 0.0 2 . 0 0. 0 2 6 0 2 5 6 b 1 3 9 2. 0 5. 0 3. 0 0 · 0 3 3 0 0 5 4 b 1 4 .——~ 8 7. 0 10.0 3.0 0. 0 3 4 0 1 15 b 1 5 8 2. 0 15.0 3. 〇0. 0 3 7 0 1 8 3 b 1 6 ------ 7 7. 0 2 0. 0 3. 0 0 . 0 3 9 0 2 6 0 b 1 7 9 〇. 0 5. 0 5. 0 0 . 0 5 6 0 0 5 6 b 1 8 8 5· 0 10.0 5. 0 0. 0 5 9 0 1 18 b 1 9 8 0. 0 15.0 5. 0 0. 0 6 3 0 1 8 8 b 2 0 7 5. 0 2 0.0 5 . 0 0. 0 6 7 0 2 6 7 b 2 1 8 5. 0 5. 0 10· 0 0 . 118 0 0 5 9 b 2 2 so. 0 10.0 10 · 0 0 . 12 5 0 1 2 5 b 2 3 _^--- 7 5. 0 Γ5. 0 10 · 0 0. 13 3 0 2 0 0 b 2 4 7 〇. 0 2 0.0 1 0 _ 0 0 . 14 3 0 2 8 6 b 2 5 89. 995 10. 000 0· 005 0. 000056 0. 111117 b 2 6 82. 800 17. 000 〇. 200 0. 002415 0. 205314 b 2 7 89. 900 10.000 0, 100 0. 001112 0. 111235 b 2 8 84. 900 15.000 0. 100 0.001178 0. 176678 b 2 9 82.000 17. 000 L000 0.012195 0.207317 b 3 0 80. 000 __.-- 18.000 2.000 0. 025000 0. 225000

(濺鍍靶製造例3)(La_IT0) (添加 La 之 ΙΤ0、La=0. 02_Sn=0. 1) 準備純度&gt;99. 99%的In2〇3粉、Sn〇2粉,以及純度&gt;99. 99% 的.La2(C〇3)3 · 8H2O 粉。 首先’按ImCh粉31. 6重量級La2(c〇3)3·刚粉68 4 重量%的比解備全量购,在朗«下畴球磨混合, 320650 20 200927657 、 在大氣中1200°C下預煅燒3小時,製得LaIn〇3粉。 接著’除按上述1»&amp;111〇3粉4.3重量%、1112〇3粉85.0.重 量%以及Sn〇2粉10.7重量%的比例準備全量約1.0kg(各金 屬原子的組成為 In=88. 0 at. %,Sn=10. 0 at. %、La=2. 0 at. %) 以外,其餘則按與Sr-ITO(Sr=0. 02)同樣方式而製作靶。 此時的密度為7. 04g/cm3。 以同樣方式,製造如下述表3中所示組成的濺鍍靶。 〇 ❹ 21 320650 200927657 [表3] 試樣 組成 (at%) 相對於In丨^ I n s n L a La s n C 1 9 4 .5 5 . 0 0 . 5 0 . 0 0 5 0 • Π 5 C 2 8 9 • 5 10 .0 0 . 5 0. 0 0 6 0 11 9 C 3 8 4 .5 15 .0 0 . 5 0 . 0 0 6 0 1 7 D C 4 7 9 • 5 2 0 • 0 0. 5 0 . 0 0 6 0 9. tz C 5 9 4 0 5. 0 1. 0 0· Oil 0 0 5 ~ C 6 8 9 • 0 10 .0 1. 0 0. Oil 0 1 1 — 一. o c 7 8 4 0 15 0 1 . 0 0. 0 12 0 1 7 Ci 9 *— 3 C 8 7 9 0 2 0 0 1. 0 0. 0 13 0 2 5 C 9 9 3 0 5 . 0 2. 0 0. 0 2 2 0 〇 5 4 cl 0 8 8 0 10.0 2. 0 0 . 0 2 3 0 11 A cl 1 8 3 0 15 0 2. 0 0. 0 2 4 0 — _ 18 -2- 1 cl 2 7 8 0 2 0 0 2. 0 0. 0 2 6 0 2 5 6 cl 3 9 2 0 5 . 0 3. 0 0 . 0 3 3 0 0 5 4 Cl 4 8 7 0 10 0 3. 0 0 . 0 3 4 0 11 5 cl 5 8 2. 0 15, 0 3. 0 0. 0 3 7 0 18 3 cl 6 7 7· 0 2 0 · 0 3. 0 0. 0 3 9 0 2 6 〇 cl 7 9 0· 0 5. 0 5. 0 0. 0 5 6 0 0 5 6 、 Cl 8 8 5. 0 10 . 0 5. 0 0. 0 5 9 0 11 s cl 9 8 0. 0 15· 0 5, 0 0. 0 6 3 0 18 8 c 2 0 7 5, 0 2 0. 0 5, 0 0. 0 6 7 0 2 6 7 c 2 1 8 5, 0 5 . 0 10. 0 0 . 118 0 0 5 9 c 2 2 8 0. 0 10. 0 10. 0 0 . 12 5 0 12 B c 2 3 7'5. 0 15· 0 1 0 . 0 0. 13 3 0 2 0 0 c 2 4 7 0. 0 2 0 . 0 10.0 0 . 14 3 0 2 8 6 —c 2_ 5 89. 992 10. 000 0.008 0.00009 0. Ill c 2 6 86. 900 13. 00.0 0. 100 0. 00115 0. 150 c 2 7 79. 900 20. 000 0. 100 0.00125 0. 250 c 2 8 81.000 18. 000 1.000 0.01235 0. 222 c 2 9 81.800 18. 000 0.200 0. 00244 0. 220 -C 3 0 84. 960 15.000 0. 040 0. 00047 〇. 177 (濺鍍靶製造例4)(Ca-IT0) (添加 Ca 之 ΙΤ0、Ca=0. 02-Sn=0. 1) 準備純度&gt;99· 99%的In2〇3粉、Sn〇2粉,以及純度&gt;99. 5% 的 CaC〇3 粉.。 首先,按In2〇3粉73. 5重量%及CaC〇3粉26. 5重量%的 比例準備全量200g ’在乾燥狀離下進行球磨混合’在大氣 320650 22 200927657(sputter target production example 3) (La_IT0) (addition of La ΙΤ0, La=0. 02_Sn=0. 1) Preparation purity &gt;99. 99% of In2〇3 powder, Sn〇2 powder, and purity&gt; 99. 99% of .La2(C〇3)3 · 8H2O powder. First, according to the ratio of ImCh powder 31.6 weight La2 (c〇3) 3 · just powder 68 4% by weight, the whole quantity is purchased, in the Lang «lower domain ball mill mixing, 320650 20 200927657, in the atmosphere at 1200 ° C Pre-calcined for 3 hours to prepare LaIn〇3 powder. Then, in addition to the above-mentioned 1»&amp;111〇3 powder 4.3% by weight, 1112〇3 powder 85.0.% by weight, and Sn〇2 powder 10.7% by weight, the total amount is about 1.0 kg (the composition of each metal atom is In=88). 0 at. %, Sn = 10. 0 at. %, La = 2. 0 at. %) The target was prepared in the same manner as Sr-ITO (Sr = 0.02). The density at this time is 7. 04g/cm3. In the same manner, a sputtering target having a composition as shown in Table 3 below was fabricated. 〇❹ 21 320650 200927657 [Table 3] Sample composition (at%) relative to In丨^ I nsn L a La sn C 1 9 4 .5 5 . 0 0 . 5 0 . 0 0 5 0 • Π 5 C 2 8 9 • 5 10 .0 0 . 5 0. 0 0 6 0 11 9 C 3 8 4 .5 15 .0 0 . 5 0 . 0 0 6 0 1 7 DC 4 7 9 • 5 2 0 • 0 0. 5 0 . 0 0 6 0 9. tz C 5 9 4 0 5. 0 1. 0 0· Oil 0 0 5 ~ C 6 8 9 • 0 10 .0 1. 0 0. Oil 0 1 1 — I. oc 7 8 4 0 15 0 1 . 0 0. 0 12 0 1 7 Ci 9 *— 3 C 8 7 9 0 2 0 0 1. 0 0. 0 13 0 2 5 C 9 9 3 0 5 . 0 2. 0 0. 0 2 2 0 〇5 4 cl 0 8 8 0 10.0 2. 0 0 . 0 2 3 0 11 A cl 1 8 3 0 15 0 2. 0 0. 0 2 4 0 — _ 18 -2- 1 cl 2 7 8 0 2 0 0 2. 0 0. 0 2 6 0 2 5 6 cl 3 9 2 0 5 . 0 3. 0 0 . 0 3 3 0 0 5 4 Cl 4 8 7 0 10 0 3. 0 0 0 3 4 0 11 5 cl 5 8 2. 0 15, 0 3. 0 0. 0 3 7 0 18 3 cl 6 7 7· 0 2 0 · 0 3. 0 0. 0 3 9 0 2 6 〇cl 7 9 0· 0 5. 0 5. 0 0. 0 5 6 0 0 5 6 , Cl 8 8 5. 0 10 . 0 5. 0 0. 0 5 9 0 11 s cl 9 8 0. 0 15· 0 5, 0 0. 0 6 3 0 18 8 c 2 0 7 5, 0 2 0. 0 5, 0 0. 0 6 7 0 2 6 7 c 2 1 8 5, 0 5 . 0 10. 0 0 . 0 0 5 9 c 2 2 8 0. 0 10. 0 10. 0 0 . 12 5 0 12 B c 2 3 7'5. 0 15· 0 1 0 . 0 0. 13 3 0 2 0 0 c 2 4 7 0. 0 2 0 . 0 10.0 0 . 14 3 0 2 8 6 —c 2_ 5 89. 992 10. 000 0.008 0.00009 0. Ill c 2 6 86. 900 13. 00.0 0. 100 0. 00115 0. 150 c 2 7 79. 900 20 . 000 0. 100 0.00125 0. 250 c 2 8 81.000 18. 000 1.000 0.01235 0. 222 c 2 9 81.800 18. 000 0.200 0. 00244 0. 220 -C 3 0 84. 960 15.000 0. 040 0. 00047 〇 177 (sputter target production example 4) (Ca-IT0) (addition of Ca to ΙΤ0, Ca=0. 02-Sn=0. 1) Preparation of purity &gt;99·99% of In2〇3 powder, Sn〇2 Powder, and purity &gt; 99. 5% CaC〇3 powder. First, according to the ratio of In2〇3 powder 73.5 wt% and CaC〇3 powder 26.5 wt%, the total amount of 200 g 'ball milled in the dry state is off' in the atmosphere 320650 22 200927657

V 中1200°C下預煅燒3小時,製得CaIn2〇4粉。 接著,除按上述CaIm〇4粉4. 8重量%、In2〇3粉84. 3 重量%以及Sn〇2粉10. 9重量%的比例準備全量約1. Okg(各 金屬原子的組成為 In=88. 0 at. %,Sn=10. 0 at. %、Ca=2. 0 at. %)以外,其餘則按與Sr-ITO(Sr=0. 02)同樣方式而製作 革巴。此時的密度為6. 73g/cm3。 以同樣方式,製造如下述表4中所示組成的濺鍍靶。 〇 ❹ 23 320650 200927657 [表4] 試樣 組成 相對於n(銦)1莫耳之比例 編政 --— —_ (at%) [莫耳] In S n c a C a S n d 1 9 4. 5 5· 0 0 . 5 0 . 0 0 5 0. 0 5 3 d 2 8 9. 5 10.0 0 . 5 0 . 0 0 6 0. 112 d 3 8 4 5 15.0 0 . 5 0 . 0 0 6 0. 17 8 d 4 7 9 5 2 0.0 0 . 5 0 . 0 0 6 0. 2 5 2 d 5 9 4. 0 5.0 1. 0 0 . Oil 0. 0 5 3 d 6 8 9 0 10.0 1.0 0 . Oil 0. 112 d 7 8 4. 0 15.0 1. o 0 . 0 12 0. 17 9 d 8 7 9. 0 2 0.0 1. 0 0 . 0 13 0. 2 5 3 d 9 9 3. 0 5.0 2. 0 0. 0 2 2 0. 0 5 4 d 1 0 8 8 0 10.0 2. 0 0. 0 2 3 0 . 114 dll 8 3 0 15.0 2. 0 0. 0 2 4 0. 18 1 d 1 2 7 8. 0 2 0.0 2. 0 0. 0 2 6 0. 2 5 6 d 1 3 9 2 0 5. 0 3. 〇 0. 0 3 3 0. 0 5 4 d 1 4 8 7. 0 10.0 3 . 0 0 . 0 3 4 0 · 115 d 1 5 8 2. 0 15.0 3. 〇 0 . 0 3 7 0. 18 3 d 1 6 7 7. 0 2 0 . 0 3. 0 0 . 0 3 9 0 . 2 6 0 d 1 7 9〇. 0 5.0 5. 0 0 . 0 5 6 0. 0 5 6 d 1 8 8 5 0 10.0 5. 0 0 . 0 5 9 0. .118 d 1 9 8 〇. 0 15.0 5. 0 0 . 0 6 3 0 . 18 8 d 2 0 7 5· — 0 2 0.0 5. 0 0 . 0 6 7 0. 2 6 7 d 2 1 8 5. 0 5. 0 10 · 0 0 . 118 0 . 0 5 9 d 2 2 8 0 0 10. 0 10. 0 0 . 12 5 0 12 5 d 2 3 7 5. 0 15.0 10. 0 0 . 13 3 0 . 2 0 0 d 2 4 ...L〇^〇 2 0 . 0 10· 0 0. 14 3 0 . 2 8 6 d 2 5 — 94.800 5.000 0. 200 0.002110 0.052743 d 2 6 -86. 950 13. 000 0.050 0. 000575 0- 149511 d 2 7 82. 900 17. 000 0. 100 0.001206 0. 205066 d 2 8 79. 9〇n 20. 000 0. 100 0. 001252 D. 250313 d 2 9 -.90- 900 9. 000 0. 100 0. 001100 0. 099010 d 3 0 76. onn n. ooo 2. 000 0. 026316 0. 289474 (濺鍍靶參考製造例l)(Mg-IT0) (添加 Mg 之 ΙΤ0、Mg=0. 02-Sn=0. 1) 準備純度&gt;99. 99%的I112O3粉、Sn〇2粉、以及碳酸氫氧 化鎮粉(MgO含量41. 5重量%)。 首先,按In2〇3粉87. 3重量%及碳酸氫氧化鎂粉12. 7 重量%之比例,準備全量200g,在乾燥狀態下進行球磨混 320650 24 200927657 合,在大氣中1400°C下預煅燒3小時,製得MgIn2〇4粉。 接著,除按上述MgIn2〇4粉4. 6重量%、In2〇3粉84.5 重量%以及Sn〇2粉10. 9重量%的比例準備全量約1. Okg(各 金屬原子的組成為 In=88. 0 at. %,Sn=l0. 0 at. %、Mg=2. 0 at. %)以外,其餘則按與Sr-ITO(Sr=0. 02)同樣方式而製作 革巴。此時的密度為7. 02g/cm3 .。 以同樣方式,製作Mg=0. 05、Mg=0. 12的濺鍍靶。 (濺鍍靶參考製造例2)(Y-ITO) w (添加 Y 之 ITO、Υ=0· 02-Sn=0. 1) 準備純度&gt;99. 99%的In2〇3粉、Sn〇2粉,以及純度&gt;99. 99% 的 Y2(C〇3)3 · 3H2〇 粉。. 首先,按 In2〇3粉 40. 2 重量%及 Y2(C〇3)3 · 3H2〇 粉 59. 8 - 重量%的比例準備全量200g,在乾燥狀態下進行球磨混合, 在大氣中1200°C下預煅燒3小時,製得YIn〇3粉。 接著,除按上述ΥΙη〇3粉3. 6重量%、Im〇3粉85. 6重 © 量%以及Sn〇2粉HK8重量%的比例準備全量約1. 0kg(各金 屬原子的組成為 In=88. 0 at. %,Sn=l0. 0 at. %、Y=2. 0 at. %) 以外,其餘則按與Sr-ITO(Sr=0.02)同樣方式而製作靶。 此時的密度為7. 02g/cm3。 以同樣方式,製造Y=0. 05的濺鍍靶。 (濺鍍靶參考製造例3)(Β-ΙΤ0) (添加 Β 之 ITO、Β=0· 05、Sn=0. 1) 準備純度&gt;99. 99%的In2〇3粉、Sn〇2粉,以及純度&gt;99. 99% 的B2O3粉。 25 320650 200927657 除將此等粉末按Im(h粉87. 5重量%及Sn〇2粉11. 2重 量%、β2〇3粉1. 3重量%的比例準備全量〇kg(各金屬肩子 的組成為 ίη=85. 0 at. %,Sn=l〇.〇 at. %、β=5. 〇 at. %)以 外,其餘則按與Sr-ITO(Sr=〇.〇2)同樣方式而製作靶。但, 锻燒溫度為140(TC。此時的密度為5 〇lg/cm3。 ο (成關1至13、參考例1至5以及比較例υ 例二= 於如上述方式所製造之方式實施。 革巴,如下述所示,作為成膜m至13、^表5的組成的 比較例L將此分別安裝㈣ ^例m以及 溫度設為室溫(約20。 徑濺鍍裝置,將基板 L &gt;&gt;、使氧分壓在〇 $ q Λ 標準立方厘米)之間變化之下(相當 ·〇_(每分鐘 卡)):製得成膜例U13、..參考例 斯 透明導電膜。 3从及比較例1的 ❹ 320650 26 200927657 [表5] ΟPre-calcined at 1200 ° C for 3 hours in V to prepare CaIn 2 〇 4 powder. Okg( Each metal atom has a composition of In, in addition to the above-mentioned CaIm〇4 powder 4.8 wt%, In2〇3 powder 84.3 wt%, and Sn〇2 powder 10.9 wt% ratio. 0: 0 at. %, Sn = 10. 0 at. %, Ca = 2. 0 at. %), and the rest was made in the same manner as Sr-ITO (Sr=0. 02). The density at this time was 6.73 g/cm3. In the same manner, a sputtering target having the composition shown in Table 4 below was fabricated. 〇❹ 23 320650 200927657 [Table 4] The composition of the sample relative to the ratio of n (indium) 1 moles----_ (at%) [mole] In S nca C a S nd 1 9 4. 5 5· 0 0 . 5 0 . 0 0 5 0. 0 5 3 d 2 8 9. 5 10.0 0 . 5 0 . 0 0 6 0. 112 d 3 8 4 5 15.0 0 . 5 0 . 0 0 6 0. 17 8 d 4 7 9 5 2 0.0 0 . 5 0 . 0 0 6 0. 2 5 2 d 5 9 4. 0 5.0 1. 0 0 . Oil 0. 0 5 3 d 6 8 9 0 10.0 1.0 0 . 0. 112 d 7 8 4. 0 15.0 1. o 0 . 0 12 0. 17 9 d 8 7 9. 0 2 0.0 1. 0 0 . 0 13 0. 2 5 3 d 9 9 3. 0 5.0 2. 0 0. 0 2 2 0. 0 5 4 d 1 0 8 8 0 10.0 2. 0 0. 0 2 3 0 . 114 dll 8 3 0 15.0 2. 0 0. 0 2 4 0. 18 1 d 1 2 7 8. 0 2 0.0 2. 0 0. 0 2 6 0. 2 5 6 d 1 3 9 2 0 5. 0 3. 〇0. 0 3 3 0. 0 5 4 d 1 4 8 7. 0 10.0 3 . 0 0 . 0 3 4 0 · 115 d 1 5 8 2. 0 15.0 3. 〇0 . 0 3 7 0. 18 3 d 1 6 7 7. 0 2 0 . 0 3. 0 0 . 0 3 9 0 . 2 6 0 d 1 7 9〇. 0 5.0 5. 0 0 . 0 5 6 0. 0 5 6 d 1 8 8 5 0 10.0 5. 0 0 . 0 5 9 0. .118 d 1 9 8 〇. 0 15.0 5. 0 0 . 0 6 3 0 . 18 8 d 2 0 7 5· — 0 2 0.0 5. 0 0 . 0 6 7 0. 2 6 7 d 2 1 8 5. 0 5. 0 10 · 0 0 . 118 0 . 0 5 9 d 2 2 8 0 0 10. 0 10. 0 0 . 12 5 0 12 5 d 2 3 7 5. 0 15.0 10. 0 0 . 13 3 0 . 2 0 0 d 2 4 ... L〇^〇2 0 . 0 10· 0 0. 14 3 0 . 2 8 6 d 2 5 — 94.800 5.000 0. 200 0.002110 0.052743 d 2 6 -86. 950 13. 000 0.050 0. 000575 0- 149511 d 2 7 82. 900 17. 000 0. 100 0.001206 0. 205066 d 2 8 79. 9〇n 20. 000 0. 100 0. 001252 D. 250313 d 2 9 -.90- 900 9. 000 0. 100 0. 001100 0. 099010 d 3 0 76. onn n. ooo 2. 000 0. 026316 0. 289474 (sputter target reference manufacturing example l) (Mg-IT0) (add Mg to ΙΤ0, Mg= 0。 02-Sn = 0. 1) Preparation of purity &gt; 99. 99% of I112O3 powder, Sn 〇 2 powder, and cesium carbonate oxidized powder (MgO content 41.5 wt%). First, according to the ratio of In2〇3 powder 87.3% by weight and magnesium hydroxide powder 12.7% by weight, prepare a total amount of 200g, and perform ball milling in a dry state, 320650 24 200927657, in the atmosphere at 1400 ° C After calcination for 3 hours, MgIn2〇4 powder was obtained. Okg( The composition of each metal atom is In=88, the total amount of the metal atoms is about 1. 0% by weight. 0 at. %,Sn=l0. 0 at. %, Mg=2. 0 at. %), the rest was made in the same manner as Sr-ITO (Sr=0. 02). The density at this time is 7. 02g/cm3 . In the same manner, a sputtering target of Mg = 0.05 and Mg = 0.12 was produced. (Sputter target reference production example 2) (Y-ITO) w (ITO added with Y, Υ=0·02-Sn=0. 1) Preparation purity> 99. 99% of In2〇3 powder, Sn〇2 Powder, and purity &gt; 99. 99% of Y2(C〇3)3 · 3H2 〇 powder. First, prepare the whole amount of 200g according to the ratio of In2〇3 powder 40. 2% by weight and Y2(C〇3)3 · 3H2〇 powder 59.8-% by weight, and perform ball milling mixing in the dry state, 1200° in the atmosphere. Pre-calcined at C for 3 hours to prepare YIn〇3 powder. 0公斤( The composition of each metal atom is In, in addition to the above ΥΙ 〇 〇 3 powder 3.6 wt%, Im 〇 3 powder 85. 6 重量©% and Sn 〇 2 powder HK 8% by weight ratio of the total amount of about 1. 0kg (each metal atom composition is In The target was produced in the same manner as in the case of Sr-ITO (Sr = 0.02) except for the case of Sr-ITO (Sr = 0.02). The density at this time is 7. 02g/cm3. In the same manner, a sputtering target of Y = 0.05 was produced. (Sputter target reference production example 3) (Β-ΙΤ0) (ITO with Β added, Β=0· 05, Sn=0. 1) Preparation purity &gt;99. 99% of In2〇3 powder, Sn〇2 powder , and purity &gt; 99. 99% of B2O3 powder. 25 320650 200927657 In addition to these powders in accordance with Im (h powder 87.5% by weight and Sn 〇 2 powder 11. 2% by weight, β2 〇 3 powder 1.3% by weight ratio to prepare the full amount 〇 kg (each metal shoulder The composition is ίη=85. 0 at. %,Sn=l〇.〇at. %, β=5. 〇at. %), and the rest is in the same way as Sr-ITO (Sr=〇.〇2) The target was produced. However, the calcination temperature was 140 (TC. The density at this time was 5 〇 lg/cm 3 . ο (Guan Guan 1 to 13, Reference Examples 1 to 5, and Comparative Example 二 Example 2 = manufactured as described above) This method was carried out. As shown below, Comparative Example L, which is a composition of film formation m to 13, and Table 5, was separately mounted (4) ^Example m and the temperature was set to room temperature (about 20. Diameter sputtering device) , the substrate L &gt;&gt;, the partial pressure of oxygen is changed between 〇$q Λ standard cubic centimeter) (equivalent 〇_(card per minute)): a film forming example U13, a reference example is obtained. Transparent conductive film. 3 from 及 320650 26 200927657 [Table 5] Ο

Oat%) 成膜例2 (Sr=〇. 02) 成膜例10 ί^ΐ^οοοοί) 成膜例11 00005) 成稱例12 Ιίί^ΟΟΟΟβ) 成膜例1 (Sr=0. 01) 成膜例6 (La=0. 01) 成膜例4 (Li=〇. 02) 成膜例7 (La=0. 02) 成膜例8 (Ca=〇. 02) 參考例I (Mg=0. 02) 參考例3 (Y=0. 02) 成膜例3 (Sr=0. 05) 成膜例5 (Li=0. 05) 成膜例9 (Ca=0. 05) 參考例2 (Mg=0. 05) 參考例4 (Y=0. 05) 比較例1 (Β=0. 05) 成膜例13 (Ca=0. 10) 參考例5 (Mg=0. 12) 錢鑛的條件係作成如下所示,製得厚度1200 A的膜。 乾尺寸· φ=4ίη. t=6mm 濺鍍方式:DC磁控濺鍍 排氣裝置:旋轉泵(rotary pumpH低溫果(cryopump) 到達真空度:5.3xl0-6[Pa] οOat%) Film Formation Example 2 (Sr=〇. 02) Film Formation Example 10 ί^ΐ^οοοοί) Film Formation Example 11 00005) Formation Example 12 Ιίί^ΟΟΟΟβ) Film Formation Example 1 (Sr=0. 01) Film Example 6 (La=0. 01) Film Formation Example 4 (Li=〇. 02) Film Formation Example 7 (La=0. 02) Film Formation Example 8 (Ca=〇. 02) Reference Example I (Mg=0) 02) Reference Example 3 (Y=0. 02) Film Formation Example 3 (Sr=0. 05) Film Formation Example 5 (Li=0. 05) Film Formation Example 9 (Ca=0.05) Reference Example 2 ( Mg = 0.05. Reference Example 4 (Y = 0.05) Comparative Example 1 (Β = 0.05) Film Formation Example 13 (Ca = 0.10) Reference Example 5 (Mg = 0.12) The conditions were as follows, and a film having a thickness of 1200 A was obtained. Dry size · φ=4ίη. t=6mm Sputtering method: DC magnetron sputtering Exhaust device: Rotary pump (rotary pumpH cryopump) Vacuum degree: 5.3xl0-6[Pa] ο

Ar(氬)壞力:4. 〇xl〇1[Pa] 氧氣壓力:〇至1. lxl〇-2[Pa] 水壓力:5. Oxl〇_6[pa] 基板溫度:室溫 賤鍍電力:130W(瓦特)(電力密度1. 6W/cm2) 使用基板:康寧(Corning)#1737(液晶顯示器用玻璃) t (厚度)=〇. 8mm 測定在各氧氣分壓下形成膜之獏的電阻率、及各膜在 250 c下退火處理後的電阻率。其結果如第1圖至第a圖 320650 27 200927657 所示。 由其結果獲知,在任何情形,均存在有最適氧氣分壓。 又獲知,於成膜例1至9、參考例1至5中,室溫成 膜的最適氧氣分壓、與於250°C退火處理後電阻率最低的 成膜時的氧氣分壓不相同。表2中表示室溫成膜的最適氧 氣分壓與2 5 0 °C退火處理後電阻率最低的成膜時的氧氣分 壓。由此獲知,於成膜例1至9、參考例1至5中,如以 250°C退火處理後之電阻率最低的成膜時的氧氣分壓進行 ® 成膜、然後,在250°C下實施退火處理者,可製得電阻最 低的膜。 另一方面獲知,於氧鍵能大的比較例1中,雖然成膜 時可得非晶形膜,惟不會因250°C退火處理而改變最適氧 - 氣分壓,且不會結晶化。就添加量過少的成膜例10至12 而言,獲知不能製得非晶形膜且不會改變最適氧氣分壓。 又,就添加量過多的成膜例13而言,獲知雖然成膜時能製 〇 得非晶形膜,並會因250°C退火處理而改變最適氧氣分壓, 惟不會結晶化。 下列表6中,將有最適氧氣分壓變化者以〇表示,將 無最適氧氣分壓變化者以X表示。 (試驗例1) 於成膜例1至13、參考例1至5以及比較例1中,將 依室溫成膜時之最適氧氣分壓所製造之透明導電膜,分別 裁切為13mm見方的大小,並將此等試樣在大氣中250°C下 實施退火處理1小時。將退火處理前後的薄膜XRD圖型表 28 320650 200927657 示於第13圖至第19圖中。又,關於成膜例!至4、參考 例1至4、比較例1 1室溫成膜時及25(^退火處理後的 結晶狀態’以非晶形為a、以結晶為c、並將此等表示於 2中。 由其結果可確認’在室溫成膜的成膜例1至9及參考 例1至4的情形,雖然成膜時為非晶形膜,惟經25(rci小 時的退火處理即可結晶化。另—方面,在添加有氧鍵能大 ❾的B之比較例卜或添加量多的成膜例13、參考例5中, 雖然成膜時為非晶形,惟經25(rc退火處理仍然未結晶化。 並且,就此等而言,經確認即使在3〇(rc下的退火處理仍 然不會結晶化。又,在添加量少的成膜例1()至12中,則 -經確認成膜時亦會結晶化,而不會成膜為非晶形膜。 • (試驗例2) 測疋在成膜例中成膜之各透明導電膜,在室溫成膜時 之最適氧氣分壓成膜時的電阻率ρ (Ω · cm)。又,亦測定 〇 試驗1經退火處理後的試樣之電阻率。將此等結果表示於 表6中。 、 其結果獲知,在成膜例1至12、參考例1至4以及比 較例1的情形,電阻率為1〇-力· cm程度。 然而獲知,在成膜例13至14中,則電阻率會成為1(Γ1 Ω · cm程度的高電阻。 (試驗例3) 於成膜例1至13、參考例1至5以及比較例1中,將 依室温成膜時之最適氧氣分壓所製造之透明導電膜,分別 29 1 ^〇65〇 200927657 裁切為13丽見方的大小,以測定透射光譜。又,對試驗例 1經退火處理後的膜,亦同樣測定透射光譜。將此等結果 表示於第20圖至第26圖中。又,將各成膜例1至13、參 考例1至5以及比較1經退火處理後的平均穿透率表示於 表6中。 由此等結果獲知,於成膜後退火處理前之透射光譜, 係因在250°C下1小時的退火處理而吸收端遷移至低波長 側,而改善色調(tint)之事實。 _ (試驗例4).Ar (argon) bad force: 4. 〇xl〇1 [Pa] Oxygen pressure: 〇 to 1. lxl〇-2 [Pa] Water pressure: 5. Oxl 〇 _6 [pa] Substrate temperature: room temperature 贱 plating power : 130 W (watt) (power density 1. 6 W/cm 2 ) Substrate: Corning #1737 (glass for liquid crystal display) t (thickness) = 〇. 8 mm Measure the resistance of the film under the partial pressure of oxygen The rate and the resistivity of each film after annealing at 250 c. The results are shown in Figures 1 through a, 320650 27 200927657. From the results, it is known that in any case, there is an optimum oxygen partial pressure. Further, in the film formation examples 1 to 9, and the reference examples 1 to 5, the optimum oxygen partial pressure at room temperature film formation was different from the oxygen partial pressure at the time of film formation at the lowest resistivity after annealing at 250 °C. Table 2 shows the partial pressure of oxygen at room temperature and the oxygen partial pressure at the time of film formation with the lowest resistivity after annealing at 250 °C. From this, it was found that in Film Formation Examples 1 to 9 and Reference Examples 1 to 5, the partial pressure of oxygen at the time of film formation having the lowest resistivity after annealing at 250 ° C was carried out, and then, at 250 ° C. When the annealing treatment is performed, the film with the lowest electrical resistance can be obtained. On the other hand, in Comparative Example 1 in which the oxygen bond energy was large, an amorphous film was obtained at the time of film formation, but the optimum oxygen-gas partial pressure was not changed by the annealing treatment at 250 ° C, and crystallization was not caused. With respect to the film forming examples 10 to 12 in which the amount of addition was too small, it was found that an amorphous film could not be obtained without changing the optimum oxygen partial pressure. Further, in the film formation example 13 in which the amount of addition was too large, it was found that an amorphous film could be obtained at the time of film formation, and the optimum oxygen partial pressure was changed by annealing at 250 ° C, but it was not crystallized. In the following Table 6, the optimum oxygen partial pressure change is indicated by 〇, and the optimum oxygen partial pressure change is indicated by X. (Test Example 1) In the film formation examples 1 to 13, the reference examples 1 to 5, and the comparative example 1, the transparent conductive film produced by the optimum oxygen partial pressure at the time of film formation at room temperature was cut into 13 mm squares, respectively. The size was measured and the samples were annealed at 250 ° C for 1 hour in the atmosphere. The film XRD pattern table 28 320650 200927657 before and after the annealing treatment is shown in Figs. 13 to 19. Also, regarding the film formation example! 4, Reference Examples 1 to 4, and Comparative Example 1 1 At room temperature film formation and 25 (the crystal state after annealing treatment), the amorphous form is a, the crystal is c, and these are shown in 2. As a result, it was confirmed that the film formation examples 1 to 9 and the reference examples 1 to 4 which were formed at room temperature were amorphous films at the time of film formation, but were crystallized by 25 (rci annealing treatment). On the other hand, in the comparative example of B in which the oxygen bond can be added, or in the film-forming example 13 and the reference example 5 in which the amount of addition is large, although it is amorphous at the time of film formation, it is still not crystallized after 25 (rc annealing treatment). In addition, it has been confirmed that the film formation is not crystallized even at 3 〇 (the annealing treatment at rc. Moreover, in the film formation examples 1 () to 12 in which the amount of addition is small, the film formation is confirmed. It also crystallizes and does not form an amorphous film. (Test Example 2) Measure the optimum oxygen partial pressure film formed by film formation at room temperature. The resistivity at time ρ (Ω · cm). Further, the resistivity of the sample after annealing in 〇 test 1 was also measured. These results are shown in Table 6. In the case of Film Formation Examples 1 to 12, Reference Examples 1 to 4, and Comparative Example 1, the specific resistance was about 1 〇-force·cm. However, it was found that in Film Formation Examples 13 to 14, the specific resistance became 1 (High resistance of about 1 Ω · cm. (Test Example 3) In the film formation examples 1 to 13, the reference examples 1 to 5, and the comparative example 1, the transparent conductive material produced by the optimum oxygen partial pressure at room temperature film formation was used. The film was cut to a size of 13 Å square to measure the transmission spectrum, and the transmission spectrum was also measured for the film after the annealing treatment of Test Example 1. The results are shown in the same section. 20 to 26. Further, the average transmittances of each of Film Forming Examples 1 to 13, Reference Examples 1 to 5, and Comparative 1 after annealing treatment are shown in Table 6. The transmission spectrum before the post-annealing treatment is a fact that the absorption end migrates to the low-wavelength side by the annealing treatment at 250 ° C for 1 hour, and the tint is improved. _ (Test Example 4).

於成膜例1至13、參考例1至5以及比較例1中,將 依室溫成膜時之最適氧氣分屋所製造之透明導電膜,分別 裁切為10x50mm的大小,採用ΙΤ〇-〇5Ν(草酸系、日本關東 - 化學(股)製)(草酸濃度50g/L)作為蝕刻液,在溫度30°C 下,就能否實施蝕刻加以確認。又,對試驗例1的退火處 理後的試樣,亦同樣加以確認。將此等結果,以可蝕刻作 φ 為「〇」、不可蝕刻作為「X」,表示於表6中。 其結果獲知,非晶形膜係能以弱酸性蝕刻劑進行蝕 刻,惟經結晶之膜則不能蝕刻之事實。 30 320650 200927657 ^ [表 6]In the film formation examples 1 to 13, the reference examples 1 to 5, and the comparative example 1, the transparent conductive film produced by the optimum oxygen separation at room temperature was cut into a size of 10×50 mm, and ΙΤ〇- 〇5Ν (oxalic acid system, Japan Kanto-Chemical Co., Ltd.) (oxalic acid concentration: 50 g/L) was used as an etching solution, and it was confirmed whether or not etching was possible at a temperature of 30 °C. Further, the sample after the annealing treatment of Test Example 1 was also confirmed in the same manner. These results are shown in Table 6 as etchable φ as "〇" and non-etchable as "X". As a result, it was found that the amorphous film system can be etched with a weakly acidic etchant, but the film which is crystallized cannot be etched. 30 320650 200927657 ^ [Table 6]

可否蚀刻 1 .... [〇 或 X] 1 0 0 o 0 0 o 〇 o o X X X o o 0 0 o o o fn.t w 均穿 E 96.9 93.5 91.1 E7.8 92.1 | 98.3 I 98.8 96.2 95.1 u&gt; 〇&gt; 95.6 98.2 89.9 95.5 94.1 79.9 | 93.2 93.7 93.4 1退火處理1 後結晶性 (250¾) 3 ο ο o o o O o o o O o o &lt;0 o 0 a υ o (0 成膜時 結晶性 [a 或 d | η a (Q (0 CD (D (D &lt;0 φ o o o «0 CO &lt;D « 0 退火處理 後電阻率 f ά 1 χ •-1 5 CO CO &lt;0 CO eo οά s 〇 〇j S 〇&gt; ai 00 〇&gt; 〇&gt; 17.8 eo CO 〇} 卜· U.6 I CO esi es CD 成膜時 電阻率 [xi〇-4Q-cm] u&gt; IA CD 5 CO IO o lO to ui 5 in 〇&gt; CM· ΟΪ CM m 14.3 a&gt; iq 10.5 in (O 〇&gt; £ 1111 i[〇 或 X]l ο o o o o o 〇 o o X X X 〇 o o o o o X 5 毋 銦)1莫耳 之比h [莫耳]1 0.011 1 0.023 | 0.059 0.023 0.059 0.011 0.023 0.023 0.063 0.000011 0.000056 0.000089 0.125 0.023 0.063 0.154 0.023 0.059 0.059 S? 添加 元去 ο 5 5 o C4 s o 5 s 5 0.001 0.005 0.008 1Q.0 o 04 o in 12.0 o eg 5 s 10.0 10.0 10.0 100 10.0 10.0 10.0 10.0 10.0 10.000 | 10.000 | 10-000 10.0 10.0 10.0 10.0 10.0 10.0 i 10.0 的.0 88.0 85.0 88.0 85.0 I 89.0 I 88.0 88.0 80.0 89.999 89.995 89.998 80.0 88.0 80.0 78.0 1 88.0 85.0 85.0 添加 元素 ά) CO □ Ώ 3 3 ¢5 &lt;3 ¢0 3 δ &gt;- &gt;- SD 試料 名稱 Sr=0.01 Sr=0.02 I Sr=0.05 U=0.02 U=0.05 La-0.01 | La=0.02 Ca=0.02 Ca=0.05 Sr=0.00001 U=0.00005 La=0.00008 Ca=0.10 | Mg=0.02 | Mg=0.05 | Mg=0.12 1 Y=0.02 Y=0.05 | B=0.05 成膜例/ 比較例 1成膜例1 CSJ eo in CD r** 00 O) o 2 CO 1參考例i | &lt;^j to to 寸 1比較例i 31 320650 200927657 » (含有Sr組成之透明導電膜) 使用依上述方式製造之表1中所示組成的靶,將此分 別安裝於4吋的DC磁控濺鍍裝置,將基板溫度設為室溫(約 20°C),使氧氣分壓在0至3.0sccm之間變化下(相當於0 至1. lxlO_2Pa),製得各組成之透明導電膜。 濺鍍的條件係作成如下所示,製得厚度1200 A的膜。 革巴尺寸:&lt;M4in. t=6mm 濺鍍方式:DC磁控濺鍍 排氣裝置:旋轉泵+低溫泵 到達真空度:5. 3xlO_5[Pa]Can I etch 1 .... [〇 or X] 1 0 0 o 0 0 o 〇oo XXX oo 0 0 ooo fn.tw Both wear E 96.9 93.5 91.1 E7.8 92.1 | 98.3 I 98.8 96.2 95.1 u&gt;〇&gt; 95.6 98.2 89.9 95.5 94.1 79.9 | 93.2 93.7 93.4 1 Annealing 1 Crystallinity (2503⁄4) 3 ο ο ooo O ooo O oo &lt;0 o 0 a υ o (0 Crystallinity at film formation [a or d | η a (Q (0 CD (D (D &lt;0 φ ooo «0 CO &lt;D « 0 after annealing treatment resistivity f ά 1 χ •-1 5 CO CO &lt;0 CO eo οά s 〇〇j S 〇&gt ; ai 00 〇&gt;〇&gt; 17.8 eo CO 〇} Bu· U.6 I CO esi es CD Resistivity when filming [xi〇-4Q-cm] u&gt; IA CD 5 CO IO o lO to ui 5 in 〇&gt; CM· ΟΪ CM m 14.3 a&gt; iq 10.5 in (O 〇&gt; £ 1111 i[〇 or X]l ο ooooo 〇oo XXX 〇ooooo X 5 毋Indium)1 molar ratio h [mole] 1 0.011 1 0.023 | 0.059 0.023 0.059 0.011 0.023 0.023 0.063 0.000011 0.000056 0.000089 0.125 0.023 0.063 0.154 0.023 0.059 0.059 S? Adding dollars to ο 5 5 o C4 so 5 s 5 0.001 0.005 0.008 1Q.0 o 04 o in 12.0 o eg 5 s 10.0 10.0 10.0 100 10.0 1 0.0 10.0 10.0 10.0 10.000 | 10.000 | 10-000 10.0 10.0 10.0 10.0 10.0 10.0 i 10.0 of .0 88.0 85.0 88.0 85.0 I 89.0 I 88.0 88.0 80.0 89.999 89.995 89.998 80.0 88.0 80.0 78.0 1 88.0 85.0 85.0 Adding element ά) CO □ Ώ 3 3 ¢5 &lt;3 ¢0 3 δ &gt;- &gt;- SD Sample name Sr=0.01 Sr=0.02 I Sr=0.05 U=0.02 U=0.05 La-0.01 | La=0.02 Ca=0.02 Ca=0.05 Sr =0.00001 U=0.00005 La=0.00008 Ca=0.10 | Mg=0.02 | Mg=0.05 | Mg=0.12 1 Y=0.02 Y=0.05 | B=0.05 Film Formation Example / Comparative Example 1 Film Formation Example 1 CSJ eo in CD r ** 00 O) o 2 CO 1 Reference Example i | &lt;^j to to 1 Comparative Example i 31 320650 200927657 » (Transparent Conductive Film Containing Sr Composition) Using the composition shown in Table 1 manufactured as described above The target is mounted on a 4 DC DC magnetron sputtering device, and the substrate temperature is set to room temperature (about 20 ° C), and the oxygen partial pressure is changed between 0 and 3.0 sccm (equivalent to 0 to 1). . lxlO_2Pa), a transparent conductive film of each composition was obtained. The conditions of the sputtering were as follows, and a film having a thickness of 1200 A was obtained. Geb size: &lt;M4in. t=6mm Sputtering method: DC magnetron sputtering Exhaust device: rotary pump + cryogenic pump Reach vacuum: 5. 3xlO_5[Pa]

Ar 壓力:4. 0x10—iPa] 氧氣壓力:0至1. lxl(T2[Pa] 水壓力:5. 0x10—5[Pa] 基板溫度:室溫 濺鍍電力:130W(電力密度1. 6W/cm2) Q 使用基板:康寧#1737(液晶顯示器用玻璃)t=0.8mm 在此,室溫成膜的最適氧氣分壓,與經250°C退火處 理後電阻率最低的成膜時的氧氣分壓不相同的試樣有很 多,惟有些組成,其最適氧氣分壓則並無變化。 下述表7中,將有最適氣氧分壓變化者,以〇表示, 將無最適氧氣分壓變化者以X表示。 又,將在各組成的室溫成膜時之最適氧氣分壓下所製 造之透明導電膜,分別裁切為13mm見方的大小,並將此等 試樣在大氣中250°C下實施退火處理1小時,就室溫成膜 32 320650 200927657 嫕 時及經25(TC退火處理後的結晶狀態,以非晶形作為a、以 結晶作為c,並將此等表示於表7中。 又,測定各組成的結晶化溫度,並表示於表7中。妹 晶化溫度係在lOOt下成膜後進行結晶化之溫度,而在 C成膜時不成為非晶形者,則當作未達1 。 再者’測定所成膜之各透明導電膜在室溫成膜時於最 適氧氣分壓成膜後,實施退火處理使其結晶化之試樣的電 ❹阻率Ρ(Ω · cm)。將此等結果,表示於表7中。 又,將依室溫成膜時之最適氧氣分壓所製造之透明導 電膜’分別裁切為13咖見方的大小,並對經退火處理後的 膜,測定透射光譜。將退火處理後的平均穿透率表示於表 7中。 X,將依室溫成膜時之最適氧氣分靜造並進行退火 處理使其U匕後的透明導電膜,分別裁切為1〇湖mm的 2,而採用IT(H)5N(草酸系,關果化學(股)製)(草酸 ❹;X 50g/L)作為烟液,在溫度3〇。〇下,就能否實施韻刻 加Γ確認。以可㈣作為「〇」、不可姻作為「X」,表示 果,表示於第28圖中。圖中,將未達100〇( 处社曰膜'皿度下能成膜為非晶形膜、而在l00°c至300°C1 月…a化之試H絲、其他相▲表示。 由此結果獲知,如承- °C下成膜時會成為非日70素為Sr的情形,在未達10 施退火處理時,:二化臈’然後’在10(rc至30°。。下1 m日日化之組成範圍,係相對於銦1莫】 320650 33 200927657 » 之錫的莫耳比y(莫耳),為在相對於銦1莫耳之Sr的莫耳 比以X表示時之(-4. 1χ10_21η(χ)-9. 2xl0_2)的值以上且 (-2. 9χ10_11η(χ)-6. 7x10—。的值以下的範圍。 又獲知,於此種範圍中,特別是,如相對於銦1莫耳 之錫的莫耳比y(莫耳),為在相對於銦1莫耳之Sr的莫耳 比以X表示時之(-8. 2χ10_21η(χ)-1. 9父10-1)以上的範圍,則 成為退火處理溫度未滿200°C時不會結晶化,而經200°C以 上的退火處理時會結晶化之範圍,故考慮成膜程序時為更 〇 A ^ ^ 合適者。 再者獲知,於上述之範圍中,如在相對於銦1莫耳之 錫的莫耳比y,為0. 15莫耳以上且0. 28莫耳以下的情形, 則經250°C退火處理後的電阻率係成為3.0χ10_4Ω · cm以 - 下,而為更合適者。 34 320650 200927657 ' [表 7]Ar pressure: 4. 0x10-iPa] Oxygen pressure: 0 to 1. lxl (T2 [Pa] water pressure: 5. 0x10 - 5 [Pa] substrate temperature: room temperature sputtering power: 130W (power density 1. 6W / Cm2) Q Substrate: Corning #1737 (glass for liquid crystal display) t=0.8mm Here, the optimum oxygen partial pressure of film formation at room temperature, and the oxygen content at the time of film formation with the lowest resistivity after annealing at 250 °C There are many samples with different pressures, but some compositions have no change in the optimum oxygen partial pressure. In Table 7 below, there will be the optimum oxygen partial pressure change, indicated by ,, there will be no optimum oxygen partial pressure change. Further, the transparent conductive film produced by the optimum oxygen partial pressure at the room temperature film formation of each composition is cut into a size of 13 mm square, and the samples are 250° in the atmosphere. Annealing treatment was carried out for 1 hour at C, and film formation was carried out at room temperature for 32 320 650 200927657 嫕 and 25 (the crystallization state after TC annealing treatment, with amorphous as a and crystallization as c, and these are shown in Table 7 Further, the crystallization temperatures of the respective compositions were measured and shown in Table 7. The crystallization temperature was formed at 100 Å after film formation. When the temperature of crystallization is increased, and it is not amorphous when it is formed into a film, it is considered to be less than 1. Further, each of the transparent conductive films formed into a film is formed into a film at an optimum oxygen partial pressure at room temperature. Then, the electric enthalpy resistivity Ω (Ω · cm) of the sample which was annealed and crystallized was shown in Table 7. Further, the optimum oxygen partial pressure at the time of film formation at room temperature was used. The manufactured transparent conductive film was cut to a size of 13 caffe squares, and the transmission spectrum was measured on the annealed film. The average transmittance after annealing treatment is shown in Table 7. X, will be room temperature At the time of film formation, the optimum oxygen is statically formed and annealed to make the transparent conductive film after U匕 cut into 2 〇湖mm 2, and IT(H)5N (oxalic acid system, Guan Guo Chemical) ))) (( 草 ❹; X 50g / L) as a liquid smoke, at a temperature of 3 〇. Under the ,, can you carry out the rhyme engraving confirmation. It can be (4) as "〇", not marriage as "X", indicating The result is shown in Fig. 28. In the figure, it will be less than 100 〇 (the film can be formed into an amorphous film at a degree of 曰 、, and at 100 ° C to 300 ° In the month of C1, the test H filament and the other phase ▲ are indicated. From this result, it is known that if the film is formed at a temperature of - ° C, it will become a non-Japanese 70-state Sr. When the annealing treatment is less than 10, Chitosan 'then' is at 10 (rc to 30°.. The composition range of the next 1 m day is relative to indium 1) 320650 33 200927657 » The molar ratio of tin to y (mole), in The molar ratio of Sr to Inr 1 molar is greater than the value of (-4. 1χ10_21η(χ)-9. 2xl0_2) and (-2. 9χ10_11η(χ)-6. 7x10—. The value below the range. It is also known that, in this range, in particular, such as Mohr ratio y (mole) with respect to tin of indium 1 mole, when the molar ratio of Sr with respect to indium 1 mol is represented by X (-8. 2χ10_21η(χ)-1. 9 parent 10-1) The above range does not crystallize when the annealing temperature is less than 200 °C, but crystallizes when it is annealed at 200 °C or higher. The range is considered to be more suitable for the film formation procedure. Further, it is known that, in the above range, if the molar ratio y of the tin relative to the indium 1 molar is 0.15 m or more and 0.28 m or less, the annealing is performed at 250 ° C. After the resistivity is 3.0 χ 10_4 Ω · cm to - down, and more suitable. 34 320650 200927657 ' [Table 7]

320650 35 200927657 濺鑛方式:DC磁控濺鍍 排氣裝置:旋轉泵+低溫泵 到達真空度:5. 3xl(T5[Pa] Ar 壓力:4. OxlO_1[Pa] 氧氣壓力:0至1. lxl〇_2[Pa] 水壓力:5· 0xl(T5[Pa] 基板溫度:室溫 〇 濺鍍電力:130W(電力密度Uw/aq t=〇8mm /在此,至溫成膜的最適氧氣分壓、趣25代退 理後電阻率最低的成膜時的氧氣分 处 夕^ 礼刀壓不相同的試樣有报 夕,惟有些組成,其最適氧氣分壓則並無變化。 下述表8中,將有最適氧氣分壓變化 無最適氧氣分壓變化者以X表示。 、不,將 又’將在各組成的室溫成膜時之最適氧氣分壓下所繁 ❹造之透明導電膜,分別裁切為13咖見方的大小,並將此等 試樣在大氣中25(TC下實施退火處理!小時,就室溫成膜 時及經2 5 〇 t退火處理後㈣晶狀態,轉晶形作為a、以 、’、口日日作為c ’並將此等表示於表8中。 又測疋各組成的結晶化溫度,並表示於表8中。結 晶化溫度係在1〇〇。〇下成膜後進行結晶化之溫度, 而在100 °〇成膜時不成為非晶形者,則當作未達1〇〇χ:。 再者’測定所成臈之各透明導電膜在室溫成膜時之最 適氧氣分壓成膜後,實施退火處理使其結晶化之試樣的電 36 ' 320650 200927657 阻罕p⑴· cm)。將此等結果,表示於表8中。 又,將依室溫成膜時之最適氧氣分壓所製造之透明導 ^ 見方的大小,並就經退火處理後的 8膜中敎透射鱗。將退火處理後的平均穿料表示於表 卢二二室溫成膜時之最適氧氣分壓製造,並經退火 匕後的透明導電膜,分別裁切為ι〇χ_ ❹ ❹ 又/ )作為餘刻液,在溫度3(TC下,測定钱刻率(A/ sec)。將其結果表示於表8中。 。。的1=:果:t表示於第28圖中。圖中,將在未_ 能結晶化之試樣以•表示,其他者以H1000至300 c下 由此結果獲知,如添加元 ::成膜時,成為非晶形膜’然後,在1二;二= 錫為結晶化之膜之組成範圍,係相對於 錫的莫耳比y(莫耳)’為在相對 又i .7xlr)的值以下的範圍。 之錫的草$於此種1巳圍中’特別是,如相對於銦1莫耳 比Μχ表不時之(_7 〇 1fK2 成為能成膜為退火溫度在未; C以上的退火處理日會結晶化、而經 军口日日化之膜之範圍,故考慮成膜 320650 37 200927657 程序時會成為更合適者 再者獲知,於上述之範圍中,如在相對於姻 錫的莫耳比y,為〇.28莫耳以上,且相對於銦1莫耳^ 在0.°15以下時,則能成膜為經眺退火處 理後電阻率在3 1 π-4 π 干牡火υχίο Ω . cm以下的膜者,而更合適。 [表8] ❹ ❹320650 35 200927657 Splashing method: DC magnetron sputtering venting device: Rotary pump + cryogenic pump reaching vacuum: 5. 3xl (T5[Pa] Ar Pressure: 4. OxlO_1[Pa] Oxygen pressure: 0 to 1. lxl 〇_2[Pa] Water pressure: 5·0xl (T5[Pa] Substrate temperature: room temperature 〇 Sputtering power: 130W (power density Uw/aq t=〇8mm / here, the optimum oxygen content to the temperature film) After the 25th generation of retreat, the oxygen with the lowest resistivity after the retreat of the film is divided into the same day. The samples with different knives are different, but some compositions have no change in the optimum oxygen partial pressure. In the 8th, there will be an optimum oxygen partial pressure change. The optimum oxygen partial pressure change is indicated by X. No, it will be transparently conductive under the optimum oxygen partial pressure at the room temperature of each composition. The film was cut to a size of 13 caffe squares, and the samples were annealed in the atmosphere at 25 °C (hours, at room temperature, and after annealing at 25 〇t). The crystal form is represented by a, 、, ', and the day of the mouth as c ' and is shown in Table 8. The crystallization temperature of each composition is also measured and shown in Table 8. The crystallization temperature is 1 〇〇. The temperature at which crystallization is carried out after film formation under the enamel, and if it is not amorphous at 100 ° 〇 film formation, it is considered to be less than 1 〇〇χ: After measuring the optimum oxygen partial pressure of each transparent conductive film formed at room temperature, the sample was annealed to crystallize the sample 36' 320650 200927657, and the resistance was p(1)·cm). The results are shown in Table 8. Further, the size of the transparent guide layer produced by the optimum oxygen partial pressure at room temperature film formation was measured, and the scale was transmitted through the annealed 8 film. The average dressing is expressed by the optimum oxygen partial pressure at the time of film formation at room temperature, and the transparent conductive film after annealing is cut into ι〇χ_ ❹ ❹ and /) respectively as a residual liquid. Temperature 3 (at TC, the rate of money was measured (A / sec). The results are shown in Table 8. 1 =: fruit: t is shown in Figure 28. In the figure, will be crystallized in the _ The sample is indicated by •, and the others are known from H1000 to 300 c, such as adding element:: when forming a film, it becomes an amorphous film' then In the range of the composition of the film which is crystallized, the molar ratio of tin to y (mole) is less than the value of the relative i.7xlr). In such a range of 'in particular, if it is relative to the indium 1 molar ratio, it is not the case (_7 〇1fK2 becomes the film forming annealing temperature is not; the C or more annealing treatment day will crystallize, and The scope of the film of the military mouth is becoming more and more suitable, so it is more appropriate to consider the film formation 320650 37 200927657. In the above range, as in the case of Moerby y relative to the marriage tin, it is 〇.28 Above Moule, and relative to indium 1 Moth ^ below 0. °15, the film can be formed into a film having a resistivity of 3 1 π - 4 π dry υχ ο ο ο ο ο ο ο ο ο And more suitable. [Table 8] ❹ ❹

之比例 、 [莫耳1Proportion, [Mo 1

(含有La組成之透明導電膜) 使用依上述方式所製造之表3所示組成的靶,將此 38 320650 200927657 別安裝於4吋的DC磁控濺鍍裝置,將基板溫度設為室溫(約 20°C ),使氧氣分壓在0至3. Osccm之間變化下(相當於〇 至1. lxl(T2Pa),製得各組成之透明導電膜。 濺鍍的條件係作成如下所示,製得厚度1200 A的膜。 歡子尺寸:Φ=4ίη. t=6ram 濺鍍方式:DC磁控濺鍍 .排氣裝置.旋轉系·+低温果 ❹ 到達真空度:5. 3xl(T5[Pa](Transparent Conductive Film Containing La Composition) Using the target of the composition shown in Table 3 manufactured as described above, the 38 320650 200927657 was attached to a 4 DC DC magnetron sputtering apparatus, and the substrate temperature was set to room temperature ( About 20 ° C), the partial pressure of oxygen is changed between 0 and 3. Osccm (corresponding to 〇 to 1. lxl (T2Pa), a transparent conductive film of each composition is obtained. The conditions of sputtering are as follows A film with a thickness of 1200 A is produced. The size of the child is Φ=4ίη. t=6ram Sputtering method: DC magnetron sputtering. Exhaust device. Rotating system · + low temperature fruit ❹ Reaching degree of vacuum: 5. 3xl (T5 [Pa]

Ar,》:4.0xl01[Pa] 氧氣壓力:0至1. lxl〇—2[Pa] 水壓力:5. 0xl(T5[pa] .基板溫度:室溫 ' 濺鍍電力:130W(電力密度1. 6W/cm2) 使用基板:康寧#1737(液晶顯示器用玻璃)t=〇 8mm 在此,室溫成膜的最適氧氣分壓,與經25〇£&gt;c退火處 ©,後電阻率最低的成膜時的氧氣分壓不相同的試樣有很 夕,惟有些組成,其最適氧氣分壓則並無變化。 下述表9中,將有最適氧氣分壓變化者以〇表示,將 無最適氧氣分壓的變化者以x表示。 ’ X ’將在各組成的室溫成膜時之最適氧氣分签 明導電膜’分別裁切為丨3mm見方的大小,並將此等 芬在大氣中250。(:下實施退火處理i小時,就室溫成膜 =及經25(TC退火處理後的結晶狀態,以非晶形作為a、以 、、、°晶作為c ’並將此等表示於表9中。 320650 39 200927657 又,測定各組成的結晶化溫度,並表示於表9中。於 晶化溫度係在100°C下成膜後進行結晶化之溫度,而在1〇〇 艺成膜時不成為非晶形者,則當作未達i〇〇°c。 再者,測定所成膜之各透明導電膜在室溫成膜時之最 適氧氣分壓成膜後,實施退火處理使其結晶化之試樣的電 阻率ρ (Ω · cm)。將此等結果,表示於表9中。 又,將依室溫成膜時之最適氧氣分壓所製造之透明導 電膜,分別裁切為13nm見方的大小,並就經退火處理後的 膜’測定透射光譜。將退火處理後的平均穿透率表示於表 9中。 又,將依室溫成膜時之最適氧氣分壓製造,並經退火 處理使其結晶化後的透明導電膜,分別裁切為1Gx5〇inm的 大小’採用ITO-0.5N(草酸系’關東化學(股)製)(草酸漢 度50g/L)作為㈣液’在溫度耽下,測定刻率(A/ sec)。將其結果表示於表9中。 ,表示於第29圖中。圖中,將在未達1 C勺成膜溫度下能成臈為非晶形膜、且在1〇代至細。c 能結晶狀試樣以•麵,其他相▲表示。 果獲知,如添加元素為La的情形,在未達1 纟膜時會成為非晶形膜,然後,在lore至·。^下 時,=膜為結晶化之膜之組成· 曾莫耳之錫的莫耳比y,為在相對於 莫耳比以乂表示時之㈠7χ10-2ΐηη9〇冥耳之La 且A Urrh η / (Χ)_2·2Χ1(Γ1)的值以, 且(3.3xlG 1η(χ)-7.7χ1(Γ1)的值 320650 40 200927657 r 又獲知,於此種範圍中,特別是,如相對抓 之錫的莫耳比y(莫耳),為在相對於銦丨莫耳之;细1莫耳 比以X表示時之(_8. 7χ1〇-2ΐη(χ)_2 〇χ1(Γΐ)以上La的莫耳 成為能成膜為退火溫度在未達200°C時不會結曰^知圍,則 20(TC以上的退火處理時會結晶化之膜之範圍,、而經 程序時會成為更合適者。 考慮成臈 再者獲知於上述之範圍中,如在相對於銦1莫耳之 錫的莫耳比y(莫耳),為0.23莫耳以下時,則能成膜為經 250 C退火處理後的電阻率在3. 0x10 4Ω .cm以下的膜者, 而為更合適者。 〇 320650 41 200927657 [表9]Ar, ": 4.0xl01 [Pa] Oxygen pressure: 0 to 1. lxl 〇 - 2 [Pa] Water pressure: 5. 0xl (T5 [pa]. Substrate temperature: room temperature ' Sputtering power: 130W (power density 1 6W/cm2) Substrate: Corning #1737 (glass for liquid crystal display) t=〇8mm Here, the optimum oxygen partial pressure of film formation at room temperature is the lowest resistivity after annealing with 25〇&gt;c. The sample with different oxygen partial pressure at the time of film formation has a good date, but there is some composition, and the optimum oxygen partial pressure does not change. In Table 9 below, the optimum oxygen partial pressure change is indicated by ,, The change of the optimum oxygen partial pressure is expressed by x. 'X' will be cut into the size of 丨3mm square, which is the optimum oxygen labeling film at the room temperature of each composition. 250 in the atmosphere ((: the next annealing treatment i hours, the film formation at room temperature = and 25 (the crystal state after TC annealing treatment, the amorphous form as a, the,,, ° crystal as c ' and these The results are shown in Table 9. 320650 39 200927657 Further, the crystallization temperature of each composition was measured and shown in Table 9. After the film formation temperature was 100 ° C, the film was formed. When the temperature at which the crystallization is carried out is not amorphous when it is formed into a film, it is considered to be less than 〇〇c. Further, when each of the transparent conductive films to be formed is formed at room temperature, the film is formed. The optimum resistivity ρ (Ω · cm) of the sample which was annealed and crystallized after the partial pressure of oxygen was formed into a film, and the results are shown in Table 9. Further, when the film was formed at room temperature The transparent conductive film produced by the optimum oxygen partial pressure was cut into a size of 13 nm square, and the transmission spectrum was measured for the annealed film. The average transmittance after annealing treatment is shown in Table 9. The transparent conductive film which is formed by the optimum partial pressure of oxygen at room temperature and is annealed by annealing is cut into a size of 1 G x 5 〇 inm ' using ITO-0.5N (oxalic acid system 'Kanto Chemical ( (manufactured by the system) (oxalic acid + 50 g / L) as (four) liquid 'under temperature ,, the measurement of the rate (A / sec). The results are shown in Table 9. In Figure 29, in the figure, It will be an amorphous film at a filming temperature of less than 1 C, and it can be crystallized in 1 to 3 times. The surface is represented by other phases ▲. If it is known that the additive element is La, it will become an amorphous film when it is less than 1 纟 film, and then, when it is under lore to 。, the film is a crystallized film. The Mohrby y of the composition of Zeng Moer's tin is the value of La and A Urrh η / (Χ)_2·2Χ1 (Γ1) of (1) 7χ10-2ΐηη9〇 when expressed in 相对 with respect to the molar ratio. And (3.3xlG 1η(χ)-7.7χ1(Γ1) has the value 320650 40 200927657 r. It is also known that in this range, in particular, such as the molar ratio y (mole) of the relatively scratched tin, Compared with indium bismuth; the fine 1 molar ratio is represented by X (_8. 7χ1〇-2ΐη(χ)_2 〇χ1(Γΐ) above La Moer becomes capable of film formation for annealing temperature below 200 When the temperature is not higher than °C, the range of the film which will crystallize during the annealing treatment of TC or higher is more suitable. Considering that the composition is known to be in the above range, such as when the molar ratio y (mole) relative to the tin of the indium 1 molar is 0.23 mol or less, the film can be formed after annealing at 250 C. The resistivity of the film is 3. 0x10 4 Ω .cm or less, and is more suitable. 〇 320650 41 200927657 [Table 9]

Ο ο (含有Ca組成之透明導電膜) 使用依上述方式所製造之表4所^組成㈣,將此分 別安裝於4对的DC磁控雜裝置,將基板溫度設為室溫( 20°C),使氧氣分壓在〇至3 〇sccm ^間變化之皿〜 0至L bdO—㈣,製得各組成之透明導電膜。 田於 滅鑛的條件係作成如下所示,製得厚度12〇〇 A的膜。 乾子尺寸:0=4in. t=6mm 320650 42 200927657 濺鍍方式:DC磁控濺鍍 排氣裝置:旋轉泵+低溫泵 到達真空度:5.3xl(T5[pa]ο ο (Transparent Conductive Film Containing Ca Composition) Using the composition (4) of Table 4 manufactured as described above, this was separately mounted on a 4-pair DC magnetron hybrid device, and the substrate temperature was set to room temperature (20 ° C). A transparent conductive film of each composition was prepared by dividing the oxygen pressure into a dish varying from 3 〇sccm ^ to 0 to L bdO-(iv). The conditions for the destruction of the ore were prepared as follows, and a film having a thickness of 12 〇〇 A was obtained. Dry size: 0=4in. t=6mm 320650 42 200927657 Sputtering method: DC magnetron sputtering Exhaust device: rotary pump + cryogenic pump Reach vacuum: 5.3xl (T5[pa]

Ar 壓力:4. OxlOjPa] 氧氣壓力:〇至1. lxl〇-2[Pa] 水壓力:5. 0xl(T5[pa] 基板溫度:室溫 ❹ 濺鍍電力:130W(電力密度uw/cv) 使用基板:康寧#1737(液晶顯示器用玻璃)t=〇 8mm 在此,室溫成膜的最適氧氣分壓,與經25〇ΐ退火處 理後電阻率最低的成膜時的氧氣分壓不相同的試樣有狼 多,惟有些組成,其最適氧氣分壓則並無變化。 下述表10中,將有最適氧氣分壓變化者以〇表示,將 無最適氧氣分壓變化者以χ表示。 又,將在各組成的室溫成膜時之最適氧氣分壓下所製 ❹造之透明導電膜,分別裁切為l3mm見方的大小,並將此等 試樣在大氣中25(TC下實施退火處理丨小時,就室溫成膜 時及經25(TC退火處理後的結晶狀態,以非晶形作為a、以 結晶作為C,並將此等表示於表中。 又,測定各組成的結晶化溫度,並表示於表1〇中。結 晶化溫度係在l〇(TC下成膜後進行結晶化之溫度,而在 C成膜時不成為非晶形者,則當作未達。 再者,測定所成膜之各透明導電膜在室溫成膜 適氧氣分麼成膜後,實施退火處理使其結晶化之試樣㈣ 320650 43 200927657 阻率ρ (Ω · cm)。將此等結果,表示於表1〇中。 又’將依室溫成膜時之最適氧氣分壓所製造之透明導 電膜,分別裁切為13mm見方的大小,並測定經退火處理後 的膜的透射光譜。將退火處理後的平均穿透率表示於表1〇 中0 又, 〇 聆仫至級風胰野之最適氧氣分壓製造,並經退火 處理使其結晶化後的透明導電膜,分別裁切為10x50mm的 大小,採用ΙΤΟ-0·5Ν(草酸系,關東化學(股)製)(草酸濃 度50g/L)作為蝕刻液,在溫度加它下,測定蝕刻率(Α/ sec)。將其結果表示於表1〇中。 將此等結果’表示於第3〇圖中。圖中,將未達1〇〇t: 的成膜/瓜度下此成膜為非晶形膜、且在t至3⑻。c下能 結晶化之試樣以φ表示,其他者以▲表示。 。由此結果獲知,如添加元素A Ca的情形,在未達1〇〇 ^下成膜時會成為非晶形的膜、然後,在丨⑽。匚至綱。◦下 理時’能成膜為結晶化之膜之組成範圍,係相 對於銦1料之錫的財比y,為在於 的莫耳比以x表示時 广其耳之Ca ς 4. lxlG InW-UxHT1)的值以 且(-2:5χ10 1η(χ)_57χ1〇,的值以下的範圍。 之锡的Ϊί: μ於此種範圍中,特別是’如相對於銦1莫耳 =對於銦1莫耳之_耳 成為能成膜為退火溫度在未 20(TC以上的、p p ★在未達2〇〇 C會結晶化,而經 上的退火處理時結晶化之膜之範圍,故考慮成膜程 320650 200927657 ▼ 序時會成為更合適者。 錫的苴☆上述之範圍中’如在相對於銦1莫耳之 更合適者。 手在3.0x10 Q.cm以下的模,而為 [表 10] 試樣 編號Ar pressure: 4. OxlOjPa] Oxygen pressure: 〇 to 1. lxl〇-2 [Pa] Water pressure: 5. 0xl (T5[pa] Substrate temperature: room temperature 溅 Sputtering power: 130W (power density uw/cv) Substrate used: Corning #1737 (glass for liquid crystal display) t=〇8mm Here, the optimum partial pressure of oxygen at room temperature is different from the partial pressure of oxygen at the lowest resistivity after annealing at 25 〇ΐ. There are many wolves in the sample, but some compositions have no change in the optimum oxygen partial pressure. In Table 10 below, the optimum oxygen partial pressure change is indicated by 〇, and the optimum oxygen partial pressure change is indicated by χ. Moreover, the transparent conductive film produced by the optimum oxygen partial pressure at the time of film formation of each composition is cut into a size of 13 mm square, and these samples are placed in the atmosphere at 25 (TC). When the annealing treatment was performed for a few hours, the film was formed at room temperature and in the crystal state after 25 (TC annealing treatment, the amorphous form was taken as a, and the crystal was used as C, and these were shown in the table. The crystallization temperature is shown in Table 1. The crystallization temperature is crystallization after lamination at TC. When the temperature is not formed into a film at the time of C film formation, it is considered to be unsatisfactory. Further, each of the transparent conductive films formed into the film is formed into a film at room temperature, and then annealed to form a film. Crystallized sample (4) 320650 43 200927657 Resistivity ρ (Ω · cm). These results are shown in Table 1〇. Also, the transparent conductive film produced by the optimum oxygen partial pressure at room temperature film formation. , cut to a size of 13 mm square, and measure the transmission spectrum of the annealed film. The average penetration after annealing is expressed in Table 1 0 0, and the optimum of 〇 仫 级 级 胰 胰The transparent conductive film which is produced by oxygen partial pressure and crystallized by annealing is cut into a size of 10×50 mm, and is made of ΙΤΟ-0·5Ν (oxalic acid system, manufactured by Kanto Chemical Co., Ltd.) (oxalic acid concentration: 50 g/L) As an etching solution, the etching rate (Α/sec) was measured at a temperature. The results are shown in Table 1. The results are shown in Figure 3. In the figure, it will not be 1 〇〇t: The film formation is made into an amorphous film under filming/melting, and can be knotted at t to 3 (8). The sample is represented by φ, and the other is represented by ▲. From this result, it is known that, if the element A Ca is added, it will become an amorphous film when it is formed under a film of less than 1 〇〇^, and then, in 丨(10). 匚至纲. The composition range of the film which can form a film into crystals, which is based on the tin ratio y of the tin of the indium material, is that the molar ratio is broadly expressed by x. The value of Ca ς 4. lxlG InW-UxHT1) is in the range of (-2:5χ10 1η(χ)_57χ1〇, the value of tin is :ί: μ in this range, especially 'as opposed to indium 1 Mohr = Indium 1 Mohr _ ear becomes capable of film formation annealing temperature is not 20 (TC or more, pp ★ crystallizes at less than 2〇〇C, and crystallizes upon annealing treatment The range of the film, so consider the film formation process 320650 200927657 ▼ The order will become more suitable. Tin 苴 ☆ In the above range, 'is more suitable than indium 1 mole. The hand is in the mold below 3.0x10 Q.cm, and the sample number is [Table 10]

I—Π. 026316 0 289474 __c__&lt;1〇〇__2· 1 乂 I a 300 3. 2~~2~~~Tp~ 如此獲♦藉由添加元素之添加,即可獲得預 果如&quot;j、、加元素不相同時,雖然可獲得之預定的效 320650 45 200927657 圍會猶微不同,惟就上述之Sr、u、La以及以的元素所 共通之範圍而言,在未達1G(rc成膜時會成為非晶形膜, 然後,在1GGT:至3GGt下實施退火處理賴成膜為結晶化 之膜之組成範圍,係相對於銦1莫耳之錫的莫耳比y(莫 耳),為在相對於銦丨莫耳之添加元素的莫耳比以χ表示時 之(-9.3χ1(Γ21η(χ)·_2.1χ1{Γΐ)的值以上且({km ⑴ -5. 7x1 (Γ1)的值以下的範圍。 將此結果表示於第31圖中。圖中,於全部元素中將 在未達1G(TC的成膜溫度下能成膜為非晶形臈、且在⑽ 至3QGtT能結晶化之試樣記以•、其他者記以▲。又, 試樣號碼係僅以經去除羅馬字母之號碼表示者。 【圖式簡單說明】 第1圖(a)至(C)係表示本發明之成膜例丨至3 分壓與電阻率的關係之圖。 ❹ 第2圖(a)及⑻係表示本發明之成膜例4至 分壓與電阻率的關係之圖。 、 第3圖(a)及⑸係表示本發明之成膜例6至7氣 分壓與電阻率的關係之圖。 、 第4圖(a)及⑻係表示本發明之成膜例8至9的氣 分壓與電阻率的關係之圖。 、 1至2的氧氣 第5圖(a)及(b)係表示本發明之參考例 分壓與電阻率的關係之圖^ 分壓林發明之參料3至4的氧氣 320650 46 200927657 第7圖係表示本發明之比較例1的氧氣分壓與電阻率 的關係之圖。 第8圖係表示本發明之成膜例1〇的氧氣分壓與電阻率 的關係之圖。 第9圖係表示本發明之成膜例u的氧氣分壓與電阻率 的關係之圖。 第10圖係表示本發明之成膜例12的氧氣分壓與電阻 率的關係之圖。 ❹ . 第11圖係表示本發明之成膜例13的氧氣分壓與電阻 率的關係之圖。 第12圖係表示本發明之參考例5的氧氣分壓與電阻率 的關係之圖。 * 第13圖(3)至(&lt;〇係表示本發明之成臈例1至3的退火 處理前後的薄膜XRD(X射線繞射)圖型之圖。 第14圖(a)及(b)係表示本發明之成臈例4至5的退火 ❿處理前後的薄膜XRD圖型之圖。 第15圖(a)及(b)係表示本發明之成膜例6至7的退火 處理前後的薄膜XRD圖型之圖。 第16圖(a)及(b)係表示本發明之成膜例8至9的退火 處理前後的薄膜XRD圖型之圖。 第17圖(a)及(b)係表示本發明之參考例.〗至2的退火 處理前後的薄膜XRD圖型之圖。 第18圖(a)及(b)係表示本發明之參考例3至4的退火 處理前後的薄膜XRD圖型之圖。 320650 200927657 第19圖係表示本發明之比較例1的退火處理前後的薄 膜XRD圖型之圖。 第20圖(a)至(c)係表示本發明之成膜例1至3的退火 處理前後的透射光譜(transmission spectrum)之圖。 第21.圖(a)及(b)係表示本發明之成膜例4至5的退火 處理前後的透射光譜之圖。 第22圖(a)及(b)係表示本發明之成膜例6至7的退火 處理前後的透射光譜之圖。 ® 第23圖(a)及(b)係表示本發明之試驗例7至8的退火 處理前後的透射光譜之圖。 第24圖(a)及(b)係表示本發明之參考例1至2的退火 處理前後的透射光譜之圖。 . 第25圖(a)及(b)係表示本發明之參考例3至4的退火 處理前後的透射光譜之圖。 第26圖係本發明之比較例1的退火處理前後的透射光 ❹譜之圖。 第27圖係表示本發明之含Si之透明導電膜的結果之 圖。 第28圖係表示本發明之含Li之透明導電膜的結果之 圖。 第29圖係表示本發明之含La之透明導電膜的結果之 圖。 第30圖係表示本發明之含Ca之透明導電膜的結果之 圖。 48 320650 200927657 * 第31圖係表示本發明之含Sr、Li、La、Ca之透明導 電膜的結果之圖。 【主要元件符號說明】 無0 ❹ ❹ 49 320650I—Π. 026316 0 289474 __c__&lt;1〇〇__2· 1 乂I a 300 3. 2~~2~~~Tp~ So ♦ By adding the added elements, you can get the pre-fruits such as &quot;j When the elements are not the same, although the expected effect 320650 45 200927657 is different, the range of the common elements of Sr, u, La and the elements mentioned above is less than 1G (rc). When the film is formed, it becomes an amorphous film, and then the annealing process is performed at 1 GGT: to 3 GSt, and the composition range of the film which is formed into a film by crystallization is compared with the molar ratio y (mole) of the tin of indium 1 , which is greater than the value of (-9.3χ1(Γ21η(χ)·_2.1χ1{Γΐ)) when the molar ratio of the additive element relative to indium oxime is expressed by 且 and ({km (1) -5. 7x1 ( The range below the value of Γ1). This result is shown in Fig. 31. In the figure, it will be formed into an amorphous yt at a film formation temperature of TC in all the elements, and at (10) to 3QGtT. Samples that can be crystallized are marked with • and others are marked with ▲. Also, the sample number is indicated by the number with the Roman letter removed. [Simplified illustration] Figure 1 (a) to (C) The film formation example of the present invention is shown in the graph of the relationship between the partial pressure and the specific resistance. ❹ Fig. 2 (a) and (8) show the relationship between the film formation example 4 of the present invention and the partial pressure and the specific resistance. Fig. 3 (a) and (5) are diagrams showing the relationship between the partial pressure of the film formation examples 6 to 7 of the present invention and the specific resistance. Fig. 4 (a) and (8) show the film formation examples 8 to 8 of the present invention. Fig. 9 is a diagram showing the relationship between the partial pressure of gas and the specific resistance. Fig. 5 (a) and (b) show the relationship between the partial pressure and the specific resistance of the reference example of the present invention. The oxygen of the reference material 3 to 4 is 320650 46 200927657 Fig. 7 is a graph showing the relationship between the oxygen partial pressure and the specific resistance of Comparative Example 1 of the present invention. Fig. 8 is a view showing the oxygen content of the film forming example 1 of the present invention. Fig. 9 is a graph showing the relationship between the oxygen partial pressure and the specific resistance of the film forming example u of the present invention. Fig. 10 is a view showing the oxygen partial pressure of the film forming example 12 of the present invention. Fig. 11 is a view showing the relationship between the oxygen partial pressure and the specific resistance of the film formation example 13 of the present invention. Fig. 12 is a view showing the relationship of the present invention. Fig. 13 is a graph showing the relationship between the partial pressure of oxygen and the specific resistance. * Fig. 13 (3) to (&lt;&gt; shows the film XRD (X-ray diffraction) before and after the annealing treatment of the examples 1 to 3 of the present invention. Fig. 14 (a) and (b) are diagrams showing the XRD pattern of the film before and after the annealing treatment of Examples 4 to 5 of the present invention. Fig. 15 (a) and (b) The figure shows the XRD pattern of the film before and after the annealing process of the film formation examples 6 to 7 of this invention. Fig. 16 (a) and (b) are views showing the XRD pattern of the film before and after the annealing treatment of the film formation examples 8 to 9 of the present invention. Fig. 17 (a) and (b) are diagrams showing the XRD pattern of the film before and after the annealing treatment of Reference Examples to 2 of the present invention. Fig. 18 (a) and (b) are views showing the XRD pattern of the film before and after the annealing treatment of Reference Examples 3 to 4 of the present invention. 320650 200927657 Fig. 19 is a view showing a film XRD pattern before and after the annealing treatment of Comparative Example 1 of the present invention. Fig. 20 (a) to (c) are diagrams showing the transmission spectrum before and after the annealing treatment of the film formation examples 1 to 3 of the present invention. Fig. 21. (a) and (b) are views showing transmission spectra before and after the annealing treatment of the film formation examples 4 to 5 of the present invention. Fig. 22 (a) and (b) are views showing transmission spectra before and after the annealing treatment of the film formation examples 6 to 7 of the present invention. Fig. 23 (a) and (b) are views showing transmission spectra before and after the annealing treatment of Test Examples 7 to 8 of the present invention. Fig. 24 (a) and (b) are views showing transmission spectra before and after the annealing treatment of Reference Examples 1 to 2 of the present invention. Fig. 25 (a) and (b) are views showing transmission spectra before and after annealing treatment of Reference Examples 3 to 4 of the present invention. Fig. 26 is a view showing the transmitted light spectrum before and after the annealing treatment of Comparative Example 1 of the present invention. Fig. 27 is a view showing the results of the Si-containing transparent conductive film of the present invention. Fig. 28 is a view showing the results of the Li-containing transparent conductive film of the present invention. Fig. 29 is a view showing the results of the La-containing transparent conductive film of the present invention. Fig. 30 is a view showing the results of the Ca-containing transparent conductive film of the present invention. 48 320650 200927657 * Fig. 31 is a view showing the results of the transparent conductive film containing Sr, Li, La, and Ca of the present invention. [Main component symbol description] No 0 ❹ ❹ 49 320650

Claims (1)

200927657 « 七、申§青專利範圍: =氧化銦系H特徵為具備:含有氧化銦與視需要 &amp;且相對於銦i莫耳含有氧鍵能在1〇〇至 1产圍之添加兀素(但,Ba、如、Y劳丨除外)〇.咖1莫 耳以上未達〇. 10莫耳的氧化物燒結體。 2.=請專利範㈣丨項之氧化銦綠,其巾,該添加元 、係選自Sr、Li、La、以及Ca所成群級之至少一種。 ❹·,申請專利範圍第丨項之氧化銦綠,其中,相對於姻 1莫耳含有錫〇至〇. 3莫耳。 4· ^料難㈣2項之氧化銦綠,其巾,相對於銦 1莫耳含有錫0至0. 3莫耳。 _ 5. ^申請專利範圍第2項至第4項中任—項之氧化铜系 ,其t ’相對於銦1莫耳之錫的莫耳比y,係在相對 於銦1莫耳之該添加元素的莫耳比以χ表科之(U 、xlOlnOOilxliT1)的值以上且(_2.5xlG_lln⑴—57 $ χίο b的值以下的範圍。 6·如ΐ請專利範圍第2項至第4項中任—項之氧化姻系 靶/其中,該添加元素g Sr,而相對於銦〗莫耳之錫 的料比y,係在㈣於銦丨莫耳d莫耳比以χ 表,時之(-4. lxl〇-2ln(x)-9. 2xi〇-2)的值以上且(―2. 9χ WUnCx^iUxHr1)的值以下的範圍。 7.如申請專利範圍第2項至第4項中任一項之化 革巴,其令,該添加元素心,而相對於銷!莫耳= 的莫耳比y,係在相對於銦}莫耳之u的莫耳比以X 320650 50 200927657 « 表示時之(-l.exio^noouwp)的值 r mOO-UxHTi)的值以下的範圍。 且(―2.5X 8. 利範圍第2項至第4項中任-項之氧化銅系 靶’,、中,該添加元素為La,而相對於銦i莫耳之踢 =莫^7’係在相對於銦1莫耳之La的莫耳比以x 表示時之K7Xl(nn(x)—2.2χί(Γ1)的值以上且(_33χ 1η(χ)-7·7χ10_1)的值以下的範圍。 利範圍第2項至第4項中任一項之氧油系 的=添加元素為Ca ’而相對於_1莫耳之錫 々莫=比y,係在相對錢!莫耳之Ca的莫耳比以χ 不1、之(-4· 1x10 2 ιη⑴_9. 3χ1()-2)的值以上且(一2』 X 〇 ln(x)-5. 7χ10_1)的值以下的範圍。 = = f•系乾,其係具備··含有氧化銦與錫,且含有 辛之/介^ L 3、以及C &amp;所成群組之至少—種添加元 素之虱化物燒結體,其特徵為·· =述添加元素為Sr時,則相對於銦i莫耳之錫 :莫:比y,係在相對於銦1莫耳之Μ莫耳比以, :,,(-4. 1χ10 ”ηω_9· 2χ1〇,的值以上且(2. nCx^UxlO1)的值以下的範圍; 如前述添加元素為u時,則相⑴ 姿 二莫:比,’係、在相對於銦1莫耳之Ll的莫 Ιο'πγΤΪ1* 1]nCX)~5* 9XlrI)^^^^-C-2. 5&gt; η(Χ)-5·7χ1〇 )的值以下的範圍; 如别述添加TL素為La時,則相對於銦丨莫耳之錫 320650 51 200927657 的莫耳比y,係在相對於銦1莫耳之La的莫耳比以X 表示時之(-6. 7xl〇-2ln〇〇-2. 2χ〗〇-】)的值以上且(_3 j 10 UnU)-?. 7XUT1)的值以下的範圍、 如前述添加元素為Ca時,則相對於銦】莫耳之錫 的莫耳比y ’係在相躲錮〗莫耳之Ca的莫耳比以χ 表科之(-4上i(nn(x&gt;9.3xin的值以上且(_25χ ίο ln(x)-5. 7χ10_1)的值以下的範圍。 11.200927657 « VII, Shen § 青 patent scope: = indium oxide H features: with indium oxide and as needed &amp; and relative to indium i molar containing oxygen bond energy in the range of 1 〇〇 to 1 production of added alizarin (However, Ba, such as, except for the laborer of Y) 咖. Coffee 1 mole above the 〇. 10 mole oxide sintered body. 2. = Please invent the patent (4) indium oxide green, the towel, the additive element, which is selected from the group consisting of Sr, Li, La, and Ca. ❹·, apply for the indium oxide green of the third paragraph of the patent, which contains tin bismuth to 〇. 3 moles relative to the marriage. 4摩尔。 It is difficult to (4) 2 items of indium oxide green, the towel, relative to the indium 1 molar containing tin 0 to 0.3 m. _ 5. ^Applicable to the copper oxide system of any of items 2 to 4 of the patent range, the molar ratio y of t ' relative to the tin of indium 1 molar is relative to the indium 1 molar The molar ratio of the added element is above the value of (U, xlOlnOOilxliT1) and below the value of (_2.5xlG_lln(1)-57 $ χίο b. 6. Please refer to the second to fourth patent scopes. Any of the oxidized marriage targets/wherein the addition element g Sr, and the ratio y of the tin relative to the indium is in the (iv) indium bismuth d molar ratio, -4. lxl〇-2ln(x)-9. 2xi〇-2) The value is greater than or equal to ("2.9" WUnCx^iUxHr1). 7. If the scope of application is 2nd to 4th In any one of the singularity, it is added to the heart of the element, and relative to the pin! Moer = Moerby y, which is in the molar ratio relative to the indium} Moer to X 320650 50 200927657 « Indicates the range below the value of the value r mOO-UxHTi) of (-l.exio^noouwp). And (“2.5X 8. The copper oxide target of any of items 2 to 4 of the range], in which the added element is La, and the kick relative to the indium i moir = Mo^7' It is equal to or greater than the value of K7Xl (nn(x) - 2.2χί(Γ1)) and the value of (_33χ 1η(χ)-7·7χ10_1) when the molar ratio of La with respect to indium 1 molar is expressed by x. Scope. The oxy-oil system of any of items 2 to 4 of the range of interest is Ca' and relative to _1 mole of tin 々 Mo = ratio y, is relative to the money! Mo Ca The range of the molar ratio is not more than the value of (1·1·10 2 ιη(1)_9. 3χ1()-2) and is less than the value of (1 2×X 〇ln(x)-5. 7χ10_1). = f• is a dry, which is a sintered body of a telluride containing at least one of a group of indium oxide and tin, and containing at least one of a group of octyl groups and a group of C &amp; ·· = When the additive element is Sr, it is relative to the tin of indium i mole: Mo: ratio y, compared with the molar ratio of indium 1 to Mo, :,, (-4. 1χ10 ηηω_9 · 2χ1〇, a value equal to or greater than the value of (2. nCx^UxlO1); When u, then the phase (1) poses two Mo: ratio, 'system, in the relative to the indium 1 Mo Ll's MoΙο'πγΤΪ1* 1]nCX)~5* 9XlrI)^^^^-C-2. 5&gt; The range below the value of η(Χ)-5·7χ1〇); if the addition of TL is La, the molar ratio y of indium bismuth 320650 51 200927657 is relative to indium 1 The molar ratio of La of the molar is expressed by X (-6. 7xl〇-2ln〇〇-2. 2χ〗 〇-]) and the value of (_3 j 10 UnU)-?. 7XUT1) is below The range, if the above-mentioned additive element is Ca, then the molar ratio y ' of the tin of the indium] is in the 锢 锢 锢 莫 莫 莫 Ca Ca Ca Ca Ca Ca Ca Ca -4 -4 -4 -4 -4 -4 -4 -4 (nn (x> 9.3xin value or more and (_25χ ίο ln(x)-5. 7χ10_1) value below the range. 如申請專利第1G項之氧化銦絲,其中,相對於 =1莫耳之錫的莫耳比y,係在相對於錮〗莫耳之前 的莫耳比以X表示時之㈠.議―2ΐη(χ)_2 ΐχ 、以上且卜2· SxlOlnCx)·^. 7χ1〇-ι)的值下 的範圍。 /JmM下 Φ 320650 52For example, the indium oxide wire of claim 1G, wherein the molar ratio y relative to the =1 mole of tin is expressed by X before the molar ratio relative to the 锢 Moth is expressed by (1). (χ)_2 ΐχ , above and 2 · SxlOlnCx) · ^. 7χ1〇-ι) The range under the value. /JmM under Φ 320650 52
TW097138073A 2007-10-03 2008-10-03 Indium oxide target TWI461365B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260436 2007-10-03

Publications (2)

Publication Number Publication Date
TW200927657A true TW200927657A (en) 2009-07-01
TWI461365B TWI461365B (en) 2014-11-21

Family

ID=40526308

Family Applications (6)

Application Number Title Priority Date Filing Date
TW097138068A TW200926207A (en) 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same
TW097138083A TW200926209A (en) 2007-10-03 2008-10-03 Indium oxide transparent conductive film and manufacturing method thereof
TW097138082A TW200926208A (en) 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same
TW097138074A TWI430956B (en) 2007-10-03 2008-10-03 Indium oxide target
TW097138073A TWI461365B (en) 2007-10-03 2008-10-03 Indium oxide target
TW097138079A TW200923115A (en) 2007-10-03 2008-10-03 Indium oxide target

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW097138068A TW200926207A (en) 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same
TW097138083A TW200926209A (en) 2007-10-03 2008-10-03 Indium oxide transparent conductive film and manufacturing method thereof
TW097138082A TW200926208A (en) 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same
TW097138074A TWI430956B (en) 2007-10-03 2008-10-03 Indium oxide target

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW097138079A TW200923115A (en) 2007-10-03 2008-10-03 Indium oxide target

Country Status (4)

Country Link
JP (6) JP5464319B2 (en)
KR (6) KR20100071089A (en)
TW (6) TW200926207A (en)
WO (6) WO2009044890A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037679A (en) * 2009-08-13 2011-02-24 Tosoh Corp Multiple oxide sintered compact, sputtering target, multiple oxide amorphous film and production method thereof, and multiple oxide crystalline film and production method thereof
CN102666909B (en) * 2009-11-19 2016-06-22 株式会社爱发科 The manufacture method of nesa coating, the manufacture device of nesa coating, sputtering target and nesa coating
CN102191465A (en) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 Indium-doped zinc oxide target material and preparation method of transparent conducting film
KR101198786B1 (en) 2010-06-30 2012-11-07 현대자동차주식회사 Variable compression ratio apparatus
JP5367660B2 (en) * 2010-08-31 2013-12-11 Jx日鉱日石金属株式会社 Oxide sintered body and oxide semiconductor thin film
JP5367659B2 (en) * 2010-08-31 2013-12-11 Jx日鉱日石金属株式会社 Oxide sintered body and oxide semiconductor thin film
JP5817327B2 (en) 2010-09-29 2015-11-18 東ソー株式会社 Oxide sintered body, method for producing the same, oxide transparent conductive film obtained using the same, and solar cell
EP2789595B1 (en) * 2011-12-07 2019-06-19 Tosoh Corporation Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
JP5996227B2 (en) * 2012-03-26 2016-09-21 学校法人 龍谷大学 Oxide film and manufacturing method thereof
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570942A (en) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp High density sintered target material for forming electric conductive transparent thin film by sputtering
JPH06157036A (en) * 1992-11-13 1994-06-03 Nippon Soda Co Ltd Production of tin-doped indium oxide film having high resistivity
US5433901A (en) * 1993-02-11 1995-07-18 Vesuvius Crucible Company Method of manufacturing an ITO sintered body
JP3366046B2 (en) * 1993-03-30 2003-01-14 旭硝子株式会社 Amorphous transparent conductive film
JP3827334B2 (en) * 1993-08-11 2006-09-27 東ソー株式会社 ITO sintered body and sputtering target
JPH07161235A (en) * 1993-12-13 1995-06-23 Matsushita Electric Ind Co Ltd Transparent conductive film and its manufacture
JPH08264023A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film
JP3943617B2 (en) * 1995-12-07 2007-07-11 出光興産株式会社 Transparent conductive laminate and touch panel using the same
JPH09175837A (en) * 1995-12-27 1997-07-08 Idemitsu Kosan Co Ltd Electrically conductive transparent film and its production
JPH1195239A (en) * 1997-09-25 1999-04-09 Toshiba Corp Production of liquid crystal display device
JP3806521B2 (en) * 1998-08-27 2006-08-09 旭硝子セラミックス株式会社 Transparent conductive film, sputtering target, and substrate with transparent conductive film
JP3824289B2 (en) * 1998-09-11 2006-09-20 Hoya株式会社 Transparent conductive thin film
JP3215392B2 (en) * 1998-10-13 2001-10-02 ジオマテック株式会社 Metal oxide sintered body and its use
JP2000169219A (en) * 1998-12-09 2000-06-20 Jiomatetsuku Kk Metal oxide sintered compact and its use
JP3632524B2 (en) * 1999-09-24 2005-03-23 東ソー株式会社 Mg-containing ITO sputtering target and method for producing Mg-containing ITO vapor deposition material
JP4918737B2 (en) * 2001-03-23 2012-04-18 東ソー株式会社 Oxide sintered body and sputtering target
JP4424889B2 (en) * 2001-06-26 2010-03-03 三井金属鉱業株式会社 Sputtering target for high resistance transparent conductive film and method for producing high resistance transparent conductive film
TW570909B (en) * 2001-06-26 2004-01-11 Mitsui Mining & Smelting Co Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
JP2003016858A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of indium tin oxide film
US20040180217A1 (en) * 2001-08-02 2004-09-16 Kazuyoshi Inoue Sputtering target, transparent conductive film, and their manufacturing method
JP4904645B2 (en) * 2001-08-10 2012-03-28 東ソー株式会社 Method for producing Mg-containing ITO sputtering target
JP4075361B2 (en) * 2001-11-27 2008-04-16 東ソー株式会社 Method for producing Mg-containing ITO sputtering target
JP3871562B2 (en) * 2001-12-10 2007-01-24 日東電工株式会社 Transparent conductive film having optical element function and method for producing the same
JP2004149883A (en) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd Sputtering target for high resistance transparent conductive film, and manufacturing method of high resistance transparent conductive film
JP4457669B2 (en) * 2004-01-08 2010-04-28 東ソー株式会社 Sputtering target and manufacturing method thereof
JP2006134789A (en) * 2004-11-09 2006-05-25 Idemitsu Kosan Co Ltd Amorphous transparent conductive film, amorphous transparent conductive film layered product and manufacturing method thereof
JP2006318803A (en) * 2005-05-13 2006-11-24 Sony Corp Transparent electrode film and manufacturing method of the same
JP5000230B2 (en) * 2006-08-10 2012-08-15 出光興産株式会社 Lanthanum oxide containing oxide target
KR100787635B1 (en) * 2007-01-22 2007-12-21 삼성코닝 주식회사 Indium tin oxide target, method of manufacturing the same and transparent electrode manufactured by using the same
JP4855964B2 (en) * 2007-02-09 2012-01-18 株式会社アルバック ITO sintered body, ITO sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
TW200926207A (en) 2009-06-16
KR20100063137A (en) 2010-06-10
TW200926208A (en) 2009-06-16
TW200927658A (en) 2009-07-01
WO2009044892A1 (en) 2009-04-09
WO2009044889A1 (en) 2009-04-09
TWI461365B (en) 2014-11-21
JPWO2009044892A1 (en) 2011-02-10
WO2009044891A1 (en) 2009-04-09
TWI430956B (en) 2014-03-21
JPWO2009044893A1 (en) 2011-02-10
KR20100063135A (en) 2010-06-10
KR20100063136A (en) 2010-06-10
JPWO2009044888A1 (en) 2011-02-10
JP5237827B2 (en) 2013-07-17
JPWO2009044891A1 (en) 2011-02-10
KR20100071090A (en) 2010-06-28
KR20100067118A (en) 2010-06-18
KR20100071089A (en) 2010-06-28
JPWO2009044890A1 (en) 2011-02-10
JP5464319B2 (en) 2014-04-09
WO2009044890A1 (en) 2009-04-09
TW200923115A (en) 2009-06-01
WO2009044888A1 (en) 2009-04-09
JPWO2009044889A1 (en) 2011-02-10
TW200926209A (en) 2009-06-16
WO2009044893A1 (en) 2009-04-09
KR101200386B1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
TW200927657A (en) Indium oxide target
JP4875135B2 (en) In-Ga-Zn-O-based sputtering target
TWI573773B (en) Composite oxide sintered body, amorphous composite oxide film manufacturing method, amorphous composite oxide film, crystal composite oxide film manufacturing method and crystalline composite oxide film
TWI376701B (en)
TW200952122A (en) TFT-type substrate, TFT LCD device and method for making TFT-type substrate
TW201113384A (en) Oxide sintered body and production method thereof, target, and transparent conductive film
TW201250035A (en) In2o3-zno sputtering target
TWI334857B (en) Sintered body of oxides and the manufacturing method of the same, sputtering target and transparent electroconductive film
TW201020225A (en) Oxide sintered compact for producing transparent conductive film
TW201144457A (en) Transparent conductive film
WO2008084865A1 (en) Material for transparent conductive film
TW201542848A (en) Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device
TW201605761A (en) Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same
WO2016084636A1 (en) Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same
WO2007114429A1 (en) Indium oxide transparent conductive film and method for manufacturing same
Beckford et al. Gallium doped zinc oxide thin films as transparent conducting oxide for thin-film heaters
CN102741448B (en) Oxide film, process for producing same, target, and process for producing sintered oxide
JP5381844B2 (en) In-Ga-Zn-based composite oxide sintered body and method for producing the same
JP6277977B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
US20110011731A1 (en) Process for producing indium oxide-type transparent electroconductive film
KR20120062341A (en) Indium zinc oxide transparent condutive layer for an electrode and the preparing method thereof
TWI387574B (en) Oxide sintered body for the manufacture of transparent conductive films
Sakao et al. Fabrication and ionic conductivity of oriented lanthanum silicate films with apatite-type structure
JP2011238968A (en) In-Ga-Zn-O BASED SPUTTERING TARGET
TWI361224B (en) Sputtering target and method for making a sintered member of oxide