TW200926207A - Indium oxide tranparent conductive film and method for making same - Google Patents

Indium oxide tranparent conductive film and method for making same Download PDF

Info

Publication number
TW200926207A
TW200926207A TW097138068A TW97138068A TW200926207A TW 200926207 A TW200926207 A TW 200926207A TW 097138068 A TW097138068 A TW 097138068A TW 97138068 A TW97138068 A TW 97138068A TW 200926207 A TW200926207 A TW 200926207A
Authority
TW
Taiwan
Prior art keywords
transparent conductive
film
indium
conductive film
mol
Prior art date
Application number
TW097138068A
Other languages
Chinese (zh)
Inventor
Seiichiro Takahashi
Norihiko Miyashita
Original Assignee
Mitsui Mining & Amp Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Amp Smelting Co Ltd filed Critical Mitsui Mining & Amp Smelting Co Ltd
Publication of TW200926207A publication Critical patent/TW200926207A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Conductive Materials (AREA)

Abstract

This invention provides a transparent conductive film, which is an amorphous film formed by using a sputtering target having a sintered oxide which contains indium oxide, and optional tin, and an additive element (excluding Ba, Mg, and Y) which has an oxygen bonding energy in the range of 100 to 350kJ/mol, the additive element being in the amount of from 0.0001 mole or more to less than 0.10 mole with respect to 1 mole of the indium. The transparent conductive film contains indium oxide, optional tin, and the above said additive element.

Description

200926207 六、發明說明: 【發明所屬之技術領域】 及其製造方法,該透明 而形成非晶膜,可易於 電阻以及高透射率。 本發明係關於一種透明導電膘 導電膜容易藉由弱酸蝕刻形成圖案 結晶化,更且,結晶化的膜具有低 【先前技術】 「氧化銦—氧化錫(In2〇3_Sn〇2的複合氧化物,以下稱為 「IT0」)膜,由於可見光透射性較高且導電性較高,所以 作為透日科電膜而廣泛使用於液晶顯㈤或綱的防結露 用發熱膜、紅外線反射膜4,但仍存在難以形成非晶膜之 問題。 、 另一方面,關於成為非晶膜者,已知有氧化銦_氧化鋅 (ΪΖ0)透明導電膜,但該膜的透明性仍較ΙΊΌ膜低劣且有泛 黃之問題。. 因此,本申請人先前曾提出一種’以於ιτο膜中添加 ο 夕教於特定條件下進行成膜而形成非晶膜之透明導電膜 (參照專利文獻1),但在添加矽時會有高電阻化之傾向之 問題。 [專利文獻1]日本特開2005-135649號公報(申請專利 範園) 【發明内容】 (發明所欲解決之課題) 本發明係鑒於上述情形而創作出之發明,該課題在於 提供一種透明導電膜及其製造方法,其中該透明導電膜容 3 320647 200926207 易藉由弱酸蝕刻形成圖案而形成非晶骐, 化,更且,結晶化的膜具有低電阻以及鉍=易於、、’°曰曰 (用以解決課題之手段) 。射率。 本發明者等為了解決上述課題而進行種 發現,添加鋇之氧化銦系透明導電膜, °、 、、Ό 明性較佳之非晶膜,容易藉由弱酸钱刻形成圖=電 易予以結晶化,因而在先前曾提出申請二、备 095783)。 業(日本特願2007- 然而又發現到,作為可使非晶膜成膜之添加元素,不 僅有Ba ’亦存在有各種的齡元素,若以氧鍵結能量位於 1〇〇至350kJ/mol的範圍之元素作為添加元素,則可使非 晶膜成膜,因而完成本發明。 本發明之第1型態是-種透明導電膜,為使用具備氧 化物燒結體之濺鍍靶材而成膜之透明導電.膜,此氧化物燒 結體係含有氧化銦以及因應必要之錫,並且對丨莫耳的銦 ❹含有0.0001莫耳以上且未滿0.10莫耳之氧鍵結能量 (oxygen binding energy)位於 1〇〇 至 350kJ/m〇1 的範圍之 添加元素(惟Ba(鋇)、Mg(鎂)、Y(釔)除外),其特徵為含 有氧化銦以及因應必要之錫,並且含有前述之添加元素。 於該第1型態中’藉由含有特定的添加元素,可成為 非晶膜。 本發明之第2型態為第1型態所記載之透明導電膜, 其中前述添加元素’為從Sr(锶)、Li(鋰)、La(鑭)、及Ca(鈣) 所組成的群組中選擇之至少1種。 4 320647 200926207 於該第2型態中,藉由含 電膜,其係使用2型態所記載之透明導 雜材而朗者。、有G至G.3莫耳的錫之賤 於該第3型態巾,係成為 要而含有錫之透明導電膜。 …,且因應必 ❹ 電膜本Π之:4型態為第2或第3型態所記载之透明導 产力、-音们,對1莫耳_之料tb y,係位於以前述 添加疋素對!莫耳的銦之莫耳比x所表示_ = =之值以上且為㈠·〜一)之值: 膜,rm態中,於未滿靴成臈時,係成為非晶 膜t 〇〇至靴中進行退火時,可予以結晶化。 ❹ 本發明之第5型態為第2或第3型態所記載之透明導 電膜’其中,前述添加元素為Sr,錫對1莫耳的姻之莫耳 比於以Sr#1莫耳的銦之莫耳 (_=Ln⑴-9.崎 -6. 7x10 )之值以下的範圍。 於该第5型態中,於未滿靴成膜時,係成為非晶 臈,且之後於 S 300t:中進行退火時,可予以結晶化。 本發明之第6型態為第2或第3型態所記载之透㈣ 電膜,其中,前述添加元素為Li,錫對丨莫耳的銦之莫耳 比y,係位於以Li對1莫耳的銦之莫耳比、所表示之 320647 200926207 (_1. 6x10 1η(χ)-5. 9x1ο—1)之值以上且為(_2. 5χ1〇^η(χ) -5. 7χ10_1)之值以下的範圍。 於該第6型態中,於未滿1〇〇。〇成膜時,係成為非晶 膜,且之後於100至300t:中進行退火時,可予以結晶化。 本發明之第7型態為第2或第3型態所記载之透明導 電膜’其中,前述添加元素為La,錫對j莫耳的銦之莫耳 比y’係位於以La對1莫耳的銦之莫耳比χ所表示之 ο (-6. 7xlG-2Ln(x)-2. 2X1G-1)之值以上且為㈠.3xl(r】Ln(x) -7· 7x1ο—1)之值以下的範圍。 於該第7型態中,於未滿1〇{rc成膜時,係成為非晶 膜,且之後於100至·C中進行退火時,可予以結晶化。 本發明之第8型態為第2或第3型態所記載之透明導 電膜,其中,前述添加元素為Ca,錫對 比y,係位於以Ca對1苴且沾加杜 ^吴耳 (-4.1χ1〇Λπ(χ)-9 3χ1〇-2)ίΓ ' ' ❹200926207 VI. Description of the invention: [Technical field to which the invention pertains] and a method of manufacturing the same, which is transparent to form an amorphous film, which is easy to have electrical resistance and high transmittance. The present invention relates to a transparent conductive tantalum conductive film which is easily patterned by weak acid etching, and further, the crystallized film has a low [Prior Art] "Indium Oxide - Tin Oxide (In2〇3_Sn〇2 composite oxide, In the following, the "IT0" film is widely used for the liquid crystal display (5) or the anti-condensation heat-generating film or the infrared-reflective film 4, because it has high visible light transmittance and high conductivity. There is still a problem that it is difficult to form an amorphous film. On the other hand, an indium oxide-zinc oxide (ΪΖ0) transparent conductive film is known as an amorphous film, but the transparency of the film is still inferior to that of the enamel film and yellowing. Therefore, the present applicant has previously proposed a transparent conductive film in which an amorphous film is formed by forming a film under a specific condition by adding ο ο 膜 ( (refer to Patent Document 1), but there is a case where 矽 is added. The problem of the tendency to increase resistance. [Problem to be Solved by the Invention] The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a transparent conductive material. a film and a method of manufacturing the same, wherein the transparent conductive film contains 3 320647 200926207, which is easily patterned by weak acid etching to form an amorphous germanium, and further, the crystallized film has low electrical resistance and 铋 = easy, '°曰曰(means to solve the problem). Rate of incidence. In order to solve the above-mentioned problems, the inventors of the present invention have found that an indium oxide-based transparent conductive film of yttrium is used, and an amorphous film having a good clarity and a good affinity is easily formed by weak acid etching. Therefore, the application has been filed previously and 095,783). Industry (Japan's special wish 2007- However, it has been found that as an additive element for film formation of an amorphous film, not only Ba' but also various age elements exist, if the energy of oxygen bonding is from 1 350 to 350 kJ/mol The element of the range is an additive element, and the amorphous film can be formed into a film. Thus, the first aspect of the present invention is a transparent conductive film which is formed by using a sputtering target having an oxide sintered body. The transparent conductive film of the film, the oxide sintering system contains indium oxide and the necessary tin, and contains at least 0.0001 mol and less than 0.10 m of oxygen binding energy to the indium bismuth. An additive element (except Ba (钡), Mg (magnesium), Y (钇)) in the range of 1 〇〇 to 350 kJ/m 〇 1 , which is characterized by containing indium oxide and tin as necessary, and containing the foregoing In the first type, the amorphous film is formed by the inclusion of a specific additive element. The second aspect of the present invention is a transparent conductive film according to the first aspect, wherein the additive element is From Sr (锶), Li (lithium), La (镧), At least one selected from the group consisting of Ca (calcium) 4 320647 200926207 In the second type, the transparent conductive material described in the type 2 is used by the electric film. The G-to-G.3-mole tin is used in the third type of towel, and is a transparent conductive film containing tin, and is required to be in the form of a film. The type 4 is the second type. Or the transparent production force described in the third type, the tone, and the material tb y of 1 mole are represented by the molar ratio x of indium added by the above-mentioned added halogen pair! The value of = is equal to or greater than the value of (a)·~1): In the film, in the rm state, when the shoe is not full, it is crystallized when it is an amorphous film t 〇〇 to the shoe for annealing.第 The fifth aspect of the present invention is the transparent conductive film described in the second or third aspect, wherein the additive element is Sr, and the tin to the molar ratio of 1 mole is less than that of Sr#1. The range of indium moir (_=Ln(1)-9.aki-6. 7x10) below the value. In the fifth type, when the film is not full, it is amorphous, and when it is annealed in S 300t:, it can be crystallized. The sixth aspect of the present invention is the transmissive (four) electric film according to the second or third aspect, wherein the additive element is Li, the molar ratio of tin to indium of ymole is y, and the pair is located in Li 1 Mohr indium molar ratio, expressed above 320647 200926207 (_1. 6x10 1η(χ)-5. 9x1ο-1) and above (_2. 5χ1〇^η(χ) -5. 7χ10_1) The range below the value. In the sixth type, it is less than one. When the ruthenium is formed into a film, it is an amorphous film, and when it is annealed at 100 to 300 t:, it can be crystallized. The seventh aspect of the present invention is the transparent conductive film of the second or third aspect, wherein the additive element is La, and the indium molar ratio y' of indium to j-m is located in La pair 1 Mohr's indium molar ratio is expressed by ο (-6. 7xlG-2Ln(x)-2. 2X1G-1) and is (a).3xl(r)Ln(x) -7· 7x1ο— 1) The range below the value. In the seventh type, when it is less than 1 〇{rc, it is an amorphous film, and when it is annealed at 100 to C, it can be crystallized. The eighth aspect of the present invention is the transparent conductive film according to the second or third aspect, wherein the additive element is Ca, and the tin is in contrast to y, and is located at a ratio of Ca to 1 Å and is added to the sulphide (- 4.1χ1〇Λπ(χ)-9 3χ1〇-2)ίΓ ' ' ❹

…心 )之值以上且為(-UxlO-iLnOO -5· 7x10 )之值以下的範圍。 膜8型態中’於未滿100。。成膜時,係成為非晶 膜,且之後於100至中進行退火時,可予以结晶化。 本發明之第9型態為第】至第8型態中 ,之透明導電膜,其,,係在水分壓為㈤作以上“二 10 pa以下的條件下成膜。 ·υχ 型射,藉由在特一下成膜,更容 本發明之第10型態為第9型態所記載之透明導電膜, 320647 6 200926207 其中係含有氫。 於該第ίο型態中,藉由在特定的水分壓下成膜,可成 為在鍵結狀態下含有氫之透明導電膜。 本發明之第11型態為第1至第10型態中任一型態所 記載之透明導電膜,其中在形成非晶膜之膜後,藉由退火 使之結晶化。 於該第11型態中,在形成非晶膜之膜後,可藉由退火 更易於使之結晶化,而献予耐弱酸性。 ® 本發明之第12型態為第11型態所記載之透明導電 膜,其中,經前述退火之結晶化係於100至300°c中進行。 於該第12型態中,乃易於100至300°C中使非晶膜結 晶化。 本發明之第13型態是一種透明導電膜的製造方法,其 特徵為:係使用具備氧化物燒結體之濺鍍靶材來成膜,此 氧化物燒結體係含有氧化銦以及因應必要之錫,並且對1 ^ 莫耳的銦含有0. 0001莫耳以上且未滿0. 10莫耳之氧鍵結 能量位於100至35OkJ/mo 1的範圍之添加元素(惟Ba、Mg、 Y除外),藉此而獲得含有氧化銦以及因應必要之錫,同時 含有前述添加元素且為非晶質之透明導電膜。 於該第13型態中,藉由含有特定的添加元素,可使非 晶膜成膜.。 本發明之第14型態為第13型態所記載之透明導電膜 的製造方法,其中,係在水分壓為1. 0xl0_4Pa以上1. 0χ10_1 Pa以下的條件下成膜。 7 320647 200926207 於該第14型態中,藉由在特定的水分壓下成膜,更容 易成為非晶膜。 本發明之第15塑態為第13或第14型態所記載之透明 導電膜的製造方法,其係在形成非晶膜後,藉由退火而構 成結晶化之透明導電膜者。 於該第15型態中’在形成非晶膜後,可藉由退火而更 易於使之結晶化。 本發明之弟16塑態為第15型態所記载之透明導電膜 的製造方法,其係以弱酸性的餘刻劑對前述非晶膜進行钱 刻後,進行退火使之結晶化者。 於該第16型態中’在形成非晶膜後’以弱酸性的鞋刻 劑進行蝕刻後,可進行退火使之結晶化,而賦予耐弱酸性。 本發明之苐17塑態為第15或第16型態所記载之透明 導電膜的製造方法,其係於100至30{rc中進行經前述退 火之結晶化者。 於該第17型態中,乃易於100至3〇(rc中使非晶膜結 晶化。 (發明之效果) —根據本發明,係將氧鍵結能量位於⑽i卿kj/m〇1 2圍之添加元素添練氧化銦而成膜,藉此可達到下列 即,容易藉由弱_刻形成圖案而形成非晶膜’ 晶化的膜為具有低電阻以及高透 【實施方式】 320647 8 200926207 用以形成本發明的氧化銦系透明導電膜之透 用減鑛乾材,為以氧化麵為主體且因應必要而 1 且含有氧鍵結能量位於副至35〇kJ/nK)i的 並 素之氧化物燒結體,添加元素可為氧化物本身複人 化物,或者是作為固溶體而存在,並無特別限定。氧 在此,氧鍵結能量錄驗了/_的範圍之添 加元素,與先前所提出申請之鋇相同,係具 : ❹ 透明導電膜成為非晶膜之作用,例如有如(氧鍵結能量':、 結能量:134kJ/mol)、u(氧鍵結能 · islkj/ 'i : 242kJ/m〇1) ' 、、.〇月匕里.134kJ/mc)1)、Mg(氧鍵結能量:i55k仏⑷、 鍵結能量·· 209kJ/mol)等。 ❹ 在此’氧鍵結能量較大的元素,係容易以單獨氧化物 形成玻璃化者(玻璃形成元素)1添加於氧化銦系透明導 電膜’由於與乳之鍵結力較強’所以即使進行退火,最適 „不會產生變化,而且具有幾乎無法藉由退火處理 來改.電性•先學特性之性質,但是,氧鍵結能量位於⑽ 至腫J/m〇1之相對較低的範圍之元素,由於與氧之鍵結 力較小,所以可推測出具有成為非晶膜之作用。此外,雖 然Na(氧鍵結能量:84_〇1)或κ(氧鍵結能量:沿仏⑷ 能!Γ,但若添力,氧化銦系透明導電膜,則 ΓΓ=特性產生不良影響,或是損及耐環境性, 圖不素(二參考南務編著坡璃的邀約''非晶體科學入門 -產業圖書(^)ρ. 34至36)。 320647 9 200926207 添加70素的含有量,較理想為使用對i莫耳的銦含右 0圖Γ1—莫耳以上且未滿G.1G莫耳之材而形成之ί 圍f。右少於此量,則添加效果較不顯著,此外,若多於 此量,則所形成之透明導電膜的電阻有增加之傾向,並且 有泛黃惡化之傾向。藉由上述濺鍍_卿成之透明 ::::力:元素的含有量’係成為與所使用之着 的含有置為相同含量。 ❹糾’锡的含有量係設定為’使用莫耳的铜含有 至0.3莫耳者之濺鍍靶材而成膜之範圍。當含有錫時, 較理想為使用對i莫耳的銦含有〇 〇〇1至〇·3莫耳的範圍 之/賤鍍材來成膜。S於此範圍,則可適當地控制錢鍛執 材的電子載體密度及遷移率,而使導電性保持於良好的範 圍。此外,若添加超過此範圍,則濺鍍靶材的電子載體的 遷移率降低而導致導電性的劣化,因而較不.理想。藉由 上述濺鍍靶材所形成之透明導電膜中之錫的含有量,係成 〇為與所使用之濺鑛乾材中的含有量為相同含量。 此濺鍍靶材,由於具有可藉由DC磁控濺鍍來進行濺鍍 之電阻值,所以可使用相對便宜的DC磁控濺鍍來進行濺 鍍’當然亦可使用高頻磁控濺鍍裝置來進行。 藉由使用此透明導電膜用濺鍍靶材’可形成同一組成 之氧化姻系透明導電膜。此氧化銦系透明導電膜的組成分 析’可使單層膜全部溶解再以lCP(lnductively Copied has1118 :感應耦合電漿)進行分析。此外,當膜本身形成元 件構成時’可因應必要,以Fib(Focus Ion Beam :聚焦離 10 320647 200926207 子束)等切取該部分的剖面,並使用附屬於SEM(ScanningThe value of ... ... is above the value of (-UxlO-iLnOO -5· 7x10 ). In the film 8 type, 'below less than 100. . When the film is formed, it is an amorphous film, and when it is annealed at 100 to medium, it can be crystallized. The ninth aspect of the present invention is a transparent conductive film in the first to eighth modes, wherein the water pressure is (5) and the film is formed under the condition of "two 10 Pa or less." The transparent conductive film described in the ninth mode of the tenth aspect of the present invention is formed by a film formed at a specific state, and 320647 6 200926207 contains hydrogen. In the form of the ίο, by the specific moisture The transparent conductive film containing hydrogen in a bonded state can be formed by pressing the film formation. The eleventh aspect of the present invention is a transparent conductive film according to any one of the first to tenth aspects, wherein After the film of the crystal film is crystallized by annealing, in the eleventh mode, after the film of the amorphous film is formed, it can be easily crystallized by annealing, and the weak acidity is imparted. The twelfth aspect of the present invention is the transparent conductive film according to the eleventh aspect, wherein the crystallization by the annealing is performed at 100 to 300 ° C. In the twelfth mode, it is easy to be 100 to 300. The amorphous film is crystallized in ° C. The thirteenth aspect of the invention is a method for producing a transparent conductive film, which is characterized in that The film is formed by using a sputtering target having an oxide sintered body, and the oxide sintering system contains indium oxide and tin as necessary, and the indium of 1 ^ mol contains 0.0001 mol or more and less than 0. 10 molar oxygen bonding energy in the range of 100 to 35OkJ / mo 1 of the addition of elements (except Ba, Mg, Y), thereby obtaining indium oxide and the necessary tin, while containing the aforementioned additional elements It is an amorphous transparent conductive film. In the thirteenth aspect, the amorphous film can be formed by containing a specific additive element. The fourteenth aspect of the present invention is transparent as described in the thirteenth aspect. The method for producing a conductive film, wherein the film is formed under the conditions that the water pressure is 1.0xl0_4Pa or more and 1.0 χ10_1 Pa or less. 7 320647 200926207 In the 14th mode, by forming a film under a specific water pressure, The fifteenth plastic state of the present invention is a method for producing a transparent conductive film according to the thirteenth or fourteenth aspect, which is formed by annealing to form a transparent crystallized film. Conductive film. In the 15th type, 'is forming amorphous After that, it can be more easily crystallized by annealing. The method of producing a transparent conductive film according to the fifteenth aspect of the present invention is a method of producing a transparent conductive film of a weakly acidic type, which is amorphous. After the film is etched, it is annealed and crystallized. In the 16th type, after the "formation of the amorphous film," it is etched with a weakly acidic shoe polish, and then annealed to crystallize it. The method of producing a transparent conductive film according to the fifteenth or sixteenth aspect of the present invention is a method of performing crystallization by the annealing in 100 to 30 {rc. In the 17th mode, it is easy to crystallize the amorphous film in 100 to 3 Å. (Effects of the Invention) - According to the present invention, the oxygen-bonding energy is added to the film of the indium oxide added to the (10) i qing kj/m 〇 1 2, thereby achieving the following, that is, easy to weaken Patterning to form an amorphous film 'Crystalized film is low-resistance and high-permeability [Embodiment] 320647 8 200926207 Used to form the indium oxide-based transparent conductive film of the present invention, the permeable ore-dried material is an oxidation surface An oxide sintered body which is a main body and which, if necessary, and contains an oxygen-bonding energy at a side of 35 〇 kJ/nK)i, may be a complex of the oxide itself or a solid solution. There is no particular limitation on the existence. Oxygen Here, the oxygen bonding energy has been recorded as an additive element in the range of /_, which is the same as that of the previously proposed application, and is: ❹ The transparent conductive film functions as an amorphous film, for example, (oxygen bonding energy' :, junction energy: 134kJ/mol), u (oxygen bonding energy, islkj/ 'i: 242kJ/m〇1) ', ,. 〇月匕里.134kJ/mc) 1), Mg (oxygen bonding energy) :i55k仏(4), bonding energy··209kJ/mol), etc. ❹ In this case, the element having a large oxygen-bonding energy is easily formed by a single oxide. The glass-forming element (glass-forming element) 1 is added to the indium oxide-based transparent conductive film 'because the bonding strength with the milk is strong', so even Annealing is optimal, does not change, and has properties that can hardly be modified by annealing to determine the electrical properties. However, the oxygen bonding energy is relatively low at (10) to swollen J/m〇1. Since the element of the range has a small bonding force with oxygen, it can be presumed to have an effect of becoming an amorphous film. Further, although Na (oxygen bonding energy: 84_〇1) or κ (oxygen bonding energy: along仏(4) Yes!Γ, but if you add force, indium oxide is a transparent conductive film, then ΓΓ=characteristics have an adverse effect, or damage to environmental resistance, the picture is not good (two reference Nanfu edited the glass of the invitation '' non Introduction to Crystal Science-Industrial Books (^) ρ. 34 to 36). 320647 9 200926207 Adding 70 gram content, it is ideal to use indium for i-mole with right 0 Γ 1 - Moule and less than G. ί 的 f formed by 1G Moh material. If the right is less than this amount, the addition effect is less significant. Further, when the amount is more than this, the electric resistance of the formed transparent conductive film tends to increase, and the yellowing tends to be deteriorated. By the above-mentioned sputtering, the transparent:::: force: the content of the element 'The content is the same as the content of the used one. The content of tin is set to the range of the film formed by the use of a copper containing moir to 0.3 mol. In the case of tin, it is preferable to form a film by using a bismuth plating material having a range of 〇〇〇1 to 〇·3 摩尔 in the indium of i. In this range, the control of the money forging is appropriately controlled. The electron carrier density and the mobility are such that the conductivity is maintained in a good range. Further, when the amount is more than this range, the mobility of the electron carrier of the sputtering target is lowered to deteriorate the conductivity, which is not preferable. The content of tin in the transparent conductive film formed by the sputtering target is the same as the content of the splashing dry material used. The sputtering target has a The resistance value of the sputtering is performed by DC magnetron sputtering, so the phase can be used. Cheap DC magnetron sputtering for sputtering 'Of course can also be carried out using a high frequency magnetron sputtering device. By using this transparent conductive film with a sputtering target', an oxidized marriage transparent conductive film of the same composition can be formed. The composition analysis of the indium oxide-based transparent conductive film can completely dissolve the single-layer film and analyze it by lCP (lnductively Copied has1118: inductively coupled plasma). In addition, when the film itself is formed into a component, it can be necessary to Fib (Focus Ion Beam: focus from 10 320647 200926207 beam), etc. Cut the section of the section and use it attached to SEM (Scanning

Electron Microscopy :掃描式電子顯微鏡)或TEM (Transmission Electron Microscopy :穿透式電子顯微鏡) 等之元素分析裝置(EDS(Energy Dispersive X-rayElemental analysis device (EDS (Energy Dispersive X-ray) such as Electron Microscopy: Scanning Electron Microscope) or TEM (Transmission Electron Microscopy)

Spectrometer :能量分散χ射線光譜分析儀)或WDS (Wavelength Dispersive X-ray Spectrometer :波長分散 X射線光譜分析儀)、歐傑電子能譜儀等)來特定出。 ❹Spectrometer: Energy Dispersive Xenon Beam Spectrometer) or WDS (Wavelength Dispersive X-ray Spectrometer), Oujie Electron Spectrometer, etc.). ❹

本發明之氧化銦系透明導電膜,係含有特定量之特定 的添加元素,雖然因該含有量而有所不同,但可在室溫以 上且低於結晶化溫度之溫度條件下成膜,例如低於·t 之溫度條件’較理想為低於15(rc之溫度 ::靴之溫度條件下進行成膜,藉此,可於非晶= SSL此外’如此的非晶臈,乃具有可藉由弱酸性 =^來進行_之優點。在此,於核明書中,钮刻 ”匕3於圖案形成步驟’為用以獲得特定圖案之步肆。 類、线料阻率,轉加元素的種 :有1而有所不同,但電阻率可為1.0#至L〇xlr U · cm 〇 元素的膜的結晶化溫度,係因所含有之添 ㈤产今上1 量㈣所不同,含有量❹,結晶 G二:若在100 i3a0t的溫度條件下進行退火 程中二此之溫度領域係使用在一般的半導體 度範圍中,/製程巾使之結晶化。同時,於此 又 ,較理想為於100至30(TC予以結晶化,更理 320647 11 200926207 為於150至250°C予以結晶化, 予以結晶化。 尤其理想為於2〇〇The indium oxide-based transparent conductive film of the present invention contains a specific amount of a specific additive element, and although it differs depending on the content, it can be formed at a temperature of room temperature or higher and lower than the crystallization temperature, for example, The temperature condition lower than ·t is preferably less than 15 (the temperature of rc: film formation under the temperature of the shoe, whereby the amorphous enamel can be used in amorphous = SSL). The advantage of _ is weak acid = ^. Here, in the nucleot, the button "匕3 in the pattern forming step" is used to obtain a specific pattern. Class, line resistance, transfer element Species: There are 1 different, but the crystallization temperature of the film with a resistivity of 1.0# to L〇xlr U · cm 〇 is different because it contains the amount of (5) produced by the first (four) ❹, crystallization G 2: If the annealing process is carried out at a temperature of 100 i3a0t, the temperature field is used in the general semiconductor range, and the process towel crystallizes it. At the same time, it is ideal. For crystallization from 100 to 30 (TC, more reasonable 320647 11 200926207 is 150 to 250 ° C is crystallized and crystallized. Especially ideal is 2〇〇

至 250°C 在此,所明的退火,是指於女★ 空中等,以期望的溫度加熱—定^中:境氣體中、真 -般為數分鐘至數小時左右,如=所謂的-定時間, 理想為短業上之絲㈣,則較 藉由退火予以結晶化之透明導電膜,可提升短波長側 的透射率,例如,波長400至5〇〇 权开短波長側 〇 .. , ,, .L Μ ,, ,ν ^ ^ nm的平均透射率為85% 以上。此外,藉此亦不會產生如IZ〇般之膜有泛黃 一般而言,短波長侧的透射率愈高愈好。 另一方面,結晶化的透明導電臈,可提升耐钱刻性, 可進行制之弱酸性的㈣劑中,變成無法對非晶膜餘 刻。藉此可提升後步驟中之耐腐麵性、或裝置本身的财環 境性。 如此而於本發明中’可藉由改繳 一 疋變添加兀素的含有量, 〇將成膜後的結晶化溫度設定為所期望的溫度,因此,可在 成膜後不進行結晶化溫度以上的溫度之熱處理而維持非晶 狀態’或是可於成膜後進行圖案形成後,於結晶化溫度以 上的溫度進行熱處理並予以結晶化,而改變耐蝕刻特性。 在此,當添加元素為Sr時,於未滿i〇〇°c成膜時,係 形成為非晶膜’之後於100至30(TC中退火時,結晶化的 組成範圍,係成為錫對1莫耳的銦之莫耳比y(莫耳),位 於以Sr對1莫耳的銦之莫耳比X所表示之(-4. Ιχΐ 〇'η(χ) -9. 2x10—2)之值以上且為(-2. 9χ10'η(χ)-6· 7ΧΗΓ1)之值以 320647 12 200926207 下的範圍。 此外,於此範圍中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以Sr對1莫耳的銦之莫耳比X所表示之(-8. 2 xlO_2Ln(x)-1.9xlO_1)以上的範圍中,當退火溫度未滿 200°C時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 莫耳比y為0. 15莫耳以上且為0. 28莫耳以下時,於250°C ❹ 的退火後之比電阻為3. 0χ10—4Ω · cm以下者。 當添加元素為Li時,於未滿100°C成膜時,係形成為 非晶膜,之後於100至300°C中進行退火時,結晶化的組 成範圍,係成為錫對1莫耳的銦之莫耳比y(莫耳),位於 以Li對1莫耳的銦之莫耳比X所表示之(-1. 6xlO_1Ln(x) -5. 9xl0-1)之值以上且為(-2. 5xlO_1Ln(x)-5. ϊχΙίΓ1)之值以 下的範圍。 @ 此外,於此範面中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以Li對1莫耳的銦之莫耳比X所表示之 (-7. OxlO_2Ln(x)-l. δχΙίΓ1)以上的範圍中,當退火溫度未滿 200°C時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍者。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 莫耳比y為0. 28莫耳以下,且Li對1莫耳的銦之莫耳比 X為0. 015莫耳以下時,於250°C的退火後之比電阻為3. Ox 10_4Ω · cm 以下。 13 320647 200926207 ’ 當添加元素為La時,於未滿100°C成膜時,係形成為 非晶膜,之後於100至300°C中退火時,結晶化的組成範 圍,係成為錫對1莫耳的銦之莫耳比y,位於以La對1莫 耳的銦之莫耳比X所表示之(-6. 7x10—2Ln(x)-2. 2xl0_1)之 值以上且為(-3. 3xlO_1Ln(x)-7. 7x10—〇之值以下的範圍。 此外,於此範圍中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以La對1莫耳的銦之莫耳比X所表示之(-8. 7 xl(T2Ln(x)-2. 0χ10_1)以上的範圍中,當退火溫度未滿 〇 200°C時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍者。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 莫耳比y(莫耳)為0.23莫耳以下時,於250°C的退火後之 比電阻為3. 0χ1(Γ4Ω · cm以下。 當添加元素為Ca時”於未滿10 0 °C成膜時,係形成為 非晶膜,之後於100至30(TC中進行退火時,結晶化的組 U 成範圍,係成為錫對1莫耳的銦之莫耳比y,位於以Ca對 1莫耳的銦之莫耳比X所表示之(-4. 1χ1〇Λη(χ)-9. 3χ1(Γ2) 之值以上且為(-2. 5xlO_1Ln(x)-5. 7x10—〇之值以下的範圍。 此外,於此範圍中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以Ca對1莫耳的銦之莫耳比X所表示之(-8. 7 xl(T2Ln(x)-2. 0x10,以上的範圍中,當退火溫度未滿200 °(:時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 14 320647 200926207 ' 莫耳比y(莫耳)為〇. 28莫耳以下時,於250°C的退火後之 比電阻為3. 0χ1(Γ4Ω · cm以下。 如此,藉由加入添加元素,可獲得特定效果,惟添加 元素不同,可獲得特定效果之範圍亦有些許不同,關於上 述Sr、Li、La、Ca元素的共通範圍,於未滿100°C成膜時, 係形成為非晶膜,且於100至300°C中進行退火時,結晶 化的組成範圍,係成為錫對1莫耳的銦之莫耳比y(莫耳), 位於以添加元素對1莫耳的銦之莫耳比X所表示之(-9. 3x ❹ l(T2Ln(x)-2. 1x10—〇 之值以上且為(-2. 5χ1〇Λη(χ)-5. 7x 10_1)之值以下的範圍。 此外,為了提高作為非晶膜而成膜後之結晶化溫度, 可控制成膜時之水分壓。亦即,可於實質上不存在水之狀 態的未滿1. 0x10—4Pa,較理想為1. OxlO_5Pa以下的水分壓 下進行成膜,但亦可於1. 0xl0_4Pa以上1. 0xl0_1Pa以下水 分壓的條件下進行成膜。 ^ 在此,若於水分壓為1. Oxl(T4Pa以上的條件下進行成 膜,相較於實質上不存在水之狀態的未滿1. 0xl0_4Pa,較 理想為1. 0xl0—5Pa以下的水分壓下進行成膜時,可提高非 晶膜的結晶化溫度,尤其在添加元素的含有量較少,且結 晶化溫度在100°C以下之低區域中,藉由提高水分壓使結 晶化温度上升,係具有易於形成非晶膜之效果。 為了將水分壓控制在上述範圍,可經由質量流量控制 器等,與於成膜時導入至成膜反應室之環境氣體(一般為 Ar,亦可因應必要而採用含氧氣體,例如,為10_4Pa左右 15 320647 200926207 ^壓力),-同導入水蒸氣,當到達真 真空時,較,裏境氣體係設定為= 力。於到達真空度為10-4至1〇-3%之 丨/ 壓 主成分為水。亦即’由於達真之::幾下乎 相备於水分壓,所以不需特別導入 二又 之水分壓之狀態。 ㉟虱,亦可達到期望 接下來說明本發明中所使用之濺 ' Ο ❹ 但此僅用於例示,®造方法並秘定^此。、造方法, 首Ί於構成本發明賴鍍料之起始一般 係使用構成元素的氧化物,但亦 … ^ m』使用廷些構成元素的單 ,、化5物、複合氧化物作為原料。當使用單體、化合物 蚪,可預先進行能夠成為氧化物之製程。 將這麵料粉以特定㈣配比例予㈣合而成形之方 並無特別限定.,可❹以往所知之各種濕式法或乾式法。 乾式法例如有冷壓(Cold Press)法及熱壓(H〇tUp to 250 ° C Here, the known annealing, refers to the female ★ in the air, etc., heating at the desired temperature - in the gas: true gas - usually for a few minutes to a few hours, such as = so-called Time, ideal for the short-term silk (4), the transparent conductive film which is crystallized by annealing can improve the transmittance on the short-wavelength side, for example, the wavelength of 400 to 5 〇〇 is short-wavelength side 〇.. , , , .L Μ , , , ν ^ ^ nm The average transmittance is 85% or more. Further, by this, the film such as IZ is not yellowed. Generally, the higher the transmittance on the short-wavelength side, the better. On the other hand, the crystallized transparent conductive crucible can improve the resistance to the engraving, and it can be made into a weakly acidic (tetra) agent, which makes it impossible to reproduce the amorphous film. Thereby, the corrosion resistance of the subsequent steps or the financial environment of the device itself can be improved. As described above, in the present invention, the content of the ruthenium can be changed by a change, and the crystallization temperature after the film formation is set to a desired temperature. Therefore, the crystallization temperature can be prevented from being formed after the film formation. The heat treatment at a temperature is maintained in an amorphous state. Alternatively, after pattern formation after film formation, heat treatment is performed at a temperature equal to or higher than the crystallization temperature and crystallization is performed to change the etching resistance. Here, when the additive element is Sr, when the film is formed below the film, it is formed into an amorphous film 'after 100 to 30 (the annealing composition in TC, the composition range of crystallization is tin-pair) 1 molar indium molar ratio y (mole), located in Sr to 1 mol of indium molar ratio X (-4. Ιχΐ 〇 'η (χ) -9. 2x10-2) Above the value and the value of (-2. 9χ10'η(χ)-6·7ΧΗΓ1) is in the range of 320647 12 200926207. In addition, in this range, especially in the tin to 1 molar indium molar ratio y (mole) is in the range of (r. 2 x lO_2Ln(x) - 1.9xlO_1) expressed by Sr to 1 mol of indium molar ratio X, when the annealing temperature is less than 200 ° C, Since it is impossible to crystallize, it is preferable to crystallization in the annealing process of 200 ° C or more in consideration of the film forming process. Further, in the above range, it is more preferable to use tin to 1 m. The molar ratio of indium to y is 0.15 m or more and 0. 28 m or less, the specific resistance after annealing at 250 ° C ❹ is 3.0 χ 10 -4 Ω · cm or less. When Li is formed, when filming is less than 100 ° C, When formed into an amorphous film and then annealed at 100 to 300 ° C, the composition range of crystallization is a molar ratio of tin to 1 mol of indium to y (mole), located at 1 to 1 mol of Li The indium molar ratio of indium is greater than or equal to the value of (-1. 6xlO_1Ln(x) - 5. 9xl0-1) and is in the range of (-2. 5xlO_1Ln(x)-5. ϊχΙίΓ1). In addition, in this aspect, especially in the tin to 1 molar indium molar ratio y (mole) is expressed in Li to 1 mole of indium molar ratio X (-7. OxlO_2Ln (x )-l. δχΙίΓ1) In the above range, when the annealing temperature is less than 200 ° C, it is impossible to crystallize. Therefore, when considering the film formation process, it is preferable to crystallize in an annealing of 200 ° C or more. Further, in the above range, it is more preferable that the molar ratio y of tin to 1 mol of indium is 0.28 m or less, and the molar ratio of Li to 1 mol of indium is X. When it is below 0. 015 mol, the specific resistance after annealing at 250 ° C is 3. Ox 10_4 Ω · cm or less. 13 320647 200926207 ' When the additive element is La, when film formation is less than 100 ° C, Formed as an amorphous film, After annealing at 100 to 300 ° C, the composition range of crystallization is the molar ratio y of tin to 1 mol of indium, which is expressed by the molar ratio X of indium of La to 1 mol ( -6. The value of 7x10-2Ln(x)-2. 2xl0_1) is equal to or greater than the range of (-3. 3xlO_1Ln(x)-7. 7x10-〇). Further, in this range, especially in the case where tin to 1 molar indium molar ratio y (mole) is represented by La to 1 molar indium molar ratio X (-8. 7 xl (T2Ln (x)-2. 0χ10_1) In the above range, when the annealing temperature is less than 200 °C, crystallization cannot be performed. Therefore, it is preferable to anneal to 200 ° C or more when considering the film formation process. Further, in the above range, it is more preferable that when the molar ratio of tin to 1 mol of indium molar ratio y (mole) is 0.23 mol or less, after annealing at 250 ° C The specific resistance is 3.0 χ1 (Γ4 Ω · cm or less. When the additive element is Ca), when the film is formed at less than 10 ° C, it is formed into an amorphous film, and then after annealing at 100 to 30 (TC) The crystallized group U is in the range of tin to y in molar ratio of tin to 1 mol, which is represented by the molar ratio X of indium in Ca to 1 mol (-4. 1χ1〇Λη(χ) -9. The value of 3χ1(Γ2) is above the range of (-2. 5xlO_1Ln(x)-5. 7x10—〇. In addition, in this range, especially in the case of tin to 1 mole of indium Ear ratio y (mole) is located at Ca to 1 m The molar ratio is represented by X (-8. 7 xl (T2Ln(x) - 2.0 × 10, in the above range, when the annealing temperature is less than 200 ° (:, it cannot be crystallized, so consider In the film formation process, it is preferably a range of crystallization in annealing at 200 ° C or higher. Further, in the above range, it is more desirable to be a tin to 1 m of indium 14 320647 200926207 'Moerby y (mole) is 〇. When the temperature is below 28 m, the specific resistance after annealing at 250 ° C is 3. 0 χ 1 (Γ 4 Ω · cm or less. Thus, by adding an additive element, a specific effect can be obtained, but an additive element is added. The range of the specific effects that can be obtained is also slightly different. The common range of the above-mentioned elements of Sr, Li, La, and Ca is formed into an amorphous film at a film thickness of less than 100 ° C, and is 100 to 300 °. When annealing in C, the composition range of crystallization is the molar ratio y (mole) of tin to 1 mol of indium, which is expressed by the molar ratio X of the indium added by the additive element to 1 mol ( -9. 3x ❹ l (T2Ln(x)-2. 1x10—The value above 且 and below the value of (-2. 5χ1〇Λη(χ)-5. 7x 10_1). 0x10—4Pa, preferably 1. In order to increase the crystallization temperature after film formation as an amorphous film, the water pressure at the time of film formation can be controlled. Film formation is carried out under a water pressure of OxlO_5Pa or less, but film formation may be carried out under the conditions of a water pressure of 1.0xx0_4Pa or more and 1.0xx0_1Pa or less. Oxl0_4Pa or less, preferably less than 1. 0xl0_4Pa, more preferably 1. 0xl0 - 5Pa or less, if the water pressure is 1. Oxl (T4Pa or more). When the film formation is carried out by pressing, the crystallization temperature of the amorphous film can be increased, and in particular, in the low region where the content of the additive element is small and the crystallization temperature is 100 ° C or lower, the crystallization temperature is increased by increasing the water pressure. When it is raised, it is easy to form an amorphous film. In order to control the water pressure in the above range, it is possible to introduce an ambient gas (generally Ar) into the film formation reaction chamber at the time of film formation by a mass flow controller or the like. If necessary, use an oxygen-containing gas, for example, about 10_4Pa, 15 320647 200926207 ^ pressure), and introduce water vapor. When the vacuum is reached, the internal gas system is set to = force. The vacuum is 10 - 4 to 1〇-3% of 丨 / The main component of the pressure is water. That is, 'Because of the true:: It is almost the same as the water pressure, so it is not necessary to introduce the state of water pressure. 35虱, It is also possible to achieve the desired description of the present invention. Use splashes Ο ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ^ m "Use a single element, a compound, or a composite oxide as a raw material. When a monomer or a compound is used, a process capable of forming an oxide can be carried out in advance. The fabric powder is given a specific (four) ratio. (4) The combination is not particularly limited. It can be used in various wet or dry methods known in the past. Dry methods such as Cold Press and hot pressing (H〇t)

Press) 、、、/。於冷壓法中,係將混合粉填入於成形模中,製作出 成形體並予讀成。於熱壓法巾,係將混合粉於成形模内 予以燒成並燒結。 、,濕式法’例如較理想為使用濾過式成形法(參考曰本特 ^平1卜28_2號公報)。减過式成形法所使用之遽過式 模,為用以從陶瓷原料漿液中將水分予以減壓排水而 =得成形體之由非水溶性材料所形成之濾過式成形模,此 濾過式成形模係由:具有丨個以上的排水孔之成形用底 极,载置於此成形用底模上方之具有通水性之過濾器;及 320647 16 200926207 « 經介於用以密封此過濾器之密封材而從上面側予r 成形用模框所構成;前述成形用底模、成形 Λ失持之 从用模樞、密封 材、及過濾器,係以可分別折開之方式所纽裝,、 從該過遽器面侧將漿液中的水分予以減麗排水之=、吏用僅 形模;然後調製出由混合粉、離子交換水及有機六慮式成 組成之漿液,並將.此聚液注人於濾、過式成形模,二 過濾器面侧將漿液中的水分予以減壓排水而製作成形體, 將所獲得之陶瓷成形體予以乾燥脫脂後進行燒成。 ° 以冷壓法及濕式法所成形者之燒成溫度,較理想為 1300至1650°C,更理想為1500至165(TC。該環境例如為 大氣環境、氧氣環境、非氧化性環境、或是真空環境等。 另一方面,於熱壓法時,較理想為於12001:附近進行燒結, 該環境例如為非氧化性環境或是真空環境等。於各方法中 進行燒成後’進行用以成形•加工為特定尺寸之機械加 工,而形成乾材。 ❹[實施例] 以下係依據實施例來說明本發明,但並不限定於此。 (濺鍍靶材製造例l)(Sr-ITO) (添加 Sr 之 ΙΤ0、Sr=0. 02-Sn=0. 1) 準備純度> 99.99%的I112O3粉、Sn〇2粉、以及純度〉 99. 9%的 SrC〇3粉。首先,以 1112〇3粉為 65. 3wt%及 SrC〇3 粉為34. 7 wt%之比例,準備全部的量為200g,於乾燥狀 態下進行球磨混合,並於大氣中、於1200°C進行3小時的 焙燒,而獲得SrIm〇4粉。 17 320647 200926207 接著以 SrIn2〇4粉為 2. 2wt%、In2〇3粉為 86. 6wt%、Sn〇2 粉為11. 2wt%之比例’準備全部的 量約為1.0kg(各金屬原 子的組成為 In=88. Oat%、Sn=10· Oat%、Sr=2· Oat%), 將此進行球磨混合。之後添加pvA(p〇lyvinylPress), ,, /. In the cold press method, a mixed powder is filled in a forming mold to prepare a molded body and read it. In the hot press method, the mixed powder is fired and sintered in a forming mold. For example, the wet method is preferably a filter forming method (refer to Japanese Patent Publication No. Hei 28-28). The squeezing mold used in the subtractive molding method is a filtration molding die formed by water-insoluble material from the ceramic raw material slurry to obtain a molded body, which is formed of a water-insoluble material. The molding system consists of: a forming bottom having more than one drainage hole, a water-passing filter placed above the forming bottom mold; and 320647 16 200926207 « sealed by a seal for sealing the filter The material is formed from the upper side of the r-forming mold frame, and the molding base mold and the molding die, the sealing material, and the filter, which are lost in holding, are separately foldable. From the side of the filter, the water in the slurry is reduced and drained, and the mold is only used; then a slurry composed of mixed powder, ion-exchanged water and organic hexagram is prepared, and the mixture is gathered. The liquid injection is applied to the filter and the overmolding mold, and the water in the slurry is drained under reduced pressure to form a molded body, and the obtained ceramic formed body is dried and degreased and then fired. ° The firing temperature of the person formed by the cold pressing method and the wet method is preferably 1300 to 1650 ° C, more preferably 1500 to 165 (TC. The environment is, for example, an atmospheric environment, an oxygen atmosphere, a non-oxidizing environment, On the other hand, in the hot press method, it is preferable to perform sintering in the vicinity of 12001: the environment is, for example, a non-oxidizing environment or a vacuum environment, etc. After the firing in each method, ' The present invention will be described with reference to the following examples, but is not limited thereto. (Spray target manufacturing example 1) (Sr - ITO) (Adding Sr ΙΤ0, Sr=0. 02-Sn=0. 1) Preparing purity > 99.99% I112O3 powder, Sn〇2 powder, and purity > 99.9% SrC〇3 powder. , with 1112〇3 powder as 65. 3wt% and SrC〇3 powder in the ratio of 34.7 wt%, the whole amount is prepared to be 200g, and the ball mill is mixed in a dry state, and is carried out in the atmosphere at 1200 ° C. After 2 hours of calcination, the SrIm〇4 powder was obtained. 17 320647 200926207 Next, the SrIn2〇4 powder was 2. 2wt%, and the In2〇3 powder was 86. 6wt%, Sn〇2 powder is 11. 2wt% ratio 'preparation of the total amount is about 1.0kg (the composition of each metal atom is In = 88. Oat%, Sn = 10 · Oat%, Sr = 2 · Oat%), this is ball milled and mixed. Then add pvA (p〇lyvinyl

Alcohol : 聚乙烯醇)水錢料減劑好以混合、錢,進行冷壓 後獲付成形體。於大氣中、於6〇〇。〇下以6(rc/h的升溫速 度’對此成形體進行10小時的脫月旨,接著於氧氣環境下, 於1550 C進打8小時的燒成而獲得燒結體。燒成條件,具 體而5係以20〇C/h的升溫速度從室溫升溫至8〇『c,以 4〇〇°C/h的升溫速度從_°C升溫至155(TC,保持8小時 後,以100°C/h的降溫條件從脱代冷卻至室溫為止。之 後加工此燒結體而獲躲材。此時的密度為7.G5g/cm3。 同樣的,分別製造出 SpO.OOOOI、Sr=〇.〇i、Sr=0.05 之減i鑛乾材。 此外同樣的製造出具有表j所示的組成之賤鑛乾材。 〇 320647 200926207[表1 ]Alcohol: Polyvinyl alcohol) water money reducer is good to mix, money, and cold pressed to obtain the molded body. In the atmosphere, at 6 〇〇. The kneaded body was subjected to a deceleration of 10 hours at a heating rate of rc/h for 10 hours, and then baked in an oxygen atmosphere at 1550 C for 8 hours to obtain a sintered body. On the other hand, the 5 series was heated from room temperature to 8 〇 c at a temperature increase rate of 20 〇C/h, and the temperature was raised from _° C. to 155 (TC at a temperature increase rate of 4 〇〇 ° C/h, and after holding for 8 hours, 100 The temperature lowering condition of °C/h was cooled from the degeneration to room temperature. The sintered body was processed to obtain a hiding material. The density at this time was 7.G5g/cm3. Similarly, SpO.OOOOI, Sr=〇 were separately produced. .〇i, Sr=0.05 minus i ore dry material. In addition, the dry ore material having the composition shown in Table j was produced in the same manner. 〇320647 200926207 [Table 1]

樣本No. 組成(at% ) 對I n : 1 mo 1之比例[mol ] In Sn Sr Sr Sn al 94. 5 5. 0 0· 5 0. 005 0. 053 a2 89. 5 10. 0 0. 5 0. 006 0. 112 a3 84. 5 15. 0 0· 5 0. 006 0. 178 a4 79. 5 20. 0 0. 5 0. 006 0. 252 a5 94. 0 5· 0 L 0 0. Oil 0. 053 a6 89. 0 10. 0 1. 0 0. Oil 0. 112 a7 84. 0 15. 0 1.0 0. 012 0. 179 a8 79. 0 20. 0 1. 0 0. 013 0. 253 a9 93. 0 5. 0 2. 0 0. 022 0. 054 alO 88. 0 10. 0 2.0 . 0. 023 0. 114 all 83. 0 15. 0 2. 0 0. 024 0. 181 al2 78. 0 20.0 2. 0 0. 026 0. 256 al3 92. 0 5. 0 3. 0 0. 033 0. 054 al4 87. 0 10. 0 3_ 0 0. 034 0. 115 al5 82. 0 15. 0 3. 0 0. 037 0. 183 al6 77. 0 20. 0 3. 0 - 0. 039 0. 260 al7 90. 0 5. 0 5. 0 0. 056 0. 056 al8 85. 0 10. 0 5. 0 0. 059 0. 118 al9 80. 0 15. 0 5. 0 0. 063 0. 188 a20 75. 0 20. 0 5. 0 0. 067 0. 267 a21 85. 0 5. 0 10. 0 0.118 0. 059 a22 80. 0 10. 0 10. 0 0.125 0. 125 a23 75. 0 15. 0 10. 0 0. 133 0. 200 a24 70. 0 20. 0 10. 0 0. 143 0. 286 a25 89.999 10. 000 0. 001 0·000011 0· 111112 a26 84.950 15.000 0. 050 0.000589 0.176574 a27 81.900 18. 000 0. 100 0.001221 0.219780 a28 82. 000 17. 000 1. 000 0.012195 0.207317 a29 89. 900 10. 000 0. 100 0.001112 0·111235 a30 76. 000 22. 000 2. 000 0.026316 0.289474 19 320647 200926207 (濺鍍靶材製造例2)(Li-IT0) (添加 Li 之 ΙΤ0、Li=0. 02-Sn=0. 1) 準備純度> 99. 99%的In2〇3粉、Sn〇2粉、以及純度〉 99. 9% 的 Li2C〇3 粉。 首先,以 Im〇3粉為 79. Owt%及 Li2C〇3粉為 21. Owt% 之比例,準備全部的量為200g,於乾燥狀態下進行球磨混 合,並於大氣中、於1000°C進行3小時的焙燒,而獲得 Li In〇2 粉。 ❹ 接著以上述Li In〇2粉為2. 2wt%、In2〇3粉為86. 8wt %、Sn〇2粉為11. Owt%之比例,準備全部的量約為1. Okg(各 金屬原子的組成為 In=88. Oat%、Sn=10. Oat%、Li=2. Oat %),除此之外,係與Sr-ITO(Sr=0. 02)相同而製作出乾材。 惟燒成溫度為1450°C。此外,此時的密度為6.85g/cm3。 同樣的製造出具有下列表2所示的組成之濺鍍靶材。 ❹ 20 320647 200926207[表2]Sample No. Composition (at%) vs. I n : 1 mo 1 ratio [mol ] In Sn Sr Sr Sn al 94. 5 5. 0 0· 5 0. 005 0. 053 a2 89. 5 10. 0 0. 5 0. 006 0. 112 a3 84. 5 15. 0 0· 5 0. 006 0. 178 a4 79. 5 20. 0 0. 5 0. 006 0. 252 a5 94. 0 5· 0 L 0 0. Oil 0. 053 a6 89. 0 10. 0 1. 0 0. Oil 0. 112 a7 84. 0 15. 0 1.0 0. 012 0. 179 a8 79. 0 20. 0 1. 0 0. 013 0. 253 A9 93. 0 5. 0 2. 0 0. 022 0. 054 alO 88. 0 10. 0 2.0 . 0. 023 0. 114 all 83. 0 15. 0 2. 0 0. 024 0. 181 al2 78. 0 20.0 2. 0 0. 026 0. 256 al3 92. 0 5. 0 3. 0 0. 033 0. 054 al4 87. 0 10. 0 3_ 0 0. 034 0. 115 al5 82. 0 15. 0 3 0 0. 037 0. 183 al6 77. 0 20. 0 3. 0 - 0. 039 0. 260 al7 90. 0 5. 0 5. 0 0. 056 0. 056 al8 85. 0 10. 0 5. 0 0. 059 0. 118 al9 80. 0 15. 0 5. 0 0. 063 0. 188 a20 75. 0 20. 0 5. 0 0. 067 0. 267 a21 85. 0 5. 0 10. 0 0.118 0. 059 a22 80. 0 10. 0 10. 0 0.125 0. 125 a23 75. 0 15. 0 10. 0 0. 133 0. 200 a24 70. 0 20. 0 10. 0 0. 143 0. 286 a25 89.999 10. 000 0. 001 0·000011 0· 111112 a26 84.950 15.000 0. 050 0.000589 0.176574 a27 81.900 18. 000 0. 100 0.001221 0.219780 a28 82. 000 17. 000 1. 000 0.012195 0.207317 a29 89. 900 10. 000 0. 100 0.001112 0·111235 a30 76. 000 22. 000 2. 000 0.026316 0.289474 19 320647 200926207 (spray target manufacturing example 2) (Li-IT0) (addition of Li ΙΤ0, Li=0. 02-Sn=0. 1) Preparation purity> 99. 99% of In2〇3 powder, Sn 〇2 powder, and purity of 99.9% of Li2C〇3 powder. First, the Im〇3 powder is 79. Owt% and the Li2C〇3 powder is 21. Owt%, and the whole amount is prepared to be 200 g, and the mixture is ball milled in a dry state, and is carried out in the atmosphere at 1000 ° C. The Li In〇2 powder was obtained by calcination for 3 hours. Okg( Each metal atom is prepared by the above-mentioned Li In〇2 powder is 2. 2wt%, In2〇3 powder is 86. 8wt%, Snn2 powder is 11. Owt% ratio, the total amount is about 1. Okg (each metal atom) The dry matter was produced in the same manner as in the case of Sr-ITO (Sr=0. 02) except that the composition was In=88. Oat%, Sn=10. Oat%, Li=2. Oat%). However, the firing temperature was 1450 °C. Further, the density at this time was 6.85 g/cm3. A sputtering target having the composition shown in Table 2 below was also produced. ❹ 20 320647 200926207 [Table 2]

樣本No. 組成(at% ) 對In : Imol之比例[mol ] In Sn Li Li Sn bl 94.5 5. 0 0· 5 0. 005 0. 053 b2 89· 5 10. 0 0. 5 0. 006 0. 112 b3 84. 5 15. 0 0. 5 0. 006 0. 178 b4 79. 5 20. 0 0 5 0. 006 0.252 b5 94. 0 5. 0 1.0 0. Oil 0. 053 b6 89. 0 10. 0 1.0 0. Oil 0. 112 b7 84. 0 15. 0 1.0 0. 012 0. 179 b8 79. 0 20. 0 1.0 0. 013 0. 253 b9 93. 0 5. 0 2. 0 0. 022 0. 054 blO 88· 0 10. 0 2. 0 0. 023 0. 114 bll 83. 0 15. 0 2. 0 0. 024 0.181 bl2 78. 0 20. 0 2. 0 0. 026 0. 256 bl3 92. 0 5. 0 3. 0 0. 033 0. 054 bl4 87. 0 10. 0 3. 0 0. 034 0. 115 bl5 82. 0 15. 0 3. 0 0. 037 0. 183 bl6 77. 0 20. 0 · 3. 0 0. 039 0. 260 bl7 90. 0 5. 0 5· 0 0. 056 0.056 bl8 85. 0 10. 0 5. 0 0. 059 0. 118 bl9 80. 0 15. 0 5_ 0 0. 063 0. 188 b20 75. 0 20. 0 5. 0 0. 067 0. 267 b21 85. 0 5. 0 10. 0 0. 118 0. 059 b22 80. 0 10. 0 10. 0 0. 125 0. 125 b23 75. 0 15. 0 10. 0 0. 133 0. 200 b24 70. 0 20. 0 10. 0 0.143 0.286 b25 89. 995 10.000 0. 005 0·000056 0. 111117 b26 82.800 < 17. 000 0. 200 0.002415 0·205314 b27 89.900 10. 000 0. 100 0·001112 0· 111235 b28 84.900 15. 000 0. 100 0. 001178 0.176678 b29 82. 000 17. 000 1. 000 0.012195 0·207317 b30 80.000 18. 000 2. 000 0.025000 0_ 225000 21 320647 200926207 (濺鍍靶材製造例3)(La-IT0) (添加 La 之 ΙΤ0、La=0. 02-Sn=0. 1) 準備純度> 99. 99%的In2〇3粉、Sn〇2粉、以及純度〉 99. 99% 的 La2(C〇3)3 · 8M)粉。 首先’以 Iri2〇3粉為 31. 6wt%及 La_2(C〇3)3 · 8H2O 粉為 68.4wt%之比例,準備全部的量為200g,於乾燥狀態下進 行球磨混合,並於大氣中、於1200°C進行3小時的焙燒, 而獲得LaIn〇3粉。 接著以上述LalnOs粉為4. 3wt%、Iri2〇3粉為85. Owt %、Sn〇2粉為10. 7wt%之比例,準備全部的量約為1. Okg(各 金屬原子的組成為 In=88. Oat%、Sn=10. Oat%、La=2. Oat %),除此之外,係與Sr-ITO(Sr=0. 02)相同而製作出乾材。 此時的密度為7. 04g/cm3。 同樣的製造出具有下列表3所示的組成之濺鍍靶材。 22 320647 200926207[表3]Sample No. Composition (at%) vs. In : Imol ratio [mol ] In Sn Li Li Sn bl 94.5 5. 0 0· 5 0. 005 0. 053 b2 89· 5 10. 0 0. 5 0. 006 0 112 b3 84. 5 15. 0 0. 5 0. 006 0. 178 b4 79. 5 20. 0 0 5 0. 006 0.252 b5 94. 0 5. 0 1.0 0. Oil 0. 053 b6 89. 0 10 0 1.0 0. Oil 0. 112 b7 84. 0 15. 0 1.0 0. 012 0. 179 b8 79. 0 20. 0 1.0 0. 013 0. 253 b9 93. 0 5. 0 2. 0 0. 022 0. 054 blO 88· 0 10. 0 2. 0 0. 023 0. 114 bll 83. 0 15. 0 2. 0 0. 024 0.181 bl2 78. 0 20. 0 2. 0 0. 026 0. 256 bl3 92. 0 5. 0 3. 0 0. 033 0. 054 bl4 87. 0 10. 0 3. 0 0. 034 0. 115 bl5 82. 0 15. 0 3. 0 0. 037 0. 183 bl6 77. 0 20. 0 · 3. 0 0. 039 0. 260 bl7 90. 0 5. 0 5· 0 0. 056 0.056 bl8 85. 0 10. 0 5. 0 0. 059 0. 118 bl9 80. 0 15. 0 5_ 0 0. 063 0. 188 b20 75. 0 20. 0 5. 0 0. 067 0. 267 b21 85. 0 5. 0 10. 0 0. 118 0. 059 b22 80. 0 10. 0 10. 0 0. 125 0. 125 b23 75. 0 15. 0 10. 0 0. 133 0. 200 b24 70. 0 20. 0 10. 0 0.143 0.286 b25 89. 995 10.000 0. 005 0·000056 0. 111117 b26 82.800 < 17. 000 0. 200 0.0 02415 0·205314 b27 89.900 10. 000 0. 100 0·001112 0· 111235 b28 84.900 15. 000 0. 100 0. 001178 0.176678 b29 82. 000 17. 000 1. 000 0.012195 0·207317 b30 80.000 18. 000 2 . 000 0.025000 0_ 225000 21 320647 200926207 (spray target manufacturing example 3) (La-IT0) (addition of La ΙΤ0, La=0. 02-Sn=0. 1) Preparation purity > 99. 99% of In2 〇3 powder, Sn 〇 2 powder, and a purity of 99. 99% of La2(C〇3)3 · 8M) powder. First, 'Iri2〇3 powder is 31.6 wt% and La_2(C〇3)3 · 8H2O powder is 68.4 wt%, and the whole amount is prepared to be 200 g, and the mixture is ball milled in a dry state, and in the atmosphere, The calcination was carried out at 1200 ° C for 3 hours to obtain LaIn 〇 3 powder. Okg (The composition of each metal atom is In, the ratio of each metal atom is 1. In the case of the above-mentioned LalnOs powder, the composition of each metal atom is In. Owt%, the composition of each metal atom is In. In the same manner as Sr-ITO (Sr=0.02), a dry material was produced, except that Oat%, Sn=10. Oat%, and La=2. Oat%). The density at this time is 7. 04g/cm3. A sputtering target having the composition shown in Table 3 below was also produced. 22 320647 200926207 [Table 3]

樣本No. 組成(at% ) 對I n : 1 mo 1之比例[mo 1 ] In Sn La La Sn cl 94. 5 5. 0 0. 5 0. 005 0. 053 c2 89. 5 10. 0 0· 5 0. 006 0. 112 c3 84. 5 15. 0 0. 5 0. 006 0. 178 c4 79. 5 20. 0 。0.5 0. 006 0. 252 c5 94. 0 5. 0 1.0 0. Oil 0. 053 c6 89. 0 10. 0 1. 0 0. Oil 0. 112 c7 84. 0 15. 0 1.0 0. 012 0.179 c8 79. 0 20. 0 1. 0 0. 013 0. 253 c9 93. 0 5. 0 2. 0 0. 022 0. 054 clO 88. 0 10. 0 2. 0 0. 023 0. 114 ell 83. 0 15. 0 2. 0 0. 024 0. 181 cl2 78. 0 20.0 2. 0 0. 026 0. 256 cl3 92. 0 5. 0 3. 0 0. 033 0. 054 cl4 87. 0 10. 0 3. 0 0. 034 0.115 cl5 82. 0 15. 0 3. 0 0. 037 0.183 cl6 77. 0 · 20. 0 3. 0 0. 039 -0.260 cl7 90. 0 5. 0 5. 0 0. 056 0. 056 cl8 85. 0 10. 0 5. 0 0. 059 0. 118 cl9 .80· 0 15. 0 5. 0 0. 063 0. 188 c20 75. 0 20. 0 5. 0 0. 067 0. 267 c21 85. 0 5. 0 10. 0 0. 118 0. 059 c22 80, 0 10. 0 10. 0 0. 125 0. 125 c23 75. 0 15. 0 10. 0 0. 133 0. 200 c24 70. 0 20. 0 10· 0 0. 143 0. 286 c25 89.992 10. 000 0. 008 0. 00009 0. Ill c26 86.900 13. 000 0.100 0.00115 0. 150 c27 79.900 20. 000 0. 100 0. 00125 0. 250 c28 81,000 18.000 1. 000 0. 01235 0. 222 c29 81.800 18. 000 0. 200 0. 00244 0. 220 c30 84.960 15. 000 0. 040 0. 00047 0. 177 23 320647 200926207 (錢鑛革巴材製造例4)(Ca-IT0) (添加之 lT〇、Ca=0. 02-Sn=0. 1) 準備純度> 99. 99%的I112O3粉、Sn〇2粉、以及純度〉 99. 5% 的 CaC〇3 粉。 首先,以In2〇3粉為73. 5wt%及CaC〇3粉為26. 5wt%之 比例’準備全部的量為200g,於乾燥狀態下進行球磨混合, 並於大氣中、於120(TC進行3小時的焙燒,而獲得CaIm〇4 粉。Sample No. Composition (at%) vs. I n : 1 mo 1 ratio [mo 1 ] In Sn La La Sn cl 94. 5 5. 0 0. 5 0. 005 0. 053 c2 89. 5 10. 0 0 · 5 0. 006 0. 112 c3 84. 5 15. 0 0. 5 0. 006 0. 178 c4 79. 5 20. 0 . 0.5 0. 006 0. 252 c5 94. 0 5. 0 1.0 0. Oil 0. 053 c6 89. 0 10. 0 1. 0 0. Oil 0. 112 c7 84. 0 15. 0 1.0 0. 012 0.179 c8 79. 0 20. 0 1. 0 0. 013 0. 253 c9 93. 0 5. 0 2. 0 0. 022 0. 054 clO 88. 0 10. 0 2. 0 0. 023 0. 114 ell 83. 0 15. 0 2. 0 0. 024 0. 181 cl2 78. 0 20.0 2. 0 0. 026 0. 256 cl3 92. 0 5. 0 3. 0 0. 033 0. 054 cl4 87. 0 10. 0 3. 0 0. 034 0.115 cl5 82. 0 15. 0 3. 0 0. 037 0.183 cl6 77. 0 · 20. 0 3. 0 0. 039 -0.260 cl7 90. 0 5. 0 5. 0 0. 056 0. 056 cl8 85. 0 10. 0 5. 0 0. 059 0. 118 cl9 .80· 0 15. 0 5. 0 0. 063 0. 188 c20 75. 0 20. 0 5. 0 0. 067 0 267 c21 85. 0 5. 0 10. 0 0. 118 0. 059 c22 80, 0 10. 0 10. 0 0. 125 0. 125 c23 75. 0 15. 0 10. 0 0. 133 0. 200 C24 70. 0 20. 0 10· 0 0. 143 0. 286 c25 89.992 10. 000 0. 008 0. 00009 0. Ill c26 86.900 13. 000 0.100 0.00115 0. 150 c27 79.900 20. 000 0. 100 0. 00125 0. 250 c28 81,000 18.000 1. 000 0. 01235 0. 222 c29 81.800 18. 000 0. 200 0. 00244 0. 220 c30 84.960 15. 000 0. 040 0. 00047 0. 177 23 320647 20 0926207 (Cooking Case 4 of Qianjin Leather) (Ca-IT0) (addition of lT〇, Ca=0. 02-Sn=0. 1) Preparation purity> 99. 99% of I112O3 powder, Sn〇2 powder And a purity of 99.5% CaC〇3 powder. First, the In2〇3 powder is 73.5% by weight and the CaC〇3 powder is 26.5% by weight. The total amount is prepared to be 200 g, and the mixture is ball milled in a dry state, and is carried out in the atmosphere at 120 (TC). The calcination was carried out for 3 hours to obtain CaIm〇4 powder.

H 接著以上述CaIn2〇4粉為4. 8wt%、Iri2〇3粉為84. 3wt %、Sn〇2粉為i〇. 9wt%之比例,準備全部的量約為丨.〇kg(各 金屬原子的組成為 In=88. Oat%、Sn=10. Oat%、Ca=2. 〇at %) ’除此之外,係與Sr-ITO(Sr=0. 02)相同而製作出乾材。 此時的密度為6. 73g/cm3。 同樣的製造出具有下列表4所示的組成之濺鍍靶材。 〇 320647 200926207[表4]H, then the above-mentioned CaIn2〇4 powder is 4. 8wt%, Iri2〇3 powder is 84. 3wt%, Sn〇2 powder is i〇. 9wt% ratio, the total amount is about 丨.〇kg (each metal The composition of the atom is In=88. Oat%, Sn=10. Oat%, Ca=2. 〇at %) 'In addition to this, the dry material is produced in the same manner as Sr-ITO (Sr=0. 02). . The density at this time was 6.73 g/cm3. A sputtering target having the composition shown in Table 4 below was also produced. 〇 320647 200926207 [Table 4]

樣本No. 組成(at% ) 對I n : 1 mo 1之比例[mo 1 ] In Sn Ca Ca Sn dl 94. 5 5. 0 0· 5 0. 005 0. 053 d2 89. 5 10. 0 0. 5 0. 006 0. 112 d3 84. 5 15. 0 0· 5 0. 006 0. 178 d4 79, 5 20. 0 0· 5 0. 006 0. 252 d5 94. 0 5. 0 1. 0 0. Oil 0. 053 d6 89. 0 10. 0 1_ 0 0. 011 0. 112 d7 84. 0 15. 0 1. 0 0. 012 0. 179 d8 79. 0 20. 0 1.0 0. 013 0. 253 d9 93. 0 5. 0 2. 0 0. 022 0. 054 dlO 88. 0 10. 0 2. 0 0. 023 0. 114 dll 83. 0 15. 0 2. 0 0. 024 0. 181 dl2 78. 0 20. 0 2. 0 0. 026 .0.256 dl3 92. 0 5. 0 3. 0 0. 033 0. 054 dl4 87. 0 10. 0 3. 0 0. 034 0. 115 dl5 82. 0 15. 0 3· 0 0. 037 0. 183 dl6 · 77. 0 20. 0 3. 0 -_ 0 039 0. 260 dl7 90. 0 5. 0 5. 0 0. 056 0. 056 dl8 85. 0 10. 0 5. 0 0. 059 0. 118 dl9 80. 0 15. 0 5. 0 0. 063 0. 188 d20 75. 0 20. 0 5. 0 0. 067 0. 267 d21 85. 0 5. 0 10. 0 0. 118 0. 059 d22 80. 0 10. 0 10. 0 0. 125 0. 125 d23 75. 0 15. 0 10. 0 0.133 0. 200 d24 70. 0 20. 0 10. 0 0. 143 0. 286 d25 94.800 5. 000 0. 200 0.002110 0.052743 d26 86.950 13. 000 0. 050 0.000575 0. 149511 d27 82.900 17. 000 0. 100 0.001206 0.205066 d28 79.900 20. 000 0. 100 0.001252 0.250313 d29 90.900 9. 000 0. 100 0.001100 0·099010 d30 76.000 22.000 2. 000 0.026316 0. 289474 25 320647 200926207 (濺鍍靶材參考製造例l)(Mg-iT〇) (添加 Mg 之 ΙΤ0、Mg=0. 02、Sn=0. 1) &準備純度>99.9W的In2〇3粉、·粉、以及碳酸氯 氧化鎂粉(MgO含有量為41. 5wt%)。 首先,以In2〇3粉為87.3wt%及碳酸氫氧化鎂粉為 12. 7wt%之比例,準備全部的量為2〇〇g,於乾燥狀態下進 行球磨混合,並於大氣中、於14〇〇。(:進行3小時的焙燒, 而獲得MgIm〇4粉。 接著以上述MgIn2〇4粉為4. 6wt%、In2〇3粉為84 5wt %、Sn〇2粉為10.9wt%之比例,準備全部的量約為】〇kg(各 金屬原子的組成為 In=88. Oat%、Sn=10. Oat%、Mg=2 %) ’除此之外,係與Sr-ITO(Sr=0. 02)相同而製作出歡材。 此時的密度為7. 02g/cm3。 同樣的製造出Mg=0. 0.5、Mg=0· 12之濺鑛乾材。 (濺鍍靶材參考製造例2KY-IT0) 》 (添加 Y 之 ΙΤ0、Y=〇· 〇2-Sn=〇. 1) 準備純度> 99· 99%的Iri2〇3粉、Sn〇2粉、以及純度〉 99. 99% 的 Y2(C〇3)3 · 3H2〇 粉。 首先,以 Im〇3 粉為 40. 2wt%及 Y2(C〇3)3· 3H2〇 粉為 59. 8wt%之比例,準備全部的量為200g ’於乾燥狀態下進 行球磨混合,並於大氣中、於1200°C進行3小時的焙燒, 而獲得YIn〇3粉。 接著以上述ΥΙη〇3粉為3. 6wt%、Ιη2〇3粉為85. 6wt%、 Sn〇2粉為10. 8wt%之比例’準備全部的量約為1. 〇kg(各金 26 320647 200926207 屬原子的組成為 In=88. Oat%、Sn=l 0. Oat%、Y=2. 〇at%), 除此之外’係與Sr_ITO(Sr=0.02)相同而製作出乾材。此 時的密度為7. 02g/cm3。 同樣的製造出Y=0. 05之濺鍍靶材。 (濺鍍靶材參考製造例3ΧΒ-ΙΤ0) (添加 Β 之 ΙΤ0、Β=0. 05、Sn=0. 1) 準備純度>99· 99%的Im〇3粉、Sn〇2粉、以及純声> 99. 99% 的 β2〇3 粉。 ® 首先,以Iri2〇3粉為87. 5wt%、Sn〇2粉為11· 2wt死及 Βζ〇3粉為1.3wt%之比例,準備全部的量為i.〇kg(各金屬原 子的組成為 In=85. Oat%、Sn=10. Oat%、B=5. Oat%),除 此之外,係與Sr-ITO(Sr=0. 02)相同而製作出輕材。惟燒 成溫度為1400°C。此時的密度為5. 01g/cm3。 (測試例1至13、參考例1至5及比較例1) 測試例1至13、參考例1至5及比較例1係以下列方 > 式實施。 於以上述方式所製造出靶材中,係使用下列表5的組 成之靶材,並以下列方式設定為測試例1至14、參考例1 至4及比較例1的乾材,分別將這些乾材裝設於4吋的DC 磁控濺鍍裝置,將基板温度保持在室溫(約2〇°C),且於〇 至3. Osccm之間改變氧分壓(相當於〇至1 lxi〇-2Pa) ’而 獲得測試例1至13、參考例1至5及比較例1的透明導電 膜。 27 320647 200926207 [表5] 添加 元素 氧鍵 結能量 組成(Sn均為lO.Oat%) Sr 134 測試例10 (Sr=0. 00001) 測試例1 (Sr=0.01) 測試例2 (Sr=0. 02) 測試例3 (Sr=0. 05) — Li 151 測試例Π (Li=0. 00005) — 測試例4 (Li=0.02) 測試例5 (Li=0. 05) — La 242 測試例12 (La=0. 00008) 測試例6 (La=0.01) 測試例7 (La=0. 02) — — Ca 134 — — 測試例8 (Ca=0. 02) 測試例9 (Ca=0.05) 測試例13 (Ca=0.10) Mg 155 — — 參考例1 (Mg=0.02) 參考例2 (Mg=0. 05) 參考例5 (Mg=0.12) Y 209 — — 參考例3 (Y=0. 02) 參考例4 (Y=0. 05) — B 372 — — — 比較例1 (Β=0. 05) — 濺鍍條件如下所述,藉此可獲得厚度1200A的膜。 粗材尺寸:Φ=4ίη. li=6mm 濺鐘方式:DC磁控濺鍍裝置 ❹ 排氣裝置:旋轉泵浦+冷凍真空泵浦 到達真空度:5. 3xlO_6[Pa]Sample No. Composition (at%) vs. I n : 1 mo 1 ratio [mo 1 ] In Sn Ca Ca Sn dl 94. 5 5. 0 0· 5 0. 005 0. 053 d2 89. 5 10. 0 0 5 0. 006 0. 112 d3 84. 5 15. 0 0· 5 0. 006 0. 178 d4 79, 5 20. 0 0· 5 0. 006 0. 252 d5 94. 0 5. 0 1. 0 0. Oil 0. 053 d6 89. 0 10. 0 1_ 0 0. 011 0. 112 d7 84. 0 15. 0 1. 0 0. 012 0. 179 d8 79. 0 20. 0 1.0 0. 013 0. 253 d9 93. 0 5. 0 2. 0 0. 022 0. 054 dlO 88. 0 10. 0 2. 0 0. 023 0. 114 dll 83. 0 15. 0 2. 0 0. 024 0. 181 dl2 78. 0 20. 0 2. 0 0. 026 .0.256 dl3 92. 0 5. 0 3. 0 0. 033 0. 054 dl4 87. 0 10. 0 3. 0 0. 034 0. 115 dl5 82. 0 15. 0 3· 0 0. 037 0. 183 dl6 · 77. 0 20. 0 3. 0 -_ 0 039 0. 260 dl7 90. 0 5. 0 5. 0 0. 056 0. 056 dl8 85. 0 10. 0 5. 0 0. 059 0. 118 dl9 80. 0 15. 0 5. 0 0. 063 0. 188 d20 75. 0 20. 0 5. 0 0. 067 0. 267 d21 85. 0 5. 0 10. 0 0. 118 0. 059 d22 80. 0 10. 0 10. 0 0. 125 0. 125 d23 75. 0 15. 0 10. 0 0.133 0. 200 d24 70. 0 20. 0 10. 0 0. 143 0. 286 d25 94.800 5. 000 0. 200 0.002110 0.052743 d26 86.950 13. 000 0. 050 0.000575 0. 149511 d27 82.900 17. 000 0. 100 0.001206 0.205066 d28 79.900 20. 000 0. 100 0.001252 0.250313 d29 90.900 9. 000 0. 100 0.001100 0·099010 d30 76.000 22.000 2. 000 0.026316 0. 289474 25 320647 200926207 (Sputter target reference production example 1) (Mg-iT〇) (addition of Mg ΙΤ0, Mg=0. 02, Sn=0. 1) & Preparation purity > 99.9W of In2〇3 powder, powder 5重量%。 The magnesium carbonate powder (MgO content of 41. 5wt%). First, the In2〇3 powder is 87.3wt% and the magnesium carbonate powder is 12.7% by weight, the total amount is 2〇〇g, and the ball mill is mixed in a dry state, and is in the atmosphere, at 14 Hey. (: The calcination was carried out for 3 hours, and the MgIm〇4 powder was obtained. Then, the above MgIn2〇4 powder was 4. 6 wt%, the In2〇3 powder was 84 5 wt%, and the Sn〇2 powder was 10.9 wt%, and all were prepared. The amount is approximately 〇kg (the composition of each metal atom is In=88. Oat%, Sn=10. Oat%, Mg=2%) 'In addition to this, with Sr-ITO (Sr=0. 02) The density of the material was 7. 02g/cm3. The same was produced for the sputtered dry material of Mg=0.0.5, Mg=0·12. (Spray target reference manufacturing example 2KY- IT0) 》 (Add Y ΙΤ0, Y=〇· 〇2-Sn=〇. 1) Prepare purity> 99·99% of Iri2〇3 powder, Sn〇2 powder, and purity> 99. 99% of Y2 (C〇3) 3 · 3H2 〇 powder. First, the amount of Im 〇 3 powder is 40. 2wt% and Y2 (C 〇 3) 3 · 3H2 〇 powder is 59. 8wt%, the total amount is prepared to be 200g ' The ΥΙη〇3 powder is 3.6 wt%, and the Ιη2〇3 powder is 85. The ΥΙη〇3 powder is obtained by the method of ball-milling in a dry state, and is calcined in the air at 1200 ° C for 3 hours. 6wt%, Sn〇2 powder is 10. 8wt% ratio 'preparation of all the amount is about 1. 〇kg (each gold 26 320647 200926207 genus The composition of the sub-component is In=88. Oat%, Sn=l 0. Oat%, Y=2. 〇at%), except that 'the system is the same as Sr_ITO (Sr=0.02) to produce a dry material. The density of the film was 7. 02 g / cm 3 . The sputtering target of Y = 0.05 was also produced. (Sputter target reference manufacturing example 3 ΧΒ - ΙΤ 0) (Add Β ΙΤ 0, Β = 0.05, Sn = 0. 1) Preparation of purity >99·99% of Im 〇 3 powder, Sn 〇 2 powder, and pure sound > 99. 99% of β2 〇 3 powder. First, Iri2 〇 3 powder is 87. 5wt %, Sn〇2 powder is 11. 2wt dead and Βζ〇3 powder is 1.3wt% ratio, the total amount is prepared as i.〇kg (the composition of each metal atom is In=85. Oat%, Sn=10. In addition, Oat% and B=5. Oat%) were produced in the same manner as Sr-ITO (Sr=0. 02), and the firing temperature was 1400 ° C. The density at this time was 5 01g/cm3 (Test Examples 1 to 13, Reference Examples 1 to 5, and Comparative Example 1) Test Examples 1 to 13, Reference Examples 1 to 5, and Comparative Example 1 were carried out in the following manners. Among the targets produced, the targets of the compositions of the following Table 5 were used, and the dry materials of Test Examples 1 to 14, Reference Examples 1 to 4, and Comparative Example 1 were set in the following manner. The dry materials are respectively placed in a 4 DC DC magnetron sputtering device, the substrate temperature is maintained at room temperature (about 2 〇 ° C), and the oxygen partial pressure is changed between 〇 and 3. Osccm (equivalent to 〇 The transparent conductive films of Test Examples 1 to 13, Reference Examples 1 to 5, and Comparative Example 1 were obtained to 1 lxi〇-2Pa)'. 27 320647 200926207 [Table 5] Adding element oxygen bonding energy composition (Sn is lO.Oat%) Sr 134 Test Example 10 (Sr=0. 00001) Test Example 1 (Sr=0.01) Test Example 2 (Sr=0 02) Test Example 3 (Sr=0. 05) — Li 151 Test Example Li (Li=0. 00005) — Test Example 4 (Li=0.02) Test Example 5 (Li=0. 05) — La 242 Test Example 12 (La=0. 00008) Test Example 6 (La=0.01) Test Example 7 (La=0. 02) — — Ca 134 — — Test Example 8 (Ca=0. 02) Test Example 9 (Ca=0.05) Test Example 13 (Ca = 0.10) Mg 155 - Reference Example 1 (Mg = 0.02) Reference Example 2 (Mg = 0.05) Reference Example 5 (Mg = 0.12) Y 209 - Reference Example 3 (Y = 0. 02) Reference Example 4 (Y = 0.05) - B 372 - - - Comparative Example 1 (Β = 0.05) - The sputtering conditions were as follows, whereby a film having a thickness of 1200 A was obtained. Thick material size: Φ=4ίη. li=6mm Splash clock method: DC magnetron sputtering device ❹ Exhaust device: rotary pump + freezing vacuum pump reaching vacuum degree: 5. 3xlO_6[Pa]

Ar 壓力:4. OxlO_1[Pa] 氧壓力:0 至 1. lxl(T2[Pa] 水壓力:5. OxlO_6[Pa] 基板温度:室溫 濺鍍電力:130W(電力密度為1.6W/cm2)Ar pressure: 4. OxlO_1 [Pa] Oxygen pressure: 0 to 1. lxl (T2 [Pa] Water pressure: 5. OxlO_6 [Pa] Substrate temperature: room temperature Sputtering power: 130 W (power density is 1.6 W/cm2)

使用基板:康寧#1737(液晶顯示器用玻璃)t=0. 8mm 測定出於各氧分壓中成膜之膜的電阻率,以及於250°C 28 320647 200926207 中對各膜進行退火後的電阻率。結果如第1圖至 12圖所Substrate used: Corning #1737 (glass for liquid crystal display) t=0. 8 mm The resistivity of the film formed by film formation in each oxygen partial pressure, and the resistance after annealing each film at 250 ° C 28 320647 200926207 rate. The results are shown in Figures 1 to 12.

從這些結果中可得知,於任一 情況下均料最適氣分 此外,於測試例1至9、參考例1至5中,6 至溫说卩 之最適氧分壓,係與於25(TC退火後電阻率成為最取興 膜時的氧分壓為不同。表6係表示室溫成膜^最適成 壓,以及於250°C退火後電阻率成為最低之成膜時氣刀 ® 壓。因此,於測試例1至9、參考例1至5中,首先於、。分 退火後電阻率為最低之成膜時的氧分壓中進行成媒\ ° C 再於250°C中進行退火之方式,可獲得電阻率為最低之 另一方面,於氧鍵結能量較大之比較例1中可知,成 膜時雖可獲得非晶膜,但於250°C的退火中,最適氧分墨 並未產生變化,而未產生結晶化。此外,於添加量過少之 測試例10至12中可知,無法獲得非晶膜,且最適氧分壓 © 未產生變化。此外,於添加量過多之測試例13中,成膜時 可得非晶膜,且於250°C的退火中,雖然最適氧分壓產生 變化’但未產生結晶化。 於下列表6中,係以〇表示出最適氧分壓產生變化 者’以X表示出最適氧分壓未產生變化者。 (測試例1) 於測試例1至13、參考例1至5及比較例1中,將於 室溫成膜的最適氧分壓中所製造出之透明導電膜,分別裁 切為13mm見方的大小,並於大氟環境中’於25(TC中對這 29 320647 200926207 ^ 些樣本進行1小時的退火。第13圖至第19圖係顯示退火 前後的薄膜XRD圖案之圖。此外,關於測試例1至4、參 考例1至4及比較例1,針對室溫成膜時以及於250°C退火 後之結晶狀悲’以非晶質為a ’以結晶為c,並將这些結果 表示在表6中。 結果可確認出,於室溫成膜之測試例1至9及參考例 1至4時,於成膜時為非晶膜,但於250°C中進行1小時的 退火中,係產生結晶化。另一方面,於添加氧鍵結能量較 ❹ 大的B之比較例1、或添加量較多之測試例13、參考例5 中,即使於成膜時為非晶膜,但於250°C的退火後亦不會 產生結晶化。此外,這些於300°C的退火後亦不會產生結 晶化。此外,於添加量較少之測試例10至12中,於成膜 時亦產生結晶化,而確認出無法使非晶膜成膜。 (測試例2) 測定出成膜後的各透明導電膜於室溫成膜時的最適氧 0 分壓成膜時之電阻率ρ (Ω . cm)。此外,亦測定出對於測 試例1之退火後的樣本所測定之電阻率。這些結果係表示 在表6中。 從該結果中可確認出,於測試例1至12、參考例1至 4及比較例1時,電阻率為1(Τ4Ω · cm左右。 然而,於測試例13、參考例5中,可知電阻率成為1(Γ3 Ω · CID左右之南電阻。 (測試例3) 於測試例1至13、參考例1至5及比較例1中,將於 30 320647 200926207 室溫成膜時的最適氧分壓中所製造出之透明導電膜,分別 裁切為13mm見方的大小,並測定該透射光譜。此外,對於 測試例1之退火後的膜,同樣亦測定該透射光譜樣本。第 20圖至第26圖係顯示這些結果。此外,表6係表示出各 測試例1至13、參考例1至5及比較例1之退火後的平均 透射率。 從這些結果中可得知,於成膜後且進行退火前之透射 光譜,可藉由在250°C中進行1小時的退火,使吸收端往 ® 低波長側移位而改善色調。 (測試例4) 於測試例1至13、參考例1至5及比較例1中,將於 室溫成膜的最適氧分壓中所製造出之透明導電膜,分別裁 切為10x50丽的大小,並使用ITO-05NC草酸系,關東化學 (股)製)(草酸濃度50g/L)作為蝕刻液,而確認出於溫度 30°C中是否可予以蝕刻。此外,對於測試例1之退火後的 0 樣本,亦同樣進行確認。以可蝕刻為「〇」,不可蝕刻為「X」 而將這些結果表示在表6中。 從該結果中可得知,非晶膜雖然能夠以弱酸性的蝕刻 劑進行姓刻,但是經結晶化的膜無法進行#刻。 31 320647 200926207 [表6] ο ο ο —ο ο ο ~5~ ΙΟΙ ο X X X ο ο Ιο ο ο ο ο Ιο I ~5~ 【x^oiIt can be seen from these results that the optimum gas fraction is obtained in either case. In addition, in Test Examples 1 to 9, and Reference Examples 1 to 5, the optimum oxygen partial pressure of 6 to the temperature is 2525 ( The oxygen partial pressure at the time of the TC annealing is the most suitable for the film. Table 6 shows the optimum pressure at room temperature, and the gas knife® pressure at the lowest filming rate after annealing at 250 °C. Therefore, in Test Examples 1 to 9 and Reference Examples 1 to 5, first, after the annealing, the resistivity was the lowest in the oxygen partial pressure at the time of film formation, and the polymerization was carried out at ° ° C and then at 250 ° C. In the case of annealing, the resistivity was the lowest, and in Comparative Example 1 in which the oxygen bonding energy was large, it was found that an amorphous film was obtained at the time of film formation, but in the annealing at 250 ° C, the optimum oxygen was obtained. In addition, in the test examples 10 to 12 in which the amount of addition was too small, it was found that the amorphous film could not be obtained, and the optimum oxygen partial pressure © did not change. In Test Example 13, an amorphous film was obtained at the time of film formation, and in the annealing at 250 ° C, although the optimum oxygen partial pressure was changed 'But no crystallization occurs. In the following Table 6, the optimum oxygen partial pressure change is indicated by '', and the optimum oxygen partial pressure is not changed by X. (Test Example 1) In Test Examples 1 to 13 In Reference Examples 1 to 5 and Comparative Example 1, the transparent conductive film produced by forming the optimum oxygen partial pressure at room temperature was cut into a size of 13 mm square and in a large fluorine environment. (The samples were annealed for 1 hour for these samples in TC. Figures 13 to 19 show the pattern of the film XRD pattern before and after annealing. Further, regarding Test Examples 1 to 4, Reference Examples 1 to 4 and In Comparative Example 1, the crystallinity of the film formation at room temperature and after annealing at 250 ° C was abundance of a 'crystals as c', and the results are shown in Table 6. As a result, it was confirmed that In Test Examples 1 to 9 and Reference Examples 1 to 4 at room temperature film formation, an amorphous film was formed at the time of film formation, but crystallization occurred in annealing at 250 ° C for 1 hour. In Comparative Example 1 in which B having a larger oxygen bonding energy is added, or in Test Example 13 and Reference Example 5 in which the amount of addition is large, even in the case of The film was an amorphous film, but it did not crystallize after annealing at 250 ° C. Further, these were not crystallized after annealing at 300 ° C. Further, in Test Example 10 in which the amount of addition was small In the case of 12, crystallization was also formed during film formation, and it was confirmed that the amorphous film could not be formed. (Test Example 2) The optimum oxygen content of each transparent conductive film after film formation at room temperature was measured. The specific resistance ρ (Ω·cm) at the time of film formation was measured. Further, the resistivity measured for the sample after annealing in Test Example 1 was also measured. These results are shown in Table 6. From the results, it was confirmed In Test Examples 1 to 12, Reference Examples 1 to 4, and Comparative Example 1, the specific resistance was about 1 (Τ4 Ω·cm). However, in Test Example 13 and Reference Example 5, it was found that the specific resistance was 1 (Γ3 Ω · south resistance of CID. (Test Example 3) In Test Examples 1 to 13, Reference Examples 1 to 5, and Comparative Example 1, The transparent conductive film produced in the optimum oxygen partial pressure at the time of film formation at room temperature of 30 320647 200926207 was cut into a size of 13 mm square, and the transmission spectrum was measured. Further, the film after annealing of Test Example 1 was measured. The transmission spectrum samples were also measured. These results are shown in Figures 20 to 26. In addition, Table 6 shows the average transmission after annealing of each of Test Examples 1 to 13, Reference Examples 1 to 5, and Comparative Example 1. From these results, it is understood that the transmission spectrum after the film formation and before the annealing can be performed by annealing at 250 ° C for 1 hour to shift the absorption end toward the low wavelength side to improve the color tone. (Test Example 4) In Test Examples 1 to 13, Reference Examples 1 to 5, and Comparative Example 1, the transparent conductive film produced in the optimum oxygen partial pressure film formed at room temperature was cut into 10 x 50 Å, respectively. Size, and use ITO-05NC oxalic acid system, Kanto Chemical Co., Ltd.) (oxalic acid concentration 50g / L) As an etching solution, it was confirmed whether or not etching was possible at a temperature of 30 °C. Further, the 0 samples after the annealing of Test Example 1 were also confirmed in the same manner. These results are shown in Table 6 by etching to "〇" and not etching to "X". From the results, it can be seen that although the amorphous film can be imprinted with a weakly acidic etchant, the crystallized film cannot be engraved. 31 320647 200926207 [Table 6] ο ο ο -ο ο ο ~5~ ΙΟΙ ο X X X ο ο Ιο ο ο ο ο Ι I I I~5~ [x^oi

E 〇〇 C0 α> β> ί5 (pss ^Joe】 【α^β】 -¾¾^ 【Eo.s—olx】一 ~ s s •守 s oz 07 °-0 6·® ζ_,,ρ Ύζ s '•奸产 β1-· ε·ε 8·α ΤΓ S.I 'ι ss isE 〇〇C0 α>β> ί5 (pss ^Joe) [α^β] -3⁄43⁄4^ [Eo.s_olx] one~ ss • s oz oz 07 °-0 6·® ζ_,,ρ Ύζ s ' • Adultery β1-· ε·ε 8·α ΤΓ SI 'ι ss is

i US 1-¾ 4 Εραϋ s> s s s os s ·寸 5 6 Γ sh·' ^'£, μ·'「 5 Vc ΜΜ 6叫 【ί 2 oi US 1-3⁄4 4 Εραϋ s> s s s os s · inch 5 6 Γ sh·' ^'£, μ·'" 5 Vc ΜΜ 6 call [ί 2 o

OO

O o o oO o o o

O o o ιο ιο1 Μ Μ Ν οι ¾^ i i soo soo 宙0ΌO o o ιο ιο1 Μ Μ Ν οι 3⁄4^ i i soo soo 宙0Ό

UOO ci §.0 sooUOO ci §.0 soo

S0.0goo 500 sro g1§ln Ι§1ΌS5 ioopo ioi UOOOOO -¾^ o.l 0~ os 0~ sS0.0goo 500 sro g1§ln Ι§1ΌS5 ioopo ioi UOOOOO -3⁄4^ o.l 0~ os 0~ s

OZOZ

OSOS

s s0.Z cm Q.S 0n ulol I 800.0 1.0 I cs om 0.0- o<n 0.0- 0.0- cms s0.Z cm Q.S 0n ulol I 800.0 1.0 I cs om 0.0- o<n 0.0- 0.0- cm

I 0ΌΙ- 0.0- ΟΌΙ 0.0^ ΟΌΙ om Qg 0.07 o.g 00001 000.CH 00001 clI 0ΌΙ- 0.0- ΟΌΙ 0.0^ ΟΌΙ om Qg 0.07 o.g 00001 000.CH 00001 cl

OSOS

OS 0-8 0.88 0S8 0.68OS 0-8 0.88 0S8 0.68

OS 0.88 008 OS 0S8 o.g og 1 0.5 0 08 Is S6.S 66i 」s 」s Π □ «0 «0 32 ls1 m2 μβι hl Π us 5.?wOS 0.88 008 OS 0S8 o.g og 1 0.5 0 08 Is S6.S 66i s s s Π □ «0 «0 32 ls1 m2 μβι hl Π us 5.?w

SO=JS §.?w so=n soo=n 5Ό=™Ί SOHel SO="o soneo g.0=8 i=rl zo.o=A 2-0=82 gonws Sts l5,0=go 800000=3 i=n 5§ontw s f杳咿砵I τ j_ 71 - u 0- ® w 32 320647 200926207 ' (含有Sr之組成的透明導電膜) 使用上述所製造之具有第1表所示的組成之乾材,分 別將這些靶材裝設於4吋的DC磁控濺鍍裝置,將基板溫度 保持在室溫(約20°C),且於〇至3. Osccm之間改變氧分壓 (相當於0至1. lxl(T2Pa),而獲得各組成的透明導電膜。 濺鍍條件如了所述,藉此可獲得厚度1200A的膜。 輕材尺寸:φ=4ίη· t=6mm 濺鍍方式:DC磁控濺鍍裝置 ® 排氣裴置:旋轉泵浦+冷凍真空泵浦 到達真空度:5. 3x10—5[Pa]SO=JS §.?w so=n soo=n 5Ό=TMΊ SOHel SO="o soneo g.0=8 i=rl zo.o=A 2-0=82 gonws Sts l5,0=go 800000 =3 i=n 5§ontw sf杳咿砵I τ j_ 71 - u 0- ® w 32 320647 200926207 ' (Transparent conductive film containing the composition of Sr) The composition shown in the first table manufactured using the above is used. Dry material, respectively, these targets are installed in a 4 DC DC magnetron sputtering device, the substrate temperature is maintained at room temperature (about 20 ° C), and the oxygen partial pressure is changed between 〇 to 3. Osccm (equivalent A transparent conductive film of each composition was obtained at 0 to 1. lxl (T2Pa). The sputtering conditions were as described, whereby a film having a thickness of 1200 A was obtained. Light material size: φ = 4 ίη · t = 6 mm sputtering method : DC magnetron sputtering device ® exhaust gas arrangement: rotary pump + freezing vacuum pump to reach vacuum: 5. 3x10 - 5 [Pa]

Ar 壓力·· 4. OxlOjPa] 氧壓力:0 至 1.1x10—2[Pa] 水壓力:5. 0xl0_5[Pa] 基板溫度:室溫 錢鍍電力:130W(電力密度為1.6W/cm2) ❹ 使用基板:康寧#1737(液晶顯示器用玻璃)t=0.8mm 在此’雖然室溫成膜的最適氧分壓、與於25(TC退火 後電阻率成為最低之成膜時的氧分壓為不同之樣本居多, 但並未因組成的不同使最適氧分壓產生變化。 於下列表7中,表示出最適氧分壓產生變化者為〇, 最適氧分壓未產生變化者為X。 此外,將各組成之於室溫成膜的最適氧分壓中所製造 出之透明導電膜,分別裁切為13mm見方的大小,並於大氣 環境中,於25(TC中對這些樣本進行1小時的退火,針對 33 320647 200926207 室溫成膜時以及於250°C退火後之結晶狀態,以非晶質為 a,以結晶為c,並將這些結果表示在表7中。 此外’測定各組成的結晶化溫度’並顯示於表7。会士 晶化溫度為於100°C成膜後產生結晶化之溫度,於1 〇〇°c的 成膜中無法成為非晶膜者,係設定為未滿l〇〇°c。 ❹ 再者,測定出成膜的各透明導電膜於進行室溫成膜時 的最適氧分壓成膜之後進行退火而予以結晶化之樣本的電 阻率ρ (Ω _ cm)。這些結果係表示在表7中。 此外,將於室溫成膜的最適氧分壓中所製造出之透明 導電膜,分職切為13mm見方的大小,對退火後的膜測定 透射光譜。退火後的平均透射率係表示在表7中。 此外,將於室溫成膜的最適氧分壓製 ❹ 結晶化的透明導電膜,分別裁切為動《ΤΙ Γ5〇==Ν(草酸系’關東化學(股)製狀 ㈤㈣心溫度阶切侧率⑷ 者設定為❿’除此之外者為▲ i _C中可予以結晶化 從該結果中可得知,“加 成膜時,係成為非晶膜, 素為Sr盼’於未滿loot: 時,結晶化的細成範圍,係二=^3,中進行退火 y(莫耳)’位於以Sr對’、、、錫對1莫耳的銦之莫耳比 (-4.1xl〇-2Ln(x)-9,2xl〇-2的銦之莫耳比X所表示之 值以上且為(-2.9χ1〇^η(Χ) 320647 200926207 -6.7x10—〇之值以下的範圍。 此外,於此範圍中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以Sr對1莫耳的銦之莫耳比X所表示之(-8. 2 xl(T2Ln(x)-l. 9x101以上的範圍中,當退火溫度未滿 200°C時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 莫耳比y為0. 15莫耳以上0. 28莫耳以下時,於250°C的 ❹ 退火後之比電阻為3. 0χ10_4Ω · cm以下。Ar pressure ·· 4. OxlOjPa] Oxygen pressure: 0 to 1.1x10-2 [Pa] Water pressure: 5. 0xl0_5 [Pa] Substrate temperature: room temperature, money plating power: 130W (power density is 1.6W/cm2) ❹ Use Substrate: Corning #1737 (glass for liquid crystal display) t=0.8 mm Here, the optimum oxygen partial pressure of film formation at room temperature is different from the partial pressure of oxygen at 25 (the lowest resistivity after TC annealing). The sample is mostly, but the optimum oxygen partial pressure is not changed due to the difference in composition. In the following Table 7, it is shown that the optimum oxygen partial pressure change is 〇, and the optimum oxygen partial pressure is not changed. The transparent conductive films produced by the optimum oxygen partial pressure of each composition at room temperature were cut into 13 mm squares, and these samples were subjected to 1 hour in 25 (TC) in an atmospheric environment. Annealing, for 33 320647 200926207 at room temperature film formation and after annealing at 250 ° C, the amorphous phase is a, the crystal is c, and the results are shown in Table 7. The crystallization temperature 'is shown in Table 7. The crystallization temperature of the Fellow is after film formation at 100 ° C The temperature at which the crystallization is formed cannot be an amorphous film in the film formation at 1 〇〇 ° C, and is set to be less than 10 ° C. ❹ Further, each transparent conductive film formed into a film is measured in a chamber. The optimum oxygen partial pressure at the time of film formation is the resistivity ρ (Ω _ cm) of the sample which is annealed and crystallized, and these results are shown in Table 7. In addition, the optimum oxygen which will be formed at room temperature is formed. The transparent conductive film produced in the partial pressure was divided into 13 mm squares, and the transmission spectrum was measured on the annealed film. The average transmittance after annealing is shown in Table 7. In addition, film formation at room temperature was performed. The most suitable oxygen content is pressed and the crystallization of the transparent conductive film is cut into the dynamic "ΤΙ Γ 5〇 == Ν (oxalic acid system 'Kanto Chemical (stock)) (5) (four) heart temperature step side rate (4) is set to ❿ ' In addition, it can be crystallized in ▲ i _C. From the results, it can be seen that "in the case of addition film, it is an amorphous film, and when the element is Sr is expected to be in the case of less than loot: crystallization is fine. Range, system two = ^ 3, in the annealing y (mole) 'located in Sr vs. ',,, tin to 1 mol of indium The ear ratio (-4.1xl〇-2Ln(x)-9, 2xl〇-2 indium molar ratio X is above the value and is (-2.9χ1〇^η(Χ) 320647 200926207 -6.7x10—〇 In addition, in this range, especially in the tin to 1 molar indium molar ratio y (mole) is expressed in Sr to 1 mol of indium molar ratio X (- 8. 2 xl (T2Ln(x)-l. 9x101 or more, when the annealing temperature is less than 200 °C, it cannot be crystallized, so it is preferable to consider it at 200° when considering the film forming process. The range of crystallization in the annealing above C. Further, in the above range, it is more preferable that when the molar ratio y of tin to 1 mol of indium is 0.15 m or more and 0.2 m or less, the specific resistance after annealing at 250 ° C It is 3. 0 χ 10_4 Ω · cm or less.

35 320647 200926207 [表7] 樣本 No. 對 In : lmol 之 比例[mol] 最適氧 分壓 成膜時的 結晶性 結晶化 溫度 退火後的 比電阻 钱刻率 退火後 的平均 透射率 Sr Sn [〇/χ] [a/c] rc] [Ω · cm] [A/sec] [%] al 0. 005 0.053 X C <100 2.8 X 92.2 a2 0.006 0.112 X C <100 1.9 X 90.1 a3 0. 006 0.178 〇 a 150 1.8 3.6 91.2 a4 0. 006 0. 252 〇 a 200 2.3 2.4 86.8 a5 0.011 0.053 X c <100 3.2 X 93.1 a6 0. Oil 0.112 〇 a 100 2.1 5.7 96.9 a7 0.012 0.179 〇 a 150 1.8 3.6 95.2 a8 0.013 0.253 〇 a 200 2.4 2.4 90.0 a9 0. 022 0.054 X c <100 4.8 X 91.4 alO 0.023 0.114 〇 a 150 2.6 5.8 93.5 all 0.024 0.181 〇 a 200 2.2 3.7 94.2 al2 0.026 0.256 〇 a 250 2.8 2.5 90.3 al3 0.033 0.054 〇 a 100 5 9.9 90.1 al4 0.034 0.115 〇 a 200 3.2 6.1 92.9 al5 0.037 0.183 〇 a 250 2.7 4.0 93.1 al6 0.039 0. 260 〇 a 300 3.4 2.4 88.4 al7 0.056 0.056 〇 a 200 8.1 9.5 87.4 al8 0.059 0.118 〇 a 300 6.3 5.9 91.1 al9 0.063 0.188 〇 a 300< 6.5 4.1 88.8 a20 0.067 0.267 〇 a 300< 7.8 2.5 84.1 a21 0.118 0.059 〇 a 300< 15.2 11.0 84.2 a22 0.125 0.125 〇 a 300 < 13.1 7.2 84.3 a23 0.133 0. 200 〇 a 300< 10.5 5.3 83.6 a24 0.143 0.286 〇 a 300< 13.0 2.7 83.1 a25 0. 000011 0,111112 X c <100 1.8 X 97.5 a26 0.000589 0. 176574 X c <100 1.8 X 96.4 a27 0.001221 0. 219780 〇 a 150 2.1 3.0 93.8 a28 0.012195 0.207317 〇 a 200 2.2 3.2 94.3 a29 0.001112 0.111235 X c <100 1.9 X 91.0 a30 0.026316 0. 289474 〇 a 300 4.6 1.6 88.735 320647 200926207 [Table 7] Sample No. The ratio of In : lmol [mol] The optimum oxygen permeability after annealing at the crystalline crystallization temperature after annealing. The average transmittance after annealing is Sr Sn [〇 /χ] [a/c] rc] [Ω · cm] [A/sec] [%] al 0. 005 0.053 XC <100 2.8 X 92.2 a2 0.006 0.112 XC <100 1.9 X 90.1 a3 0. 006 0.178 〇a 150 1.8 3.6 91.2 a4 0. 006 0. 252 〇a 200 2.3 2.4 86.8 a5 0.011 0.053 X c <100 3.2 X 93.1 a6 0. Oil 0.112 〇a 100 2.1 5.7 96.9 a7 0.012 0.179 〇a 150 1.8 3.6 95.2 A8 0.013 0.253 〇a 200 2.4 2.4 90.0 a9 0. 022 0.054 X c <100 4.8 X 91.4 alO 0.023 0.114 〇a 150 2.6 5.8 93.5 all 0.024 0.181 〇a 200 2.2 3.7 94.2 al2 0.026 0.256 〇a 250 2.8 2.5 90.3 al3 0.033 0.054 〇a 100 5 9.9 90.1 al4 0.034 0.115 〇a 200 3.2 6.1 92.9 al5 0.037 0.183 〇a 250 2.7 4.0 93.1 al6 0.039 0. 260 〇a 300 3.4 2.4 88.4 al7 0.056 0.056 〇a 200 8.1 9.5 87.4 al8 0.059 0.118 〇 a 300 6.3 5.9 91.1 al9 0.063 0.188 〇a 300< 6.5 4.1 88.8 a2 0 0.067 0.267 〇a 300< 7.8 2.5 84.1 a21 0.118 0.059 〇a 300< 15.2 11.0 84.2 a22 0.125 0.125 〇a 300 < 13.1 7.2 84.3 a23 0.133 0. 200 〇a 300< 10.5 5.3 83.6 a24 0.143 0.286 〇a 300< 13.0 2.7 83.1 a25 0. 000011 0,111112 X c <100 1.8 X 97.5 a26 0.000589 0. 176574 X c <100 1.8 X 96.4 a27 0.001221 0. 219780 〇a 150 2.1 3.0 93.8 a28 0.012195 0.207317 〇a 200 2.2 3.2 94.3 a29 0.001112 0.111235 X c <100 1.9 X 91.0 a30 0.026316 0. 289474 〇a 300 4.6 1.6 88.7

36 320647 200926207 (含有Li之.組成的透明導電膜) 使用上述所製造之具有表2所示的組成之乾材,分別 將這些乾材襄設於4对的DC磁控濺鑛裝置’將基板溫度保 持在室溫(約20°C),且於〇至3. 〇SCCm之間改變氧分壓(相 當於0至1.1><1()-2?3)’而獲得各組成的透明導電膜。 藏鑛條件如下所述’藉此可獲得厚度1200A的膜。 把材尺寸:φ=4ίη. t=6mm 濺鑛方式:DC磁控濺鑛裝置 Θ 排氣裝置:旋轉系浦+冷凉真空泵浦 到達真空度:5. 3xlO_5[Pa]36 320647 200926207 (Transparent Conductive Film Containing Li. Composition) Using the dry materials of the composition shown in Table 2 manufactured above, these dry materials were respectively placed in a 4-pair DC magnetron sputtering apparatus. The temperature was maintained at room temperature (about 20 ° C), and the partial pressure of oxygen (equivalent to 0 to 1.1 < 1 () - 2 ? 3) was changed between 〇 and SCCm to obtain each composition. Transparent conductive film. The ore-containing conditions are as follows. Thus, a film having a thickness of 1200 A can be obtained. Material size: φ=4ίη. t=6mm Splashing method: DC magnetron splashing device Θ Exhaust device: rotating system + cold vacuum pump reaching vacuum degree: 5. 3xlO_5[Pa]

Ar 壓力:4. Oxl〇-1[Pa] 氧壓力:〇 至 1. lx10_2[Pa] 水壓力:5. 0x10—5[Pa] 基板溫度:·室溫 濺鍍電力:130W(電力密度為1.6W/cm2) Ο 使用基板:康寧#1737(液晶顯示器用玻璃)t=0. 8mm 在此’雖然室溫成膜的最適氧分壓、與於25〇〇c退火 後電阻率成為最低之成膜時的氧分壓為不同之樣本居多, 但並未因組成的不同使最適氧分壓產生變化。 於下列表8中,表示出最適氧分壓產生變化者為〇, 最適氧分壓未產生變化者為X。 此外,將各組成之於室溫成膜的最適氧分壓中所製造 出之透明導電膜,分別裁切為13mm見方的大小,並於大氣 環境中’於250°C中對這些樣本進行1小時的退火,針對 37 320647 200926207 室溫成膜時以及於250°C退火後之結晶狀態,以非晶質為 a,以結晶為c,並將這些結果表示在表8中。. 此外,測定各組成的結晶化溫度,並顯示於表8。結 晶化溫度為於10 0 °C成膜後,產生結晶化之溫度,於1 〇 〇 °c 的成膜中無法成為非晶膜者,係設定為未滿l〇(TC。 再者,測定成膜的各透明導電膜於進行室溫成膜時的 最適氧分壓成膜之後進行退火而予以結晶化之樣本的電阻 率Ρ (Ω · cm)。這些結果係表示在表8中。 ❹ 此外’將於室溫成膜的最適氧分壓中所製造出之透明 導電膜,分別裁切為13mm見方的大小,對退火後的膜測定 透射光譜。退火後的平均透射率係表示在表8中。 此外,將於室溫成膜的最適氧分壓中所製造出之進行 退火而予以結晶化的透明導電臈,分別裁切為1〇χ5〇腿的 大小,並使用ΙΤΟ-05Ν(草酸系,關東化學(股.)製)(草酸濃 度50g/L)作為蝕刻液,測定出於溫度3{Γ(:中的蝕刻率 ❹ (A/sec)。結果如表8所示。 、西這些結果如第28圖所示。圖中,將於未滿⑽。c成膜 '皿^可形成非晶膜,且於⑽至編口可予以結晶化 者没疋為籲,除此之外者為^。 從該結果中可得知,當添加元素為Li時,於未滿1〇(rc 成膜時’係成為非晶膜,之後於咖至3G『C中進行退火 時:結晶化的組成範圍,係成為錫對1莫耳的錮之莫耳比 莫耳)-位於以Ll _1莫耳的銦之莫耳比χ所表示之 1. 6x10 Ln(x)-5. 9xl(rl)之值以上且為㈠.⑴ 320647 38 200926207 ' -5. 7x10’之值以下的範圍。 此外,於此範圍中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以Li對1莫耳的銦之莫耳比X所表示之(-7. 0 xlO—2Ln(x)-1.6xlO_1)以上的範圍中,當退火溫度未滿 200°C時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 莫耳比y為0. 28莫耳以下,且Li對1莫耳的銦之莫耳比 ® X為0. 015以下時,於250°C的退火後之比電阻為3. 0x10—4 Ω · cm以下。 ❹ 39 320647 200926207 [表8] 樣本 No. 對 In · lmol 之比例[mol] 最適 氧分壓 成膜時的 結晶性 結晶化 溫度 退火後的 比電阻 姓刻率 退火後 的平均 透射率 Li Sn [〇/χ] [a/c] [°C] [Ω · cm] [A/sec] [%] bl 0.005 0.053 X C <100 2.7 X 92.1 b2 0.006 0.112 X C <100 1.8 X 90.1 b3 0.006 0.178 X C <100 1.8 X 91.2 b4 0.006 0.252 〇 a 200 1.9 2.4 86.8 b5 0.011 0.053 X c <100 3.6 X 93.1 b6 0.011 0.112 X c <100 2.7 X 96.9 b7 0.012 0.179 〇 a 200 2.2 3.4 95.2 b8 0.013 0. 253 〇 a 250 2.4 2.4 90.0 b9 0,022 0.054 〇 a 100 5.6 8.2 91.4 blO 0.023 0.114 〇 a 200 4.6 6.1 93.5 bll 0.024 0.181 〇 a 250 4.2 3.6 94.2 bl2 0.026 0.256 〇 a 300 4.9 2.5 90.3 M3 0.033 0.054 〇 a 150 7.2 8.2 90.1 bl4 0.034 0.115 〇 a 200 5.8 5.7 92.9 bl5 0. 037 0.183 〇 a 250 6.2 3.7 93.1 bl6 0.039 0.260 〇 a 300< 6.6 2.5 88.4 bl7 0. 056 0.056 〇 a 250 9.4 8.4 87.4 bl8 0. 059 0.118 〇 a 300 8.8 5.6 91.1 bl9 0. 063 0.188 〇 a 300 < 7.0 3.8 88.8 b20 0.067 0.267 〇 a 300< 9.8 2.6 84.1 b21 0.118 0.059 〇 a 300 < 16.3 9.7 84.2 b22 0.125 0.125 〇 a 300 < 14.2 8.6 84.3 b23 0.133 0.200 〇 a 300< 12.5 6』 83.6 b24 0.143 0.286 〇 a 300< 15.6 2.8 83.1 b25 0.000056 0.111117 X c <100 1.9 X 95.6 b26 0.002415 0.205314 X c <100 2.0 X 91.8 b27 0.001112 0.111235 X c <100 1.8 X 91.5 b28 0.001178 0.176678 X c <100 1.9 X 92.1 b29 0.012195 0.207317 〇 a 200 2.2 3.0 90.3 b30 0.025000 0.225000 〇 a 250 4.6 2.8 88.3Ar pressure: 4. Oxl〇-1 [Pa] Oxygen pressure: 〇 to 1. lx10_2 [Pa] Water pressure: 5. 0x10 - 5 [Pa] Substrate temperature: · Room temperature sputtering power: 130W (power density is 1.6 W/cm2) Ο Substrate: Corning #1737 (glass for liquid crystal display) t=0. 8mm Here, the optimum oxygen partial pressure at room temperature and the lowest resistivity after annealing at 25〇〇c The partial pressure of oxygen in the membrane is mostly different, but the optimum partial pressure of oxygen is not changed due to the difference in composition. In the following Table 8, it is shown that the change in the optimum oxygen partial pressure is 〇, and the change in the optimum oxygen partial pressure is X. Further, the transparent conductive films produced by forming the optimum oxygen partial pressure of each composition at room temperature were cut into a size of 13 mm square, and the samples were subjected to 'at 250 ° C in the atmosphere> Annealing for an hour, for the crystal state of 37 320647 200926207 at room temperature and after annealing at 250 ° C, amorphous is a, and crystal is c, and these results are shown in Table 8. Further, the crystallization temperatures of the respective compositions were measured and shown in Table 8. The crystallization temperature is a temperature at which crystallization occurs after film formation at 100 ° C, and it is not possible to form an amorphous film in the film formation at 1 〇〇 ° C, and is set to less than 10 〇 (TC. Further, measurement The resistivity Ρ (Ω · cm) of the sample which was crystallized by forming the film by the optimum oxygen partial pressure at the time of film formation at room temperature, and the results are shown in Table 8. Further, the transparent conductive film produced in the optimum oxygen partial pressure film formed at room temperature was cut into a size of 13 mm square, and the transmission spectrum was measured on the annealed film. The average transmittance after annealing was expressed in the table. In addition, the transparent conductive crucible which was annealed and crystallized in the optimum oxygen partial pressure formed at room temperature was cut into a size of 1〇χ5〇 leg, and ΙΤΟ-05Ν was used. The oxalic acid system (manufactured by Kanto Chemical Co., Ltd.) (oxalic acid concentration: 50 g/L) was used as an etching solution, and the etching rate ❹ (A/sec) in the temperature of 3 {Γ(:) was measured. The results are shown in Table 8. These results are shown in Figure 28. In the figure, it will be less than (10). And (10) to the singer can be crystallized, and the others are ^. From the results, it can be known that when the additive element is Li, when it is less than 1 〇 (rc when filming) It is made into an amorphous film, and then it is etched in 3G "C: the composition range of crystallization is made of tin to 1 mole of 莫 耳 莫 莫 莫 莫 莫 莫 莫 莫 莫 莫 莫 莫 莫 莫 莫 莫The range of 1. 6x10 Ln(x)-5. 9xl(rl) expressed by Mobbi is above (1). (1) 320647 38 200926207 ' -5. The range below 7x10'. In addition, in this range , especially in the tin to 1 molar indium molar ratio y (mole) is expressed in Li to 1 mole of indium molar ratio X (-7. 0 xlO-2Ln (x)-1.6xlO_1 In the above range, when the annealing temperature is less than 200 ° C, crystallization cannot be performed. Therefore, when the film formation process is considered, it is preferable to crystallization in the annealing at 200 ° C or higher. 015以下。 In the above range, more preferably, the tin to 1 molar indium molar ratio y is 0. 28 m or less, and Li to 1 mol of indium molar ratio of X is 0. 015 or less At the time of annealing at 250 ° C The electric resistance is 3. 0x10 - 4 Ω · cm or less. ❹ 39 320647 200926207 [Table 8] Sample No. The ratio of In · lmol [mol] The optimum crystallization temperature at the time of film formation at the crystalline crystallization temperature Average Transmittance after Annealing Rate Li Sn [〇/χ] [a/c] [°C] [Ω · cm] [A/sec] [%] bl 0.005 0.053 XC <100 2.7 X 92.1 b2 0.006 0.112 XC <100 1.8 X 90.1 b3 0.006 0.178 XC <100 1.8 X 91.2 b4 0.006 0.252 〇a 200 1.9 2.4 86.8 b5 0.011 0.053 X c <100 3.6 X 93.1 b6 0.011 0.112 X c <100 2.7 X 96.9 b7 0.012 0.179 〇a 200 2.2 3.4 95.2 b8 0.013 0. 253 〇a 250 2.4 2.4 90.0 b9 0,022 0.054 〇a 100 5.6 8.2 91.4 blO 0.023 0.114 〇a 200 4.6 6.1 93.5 bll 0.024 0.181 〇a 250 4.2 3.6 94.2 bl2 0.026 0.256 〇 a 300 4.9 2.5 90.3 M3 0.033 0.054 〇a 150 7.2 8.2 90.1 bl4 0.034 0.115 〇a 200 5.8 5.7 92.9 bl5 0. 037 0.183 〇a 250 6.2 3.7 93.1 bl6 0.039 0.260 〇a 300< 6.6 2.5 88.4 bl7 0. 056 0.056 〇 a 250 9.4 8.4 87.4 bl8 0. 059 0.118 〇a 300 8.8 5.6 91.1 Bl9 0. 063 0.188 〇a 300 < 7.0 3.8 88.8 b20 0.067 0.267 〇a 300< 9.8 2.6 84.1 b21 0.118 0.059 〇a 300 < 16.3 9.7 84.2 b22 0.125 0.125 〇a 300 < 14.2 8.6 84.3 b23 0.133 0.200 〇a 300<12.5 6』 83.6 b24 0.143 0.286 〇a 300< 15.6 2.8 83.1 b25 0.000056 0.111117 X c <100 1.9 X 95.6 b26 0.002415 0.205314 X c <100 2.0 X 91.8 b27 0.001112 0.111235 X c <100 1.8 X 91.5 b28 0.001178 0.176678 X c <100 1.9 X 92.1 b29 0.012195 0.207317 〇a 200 2.2 3.0 90.3 b30 0.025000 0.225000 〇a 250 4.6 2.8 88.3

40 320647 200926207 (含有La之組成的透明導電膜) 使用上述所製造之具有表3所示的組成之靶材,分別 將這些靶材裝設於4吋的DC磁控濺鍍裝置,將基板溫度保 持在室温(約20°C),且於0至3. Osccm之間改變氧分壓(相 當於0至1. lxlO_2Pa),而獲得各組成的透明導電膜。 濺鍍條件如下所述,藉此可獲得厚度1200A的膜。 革巴材尺寸·· Φ=4ίη. t=6mm 濺鍍方式:DC磁控濺鍍裝置 ® 排氣裝置:旋轉泵浦+冷凍真空泵浦 到達真空度:5.3xl(T5[Pa]40 320647 200926207 (Transparent Conductive Film Containing La Composition) Using the above-described targets having the compositions shown in Table 3, these targets were respectively mounted on a 4 DC DC magnetron sputtering apparatus to adjust the substrate temperature. The transparent conductive film of each composition was obtained while maintaining the oxygen partial pressure (corresponding to 0 to 1. lxlO_2Pa) between 0 and 3.0 cmc. The sputtering conditions were as follows, whereby a film having a thickness of 1200 A was obtained. Dimensions of leather material ·· Φ=4ίη. t=6mm Sputtering method: DC magnetron sputtering device ® Exhaust device: rotary pump + freezing vacuum pump Reach vacuum: 5.3xl (T5[Pa]

Ar 壓力:4. OxlOlPa] 氧壓力:0 至 1. lxlO_2[Pa] 水壓力:5. Oxl(T5[Pa] 基板溫度:室溫 濺鍍電力:130WC電力密度為1.6W/cm2) p 使用基板:康寧#1737(液晶顯示器用玻璃)t=0. 8mm 在此,雖然室溫成膜的最適氧分壓、與於250°C退火 後電阻率成為最低之成膜時的氧分壓為不同之樣本居多, 但並未因組成的不同使最適氧分壓產生變化。 於下列表9中,表示出最適氧分壓產生變化者為〇, 最適氧分壓未產生變化者為X。 此外,將各組成之於室溫成膜的最適氧分壓中所製造 出之透明導電膜,分別裁切為13mm見方的大小,並於大氣 環境中,於250°C中對這些樣本進行1小時的退火,針對 41 320647 200926207 室溫成膜時以及於250t退火後之結晶狀態,以奍晶質為 a ’以結晶為c ’並將這些結果表示在表9中。 此外’測定各組成的結晶化温度,並顯示於表9。結 晶化溫度為於10(TC成膜後,產生結晶化之溫度,於1 〇〇°C 的成膜中無法成為非晶膜者,係設定為未滿1〇〇<3(:。 再者,測定出成膜的各透明導電膜於進行室溫成膜時 的最適氧分壓成膜之後進行退火而予以結晶化之樣本的電 ❹阻率Ρ (Ω · cm)。這些結果係表示在表9中。 此外,將於室溫成膜的最適氧分壓中所製造出之透明 導電膜,分別裁切為13mm見方的大小,對退火後的膜測定 透射光譜。退火後的平均透射率係表示在表9中。 此外,將於室温成膜的最適氧分壓中所製造出之進行 退火而予以結晶化的透明導電膜,分別裁切為1〇x5〇mm的 大小,並使用ITO-05N(草.酸系,關東化學(股)製草酸濃 度50g/L)作為蝕刻液,測定出於溫度3〇。〇中的蝕刻率(A/ © sec)。結果如表9所示。 、逆些結果如第29圖所示。圖中,將於未滿10(TC成膜 溫度下可形成非晶膜,且於1〇〇至3〇〇ΐ中可予以結晶化 者鼓疋為鲁,除此之外者為Α。 從該結果中可得知,當添加元素為La時,於未滿l〇〇t: 成膜時,係成為非晶膜,之後於1〇〇至中進行退火 蚪,結晶化的組成範圍,係成為錫對丨莫耳的銦之莫耳比 y位於以La對1莫耳的銦之莫耳比X所表示之(-6. 7χ10-2 Ln(x)-2· 2xlG ^之值以上且為㈠.3xl(rlLn⑴_7· 7χ1(Γΐ) 42 320647 200926207 之值以下的範圍。 此外,於此範圍中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以La對1莫耳的銦之莫耳比X所表示之(-8. 7 xl(T2Ln(x)-2. ΟχΗΓ1)以上的範圍中,當退火溫度未滿200 °C時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 莫耳比y(莫耳)為0.23莫耳以下時,於250°C的退火後之 ❹ 比電阻為3. 0χ10_4Ω · cm以下。 〇 43 320647 200926207 [表9] 樣本 No. 對 In : lmol 之比例[mol] 最適 氧分壓 成膜時的 結晶性 結晶化 溫度 退火後的 比電阻 姓刻率 退火後 的平均 透射率 La Sn [〇/x] [a/c] f°C] [Ω · cm] [A/sec] [%] cl 0.005 0.053 X C <100 2.7 X 93.2 c2 0.006 0.112 X C <100 1.9 X 98.2 c3 0.006 0.178 〇 a 150 1.8 3.4 93.4 c4 0. 006 0.252 〇 a 200 3.8 1.9 94.2 c5 0.011 0.053 X c <100 2.8 X 92. 6 c6 0.011 0.112 〇 a 100 2.0 4.8 98.3 c7 0.012 0.179 〇 a 150 1.9 3.5 92.5 c8 0.013 0.253 〇 a 250 4.0 1.8 93.2 c9 0. 022 0. 054 〇 a 100 3.0 7.6 92.1 clO 0.023 0.114 〇 a 150 2.0 4.9 98.8 ell 0. 024 0.181 〇 a 200 2.1 3.6 94.2 cl2 0.026 0.256 〇 a 250 4.2 1.8 91.2 cl3 0.033 0. 054 〇 a 150 3.1 7.4 91.9 cl4 0.034 0.115 〇 a 200 2.2 5.1 94.1 cl 5 0.037 0.183 〇 a 250 2.3 3.5 93.6 cl 6 0.039 0. 260 〇 a 300 5.9 1.9. 87.6 cl 7 0.056 0.056 〇 a 250 6.4 7.3 90.2 cl 8 0.059 0.118 〇 a 300 8.6 4.9 87.3 cl 9 0.063 0.188 〇 a 300< 7.1 3.6 85.2 c20 0.067 0.267 〇 a 300 < 9.9 2.0 83.9 c21 0.118 0.059 〇 a 300 < 9.5 8.4 82.5 c22 0.125 0.125 〇 a 300 < 14.5 6.2 84.6 c23 0.133 0. 200 〇 a 300 < 13.0 4.4 84.6 c24 0.143 0.286 〇 a 300< 16.1 2.2 82.3 c25 0. 00009 0.111 X c <100 1.9 X 98.2 c26 0.00115 0.150 X c <100 1.8 X 96.5 c27 0. 00125 0.250 〇 a 150 4.0 1.9 93.5 c28 0. 01235 0.222 〇 a 200 2.3 2.9 94.6 c29 0. 00244 0.220 〇 a 150 2.4 2.0 94,8 c30 0. 00047 0.177 X c <100 2.6 X 94.2Ar pressure: 4. OxlOlPa] Oxygen pressure: 0 to 1. lxlO_2 [Pa] Water pressure: 5. Oxl (T5 [Pa] substrate temperature: room temperature sputtering power: 130 WC power density is 1.6 W/cm 2 ) p : Corning #1737 (glass for liquid crystal display) t=0. 8mm Here, the optimum oxygen partial pressure at room temperature film formation is different from the oxygen partial pressure at the time of film formation after annealing at 250 ° C. The sample is mostly, but the optimum oxygen partial pressure is not changed due to the difference in composition. In the following Table 9, it is shown that the change in the optimum oxygen partial pressure is 〇, and the change in the optimum oxygen partial pressure is X. Further, the transparent conductive films produced by forming the optimum oxygen partial pressure of each composition at room temperature were cut into a size of 13 mm square, and the samples were subjected to an atmosphere at 250 ° C in an atmospheric environment. Annealing for an hour, for 41 320647 200926207 film formation at room temperature and after crystallization at 250t annealing, the crystal is a 'crystal crystallization' and these results are shown in Table 9. Further, the crystallization temperature of each composition was measured and shown in Table 9. The crystallization temperature is 10 (the temperature at which crystallization occurs after TC film formation, and it cannot be an amorphous film at the time of film formation at 1 〇〇 ° C, and is set to less than 1 〇〇 < 3 (:. The electric resistivity Ρ (Ω · cm) of the sample which was crystallized by the optimum oxygen partial pressure film formation at the time of film formation at room temperature was measured, and the results were expressed. Further, in Table 9, the transparent conductive film produced in the optimum oxygen partial pressure film formed at room temperature was cut into a size of 13 mm square, and the transmission spectrum was measured on the annealed film. The rate is shown in Table 9. In addition, the transparent conductive film which was produced by annealing in the optimum oxygen partial pressure at room temperature was cut into a size of 1 〇 x 5 〇 mm and used. ITO-05N (Grass. Acid, Kanto Chemical Co., Ltd. oxalic acid concentration: 50 g/L) was used as an etching solution, and the etching rate (A/© sec) at a temperature of 3 〇 was measured. The results are shown in Table 9. The results are reversed as shown in Figure 29. In the figure, an amorphous film can be formed at less than 10 (TC film formation temperature, Those who can be crystallized from 1〇〇 to 3〇〇ΐ are drums as Lu, and others are Α. From the results, it can be known that when the additive element is La, it is less than l〇〇t : When film formation, it becomes an amorphous film, and then it is annealed at 1 〇〇 to 中, and the composition range of crystallization is the molar ratio y of indium to tin in the range of La to 1 mol. The molar ratio of indium to X is expressed by the value of (-6. 7χ10-2 Ln(x)-2· 2xlG ^ and is equal to or less than the value of (1). 3xl (rlLn(1)_7·7χ1(Γΐ) 42 320647 200926207. In this range, especially in the tin to 1 molar indium molar ratio y (mole) is expressed in La to 1 molar indium molar ratio X (-8. 7 xl (T2Ln ( x)-2. ΟχΗΓ1) In the above range, when the annealing temperature is less than 200 °C, it cannot be crystallized. Therefore, when considering the film forming process, it is preferable to apply it in annealing at 200 °C or higher. Further, in the above range, it is more preferable that when the molar ratio of tin to 1 mol of indium molar ratio y (mole) is 0.23 mol or less, the ratio after annealing at 250 ° C The resistance is 3. 0χ10_4 Ω · cm or less. 〇43 320647 200926207 [Table 9] Sample No. Ratio of In : lmol [mol] Optimum oxygen partial pressure film formation Crystallization crystallization temperature After annealing, average resistance after annealing Transmittance La Sn [〇/x] [a/c] f°C] [Ω · cm] [A/sec] [%] cl 0.005 0.053 XC <100 2.7 X 93.2 c2 0.006 0.112 XC <100 1.9 X 98.2 c3 0.006 0.178 〇a 150 1.8 3.4 93.4 c4 0. 006 0.252 〇a 200 3.8 1.9 94.2 c5 0.011 0.053 X c <100 2.8 X 92. 6 c6 0.011 0.112 〇a 100 2.0 4.8 98.3 c7 0.012 0.179 〇a 150 1.9 3.5 92.5 c8 0.013 0.253 〇a 250 4.0 1.8 93.2 c9 0. 022 0. 054 〇a 100 3.0 7.6 92.1 clO 0.023 0.114 〇a 150 2.0 4.9 98.8 ell 0. 024 0.181 〇a 200 2.1 3.6 94.2 cl2 0.026 0.256 〇a 250 4.2 1.8 91.2 cl3 0.033 0. 054 〇a 150 3.1 7.4 91.9 cl4 0.034 0.115 〇a 200 2.2 5.1 94.1 cl 5 0.037 0.183 〇a 250 2.3 3.5 93.6 cl 6 0.039 0. 260 〇a 300 5.9 1.9. 87.6 cl 7 0.056 0.056 〇a 250 6.4 7.3 90.2 cl 8 0.059 0.118 〇a 300 8.6 4.9 87.3 cl 9 0.063 0.188 〇a 300< 7.1 3.6 85.2 c20 0.067 0.267 〇a 300 < 9.9 2.0 83.9 c21 0.118 0.059 〇a 300 < 9.5 8.4 82.5 c22 0.125 0.125 〇a 300 < 14.5 6.2 84.6 c23 0.133 0. 200 〇a 300 < 13.0 4.4 84.6 c24 0.143 0.286 〇a 300< 16.1 2.2 82.3 c25 0. 00009 0.111 X c <100 1.9 X 98.2 c26 0.00115 0.150 X c <100 1.8 X 96.5 c27 0. 00125 0.250 〇a 150 4.0 1.9 93.5 c28 0 01235 0.222 〇a 200 2.3 2.9 94.6 c29 0. 00244 0.220 〇a 150 2.4 2.0 94,8 c30 0. 00047 0.177 X c <100 2.6 X 94.2

44 320647 200926207 (含有Ca之錤成的透明導電膜) 濺鍍條件如r所述’藉此可獲得厚度i200A的膜。 乾材尺寸:4=40. 廳 濺鍍方式:DC磁控濺鍍裝置 排氣裝置:旋轉泵浦+冷珠真空泵浦 到達真空度:5. 3xl〇_5[Pa]44 320647 200926207 (Transparent conductive film containing Ca) The sputtering conditions are as described in r, whereby a film having a thickness of i200A can be obtained. Dry material size: 4=40. Hall Sputtering method: DC magnetron sputtering device Exhaust device: Rotary pump + cold bead vacuum pump Reaching degree of vacuum: 5. 3xl〇_5[Pa]

Ar 壓力:4. OxlOlPa] 氧壓力:0 至 1. lxl〇_2[Pa]Ar pressure: 4. OxlOlPa] Oxygen pressure: 0 to 1. lxl〇_2 [Pa]

I 水壓力:5. 0xl(T5[Pa] 基板溫度:室溫 濺鍍電力:130W(電力密度為l.6W/cni2) 使用基板.康争#1737(液晶顯示器用玻璃)>^0. 8咖 使用上述所製造之具有表4所示的組成之靶材,分別 將這些綺裝設於4㈣DG雜雜裝^將基板溫度 ❹ 21孤(約2° ') ’且於G至3· GS⑽之間改變氧分壓(相 虽於〇至l.lxlG Pa)’而獲得各組成的透明導電膜。 後電=成Π:溫成膜的最適氧分壓、與於25〇t退火 但並未因組成樣本居多, 最適=?變化表:最適氧分壓蝴 二=::=膜的見最適氧分壓切製造 城中’於2啊中對這些樣本進们小時的退ί = 320647 45 200926207 室溫成膜時以及於2 5 0 C退火後之結晶狀態,以非晶質為 a,以結晶為c,並將這些結果表示在表1 〇中。 此外’測定各組成的結晶化溫度’並顯示於表1Q。妹 晶化溫度為於10 0 C成膜後’產生結晶化之溫度,於1 〇 〇。^ 的成膜中無法成為非晶膜者,係設定為未滿100*>c。 再者,測定出成膜的各透明導電膜於進行室溫成骐時 的最適氧分壓成膜之後進行退火而予以結晶化之樣本的電 阻率ρ (Ω · cm)。這些結果係表示在表1〇中。 ® 此外,將於室溫成膜的最適氧分壓中所製造出之透明 導電膜,分別裁切為13mm見方的大小,對退火後的膜測定 透射光譜。退火後的平均透射率係表示在表1〇中。 ❾ sec)。結果如表10所示 此外’將於室溫成膜的最適氧分壓中所製造出之進行 退火而予以結晶化的透明導電膜,分別裁切為術5〇匪的 大小’並使用ITG-〇5M(草酸系,關東化學(股)製)(草酸濃 又5 g/L)作為餘刻液’測定出於溫度中的钮刻率(a/ 這些結果如第30圖所示。 温度下可形成非晶膜,且於 曰曰胰,且於100至I Water pressure: 5. 0xl (T5[Pa] Substrate temperature: room temperature sputtering power: 130W (power density is 1.6W/cni2) Use substrate. Kang content #1737 (glass for liquid crystal display) >^0. 8 coffee using the above-mentioned target having the composition shown in Table 4, respectively, these 绮 installed in the 4 (four) DG 杂 杂 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 A transparent conductive film of each composition was obtained by changing the partial pressure of oxygen (phase to ll.lxlG Pa). Post-electricity = enthalpy: the optimum oxygen partial pressure of the warm film, and annealing at 25 〇t but Not because of the composition of the sample, the most suitable = change table: the most suitable oxygen partial pressure butterfly 2 =:: = film see the most suitable oxygen partial pressure cut in the manufacturing city in the 2 ah in the sample of these hours into the ί = 320647 45 200926207 In the state of film formation at room temperature and after annealing at 250 C, the amorphous phase is a, and the crystal is c, and these results are shown in Table 1. Further, 'the crystallization temperature of each component is measured' It is shown in Table 1Q. The crystallization temperature is the temperature at which crystallization occurs after film formation at 10 0 C, and it cannot be an amorphous film in the film formation of 1 〇〇. In addition, the resistivity ρ (Ω · of the sample which was crystallized after the film formation of each of the transparent conductive films at room temperature was measured by the optimum oxygen partial pressure at room temperature was measured. Cm) These results are shown in Table 1. In addition, the transparent conductive film produced by forming the optimum oxygen partial pressure at room temperature is cut into a size of 13 mm square, and the film is annealed. The transmission spectrum was measured. The average transmittance after annealing is shown in Table 1 ❾ sec). As a result, as shown in Table 10, the transparent conductive film which was annealed and formed by annealing at the optimum oxygen partial pressure at room temperature was cut into a size of 5 ' and used ITG- 〇5M (oxalic acid system, manufactured by Kanto Chemical Co., Ltd.) (oxalic acid concentrated and 5 g/L) as the residual liquid 'measured by the button rate in temperature (a/ These results are shown in Figure 30. Temperature Can form an amorphous film, and in the pancreas, and at 100 to

圖中,將於未滿1 〇 〇 °c成膜 〕至300T:中可予以結晶化In the figure, it will crystallize in less than 1 〇 〇 °c] to 300T:

Ln(x)-9. 3xl〇-2)之值以 ’當添加元素為Ca時,於未滿lOOt: ’之後於100至300°C中進行退火 ’係成為錫對1莫耳的銦之莫耳比 J鋼之莫耳比X所表示之(_4· 1x10 2 上且為(~2. 5xlO_1Ln(x)_5. 7xl0-1) 46 320647 200926207 之值以下的範圍。 此外,於此範圍中,尤其在錫對1莫耳的銦之莫耳比 y(莫耳)位於以Ca對1莫耳的銦之莫耳比X所表示之(-8. 7 xl(T2Ln(x)-2. OxltT1)以上的範圍中,當退火溫度未滿 200°C時,乃無法予以結晶化,所以,就考量到成膜製程時, 較理想為於200°C以上的退火中予以結晶化之範圍。 再者,於上述範圍中,更理想為當錫對1莫耳的銦之 莫耳比y(莫耳)為〇. 28莫耳以下時,於250°C的退火後之 ❹ 比電阻為3. 0χ1(Γ4Ω · cm以下。 47 320647 200926207 [表 10] 樣本 No. 對 In : lmol 之比例[mol] 最適 氧分壓 成膜時的 結晶性 結晶化 溫度 退火後的 比電阻 蚀刻率 退火後 的平均 透射率 Ca Sn [〇/x] [a/c] rc] [Ω · cm] [A/sec] [%] dl 0.005 0.053 X c <100 2.8 X 94.6 d2 0.006 0.112 X c <100 1.9 X 95.4 d3 0.006 0.178 〇 a 150 1.9 3.7 94.5 d4 0.006 0.252 〇 a 200 2.2 1.9 92.9 d5 0.011 0.053 X c <100 3.2 X 91.3 d6 0.011 0.112 〇 a 100 2.2 5.4 95.2 d7 0.012 0.179 〇 a 150 2.0 3.8 92.1 d8 0.013 0.253 〇 a 250 2.6 1.9 90.0 d9 0.022 0.054 X c <100 4.8 X 91.7 dlO 0-023 0.114 〇 a 150 3.0 5.5 96.2 dll 0.024 0.181 〇 a 200 2.3 4.0 93.4 dl2 0.026 0.256 〇 a 300 2.9 1.9 88.4 dl3 0.033 0. 054 〇 a 100 5.3 8.7 90.2 dl4 0. 034 0.115 〇 a 150 3.8 5.6 88.4 dl5 0.037 0.183 〇 a 250 2.9 3.9 90.1 dl6 0.039 0.260 〇 a „ 300 < 4.1 2.0 85.6 dl7 0.056 0.056 〇 a 200 9.9 8.8 81.9 dl8 0.059 0.118 〇 a 250 6.4 5.4 95.1 dl9 0.063 0.188 〇 a 300< 6.8 4.1 89.0 d20 0.067 0.267 〇 a 300 < 8.5 2.1 83.9 d21 0.118 0.059 〇 a 300 < 19.5 9.9 83,2 d22 0.125 0.125 〇 a 300< 17.8 6.2 89.9 d23 0.133 0.200 〇 a 300< 16.3 4.9 83.8 d24 0.143 0.286 〇 a 300< 18.6 2.2 84.5 d25 0.002110 0. 052743 X c <100 2.7 X 93.8 d26 0.000575 0.149511 X c <100 1.9 X 94.1 d27 0.001206 0.205066 〇 a 150 2.0 2.8 90.2 d28 0.001252 0.250313 〇 a 150 2.1 1.9 93.1 d29 0.001100 0.099010 X c <100 2.1 X 90.3 d30 0.026316 0. 289474 〇 a 300 32. 2.1 88.2The value of Ln(x)-9. 3xl〇-2) is 'annealing at 100 to 300 ° C after less than 100 t: ' when the additive element is Ca' is tin to 1 mol of indium. Mohr ratio J is expressed in the range of _4·1x10 2 and is (~2. 5xlO_1Ln(x)_5. 7xl0-1) 46 320647 200926207. In addition, in the range , especially in the tin to 1 molar indium molar ratio y (mole) is expressed in Ca to 1 molar indium molar ratio X (-8. 7 xl (T2Ln (x)-2. In the range of OxltT1) or more, when the annealing temperature is less than 200 ° C, crystallization cannot be performed. Therefore, when the film formation process is considered, the range of crystallization in annealing at 200 ° C or higher is preferable. Further, in the above range, it is more preferable that when the molar ratio of tin to 1 mol of indium is 〇 (mole) is less than 28 mTorr, the specific resistance after annealing at 250 ° C is 3 0χ1(Γ4Ω·cm or less. 47 320647 200926207 [Table 10] Sample No. Ratio of In : lmol [mol] Optimum Oxygen Partial Pressure Forming Crystallization Crystallization Temperature Annealing After Annealing After Annealing average Transmittance Ca Sn [〇/x] [a/c] rc] [Ω · cm] [A/sec] [%] dl 0.005 0.053 X c <100 2.8 X 94.6 d2 0.006 0.112 X c <100 1.9 X 95.4 d3 0.006 0.178 〇a 150 1.9 3.7 94.5 d4 0.006 0.252 〇a 200 2.2 1.9 92.9 d5 0.011 0.053 X c <100 3.2 X 91.3 d6 0.011 0.112 〇a 100 2.2 5.4 95.2 d7 0.012 0.179 〇a 150 2.0 3.8 92.1 d8 0.013 0.253 〇a 250 2.6 1.9 90.0 d9 0.022 0.054 X c <100 4.8 X 91.7 dlO 0-023 0.114 〇a 150 3.0 5.5 96.2 dll 0.024 0.181 〇a 200 2.3 4.0 93.4 dl2 0.026 0.256 〇a 300 2.9 1.9 88.4 dl3 0.033 0 054 〇a 100 5.3 8.7 90.2 dl4 0. 034 0.115 〇a 150 3.8 5.6 88.4 dl5 0.037 0.183 〇a 250 2.9 3.9 90.1 dl6 0.039 0.260 〇a „ 300 < 4.1 2.0 85.6 dl7 0.056 0.056 〇a 200 9.9 8.8 81.9 dl8 0.059 0.118 〇a 250 6.4 5.4 95.1 dl9 0.063 0.188 〇a 300< 6.8 4.1 89.0 d20 0.067 0.267 〇a 300 < 8.5 2.1 83.9 d21 0.118 0.059 〇a 300 < 19.5 9.9 83,2 d22 0.125 0.125 〇a 300< 17.8 6.2 89.9 d23 0.133 0.200 〇a 300< 16.3 4.9 83.8 d24 0.143 0.286 〇a 300< 18.6 2.2 84.5 d25 0.002110 0. 052743 X c <100 2.7 X 93.8 d26 0.000575 0.149511 X c <100 1.9 X 94.1 d27 0.001206 0.205066 〇a 150 2.0 2.8 90.2 d28 0.001252 0.250313 〇a 150 2.1 1.9 93.1 d29 0.001100 0.099010 X c <100 2.1 X 90.3 d30 0.026316 0. 289474 〇a 300 32. 2.1 88.2

48 320647 200926207 如此,藉由加入添加元夸, -± _ ’、 了獲得特定效果’惟禾士 兀素不同,可獲得特定效果 准叫、加 遠Sr、L i、La、Ca元素的it福p阁 —、 禆赤A非曰脫 ,、通圍,於未滿100。〇成膜時, 係成為非日日膜,且之後於1〇〇 曰π λα λ丄 主300 c中進行退火時,么士 晶化的組成範圍,係成為 吁、、,口 ,耵丄冥耳的銦之莫耳比y(莫 耳),位於以添加元素對1莫 、 ❺ (-9.祕2Ln(x)-21xlUtr 莫耳比x所表示之 q 7值以上且為(-2·5χ1〇、χ) -5. 7x10 )之值以下的範圍。 該結果如第31圖所示。圖中,於所有元素中,將於未 滿l〇〇°C成膜溫度下可形成非晶膜,且於1〇〇至3〇〇艺中可 予以結晶化者設定為#,除此之外者為▲。此外,樣本號 碼僅以去除字母後之號碼來表示。 (測試例14) 與製造例1相同’製作出Sr=0. 0001的靶材,並以此 作為測試例15的靶材,分別將此裝設於4吋的DC磁控濺 q 鍍裝置,將基板溫度保持在室溫(約20°C),且於〇至3. 0 seem之間改變氧分壓(相當於0至1. lxl0-2Pa),而獲得測 試例14的透明導電膜。 濺鍍條件如下所述,藉此可獲得厚度1200A的膜。 乾材尺寸:φ=4ίη· t=6mm 濺鍍方式:DC磁控錢鍍裝置 排氣裝置:旋轉泵浦+冷凍真空泵浦 到達真空度:5.3xl(T6[Pa]48 320647 200926207 In this way, by adding the addition of the yuan boast, -± _ ', to obtain a specific effect 'only the different kinds of sage, can obtain the specific effect of quasi-calling, plus Sr, Li, La, Ca elements of the yifu p阁—, 禆赤A is not detached, and is surrounded by less than 100. When the ruthenium is formed into a film, it is a non-daily film, and after annealing in 1 〇〇曰 π λα λ 丄 main 300 c, the composition range of the crystallization of the koji is called,,,,,, The indium molar ratio y (mole) of the ear is located above the q 7 value expressed by the additive element pair 1 莫, -9 (-9. secret 2Ln(x)-21xlUtr molar ratio x and is (-2· 5χ1〇,χ) -5. 7x10) The range below the value. The result is shown in Figure 31. In the figure, among all the elements, an amorphous film can be formed at a film formation temperature of less than 10 ° C, and it can be set to # in the range of 1 〇〇 to 3 〇〇, except for this. The outside is ▲. In addition, the sample number is represented only by the number after the letter is removed. (Test Example 14) In the same manner as in Production Example 1, a target of Sr = 0.0001 was produced, and this was used as a target of Test Example 15, and this was mounted on a 4 DC DC magnetron sputtering sputtering apparatus. The transparent conductive film of Test Example 14 was obtained by maintaining the substrate temperature at room temperature (about 20 ° C) and changing the oxygen partial pressure (corresponding to 0 to 1. lxl0 to 2 Pa) between 〇 and 3.0. The sputtering conditions were as follows, whereby a film having a thickness of 1200 A was obtained. Dry material size: φ=4ίη· t=6mm Sputtering method: DC magnetron plating device Exhaust device: Rotary pump + freezing vacuum pump Reach vacuum: 5.3xl (T6[Pa]

Ar 壓力:4. 〇xl〇_1[Pa] 320647 49 200926207 氧壓力:0 至 1. lxl(r2[pa] 水壓力:1. 0xl(T3[Pa] 基板溫度:室溫 濺鍍電力:130W(電力密度為1.6W/cm2) 使用基板:康寧#1737(液晶顯汴器用玻璃)t=0.8mm (測試例15) 使用與測試例14相同的靶材,且以與測試例1至9相 同之條件進行製造,而獲得測試例15的透明導電膜。 ® (測試例5) 與測試例1至9、參考例1至4及比較例1相同,對 於測試例14及測試例15,確認於退火前後是否存在最適 氧分壓的變化,並且進行與測試例1至4相同之測試。表 11係表不該結果。 從該結果中可確認出,於Sr=〇. 0001的組成中,若於 實質上不存在水之條件下進行成膜,則無法獲得非晶膜(測 φ 試例15),但若將水分壓提高至1. 〇xl(T3[Pa],則水係作為 氫而進入於膜内,因此可獲得非晶膜,此外,於退火前後 亦具有最適氧分壓的變化。 此係由於,因水的影響使非晶膜的結晶化溫度上升之 故,尤其於含有量較少的區域中特別有效。亦即,非晶膜 的結晶化溫度例如於10CTC之較低的區域中,可使結晶化 溫度提高50至l〇〇°C左右,結果可容易使非晶膜成膜。 當氧鍵結能量為與Sr的134kJ/mol幾乎同等之I38kj/ mo 1的之情況時’此現象亦會產生,因此可推測為,此 50 320647 200926207 現象於氧鍵結能量位於特定範圍之其他元素的L i、La、Ca、 Mg、Y中亦相同。 由於與先前的申請案之關係’係將Ba從本申請案的範 圍去除,以下係作為參考例揭示出Ba時之例子。 〇 ❹ 51 320647 200926207 [表 11] ο ❹ 蝕刻率的可否 [Ο 或 Μ 1 ο X 退火後的 平均透射率 g 97.8 97.1 退火後的 結晶性 (250°C) [β 或 c] 1 ο ο 成膜時的 結晶性 1 [a 或 C] 1 α ο 退火後的 比電阻 E 〇 ά 1 α> σ> 成膜時的 比電阻 Ί ά 1 Ο S 最適氧分 壓的變化 Ι[0或 χ]Ι ο X ψ ( 5 xuiux 之比例 I 0.000111 0.000111 ¢1 添加 元舍 0.010 0.010 & 10.000 10.000 £ 89.990 的.990 添加 元素 (Α 試樣名稱 Sr=0.0001 水分壓: 1.〇xlO-3Pa Sr=0.0001 測試例 14 測試例 15 52 320647 200926207 (參考例) (濺鍍靶材參考製造例1至67) 準備純度> 99. 99%的Iri2〇3粉、Sn〇2粉、及純度>99. 9 % 的 BaC〇3 粉。 〇 ❹ 首先,以 BET=27m2/g 的 1也〇3 粉為 58. 6wt%及 BET= 1.3m2/g的BaC〇3粉為4l4wt%的比例’準備全部的量為 200g,於乾燥狀態下進行球磨混合,於大氣中於uoyc下 進行3小時的焙燒,而獲得BaIn2〇4粉。 接著將上述BaIn2〇4粉、BET=5m2/g的In2〇3粉及BET= 1.5m2/g的Sn〇2粉,以鼬及Sn對1莫耳的In相當於下列 表12及表13所佔的莫耳數之比例,準備全部的量約為 1.0kg’並進行球磨混合。之後添加PVA水溶液作為黏結劑 予以混合、乾燥,並進行冷壓而獲得成形體。大氣中、於 600°C下以6(Tc/h的升溫速度,對此成形體進行1〇小時的 脫脂’接著於氧氣環境下,於16〇(rc進行8小時的燒成而 獲得燒結體。燒結條件,具體而言係以iGGt/h的升溫速 度伙至溫升溫至8〇{rc,以4〇(rc/h的升溫速度從別升 溫至。16GG、°C ’保持8小時後’以⑽。c/h的降溫條件從 1600 C冷4卩至室溫為止。之後加玉此燒結體而獲得乾材。 二!的,,及整體電阻率’例如於32的组成中,分別為 β.〇/Λ*2.81χ1(Γ4Ω ·⑽,於22的組成中,分別為 6.96 g/Cm 及 2.87x1〇_4q ·【 (參考例A1至A67) 分別將各參考製造例1至67⑽鍍乾材裝設於4对的 320647 53 200926207 DC磁控濺;辦:# m , 又裝置’將基板溫度保持在室溫(約20。〇,將水 分盧設定右 _ , m/x ^ 丨.0xl0—4pa,且於〇至3. Osccm之間改變氧分 壓(相洛於π nn *田、至l lxl〇-2pa),而獲得參考例A1至A67的透 明導電膜。 濺鍍條件如下所述,藉此可獲得厚度1200Λ的膜。 靶材尺寸:φ=4ίη. t=6mm 濺鍍方式:DC磁控濺鍍裝置 Q 排氣襞置:旋轉泵浦+冷凍真空泵浦 到達真空度:5. 3xlO_6[Pa]Ar Pressure: 4. 〇xl〇_1[Pa] 320647 49 200926207 Oxygen pressure: 0 to 1. lxl (r2[pa] Water pressure: 1. 0xl (T3[Pa] Substrate temperature: room temperature sputtering power: 130W (Power density: 1.6 W/cm 2 ) Substrate: Corning #1737 (glass for liquid crystal display) t = 0.8 mm (Test Example 15) The same target as Test Example 14 was used, and was the same as Test Examples 1 to 9. The conditions of the production were carried out, and the transparent conductive film of Test Example 15 was obtained. (Test Example 5) The same as Test Examples 1 to 9, Reference Examples 1 to 4 and Comparative Example 1, and Test Example 14 and Test Example 15 were confirmed. Whether there is a change in the optimum oxygen partial pressure before and after annealing, and the same tests as in Test Examples 1 to 4 were carried out. Table 11 shows the results. From the results, it was confirmed that in the composition of Sr = 〇. 0001, When the film formation is carried out under the condition that water is substantially absent, an amorphous film cannot be obtained (measurement φ test example 15), but if the water pressure is increased to 1. 〇xl (T3 [Pa], the water system is hydrogen. Entering into the film, an amorphous film can be obtained, and the optimum partial pressure of oxygen is also changed before and after annealing. This is due to the influence of water. The crystallization temperature of the film rises, especially in a region having a small content. That is, the crystallization temperature of the amorphous film is, for example, in a lower region of 10 CTC, the crystallization temperature can be increased by 50 to 1. 〇〇 ° C or so, as a result, the amorphous film can be easily formed. When the oxygen bonding energy is almost equal to I38kj / mo 1 of 134kJ / mol of Sr, this phenomenon also occurs, so it can be presumed that , this 50 320647 200926207 phenomenon is also the same in L i, La, Ca, Mg, Y of other elements in which the oxygen bonding energy is in a specific range. Because of the relationship with the previous application, the Ba is from the scope of the present application. The following is a reference example to reveal a case of Ba. 〇❹ 51 320647 200926207 [Table 11] ο 可 Can the etching rate be [Ο or Μ 1 ο X Average transmittance after annealing g 97.8 97.1 Crystallinity after annealing (250 ° C) [β or c] 1 ο ο Crystallinity at film formation 1 [a or C] 1 α ο Specific resistance after annealing E 〇ά 1 α > σ > Specific resistance at film formation Ί 1 Ο S The optimum oxygen partial pressure change Ι[0 or χ]Ι ο X ψ ( 5 xuiux Proportion I 0.000111 0.000111 ¢1 Add Yuan 0.010 0.010 & 10.000 10.000 £ 89.990 of .990 Add element (Α Sample name Sr=0.0001 Moisture pressure: 1.〇xlO-3Pa Sr=0.0001 Test Example 14 Test Example 15 52 320647 200926207 (Reference example) (Sputter target reference manufacturing example 1 to 67) Preparation purity > 99. 99% of Iri2〇3 powder, Sn〇2 powder, and purity>99.9% BaC〇3 powder . 〇❹ First, the ratio of the BaC〇3 powder of BET=27 m2/g of 58.6 wt% and BET=1.3 m2/g is 41.4 wt%, and the total amount is 200 g, in a dry state. The mixture was ball milled and calcined in the atmosphere under uoyc for 3 hours to obtain BaIn2〇4 powder. Next, the above BaIn2〇4 powder, BET=5 m2/g of In2〇3 powder, and BET=1.5 m2/g of Sn〇2 powder, and 鼬 and Sn to 1 mol of In correspond to the following Table 12 and Table 13. The proportion of the moles is prepared, and the total amount is prepared to be about 1.0 kg' and ball milled and mixed. Thereafter, a PVA aqueous solution was added as a binder, mixed, dried, and cold pressed to obtain a molded body. In the atmosphere, the molded body was degreased at 600 ° C for 6 hours at a temperature increase rate of Tc/h. Then, in an oxygen atmosphere, the sintered body was obtained by firing at 16 rpm for 8 hours. The sintering conditions, specifically, the temperature rise rate of iGGt/h, the temperature is raised to 8 〇{rc, and the temperature is raised from 4 〇 (the heating rate of rc/h is increased to 16 GG, ° C 'after 8 hours). The cooling condition of (10).c/h is cooled from 1600 C to room temperature. After that, the sintered body is added to obtain a dry material. The second, and the overall resistivity are, for example, in the composition of 32, respectively. 〇.〇/Λ*2.81χ1 (Γ4Ω·(10), in the composition of 22, respectively 6.96 g/cm and 2.87x1〇_4q · [ (Reference Examples A1 to A67) Each reference manufacturing example 1 to 67 (10) was plated The dry material is installed in 4 pairs of 320647 53 200926207 DC magnetron splash; do: # m, and the device 'maintains the substrate temperature at room temperature (about 20. 〇, will set the moisture to the right _, m / x ^ 丨. 0xl0—4pa, and the oxygen partial pressure was changed between 〇 and 3. Osccm (the same as π nn * field, to l lxl 〇 -2pa), and the transparent conductive films of Reference Examples A1 to A67 were obtained. Thus, a film having a thickness of 1200 Å can be obtained. Target size: φ=4ίη. t=6mm Sputtering method: DC magnetron sputtering device Q Exhaust device: Rotary pump + freezing vacuum pump to reach vacuum: 5. 3xlO_6[Pa]

Ar 壓力:4. 〇xl〇-1[Pa] 氧壓力:0 至 1. lxl〇-2[pa] 水壓力:1. 〇xl〇-4[pa] 基板溫度:室溫 濺鍍電力:130W(電力密度為1.6W/cra2) 使用基板:康寧#1737(液晶顯示器用玻璃) © 對於參考例A1至A67,係求取室溫成膜時之氧分壓與 電阻率之間的關係,以及25(TC退火後之氧分壓與電阻率 之間的關係。 下列第12表及第13表’係顯示各樣本之Ba及%對 1莫耳的In之莫耳比,以及室溫成膜時之結晶狀態(非晶 膜β己為a ,結晶化膜記為c)’並顯不非晶膜的結晶化溫产。 於第12表及弟13表中’所明成膜時的電阻率,是指 室溫成膜時之最適氧分壓之膜的電阻率。此外,退火後的 電阻率,為250°C退火時之最適氧分壓的電阻率。 320647 54 200926207 此外,第12表及第13表所示之結晶化溫度,係以下 列方式求取。亦即,將250°C退火後電阻率成為最低之氧 分壓下於室溫形成之膜,從100°C至300°C(如有必要則為 450°C)以50°C為刻度於大氣中進行1小時的退火,並以薄 膜XRD對該膜進行分析。對於表示出室溫成膜的非晶膜之 繞射峰(halo peak),係藉由退火溫度的增高而檢測出繞射 線。並將該最初的溫度決定為結晶化温度。關於結晶化溫 度的其他求法,亦可使用高溫薄膜XRD法。 此外,於第32圖中係描繪出參考例A1至A67,以結 晶化溫度100至300°C者為•,以結晶化溫度350°C以上者 為^。 從該結果中可得知,結晶化溫度為300°C以下之範圍, 係成為錫對1莫耳的銦之莫耳比y(莫耳),位於以鋇對1 莫耳的銦之莫耳比X所表示之(-6.9xl(T2Ln(x)-1.6xlO_1) 之值以上且為(-8. lxl(T3Ln(x) + l. 8xl0_1)之值以下的範圍。 55 320647 200926207[表 12]Ar Pressure: 4. 〇xl〇-1[Pa] Oxygen pressure: 0 to 1. lxl〇-2[pa] Water pressure: 1. 〇xl〇-4[pa] Substrate temperature: room temperature sputtering power: 130W (Power Density: 1.6 W/cra2) Substrate: Corning #1737 (glass for liquid crystal display) © For Reference Examples A1 to A67, the relationship between the oxygen partial pressure and the resistivity at room temperature film formation was obtained, and 25 (The relationship between oxygen partial pressure and resistivity after TC annealing. Tables 12 and 13 below show the Ba and % of each sample to 1 molar Ear molar ratio, and room temperature film formation In the case of the crystalline state (amorphous film β is a, the crystallized film is referred to as c)' and the crystallization of the amorphous film is not produced. In the table 12 and the table 13 The rate refers to the resistivity of the film of the optimum oxygen partial pressure at room temperature film formation. Further, the resistivity after annealing is the resistivity of the optimum oxygen partial pressure at the time of annealing at 250 ° C. 320647 54 200926207 In addition, the 12th The crystallization temperature shown in Table 13 and Table 13 is obtained by the following method, that is, a film formed at room temperature under the oxygen partial pressure after annealing at 250 ° C, from 100 ° C to 300 ° C C (450 ° C if necessary) was annealed in the atmosphere at 50 ° C for 1 hour, and analyzed by thin film XRD. For diffraction of amorphous film showing room temperature film formation The halo peak is detected by increasing the annealing temperature, and the initial temperature is determined as the crystallization temperature. For other methods of crystallization temperature, a high temperature thin film XRD method can also be used. In the drawing, reference examples A1 to A67 are shown, wherein the crystallization temperature is 100 to 300 ° C, and the crystallization temperature is 350 ° C or higher. From the results, the crystallization temperature is The range below 300 ° C is the molar ratio of tin to 1 mol of indium y (mole), which is represented by the molar ratio X of indium to 1 mol (-6.9 x 1 (T2Ln ( The value of x)-1.6xlO_1) is not less than the value of (-8. lxl(T3Ln(x) + l. 8xl0_1). 55 320647 200926207 [Table 12]

樣本 No. 製造例 Sn比 Ba比 結晶 狀態 結晶化溫度 (°C) 成膜時的 電阻率 (χ10"4Ω · cm) 退火後的 電阻率 (χ10'4Ω · cm) A1 1 0 0.1 a >500 19. 6 21.4 A2 2 0.025 0.07 a >500 12. 8 14.4 A3 3 0.025 0.1 a >500 16.0 18.2 A4 4 0. 05 0.0001 a 150 4.7 3.4 A5 5 0. 05 0.0002 a 150 4.8 3.4 A6 6 0.05 0.0005 a 150 4.9 3.5 A7 7 0.05 0.001 a 150 4.7 3.6 A8 8 0.05 0.002 a 150 4.7 3.4 A9 9 0.05 0.005 a 150 4.8 3.5 A10 10 0. 05 0.01 a 150 5.2 3.6 All 11 0. 05 0.02 a 200 5.4 4.7 A12 12 0.05 0.03 a 250 6.0 4.9 A13 13 0.05 0.05 a 400 8.2 9.2 A14 14 0. 075 0.002 a 150 4.6 2.5 A15 15 0.075 0.005 a 150 4.8 2.6 A16 16 0.075 0.01 a 200 5.1 2.7 A17 17 0.075 0. 02 a 250 5.3 3.2 A18 18 0.075 0.03 a 300 6.1 4.6 A19 19 0.1 0.0001 a 150 4.5 1.9 A20 20 0.1 0.0002 a 150 4.5 1.9 A21 21 0.1 0. 0005 a 150 4.5 1.9 A22 22 0.1 0.001 a 150 4.5 1.9 A23 23 0.1 0.002 a 150 4.5 1.9 A24 24 0.1 0.005 a 150 4.6 1.9 A25 25 0.1 0.01 a 200 5.0 2.2 A26 26 0.1 0.02 a 300 5.2 2.6 A27 27 0.1 0.03 a 350 6.2 6.0 A28 28 0.1 0.05 a 450 8.0 7.9 A29 29 0.1 0.1 a >500 14.8 15.7 A30 30 0.15 0.0001 a 200 4.7 2.0 A31 31 0.15 0. 0002 a 200 4.7 2.0 A32 32 0.15 0. 0005 a 200 4.6 2.0 A33 33 0.15 0.001 a 200 4.7 1.9 A34 34 0.15 0.002 a 200 4.8 1.9 A35 35 0.15 0.005 a 200 4.8 1.9 56 320647 200926207 [表 13]Sample No. Production example Sn ratio of Ba to crystal state crystallization temperature (°C) Resistivity at the time of film formation (χ10"4 Ω · cm) Resistivity after annealing (χ10'4 Ω · cm) A1 1 0 0.1 a > 500 19. 6 21.4 A2 2 0.025 0.07 a >500 12. 8 14.4 A3 3 0.025 0.1 a >500 16.0 18.2 A4 4 0. 05 0.0001 a 150 4.7 3.4 A5 5 0. 05 0.0002 a 150 4.8 3.4 A6 6 0.05 0.0005 a 150 4.9 3.5 A7 7 0.05 0.001 a 150 4.7 3.6 A8 8 0.05 0.002 a 150 4.7 3.4 A9 9 0.05 0.005 a 150 4.8 3.5 A10 10 0. 05 0.01 a 150 5.2 3.6 All 11 0. 05 0.02 a 200 5.4 4.7 A12 12 0.05 0.03 a 250 6.0 4.9 A13 13 0.05 0.05 a 400 8.2 9.2 A14 14 0. 075 0.002 a 150 4.6 2.5 A15 15 0.075 0.005 a 150 4.8 2.6 A16 16 0.075 0.01 a 200 5.1 2.7 A17 17 0.075 0. 02 a 250 5.3 3.2 A18 18 0.075 0.03 a 300 6.1 4.6 A19 19 0.1 0.0001 a 150 4.5 1.9 A20 20 0.1 0.0002 a 150 4.5 1.9 A21 21 0.1 0. 0005 a 150 4.5 1.9 A22 22 0.1 0.001 a 150 4.5 1.9 A23 23 0.1 0.002 a 150 4.5 1.9 A24 24 0.1 0.005 a 150 4.6 1.9 A25 25 0.1 0.01 a 200 5.0 2.2 A26 26 0.1 0.02 a 300 5.2 2.6 A27 27 0.1 0.03 a 350 6.2 6.0 A28 28 0.1 0.05 a 450 8.0 7.9 A29 29 0.1 0.1 a > 500 14.8 15.7 A30 30 0.15 0.0001 a 200 4.7 2.0 A31 31 0.15 0. 0002 a 200 4.7 2.0 A32 32 0.15 0 0005 a 200 4.6 2.0 A33 33 0.15 0.001 a 200 4.7 1.9 A34 34 0.15 0.002 a 200 4.8 1.9 A35 35 0.15 0.005 a 200 4.8 1.9 56 320647 200926207 [Table 13]

樣本 No. 製造例 Sn比 Ba比 結晶 狀態 結晶化溫度 CC) 成膜時的 電阻率 (χ10'4Ω · cm) 退火後的 電阻率 (χ10"4Ω · cm) A36 36 0.15 0.01 a 250 4.9 2.3 A37 37 0.15 0. 02 a 350 5.6 5.5 A38 38 0.15 0.03 a 400 6.4 6.3 A39 39 0.15 0.05 a >500 8.6 8.3 A40 40 0.2 0.00006 a 250 4.7 2.2 A41 41 0.2 0.0001 a 250 4.8 2.0 A42 42 0.2 0. 0002 a 250 4.7 2.0 A43 43 0.2 0. 0005 a 250 4.8 2.1 A44 44 0.2 0.001 a 250 4.8 2.1 A45 45 0.2 0.002 a 250 4.9 2.2 A46 46 0.2 0.005 a 250 5.2 2.2 A47 47 0.2 0.01 a 350 5.4 5.1 A48 48 0.2 0.02 a 350 6.0 6.0 A49 49 0.2 0.03 a 450 6.7 6.6 A50 50 0.2 0.05 a >500 9.0 10.0 A51 51 0.22 0. 00005 a 250 4.7 2.1 A52 52 0.22 0. 0033 a >500 8.3 6.4 A53 53 0. 25 0.0001 a 250 5.5 2.2 A54 54 0. 25 0. 0002 a 350 5.6 5.2 A55 55 0.25 0.0005 a 350 5.7 5.1 A56 56 0.25 0.001 a 350 5.8 5.2 A57 57 0.25 0,002 a 350 5.8 5.2 A58 58 0.25 0. 005 a 350 5.9 5.4 A59 59 0.25 0.01 a 400 6.0 6.0 A60 60 0.3 0. 0001 a 350 6.6 6.0 A61 61 0.3 0.0002 a 350 6.3 6.0 A62 62 0.3 0.0005 a 350 6.2 5.9 A63 63 0.3 0. 001 a 400 6.2 5.9 A64 64 0.3 0. 002 a 400 6.3 6.1 A65 65 0.3 0.005 a 400 6.3 6.2 A66 66 0.3 0.01 a 450 6.3 6.4 A67 67 0.3 0.02 a >500 7.8 6.9 (參考例B1至B67) 分別將各參考製造例1至67的濺鍍靶材裝設於4吋的 57 320647 200926207 DC磁控濺錢裝置’將基板溫度保持在室溫(約2〇。〇,將水 分壓設定在l.〇xl〇-3Pa,且於〇至3 〇sccln之間改變氧分 壓(相當於0至1. lxl〇-2pa),而獲得參考例B1至B67的透 明導電膜。 濺鏡條件如下所述,藉此可獲得厚度〗2〇〇A的膜。 乾材尺寸:φ=4ίη· t=6mm 濺鍍方式:DC磁控濺鍍裝置 排氣裝置:旋轉泵浦+冷凍真空泵浦 到達真空度:5. 3xlO_6[Pa]Sample No. Manufacturing Example Sn vs. Ba ratio Crystallization crystallization temperature CC) Resistivity at film formation (χ10'4 Ω · cm) Resistivity after annealing (χ10"4 Ω · cm) A36 36 0.15 0.01 a 250 4.9 2.3 A37 37 0.15 0. 02 a 350 5.6 5.5 A38 38 0.15 0.03 a 400 6.4 6.3 A39 39 0.15 0.05 a >500 8.6 8.3 A40 40 0.2 0.00006 a 250 4.7 2.2 A41 41 0.2 0.0001 a 250 4.8 2.0 A42 42 0.2 0. 0002 a 250 4.7 2.0 A43 43 0.2 0. 0005 a 250 4.8 2.1 A44 44 0.2 0.001 a 250 4.8 2.1 A45 45 0.2 0.002 a 250 4.9 2.2 A46 46 0.2 0.005 a 250 5.2 2.2 A47 47 0.2 0.01 a 350 5.4 5.1 A48 48 0.2 0.02 a 350 6.0 6.0 A49 49 0.2 0.03 a 450 6.7 6.6 A50 50 0.2 0.05 a >500 9.0 10.0 A51 51 0.22 0. 00005 a 250 4.7 2.1 A52 52 0.22 0. 0033 a >500 8.3 6.4 A53 53 0. 25 0.0001 a 250 5.5 2.2 A54 54 0. 25 0. 0002 a 350 5.6 5.2 A55 55 0.25 0.0005 a 350 5.7 5.1 A56 56 0.25 0.001 a 350 5.8 5.2 A57 57 0.25 0,002 a 350 5.8 5.2 A58 58 0.25 0. 005 a 350 5.9 5.4 A59 59 0.25 0.01 a 400 6.0 6.0 A60 60 0.3 0. 0001 a 350 6.6 6.0 A61 61 0 .3 0.0002 a 350 6.3 6.0 A62 62 0.3 0.0005 a 350 6.2 5.9 A63 63 0.3 0. 001 a 400 6.2 5.9 A64 64 0.3 0. 002 a 400 6.3 6.1 A65 65 0.3 0.005 a 400 6.3 6.2 A66 66 0.3 0.01 a 450 6.3 6.4 A67 67 0.3 0.02 a >500 7.8 6.9 (Reference Examples B1 to B67) The sputtering targets of each of the reference manufacturing examples 1 to 67 were respectively mounted on a 4 吋 57 320647 200926207 DC magnetron splash device' The temperature was kept at room temperature (about 2 Torr. 〇, the water pressure is set to l.〇xl〇-3Pa, and the oxygen partial pressure (equivalent to 0 to 1. lxl〇-2pa) is changed between 〇 and 3 〇sccln, and the transparency of the reference examples B1 to B67 is obtained. Conductive film. The spatter condition is as follows, whereby a film having a thickness of 2 〇〇A can be obtained. Dry material size: φ=4ίη· t=6mm Sputtering method: DC magnetron sputtering device Exhaust device: Rotary pump + freezing vacuum pump Reaching degree of vacuum: 5. 3xlO_6[Pa]

Ar 壓力:4. OxlOlPa] 氧壓力:〇 至 1. 1x10-2[pa] 水壓力:l.〇xl〇-3[Pa] 基板溫度:室溫 賤鍍電力:.130W(電力密度為1.6W/cm2) 使用基板:康寧#1737(液晶顯示器用破璃)t=〇.8mm ❹ 對於參考例B1至B67,係求取室溫成膜時之氧分壓與 電阻率之間的關係,以及2501退火後之氧分壓與電阻率 之間的關係。 下列表14及表15,係顯示各樣本之Ba及Sn對1莫 耳的I η之莫耳比,以及室溫成膜時之結晶狀態(非晶膜記 為a ’結晶化膜記為c)’並顯不非晶膜的結晶化溫度。结 晶化温度、成膜時的電阻率及退火後的電阻率,係如 所逑。 此外,於第33圖中係描繪出參考例B1至B67,以結 320647 58 200926207 服度100至300°C者為鲁,以結晶化溫度35(rc以上者 從該結果中可得知,結晶化溫度為30(rc以下之範圍, 係成為锡對1莫耳的銦之莫耳比y(莫耳),位於以鋇對i 莫耳的銦之莫耳比X所表示之(-8. lxl〇-2Ln(x)-2. 6x1ο-1) 之值以上且為(-7. ΙχΙΟ^ιΚχΗΙ.βχΙίΓ1)之值以下的範圍。 Ο ❹ 320647 59 200926207[表 14]Ar pressure: 4. OxlOlPa] Oxygen pressure: 〇 to 1. 1x10-2[pa] Water pressure: l. 〇xl〇-3 [Pa] Substrate temperature: room temperature 贱 plating power: .130W (power density is 1.6W /cm2) Substrate: Corning #1737 (glass for liquid crystal display) t=〇.8mm ❹ For Reference Examples B1 to B67, the relationship between the oxygen partial pressure and the resistivity at room temperature film formation is obtained, and The relationship between the partial pressure of oxygen after annealing and the resistivity after 2501. Tables 14 and 15 below show the molar ratio of Ba and Sn to 1 mol of I η for each sample, and the crystal state at room temperature film formation (the amorphous film is denoted as a 'crystallized film is denoted as c ) 'and the crystallization temperature of the amorphous film. The crystallization temperature, the resistivity at the time of film formation, and the resistivity after annealing are as follows. In addition, in the 33rd drawing, reference examples B1 to B67 are drawn, and the knots of 320647 58 200926207 are 100 to 300 ° C, and the crystallization temperature is 35 (the above rc is known from the results, crystallizing The temperature is 30 (the range below rc, which is the molar ratio of tin to y (mole) of indium to 1 mol, which is expressed by the molar ratio X of indium to ym. The range of lxl〇-2Ln(x)-2. 6x1ο-1) is equal to or less than the value of (-7. ΙχΙΟ^ιΚχΗΙ.βχΙίΓ1). Ο ❹ 320647 59 200926207 [Table 14]

樣本 No. 製造例 Sn比 Ba比 結晶 狀態 結晶化溫度 (°C) 成膜時的 電阻率 (χ10'4Ω · cm) 退火後的 電阻率 (χ10'4Ω · cm) B1 1 0 0.1 a >500 20.2 22.3 B2 2 0.025 0.07 a >500 13.0 14.8 B3 3 0.025 0.1 a >500 16.2 18.4 B4 4 0.05 0.0001 a 200 4.7 3.5 B5 5 0.05 0. 0002 a 200 4.8 3.5 B6 6 0. 05 0. 0005 a 200 4.9 3.5 B7 7 0.05 0.001 a 200 4.9 3.4 B8 8 0.05 0.002 a 200 4.9 3.5 B9 9 0.05 0.005 a 200 5.0 3.6 BIO 10 0.05 0.01 a 200 5.4 3.6 Bll 11 0. 05 0.02 a 250 5.5 4.8 B12 12 0. 05 0.03 a 350 6.3 6.2 B13 13 0.05 0.05 a 450 8.6 9.3 B14 14 0.075 0.002 a 200 4.8 2.6 B15 15 0.075 0.005 a 200 4.9 2.7 B16 16 0. 075 0.01 a 250 5.2 2.8 B17 17 0.075 0.02 a 350 5.4 5.2 B18 18 0.075 0.03 a 400 6.2 5.9 B19 19 0.1 0.0001 a 200 4.5 2.1 B20 20 0.1 0.0002 a 200 4.5 2.0 B21 21 0.1 0.0005 a 200 4.6 2.1 B22 22 0.1 0.001 a 200 4.6 2.1 B23 23 0.1 0.002 a 200 4.7 2.1 B24 24 0.1 0.005 a 200 4.8 2.2 B25 25 0.1 0.01 a 250 5.1 2.4 B26 26 0.1 0. 02 a 350 5.6 5.4 B27 27 0.1 0.03 a 400 6.2 6.0 B28 28 0.1 0.05 a 500 8.4 8.7 B29 29 0.1 0.1 a >500 15.0 16.0 B30 30 0.15 0.0001 a 250 4.6 2.2 B31 31 0.15 0.0002 a 250 4.7 2.0 B32 32 0.15 0: 0005 a 250 4.7 2.2 B33 33 0.15 0.001 a 250 4.7 2.1 B34 34 0.15 0.002 a 250 4.9 2.2 B35 35 0.15 0.005 a 250 5.0 2.3 60 320647 200926207 [表 15]Sample No. Production example Sn ratio of Ba to crystal state crystallization temperature (°C) Resistivity at the time of film formation (χ10'4 Ω · cm) Resistivity after annealing (χ10'4 Ω · cm) B1 1 0 0.1 a > 500 20.2 22.3 B2 2 0.025 0.07 a >500 13.0 14.8 B3 3 0.025 0.1 a >500 16.2 18.4 B4 4 0.05 0.0001 a 200 4.7 3.5 B5 5 0.05 0. 0002 a 200 4.8 3.5 B6 6 0. 05 0. 0005 a 200 4.9 3.5 B7 7 0.05 0.001 a 200 4.9 3.4 B8 8 0.05 0.002 a 200 4.9 3.5 B9 9 0.05 0.005 a 200 5.0 3.6 BIO 10 0.05 0.01 a 200 5.4 3.6 Bll 11 0. 05 0.02 a 250 5.5 4.8 B12 12 0. 05 0.03 a 350 6.3 6.2 B13 13 0.05 0.05 a 450 8.6 9.3 B14 14 0.075 0.002 a 200 4.8 2.6 B15 15 0.075 0.005 a 200 4.9 2.7 B16 16 0. 075 0.01 a 250 5.2 2.8 B17 17 0.075 0.02 a 350 5.4 5.2 B18 18 0.075 0.03 a 400 6.2 5.9 B19 19 0.1 0.0001 a 200 4.5 2.1 B20 20 0.1 0.0002 a 200 4.5 2.0 B21 21 0.1 0.0005 a 200 4.6 2.1 B22 22 0.1 0.001 a 200 4.6 2.1 B23 23 0.1 0.002 a 200 4.7 2.1 B24 24 0.1 0.005 a 200 4.8 2.2 B25 25 0.1 0.01 a 250 5.1 2.4 B26 26 0.1 0. 02 a 350 5.6 5. 4 B27 27 0.1 0.03 a 400 6.2 6.0 B28 28 0.1 0.05 a 500 8.4 8.7 B29 29 0.1 0.1 a >500 15.0 16.0 B30 30 0.15 0.0001 a 250 4.6 2.2 B31 31 0.15 0.0002 a 250 4.7 2.0 B32 32 0.15 0: 0005 a 250 4.7 2.2 B33 33 0.15 0.001 a 250 4.7 2.1 B34 34 0.15 0.002 a 250 4.9 2.2 B35 35 0.15 0.005 a 250 5.0 2.3 60 320647 200926207 [Table 15]

樣本 No. 製造例 Sn比 Ba比 結晶 狀態 結晶化溫度 ΓΟ 成膜時的 電阻率 (χ10'4Ω · cm) 退火後的 電阻率 (χ10_4Ω · cm) B36 36 0.15 0.01 a 350 5.2 5.1 B37 37 0.15 0.02 a 400 6.1 6.1 B38 38 0.15 0.03 a 450 6.6 6.4 B39 39 0.15 0.05 a >500 8.7 8.9 B40 40 0.2 0.00006 a 300 4.9 2.4 B41 41 0.2 0.0001 a 300 4.7 2.3 M2 42 0.2 0.0002 a 300 4.8 2.1 B43 43 0.2 0. 0005 a 300 4.9 2.3 B44 44 0.2 0.001 a 300 4.8 2.3 B45 45 0.2 0.002 a 300 5.0 2.3 B46 46 0.2 0.005 a 350 5.2 5.1 B47 47 0.2 0.01 a 400 5.5 5.1 B48 48 0.2 0.02 a 400 7.3 6.8 B49 49 0.2 0.03 a 500 7.0 6.9 B50 50 0.2 0. 05 a >500 9.3 10.2 B51 51 0.22 0.00005 a 300 4.8 2.3 B52 52 0.22 0. 0033 a >500 8.4 6.5 B53 53 0.25 0.0001 a 350 6.1 5.8 B54 54 0.25 0. 0002 a 350 6.1 5.9 B55 55 0.25 0.0005 a 400 6.2 5.9 B56 56 0.25 0.001 a 400 6.2 6.0 B57 57 0.25 0. 002 a 400 6.2 6.1 B58 58 0.25 0.005 a 400 6.2 5.9 B59 59 0.25 0.01 a 450 6.1 6.1 B60 60 0.3 0. 0001 a 400 6.8 6.5 B61 61 0. 3 0. 0002 a 400 6.7 6.4 B62 62 0.3 0. 0005 a 400 6.7 6.6 B63 63 0.3 0.001 a 450 6.7 6.6 B64 64 0.3 0.002 a 450 6.8 6.4 B65 65 0.3 0.005 a 450 6.9 6.8 B66 66 0.3 0.01 a 500 7.0 7.0 B67 67 0.3 0.02 a >500 8.2 7.5 (參考例Cl至C67) 分別將各參考製造例1至67的濺鍍靶材裝設於4吋的 61 320647 200926207 » DC磁控濺鍍裝置,將基板溫度保持在室溫(約20°C),將水 分壓設定在1. 0xl(T5Pa ’且於0至3. 0sccin之間改變氧分 壓(相當於0至1. lxl〇-2pa) ’而獲得參考例C1至C67的透 明導電膜。 濺鍍條件如下所述,藉此可獲得厚度1200A的膜。 靶材尺寸:Φ=4ίη. t=6mm 濺鑛方式:DC磁控濺鍍裝置 排氣裝置:旋轉泵浦+冷凍真空泵浦 ® 到達真空度:5. 3xlO_6[Pa]Sample No. Production example Sn ratio Ba ratio crystal state crystallization temperature 电阻 Resistivity at film formation (χ10'4 Ω · cm) Resistivity after annealing (χ10_4 Ω · cm) B36 36 0.15 0.01 a 350 5.2 5.1 B37 37 0.15 0.02 a 400 6.1 6.1 B38 38 0.15 0.03 a 450 6.6 6.4 B39 39 0.15 0.05 a >500 8.7 8.9 B40 40 0.2 0.00006 a 300 4.9 2.4 B41 41 0.2 0.0001 a 300 4.7 2.3 M2 42 0.2 0.0002 a 300 4.8 2.1 B43 43 0.2 0 0005 a 300 4.9 2.3 B44 44 0.2 0.001 a 300 4.8 2.3 B45 45 0.2 0.002 a 300 5.0 2.3 B46 46 0.2 0.005 a 350 5.2 5.1 B47 47 0.2 0.01 a 400 5.5 5.1 B48 48 0.2 0.02 a 400 7.3 6.8 B49 49 0.2 0.03 a 500 7.0 6.9 B50 50 0.2 0. 05 a >500 9.3 10.2 B51 51 0.22 0.00005 a 300 4.8 2.3 B52 52 0.22 0. 0033 a >500 8.4 6.5 B53 53 0.25 0.0001 a 350 6.1 5.8 B54 54 0.25 0. 0002 a 350 6.1 5.9 B55 55 0.25 0.0005 a 400 6.2 5.9 B56 56 0.25 0.001 a 400 6.2 6.0 B57 57 0.25 0. 002 a 400 6.2 6.1 B58 58 0.25 0.005 a 400 6.2 5.9 B59 59 0.25 0.01 a 450 6.1 6.1 B60 60 0.3 0 0001 a 400 6.8 6.5 B61 61 0. 3 0. 00 02 a 400 6.7 6.4 B62 62 0.3 0. 0005 a 400 6.7 6.6 B63 63 0.3 0.001 a 450 6.7 6.6 B64 64 0.3 0.002 a 450 6.8 6.4 B65 65 0.3 0.005 a 450 6.9 6.8 B66 66 0.3 0.01 a 500 7.0 7.0 B67 67 0.3 0.02 a >500 8.2 7.5 (Reference Examples C1 to C67) The sputtering targets of each of Reference Manufacturing Examples 1 to 67 were respectively mounted on a 4 吋 61 320647 200926207 » DC magnetron sputtering device to maintain the substrate temperature at The room temperature (about 20 ° C), the water pressure is set to 1. 0xl (T5Pa ' and 0 to 3. 0sccin change the oxygen partial pressure (equivalent to 0 to 1. lxl 〇 -2pa) ' and obtain a reference example A transparent conductive film of C1 to C67. The sputtering conditions were as follows, whereby a film having a thickness of 1200 A was obtained. Target size: Φ=4ίη. t=6mm Splash mode: DC magnetron sputtering device Exhaust device: Rotary pump + Freezer vacuum pump ® Reach vacuum: 5. 3xlO_6[Pa]

Ar 壓力:4. OxlOlPa] 氧壓力:0 至 1· lxl〇_2[Pa] 水壓力:1. OxlO_5[Pa] 基板溫度:室溫 濺鍍電力:130W(電力密度為1.6W/cm2) 使用基板.康寧#1737(液晶顯不器用玻璃)t=0. 8nnn ❹ 對於參考例Cl至C67,係求取室溫成膜時之氧分壓與 電阻率之間的關係,以及250。(:退火後之氧分壓與電阻率 之間的關係。 下列表16及表17,係顯示各樣本之Ba及Sn對1莫 耳的I η之莫耳比,以及室溫成膜時之緒晶狀態(非晶膜記 為a ’結晶化膜記為c ),並顯示非晶膜的結晶化溫度。結 晶化溫度、成膜時的電阻率及退火後的電卩且率,係如以上 所述。 使用各參考製造例丨至67的濺鍍靶材,求取室溫(約 62 320647 200926207 20°C )時的氧分壓以及於該分壓下成膜之膜的電阻率之間 的關係,並求取最適氧分壓,並且從於250°C對各氧分壓 下所成膜之膜進行退火後之電阻率與成膜氧分壓之間的關 係中,以退火後的電阻率成為最低電阻之氧分壓,作為於 250°C成膜時之最適氧分壓,據此判斷兩者的最適氧分壓是 否不同,以不同者為#,幾乎相同者為▲,並將結果顯示 於第34圖。 從該結果中可得知,當錫對1莫耳的銦之莫耳比y(莫 ❹ 耳),位於以鋇對1莫耳的銦之莫耳比X所表示之(-2. 9xl0_1 Ln(x)-6.7xl(T2)之值以上,在(-2. 0xl0_1Ln(x)-4. 6xl0-1) 之值以下且除了 y=0之範圍時,成膜後的非晶膜成為低電 阻之成膜氧分壓與退火後的膜成為低電阻之成膜氧分壓為 不同,或者是250°C之最適氧分壓與室溫下的最適氧分壓 為不同。亦即,於這些組成範圍中,並非從剛成膜的電阻 率求取最適氧分壓,而是在退火後之結晶化的膜成為最低 φ 電阻之氧分壓下成膜者,該退火後之膜的電阻率較低,因 而更為理想。 此外,可得知於錫對1莫耳的銦之莫耳比y(莫耳), 位於以鋇對1莫耳的銦之莫耳比X所表示之(-2. 9xl(T2Ln(x) -6.7xl0_2)之值以下之範圍中,結晶化溫度位於較100°C還 小之範圍。 另一方面,參考第32圖及第33圖,可得知於使水分 壓位於特定範圍進行成膜時,即使錫對1莫耳的銦之莫耳 比y(莫耳),位於以鋇對1莫耳的銦之莫耳比X所表示之 63 320647 200926207 (-2. 9xl(T2Ln(x)-6. 7χ1(Γ2)之值以下之範圍中,結晶化溫度 亦為150°C以上之高溫度,而容易形成非晶膜。 亦即,由第32圖及第33圖所示可知,若於水分壓為 1. Oxl0_4Pa以上的條件下進行成膜,相較於如第34圖所示 之實質上不存在水之狀態的未滿1. Oxl 0—4Pa,較理想為 1. 0xl0_5Pa以下的水分壓下進行成膜時,可提高非晶膜的 結晶化溫度。此外,尤其在實質上不存在水之條件下結晶 化溫度為未滿100°C,且錫對1莫耳的銦之莫耳比y(莫 〇 耳),位於以鋇對1莫耳的銦之莫耳比X所表示之(-2. 9x10—2 Ln(x)-6.7xl0_2)之值以下之範圍中,即使結晶化溫度位於 較100°C還低之範圍,結晶化溫度亦成為100°C以上,較理 想為150°C之高溫度,因此可容易形成非晶膜。 64 320647 200926207[表 16]Ar Pressure: 4. OxlOlPa] Oxygen pressure: 0 to 1· lxl〇_2 [Pa] Water pressure: 1. OxlO_5 [Pa] Substrate temperature: room temperature sputtering power: 130W (power density is 1.6W/cm2) Substrate. Corning #1737 (glass for liquid crystal display) t = 0. 8nnn ❹ For Reference Examples C1 to C67, the relationship between the oxygen partial pressure and the resistivity at room temperature film formation, and 250 are obtained. (: relationship between oxygen partial pressure after annealing and resistivity. Tables 16 and 17 below show the molar ratio of Ba and Sn to 1 mol of I η for each sample, and film formation at room temperature. The state of the crystal (the amorphous film is denoted by a 'crystallized film denoted as c), and the crystallization temperature of the amorphous film is shown. The crystallization temperature, the resistivity at the time of film formation, and the electric enthalpy after annealing are as follows. The sputtering target of each reference manufacturing example to 67 was used to determine the partial pressure of oxygen at room temperature (about 62 320647 200926207 20 ° C) and the resistivity of the film formed at the partial pressure. The relationship between the optimum oxygen partial pressure and the relationship between the electrical resistivity and the film formation oxygen partial pressure after annealing the film formed at each partial pressure of oxygen at 250 ° C, after annealing The resistivity becomes the lowest partial pressure of oxygen, and is the optimum oxygen partial pressure at the time of film formation at 250 ° C. Based on this, it is judged whether the optimum oxygen partial pressures of the two are different, and the difference is #, and almost the same is ▲, The results are shown in Figure 34. From the results, it can be seen that when tin is 1 molar in indium molar ratio y (moule), For a molar ratio of 1 mol of indium to X (-2. 9xl0_1 Ln(x) - 6.7xl (T2) or more, at (-2. 0xl0_1Ln(x)-4. 6xl0-1) When the value is below the range of y = 0, the film-forming oxygen partial pressure of the amorphous film after film formation becomes low resistance, and the film partial pressure of oxygen which becomes low resistance after annealing is different, or 250 ° C The optimum partial pressure of oxygen is different from the optimum partial pressure of oxygen at room temperature. That is, in these composition ranges, the optimum partial pressure of oxygen is not obtained from the resistivity of the film immediately formed, but the film is crystallized after annealing. It is more desirable to form a film under the oxygen partial pressure of the lowest φ resistance, and the film after annealing has a lower resistivity, which is more desirable. Further, it is known that the molar ratio of tin to 1 mol of indium is y (mole ), in the range of the value of -2. 9xl (T2Ln(x) -6.7xl0_2) expressed by the molar ratio of indium to 1 mol of indium, the crystallization temperature is smaller than 100 ° C On the other hand, referring to Fig. 32 and Fig. 33, it can be seen that even when tin is applied to a specific range to form a film, even if tin is in a molar ratio of 1 mol of indium to y (mole), it is located. One to one In the range of 63 320647 200926207 (-2. 9xl (T2Ln(x)-6. 7χ1(Γ2)), the crystallization temperature is also higher than 150 °C, and it is easy An amorphous film is formed. That is, as shown in Fig. 32 and Fig. 33, when the water pressure is 1. Oxl0_4 Pa or more, film formation is performed, and substantially does not exist as shown in Fig. 34. When the state of the water is less than 1. Oxl 0 - 4 Pa, it is preferable to form a film at a water pressure of 1.0 x x 0_5 Pa or less, and the crystallization temperature of the amorphous film can be increased. In addition, especially in the absence of water in the substantial absence of water, the crystallization temperature is less than 100 ° C, and the molar ratio of tin to 1 mol of indium is y (moule), located in 钡 to 1 mol of indium In the range below the value of (-2. 9x10 - 2 Ln(x) - 6.7xl0_2) expressed by the molar ratio X, even if the crystallization temperature is in a range lower than 100 ° C, the crystallization temperature becomes 100. Above °C, it is more desirable to have a high temperature of 150 ° C, so that an amorphous film can be easily formed. 64 320647 200926207 [Table 16]

樣本 No. 製造例 Sn比 Ba比 結晶 狀態 結晶化,溫度 (°C) 成膜時的 電阻率 (χ10'4Ω · cm) 退火後的 電阻率 (χ10'4Ω · cm) Cl 1 0 0.1 a >450 19.0 21.4 C2 2 0.025 0. 07 a 400 12.5 14.3 C3 3 0.025 0.1 a >450 15.2 17.5 C4 4 0.05 0.0001 c <100 4.6 3.3 C5 5 0.05 0. 0002 c <100 4.7 3.4 C6 6 0. 05 0. 0005 c <100 4.8 3.4 C7 7 0.05 0.001 c <100 4.7 3.5 C8 8 0.05 0.002 c <100 4.1 3.0 C9 9 0.05 0. 005 c <100 4.1 3.1 CIO 10 0. 05 0.01 c <100 4.2 3.4 Cll 11 0.05 0. 02 a 150 5.0 4.9 Cl 2 12 0. 05 0.03 a 200 7.5 6.2 C13 13 0.05 0. 05 a 400 8.2 9.2 C14 14 0.075 0,002 c <100 3.3 2.1 C15 15 0.075 0.005 c <100 3.3 2.1 C16 16 0.075 0. 01 a 100 4.2 3.1 C17 17 0.075 0.02 a 150 5.1 3.5 C18 18 0.075 0. 03 a 250 6.7 5.1 C19 19 0.1 0. 0001 c <100 4.3 1.8 C20 20 0.1 0. 0002 c <100 4.3 1.8 C21 21 0.1 0. 0005 c <100 4.3 1.8 C22 22 0.1 0.001 c <100 4.3 1.8 C23 23 0.1 0.002 c <100 4.3 1.8 C24 24 0.1 0.005 a 100 4.3 1.8 C25 25 0.1 0.01 a 150 4.7 2.3 C26 26 0.1 0. 02 a 200 5.5 2.7 C27 27 0.1 0. 03 a 250 6.1 4.6 C28 28 0.1 0. 05 a 400 8.6 10.0 C29 29 0.1 0.1 a >450 14.2 15.3 C30 30 0.15 0. 0001 c <100 4.6 1.8 C31 31 0.15 0. 0002 c <100 4.6 1.8 C32 32 0.15 0. 0005 c <100 4.6 1.8 C33 33 0.15 0.001 a 150 4.6 1.8 C34 34 0.15 0.002 a 150 4.6 1.8 C35 35 0.15 0. 005 a 150 4.6 1.8 65 320647 200926207 [表Π]Sample No. The production example Sn is crystallized in a crystal state than Ba, and the temperature (°C) is a resistivity at the time of film formation (χ10'4 Ω·cm). The electrical resistivity after annealing (χ10'4 Ω·cm) Cl 1 0 0.1 a &gt ;;;;;;;;;;; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;100 4.2 3.4 Cll 11 0.05 0. 02 a 150 5.0 4.9 Cl 2 12 0. 05 0.03 a 200 7.5 6.2 C13 13 0.05 0. 05 a 400 8.2 9.2 C14 14 0.075 0,002 c <100 3.3 2.1 C15 15 0.075 0.005 c <100 3.3 2.1 C16 16 0.075 0. 01 a 100 4.2 3.1 C17 17 0.075 0.02 a 150 5.1 3.5 C18 18 0.075 0. 03 a 250 6.7 5.1 C19 19 0.1 0. 0001 c <100 4.3 1.8 C20 20 0.1 0. 0002 c <100 4.3 1.8 C21 21 0.1 0. 0005 c <100 4.3 1.8 C22 22 0.1 0.001 c <100 4.3 1.8 C23 23 0.1 0.002 c <100 4.3 1.8 C24 24 0.1 0.005 a 100 4.3 1 .8 C25 25 0.1 0.01 a 150 4.7 2.3 C26 26 0.1 0. 02 a 200 5.5 2.7 C27 27 0.1 0. 03 a 250 6.1 4.6 C28 28 0.1 0. 05 a 400 8.6 10.0 C29 29 0.1 0.1 a >450 14.2 15.3 C30 30 0.15 0. 0001 c <100 4.6 1.8 C31 31 0.15 0. 0002 c <100 4.6 1.8 C32 32 0.15 0. 0005 c <100 4.6 1.8 C33 33 0.15 0.001 a 150 4.6 1.8 C34 34 0.15 0.002 a 150 4.6 1.8 C35 35 0.15 0. 005 a 150 4.6 1.8 65 320647 200926207 [表Π]

樣本 No. 製造例 Sn比 Ba比 結晶 狀態 結晶化溫度 CC) 成膜時的 電阻率 (χ10'4Ω · cm) 退火後的 電阻率 (χ10"*Ω · cm) C36 36 0.15 0.01 a 200 5.0 2.1 C37 37 0.15 0.02 a 250 6.0 2.6 C38 38 0.15 0.03 a 350 6.9 5.9 C39 39 0.15 0.05 a >450 8.6 8.1 C40 40 0.2 0.00006 c <100 4.8 1.9 C41 41 0.2 0.0001 a 150 4.8 1.9 C42 42 0.2 0.0002 a 150 4.8 1.9 C43 43 0.2 0. 0005 a 150 4.8 1.9 C44 44 0.2 0.001 a 200 4.8 1.9 C45 45 0.2 0.002 a 200 4.8 1.9 C46 46 0.2 0.005 a 200 5.2 1.9 C47 47 0.2 0.01 a 200 5.8 2.4 C48 48 0.2 0.02 a 250 6.7 3.0 C49 49 0.2 0. 03 a 400 8.0 6.2 C50 50 0.2 0.05 a >450 10.1 9.8 C51 51 0. 22 0.00005 a 100 4.9 2.0 C52 52 0.22 0. 0033 a 400 8.1 6.3 C53 53 0.25 0.0001 a 250 4.7 2.1 C54 54 0.25 0.0002 a 250 4.7 2.1 C55 55 0.25 0. 0005 a 250 4.7 2.1 C56 56 0.25 0.001 a 250 4.7 3.6 C57 57 0.25 0.002 a 300 5.7 5.1 C58 58 0. 25 0.005 a 300 5.7 5.3 C59 59 0.25 0.01 a 300 6.0 5.9 C60 60 0.3 0.0001 a 300 5.3 4.3 C61 61 0.3 0.0002 a 300 5.3 4.3 C62 62 0.3 0.0005 a 300 5.3 4.3 C63 63 0.3 0.001 a 300 5.3 4.3 C64 64 0.3 0.002 a 300 5.4 4.4 C65 65 0.3 0.005 a 350 5.7 4.7 C66 66 0.3 0.01 a 400 6.2 5.1 C67 67 0.3 0.02 a 450 7.8 6.0 (氫的存在確認測試) 分別將參考製造例13的濺鍍靶材裝設於4吋的DC磁 66 320647 200926207 控藏鑛裝置’ _將基板温度保持在室溫(約2 〇 °C ),並將水分 壓分別設定在1. 〇xl(T2Pa(作為參考測試例D、5. 〇xl〇-3Pa (作為參考測試例2)、5. 0x10 5Pa(作為參考測試例3)之條 件下,而獲得參考測試例1至3的透明導電膜。 濺鑛條件如下所述’藉此可獲得厚度1200A的膜。 萆巴材尺寸:φ=4ίη. t=6mm 濺鍍方式:DC磁控濺鍍裝置 排氣裝置:旋轉泵浦+冷珠真空泵浦 ❾ 到達真空度:5. 3xl(T5[Pa]Sample No. Production example Sn ratio Ba ratio crystal state crystallization temperature CC) Resistivity at film formation (χ10'4 Ω · cm) Resistivity after annealing (χ10"*Ω · cm) C36 36 0.15 0.01 a 200 5.0 2.1 C37 37 0.15 0.02 a 250 6.0 2.6 C38 38 0.15 0.03 a 350 6.9 5.9 C39 39 0.15 0.05 a >450 8.6 8.1 C40 40 0.2 0.00006 c <100 4.8 1.9 C41 41 0.2 0.0001 a 150 4.8 1.9 C42 42 0.2 0.0002 a 150 4.8 1.9 C43 43 0.2 0. 0005 a 150 4.8 1.9 C44 44 0.2 0.001 a 200 4.8 1.9 C45 45 0.2 0.002 a 200 4.8 1.9 C46 46 0.2 0.005 a 200 5.2 1.9 C47 47 0.2 0.01 a 200 5.8 2.4 C48 48 0.2 0.02 a 250 6.7 3.0 C49 49 0.2 0. 03 a 400 8.0 6.2 C50 50 0.2 0.05 a > 450 10.1 9.8 C51 51 0. 22 0.00005 a 100 4.9 2.0 C52 52 0.22 0. 0033 a 400 8.1 6.3 C53 53 0.25 0.0001 a 250 4.7 2.1 C54 54 0.25 0.0002 a 250 4.7 2.1 C55 55 0.25 0. 0005 a 250 4.7 2.1 C56 56 0.25 0.001 a 250 4.7 3.6 C57 57 0.25 0.002 a 300 5.7 5.1 C58 58 0. 25 0.005 a 300 5.7 5.3 C59 59 0.25 0.01 a 300 6.0 5.9 C60 60 0.3 0.0001 a 300 5.3 4.3 C61 61 0.3 0 .0002 a 300 5.3 4.3 C62 62 0.3 0.0005 a 300 5.3 4.3 C63 63 0.3 0.001 a 300 5.3 4.3 C64 64 0.3 0.002 a 300 5.4 4.4 C65 65 0.3 0.005 a 350 5.7 4.7 C66 66 0.3 0.01 a 400 6.2 5.1 C67 67 0.3 0.02 a 450 7.8 6.0 (Presence confirmation test of hydrogen) The sputtering target of Reference Example 13 was separately mounted on a 4 吋 DC magnetic 66 320647 200926207 controlled ore device ' _ Keep the substrate temperature at room temperature (about 2 〇 °C), and the water pressure is set to 1. 〇xl (T2Pa (as reference test example D, 5. 〇xl〇-3Pa (as reference test example 2), 5. 0x10 5Pa (as reference test example 3) Under the conditions, the transparent conductive films of Reference Test Examples 1 to 3 were obtained. The sputtering conditions are as follows. Thus, a film having a thickness of 1200 A can be obtained.萆Ba material size: φ=4ίη. t=6mm Sputtering method: DC magnetron sputtering device Exhaust device: Rotary pump + cold bead vacuum pump ❾ Reach vacuum: 5. 3xl (T5[Pa]

Ar 壓力:4. OxlOlPa] 氧壓力:0[Pa] 水壓力:1. ΟχΠΓ2、5. 0χ1(Γ3、5. Oxl〇-5[pa:] 基板溫度:室溫 濺鍍電力:130W(電力密度為1. 6W/,cm2) 使用基板·康寧#1737(液晶顯示器用玻璃)t=〇 ❹ 以薄膜XRD對各條件下所成膜之試樣的結晶狀態進行 分析,可確認出於參考測試例1、2中為非晶質,於參考測 试例3中為結晶化者。 'Ar pressure: 4. OxlOlPa] Oxygen pressure: 0 [Pa] Water pressure: 1. ΟχΠΓ2, 5. 0χ1 (Γ3, 5. Oxl〇-5[pa:] Substrate temperature: room temperature sputtering power: 130W (power density 1.6W/, cm2) Using a substrate · Corning #1737 (glass for liquid crystal display) t=〇❹ The crystal state of the sample formed under each condition was analyzed by thin film XRD, and it was confirmed that the reference test example was used. It is amorphous in 1, 2, and is crystallization in Reference Test Example 3. '

此外,對於各膜内之氫的存在,係使用飛行時間型二 次離子質量分析法(TOF-SIMS ULVAC PHI公司製TRIFT IV) ’對參考測試例1至3的試樣’以下列所示之測定條件 來比較出所檢測之(H+離子數)/(總離子數)而確認。 [測定條件] 一次離子:Au+ 320647 67 200926207 加速電壓:30kV 掃描條件:光栅掃描 第18表係表示成膜的試樣之tof-SIMS分析結果之(矿 離子的計數值)/(總離子的計數值)。 在此,於成膜時的水分壓為5. 0xl0-5Pa之實質上不存 在水的環境下所成膜之參考測試例3的試料中,雖然檢測 出H+離子,但此可判斷為基數值。亦即,於最近的研究中, 係有人提出從較參考測試例3還低的分壓下所成膜之氧化 銦膜中,檢測出H+離子之報告(jpn· j. Appi. Phys.,v〇1. 46’ No· 28’ 2007,pp. L685-L687),如此可推測出,所檢 測到的氫離子,為於成膜時從附著於基板之少許的水分進 入膜内者。因此,於本申請案之發明中,係以於實質上不 存在水的環境之水分壓為5. 〇xl〇-5pa以下的環境下所成膜 之樣本的(H+離子數)/(總離子數)之7. 75χ1〇-4為基準值, 並以較此值所增加之(Η+離子數)/(總離子數),作為膜中所 ❹ 含有之氫離子。 因此,若比較參考測試例1至3的(11+離子的計數值)〆 (總離子的計數值),則可得知隨著成膜時之水分壓的增 士,使該值增加。如參考測試例丨及2所示,係確認出可 藉由控制成臈時的水分壓,來改變水分進入於膜内所形成 之虱的此外,進入於膜内之氫,可推測為藉由與膜内 之原子的懸鍵(未鍵結鍵)形成氫末端,而具有阻礙膜的結 晶化之效果。 以上的測定結果係表示添加元素為Ba之情況,但即使 320647 68 200926207 為氧鍵結能量位於100至350kj/mol的範圍之其他添加元 素時’亦可藉由控制成膜時的水分壓,來改變水分進入於 膜内所形成之氫的量。 [表 18] 成膜時水分壓 [Pa] H+離子數/總離子數 測定結果 (測定結果)-(基準值) 參考測試例1 1. Oxl 0'2 9. 18x10] 1.43xl0'4 參考測試例2 5. OxlO'3 8. 98xl0'4 1.23X10·4 " 參考測試例3 5. Oxl〇·5 7. 75x10-4 0. o〇xi〇-° ❹ 【圖式簡單說明】 第1圖(a)至(c)係顯示本發明的測試例1至3之氧分 壓與電阻率之間的關係之圖。 第2圖(a)及(b)係顯示本發明的測試例4至5之氧分 壓與電阻率之間的關係之圖。 第3圖(a)及(b)係顯示本發明的測試例6至7之氧分 壓與電阻率之間的關係之圖。 第4圖(a)及(b)係顯示本發明的測試例8至9之氧分 壓與電阻率之間的關係之圖。 第5圖(a)及(b)係顯示本發明的參考例丨至2之氧分 壓與電阻率之間的關係之圖。 第6圖(a)及(b)係顯示本發明的參考例3至4之氧分 壓與電阻率之間的關係之圖。 第7圖係顯示本發明的比較例丨之氧分壓與電阻率之 間的關係之圖。 320647 69 200926207 示本發明的測試例10之氧分屋與 電阻率之Further, for the presence of hydrogen in each film, a time-of-flight secondary ion mass spectrometry (TRIF IV manufactured by TOF-SIMS ULVAC PHI Co., Ltd.) 'samples of reference test examples 1 to 3' was used as follows. The measurement conditions were compared and the detected (H+ ion number) / (total ion number) was confirmed. [Measurement conditions] Primary ion: Au+ 320647 67 200926207 Accelerating voltage: 30 kV Scanning conditions: Grating scanning No. 18 indicates the tof-SIMS analysis result of the film-formed sample (counting value of mineral ions) / (total ion count) Value). Here, in the sample of Reference Test Example 3 in which the water-forming pressure at the time of film formation is 5.0. 0xl0-5Pa in the absence of water, the H+ ion is detected, but this can be judged as the base value. . That is, in a recent study, it has been proposed to detect a H+ ion in an indium oxide film formed under a partial pressure lower than that of Reference Example 3 (jpn·j. Appi. Phys., v 〇1. 46' No. 28' 2007, pp. L685-L687), it can be inferred that the detected hydrogen ions enter the film from a small amount of moisture adhering to the substrate at the time of film formation. Therefore, in the invention of the present application, the water pressure in an environment in which water is substantially absent is (H+ ion number) / (total ion) of a film formed in an environment of 〇xl〇-5pa or less 7. 75χ1〇-4 is the reference value, and the (Η+ion number)/(total ion number) added by this value is used as the hydrogen ion contained in the film. Therefore, when the (11+ ion count value) 〆 (the total ion count value) of Reference Test Examples 1 to 3 is compared, it is known that the value is increased as the water pressure at the time of film formation increases. As shown in Reference Test Examples 2 and 2, it was confirmed that the moisture formed in the film can be changed by controlling the water pressure at the time of enthalpy, and the hydrogen entering the film can be presumed to be The hydrogen bond is formed by a dangling bond (unbonded bond) of an atom in the film, and has an effect of inhibiting crystallization of the film. The above measurement results indicate that the additive element is Ba, but even if 320647 68 200926207 is another additive element having an oxygen bonding energy in the range of 100 to 350 kj/mol, 'by controlling the water pressure at the time of film formation, The amount of hydrogen formed by the ingress of moisture into the membrane is altered. [Table 18] Water pressure at the time of film formation [Pa] H+ ion number/total ion number measurement result (measurement result) - (reference value) Reference test example 1 1. Oxl 0'2 9. 18x10] 1.43xl0'4 Reference test Example 2 5. OxlO'3 8. 98xl0'4 1.23X10·4 " Reference test example 3. 5. Oxl〇·5 7. 75x10-4 0. o〇xi〇-° ❹ [Simplified description] 1st Figures (a) to (c) are graphs showing the relationship between the oxygen partial pressure and the specific resistance of Test Examples 1 to 3 of the present invention. Fig. 2 (a) and (b) are graphs showing the relationship between the oxygen partial pressure and the specific resistance of Test Examples 4 to 5 of the present invention. Fig. 3 (a) and (b) are graphs showing the relationship between the oxygen partial pressure and the specific resistance of Test Examples 6 to 7 of the present invention. Fig. 4 (a) and (b) are graphs showing the relationship between the oxygen partial pressure and the specific resistance of Test Examples 8 to 9 of the present invention. Fig. 5 (a) and (b) are views showing the relationship between the oxygen partial pressure and the specific resistance of Reference Examples 丨 to 2 of the present invention. Fig. 6 (a) and (b) are graphs showing the relationship between the oxygen partial pressure and the specific resistance of Reference Examples 3 to 4 of the present invention. Fig. 7 is a graph showing the relationship between the oxygen partial pressure and the specific resistance of the comparative example of the present invention. 320647 69 200926207 shows the oxygen partial house of Test Example 10 of the present invention and resistivity

第11圖係顯示本發明的測試例13之氧分壓與電阻率 第8圖係顯 間的關係之圖。 之間的關係之圖。 ❹ 第12圖係顯示本發明的參考例5之氧分壓 間的關係之圖。 第13圖(a)至(c)係顯示本發明的測試例丨至3之退火 前後的薄膜XRD圖案之圖。 第14圖(a)及(b)係顯示本發明的測試例4至5之退火 前後的薄膜XRD圖案之圖。 第15圖(a)及(b)係顯示本發明的測試例6至7之退火 φ 前後的薄膜XRD圖案之圖。 第16圖(a)及(b)係顯示本發明的測試例8至g之退火 前後的薄膜XRD圖案之圖。 第17圖(a)及(b)係顯示本發明的參考例1至2之退火 前後的薄膜XRD圖案之圖。 第18圖(a)及(b)係顯示本發明的參考例3至4之退火 前後的薄膜XRD圖案之圖。 第19圖係顯示本發明的比較例1之退火前後的薄膜 XRD圖案之圖。 70 320647 200926207 第20圖(a)至(c)係顯示本發明的測試例1至3之退火 前後的透射光譜之圖。 第21圖(a)及(b)係顯示本發明的測試例4至5之退火 前後的透射光譜之圖。 第22圖(a)及(b)係顯示本發明的測試例6至7之退火 前後的透射光譜之圖。 第23圖(a)及(b)係顯示本發明的測試例8至9之退火 前後的透射光譜之圖。 第24圖(a)及(b)係顯示本發明的參考例1至2之退火 前後的透射光譜之圖。 第25圖(a)及(b)係顯示本發明的參考例3至4之退火 前後的透射光譜之圖。 第26圖係顯示本發明的比較例1之退火前後的透射光 譜之圖。 第27圖係顯示本發明之含Sr透明導電膜的結果之圖。 第28圖係顯示本發明之含Li透明導電膜的結果之圖。 第29圖係顯示本發明之含La透明導電膜的結果之圖。 第30圖係顯示本發明之含Ca透明導電膜的結果之圖。 第31圖係顯示本發明之含Sr、Li、La、Ca透明導電 膜的結果之圖。 第32圖係顯示本發明的參考例A1至A67的結晶化溫 度之圖。 第33圖係顯示本發明的參考例B1至B67的結晶化溫 度之圖。 71 320647 200926207 第34圖係顯示本發明的參考例Cl至C67的結晶化溫 度之圖。 【主要元件符號說明】 無。 〇 ❹ 72 320647Fig. 11 is a graph showing the relationship between the oxygen partial pressure of Test Example 13 and the resistivity of Fig. 8 of the present invention. A diagram of the relationship between them. Fig. 12 is a view showing the relationship between the oxygen partial pressures of Reference Example 5 of the present invention. Fig. 13 (a) to (c) are views showing a film XRD pattern before and after annealing of Test Examples 丨 to 3 of the present invention. Fig. 14 (a) and (b) are views showing the film XRD pattern before and after annealing of Test Examples 4 to 5 of the present invention. Fig. 15 (a) and (b) are views showing a film XRD pattern before and after annealing φ of Test Examples 6 to 7 of the present invention. Fig. 16 (a) and (b) are views showing a film XRD pattern before and after annealing of Test Examples 8 to g of the present invention. Fig. 17 (a) and (b) are views showing a film XRD pattern before and after annealing of Reference Examples 1 to 2 of the present invention. Fig. 18 (a) and (b) are views showing a film XRD pattern before and after annealing of Reference Examples 3 to 4 of the present invention. Fig. 19 is a view showing a film XRD pattern before and after annealing of Comparative Example 1 of the present invention. 70 320647 200926207 Fig. 20 (a) to (c) are views showing transmission spectra before and after annealing of Test Examples 1 to 3 of the present invention. Fig. 21 (a) and (b) are views showing transmission spectra before and after annealing of Test Examples 4 to 5 of the present invention. Fig. 22 (a) and (b) are views showing transmission spectra before and after annealing of Test Examples 6 to 7 of the present invention. Fig. 23 (a) and (b) are views showing transmission spectra before and after annealing of Test Examples 8 to 9 of the present invention. Fig. 24 (a) and (b) are views showing transmission spectra before and after annealing of Reference Examples 1 to 2 of the present invention. Fig. 25 (a) and (b) are views showing transmission spectra before and after annealing of Reference Examples 3 to 4 of the present invention. Fig. 26 is a view showing the transmission spectrum before and after annealing of Comparative Example 1 of the present invention. Fig. 27 is a view showing the results of the Sr-containing transparent conductive film of the present invention. Fig. 28 is a view showing the results of the Li-containing transparent conductive film of the present invention. Fig. 29 is a view showing the results of the La-containing transparent conductive film of the present invention. Fig. 30 is a view showing the results of the Ca-containing transparent conductive film of the present invention. Fig. 31 is a view showing the results of the Sr, Li, La, Ca transparent conductive film of the present invention. Fig. 32 is a graph showing the crystallization temperatures of Reference Examples A1 to A67 of the present invention. Fig. 33 is a graph showing the crystallization temperatures of Reference Examples B1 to B67 of the present invention. 71 320647 200926207 Figure 34 is a graph showing the crystallization temperatures of Reference Examples C1 to C67 of the present invention. [Main component symbol description] None. 〇 ❹ 72 320647

Claims (1)

200926207 七、申請專利範圍: 1. 一種透明導電膜,為使用具備氧化物燒結體之濺鍍靶材 而成膜者,此氧化物燒結體係含有氧化銦以及因應必要 之錫,並且對1莫耳的銦含有0.0001莫耳以上且未滿 0. 10莫耳之氧鍵結能量位於100至350kJ/mol的範圍 之添加元素(惟Ba(鋇)、Mg(鎮)、Y(紀)除外),其特徵 為. 含有氧化銦以及因應必要之錫,並且含有前述之添 ® 加元素。 2. 如申請專利範圍第1項之透明導電膜,其中前述添加元 素,為從Sr(錄)、Li(裡)、La(鋼)、及Ca(J弓)所組成 的群組中所選擇之至少1種者。 3. 如申請專利範圍第1項之透明導電膜,其中,係使用對 1莫耳的銦含有0至0.3莫耳的錫之濺鍍靶材而成膜 者。 q 4.如申請專利範圍第2項之透明導電膜,其中,係使用對 1莫耳的錮含有0至0.3莫耳的錫之濺鍍靶材而成膜 者。 5. 如申請專利範圍第2項之透明導電膜,其中,錫對1 莫耳的銦之莫耳比y,係位於以前述添加元素對1莫耳 的銦之莫耳比X所表示之(-9.3xlO_2Ln(x)-2. lx 10’ 之值以上且為(-2. 5xlO_1Ln(x)-5. TxltT1)之值以下的範 圍。 6. 如申請專利範圍第3項之透明導電膜,其中,錫對1 73 320647 200926207 莫耳的銦之莫耳比y,係位於以前述添加元素對1莫耳 的麵之莫耳比x所表示之(-9. 3x10—2Ln(x)-2. lx ΗΓ1) 之值以上且為(_2· 5x1 〇_1Ln(x)-5. 7x1ο-1)之值以下的範 圍。 7. Ο 8. 9. ❹ 10. 如申請專利範圍第4項之透明導電膜,其中,錫對j 莫耳的銦之莫耳比y,係位於以前述添加元素對1莫耳 的鋼之莫耳比X所表示之(-9.3xl(T2Ln(x)-2. lx 1〇’ 之值以上且為(-2.5乂10九11(^)-5.7乂10-1)之值以下的範 圍。 如申請專利範圍第2項之透明導電膜,其中,前述添加 70素為Sr,錫對1莫耳的銦之莫耳比y,係位於以Sr 對1莫耳的銦之莫耳比x所表示之(_4. lxl〇-2Ln(x) 9.2父1〇)之值以上且為(_2 9><1〇九11(^;)_6.7)<1〇-1)之 值以下的範圍。 如申請專利範圍第3項之透明導電膜,其中,前述添加 兀*素為Sr,錫對1莫耳的銦之莫耳比y,係位於以訃 對1莫耳的銦之莫耳比X所表示之(-4. lxl〇-2Ln(X) -9.2x10 2)之值以上且為(_2. 9xl〇-lLn(x) 6· 7χΐ(Γΐ)之 值以下的範圍。 如申請專利範圍第4項之透明導電膜,其中,前述添加 元素為Sr,錫對1莫耳的銦之莫耳比y,係位於以^ 對1莫耳的錮之莫耳比x所表示之(_4. lxl〇-2Ln(x) 〜9.2xio2)之值以上且為(_2 9χ1〇'η(χ)_6之 值以下的範圍。 320647 74 200926207 .如申β月專利範圍第2項之透明導電膜,其_,前述添加 元素為Ll ’錫對1莫耳的銦之莫耳比y,係位於以Li 對1莫耳的銦之莫耳比x所表示之(-1.6χ1〇Λη(χ) 5· 9x10 )之值以上且為(_2 5χΐ〇κχ)—之 值以下的範圍。 12. 如申明專利圍第3項之透明導電膜,其中,前述添加 疋素為Ll,錫對1莫耳的銦之莫耳比y,係位於以Li ❹ Ο 對1莫耳的銦之莫耳比X所表示之(-UxliTLnOO 5. 9x10 )之值以上且為㈠.Μ。、⑴一之 值以下的範圍。 13. 如中sf專利範圍第4項之透明導電膜,其中,前述添加 =素為U ’錫對1莫耳的銦之莫耳比y,係位於以Li =1莫耳的銦之莫耳比χ所表示之㈠.6xiG_lLn⑴ .9x10 )之值以上且為(_2. 5χΐ〇、⑴—之 值以下的範圍。 14·如2專利範圍第2項之透明導電膜,其中,前述职 f ''/ + La㉟對1莫耳的銦之莫耳比y,係位於以I ” S的錮之莫耳比X所表示之(-6.7xl(T2Ln〇i .2x10 )之值以上且為㈠3χ1(Γΐΐη⑴_7遞 值以下的範圍。 利範圍第3項之透明導電膜,其中,前述添力 對動曾錫對1莫耳的銦之莫耳比y,係位於以L 2 2 i =的銦之莫耳比X所表示之(~6.7xlir2Ln(x )之值以上且為(-3.3XlrLn(xM.7xl0, 320647 75 200926207 -» 值以下的範圍。 16.如申請專利範圍第4項之透明導電膜,其中,前述添加 疋素為U,錫對1莫耳的銦之莫耳比y,係位於以La 對1莫耳的銦之莫耳比χ所表示之(―6. 7xl(r2Ln(x) 2·2x1ο )之值以上且為(_3.之 值以下的範圍。 17·如申請專利範圍第2項之透明導電膜,其中,前述添加 ❹ 70素為Ca,錫對1莫耳的銦之莫耳比y,係位於以Ca 對1莫,的錮之莫耳比χ所表示之(_4.lxl〇_2Ln(x) 9· 3x10 )之值以上且為(_2. 5χ1〇 iLncymo—i)之 值以下的範圍。 18. 如申睛專利範圍第3項之透明導電膜,其中,前述添加 疋素為Ca ’錫對1莫耳的銦之莫耳比y,係位於以Ca 對1莫^的銦之莫耳比_x所表示之(_4.1χ1οΛη(χ) -9. 3x10 2)之值以上且為(_2. 5xl〇-lLn(x)_5· 7χΐ(Γΐ)之 ❹ 值以下的範圍。 19. 如申請專利範圍第4項之透明導電膜,其中,前述添加 疋素為Ca,錫對1莫耳的銦之莫耳比y,係位於以Ca 對1莫耳的錮之莫耳比x所表示i(_41xl0-2Ln(x) 9.3x10 )之值以上且為(_2· 5xl〇-iLn(x)_5. 7x1^)之 值以下的範圍。 20·如申請專利範圍第丨至19項中任一項之透明導電膜, 其係在水分壓為1 · 0xl〇-4Pa以上丨.〇χ1 〇-lpa以下的條件 下成膜者。 320647 76 200926207 21. 如申请專利範圍第2〇項之透明導電膜,其係含有氫者。 22. 如申凊專利範圍第1至19項中任一項之透明導電膜, 其中在作為非晶膜而成膜後,藉由退火使之結晶化。 23. 如申請專利範圍第2〇項之透明導電膜,其中在形成非 晶膜之膜後,藉由退火使之結晶化。 24. 如申請專利範圍第21項之透明導電膜,其中在形成非 晶膜之膜後,藉由退火使之結晶化。 25. 如申請專利範圍第22項之透明導電膜,其中’經前述 退火之結晶化係於100至300。(:中進行。 26. 如申請專利範圍第23項之透明導電膜,其中’經前述 退火之結晶化係於100至300t:中進行。 27. 如申請專利範圍第24項之透明導電膜,其中,經前述 退火之結晶化係於100至300°C中進行。 28· —種透明導電膜的製造方法,其特徵為: 係使用具備氧化物燒結體之濺鍍靶材來成膜,此氧 ❹ 化物燒結體係含有氧化銦以及因應必要之錫,並且對1 莫耳的銦含有〇. 0001莫耳以上且未滿〇. 10莫耳之氧鍵 結此量位於100至350kJ/m〇1的範圍之添加元素(惟 Ba、Mg、γ除外),藉此而獲得含有氧化銦以及因應必 要之錫,同時含有前诚夭 _ 丈添加兀素且為非晶質之透明導電 29.如申請專利範圍第找 雨 中,係在水分㈣翻導賴㈣造方法’; 件下成膜。 ^心上^❿以下的而 320647 77 200926207 30. 如申請專利範圍第28項之透明導電膜的製造方法,其 係在形成非晶膜後,藉由退火而構成結晶化之透明導電 膜者。 31. 如申請專利範圍第29項之透明導電膜的製造方法,其 係在形成非晶膜後,藉由退火而構成結晶化之透明導電 膜者。 32. 如申請專利範圍第30項之透明導電膜的製造方法,其 係以弱酸性的蝕刻劑對前述非晶膜進行蝕刻後,進行退 ❹ 火使之結晶化者。 33. 如申請專利範圍第31項之透明導電膜的製造方法,其 係以弱酸性的钱刻劑對前述非晶膜進行钱刻後,進行退 火使之結晶化者。 34. 如申請專利範圍第30至34項中任一項之透明導電膜的 製造方法,其係於100至300°C中進行經前述退火之結 晶化者。 ❹ 78 320647200926207 VII. Patent application scope: 1. A transparent conductive film which is formed by using a sputtering target having an oxide sintered body, the oxide sintering system containing indium oxide and the necessary tin, and 1 mole The indium contains 0.0001 moles or more and less than 0. 10 moles of oxygen bonding energy in the range of 100 to 350 kJ / mol of the addition of elements (except Ba (钡), Mg (town), Y (Ji)), It is characterized by containing indium oxide and the necessary tin, and contains the aforementioned additive elements. 2. The transparent conductive film of claim 1, wherein the aforementioned additive element is selected from the group consisting of Sr, Li, La, and Ca (J bow). At least one of them. 3. The transparent conductive film of claim 1 is formed by using a sputter target having 0 to 0.3 m of tin in 1 m of indium. q. The transparent conductive film of claim 2, wherein a film of a sputtering target containing 0 to 0.3 m of tin is used. 5. The transparent conductive film of claim 2, wherein the molar ratio y of tin to 1 mol of indium is represented by the molar ratio X of indium added by the aforementioned additive element to 1 mol ( -9.3xlO_2Ln(x)-2. The value of lx 10' is not less than the value of (-2. 5xlO_1Ln(x)-5.TxltT1). 6. The transparent conductive film of claim 3, Wherein, tin to 1 73 320647 200926207 Mohr indium molar ratio y, is expressed by the molar ratio x of the aforementioned additive element to 1 mol face (-9. 3x10-2Ln(x)-2 The range of lx ΗΓ1) is equal to or less than the value of (_2· 5x1 〇_1Ln(x)-5. 7x1ο-1) 7. Ο 8. 9. ❹ 10. If the scope of patent application is 4 a transparent conductive film in which the molar ratio y of indium to tin of j-mole is expressed by the molar ratio X of the above-mentioned additive element to 1 mol of steel (-9.3 x 1 (T2Ln(x)-2) a range of lx 1 〇 ' or more and a value below (-2.5 乂 10 9 11 (^) - 5.7 乂 10-1). The transparent conductive film of claim 2, wherein the aforementioned addition 70 Sr, Sr, tin to 1 molar indium molar ratio y , is located above the value of Sr to 1 mol of indium molar ratio x (_4. lxl〇-2Ln(x) 9.2 parent 1〇) and is (_2 9><1〇9 11( A range of the following: The transparent conductive film of the third aspect of the patent application, wherein the addition of the bismuth is Sr, and the tin is 1 ohm of indium. Moerby y, which is located above the value of (-4. lxl〇-2Ln(X) -9.2x10 2) expressed by 讣 to 1 molar of indium, and is (_2. 9xl〇- lLn(x) 6·7χΐ(Γΐ) The range below the value of the transparent conductive film of the fourth aspect of the patent application, wherein the additive element is Sr, tin to 1 molar indium molar ratio y, It is located above the value of (_4. lxl〇-2Ln(x)~9.2xio2) expressed by the molar ratio x of the pair of 1 moles and is equal to or less than the value of (_2 9χ1〇'η(χ)_6 320647 74 200926207. A transparent conductive film according to item 2 of the patent scope of the invention, wherein the aforementioned additive element is a molar ratio y of Ll 'tin to 1 mol of indium, which is located at a ratio of Li to 1 mol. The molar ratio of indium to x is greater than the value of (-1.6χ1〇Λη(χ) 5· 9x10 ) and is ( _2 5 χΐ〇 χ χ — 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. The value of (-UxliTLnOO 5. 9x10 ) expressed by Li ❹ Ο to 1 mol of indium molar ratio X is (1). (1) A range below one value. 13. The transparent conductive film of item 4 of the sf patent scope, wherein the aforementioned addition = prime is a molar ratio y of U'tin to 1 mol of indium, which is located in the indium of Li = 1 mol. The range of (1).6xiG_lLn(1).9x10) is greater than or equal to the value of (_2. 5χΐ〇, (1)-. 14) The transparent conductive film of item 2 of the second patent, wherein the aforementioned position f ' '/ + La35 to 1 mol of indium molar ratio y, which is expressed by the molar ratio X of I S S (-6.7xl (T2Ln〇i .2x10) and above (1) 3χ1 ( Γΐΐη(1)_7 is a range of the following values: The transparent conductive film of the third item of the present invention, wherein the molar force y of the aforementioned inotropic force to Zengxi to 1 mol of indium is located in the indium of L 2 2 i = The ear is expressed by X (~6.7xlir2Ln(x)) and is (-3.3XlrLn(xM.7x10, 320647 75 200926207 -»). 16. Transparent conductive film as in claim 4 Wherein, the aforementioned addition of halogen is U, and the molar ratio y of tin to 1 mol of indium is represented by a molar ratio of La to 1 mol of indium (-6. 7xl (r2Ln(x) ) 2·2x1ο ) The value is equal to or greater than the value of (_3.) 17. The transparent conductive film of claim 2, wherein the addition of ❹70 is Ca, and the molar ratio of tin to 1 mol of indium is y, It is located above the value of (_4.lxl〇_2Ln(x) 9· 3x10 ) expressed by Ca to 1 莫, and is less than or equal to (_2. 5χ1〇iLncymo-i). 18. The transparent conductive film of claim 3, wherein the added halogen is a molar ratio y of Ca'tin to 1 mol of indium, and is located in the indium of Ca to 1 mol. The range of (_4.1χ1οΛη(χ) -9. 3x10 2) expressed by the molar ratio _x is equal to or less than the range of (_2. 5xl〇-lLn(x)_5·7χΐ(Γΐ). The transparent conductive film of claim 4, wherein the aforementioned added halogen is Ca, and the molar ratio y of tin to 1 mol of indium is in the molar ratio of Ca to 1 mol. The range of i (_41xl0-2Ln(x) 9.3x10) is not less than the value of (_2·5xl〇-iLn(x)_5. 7x1^). 20·If the patent application range is from 19th to 19th a transparent conductive film of any one of which is attached to water 1. 0xl〇 pressure-4Pa above deposition by Shu .〇χ1 square-lpa under the following conditions. 32064776 200 926 207 21. Patent application range of the transparent conductive film of the first 2〇 item, which contains hydrogen-based person. The transparent conductive film according to any one of claims 1 to 19, wherein after the film is formed as an amorphous film, it is crystallized by annealing. 23. The transparent conductive film of claim 2, wherein after the film of the amorphous film is formed, it is crystallized by annealing. 24. The transparent conductive film of claim 21, wherein after the film of the amorphous film is formed, it is crystallized by annealing. 25. The transparent conductive film of claim 22, wherein the crystallization by the annealing is from 100 to 300. 26. The transparent conductive film of claim 23, wherein 'the crystallization of the foregoing annealing is performed in 100 to 300 t: 27. The transparent conductive film of claim 24, The crystallization by the annealing is performed at 100 to 300 ° C. The method for producing a transparent conductive film is characterized in that a sputtering target having an oxide sintered body is used to form a film. The bismuth oxide sintering system contains indium oxide and the necessary tin, and the indium of 1 mol contains 〇. 0001 mol or more and is less than 〇. 10 mol oxygen bond is in the range of 100 to 350 kJ/m 〇 1 The addition of elements (except Ba, Mg, γ), thereby obtaining indium oxide and the necessary tin, and containing the former Cheng 夭 丈 兀 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 29 29 29 The scope of the patent is found in the rain, and it is formed by the method of water (4) turning the lead (4). The film is formed under the film. ^心上^❿The following is 320647 77 200926207 30. The manufacturing method of the transparent conductive film of claim 28 The system is amorphous After the film is formed, the crystallized transparent conductive film is formed by annealing. 31. The method for producing a transparent conductive film according to claim 29, which is formed by annealing to form a crystallized film. 32. A method of producing a transparent conductive film according to claim 30, wherein the amorphous film is etched with a weakly acidic etchant, and then tempered by annealing. The method for producing a transparent conductive film according to claim 31, wherein the amorphous film is etched by a weakly acidic money etchant, and then annealed to crystallize the film. The method for producing a transparent conductive film according to any one of items 30 to 34, wherein the crystallization by the annealing is performed at 100 to 300 ° C. ❹ 78 320647
TW097138068A 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same TW200926207A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260436 2007-10-03

Publications (1)

Publication Number Publication Date
TW200926207A true TW200926207A (en) 2009-06-16

Family

ID=40526308

Family Applications (6)

Application Number Title Priority Date Filing Date
TW097138082A TW200926208A (en) 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same
TW097138074A TWI430956B (en) 2007-10-03 2008-10-03 Indium oxide target
TW097138068A TW200926207A (en) 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same
TW097138073A TWI461365B (en) 2007-10-03 2008-10-03 Indium oxide target
TW097138079A TW200923115A (en) 2007-10-03 2008-10-03 Indium oxide target
TW097138083A TW200926209A (en) 2007-10-03 2008-10-03 Indium oxide transparent conductive film and manufacturing method thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW097138082A TW200926208A (en) 2007-10-03 2008-10-03 Indium oxide tranparent conductive film and method for making same
TW097138074A TWI430956B (en) 2007-10-03 2008-10-03 Indium oxide target

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW097138073A TWI461365B (en) 2007-10-03 2008-10-03 Indium oxide target
TW097138079A TW200923115A (en) 2007-10-03 2008-10-03 Indium oxide target
TW097138083A TW200926209A (en) 2007-10-03 2008-10-03 Indium oxide transparent conductive film and manufacturing method thereof

Country Status (4)

Country Link
JP (6) JPWO2009044892A1 (en)
KR (6) KR101200386B1 (en)
TW (6) TW200926208A (en)
WO (6) WO2009044890A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469948B (en) * 2010-08-31 2015-01-21 Jx Nippon Mining & Metals Corp Oxide sintered body and oxide semiconductor thin film

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037679A (en) * 2009-08-13 2011-02-24 Tosoh Corp Multiple oxide sintered compact, sputtering target, multiple oxide amorphous film and production method thereof, and multiple oxide crystalline film and production method thereof
KR20180063386A (en) * 2009-11-19 2018-06-11 가부시키가이샤 아루박 Manufacturing method for transparent conductive film, sputtering device and sputtering target
CN102191465A (en) * 2010-03-18 2011-09-21 中国科学院福建物质结构研究所 Indium-doped zinc oxide target material and preparation method of transparent conducting film
KR101198786B1 (en) 2010-06-30 2012-11-07 현대자동차주식회사 Variable compression ratio apparatus
JP5367659B2 (en) * 2010-08-31 2013-12-11 Jx日鉱日石金属株式会社 Oxide sintered body and oxide semiconductor thin film
JP5817327B2 (en) 2010-09-29 2015-11-18 東ソー株式会社 Oxide sintered body, method for producing the same, oxide transparent conductive film obtained using the same, and solar cell
MY170854A (en) * 2011-12-07 2019-09-10 Tosoh Corp Complex oxide sintered body, sputtering target, transparent conductive oxide film, and method for producing same
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
JP5996227B2 (en) * 2012-03-26 2016-09-21 学校法人 龍谷大学 Oxide film and manufacturing method thereof
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570942A (en) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp High density sintered target material for forming electric conductive transparent thin film by sputtering
JPH06157036A (en) * 1992-11-13 1994-06-03 Nippon Soda Co Ltd Production of tin-doped indium oxide film having high resistivity
US5433901A (en) * 1993-02-11 1995-07-18 Vesuvius Crucible Company Method of manufacturing an ITO sintered body
JP3366046B2 (en) * 1993-03-30 2003-01-14 旭硝子株式会社 Amorphous transparent conductive film
JP3827334B2 (en) * 1993-08-11 2006-09-27 東ソー株式会社 ITO sintered body and sputtering target
JPH07161235A (en) * 1993-12-13 1995-06-23 Matsushita Electric Ind Co Ltd Transparent conductive film and its manufacture
JPH08264023A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film
JP3943617B2 (en) * 1995-12-07 2007-07-11 出光興産株式会社 Transparent conductive laminate and touch panel using the same
JPH09175837A (en) * 1995-12-27 1997-07-08 Idemitsu Kosan Co Ltd Electrically conductive transparent film and its production
JPH1195239A (en) * 1997-09-25 1999-04-09 Toshiba Corp Production of liquid crystal display device
JP3806521B2 (en) * 1998-08-27 2006-08-09 旭硝子セラミックス株式会社 Transparent conductive film, sputtering target, and substrate with transparent conductive film
JP3824289B2 (en) * 1998-09-11 2006-09-20 Hoya株式会社 Transparent conductive thin film
JP3215392B2 (en) * 1998-10-13 2001-10-02 ジオマテック株式会社 Metal oxide sintered body and its use
JP2000169219A (en) * 1998-12-09 2000-06-20 Jiomatetsuku Kk Metal oxide sintered compact and its use
JP3632524B2 (en) * 1999-09-24 2005-03-23 東ソー株式会社 Mg-containing ITO sputtering target and method for producing Mg-containing ITO vapor deposition material
JP4918737B2 (en) * 2001-03-23 2012-04-18 東ソー株式会社 Oxide sintered body and sputtering target
KR100744017B1 (en) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
JP4424889B2 (en) * 2001-06-26 2010-03-03 三井金属鉱業株式会社 Sputtering target for high resistance transparent conductive film and method for producing high resistance transparent conductive film
JP2003016858A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of indium tin oxide film
EP2278041B1 (en) * 2001-08-02 2012-05-23 Idemitsu Kosan Co., Ltd. Sputtering target and transparent conductive film obtainable by the target
JP4904645B2 (en) * 2001-08-10 2012-03-28 東ソー株式会社 Method for producing Mg-containing ITO sputtering target
JP4075361B2 (en) * 2001-11-27 2008-04-16 東ソー株式会社 Method for producing Mg-containing ITO sputtering target
JP3871562B2 (en) * 2001-12-10 2007-01-24 日東電工株式会社 Transparent conductive film having optical element function and method for producing the same
JP2004149883A (en) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd Sputtering target for high resistance transparent conductive film, and manufacturing method of high resistance transparent conductive film
JP4457669B2 (en) * 2004-01-08 2010-04-28 東ソー株式会社 Sputtering target and manufacturing method thereof
JP2006134789A (en) * 2004-11-09 2006-05-25 Idemitsu Kosan Co Ltd Amorphous transparent conductive film, amorphous transparent conductive film layered product and manufacturing method thereof
JP2006318803A (en) * 2005-05-13 2006-11-24 Sony Corp Transparent electrode film and manufacturing method of the same
JP5000230B2 (en) * 2006-08-10 2012-08-15 出光興産株式会社 Lanthanum oxide containing oxide target
KR100787635B1 (en) * 2007-01-22 2007-12-21 삼성코닝 주식회사 Indium tin oxide target, method of manufacturing the same and transparent electrode manufactured by using the same
JP4855964B2 (en) * 2007-02-09 2012-01-18 株式会社アルバック ITO sintered body, ITO sputtering target and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469948B (en) * 2010-08-31 2015-01-21 Jx Nippon Mining & Metals Corp Oxide sintered body and oxide semiconductor thin film

Also Published As

Publication number Publication date
WO2009044889A1 (en) 2009-04-09
TW200927658A (en) 2009-07-01
TW200923115A (en) 2009-06-01
JPWO2009044892A1 (en) 2011-02-10
JPWO2009044888A1 (en) 2011-02-10
TW200926208A (en) 2009-06-16
KR20100063135A (en) 2010-06-10
JPWO2009044893A1 (en) 2011-02-10
WO2009044891A1 (en) 2009-04-09
KR20100063137A (en) 2010-06-10
WO2009044892A1 (en) 2009-04-09
KR101200386B1 (en) 2012-11-12
KR20100071089A (en) 2010-06-28
KR20100063136A (en) 2010-06-10
JPWO2009044890A1 (en) 2011-02-10
JP5237827B2 (en) 2013-07-17
JPWO2009044891A1 (en) 2011-02-10
JPWO2009044889A1 (en) 2011-02-10
WO2009044893A1 (en) 2009-04-09
TWI430956B (en) 2014-03-21
TW200926209A (en) 2009-06-16
WO2009044890A1 (en) 2009-04-09
KR20100071090A (en) 2010-06-28
JP5464319B2 (en) 2014-04-09
TW200927657A (en) 2009-07-01
WO2009044888A1 (en) 2009-04-09
KR20100067118A (en) 2010-06-18
TWI461365B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
TW200926207A (en) Indium oxide tranparent conductive film and method for making same
Yu et al. Transparent conductive Sb-doped SnO2/Ag multilayer films fabricated by magnetron sputtering for flexible electronics
TWI513834B (en) Transparent conductive film
TWI584484B (en) Transparent conductive film and method for producing the same, and silicon based thin film solar cell
TW201615596A (en) And semiconductor device
WO2012026467A1 (en) Production method of transparent conductive film and production method of thin-film solar cell
JPWO2014115770A1 (en) Transparent conductive substrate and method for producing the same
TW201423772A (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
Oh et al. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates
Li et al. Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier
WO2007114429A1 (en) Indium oxide transparent conductive film and method for manufacturing same
Zong et al. Tuning the electrical and optical properties of ZrxOy/VO2 thin films by controlling the stoichiometry of ZrxOy buffer layer
JP2012142499A (en) Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
JPWO2008123420A1 (en) Method for producing indium oxide-based transparent conductive film
JP4024290B2 (en) Sputtering target and method for producing oxide sintered body
TW201013709A (en) Zinc oxide group transparent conductive film and process for making same
Chu et al. Study of Cu-based Al-doped ZnO multilayer thin films with different annealing conditions
TW201428983A (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
Lee et al. Electrical and optical properties of indium zinc oxide (IZO) thin films by continuous composition spread
JP5780550B2 (en) Substrate with transparent conductive laminate and method for producing the same
TW200923974A (en) Transparent conductive film and method for making same
JPWO2009044896A1 (en) Method for producing indium oxide-based transparent conductive film
TW200923973A (en) Indium oxide transparent conductive film and manufacturing method thereof
JP5353191B2 (en) Laminated transparent conductive film and method for producing the same