JP3824289B2 - Transparent conductive thin film - Google Patents

Transparent conductive thin film Download PDF

Info

Publication number
JP3824289B2
JP3824289B2 JP25858698A JP25858698A JP3824289B2 JP 3824289 B2 JP3824289 B2 JP 3824289B2 JP 25858698 A JP25858698 A JP 25858698A JP 25858698 A JP25858698 A JP 25858698A JP 3824289 B2 JP3824289 B2 JP 3824289B2
Authority
JP
Japan
Prior art keywords
thin film
composition
sno
transparent conductive
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25858698A
Other languages
Japanese (ja)
Other versions
JP2000090745A (en
Inventor
政寛 折田
裕道 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP25858698A priority Critical patent/JP3824289B2/en
Publication of JP2000090745A publication Critical patent/JP2000090745A/en
Application granted granted Critical
Publication of JP3824289B2 publication Critical patent/JP3824289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、透明導電性薄膜、この薄膜からなる電極、及びこの薄膜形成用ターゲットとして用いられる透明導電性材料用組成物に関する。
【0002】
光源の発達と共に、紫外光を使用した技術が社会的に広がってきている。例えば半導体プロセスにおけるキーテクノロジーであるフォトリソグラフに於いては、i線(波長365nm)、KrFレーザー光(波長298nm)、ArFレーザー光(波長196nm)などの紫外光を用いて微細なパターニングが行われている。また例えば医療の分野に於いては血液やDNAなどの生体試料の分析を紫外蛍光分析方等により行うことがすすめられている。さらに例えば宇宙技術の分野に於いては、宇宙空間に多い紫外光を利用すると太陽電池の発電効率を高めることができる。
【0003】
本発明の透明導電性薄膜は、透明電極材料および電極として、例えばi線(波長365nm)等の紫外光によるフォトリソグラフプロセスにおける帯電防止膜等に用いることができる。また例えば、生体試料等の紫外蛍光分析等における試料基板の帯電防止膜や試料セルの電界印加用透明電極等として用いることができる。また例えば、紫外光太陽電池用の透明電極として用いることができる。
【0004】
【従来の技術】
透明電極材料にはITO(Indium Tin Oxide)、ATO(Antimony doped Tin Oxide)、AZO(Aluminum doped Zinc Oxide)などがあり、フラットパネルディスプレイには主にITOが、太陽電池には主にATOが用いられている。
【0005】
これらの透明電極は電気伝導率が高く、可視域における透明性が高い。このため、フラットパネルディスプレイが発する色を妨げることなく放射することができ、大半のエネルギーが含まれている可視域太陽光を太陽電池内に効率よく取り込むことができる。
【0006】
【発明が解決しようとする課題】
従来の透明電極材料は、光吸収端波長が400nm付近にある。このため400 nmより波長の長い光、即ち可視光を効率よく透過させることができるが、400 nmより波長の短い光、即ち紫外光を透過させることが殆どできなかった。最近の研究では、Ga2O3が紫外域透明電極材料となりうることが示されているが、実用の域に達していない(N.Ueda et al., Appl.Phys.Lett. 70(26)3561,1997及びN.Ueda et al., Appl.Phys.Lett. 71(7)933,1997)。この研究では水素雰囲気下でGa2O3単結晶を形成しており、帯電防止や透明電極として用いる際に必要な膜の形状では電気伝導性が確認されていないからである。その他には、紫外域で透明な透明電極材料は報告されていない。
そこで本発明の目的は、良好な導電性を示し、400 nmより短波長の光を透過させることができる透明導電性薄膜と、このような薄膜を形成するための材料、さらには前記透明導電性薄膜からなる電極を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、一般式In2-xYxO3+αwt%SnO(但し、xは0.9〜1.6の範囲内の実数であり、αは0〜15の範囲内の実数である)で表される透明導電性薄膜及び一般式In2-xYxO3+αwt%Sb(但し、xは0.9〜1.6の範囲の実数であり、αは0〜15の範囲の実数である)で表される透明導電性薄膜、並びにこれらの薄膜からなる電極に関する。
さらに本発明は、In、Y、SnO、In−Y固溶体、Y-SnO固溶体及びIn-Y-SnO固溶体の少なくとも1つを、一般式In2-xYxO3+αwt%SnO(但し、xは0.9〜1.6の範囲内の実数であり、αは0〜15の範囲内の実数である)で示される組成となるように含む透明導電性材料用組成物、及びIn、Y、Sb、In−Y固溶体、Y-Sb固溶体及びIn-Y-Sb固溶体の少なくとも1つを、一般式In2-xYxO3+αwt%Sb(但し、xは0.9〜1.6の範囲内の実数であり、αは0〜15の範囲内の実数である)で示される組成となるように含む透明導電性材料用組成物に関する。
【0008】
【発明の実施の形態】
次に本発明の透明導電性薄膜について説明する。
本発明の透明導電性薄膜は、一般式In2-xYxO3+αwt%SnOまたはIn2-xYxO3+αwt%Sbで表される。xの値は薄膜に必要な光透過特性と電気伝導率とを勘案して選択され、0.9〜1.6の範囲内の実数である。吸収端波長はxの値が大きくなるにしたがって短波長側にシフトし、青色領域から紫外領域の透明性が増大する。一方、電気伝導率はxの値が大きくなるにしたがって低くなる傾向を示す。xの値が0.9未満の場合には、青色領域から紫外領域の透明性は従来の透明電極材料に比べて差異がない。また、xが1.6よりも大きい場合には、電気伝導率が低くなり、導電性材料として用いることができない。好ましいxは、0.9〜1.2の範囲である。
【0009】
さらに本発明の薄膜は、ドーパントイオンとして、SnまたはSbを含有する。従来から、SnはIn2O3にドーパントとして添加されて用いられてきた。In2O3にドーパントとしてSnを添加したものは、いわゆるITOである。ITOでは、添加したSnはIn2O3格子中のInのサイトに固溶して、Sn4+の形で存在し、Sn4+イオン一つあたりキャリア電子を一つ生成するといわれている。ただし、ITOがアモルファス相である場合には、Sn4+イオンはSnO2クラスターの形で存在し、キャリア生成には寄与しないという。本発明の透明導電性薄膜においても、薄膜が結晶相である場合、SnはIn2O3格子中のInのサイトに固溶して、Sn4+の形で存在し、キャリア生成には寄与するものと考えられる。しかし、薄膜がアモルファス相である場合には、そのような効果は期待できないと考えられる。
【0010】
本発明の薄膜では、ドーパントイオンであるSnまたはSbをSnOまたはSbとして、αwt%(αは0〜15の範囲内の実数である)を含有する。
SnOの含有量が15wt%を超えると、SnOが偏析しやすく、電気伝導率が低下する。αwt%の好ましい範囲は、3〜12である。SnOの含有量が3wt%以上になると、ドーピングの効果が顕著になり、キャリア密度が高くなって、高い電気伝導率が得られる。また、SnOの含有量が12wt%以下であれば、ドーパントイオンによるキャリアの散乱は起こりにくく、移動度の低下や伝導率の低下も起こりにくく、高い電気伝導率が得られる。αwt%のより好ましい範囲は、5〜10の範囲であり、この範囲であれば、充分なキャリア密度が得られ、かつ移動度も低くなりすぎず、充分な伝導率が得られる。ドーパントイオンがSbである場合も、αwt%については上記Snの場合と同様である。
【0011】
本発明の薄膜の電気伝導性は、材料内に存在する酸素欠陥から供給されるキャリア電子及びドーパントであるSnイオンまたはSbイオンによって発現する。
【0012】
本発明の透明導電性酸化物薄膜は、結晶相でも良く、アモルファス相でも良く、その用途に応じて適宜決定できる。結晶相とした場合にはアモルファス相とした場合に比べて、電気伝導率が向上し、透明性が向上する傾向を持つ一方、酸溶液などによるエッチング性が低下する傾向を持つ。
本発明の透明導電性薄膜は、紫外透明性を有し、透明電極、帯電防止フィルム、赤外反射フィルム等として用いることができる。
【0013】
本発明の透明導電性薄膜は、通常の成膜法、例えばスパッタリング法、レーザーアブレーション法、蒸着法、CVD法、スプレーパイロリシス法等を用いて作製することができる。例えばスパッタリング法を用いる場合、後述する発明の透明導電性材料用組成物の焼結体をターゲットとして用い、ArとO2の混合気体を真空容器中に導入し、rf電界をかけてプラズマを発生させ、プラズマによってターゲットを叩き、叩き出される物質を基板面上に堆積させればよい。ArとO2の混合比率、rf電流、基板温度、基板=ターゲット間距離等を調整することにより、本発明の透明導電性薄膜の結晶性、透明性や電気伝導率を最適なものとすることができる。また、ターゲットに金属In、YおよびSnの合金を用いて、基板面上でO2と反応させ、本発明の透明導電性薄膜を形成することもできる。金属ターゲットを用いる利点の一つは、ターゲット中の不純物濃度を非常に小さくできる点にある。
【0014】
また例えば、レーザーアブレーション法を用いる場合には、後述の本発明の透明導電性材料用組成物の焼結体をターゲットとして用い、O2ガスを真空容器中に導入し、レーザー光をターゲット表面に照射し、照射によって放出される物質を基板面上に堆積させればよい。O2ガス圧、レーザー光出力、基板温度、基板=ターゲット間距離等を調整することにより、本発明の透明導電性薄膜の結晶性、透明性や電気伝導率を最適なものとすることができる。特に、パルスレーザーを用い、位置パルスごとに基板上に堆積する物質の量を調整すると、一原子層ごとに結晶を成長させることができる。成長の様子は、例えばRHEEDを用いることにより、in situにモニターすることができる。この場合、単結晶性の高い膜の形成が可能になる。
【0015】
次に本発明の透明導電性材料用組成物について説明する。
本発明の透明導電性材料用組成物は、In、Y、SnO、In−Y固溶体、Y-SnO固溶体及びIn-Y-SnO固溶体の少なくとも1つを、一般式In2-xYxO3+αwt%SnOで示される組成となるように含む。この組成物は、例えば、In、Y及びSnOの混合系、In−Y固溶体とSnOとの混合系、In、Y、SnO、In−Y固溶体、Y-SnO固溶体及びIn-Y-SnO固溶体の混合系等であることができる。
【0016】
また、本発明のもう一つの透明導電性材料用組成物は、In、Y、Sb、In−Y固溶体、Y-Sb固溶体及びIn-Y-Sb固溶体の少なくとも1つを、一般式In2-xYxO3+αwt%Sbで示される組成となるように含む。この組成物は、例えば、In、Y及びSbの混合系、In−Y固溶体とSbとの混合系、In、Y、Sb、In−Y固溶体、Y-Sb固溶体及びIn-Y-Sb固溶体の混合系等であることができる。
【0017】
さらに上記組成物は、粉体でも良く、焼結体でも良い。粉体は、例えば上記組成を有する固溶体結晶の粉体でもよく、上記組成になるように混合されたIn2O3粉とY2O3粉とSnO粉(またはSb粉)の混合粉でも良く、また固溶体結晶の粉体とIn2O3粉及び/又はY2O3粉及び/又はSnO粉(またはSb粉)との混合粉でも良い。これらの粉体は焼結体ターゲットや熔射用融体、強酸溶液等の原料として用いることができる。さらに、焼結体は、例えば上記組成を有する固溶体結晶相を有してもよく、上記組成になるように混合されたIn2O3相とY2O3相の混合相でも良く、また固溶体結晶相とIn2O3相及びY2O3相との混合相でも良く、アモルファス相でも良い。
【0018】
上記一般式において、xは0.9〜1.6の範囲内の実数であり、好ましくは、0.9〜1.2の範囲である。また、上記一般式において、αwt%は0〜15の範囲内の実数である。尚、本発明の組成物がY-SnO固溶体及びIn-Y-SnO固溶体の少なくとも一方を含む場合、上記SnO含有量は、これら固溶体に含まれるSnOと、SnOとの合計量である。また、本発明の組成物がY-Sb固溶体及びIn-Y-Sb固溶体の少なくとも一方を含む場合、上記Sb含有量は、これら固溶体に含まれるSbと、Sbとの合計量である。αwt%の好ましい範囲は、3〜12であり、より好ましい範囲は5〜10の範囲である。
上記範囲のx及びαwt%を有する材料をターゲットとして用いることで、前述の本発明の薄膜を形成することができる。
【0019】
上記組成物は、例えばスパッタリング法やレーザーアブレーション法用のターゲットとして用いることができ、このターゲットを用いて、適当な基体上に本発明の透明導電性薄膜を形成することができる。ターゲットは、例えば本発明の組成物の粉末を用い、通常の固相法セラミックプロセスにより形成すればよい。すなわち、例えば本発明の組成物の粉末を、適当な径を持つシリンダー型の金型に充填し、押し棒を挿入して一軸加圧して成形し、さらに静水圧プレス機中で加圧して緻密化し、1000℃以上の温度で大気中焼成し、得られた焼結体の表面を研磨して清浄面を露出させれば良い。また、本発明の組成物の粉末を適当な媒質に分散させてスラリーを作り、スリップキャスティングして成形し、乾燥させて緻密な成形体とし、1000度以上の温度で大気中焼成し、得られた焼結体の表面を研磨して清浄面を露出させるなどしても良い。通常、スパッタリング法やレーザーアブレーション法のターゲットは緻密であることが好ましいので、緻密化できるプロセスを選択すればよい。
【0020】
【実施例】
以下、実施例により、本発明を説明する。
実施例1
In2O3粉末(純度99.99%、フルウチ化学(株)製)およびY2O3粉末(純度99.99%、フルウチ化学(株)製)をモル比で5:5となるように秤量し、さらにこの混合粉末に対してSnO2(純度99.99%、フルウチ化学(株)製)を5 wt%となるように秤量して加え、500mlの容量を有するポリイミド製ポットに直径2mmのYSZ製ビーズ200gおよび80mlのエタノールとともに入れ、フリッチュ社製遊星ボールミルを用いて200 cpsで60分撹拌したのち、オーブン中110℃でエタノールを蒸発させ、ビーズを分離、アルミナ製るつぼに入れ、電気炉中1000℃で5時間仮焼し、再び遊星ボールミル中で解砕、さらに乾燥させて粉体とした。この粉体の結晶構造を粉末X線回折法により調べたところ、In2O3-Y2O3固溶体、In2O3相、Y2O3相およびSnO2相からなる混合相であることが分かった。さらにこの粉体の化学組成を誘導結合プラズマ(ICP)法により分析したところ、秤量した組成とほぼ一致しており、本発明の透明導電性材料用組成物の粉末が生成できたことを確認した。
【0021】
実施例2
実施例1で調製した粉末2 gを直径20mmφのステンレス製金型に充填し、押し棒を挿入して、一軸プレス機により100 kg/cm2の圧力をかけて成形した。次にこの成形体をビニール袋中に入れ、真空パック装置によりビニール袋中の空気を抜くとともに封入し、神戸製鋼所製静水圧プレス機により2000 kg/cm2の圧力をかけて緻密化した。さらに電気炉により1500℃で20時間大気中焼成して焼結体を得、#400のダイヤモンド研磨盤上で研磨して清浄面を持つターゲットとした。このターゲットの結晶構造を粉末X線回折法により調べたところ、In2O3-Y2O3-SnO2固溶相に若干量のSnO2相が共存した混合相であることが明かとなった。さらにこの焼結体の化学組成をICP法により分析したところ、秤量した組成に比べてIn2O3成分が5%だけ減少していたが、本発明の透明導電性材料用組成物からなるターゲットが形成できたことを確認した。
【0022】
実施例3
実施例2で調製したターゲットを、日本真空技術(株)製のレーザーアブレーション装置に設置した。次に、ラムダ・フィジクス社製KrFエキシマーレーザー装置から80mJのレーザー光を5 Hzの周波数で放射させ、レーザーアブレーション装置内のターゲットに照射し、対向するガラス基板上に薄膜を堆積させた。堆積時間は30分、基板温度は400℃、酸素圧1 Paであった。得られた薄膜の結晶性を薄膜X線回折法により調べたところ、In2O3-Y2O3-SnO2のほぼ単相を有することが明かとなった。さらにこの薄膜の化学組成をICP法により分析したところ、In:Y = 5:5(x=0.5)であり、In2O3-Y2O3に対するSnO2の含有率(α)は 4 wt%であることが明かとなり、本発明の透明導電性薄膜が得られたことを確認した。
薄膜の膜厚を触診式段差計タリステップにより測定し、220 nmと求めた。自作のホール測定器を用いて測定した電気伝導率は 40 S/cm、日立製作所製分光高度計により測定した光吸収端波長は330 nmで、波長 400 nmにおける光透過率は83%であった。すなわち、この薄膜は可視域から330 nmの紫外線領域までが透明な電気伝導性薄膜であった。
【0023】
実施例4
In2O3粉末(純度99.99%、フルウチ化学(株)製)およびY2O3粉末(純度99.99%、フルウチ化学(株)製)のモル比を4:6または3:7となるように秤量したことを除き、実施例1と同様に粉末を調製し、さらにこの粉末を用いて実施例2と同様にターゲットを形成し、さらに、このターゲットを用いて薄膜を形成した。得られた薄膜の光吸収端波長及び電気伝導率を実施例3と同様の方法で測定した。結果を実施例3の結果と共に表1に示す。
【0024】
【表1】

Figure 0003824289
【0025】
実施例5
実施例2で調製したターゲット(In:Y=5:5)を日本真空技術(株)製のレーザーアブレーション装置に設置した。次に、ラムダ・フィジクス社製KrFエキシマーレーザー装置から80mJのレーザー光を5 Hzの周波数で放射させ、レーザーアブレーション装置内のターゲットに照射し、対向するガラス基板上に薄膜を堆積させた。堆積時間は30分、基板温度は室温、酸素圧1 Paであった。得られた薄膜の結晶性を薄膜X線回折法により調べたが、ガラス基板のハローピーク以外に結晶性のピークは観察されなかった。
そこで同じ成膜条件で、Al金属基板上に成膜し、マイクロトームを用いて厚さ方向に切断し、薄片として、透過電子顕微鏡により膜断面の構造を調べた。結晶性を示す回折電子線は得られず、アモルファスの膜が形成されていることが分かった。次に、島津製作所製EPMA C-1(面分解能0.5μm)を用いて膜内の組成分布を測り、In、Y及びSnがそれぞれ均一に分布する膜であることが明らかになった。さらにこの薄膜の化学組成をICP法により分析したところ、In:Y = 5:5(x=0.5)であり、In2O3-Y2O3に対するSnO2の含有率(α)は5 wt%であることが明かとなり、本発明の透明導電性薄膜が得られたことを確認した。
薄膜の膜厚を触診式段差計タリステップにより測定し、250 nmと求めた。自作のホール測定器を用いて測定した電気伝導率は 15 S/cm、日立製作所製分光光度計により測定した光吸収端波長は320 nmで、波長 400 nmにおける光透過率は80%であった。すなわち、この薄膜は可視域から320 nmの紫外線領域までが透明な電気伝導性薄膜であった。
【0026】
実施例6
In2O3粉末(純度99.99%、フルウチ化学(株)製)およびY2O3粉末(純度99.99%、フルウチ化学(株)製)をモル比で5:5となるように秤量し、さらにこの混合粉末に対してSb2O5(純度99.99%、フルウチ化学(株)製)を5 wt%となるように秤量して加え、500mlの容量を有するポリイミド製ポットに直径2mmのYSZ製ビーズ200gおよび80mlのエタノールとともに入れ、フリッチュ社製遊星ボールミルを用いて200 cpsで60分撹拌したのち、オーブン中110℃でエタノールを蒸発させ、ビーズを分離、アルミナ製るつぼに入れ、電気炉中1000℃で5時間仮焼し、再び遊星ボールミル中で解砕、さらに乾燥させて粉体とした。この粉体の結晶構造を粉末X線回折法により調べたところ、In2O3-Y2O3固溶体、In2O3相、Y2O3相およびSb2O5相からなる混合相であることが分かった。さらにこの粉体の化学組成を誘導結合プラズマ(ICP)法により分析したところ、秤量した組成とほぼ一致しており、本発明の透明導電性材料用組成物の粉末が生成できたことを確認した。
【0027】
実施例7
実施例6で調製した粉末2 gを直径20mmφのステンレス製金型に充填し、押し棒を挿入して、一軸プレス機により100 kg/cm2の圧力をかけて成形した。次にこの成形体をビニール袋中に入れ、真空パック装置によりビニール袋中の空気を抜くとともに封入し、神戸製鋼所製静水圧プレス機により2000 kg/cm2の圧力をかけて緻密化した。さらに電気炉により1500℃で20時間大気中焼成して焼結体を得、#400のダイヤモンド研磨盤上で研磨して清浄面を持つターゲットとした。このターゲットの結晶構造を粉末X線回折法により調べたところ、In2O3-Y2O3- Sb2O5固溶相に若干量のSb2O5相が共存した混合相であることが明かとなった。さらにこの焼結体の化学組成をICP法により分析したところ、秤量した組成に比べてIn2O3成分が5%だけ減少していたが、本発明の透明導電性材料用組成物からなるターゲットが形成できたことを確認した。
【0028】
実施例8
実施例7で調製したターゲットを、日本真空技術(株)製のレーザーアブレーション装置に設置した。次に、ラムダ・フィジクス社製KrFエキシマーレーザー装置から80mJのレーザー光を5 Hzの周波数で放射させ、レーザーアブレーション装置内のターゲットに照射し、対向するガラス基板上に薄膜を堆積させた。堆積時間は30分、基板温度は400℃、酸素圧1 Paであった。得られた薄膜の結晶性を薄膜X線回折法により調べたところ、In2O3-Y2O3- Sb2O5のほぼ単相(c-希土型結晶構造)を有することが明かとなった。さらにこの薄膜の化学組成をICP法により分析したところ、In:Y = 5:5(x=0.5)であり、In2O3-Y2O3に対するSb2O5の含有率(α)は 5 wt%であることが明かとなり、本発明の透明導電性薄膜が得られたことを確認した。
薄膜の膜厚を触診式段差計タリステップにより測定し、210 nmと求めた。自作のホール測定器を用いて測定した電気伝導率は 32 S/cm、日立製作所製分光高度計により測定した光吸収端波長は330 nmで、波長 400 nmにおける光透過率は81%であった。すなわち、この薄膜は可視域から320 nmの紫外線領域までが透明な電気伝導性薄膜であった。
【0029】
【発明の効果】
本発明により、可視域から紫外域に及ぶ広い範囲で透明性を有する、特に、400 nmより短波長の光を透過させることができ、かつ良好な導電性を示す透明導電性薄膜を提供することができる。さらに本発明によれば、このような薄膜を形成するための材料、特にターゲットも提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive thin film, an electrode comprising the thin film, and a composition for transparent conductive material used as a target for forming the thin film.
[0002]
With the development of light sources, technologies using ultraviolet light are spreading socially. For example, in photolithography, which is a key technology in semiconductor processes, fine patterning is performed using ultraviolet light such as i-line (wavelength 365 nm), KrF laser light (wavelength 298 nm), ArF laser light (wavelength 196 nm), etc. ing. For example, in the medical field, analysis of biological samples such as blood and DNA is recommended by ultraviolet fluorescence analysis. Further, for example, in the field of space technology, the power generation efficiency of the solar cell can be increased by using a large amount of ultraviolet light in outer space.
[0003]
The transparent conductive thin film of the present invention can be used as an antistatic film or the like in a photolithographic process using ultraviolet light such as i-line (wavelength 365 nm) as a transparent electrode material and an electrode. Further, for example, it can be used as an antistatic film on a sample substrate or a transparent electrode for applying an electric field to a sample cell in ultraviolet fluorescence analysis of a biological sample or the like. For example, it can be used as a transparent electrode for an ultraviolet solar cell.
[0004]
[Prior art]
Transparent electrode materials include ITO (Indium Tin Oxide), ATO (Antimony doped Tin Oxide), AZO (Aluminum doped Zinc Oxide), etc., ITO is mainly used for flat panel displays, and ATO is mainly used for solar cells. It has been.
[0005]
These transparent electrodes have high electrical conductivity and high transparency in the visible range. For this reason, it can radiate | emits without interrupting the color which a flat panel display emits, and visible region sunlight which contains most energy can be efficiently taken in in a solar cell.
[0006]
[Problems to be solved by the invention]
Conventional transparent electrode materials have a light absorption edge wavelength in the vicinity of 400 nm. For this reason, light having a wavelength longer than 400 nm, that is, visible light can be efficiently transmitted, but light having a wavelength shorter than 400 nm, that is, ultraviolet light can hardly be transmitted. Recent studies have shown that Ga 2 O 3 can be an ultraviolet transparent electrode material, but it has not reached the practical range (N. Ueda et al., Appl. Phys. Lett. 70 (26) 3561, 1997 and N. Ueda et al., Appl. Phys. Lett. 71 (7) 933, 1997). This is because Ga 2 O 3 single crystals are formed in a hydrogen atmosphere in this research, and electrical conductivity has not been confirmed in the film shape required for use as an antistatic or transparent electrode. In addition, no transparent electrode material that is transparent in the ultraviolet region has been reported.
Accordingly, an object of the present invention is to provide a transparent conductive thin film that exhibits good conductivity and can transmit light having a wavelength shorter than 400 nm, a material for forming such a thin film, and the transparent conductive film. The object is to provide an electrode comprising a thin film.
[0007]
[Means for Solving the Problems]
The present invention is represented by the general formula In 2-x Y x O 3 + α wt% SnO 2 (where x is a real number in the range of 0.9 to 1.6, and α is a real number in the range of 0 to 15). Transparent conductive thin film and the general formula In 2-x Y x O 3 + α wt% Sb 2 O 5 (where x is a real number in the range of 0.9 to 1.6 and α is a real number in the range of 0 to 15). The present invention relates to a transparent conductive thin film, and an electrode made of these thin films.
Furthermore, the present invention relates to In 2 O 3 , Y 2 O 3 , SnO 2 , In 2 O 3 —Y 2 O 3 solid solution, Y 2 O 3 —SnO 2 solid solution and In 2 O 3 —Y 2 O 3 —SnO 2. At least one of the solid solutions is represented by the general formula In 2-x Y x O 3 + α wt% SnO 2 (where x is a real number in the range of 0.9 to 1.6 and α is a real number in the range of 0 to 15). And a composition for a transparent conductive material, which is contained so as to have a composition represented by: In 2 O 3 , Y 2 O 3 , Sb 2 O 5 , In 2 O 3 —Y 2 O 3 solid solution, Y 2 O 3 —Sb At least one of 2 O 5 solid solution and In 2 O 3 —Y 2 O 3 —Sb 2 O 5 solid solution is represented by the general formula In 2−x Y x O 3 + α wt% Sb 2 O 5 (where x is 0.9 to 1.6). The transparent conductive material composition is included so as to have a composition represented by (α is a real number within a range of 0 to 15). Related to things.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the transparent conductive thin film of the present invention will be described.
The transparent conductive thin film of the present invention is represented by the general formula In 2-x Y x O 3 + α wt% SnO 2 or In 2-x Y x O 3 + α wt% Sb 2 O 5 . The value of x is selected in consideration of light transmission characteristics and electrical conductivity required for the thin film, and is a real number in the range of 0.9 to 1.6. The absorption edge wavelength shifts to the short wavelength side as the value of x increases, and the transparency from the blue region to the ultraviolet region increases. On the other hand, the electric conductivity tends to decrease as the value of x increases. When the value of x is less than 0.9, the transparency from the blue region to the ultraviolet region is not different from that of the conventional transparent electrode material. On the other hand, when x is larger than 1.6, the electric conductivity is low and cannot be used as a conductive material. Preferred x is in the range of 0.9 to 1.2.
[0009]
Furthermore, the thin film of the present invention contains Sn or Sb as dopant ions. Conventionally, Sn has been used as a dopant in In 2 O 3 . What added Sn as a dopant to In 2 O 3 is so-called ITO. In ITO, the added Sn is dissolved in the In site in the In 2 O 3 lattice and exists in the form of Sn 4+ , and it is said that one carrier electron is generated for each Sn 4+ ion. However, when ITO is in an amorphous phase, Sn 4+ ions exist in the form of SnO 2 clusters and do not contribute to carrier generation. Even in the transparent conductive thin film of the present invention, when the thin film is in a crystalline phase, Sn is dissolved in the In site in the In 2 O 3 lattice and exists in the form of Sn 4+ , contributing to carrier generation. It is thought to do. However, such an effect cannot be expected when the thin film is in an amorphous phase.
[0010]
In the thin film of the present invention, Sn or Sb which is a dopant ion is SnO 2 or Sb 2 O 5 and contains α wt% (α is a real number in the range of 0 to 15).
If the content of SnO 2 exceeds 15 wt%, SnO 2 is easily segregated and the electrical conductivity is lowered. A preferred range for α wt% is 3-12. When the content of SnO 2 is 3 wt% or more, the effect of doping becomes remarkable, the carrier density increases, and high electrical conductivity is obtained. In addition, when the SnO 2 content is 12 wt% or less, carrier scattering due to dopant ions is unlikely to occur, mobility and conductivity are unlikely to decrease, and high electrical conductivity is obtained. A more preferable range of α wt% is a range of 5 to 10, and within this range, a sufficient carrier density is obtained, and the mobility is not too low, and a sufficient conductivity is obtained. When the dopant ion is Sb, αwt% is the same as that of Sn.
[0011]
The electrical conductivity of the thin film of the present invention is expressed by carrier electrons supplied from oxygen defects present in the material and Sn ions or Sb ions as dopants.
[0012]
The transparent conductive oxide thin film of the present invention may be in a crystalline phase or an amorphous phase, and can be appropriately determined according to the application. When the crystalline phase is used, the electrical conductivity is improved and the transparency tends to be improved as compared with the amorphous phase, while the etching property due to the acid solution or the like tends to be reduced.
The transparent conductive thin film of the present invention has ultraviolet transparency and can be used as a transparent electrode, an antistatic film, an infrared reflective film, and the like.
[0013]
The transparent conductive thin film of the present invention can be produced by using a usual film forming method such as sputtering, laser ablation, vapor deposition, CVD, spray pyrolysis and the like. For example, when using the sputtering method, a sintered body of the composition for transparent conductive material of the invention described later is used as a target, a mixed gas of Ar and O 2 is introduced into a vacuum vessel, and an rf electric field is applied to generate plasma. Then, the target is struck by plasma, and the struck material may be deposited on the substrate surface. By adjusting the mixing ratio of Ar and O 2 , rf current, substrate temperature, substrate = target distance, etc., the crystallinity, transparency and electrical conductivity of the transparent conductive thin film of the present invention should be optimized. Can do. Also, the transparent conductive thin film of the present invention can be formed by reacting with O 2 on the substrate surface using an alloy of metals In, Y and Sn as a target. One advantage of using a metal target is that the impurity concentration in the target can be made very small.
[0014]
For example, when using a laser ablation method, a sintered body of the composition for transparent conductive material of the present invention described later is used as a target, O 2 gas is introduced into a vacuum vessel, and laser light is applied to the target surface. Irradiation and a substance released by irradiation may be deposited on the substrate surface. By adjusting O 2 gas pressure, laser light output, substrate temperature, substrate = target distance, etc., the crystallinity, transparency and electrical conductivity of the transparent conductive thin film of the present invention can be optimized. . In particular, when a pulse laser is used and the amount of a substance deposited on the substrate is adjusted for each position pulse, a crystal can be grown for each atomic layer. The state of growth can be monitored in situ by using, for example, RHEED. In this case, a film having high single crystallinity can be formed.
[0015]
Next, the composition for transparent conductive material of the present invention will be described.
The composition for transparent conductive material of the present invention comprises In 2 O 3 , Y 2 O 3 , SnO 2 , In 2 O 3 —Y 2 O 3 solid solution, Y 2 O 3 —SnO 2 solid solution and In 2 O 3 −. At least one of the Y 2 O 3 —SnO 2 solid solution is included so as to have a composition represented by the general formula In 2−x Y x O 3 + α wt% SnO 2 . This composition is, for example, a mixed system of In 2 O 3 , Y 2 O 3 and SnO 2, a mixed system of In 2 O 3 —Y 2 O 3 solid solution and SnO 2 , In 2 O 3 , Y 2 O 3. , SnO 2 , In 2 O 3 —Y 2 O 3 solid solution, Y 2 O 3 —SnO 2 solid solution, and In 2 O 3 —Y 2 O 3 —SnO 2 solid solution.
[0016]
Another composition for transparent conductive material of the present invention is In 2 O 3 , Y 2 O 3 , Sb 2 O 5 , In 2 O 3 —Y 2 O 3 solid solution, Y 2 O 3 —Sb 2. At least one of O 5 solid solution and In 2 O 3 —Y 2 O 3 —Sb 2 O 5 solid solution is included so as to have a composition represented by the general formula In 2−x Y x O 3 + α wt% Sb 2 O 5 . This composition includes, for example, a mixed system of In 2 O 3 , Y 2 O 3 and Sb 2 O 5, a mixed system of In 2 O 3 —Y 2 O 3 solid solution and Sb 2 O 5 , In 2 O 3 , Mixed system of Y 2 O 3 , Sb 2 O 5 , In 2 O 3 —Y 2 O 3 solid solution, Y 2 O 3 —Sb 2 O 5 solid solution and In 2 O 3 —Y 2 O 3 —Sb 2 O 5 solid solution Etc.
[0017]
Furthermore, the composition may be a powder or a sintered body. The powder may be, for example, a solid solution crystal powder having the above composition. In 2 O 3 powder, Y 2 O 3 powder and SnO 2 powder (or Sb 2 O 5 powder) mixed to have the above composition. It may be a mixed powder, or a mixed powder of a solid solution crystal powder and In 2 O 3 powder and / or Y 2 O 3 powder and / or SnO 2 powder (or Sb 2 O 5 powder). These powders can be used as raw materials for sintered compact targets, melts for spraying, strong acid solutions and the like. Further, the sintered body may have, for example, a solid solution crystal phase having the above composition, or may be a mixed phase of In 2 O 3 phase and Y 2 O 3 phase mixed to have the above composition, or a solid solution It may be a mixed phase of a crystalline phase and an In 2 O 3 phase and a Y 2 O 3 phase, or an amorphous phase.
[0018]
In the above general formula, x is a real number in the range of 0.9 to 1.6, and preferably in the range of 0.9 to 1.2. In the above general formula, αwt% is a real number in the range of 0-15. Incidentally, SnO composition of the present invention may contain at least one of Y 2 O 3 -SnO 2 solid solution and In 2 O 3 -Y 2 O 3 -SnO 2 solid solution, the content of SnO 2 is contained in these solid solution 2 and SnO 2 in total. When the composition of the present invention contains at least one of Y 2 O 3 —Sb 2 O 5 solid solution and In 2 O 3 —Y 2 O 3 —Sb 2 O 5 solid solution, the Sb 2 O 5 content is and Sb 2 O 5 contained in these solid solution, a total amount of Sb 2 O 5. A preferable range of α wt% is 3 to 12, and a more preferable range is 5 to 10.
By using a material having x and α wt% in the above ranges as a target, the above-described thin film of the present invention can be formed.
[0019]
The composition can be used as a target for sputtering or laser ablation, for example, and the transparent conductive thin film of the present invention can be formed on a suitable substrate using this target. The target may be formed, for example, using a powder of the composition of the present invention by a normal solid phase ceramic process. That is, for example, the powder of the composition of the present invention is filled into a cylindrical mold having an appropriate diameter, molded by inserting a push rod and uniaxially pressed, and further pressed in a hydrostatic press to be dense. And firing in the air at a temperature of 1000 ° C. or higher, and polishing the surface of the obtained sintered body to expose the clean surface. Also, the powder of the composition of the present invention is dispersed in an appropriate medium to make a slurry, formed by slip casting, dried to form a dense molded body, and fired in the atmosphere at a temperature of 1000 ° C. or higher. The surface of the sintered body may be polished to expose the clean surface. Usually, since the target of the sputtering method or laser ablation method is preferably dense, a process capable of densification may be selected.
[0020]
【Example】
Hereinafter, the present invention will be described by way of examples.
Example 1
In 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) and Y 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) were weighed to a molar ratio of 5: 5. In addition, SnO 2 (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) was weighed and added to this mixed powder to 5 wt%, and YSZ beads having a diameter of 2 mm were added to a polyimide pot having a capacity of 500 ml. Put together with 200 g and 80 ml of ethanol, stir at 200 cps for 60 minutes using a Fritsch planetary ball mill, evaporate the ethanol at 110 ° C in an oven, separate the beads, put in an alumina crucible, 1000 ° C in an electric furnace And calcined for 5 hours, crushed again in a planetary ball mill, and further dried to obtain a powder. When the crystal structure of this powder was examined by powder X-ray diffraction, it was found to be a mixed phase consisting of In 2 O 3 -Y 2 O 3 solid solution, In 2 O 3 phase, Y 2 O 3 phase and SnO 2 phase. I understood. Furthermore, when the chemical composition of this powder was analyzed by the inductively coupled plasma (ICP) method, it was almost the same as the weighed composition, and it was confirmed that the powder of the composition for transparent conductive material of the present invention could be produced. .
[0021]
Example 2
2 g of the powder prepared in Example 1 was filled in a stainless steel mold having a diameter of 20 mmφ, a push rod was inserted, and molding was performed using a uniaxial press with a pressure of 100 kg / cm 2 . Next, the molded body was put in a plastic bag, and the air in the plastic bag was removed while being sealed with a vacuum packing device, and was densified by applying a pressure of 2000 kg / cm 2 with a hydrostatic press machine manufactured by Kobe Steel. Furthermore, the sintered body was obtained by firing in the air at 1500 ° C. for 20 hours in an electric furnace, and was polished on a # 400 diamond polishing machine to obtain a target having a clean surface. Examination of the crystal structure of this target by powder X-ray diffraction reveals that it is a mixed phase in which a small amount of SnO 2 phase coexists in the In 2 O 3 -Y 2 O 3 -SnO 2 solid solution phase. It was. Furthermore, when the chemical composition of this sintered body was analyzed by the ICP method, the In 2 O 3 component was reduced by 5% compared to the weighed composition, but the target comprising the composition for transparent conductive material of the present invention It was confirmed that was formed.
[0022]
Example 3
The target prepared in Example 2 was installed in a laser ablation apparatus manufactured by Nippon Vacuum Technology Co., Ltd. Next, a 80 mJ laser beam was emitted from a Lambda Physics KrF excimer laser device at a frequency of 5 Hz, and the target in the laser ablation device was irradiated to deposit a thin film on the opposing glass substrate. The deposition time was 30 minutes, the substrate temperature was 400 ° C., and the oxygen pressure was 1 Pa. When the crystallinity of the obtained thin film was examined by a thin film X-ray diffraction method, it was revealed that it had an almost single phase of In 2 O 3 —Y 2 O 3 —SnO 2 . Furthermore, when the chemical composition of this thin film was analyzed by the ICP method, it was In: Y = 5: 5 (x = 0.5), and the SnO 2 content (α) with respect to In 2 O 3 -Y 2 O 3 was 4 wt. It was revealed that the transparent conductive thin film of the present invention was obtained.
The film thickness of the thin film was measured with a palpation-type step gauge Taly step and determined to be 220 nm. The electrical conductivity measured using a self-made Hall measuring instrument was 40 S / cm, the light absorption edge wavelength measured with a Hitachi spectrophotometer was 330 nm, and the light transmittance at a wavelength of 400 nm was 83%. That is, this thin film was an electrically conductive thin film that was transparent from the visible region to the ultraviolet region of 330 nm.
[0023]
Example 4
The molar ratio of In 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) and Y 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) is 4: 6 or 3: 7. A powder was prepared in the same manner as in Example 1 except that it was weighed as described above. Further, a target was formed using this powder in the same manner as in Example 2, and a thin film was further formed using this target. The light absorption edge wavelength and electrical conductivity of the obtained thin film were measured by the same method as in Example 3. The results are shown in Table 1 together with the results of Example 3.
[0024]
[Table 1]
Figure 0003824289
[0025]
Example 5
The target (In: Y = 5: 5) prepared in Example 2 was set in a laser ablation apparatus manufactured by Nippon Vacuum Technology Co., Ltd. Next, a 80 mJ laser beam was emitted from a Lambda Physics KrF excimer laser device at a frequency of 5 Hz, and the target in the laser ablation device was irradiated to deposit a thin film on the opposing glass substrate. The deposition time was 30 minutes, the substrate temperature was room temperature, and the oxygen pressure was 1 Pa. The crystallinity of the obtained thin film was examined by a thin film X-ray diffraction method, but no crystalline peak was observed other than the halo peak of the glass substrate.
Therefore, under the same film formation conditions, a film was formed on an Al metal substrate, cut in the thickness direction using a microtome, and the structure of the film cross section was examined by a transmission electron microscope as a thin piece. It was found that a diffracted electron beam showing crystallinity was not obtained, and an amorphous film was formed. Next, the composition distribution in the film was measured using EPMA C-1 (surface resolution 0.5 μm) manufactured by Shimadzu Corporation, and it was revealed that the film had In, Y and Sn distributed uniformly. Further, when the chemical composition of this thin film was analyzed by ICP method, it was In: Y = 5: 5 (x = 0.5), and the SnO 2 content (α) relative to In 2 O 3 -Y 2 O 3 was 5 wt. It was revealed that the transparent conductive thin film of the present invention was obtained.
The film thickness of the thin film was measured by a palpation type step gauge Taly step and found to be 250 nm. The electrical conductivity measured using a self-made Hall measuring instrument was 15 S / cm, the light absorption edge wavelength measured by a Hitachi spectrophotometer was 320 nm, and the light transmittance at a wavelength of 400 nm was 80%. . That is, this thin film was an electrically conductive thin film that was transparent from the visible region to the ultraviolet region of 320 nm.
[0026]
Example 6
In 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) and Y 2 O 3 powder (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) were weighed to a molar ratio of 5: 5. Further, Sb 2 O 5 (purity 99.99%, manufactured by Furuuchi Chemical Co., Ltd.) was weighed and added to this mixed powder to 5 wt%, and YSZ having a diameter of 2 mm was added to a polyimide pot having a capacity of 500 ml. Put together with 200 g of beads and 80 ml of ethanol, and stir for 60 minutes at 200 cps using a planetary ball mill manufactured by Fritsch, evaporate the ethanol at 110 ° C in an oven, separate the beads, put them in an alumina crucible, and put them in an electric furnace It was calcined at 1000 ° C. for 5 hours, crushed again in a planetary ball mill, and further dried to obtain a powder. When the crystal structure of this powder was examined by powder X-ray diffraction method, it was found to be a mixed phase consisting of In 2 O 3 -Y 2 O 3 solid solution, In 2 O 3 phase, Y 2 O 3 phase and Sb 2 O 5 phase. I found out. Furthermore, when the chemical composition of this powder was analyzed by the inductively coupled plasma (ICP) method, it was almost the same as the weighed composition, and it was confirmed that the powder of the composition for transparent conductive material of the present invention could be produced. .
[0027]
Example 7
2 g of the powder prepared in Example 6 was filled in a stainless steel mold having a diameter of 20 mmφ, a push rod was inserted, and molding was performed by applying a pressure of 100 kg / cm 2 with a single screw press. Next, this molded body was put in a plastic bag, and the air in the plastic bag was drawn out and sealed with a vacuum packing device, and densified by applying a pressure of 2000 kg / cm 2 with a hydrostatic press machine manufactured by Kobe Steel. Furthermore, the sintered body was obtained by firing in the air at 1500 ° C. for 20 hours in an electric furnace, and was polished on a # 400 diamond polishing machine to obtain a target having a clean surface. When the crystal structure of this target was examined by powder X-ray diffraction, it was found to be a mixed phase in which a small amount of Sb 2 O 5 phase coexists in the In 2 O 3 -Y 2 O 3 -Sb 2 O 5 solid solution phase. Became clear. Furthermore, when the chemical composition of this sintered body was analyzed by the ICP method, the In 2 O 3 component was reduced by 5% compared to the weighed composition, but the target comprising the composition for transparent conductive material of the present invention It was confirmed that was formed.
[0028]
Example 8
The target prepared in Example 7 was installed in a laser ablation apparatus manufactured by Nippon Vacuum Technology Co., Ltd. Next, a 80 mJ laser beam was emitted from a Lambda Physics KrF excimer laser device at a frequency of 5 Hz, and the target in the laser ablation device was irradiated to deposit a thin film on the opposing glass substrate. The deposition time was 30 minutes, the substrate temperature was 400 ° C., and the oxygen pressure was 1 Pa. When the crystallinity of the obtained thin film was examined by thin film X-ray diffraction, it was found that it had a nearly single phase (c-rare earth crystal structure) of In 2 O 3 -Y 2 O 3 -Sb 2 O 5. It became. Furthermore, when the chemical composition of this thin film was analyzed by ICP method, it was In: Y = 5: 5 (x = 0.5), and the content (α) of Sb 2 O 5 with respect to In 2 O 3 -Y 2 O 3 was It became clear that it was 5 wt%, and it was confirmed that the transparent conductive thin film of the present invention was obtained.
The film thickness of the thin film was measured by a palpation type step gauge Taly step and found to be 210 nm. The electrical conductivity measured using a self-made Hall measuring instrument was 32 S / cm, the light absorption edge wavelength measured by a Hitachi spectrophotometer was 330 nm, and the light transmittance at a wavelength of 400 nm was 81%. That is, this thin film was an electrically conductive thin film that was transparent from the visible region to the ultraviolet region of 320 nm.
[0029]
【The invention's effect】
According to the present invention, there is provided a transparent conductive thin film having transparency in a wide range from the visible range to the ultraviolet range, in particular, capable of transmitting light having a wavelength shorter than 400 nm and exhibiting good conductivity. Can do. Furthermore, according to the present invention, a material for forming such a thin film, particularly a target can also be provided.

Claims (7)

一般式In2-xYxO3+αwt%SnO(但し、xは0.9〜1.6の範囲内の実数であり、αは0〜15の範囲内の実数である)で表される透明導電性薄膜。Transparent conductivity represented by the general formula In 2-x Y x O 3 + α wt% SnO 2 (where x is a real number in the range of 0.9 to 1.6 and α is a real number in the range of 0 to 15) Thin film. 一般式In2-xYxO3+αwt%Sb(但し、xは0.9〜1.6の範囲の実数であり、αは0〜15の範囲の実数である)で表される透明導電性薄膜。Transparent conductivity represented by the general formula In 2-x Y x O 3 + α wt% Sb 2 O 5 (where x is a real number in the range of 0.9 to 1.6 and α is a real number in the range of 0 to 15) Thin film. 結晶質または非晶質である請求項1または2に記載の薄膜。The thin film according to claim 1, which is crystalline or amorphous. 請求項1〜3のいずれか1項に記載の薄膜からなる電極。The electrode which consists of a thin film of any one of Claims 1-3. In、Y、SnO、In−Y固溶体、Y-SnO固溶体及びIn-Y-SnO固溶体の少なくとも1つを、一般式In2-xYxO3+αwt%SnO(但し、xは0.9〜1.6の範囲内の実数であり、αは0〜15の範囲内の実数である)で示される組成となるように含む透明導電性材料用組成物。 In 2 O 3, Y 2 O 3, SnO 2, In 2 O 3 -Y 2 O 3 solid solution, at least one of Y 2 O 3 -SnO 2 solid solution and In 2 O 3 -Y 2 O 3 -SnO 2 solid solution And a composition represented by the general formula In 2-x Y x O 3 + α wt% SnO 2 (where x is a real number in the range of 0.9 to 1.6 and α is a real number in the range of 0 to 15). A composition for a transparent conductive material, which is contained as is. In、Y、Sb、In−Y固溶体、Y-Sb固溶体及びIn-Y-Sb固溶体の少なくとも1つを、一般式In2-xYxO3+αwt%Sb(但し、xは0.9〜1.6の範囲内の実数であり、αは0〜15の範囲内の実数である)で示される組成となるように含む透明導電性材料用組成物。 In 2 O 3, Y 2 O 3, Sb 2 O 5, In 2 O 3 -Y 2 O 3 solid solution, Y 2 O 3 -Sb 2 O 5 solid solution and In 2 O 3 -Y 2 O 3 -Sb 2 O At least one of the five solid solutions is represented by the general formula In 2-x Y x O 3 + α wt% Sb 2 O 5 (where x is a real number in the range of 0.9 to 1.6, and α is a real number in the range of 0 to 15). A composition for a transparent conductive material, which is contained so as to have a composition represented by: 焼結体であって、薄膜形成用ターゲットとして用いられる請求項5または6に記載の組成物。The composition according to claim 5, wherein the composition is a sintered body and is used as a target for forming a thin film.
JP25858698A 1998-09-11 1998-09-11 Transparent conductive thin film Expired - Fee Related JP3824289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25858698A JP3824289B2 (en) 1998-09-11 1998-09-11 Transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25858698A JP3824289B2 (en) 1998-09-11 1998-09-11 Transparent conductive thin film

Publications (2)

Publication Number Publication Date
JP2000090745A JP2000090745A (en) 2000-03-31
JP3824289B2 true JP3824289B2 (en) 2006-09-20

Family

ID=17322324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25858698A Expired - Fee Related JP3824289B2 (en) 1998-09-11 1998-09-11 Transparent conductive thin film

Country Status (1)

Country Link
JP (1) JP3824289B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083396B2 (en) 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 Ultraviolet transparent conductive film and manufacturing method thereof
KR100859517B1 (en) * 2002-06-10 2008-09-22 삼성전자주식회사 Amorphous transparent conductive film and method for preparing the same
WO2005083150A1 (en) 2004-02-27 2005-09-09 Nippon Mining & Metals Co., Ltd. Sputtering target, optical information recording medium and process for producing the same
TW200926209A (en) * 2007-10-03 2009-06-16 Mitsui Mining & Amp Smelting Co Ltd Indium oxide transparent conductive film and manufacturing method thereof
KR101234881B1 (en) 2007-12-20 2013-02-20 시마 나노 테크 이스라엘 리미티드 Photovoltaic device having transparent electrode formed with nanoparticles

Also Published As

Publication number Publication date
JP2000090745A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
EP1306858B1 (en) Process for producing an ultraviolet-transparent conductive film
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
US10144674B2 (en) Process for preparing ceramics, ceramics thus obtained and uses thereof, especially as a sputtering target
JP2000026119A (en) Article having transparent electrically conductive oxide thin film and its manufacture
KR101880783B1 (en) Oxide Sintered Body and Tablets Obtained by Processing Same
JPS62122011A (en) Transparent conducting film and manufacture of the same
Minami et al. Preparation of highly transparent and conducting Ga2O3–In2O3 films by direct current magnetron sputtering
WO2008084865A1 (en) Material for transparent conductive film
EP1648828A2 (en) METHOD OF MAKING HIGH-PURITY (>99%) MOO2 POWDERS, PRODUCTS MADE FROM MOO2 POWDERS, DEPOSITION OF MOO2 THIN FILMS, AND METHODS OF USING SUCH MATERIAS
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
JP2011184715A (en) Zinc oxide based transparent conductive film forming material, method for producing the same, target using the same, and method for forming zinc oxide based transparent conductive film
Kotlyarchuk et al. Preparation of undoped and indium doped ZnO thin films by pulsed laser deposition method
JPH1045496A (en) Electrically conductive oxide thin film, article having the same and manufacture of article
JP3945887B2 (en) Article having conductive oxide thin film and method for producing the same
CN101535210B (en) Ceramic preparation method, resulting ceramics and use thereof, particularly as a cathode sputtering target
JP3780932B2 (en) Sintered target for producing transparent conductive thin film and method for producing the same
JP3824289B2 (en) Transparent conductive thin film
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
CN100415930C (en) Method for preparing transparent, electric film of non-crystalline oxide
JP2007277039A (en) Oxide sintered compact and method for producing oxide transparent electroconductive film using the same
JP5035857B2 (en) Low resistance ITO thin film and manufacturing method thereof
Liu et al. High-quality indium tin oxide films prepared at room temperature by oxygen ion beam assisted deposition
JP4397451B2 (en) Transparent conductive thin film and method for producing the same
JP4237861B2 (en) Highly monocrystalline zinc oxide thin film and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees