JPS62122011A - Transparent conducting film and manufacture of the same - Google Patents

Transparent conducting film and manufacture of the same

Info

Publication number
JPS62122011A
JPS62122011A JP60262940A JP26294085A JPS62122011A JP S62122011 A JPS62122011 A JP S62122011A JP 60262940 A JP60262940 A JP 60262940A JP 26294085 A JP26294085 A JP 26294085A JP S62122011 A JPS62122011 A JP S62122011A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
specific resistance
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60262940A
Other languages
Japanese (ja)
Other versions
JPH0731950B2 (en
Inventor
裕治郎 金子
康雄 沢田
文也 近江
元 町田
篤行 和多田
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP60262940A priority Critical patent/JPH0731950B2/en
Priority to DE19863639508 priority patent/DE3639508A1/en
Publication of JPS62122011A publication Critical patent/JPS62122011A/en
Publication of JPH0731950B2 publication Critical patent/JPH0731950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 艮嵐分互 本発明は、透明導電膜およびその製造方法に関する。[Detailed description of the invention] Arashi division The present invention relates to a transparent conductive film and a method for manufacturing the same.

丈未件技権 透明導電膜は、大きな導電性と可視域での高透光性を兼
備したものであり、EL(エレクトロ・ルミネサンス)
表示素子、液晶表示素子などの表示パネルの透明電極や
、太陽電池、各種受光素子の電極膜などとして用いられ
ている。
The transparent conductive film manufactured by Jōmei Co., Ltd. has both high conductivity and high transparency in the visible range, and is an EL (electroluminescence) film.
It is used as transparent electrodes for display panels such as display elements and liquid crystal display elements, and as electrode films for solar cells and various light-receiving elements.

従来、透明導電膜としては、Auなとの金属薄膜やSn
O2,In、03. Ca O、Z n S 、 Z 
n Oなどの薄膜が知られている。しかし、これらの。
Conventionally, transparent conductive films have been made of metal thin films such as Au or Sn.
O2, In, 03. CaO, ZnS, Z
Thin films such as nO are known. But these.

多くは電気伝導度が不十分であるばかりか、機械的性質
(硬さ、密度性)、化学的安定性の点から欠点が多いた
め、現在では、I n2o、。
At present, most of them have insufficient electrical conductivity, as well as many drawbacks in terms of mechanical properties (hardness, density) and chemical stability.

S n O2,r T O(Indium Tin 0
xide)が広く利用されている。
S n O2, r T O (Indium Tin 0
xide) is widely used.

しかしながら、In2O,、SnO2,IT○も、次の
ような欠点を有しており、よりいっそうの改善がまたれ
ていた。
However, In2O, SnO2, and IT○ also have the following drawbacks, and further improvements are needed.

(1)熱的安定性が悪く、EL等のデバイスに用いた場
合、熱処理を受けると比抵抗が大きくなったり、Inや
Snが発光層等に拡散して悪影響を及ぼす。
(1) It has poor thermal stability, and when used in devices such as EL, the resistivity increases when subjected to heat treatment, and In and Sn diffuse into the light emitting layer, etc., causing adverse effects.

(2)比抵抗を下げるために成膜時または成膜後に30
0℃以上の熱処理が必要である。
(2) 30°C during or after film formation to lower specific resistance.
Heat treatment at 0°C or higher is required.

(3)材料が非常に高価である。(3) The materials are very expensive.

酸化亜鉛(Zn○)は、工n2offやSnO,に比べ
て価格が非常に安く、透明導電膜の工業的な材料として
は好ましいものであった。しかし、ZnOは可視域にお
ける透光性が高いものの。
Zinc oxide (Zn○) is much cheaper than ZnOff or SnO, and is preferred as an industrial material for transparent conductive films. However, although ZnO has high transparency in the visible range.

電気伝導度が十分でなかった。Electrical conductivity was not sufficient.

見豆五■腕 本発明は、電気伝導度が高く耐熱性を有し、かつ、安価
な材料から形成可能な透明導電膜を提供するものである
The present invention provides a transparent conductive film that has high electrical conductivity and heat resistance, and can be formed from inexpensive materials.

見更坐豊處 本発明の透明導電膜は、酸化亜鉛を主成分とし、アルミ
ニウムを含むC軸配向膜であることを特徴とする。
The transparent conductive film of the present invention is characterized by being a C-axis oriented film containing zinc oxide as a main component and aluminum.

本発明の透明導電膜の製造方法は、酸化亜鉛を主成分と
し酸化アルミニウムを混合したターゲットを用い、DC
マグネトロンスパッタリング法により製造することを特
徴とする。
The method for manufacturing a transparent conductive film of the present invention uses a target containing zinc oxide as a main component and aluminum oxide as a main component, and uses a DC
It is characterized by being manufactured by a magnetron sputtering method.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

酸化亜鉛(Z n O)膜は、本来電気伝導度が大きく
、また、可視域での透過°率も高いが、これに対してア
ルミニウムを添加することにより比抵抗をさらに小さく
できることが判った。また、この膜は熱的安定性もすぐ
れている。
Zinc oxide (ZnO) films inherently have high electrical conductivity and high transmittance in the visible range, but it has been found that the specific resistance can be further reduced by adding aluminum. This film also has excellent thermal stability.

第1図は、アルミニウムの添加量と比抵抗の関係を示す
グラフである。これはA1□O□粉体とZnO粉体とを
混合し、焼結したものをターゲツト材として用い、基板
温度300℃、膜厚2000人の条件でDCマグネトロ
ンスパッタ法により作成したものである。A1□03の
添加量により、比抵抗が変化することが判る。透明導電
膜におけるAl2O,量は、(A I 20 g ) 
/ (Z n O+AI、O,)で0.5〜5重量%の
範囲が好ましく。
FIG. 1 is a graph showing the relationship between the amount of aluminum added and specific resistance. This was prepared by a DC magnetron sputtering method using a mixture of A1□O□ powder and ZnO powder and sintering as a target material under conditions of a substrate temperature of 300° C. and a film thickness of 2000 mm. It can be seen that the specific resistance changes depending on the amount of A1□03 added. The amount of Al2O in the transparent conductive film is (A I 20 g)
/ (ZnO+AI,O,) is preferably in the range of 0.5 to 5% by weight.

より好ましくは1.0〜4.0重量%の範囲である。More preferably, it is in the range of 1.0 to 4.0% by weight.

なお、 Al2O,を6wt%以上含むターゲットを用いた場合
は、ターゲット自体の抵抗が大きくなり、DC電源では
放電できなかった。
Note that when a target containing 6 wt % or more of Al2O was used, the resistance of the target itself became large and discharge could not be performed using a DC power source.

第2図は透明導電膜のC軸配向性を示す特性値としての
(002)面のロッキングカーブの半値幅:Δθsoと
、比抵抗:ρとの関係を示すグラフである。透明導電膜
のΔθ、。が小さくなるほど、即ちC軸配向性が向上す
るほど比抵抗が小さくなることが判る。よって、透明導
電膜としてはΔθ5oを8.0(deg)以下とするこ
とが好ましく、より好ましくは4.0(deg)以下で
ある。
FIG. 2 is a graph showing the relationship between the half-width: Δθso of the rocking curve of the (002) plane, which is a characteristic value indicating the C-axis orientation of the transparent conductive film, and the specific resistance: ρ. Δθ of the transparent conductive film. It can be seen that the smaller the resistivity becomes, that is, the more the C-axis orientation improves, the smaller the specific resistance becomes. Therefore, the transparent conductive film preferably has a Δθ5o of 8.0 (deg) or less, more preferably 4.0 (deg) or less.

Alを含むZnOのC軸配向膜は、DCマグネトロンス
パッタ法、RFマグネトロンスパッタ法などのスパッタ
法、蒸着法、イオンブレーティング法等のPVD法、C
VD法などにより。
The C-axis alignment film of ZnO containing Al can be produced by sputtering methods such as DC magnetron sputtering method and RF magnetron sputtering method, PVD method such as vapor deposition method, ion blating method, etc.
By VD method etc.

適宜の基板上に形成することができ、この中でもDCマ
グネトロンスパッタ法が好ましい。
It can be formed on any suitable substrate, and among these, DC magnetron sputtering is preferred.

次に、DCマグネトロンスパッタ法による本発明の製造
方法について評価する。
Next, the manufacturing method of the present invention using DC magnetron sputtering will be evaluated.

第3図は、DCマグネトロンスパッタ装置の構成を示す
概略図である。真空槽ll内には、スパッタ電極13が
設けられ、その上にターゲット15が配設されている。
FIG. 3 is a schematic diagram showing the configuration of a DC magnetron sputtering apparatus. A sputtering electrode 13 is provided in the vacuum chamber 11, and a target 15 is placed on the sputtering electrode 13.

ターゲット15の表面に対して平行となるように、ター
ゲット15と対向して基板17が保持されている。排気
系21により真空槽11内を高真空、たとえば10””
 〜I O−’ Torrまで排気したのち、ガス導入
バルブ23により、Ar、Ar+02などのスパッタガ
スを例えば10−2〜10”” Torrの真空度とな
るまで導入してスパッタ圧力を設定する。ついで、スパ
ッタ電源25により電極間に高電圧を印加すると、スパ
ッタ電極13の裏面に設けられている磁石(図示せず)
による磁界によってマグネトロン放電が起こり、ターゲ
ットがスパッタされて基板17の表面に透明導電膜が形
成される。図中においては、電源25として直流電源が
用いられるが、RFマグネトロンスパッタ法による場合
はRF主電源用いればよい。しかし、DCCマグネトロ
ンスフツタ法、スパッタ速度が早く、しかも基板表面に
与える熱的ダメージも少ない。図中、19は基板温度測
定用の熱電対を示す。ターゲットの組成は(A1.03
)/(A1. O,+ Z n O)で0.5〜5.0
重量%の範囲が好ましく、より好ましくは1.0〜3.
0重量%である。ターゲットはZnO粉末とAl2O,
粉末とを混合し、粉砕、圧縮成形後、900〜1000
℃程度で本焼結し、さらに高温で例えば1300℃程度
で熱処理して低抵抗化したものを用いる。
A substrate 17 is held facing the target 15 so as to be parallel to the surface of the target 15 . The exhaust system 21 creates a high vacuum in the vacuum chamber 11, e.g.
After evacuation to ~IO-' Torr, a sputtering gas such as Ar or Ar+02 is introduced by the gas introduction valve 23 until the degree of vacuum is, for example, 10-2 to 10'' Torr to set the sputtering pressure. Then, when a high voltage is applied between the electrodes by the sputter power supply 25, a magnet (not shown) provided on the back surface of the sputter electrode 13
A magnetron discharge occurs due to the magnetic field, and the target is sputtered to form a transparent conductive film on the surface of the substrate 17. In the figure, a DC power source is used as the power source 25, but in the case of RF magnetron sputtering, an RF main power source may be used. However, the DCC magnetron sputtering method has a high sputtering speed and causes less thermal damage to the substrate surface. In the figure, 19 indicates a thermocouple for measuring the substrate temperature. The composition of the target is (A1.03
)/(A1.O, +ZnO) from 0.5 to 5.0
The weight percent range is preferably from 1.0 to 3.
It is 0% by weight. The target is ZnO powder and Al2O,
After mixing with powder, crushing and compression molding, 900-1000
The material used is one that has been main sintered at a temperature of about .degree. C. and further heat-treated at a high temperature, for example, about 1300.degree.

第4図は、基板温度と比抵抗ρとの関係を示すグラフで
ある。基板温度が高くなると比抵抗が低下し、300℃
で2〜3X10−’(Ω・cm)と最小値をとるが、3
00℃を越えるとρはまた多少大きくなる。これは、ア
ルゴンガス圧: 0.5X10−2Torr、膜厚2000人の条件でD
Cマグネトロンスパッタ法により行った。このように、
本発明の透明導電膜は、比較的低温でも、小さな比抵抗
を実現することが可能である。
FIG. 4 is a graph showing the relationship between substrate temperature and specific resistance ρ. As the substrate temperature increases, the specific resistance decreases, and the temperature reaches 300℃.
The minimum value is 2~3X10-'(Ω・cm), but 3
When the temperature exceeds 00°C, ρ becomes somewhat larger. This is D under the conditions of argon gas pressure: 0.5X10-2 Torr and film thickness of 2000 people.
This was done by C magnetron sputtering method. in this way,
The transparent conductive film of the present invention can achieve a low specific resistance even at relatively low temperatures.

第5図は、基板温度300℃、膜厚2000人の条件で
、マグネトロンスパッタ法により透明導電膜を形成した
場合の、Arガス圧(PAr)と比抵抗ρとの関係を示
すグラフである。アルゴンガス圧が小さい方が、比抵抗
が小さな導電膜が得られることが判る。
FIG. 5 is a graph showing the relationship between Ar gas pressure (PAr) and specific resistance ρ when a transparent conductive film is formed by magnetron sputtering under conditions of a substrate temperature of 300° C. and a film thickness of 2000 ml. It can be seen that the lower the argon gas pressure, the more a conductive film with a lower specific resistance can be obtained.

第6図は基板温度が300℃、第7図は基板水冷(〜1
00℃)での、ρ(比抵抗)、n(キャリア密度)、μ
H(ホール移動度)についてのA1ドープZnO膜の膜
厚依存性を示すグラフである。
Figure 6 shows the substrate temperature at 300℃, Figure 7 shows the substrate water cooling (~1
ρ (specific resistance), n (carrier density), μ at
2 is a graph showing the dependence of H (hole mobility) on the thickness of an A1-doped ZnO film.

基板温度300℃の方がρが小さく、n、μHは大きい
。また、膜厚依存性も改善される。
When the substrate temperature is 300° C., ρ is smaller and n and μH are larger. Furthermore, film thickness dependence is also improved.

第8図は基板温度が300℃、第9図は基板水冷でのX
線回折パターンを示す図である。両者とも(002)、
(004)面のピークしか認められず、C軸に配向した
膜構造であることが判る。さらに、基板温度300℃の
方が回折強度が20倍程大きく、より配向度が強いもの
であると考えられる。
Figure 8 shows the temperature of the substrate at 300°C, and Figure 9 shows the temperature of the substrate with water cooling.
It is a figure showing a line diffraction pattern. Both (002),
Only the peak of the (004) plane was observed, indicating that the film structure was oriented along the C axis. Furthermore, the diffraction intensity is about 20 times greater when the substrate temperature is 300° C., and it is considered that the degree of orientation is stronger.

また、DCマグネトロン法により得られたA1ドープZ
nO膜は、可視域で80%以上の透過率を示す。
In addition, A1-doped Z obtained by the DC magnetron method
The nO film exhibits a transmittance of 80% or more in the visible range.

見匪勿羞果 本発明によれば、耐熱性を有し熱的に安定で、比抵抗が
小さな透明導電膜が得られる。また。
According to the present invention, a transparent conductive film having heat resistance, thermal stability, and low resistivity can be obtained. Also.

100℃以下でも10″″3〜10−4Ω・CII+の
オーダーの低抵抗な透明導電膜が得られ、成膜後の熱処
理も必要ないため耐熱温度の低いプラスチックフィルム
上にも形成できる。本発明で使用されるZnoおよびA
l□03は、In2O,やSnO2に比較して非常に安
価であるため、工業上極めて有利である。
A transparent conductive film with a low resistance on the order of 10''3 to 10-4 Ω·CII+ can be obtained even at 100°C or lower, and since no heat treatment is required after film formation, it can be formed even on a plastic film with a low heat resistance temperature. Zno and A used in the present invention
Since l□03 is very inexpensive compared to In2O and SnO2, it is extremely advantageous industrially.

実施例l ZnO粉末とAl□○、粉末とを、(Al□O,)/ 
(A l 203+ Z n O)で2wt%となるよ
うに混合し、仮焼、粉砕、圧縮成形後、900〜100
0℃で本焼結したのち、さらに1300℃で熱処理して
低抵抗化してターゲットを作成した。
Example 1 ZnO powder and Al□○ powder were combined into (Al□O,)/
(Al 203 + ZnO) was mixed to a concentration of 2 wt%, and after calcining, crushing, and compression molding, the
After main sintering at 0°C, the target was further heat-treated at 1300°C to lower the resistance.

このターゲットを用いて第3図に示した装置により基板
温度300℃でDCマグネトロンスパッタし、7059
ガラス(コーニング社製)上に透明導電膜を形成した。
Using this target, DC magnetron sputtering was performed at a substrate temperature of 300°C using the apparatus shown in Figure 3, and 7059
A transparent conductive film was formed on glass (manufactured by Corning).

得られた透明導電膜の特性は以下の各実施例と共に後記
第1表に示した。
The properties of the obtained transparent conductive film are shown in Table 1 below together with the following Examples.

実施例2 水冷により基板温度を100℃以下に維持した以外は実
施例1と同様に行った。
Example 2 The same procedure as Example 1 was carried out except that the substrate temperature was maintained at 100° C. or less by water cooling.

実施例3 基板温度300℃で、(A l−03) / (Z n
 O+Al□O,)が2wt%になるように、Al□O
,とZn○を別々の蒸着源から同時にイオンブレーティ
ングして、透明導電膜を形成した。
Example 3 At a substrate temperature of 300°C, (A l-03) / (Z n
Al□O so that O+Al□O,) is 2wt%
, and Zn○ were simultaneously ion-blated from separate deposition sources to form a transparent conductive film.

実施例4 基板としてポリエチレンテレフタレートフィルムを用い
、水冷により基板温度を100℃以下保った以外は、実
施例1と同様にして透明導電膜を作成した。
Example 4 A transparent conductive film was produced in the same manner as in Example 1, except that a polyethylene terephthalate film was used as the substrate and the substrate temperature was maintained at 100° C. or lower by water cooling.

第1表 ※)波長400〜700nmでの平均透過率Table 1 *) Average transmittance at wavelength 400-700nm

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ターゲットへのA1□03の添加量と膜の比
抵抗ρとの関係を示すグラフである。 第2図は、Δθ5゜と比抵抗との関係を示すグラフであ
る。 第3図は、DCマグネトロンスパッタ装置の構成を示す
概略図である。 第4図は、基板温度と比抵抗ρとの関係を示すグラフで
ある。 第5図は、アルゴンガス圧と比抵抗ρとの関係を示すグ
ラフである。 第6図は基板温度が300℃、第7図は基板水冷(〜1
00℃)での、ρ(比抵抗)、n(キャリア密度)、μ
H(ホール移動度)についてのA1ドープZn○膜の膜
厚依存性を示すグラフである。 第8図は基板温が300℃、第9図は基板水冷でのX線
回折パターンを示すグラフである。 11・・・真 空 槽 13・・・スパッタ電極 15・・・ターゲット 17・・・基    板
FIG. 1 is a graph showing the relationship between the amount of A1□03 added to the target and the specific resistance ρ of the film. FIG. 2 is a graph showing the relationship between Δθ5° and specific resistance. FIG. 3 is a schematic diagram showing the configuration of a DC magnetron sputtering apparatus. FIG. 4 is a graph showing the relationship between substrate temperature and specific resistance ρ. FIG. 5 is a graph showing the relationship between argon gas pressure and specific resistance ρ. Figure 6 shows the substrate temperature at 300℃, Figure 7 shows the substrate water cooling (~1
ρ (specific resistance), n (carrier density), μ at
2 is a graph showing the dependence of H (hole mobility) on the thickness of an A1-doped Zn○ film. FIG. 8 is a graph showing the X-ray diffraction pattern when the substrate temperature is 300° C., and FIG. 9 is a graph showing the X-ray diffraction pattern when the substrate is water-cooled. 11...Vacuum tank 13...Sputter electrode 15...Target 17...Substrate

Claims (2)

【特許請求の範囲】[Claims]  1.酸化亜鉛を主成分とし、アルミニウムを含むC軸
配向膜であることを特徴とする透明導電膜。
1. A transparent conductive film characterized by being a C-axis oriented film containing zinc oxide as a main component and aluminum.
 2.酸化亜鉛を主成分とし酸化アルミニウムを混合し
たターゲットを用い、DCマグネトロンスパッタリング
法により製造することを特徴とする透明導電膜の製造方
法。
2. 1. A method for producing a transparent conductive film, characterized in that it is produced by a DC magnetron sputtering method using a target containing zinc oxide as a main component and aluminum oxide mixed therein.
JP60262940A 1985-11-22 1985-11-22 Method for producing transparent conductive film Expired - Fee Related JPH0731950B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60262940A JPH0731950B2 (en) 1985-11-22 1985-11-22 Method for producing transparent conductive film
DE19863639508 DE3639508A1 (en) 1985-11-22 1986-11-20 Transparent, electrically conducting film and method of fabricating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262940A JPH0731950B2 (en) 1985-11-22 1985-11-22 Method for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JPS62122011A true JPS62122011A (en) 1987-06-03
JPH0731950B2 JPH0731950B2 (en) 1995-04-10

Family

ID=17382680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262940A Expired - Fee Related JPH0731950B2 (en) 1985-11-22 1985-11-22 Method for producing transparent conductive film

Country Status (2)

Country Link
JP (1) JPH0731950B2 (en)
DE (1) DE3639508A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265495A (en) * 1988-04-15 1989-10-23 Gunze Ltd Electroluminescent element
JPH0353495A (en) * 1989-07-18 1991-03-07 Gunze Ltd Distributed electroluminescence element using zinc oxide as clear electrode
JP2007238375A (en) * 2006-03-08 2007-09-20 Tosoh Corp ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
WO2008105198A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Conductive film and method for production of conductive film
WO2009031399A1 (en) * 2007-09-05 2009-03-12 Murata Manufacturing Co., Ltd. Transparent conductive film and method for producing transparent conductive film
JP2009057605A (en) * 2007-08-31 2009-03-19 Hitachi Ltd Zinc oxide thin film, transparent conductive film using it, and indicating element
JP2009265629A (en) * 2008-03-31 2009-11-12 Kochi Univ Of Technology Display substrate, and manufacturing method and display device therefor
JP2010192441A (en) * 2009-02-17 2010-09-02 Samsung Mobile Display Co Ltd Organic light emitting element, and manufacturing method thereof
JP2010219084A (en) * 2009-03-13 2010-09-30 Mitsubishi Materials Corp SOLAR CELL HAVING CONSTITUENT LAYER OF (Zn, Al)O-BASED TRANSPARENT ELECTRODE LAYER AND ZnO-Al2O3-BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, Al)O-BASED TRANSPARENT ELECTRODE LAYER
JP2010238893A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-Ga2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER
JP2011084765A (en) * 2009-10-14 2011-04-28 Sumitomo Metal Mining Co Ltd Sintered target for use in producing thin film and manufacturing method therefor
WO2012029797A1 (en) 2010-08-30 2012-03-08 住友金属鉱山株式会社 Multilayer transparent electroconductive film and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
WO2012169449A1 (en) * 2011-06-08 2012-12-13 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
JP2013122987A (en) * 2011-12-12 2013-06-20 Honda Motor Co Ltd Method for manufacturing solar cell
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
US9267199B2 (en) 2013-02-28 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
JP2019167629A (en) * 2012-10-08 2019-10-03 コーニング インコーポレイテッド Conductive transparent aluminum-doped zinc oxide sputtering film
JP2020136148A (en) * 2019-02-22 2020-08-31 日東電工株式会社 Light transmissive conductive film
JP2020149793A (en) * 2019-03-11 2020-09-17 セイコーエプソン株式会社 Cable and ultrasonic device
US11959165B2 (en) 2011-06-08 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948529A (en) * 1985-12-18 1990-08-14 Andus Corporation Stable high resistance transparent coating
US4710441A (en) * 1985-12-18 1987-12-01 Andus Corp. Stable high resistance transparent coating
DE68919299T2 (en) * 1988-08-09 1995-04-06 Tosoh Corp Zinc oxide sintered body and its manufacture.
JPH03164461A (en) * 1989-08-10 1991-07-16 Tosoh Corp Sputtering target of sintered body of conductive zinc oxide and production thereof
JPH0688218A (en) * 1990-11-15 1994-03-29 Tosoh Corp Sintered compact of zinc oxide system and its production and application
US5171411A (en) * 1991-05-21 1992-12-15 The Boc Group, Inc. Rotating cylindrical magnetron structure with self supporting zinc alloy target
DE29711973U1 (en) * 1997-07-08 1998-11-05 Glas Platz Fa Electrical device, electrical device or lighting device
DE10306925A1 (en) * 2003-02-19 2004-09-02 GfE Gesellschaft für Elektrometallurgie mbH PVD coating material
JP2006200016A (en) * 2005-01-21 2006-08-03 Tosoh Corp ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
TW200834610A (en) * 2007-01-10 2008-08-16 Nitto Denko Corp Transparent conductive film and method for producing the same
DE102007024986A1 (en) 2007-05-28 2008-12-04 Forschungszentrum Jülich GmbH Temperature-stable TCO layer, method of manufacture and application
EP2028695A1 (en) * 2007-07-12 2009-02-25 Applied Materials, Inc. Method for creating a transparent conductible oxide coating
JP5432501B2 (en) * 2008-05-13 2014-03-05 日東電工株式会社 Transparent conductive film and method for producing the same
CN103046013A (en) * 2012-12-30 2013-04-17 青海天誉汇新能源开发有限公司 Method for preparing photovoltaic cell transparent oxide film with flexible substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPS61214306A (en) * 1985-03-18 1986-09-24 大阪特殊合金株式会社 Method and apparatus for transparent conducting film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766041A (en) * 1970-09-29 1973-10-16 Matsushita Electric Ind Co Ltd Method of producing piezoelectric thin films by cathodic sputtering
JPS557554A (en) * 1978-06-30 1980-01-19 Murata Mfg Co Ltd Dielectric thin film
JPS5516554A (en) * 1978-07-21 1980-02-05 Toko Inc Manufacture of thin film of zinc oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPS61214306A (en) * 1985-03-18 1986-09-24 大阪特殊合金株式会社 Method and apparatus for transparent conducting film

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265495A (en) * 1988-04-15 1989-10-23 Gunze Ltd Electroluminescent element
JPH0353495A (en) * 1989-07-18 1991-03-07 Gunze Ltd Distributed electroluminescence element using zinc oxide as clear electrode
JP2007238375A (en) * 2006-03-08 2007-09-20 Tosoh Corp ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
WO2008105198A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Conductive film and method for production of conductive film
KR101057571B1 (en) 2007-02-26 2011-08-17 가부시키가이샤 무라타 세이사쿠쇼 Conductive film and manufacturing method of the conductive film
JPWO2008105198A1 (en) * 2007-02-26 2010-06-03 株式会社村田製作所 Conductive film and method for producing conductive film
JP4537434B2 (en) * 2007-08-31 2010-09-01 株式会社日立製作所 Zinc oxide thin film, transparent conductive film using the same, and display element
JP2009057605A (en) * 2007-08-31 2009-03-19 Hitachi Ltd Zinc oxide thin film, transparent conductive film using it, and indicating element
WO2009031399A1 (en) * 2007-09-05 2009-03-12 Murata Manufacturing Co., Ltd. Transparent conductive film and method for producing transparent conductive film
JPWO2009031399A1 (en) * 2007-09-05 2010-12-09 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film
JP5040991B2 (en) * 2007-09-05 2012-10-03 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film
JP2009265629A (en) * 2008-03-31 2009-11-12 Kochi Univ Of Technology Display substrate, and manufacturing method and display device therefor
JP2010192441A (en) * 2009-02-17 2010-09-02 Samsung Mobile Display Co Ltd Organic light emitting element, and manufacturing method thereof
JP2010219084A (en) * 2009-03-13 2010-09-30 Mitsubishi Materials Corp SOLAR CELL HAVING CONSTITUENT LAYER OF (Zn, Al)O-BASED TRANSPARENT ELECTRODE LAYER AND ZnO-Al2O3-BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, Al)O-BASED TRANSPARENT ELECTRODE LAYER
JP2010238893A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-Ga2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, Ga, Al)O BASED TRANSPARENT ELECTRODE LAYER
JP2011084765A (en) * 2009-10-14 2011-04-28 Sumitomo Metal Mining Co Ltd Sintered target for use in producing thin film and manufacturing method therefor
WO2012029797A1 (en) 2010-08-30 2012-03-08 住友金属鉱山株式会社 Multilayer transparent electroconductive film and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
US9349885B2 (en) 2010-08-30 2016-05-24 Sumitomo Metal Mining Co., Ltd. Multilayer transparent electroconductive film and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
JP2013144841A (en) * 2011-06-08 2013-07-25 Semiconductor Energy Lab Co Ltd Target, method for using the target, and method for producing semiconductor device
US9382611B2 (en) 2011-06-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
CN103124805A (en) * 2011-06-08 2013-05-29 株式会社半导体能源研究所 Sputtering target, method for manufacturing sputtering target, and method for forming thin film
JP2013144844A (en) * 2011-06-08 2013-07-25 Semiconductor Energy Lab Co Ltd Method for producing oxide semiconductor film
US11959165B2 (en) 2011-06-08 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
JP2013145864A (en) * 2011-06-08 2013-07-25 Semiconductor Energy Lab Co Ltd Oxide semiconductor film manufacturing method and semiconductor device manufacturing method
CN103290371A (en) * 2011-06-08 2013-09-11 株式会社半导体能源研究所 Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US8889477B2 (en) 2011-06-08 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for forming thin film utilizing sputtering target
US11066739B2 (en) 2011-06-08 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US10889888B2 (en) 2011-06-08 2021-01-12 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
WO2012169449A1 (en) * 2011-06-08 2012-12-13 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
CN107419225A (en) * 2011-06-08 2017-12-01 株式会社半导体能源研究所 Sputtering target material, the manufacture method of sputtering target material and film forming method
JP2016164993A (en) * 2011-06-08 2016-09-08 株式会社半導体エネルギー研究所 Semiconductor device manufacturing method
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
JP2013122987A (en) * 2011-12-12 2013-06-20 Honda Motor Co Ltd Method for manufacturing solar cell
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
JP2019167629A (en) * 2012-10-08 2019-10-03 コーニング インコーポレイテッド Conductive transparent aluminum-doped zinc oxide sputtering film
US10522347B2 (en) 2013-02-28 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US9267199B2 (en) 2013-02-28 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US11139166B2 (en) 2013-02-28 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
US11637015B2 (en) 2013-02-28 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target, method for forming oxide film, and transistor
JP2020136148A (en) * 2019-02-22 2020-08-31 日東電工株式会社 Light transmissive conductive film
JP2020149793A (en) * 2019-03-11 2020-09-17 セイコーエプソン株式会社 Cable and ultrasonic device

Also Published As

Publication number Publication date
DE3639508A1 (en) 1987-05-27
JPH0731950B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JPS62122011A (en) Transparent conducting film and manufacture of the same
Minami et al. Highly conductive and transparent ZnO thin films prepared by rf magnetron sputtering in an applied external dc magnetic field
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
JP4670877B2 (en) Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device
JP2000238178A (en) Transparent conductive laminate
RU2396210C2 (en) MoO2 POWDER, METHODS OF MANUFACTURING PLATE FROM MoO2 POWDER (THEIR VERSIONS), ELEMENT AND METHOD OF MANUFACTURING THIN FILM FROM IT, METHOD OF SPUTTERING WITH APPLICATION OF SAID PLATE
JPH0372011B2 (en)
JPS62154411A (en) Transparent conductive film
JPH06290641A (en) Noncrystal transparent conductive membrane
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP2001121641A (en) Transparent conductive laminate
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
Kim et al. Preparation of ITO and IZO thin films by using the facing targets sputtering (FTS) method
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPH06293956A (en) Zinc oxide transparent conductive film, its formation and sputtering target used therefor
Maruyama et al. Fluorine‐Doped Tin Dioxide Thin Films Prepared by Radio‐Frequency Magnetron Sputtering
JP2007113026A (en) Transparent electrically conductive film and transparent electrically conductive base material comprising the same
JP3506390B2 (en) Transparent oxide and transparent conductive oxide using the same
JPS62157618A (en) Manufacture of transparent conductive film
JP2009161389A (en) Zinc oxide-based transparent conductive film
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
JP3824289B2 (en) Transparent conductive thin film
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
JPH0765167B2 (en) Sputtering target for ITO transparent conductive film
JP2007284740A (en) Method for forming zinc-oxide-based transparent conductive film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees