JP2007238375A - ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM - Google Patents

ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM Download PDF

Info

Publication number
JP2007238375A
JP2007238375A JP2006063270A JP2006063270A JP2007238375A JP 2007238375 A JP2007238375 A JP 2007238375A JP 2006063270 A JP2006063270 A JP 2006063270A JP 2006063270 A JP2006063270 A JP 2006063270A JP 2007238375 A JP2007238375 A JP 2007238375A
Authority
JP
Japan
Prior art keywords
sintered body
transparent conductive
azo
conductive film
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063270A
Other languages
Japanese (ja)
Other versions
JP4797712B2 (en
Inventor
Yuichi Suzuki
祐一 鈴木
Kenichi Ito
謙一 伊藤
Osamu Mochizuki
修 望月
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006063270A priority Critical patent/JP4797712B2/en
Publication of JP2007238375A publication Critical patent/JP2007238375A/en
Application granted granted Critical
Publication of JP4797712B2 publication Critical patent/JP4797712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum-doped high density zinc oxide (AZO)-based sputtering target stably forming a low resistant transparent conductive film. <P>SOLUTION: The sputtering target comprises the AZO sintered compact which is obtained by changing the atmosphere in a sintering furnace from an air atmosphere to a reducing atmosphere in the sintering of a formed body formed from raw material mixture powders, substantially comprises Zn, Al and O and has 3×10<SP>-4</SP>to 2.9×10<SP>-3</SP>Ωcm bulk resistivity and ≤18.8% oxygen content in a ratio O/(Zn+Al+O) by weight. The low resistant transparent conductive film is stably formed by using the sputtering target to easily keep the optimum oxygen concentration in a sputtering gas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ZnO−Al系透明導電膜の製造に使用される透明導電膜用スパッタリングターゲット、該スパッタリングターゲットを構成するZnO−Al系焼結体及びそれを用いた透明導電膜の製造方法に関するものである。 The present invention relates to a sputtering target for a transparent conductive film used for production of a ZnO—Al 2 O 3 based transparent conductive film, a ZnO—Al 2 O 3 based sintered body constituting the sputtering target, and a transparent conductive using the same. The present invention relates to a film manufacturing method.

近年、太陽電池やディスプレー機器の透明電極や、帯電防止用の導電性コーティング材として透明導電性金属酸化物膜の需要が高まっている。従来主に使われている透明導電性金属酸化物薄膜は酸化インジウムに酸化スズを添加したITOや、酸化スズに酸化アンチモンやフッ素をドープしたTAO、TFO等である。酸化インジウムに酸化スズを添加したITOは、透明性が大であり、低抵抗の薄膜形成が可能である反面、インジウムが希少金属で高価であるため、コストが高いという課題があった。また、酸化スズに酸化アンチモンやフッ素をドープしたTAO、TFOは透明性が低く、また導電性が不十分であった。さらに太陽電池の透明電極に用いる場合、ITOやTAOでは透明電極中のスズが光電変換層へ拡散し、性能劣化するという問題を有していた。   In recent years, there is an increasing demand for transparent conductive metal oxide films as transparent electrodes for solar cells and display devices, and conductive coating materials for antistatic purposes. Conventionally used transparent conductive metal oxide thin films are ITO in which tin oxide is added to indium oxide, TAO, TFO, etc. in which tin oxide is doped with antimony oxide or fluorine. ITO in which tin oxide is added to indium oxide has high transparency and can form a low-resistance thin film, but has a problem of high cost because indium is a rare metal and expensive. Further, TAO and TFO in which tin oxide is doped with antimony oxide or fluorine have low transparency and insufficient conductivity. Furthermore, when using it for the transparent electrode of a solar cell, in ITO and TAO, it had the problem that the tin in a transparent electrode diffused into a photoelectric converting layer, and performance deteriorated.

一方、最近になって、低コストで高い透明性、導電性および化学的安定性を有する酸化亜鉛透明導電性薄膜が注目されている。酸化亜鉛系の透明導電性薄膜はスパッタリングを始めとし、高蒸気圧を有する有機亜鉛化合物ガスの熱分解による化学蒸着、酸化亜鉛微粒子を塗布する塗布法等により得られる。我々もこれまでにアルミニウムをドープした高密度な酸化亜鉛系(以下、AZOという)焼結体をターゲットとして用い、スパッタリングによって高性能な膜が得られることを報告している(例えば特許文献1参照)。しかしながら、従来のAZOターゲットでは、低抵抗の膜を形成するためには、スパッタリングガス中の酸素濃度が非常に低い(ほとんど0)領域でスパッタリングする必要があり、そのため酸素濃度の厳密なコントロールが困難であり、低抵抗の透明導電膜を安定して得ることが困難であった。   On the other hand, recently, a zinc oxide transparent conductive thin film having high transparency, conductivity and chemical stability at low cost has attracted attention. The zinc oxide-based transparent conductive thin film is obtained by sputtering, chemical vapor deposition by pyrolysis of an organic zinc compound gas having a high vapor pressure, a coating method in which fine zinc oxide particles are applied, and the like. We have also reported that high-performance films can be obtained by sputtering using a high-density zinc oxide-based (hereinafter referred to as AZO) sintered body doped with aluminum as a target (see, for example, Patent Document 1). ). However, with the conventional AZO target, in order to form a low-resistance film, it is necessary to perform sputtering in a region where the oxygen concentration in the sputtering gas is very low (almost 0), and thus it is difficult to strictly control the oxygen concentration. It was difficult to stably obtain a low-resistance transparent conductive film.

このため、ターゲット中の酸素含有量を減少させたターゲットの検討が行われている。ZnOの酸素欠損を促進し、バルク抵抗率の一層の低下を計るために、焼結が終わった焼結体に対して還元を行う方法が提案されている(例えば特許文献2参照)。しかし、AZO焼結体を焼結した後に還元させると気孔のほとんどが閉じているため、焼結体の表面付近のみ還元され、焼結体の表面と内部でバルク抵抗率に差が生じ、安定した生産ができないという問題があった。   For this reason, examination of the target which reduced oxygen content in a target is performed. In order to promote the oxygen deficiency of ZnO and to further reduce the bulk resistivity, a method of reducing the sintered body after sintering has been proposed (see, for example, Patent Document 2). However, when the AZO sintered body is reduced after being sintered, most of the pores are closed, so only the vicinity of the surface of the sintered body is reduced, resulting in a difference in bulk resistivity between the surface and inside of the sintered body, and stable There was a problem that production was not possible.

特開平02−149459号公報Japanese Patent Laid-Open No. 02-149459 特開平10−306367号公報Japanese Patent Laid-Open No. 10-306367

本発明は、スパッタリング時にターゲットから供給される過剰な酸素を抑制し、スパッタリングガス中の酸素濃度を最適な状態に維持することにより、安価で低抵抗な薄膜を、安定的に作製することが可能なスパッタリングターゲットを提供することにある。   The present invention makes it possible to stably produce an inexpensive and low-resistance thin film by suppressing excess oxygen supplied from the target during sputtering and maintaining the oxygen concentration in the sputtering gas at an optimum state. Is to provide a simple sputtering target.

本発明者らは、AZO焼結体のバルク抵抗率および酸素含有量が、最小の抵抗値を得ることのできる最適酸素濃度範囲に及ぼす影響について鋭意検討を行い、焼結中に焼結炉内の雰囲気を大気雰囲気から還元雰囲気に切り換えることにより、バルク抵抗率及び酸素含有量を自由に制御することが可能であるとの知見を得た。   The present inventors have intensively studied the influence of the bulk resistivity and oxygen content of the AZO sintered body on the optimum oxygen concentration range in which the minimum resistance value can be obtained. It was found that the bulk resistivity and the oxygen content can be freely controlled by switching the atmosphere from the air atmosphere to the reducing atmosphere.

この知見を基に更に検討を進め、AZO焼結体のバルク抵抗率を3×10−4Ω・cm以上2.9×10−3Ω・cm以下、酸素の含有量がO/(Zn+Al+O)の重量比で18.8%以下であるAZO焼結体からなるスパッタリングターゲットを用いることにより、酸素濃度の制御を容易にし、抵抗率の低いAZO薄膜が容易に得られることを見出した。 Based on this knowledge, further studies are conducted, and the bulk resistivity of the AZO sintered body is 3 × 10 −4 Ω · cm to 2.9 × 10 −3 Ω · cm, and the oxygen content is O / (Zn + Al + O). It was found that by using a sputtering target made of an AZO sintered body having a weight ratio of 18.8% or less, an oxygen concentration can be easily controlled and an AZO thin film having a low resistivity can be easily obtained.

以下に本発明をさらに詳細に説明する。   The present invention is described in further detail below.

AZO焼結体の原料としては酸化亜鉛粉末及び酸化アルミニウム粉末を用いることができる。アルミニウムの含有量としては、焼結体におけるアルミニウムの含有量が酸化アルミニウム換算で0.5重量%以上、好ましくは0.5〜5重量%、更に好ましくは1〜5重量%の範囲である。この範囲の組成の焼結体をスパッタリングターゲットとして用いることにより良好な導電性の薄膜が得られる。   As raw materials for the AZO sintered body, zinc oxide powder and aluminum oxide powder can be used. As content of aluminum, content of aluminum in a sintered compact is 0.5 weight% or more in conversion of aluminum oxide, Preferably it is 0.5 to 5 weight%, More preferably, it is the range of 1 to 5 weight%. By using a sintered body having a composition in this range as a sputtering target, a good conductive thin film can be obtained.

酸化亜鉛粉末と酸化アルミニウム粉末をボールミル等の混合機に入れ、両粉末を均一に混合する。混合時間は6〜72時間とするのが好ましい。6時間未満では均一化が不十分となりやすく、72時間を越えると生産性が低下するからである。特に好ましいのは12〜60時間である。   Zinc oxide powder and aluminum oxide powder are put into a mixer such as a ball mill, and both powders are uniformly mixed. The mixing time is preferably 6 to 72 hours. This is because the homogenization tends to be insufficient if the time is less than 6 hours, and the productivity decreases if the time exceeds 72 hours. Particularly preferred is 12 to 60 hours.

こうして得られた粉末を次にプレス法等の成形方法により成形してAZO成形体を製造する。プレス成形により成形体を製造する場合には所定の大きさの金型に前記粉末を充填した後、プレス機を用いて100〜300kg/cmの圧力でプレスを行い成形体とする。 The powder thus obtained is then molded by a molding method such as a press method to produce an AZO compact. In the case of producing a molded body by press molding, after filling the above-mentioned powder into a mold having a predetermined size, the pressed body is pressed at a pressure of 100 to 300 kg / cm 2 to obtain a molded body.

次に、得られた成形体は必要に応じて冷間等方圧プレス(CIP)による圧密化処理を行う。この際CIPの圧力は十分な圧密効果を得るため2ton/cm以上であることが望ましい。 Next, the obtained molded body is subjected to a consolidation treatment by cold isostatic pressing (CIP) as necessary. At this time, the CIP pressure is desirably 2 ton / cm 2 or more in order to obtain a sufficient consolidation effect.

このようにして得られた成形体を焼結炉内で焼結する。焼結温度は1300〜1500℃とすることが好ましい。1300℃未満では十分な焼結体密度が得られず、1500℃を超えると焼結体の結晶粒成長が著しくなるからである。   The molded body thus obtained is sintered in a sintering furnace. The sintering temperature is preferably 1300 to 1500 ° C. If the temperature is lower than 1300 ° C., a sufficient sintered body density cannot be obtained, and if it exceeds 1500 ° C., crystal grain growth of the sintered body becomes remarkable.

焼結炉内の雰囲気は、焼結体内の均一な還元効果を得るために、室温から少なくとも焼結温度に到達するまでには、雰囲気を大気雰囲気から還元雰囲気に切り換える。この雰囲気切り換えによりバルク抵抗率の低いターゲットが得られる。   In order to obtain a uniform reduction effect in the sintered body, the atmosphere in the sintering furnace is switched from the atmospheric atmosphere to the reducing atmosphere until it reaches at least the sintering temperature from room temperature. By switching the atmosphere, a target having a low bulk resistivity can be obtained.

還元雰囲気としては、真空雰囲気、不活性ガス雰囲気、または窒素ガス雰囲気とすることが望ましい。不活性ガス雰囲気あるいは窒素ガス雰囲気焼結時には導入ガスを不活性ガス流量(L/min)と成形体仕込量(kg)の比(仕込重量/不活性ガス流量)で1.0以下で焼結炉内に導入することが好ましい。   The reducing atmosphere is preferably a vacuum atmosphere, an inert gas atmosphere, or a nitrogen gas atmosphere. During sintering in an inert gas atmosphere or nitrogen gas atmosphere, the introduced gas is sintered at a ratio of the inert gas flow rate (L / min) to the charged amount of the compact (kg) (charged weight / inert gas flow rate) of 1.0 or less. It is preferable to introduce into the furnace.

焼結温度以下で大気雰囲気から還元雰囲気へ切り換えた後は、所望の焼結温度まで昇温する。焼結時間としては、所望の焼結温度に達してから5時間以上保持することが好ましい。焼結後に大気雰囲気から還元雰囲気に切り換えた場合、均一な焼結体を得ることが難しいときがある。   After switching from the air atmosphere to the reducing atmosphere below the sintering temperature, the temperature is raised to the desired sintering temperature. The sintering time is preferably maintained for 5 hours or more after the desired sintering temperature is reached. When the atmosphere is switched from the atmospheric atmosphere to the reducing atmosphere after sintering, it may be difficult to obtain a uniform sintered body.

このように焼結雰囲気を連続的に焼結中に切り換えるため、製造コストおよび製造設備に大きな負担をかけることなく、しかも積極的に還元を行っているため、AZO焼結体のバルク抵抗率の制御も容易に行うことが可能となった。   Since the sintering atmosphere is continuously switched during the sintering in this way, the bulk resistivity of the AZO sintered body is reduced because the reduction is actively performed without placing a heavy burden on the manufacturing cost and the manufacturing equipment. Control can be easily performed.

以上の方法により、バルク抵抗率が3×10−4Ω・cm以上2.9×10−3Ω・cm以下のAZO焼結体を得ることができる。 By the above method, an AZO sintered body having a bulk resistivity of 3 × 10 −4 Ω · cm or more and 2.9 × 10 −3 Ω · cm or less can be obtained.

本発明のAZO焼結体は、酸素含有量としては、重量比で18.8%以下、好ましくは、18.6%以下である。酸素含有量が18.8%を超えると、低抵抗の膜を形成するためには、スパッタリングガス中の酸素濃度が非常に低い(ほとんど0)領域でスパッタリングする必要があり、酸素濃度の厳密なコントロールが困難となるため好ましくない。   The AZO sintered body of the present invention has an oxygen content of 18.8% or less, preferably 18.6% or less, by weight. When the oxygen content exceeds 18.8%, in order to form a low-resistance film, it is necessary to perform sputtering in a region where the oxygen concentration in the sputtering gas is very low (almost 0). Since control becomes difficult, it is not preferable.

このようにして得られたAZO焼結体は、所望の形状に研削加工してAZOスパッタリングターゲットとする。得られた加工済みのAZO焼結体は、インジウム半田等を用いて無酸素銅等からなるバッキングプレートにボンディングすることにより容易にスパッタリングターゲットとすることができる。   The AZO sintered body thus obtained is ground into a desired shape to obtain an AZO sputtering target. The obtained processed AZO sintered body can be easily used as a sputtering target by bonding to a backing plate made of oxygen-free copper or the like using indium solder or the like.

得られたターゲットをスパッタリング装置内に設置し、アルゴンなどの不活性ガスと必要に応じて酸素ガスとをスパッタリングガスとして用い、直流(dc)または高周波(rf)あるいは双方の電界を印可してスパッタリングを行うことにより、ガラス基板やフィルム基板上にAZO薄膜を形成することができる。   The obtained target is placed in a sputtering apparatus, and sputtering is performed by applying an electric field of direct current (dc) or high frequency (rf) or both using an inert gas such as argon and oxygen gas as necessary as a sputtering gas. By performing this, an AZO thin film can be formed on a glass substrate or a film substrate.

本発明の製造方法により得られたターゲットは、ターゲット中の酸素含有量が規定値以下にコントロールされているので、スパッタリング時にターゲットから供給される過剰な酸素を抑制するため、スパッタリングガスの酸素分圧の厳密なコントロールが容易であり、低抵抗なAZO膜を安定的に形成することができる。   Since the target obtained by the production method of the present invention has the oxygen content in the target controlled to a specified value or less, the oxygen partial pressure of the sputtering gas is used to suppress excess oxygen supplied from the target during sputtering. Strict control is easy, and a low-resistance AZO film can be stably formed.

本発明によれば、ターゲット中の酸素含有量をコントロールし、スパッタリングガス中の酸素濃度のコントロールを容易にすることにより、低抵抗なAZO透明導電膜を安定的に製造することができる。   According to the present invention, a low-resistance AZO transparent conductive film can be stably produced by controlling the oxygen content in the target and facilitating the control of the oxygen concentration in the sputtering gas.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples.

(実施例1)
酸化亜鉛粉末1470gと酸化アルミニウム粉末30gをポリエチレン製のポットに入れ、乾式ボールミルにより20時間混合し、混合粉末を作製した。この混合粉末をプレス用金型に入れ、150kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIP処理してAZO成形体を作製した。
Example 1
1470 g of zinc oxide powder and 30 g of aluminum oxide powder were placed in a polyethylene pot and mixed by a dry ball mill for 20 hours to prepare a mixed powder. This mixed powder was put into a pressing mold and pressed at a pressure of 150 kg / cm 2 to obtain a molded body. This compact was subjected to CIP treatment at a pressure of 3 ton / cm 2 to produce an AZO compact.

次にこのAZO成形体を以下の条件で焼結した。
昇温速度:50℃/hr
焼結温度:1300℃
保持時間:5時間
降温速度:100℃/hr
焼結雰囲気:焼結温度到達時に大気雰囲気から窒素雰囲気に切り換え。
Next, this AZO compact was sintered under the following conditions.
Temperature increase rate: 50 ° C / hr
Sintering temperature: 1300 ° C
Holding time: 5 hours Temperature decrease rate: 100 ° C./hr
Sintering atmosphere: Switch from air to nitrogen when the sintering temperature is reached.

得られた焼結体のバルク抵抗率を四探針法で測定した。測定は、焼結体の深さ方向3箇所からサンプルを切り出し行った。酸素含有量については、エレクトロンマイクロアナライザー(EPMA)の定量分析値を用いた。   The bulk resistivity of the obtained sintered body was measured by the four probe method. The measurement was performed by cutting out samples from three locations in the depth direction of the sintered body. For the oxygen content, the quantitative analysis value of an electron microanalyzer (EPMA) was used.

得られた焼結体を4インチφ×6mmtの形状に機械加工した後、インジウム半田を用いて無酸素銅のバッキングプレートにボンディングしてターゲットとした。このターゲットを用いて以下の条件で成膜評価を行った。
装置:DCマグネトロンスパッタ装置
基板温度:200℃
スパッタリングガス:Ar、Ar+O
スパッタリングガス圧:0.5Pa
/Ar:0.0〜1.0%
DCパワー:200W
膜厚:1500Å
このようにして作製した薄膜サンプルの抵抗率を調べた。抵抗率は四探針法で測定した。得られた測定結果を製造条件とともに表1に示す。なお、スパッタリングガス中の酸素濃度を0.1〜0.8%(O/Ar)としたとき、得られるAZO膜の抵抗率が最低となった。
The obtained sintered body was machined into a shape of 4 inches φ × 6 mmt, and then bonded to an oxygen-free copper backing plate using indium solder to obtain a target. Using this target, film formation was evaluated under the following conditions.
Equipment: DC magnetron sputtering equipment Substrate temperature: 200 ° C
Sputtering gas: Ar, Ar + O 2
Sputtering gas pressure: 0.5 Pa
O 2 /Ar:0.0~1.0%
DC power: 200W
Film thickness: 1500mm
The resistivity of the thin film sample thus produced was examined. The resistivity was measured by the four probe method. The obtained measurement results are shown in Table 1 together with the production conditions. When the oxygen concentration in the sputtering gas was 0.1 to 0.8% (O 2 / Ar), the resistivity of the obtained AZO film was the lowest.

(実施例2)
焼結温度を1400℃としたこと以外は、実施例1と同様にしてAZO焼結体を作製した。得られた焼結体のバルク抵抗率、酸素含有量を実施例1と同様の方法で測定した。この焼結体からなるターゲットを用いて、実施例1と同様の方法で薄膜サンプルを作製し評価した。測定結果を表1に示す。なお、スパッタリングガス中の酸素濃度を0.1〜0.8%(O/Ar)としたとき、得られるAZO膜の抵抗率が最低となった。
(Example 2)
An AZO sintered body was produced in the same manner as in Example 1 except that the sintering temperature was 1400 ° C. The bulk resistivity and oxygen content of the obtained sintered body were measured in the same manner as in Example 1. Using the target made of this sintered body, a thin film sample was produced and evaluated in the same manner as in Example 1. The measurement results are shown in Table 1. When the oxygen concentration in the sputtering gas was 0.1 to 0.8% (O 2 / Ar), the resistivity of the obtained AZO film was the lowest.

(実施例3)
焼結温度を1500℃としたこと以外は、実施例1と同様にしてAZO焼結体を作製した。得られた焼結体のバルク抵抗率、酸素含有量を実施例1と同様の方法で測定した。この焼結体からなるターゲットを用いて、実施例1と同様の方法で薄膜サンプルを作製し評価した。測定結果を表1に示す。なお、スパッタリングガス中の酸素濃度を0.1〜0.8%(O/Ar)としたとき、得られるAZO膜の抵抗率が最低となった。
(Example 3)
An AZO sintered body was produced in the same manner as in Example 1 except that the sintering temperature was 1500 ° C. The bulk resistivity and oxygen content of the obtained sintered body were measured in the same manner as in Example 1. Using the target made of this sintered body, a thin film sample was produced and evaluated in the same manner as in Example 1. The measurement results are shown in Table 1. When the oxygen concentration in the sputtering gas was 0.1 to 0.8% (O 2 / Ar), the resistivity of the obtained AZO film was the lowest.

(実施例4)
焼結雰囲気を、室温から窒素雰囲気として行ったこと以外は、実施例1と同様にしてAZO焼結体を作製した。得られた焼結体のバルク抵抗率、酸素含有量を実施例1と同様の方法で測定した。この焼結体からなるターゲットを用いて、実施例1と同様の方法で薄膜サンプルを作製し評価した。測定結果を表1に示す。なお、スパッタリングガス中の酸素濃度を0.1〜0.8%(O/Ar)としたとき、得られるAZO膜の抵抗率が最低となった。
Example 4
An AZO sintered body was produced in the same manner as in Example 1 except that the sintering atmosphere was changed from room temperature to a nitrogen atmosphere. The bulk resistivity and oxygen content of the obtained sintered body were measured in the same manner as in Example 1. Using the target made of this sintered body, a thin film sample was produced and evaluated in the same manner as in Example 1. The measurement results are shown in Table 1. When the oxygen concentration in the sputtering gas was 0.1 to 0.8% (O 2 / Ar), the resistivity of the obtained AZO film was the lowest.

(比較例1)
焼結雰囲気の切り換えを行わず大気雰囲気のみで行ったこと以外は、実施例1と同様にしてAZO焼結体を作製した。得られた焼結体のバルク抵抗率、酸素含有量を実施例1と同様の方法で測定した。この焼結体からなるターゲットを用いて、実施例1と同様の方法で薄膜サンプルを作製し評価した。測定結果を表1に示す。このターゲットを用いた場合は、スパッタリングガス中の酸素濃度が0.0%(O/Ar)のとき、得られるAZO膜の抵抗率が最低となった。
(Comparative Example 1)
An AZO sintered body was produced in the same manner as in Example 1 except that the sintering atmosphere was not changed and only the atmosphere was used. The bulk resistivity and oxygen content of the obtained sintered body were measured in the same manner as in Example 1. Using the target made of this sintered body, a thin film sample was produced and evaluated in the same manner as in Example 1. The measurement results are shown in Table 1. When this target was used, the resistivity of the AZO film obtained was the lowest when the oxygen concentration in the sputtering gas was 0.0% (O 2 / Ar).

(比較例2)
焼結雰囲気を、1300℃、5時間焼結させた後に、大気雰囲気から窒素雰囲気に切り換えたこと以外は、実施例1と同様にしてAZO焼結体を作製した。
(Comparative Example 2)
An AZO sintered body was produced in the same manner as in Example 1 except that the sintering atmosphere was sintered at 1300 ° C. for 5 hours and then switched from the air atmosphere to the nitrogen atmosphere.

得られた焼結体のバルク抵抗率、酸素含有量を実施例1と同様の方法で測定した。この焼結体からなるターゲットを用いて、実施例1と同様の方法で薄膜サンプルを作製し評価した。測定結果を表1に示す。このターゲットを用いた場合も、酸素濃度が0.0%(O/Ar)のとき、得られるAZO膜の抵抗率が最低となった。 The bulk resistivity and oxygen content of the obtained sintered body were measured in the same manner as in Example 1. Using the target made of this sintered body, a thin film sample was produced and evaluated in the same manner as in Example 1. The measurement results are shown in Table 1. Even when this target was used, the resistivity of the obtained AZO film was the lowest when the oxygen concentration was 0.0% (O 2 / Ar).

表1に示されるように、焼結雰囲気を、焼結温度到達前に還元雰囲気とすることで、ターゲット中の酸素含有量を18.8%以下にコントロールすることができ、その結果、スパッタリングガス中の酸素濃度が0.1〜0.8%(O/Ar)のとき、得られるAZO膜の抵抗率が最小の値となるようにすることができ、安定的に低抵抗のAZO膜を形成することが可能となる。 As shown in Table 1, by setting the sintering atmosphere to a reducing atmosphere before reaching the sintering temperature, the oxygen content in the target can be controlled to 18.8% or less. As a result, the sputtering gas When the oxygen concentration is 0.1 to 0.8% (O 2 / Ar), the resistivity of the obtained AZO film can be set to the minimum value, and the low-resistance AZO film can be stably provided. Can be formed.

Figure 2007238375
Figure 2007238375

Claims (4)

実質的に亜鉛、アルミニウムおよび酸素からなり、バルク抵抗率が3×10−4Ω・cm以上2.9×10−3Ω・cm以下、酸素の含有量がO/(Zn+Al+O)の重量比で18.8%以下であることを特徴とするZnO−Al系焼結体。 It consists essentially of zinc, aluminum, and oxygen, with a bulk resistivity of 3 × 10 −4 Ω · cm to 2.9 × 10 −3 Ω · cm, and an oxygen content of O / (Zn + Al + O). A ZnO—Al 2 O 3 -based sintered body characterized by being 18.8% or less. 焼結体中のアルミニウムの含有量が酸化アルミニウム換算で0.5〜5重量%であることを特徴とする請求項1に記載のZnO−Al系焼結体。 ZnO-Al 2 O 3 based sintered body according to claim 1 in which the content of aluminum in the sintered body, characterized in that 0.5 to 5% by weight aluminum oxide basis. 請求項1又は請求項2に記載のZnO−Al系焼結体からなる透明導電膜用スパッタリングターゲット。 Claim 1 or the transparent conductive film for a sputtering target made of ZnO-Al 2 O 3 sintered body of claim 2. 実質的に亜鉛、アルミニウムおよび酸素からなる透明導電膜をスパッタリング法により形成する透明導電膜の製造方法において、請求項3に記載のスパッタリングターゲットを用いることを特徴とする透明導電膜の製造方法。
A method for producing a transparent conductive film, wherein the sputtering target according to claim 3 is used in the method for producing a transparent conductive film, wherein a transparent conductive film substantially consisting of zinc, aluminum and oxygen is formed by a sputtering method.
JP2006063270A 2006-03-08 2006-03-08 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film Active JP4797712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063270A JP4797712B2 (en) 2006-03-08 2006-03-08 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063270A JP4797712B2 (en) 2006-03-08 2006-03-08 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JP2007238375A true JP2007238375A (en) 2007-09-20
JP4797712B2 JP4797712B2 (en) 2011-10-19

Family

ID=38584272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063270A Active JP4797712B2 (en) 2006-03-08 2006-03-08 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP4797712B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133076A2 (en) * 2008-04-30 2009-11-05 Applied Materials Inc., A Corporation Of The State Of Delaware Sputter target, method for manufacturing a layer, particularly a tco (transparent conductive oxide) layer, and method for manufacturing a thin layer solar cell
EP2116631A1 (en) * 2008-04-30 2009-11-11 Applied Materials, Inc. Sputter target
JP2010121183A (en) * 2008-11-20 2010-06-03 Sony Corp Zinc oxide based sputtering target and method of manufacturing the same, zinc oxide-based transparent conductive film and method of manufacturing the same and electronic apparatus
US20120211355A1 (en) * 2011-02-22 2012-08-23 Korea Institute Of Science & Technology Transparent conductive composition, target, transparent conductive thin film using the target and method for fabricating the same
TWI393795B (en) * 2009-08-18 2013-04-21 China Steel Corp Production method of zinc oxide transparent conductive sputtering target
JP2013124204A (en) * 2011-12-14 2013-06-24 Tosoh Corp Composite oxide sintered compact, method for producing the same, and target
WO2014083909A1 (en) * 2012-11-30 2014-06-05 日本碍子株式会社 Method for manufacturing zinc oxide-based sputtering target
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof
WO2015020029A1 (en) * 2013-08-06 2015-02-12 三菱マテリアル株式会社 Sputtering target and method for producing same
JP5704571B2 (en) * 2010-01-15 2015-04-22 株式会社アルバック Method for producing LiCoO2 sintered body
KR20150045496A (en) 2013-08-26 2015-04-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered body and amorphous film
US9260779B2 (en) 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film
KR101600261B1 (en) 2015-01-22 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 Oxide sintered compact, sputtering target and oxide thin film
CN107099771A (en) * 2016-12-28 2017-08-29 中国建材国际工程集团有限公司 The preparation method of multilayer AZO films

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122011A (en) * 1985-11-22 1987-06-03 株式会社リコー Transparent conducting film and manufacture of the same
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH04219359A (en) * 1990-12-19 1992-08-10 Tosoh Corp Electrically conductive zinc oxide sintered compact
JPH07258836A (en) * 1994-03-22 1995-10-09 Tosoh Corp Aluminum doped zinc oxide sintered compact and its production as well as its application
JPH11322332A (en) * 1998-05-21 1999-11-24 Sumitomo Metal Mining Co Ltd Zno-based sintered product and its production
JP2005330158A (en) * 2004-05-20 2005-12-02 Ulvac Material Kk Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body
JP2006200016A (en) * 2005-01-21 2006-08-03 Tosoh Corp ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122011A (en) * 1985-11-22 1987-06-03 株式会社リコー Transparent conducting film and manufacture of the same
JPH02149459A (en) * 1988-08-09 1990-06-08 Tosoh Corp Oxide sintered body, production and use thereof
JPH04219359A (en) * 1990-12-19 1992-08-10 Tosoh Corp Electrically conductive zinc oxide sintered compact
JPH07258836A (en) * 1994-03-22 1995-10-09 Tosoh Corp Aluminum doped zinc oxide sintered compact and its production as well as its application
JPH11322332A (en) * 1998-05-21 1999-11-24 Sumitomo Metal Mining Co Ltd Zno-based sintered product and its production
JP2005330158A (en) * 2004-05-20 2005-12-02 Ulvac Material Kk Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body
JP2006200016A (en) * 2005-01-21 2006-08-03 Tosoh Corp ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133076A2 (en) * 2008-04-30 2009-11-05 Applied Materials Inc., A Corporation Of The State Of Delaware Sputter target, method for manufacturing a layer, particularly a tco (transparent conductive oxide) layer, and method for manufacturing a thin layer solar cell
EP2116631A1 (en) * 2008-04-30 2009-11-11 Applied Materials, Inc. Sputter target
WO2009133076A3 (en) * 2008-04-30 2010-03-04 Applied Materials Inc., A Corporation Of The State Of Delaware Sputter target
JP2010121183A (en) * 2008-11-20 2010-06-03 Sony Corp Zinc oxide based sputtering target and method of manufacturing the same, zinc oxide-based transparent conductive film and method of manufacturing the same and electronic apparatus
JP4661948B2 (en) * 2008-11-20 2011-03-30 ソニー株式会社 Zinc oxide-based sputtering target and method for producing the same, zinc oxide-based transparent conductive film, method for producing the same and electronic equipment
US9260779B2 (en) 2009-05-21 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-transmitting conductive film, display device, electronic device, and manufacturing method of light-transmitting conductive film
TWI393795B (en) * 2009-08-18 2013-04-21 China Steel Corp Production method of zinc oxide transparent conductive sputtering target
JP5704571B2 (en) * 2010-01-15 2015-04-22 株式会社アルバック Method for producing LiCoO2 sintered body
US20120211355A1 (en) * 2011-02-22 2012-08-23 Korea Institute Of Science & Technology Transparent conductive composition, target, transparent conductive thin film using the target and method for fabricating the same
JP2013124204A (en) * 2011-12-14 2013-06-24 Tosoh Corp Composite oxide sintered compact, method for producing the same, and target
WO2014083909A1 (en) * 2012-11-30 2014-06-05 日本碍子株式会社 Method for manufacturing zinc oxide-based sputtering target
JPWO2014083909A1 (en) * 2012-11-30 2017-01-05 日本碍子株式会社 Method for producing zinc oxide based sputtering target
JP2015021165A (en) * 2013-07-19 2015-02-02 三菱マテリアル株式会社 Sputtering target and production method thereof
WO2015020029A1 (en) * 2013-08-06 2015-02-12 三菱マテリアル株式会社 Sputtering target and method for producing same
JP2015052165A (en) * 2013-08-06 2015-03-19 三菱マテリアル株式会社 Sputtering target and manufacturing method of the same
KR20150045496A (en) 2013-08-26 2015-04-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered body and amorphous film
KR101600261B1 (en) 2015-01-22 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 Oxide sintered compact, sputtering target and oxide thin film
CN107099771A (en) * 2016-12-28 2017-08-29 中国建材国际工程集团有限公司 The preparation method of multilayer AZO films

Also Published As

Publication number Publication date
JP4797712B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4797712B2 (en) ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film
JP4926977B2 (en) Gallium oxide-zinc oxide sintered sputtering target
TWI488826B (en) An indium oxide sintered body, an indium oxide transparent conductive film, and a method for producing the transparent conductive film
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JPWO2007142330A1 (en) Transparent conductive film, method for producing the same, and sputtering target used for the production thereof
US20100003495A1 (en) Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method
JPH10158827A (en) Ito (indium tin oxide) sintered body and ito sputtering target
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
TW201245094A (en) Sintered material, and process for producing same
JP5884001B1 (en) Oxide sintered body and sputtering target comprising the oxide sintered body
JPWO2016136611A1 (en) Oxide sintered body and sputtering target comprising the oxide sintered body
CN108698937B (en) Sn-Zn-O oxide sintered body and method for producing same
JP2009161389A (en) Zinc oxide-based transparent conductive film
JP2000129432A (en) Electroconductive metallic oxide sinetred body and its use
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
JP6233233B2 (en) Sputtering target and manufacturing method thereof
JP2003100154A (en) Transparent conductive film, its manufacturing method and its application
JP5363742B2 (en) Zinc oxide transparent conductive film
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP5367660B2 (en) Oxide sintered body and oxide semiconductor thin film
JP2005113190A (en) Sputtering target material, its production method, and method of producing transparent electrically conductive film using the same
EP2604587A1 (en) Electrically conductive SiNx ceramic composite, its sputtering targets and manufacturing methods thereof
JP5878045B2 (en) Zinc oxide-based sintered body and method for producing the same
JP2000256842A (en) Ito sputtering target, and production of ito sintered compact and transparent conductive film
JP5545448B2 (en) Sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4797712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3