KR101331293B1 - Sintered oxide and oxide semiconductor thin film - Google Patents

Sintered oxide and oxide semiconductor thin film Download PDF

Info

Publication number
KR101331293B1
KR101331293B1 KR1020137007631A KR20137007631A KR101331293B1 KR 101331293 B1 KR101331293 B1 KR 101331293B1 KR 1020137007631 A KR1020137007631 A KR 1020137007631A KR 20137007631 A KR20137007631 A KR 20137007631A KR 101331293 B1 KR101331293 B1 KR 101331293B1
Authority
KR
South Korea
Prior art keywords
thin film
oxide
oxide semiconductor
sintered body
semiconductor thin
Prior art date
Application number
KR1020137007631A
Other languages
Korean (ko)
Other versions
KR20130041365A (en
Inventor
히데오 다카미
고조 오사다
Original Assignee
제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 filed Critical 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Publication of KR20130041365A publication Critical patent/KR20130041365A/en
Application granted granted Critical
Publication of KR101331293B1 publication Critical patent/KR101331293B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

고가의 갈륨 (Ga) 을 함유하지 않고, 벌크 저항이 작은 산화물 소결체를 제공하는 것을 과제로 한다. 또한, 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공하는 것을 별도의 과제로 한다. 인듐 (In) 과, 아연 (Zn) 과, 금속 원소 X (단, X 는 Al 및 Ti 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지는 산화물 소결체로서, 인듐 (In), 아연 (Zn), 및 금속 원소 X 의 원자수비가 각각, 0.2 ≤ In/(In+Zn+X) ≤ 0.8, 0.1 ≤ Zn/(In+Zn+X) ≤ 0.5, 및 0.1 ≤ X/(In+Zn+X) ≤ 0.5 를 만족하는 산화물 소결체 및 이것과 동일 조성을 갖는 산화물 반도체막.An object of the present invention is to provide an oxide sintered body which does not contain expensive gallium (Ga) and has a small bulk resistance. Another object is to provide an oxide semiconductor thin film having the same composition as the oxide sintered body. As an oxide sintered body consisting of indium (In), zinc (Zn), metal element X (where X represents at least one element selected from Al and Ti), and oxygen (O), indium (In), An oxide sintered body in which the atomic ratio of zinc (Zn) and the metal element X satisfies 0.2 ≦ In / (In + Zn + X) ≦ 0.8, 0.1 ≦ Zn / (In + Zn + X) ≦ 0.5, and 0.1 ≦ X / (In + Zn + X) ≦ 0.5, respectively. And an oxide semiconductor film having the same composition as this.

Description

산화물 소결체 및 산화물 반도체 박막{SINTERED OXIDE AND OXIDE SEMICONDUCTOR THIN FILM}Oxide sintered body and oxide semiconductor thin film {SINTERED OXIDE AND OXIDE SEMICONDUCTOR THIN FILM}

본 발명은 표시 장치 속의 박막 트랜지스터나 투명 전극의 제작에 유용한 산화물 소결체 및 투명 산화물 반도체 박막에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide sintered body and a transparent oxide semiconductor thin film which are useful for fabricating a thin film transistor or a transparent electrode in a display device.

투명 산화물 반도체는 액정 표시 장치, 플라즈마 표시 장치 및 유기 EL 표시 장치 등과 같은 표시 장치 속의 박막 트랜지스터의 활성층 외에, 태양 전지 및 터치 패널 등의 투명 전극으로서 이용되고 있다. 종래, 투명 산화물 반도체로는 In-Ga-Zn-O 계 (이후, 「IGZO 계」로 기재) 가 알려져 있고 (비특허문헌 1 참조), 또한, 특성 개선을 의도하여 주석 (Sn) 을 첨가한 계에 관한 보고도 있다 (특허문헌 1 및 2 참조). 그러나, 이들 계의 필수 구성 요소인 갈륨 (Ga) 은 희소 원소로서, 가격도 고가라는 등의 이유에서 산업상, 대량으로 사용하기에는 큰 제약이 있었다.Transparent oxide semiconductors are used as transparent electrodes such as solar cells and touch panels in addition to active layers of thin film transistors in display devices such as liquid crystal display devices, plasma display devices and organic EL display devices. Conventionally, an In—Ga—Zn—O system (hereinafter referred to as “IGZO system”) is known as a transparent oxide semiconductor (see Non-Patent Document 1), and tin (Sn) is added for intention of improving characteristics. There is also a report regarding the system (see Patent Documents 1 and 2). However, gallium (Ga), which is an essential component of these systems, is a rare element and, due to its high price and the like, has a large limitation in the industrial and large-scale use.

Ga 를 사용하지 않은 투명 산화물 반도체로는, In-Zn-Sn-O 계 (특허문헌 3 참조) 에 관한 보고가 있다. 특허문헌 3 에서는, 인듐, 주석, 아연 및 산소를 함유하고, 인듐의 원자의 수 (=[In]) 와 주석의 원자의 수 (=[Sn]) 와 아연의 원자의 수 (=[Zn]) 의 합계에 대한 상기 [Sn] 의 원자비가 0.1 초과 0.2 미만일 때에는 하기 원자비 1 을 만족하고, 0.2 이상 0.3 미만일 때에는 하기 원자비 2 를 만족하는 것이 기재되어 있다.As a transparent oxide semiconductor which does not use Ga, there is a report regarding an In—Zn—Sn—O system (see Patent Document 3). In patent document 3, it contains indium, tin, zinc, and oxygen, the number of atoms of indium (= [In]), the number of atoms of tin (= [Sn]), and the number of atoms of zinc (= [Zn] When the atomic ratio of the above-mentioned [Sn] to the sum of N) is more than 0.1 and less than 0.2, the following atomic ratio 1 is satisfied, and when it is 0.2 or more and less than 0.3, the following atomic ratio 2 is described.

원자비 1 Atomic ratio 1

0.1 < [In]/([In]+[Sn]+[Zn]) < 0.50.1 <[In] / ([In] + [Sn] + [Zn]) <0.5

0.1 <[Sn]/([In]+[Sn]+[Zn]) < 0.20.1 <[Sn] / ([In] + [Sn] + [Zn]) <0.2

0.3 <[Zn]/([In]+[Sn]+[Zn]) < 0.80.3 <[Zn] / ([In] + [Sn] + [Zn]) <0.8

원자비 2 Atomic ratio 2

0.01 <[In]/([In]+[Sn]+[Zn]) < 0.30.01 <[In] / ([In] + [Sn] + [Zn]) <0.3

0.2 ≤ [Sn]/([In]+[Sn]+[Zn]) < 0.30.2 ≤ [Sn] / ([In] + [Sn] + [Zn]) <0.3

0.4 < [Zn]/([In]+[Sn]+[Zn]) < 0.80.4 <[Zn] / ([In] + [Sn] + [Zn]) <0.8

일본 공개특허공보 2008-280216호Japanese Patent Application Laid-Open No. 2008-280216 일본 공개특허공보 2010-118407호Japanese Laid-Open Patent Publication No. 2010-118407 일본 공개특허공보 2008-243928호Japanese Patent Application Laid-Open No. 2008-243928

Nature 432, p488-492, October 2004 Nature 432, p488-492, October 2004

그러나, 특허문헌 3 에 기재된 In-Zn-Sn-O 계에서는, 벌크 저항이 높기 때문에 스퍼터시에 이상 방전을 발생하기 쉽다는 문제가 남겨져 있다.However, in the In-Zn-Sn-O system described in Patent Document 3, there is a problem that abnormal discharge is likely to occur at the time of sputtering because the bulk resistance is high.

그래서 본 발명은, 희소 자원이면서, 고가의 갈륨 (Ga) 을 함유하지 않고, 벌크 저항을 작게 할 수 있는 산화물 소결체를 제공하는 것을 과제로 한다. 또한, 본 발명은 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공하는 것을 별도의 과제로 한다.Then, an object of this invention is to provide the oxide sintered compact which is a scarce resource and does not contain expensive gallium (Ga) and can make a bulk resistance small. Another object of the present invention is to provide an oxide semiconductor thin film having the same composition as the oxide sintered body.

본 발명자는, 희소하면서 또한 고가의 원소인 갈륨 (Ga) 의 대체 원소로서 갈륨과 같은 3 가의 금속 원소인 알루미늄 (Al), 4 가의 금속 원소인 티탄 (Ti) 이 유망하다는 것을 알아내어, 이들 원소의 원자비나 소결체나 막의 제조 조건 등에 관해서 예의 검토를 하여 본 발명을 완성시켰다.The inventors found out that aluminum (Al), a trivalent metal element such as gallium, and titanium (Ti), a tetravalent metal element, are promising as alternative elements of gallium (Ga), which is a rare and expensive element, and these elements are promising. The atomic ratio, the sintered compact, the manufacturing conditions of a film | membrane, etc. were earnestly examined, and this invention was completed.

본 발명은 일 측면에 있어서, 인듐 (In) 과, 아연 (Zn) 과, 금속 원소 X (단, X 는 Al 및 Ti 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지는 산화물 소결체로서, 인듐 (In), 아연 (Zn), 및 금속 원소 X 의 원자수비가 각각, 0.2 ≤ In/(In+Zn+X) ≤ 0.8, 0.1 ≤ Zn/(In+Zn+X) ≤ 0.5, 및 0.1 ≤ X/(In+Zn+X) ≤ 0.5 를 만족하는 산화물 소결체이다.In an aspect, the present invention provides an oxide composed of indium (In), zinc (Zn), metal element X (where X represents at least one element selected from Al and Ti), and oxygen (O). As the sintered body, the atomic ratios of indium (In), zinc (Zn), and metal element X are 0.2 ≦ In / (In + Zn + X) ≦ 0.8, 0.1 ≦ Zn / (In + Zn + X) ≦ 0.5, and 0.1 ≦ X / (In + Zn + X, respectively). ) Is an oxide sintered body that satisfies?

본 발명에 관련된 산화물 소결체는 일 실시형태에 있어서, 상대밀도가 98 % 이상이다.In one embodiment, the oxide sintered body according to the present invention has a relative density of 98% or more.

본 발명에 관련된 산화물 소결체는 별도의 일 실시형태에 있어서, 벌크 저항이 3 mΩcm 이하이다.In another embodiment, the oxide sintered body according to the present invention has a bulk resistance of 3 mΩcm or less.

본 발명은 별도의 일 측면에 있어서, 인듐 (In) 과, 아연 (Zn) 과, 금속 원소 X (단, X 는 Al 및 Ti 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지는 산화물 반도체 박막으로서, 인듐 (In), 아연 (Zn), 금속 원소 X 의 원자수비가, 0.2 ≤ In/(In+Zn+X) ≤ 0.8, 0.1 ≤ Zn/(In+Zn+X) ≤ 0.5, 0.1 ≤ X/(In+Zn+X) ≤ 0.5 를 만족하는 산화물 반도체 박막이다.In another aspect of the present invention, indium (In), zinc (Zn), metal element X (where X represents at least one element selected from Al and Ti) and oxygen (O) In the oxide semiconductor thin film formed, the atomic ratio of indium (In), zinc (Zn), and metal element X is 0.2 ≦ In / (In + Zn + X) ≦ 0.8, 0.1 ≦ Zn / (In + Zn + X) ≦ 0.5, 0.1 ≦ X / (In + Zn + X ) Is an oxide semiconductor thin film satisfying?

본 발명에 관련된 산화물 반도체 박막은 일 실시형태에 있어서, 비정질이다.In one embodiment, the oxide semiconductor thin film according to the present invention is amorphous.

본 발명에 관련된 산화물 반도체 박막은 별도의 일 실시형태에 있어서, 캐리어 농도가 1016 ∼ 1018-3 이다.In another embodiment, the oxide semiconductor thin film according to the present invention has a carrier concentration of 10 16 to 10 18 cm -3 .

본 발명에 관련된 산화물 반도체 박막은 또 다른 별도의 일 실시형태에 있어서, 이동도가 1 ㎠/Vs 이상이다.In yet another embodiment, the oxide semiconductor thin film according to the present invention has a mobility of 1 cm 2 / Vs or more.

본 발명은 또 다른 별도의 일 측면에 있어서, 상기 산화물 반도체 박막을 활성층으로서 구비한 박막 트랜지스터이다.In yet another aspect, the present invention is a thin film transistor including the oxide semiconductor thin film as an active layer.

본 발명은 또 다른 별도의 일 측면에 있어서, 상기 박막 트랜지스터를 구비한 액티브 매트릭스 구동 표시 패널이다.In yet another aspect, the present invention is an active matrix driving display panel including the thin film transistor.

본 발명에 의하면 갈륨 (Ga) 을 함유하지 않고, 벌크 저항을 작게 할 수 있는 산화물 소결체를 제공할 수 있다. 본 산화물 소결체는 스퍼터링 타깃으로서 유용하다. 본 타깃을 사용하여 스퍼터 성막함으로써, 투명 산화물 반도체막을 제작할 수 있다.According to this invention, the oxide sintered compact which does not contain gallium (Ga) and can make a bulk resistance small can be provided. This oxide sintered compact is useful as a sputtering target. By sputter film-forming using this target, a transparent oxide semiconductor film can be manufactured.

(산화물 소결체의 조성) (Composition of oxide-sintered body)

본 발명에 관련된 산화물 소결체는, 인듐 (In), 아연 (Zn), 금속 원소 X (단, X 는 Al 및 Ti 에서 선택되는 1 종 이상의 원소를 나타낸다), 및 산소 (O) 를 구성 원소로 한다. 단, 통상적으로 입수 가능한 원료의 정제 공정 상 불가피하게 함유되게 되는 원소나, 산화물 소결체 제조 프로세스 상 불가피하게 혼입되는 불순물 원소를 불가피하게 함유되는 농도 정도, 예를 들어 각 원소 10 ppm 정도까지 함유하는 것은 본 발명에 관련된 소결체에 포함된다.The oxide sintered body according to the present invention includes indium (In), zinc (Zn), metal element X (where X represents at least one element selected from Al and Ti), and oxygen (O) as constituent elements. . However, it is usually necessary to contain an element which is inevitably contained in the raw material refining process or an impurity element that is inevitably mixed in the oxide sintered manufacturing process, for example, up to about 10 ppm of each element. It is contained in the sintered compact which concerns on this invention.

인듐, 아연 및 금속 원소 X 의 합계 원자수에 대한 인듐의 원자수의 비 [In]/([In]+[Zn]+[X]) 는 0.2 ∼ 0.8 인 것이 바람직하다. [In]/([In]+[Zn]+[X]) 가 0.2 미만이면, 타깃 제작시의 상대밀도가 작아지고, 벌크 저항이 높아져, 스퍼터시의 이상 (異常) 방전이 발생하기 쉬워진다. 반대로, [In]/([In]+[Zn]+[X]) 가 0.8 을 초과하면, 그 조성의 타깃을 스퍼터하여 얻어지는 막의 캐리어 농도가 지나치게 높아져, 트랜지스터의 채널층으로서는 온 오프비가 작아진다. [In]/([In]+[Zn]+[X]) 는, 보다 바람직하게는 0.25 ∼ 0.6 의 범위이고, 더욱 바람직하게는 0.3 ∼ 0.5 의 범위이다. 여기서, [In] 은 인듐의 원자수, [Zn] 은 아연의 원자수, [X] 는 금속 원소 X 의 원자수를 각각 나타낸다.It is preferable that ratio [In] / ([In] + [Zn] + [X]) of the number of atoms of indium to the total number of atoms of indium, zinc and the metal element X is 0.2-0.8. If [In] / ([In] + [Zn] + [X]) is less than 0.2, the relative density at the time of target manufacture becomes small, bulk resistance becomes high, and abnormal discharge at the sputter | spatter becomes easy to generate | occur | produce. . On the contrary, when [In] / ([In] + [Zn] + [X]) exceeds 0.8, the carrier concentration of the film obtained by sputtering the target of the composition becomes too high, and the on-off ratio becomes small as the channel layer of the transistor. . [In] / ([In] + [Zn] + [X]), More preferably, it is the range of 0.25-0.6, More preferably, it is the range of 0.3-0.5. Here, [In] represents the number of atoms of indium, [Zn] represents the number of atoms of zinc, and [X] represents the number of atoms of the metal element X, respectively.

인듐, 아연 및 금속 원소 X 의 합계 원자수에 대한 아연의 원자수의 비 [Zn]/([In]+[Zn]+[X]) 는 0.1 ∼ 0.5 인 것이 바람직하다. [Zn]/([In]+[Zn]+[X]) 가 0.1 미만이면, 막의 캐리어 농도가 지나치게 커진다. 반대로, [Zn]/([In]+[Zn]+[X]) 가 0.5 를 초과하면, 막의 캐리어 농도가 지나치게 작아진다. 타깃 제작시의 상대밀도가 작아진다. [Zn]/([In]+[Zn]+[X]) 는, 보다 바람직하게는 0.15 ∼ 0.4 의 범위이고, 더욱 바람직하게는 0.2 ∼ 0.35 의 범위이다.It is preferable that ratio [Zn] / ([In] + [Zn] + [X]) of the number of atoms of zinc with respect to the total number of atoms of indium, zinc, and the metal element X is 0.1-0.5. If [Zn] / ([In] + [Zn] + [X]) is less than 0.1, the carrier concentration of the film becomes too large. On the contrary, when [Zn] / ([In] + [Zn] + [X]) exceeds 0.5, the carrier concentration of the film becomes too small. The relative density at the time of manufacture of a target becomes small. [Zn] / ([In] + [Zn] + [X]), More preferably, it is the range of 0.15-0.4, More preferably, it is the range of 0.2-0.35.

인듐, 아연 및 금속 원소 X 의 합계 원자수에 대한 금속 원소 X 의 합계 원자수의 비 [X]/([In]+[Zn]+[X]) 는 0.1 ∼ 0.5 인 것이 바람직하다. [X]/([In]+[Zn]+[X]) 가 0.1 미만이면, 그 조성의 타깃을 스퍼터하여 얻어지는 막의 캐리어 농도가 지나치게 높아지고, 트랜지스터의 채널층으로서는 온 오프비가 작아진다. 반대로, [X]/([In]+[Zn]+[X]) 가 0.5 를 초과하면, 막의 캐리어 농도가 지나치게 작아져, 타깃 제작시의 상대밀도가 작아지고, 벌크 저항이 높아져, 스퍼터시의 이상 방전이 발생하기 쉬워진다. [X]/([In]+[Zn]+[X]) 는, 보다 바람직하게는 0.15 ∼ 0.4 의 범위이고, 더욱 바람직하게는 0.2 ∼ 0.35 의 범위이다.It is preferable that ratio [X] / ([In] + [Zn] + [X]) of the total number of atoms of the metal element X with respect to the total number of atoms of indium, zinc, and the metal element X is 0.1-0.5. When [X] / ([In] + [Zn] + [X]) is less than 0.1, the carrier concentration of the film obtained by sputtering the target of the composition becomes too high, and the on-off ratio becomes small as the channel layer of the transistor. On the contrary, when [X] / ([In] + [Zn] + [X]) exceeds 0.5, the carrier concentration of the film becomes too small, the relative density at the time of target production becomes small, the bulk resistance becomes high, and sputtering Abnormal discharge easily occurs. [X] / ([In] + [Zn] + [X]), More preferably, it is the range of 0.15-0.4, More preferably, it is the range of 0.2-0.35.

(산화물 소결체의 상대밀도) Relative Density of Oxide Sintered Body

산화물 소결체의 상대밀도는 스퍼터시의 표면의 주울 발생과 상관이 있어, 산화물 소결체가 저밀도이면, 그 산화물 소결체를 타깃으로 가공하여 스퍼터 성막할 때에, 스퍼터 성막의 경과에 따라서 표면에 인듐의 저급 산화물인, 돌기상의 노듈 (nodule) 이라고 불리는 고저항 부분이 발생하여, 그 후의 스퍼터 시에 이상 방전의 기점으로 되기 쉽다. 본 발명에서는, 산화물 소결체의 상대밀도를 98 % 이상으로 할 수 있고, 이 정도의 고밀도이면, 스퍼터시의 노듈에 의한 악영향은 거의 없다. 상대밀도는 바람직하게는 99 % 이상이고, 보다 바람직하게는 99.5 % 이상이다.The relative density of the oxide sintered body has a correlation with the occurrence of Joules on the surface during sputtering. If the oxide sintered body is low density, when the oxide sintered body is processed into a target and sputtered into film, the lower oxide of indium is formed on the surface as the sputter film is formed. The high-resistance part called a nodule of a processus | protrusion generate | occur | produces, and it becomes easy to become a starting point of abnormal discharge in the subsequent sputter | spatter. In this invention, the relative density of an oxide sintered compact can be made into 98% or more, and if it is a high density of this grade, there is little adverse effect by the nodule at the time of sputtering. The relative density is preferably 99% or more, and more preferably 99.5% or more.

또, 산화물 소결체의 상대밀도는, 산화물 소결체를 소정 형상으로 가공한 후의 중량과 외형 치수로부터 산출한 밀도를 그 산화물 소결체의 이론밀도로 나눔으로써 구할 수 있다.In addition, the relative density of an oxide sintered compact can be calculated | required by dividing the density computed from the weight and external dimension after processing an oxide sintered compact in a predetermined shape by the theoretical density of the oxide sintered compact.

(산화물 소결체의 벌크 저항) (Bulk resistance of oxide-sintered body)

산화물 소결체의 벌크 저항은, 스퍼터시의 이상 방전이 발생하기 쉬운 정도와 상관이 있어, 벌크 저항이 높으면 스퍼터시에 이상 방전이 발생하기 쉽다. 본 발명에서는, 조성의 적정 범위나 제조 조건의 적정화에 의해서 벌크 저항을 3 mΩcm 이하로 할 수 있고, 이 정도의 저벌크 저항이면, 스퍼터시의 이상 방전 발생에 대한 악영향은 거의 없다. 벌크 저항은 바람직하게는 2.7 mΩcm 이하이고, 보다 바람직하게는 2.5 mΩcm 이하이다.The bulk resistance of the oxide sintered body has a correlation with the extent to which abnormal discharge during sputtering is likely to occur. When the bulk resistance is high, abnormal discharge easily occurs during sputtering. In the present invention, the bulk resistance can be made 3 mΩcm or less by the appropriate range of the composition and the optimization of the manufacturing conditions, and there is little adverse effect on the occurrence of abnormal discharge during sputtering if the low bulk resistance is about this level. The bulk resistance is preferably 2.7 mΩcm or less, and more preferably 2.5 mΩcm or less.

또, 벌크 저항은 사탐침법에 의해 저항률계를 사용하여 측정할 수 있다.In addition, a bulk resistance can be measured using a resistivity meter by the four probe method.

(산화물 소결체의 제조 방법) (Manufacturing Method of Oxide Sintered Body)

본 발명에 관련된 각종 조성의 산화물 소결체는, 예를 들어, 원료인 산화인듐, 산화아연 등의 각 원료 분체 (粉體) 의 배합비나 원료 분체의 입경, 분쇄 시간, 소결 온도, 소결 시간, 소결 분위기 가스 종류 등의 조건을 조정함으로써 얻을 수 있다.Oxide sinters of various compositions according to the present invention include, for example, a blending ratio of raw material powders such as indium oxide and zinc oxide as raw materials, particle diameters of raw material powders, grinding time, sintering temperature, sintering time, and sintering atmosphere. It can obtain by adjusting conditions, such as a gas kind.

원료 분말은 평균 입경 1 ∼ 2 ㎛ 인 것이 바람직하다. 평균 입경이 2 ㎛ 를 초과하면, 소결체의 밀도가 향상되기 어려워지므로, 그 원료 분말 단독 또는 혼합 분말로서 습식 미분쇄 등을 실시하여 평균 입경을 약 1 ㎛ 정도로 작게 하면 된다. 습식 혼합 분쇄 전에 소결성의 향상을 목적으로 하여, 예비 소성하는 것도 유효하다. 한편, 1 ㎛ 미만의 원료는 입수하기 어렵고, 또한, 너무 작으면 입자간의 응집이 일어나기 쉬워 취급하기 어려워지므로, 소결 전의 혼합 분말의 평균 입경은 1 ∼ 2 ㎛ 가 바람직하다. 여기서, 원료 분말의 평균 입경은 레이저 회절식 입도 분포 측정 장치에 의해 측정한 체적 분포에 있어서의 메디안 직경을 가리킨다. 또, 본 발명의 균등으로 해석할 수 있는 범위에서, 소정의 원료 분말 외에 소결체 특성에 악영향을 미치지 않고, 소결성을 향상시키는 등의 효과를 갖는 다른 성분을 첨가해도 된다. 분쇄 후의 원료 혼합 분말을 스프레이 드라이어 등으로 조립하여 유동성이나 성형성을 높인 후에 성형하는 것이 바람직하다. 성형은 통상적인 가압 성형이나 냉간 정수압 가압 등의 방법을 채용할 수 있다.It is preferable that raw material powder is an average particle diameter of 1-2 micrometers. When the average particle diameter exceeds 2 m, the density of the sintered compact becomes difficult to be improved. Therefore, the fine particle may be wetly pulverized or the like as the raw material powder alone or as a mixed powder, and the average particle size may be reduced to about 1 m. It is also effective to preliminarily sinter for the purpose of improving the sinterability before wet mixing and grinding. On the other hand, a raw material of less than 1 µm is difficult to obtain, and when too small, aggregation between particles easily occurs and difficult to handle, so the average particle diameter of the mixed powder before sintering is preferably 1 to 2 µm. Here, the average particle diameter of raw material powder points out the median diameter in the volume distribution measured by the laser diffraction type particle size distribution measuring apparatus. Moreover, in the range which can be interpreted as the equivalent of this invention, you may add other components which have an effect, such as improving a sinterability, without adversely affecting sintered compact characteristics other than predetermined raw material powder. It is preferable to shape | mold after mixing the raw material mixed powder after grinding | pulverization with a spray dryer, etc., to improve fluidity | liquidity and moldability. The molding can be carried out by a conventional method such as press molding or cold isostatic pressing.

그 후, 성형물을 소결하여 소결체를 얻는다. 소결은, 1400 ∼ 1600 ℃ 에서 2 ∼ 20 시간 소결하는 것이 바람직하다. 이로써, 상대밀도를 98 % 이상으로 할 수 있다. 소결 온도가 1400 ℃ 미만에서는 밀도가 향상되기 어렵고, 반대로, 소결 온도가 1600 ℃ 를 초과하면, 구성 성분 원소의 휘발 등에 의해 소결체의 조성이 변화하거나, 휘발로 인한 공극 발생에 따른 밀도 저하의 원인이 되기도 한다. 소결시의 분위기 가스에는 대기를 사용할 수 있고, 소결체에 대한 산소 결손량을 증가시켜, 벌크 저항을 작게 할 수 있다. 단, 소결체의 조성에 따라서는, 분위기 가스를 산소로 해도 충분히 고밀도의 소결체를 얻을 수도 있다.Thereafter, the molded product is sintered to obtain a sintered body. It is preferable to sinter 2 to 20 hours at 1400-1600 degreeC. Thereby, relative density can be made into 98% or more. If the sintering temperature is less than 1400 ° C., the density is hardly improved. On the contrary, if the sintering temperature is more than 1600 ° C., the composition of the sintered body may change due to volatilization of constituent elements or the like, causing a decrease in density due to void generation due to volatilization. Sometimes. Atmosphere can be used for the atmosphere gas at the time of sintering, the oxygen deficiency with respect to a sintered compact can be increased, and bulk resistance can be made small. However, depending on the composition of the sintered compact, even if the atmospheric gas is oxygen, a sufficiently high density sintered compact can be obtained.

(스퍼터 성막) (Sputter Deposition)

상기와 같이 하여 얻어진 산화물 소결체는, 연삭이나 연마 등의 가공을 실시함으로써 스퍼터링용 타깃으로 할 수 있고, 이것을 사용하여 성막함으로써 당해 타깃과 동일 조성을 갖는 산화물막을 형성할 수 있다. 가공시에는 평면 연삭 등의 방법으로 표면을 연삭함으로써, 표면 조도 (Ra) 를 5 ㎛ 이하로 하는 것이 바람직하다. 표면 조도를 작게 함으로써, 이상 방전의 원인이 되는 노듈 발생의 기점을 감소시킬 수 있다.The oxide sintered body obtained as mentioned above can be made into the sputtering target by performing grinding | polishing, grinding | polishing, etc., and can form an oxide film which has the same composition as the said target by film-forming using this. At the time of processing, it is preferable to make surface roughness Ra into 5 micrometers or less by grinding a surface by methods, such as surface grinding. By reducing the surface roughness, it is possible to reduce the starting point of nodule generation which causes anomalous discharge.

스퍼터링용 타깃은, 구리제 등의 배킹 플레이트에 첩부 (貼付) 하여 스퍼터 장치 내에 설치하고, 적절한 진공도, 분위기 가스, 스퍼터 파워 등의 적절한 조건에서 스퍼터함으로써, 타깃과 거의 동일한 조성의 막을 얻을 수 있다.The sputtering target is affixed to a backing plate made of copper or the like and installed in the sputtering device, and sputtered under suitable conditions such as an appropriate degree of vacuum, atmospheric gas, sputter power, and the like, thereby obtaining a film having substantially the same composition as the target.

스퍼터법의 경우, 성막 전의 챔버내 도달 진공도를 2×10-4 Pa 이하로 하는 것이 바람직하다. 압력이 지나치게 높으면, 잔류 분위기 가스 중의 불순물의 영향에 의해, 얻어진 막의 이동도가 저하될 가능성이 있다.In the case of the sputtering method, it is preferable that the attained vacuum degree in the chamber before film formation is 2 × 10 -4 Pa or less. If the pressure is excessively high, there is a possibility that the mobility of the obtained film is lowered due to the influence of the impurities in the residual atmosphere gas.

스퍼터 가스로서, 아르곤 및 산소의 혼합 가스를 사용할 수 있다. 혼합 가스 중의 산소 농도를 조정하는 방법으로는, 예를 들어, 아르곤 100 % 의 가스 봄베와 아르곤 중의 산소가 2 % 인 가스 봄베를 사용하여, 각각의 가스 봄베로부터 챔버로의 공급 유량을 매스 플로우로 적절히 설정함으로써 실시할 수 있다. 여기서, 혼합 가스 중의 산소 농도란, 산소 분압/(산소 분압+아르곤 분압) 을 의미하는 것으로, 산소의 유량을 산소와 아르곤의 유량의 합계로 나눈 것과도 동일하다. 산소 농도는 원하는 캐리어 농도에 따라서 적절히 변경하면 되지만, 전형적으로는 1 ∼ 3 % 로 할 수 있고, 보다 전형적으로는 1 ∼ 2 % 로 할 수 있다.As the sputter gas, a mixed gas of argon and oxygen can be used. As a method of adjusting the oxygen concentration in the mixed gas, for example, using a gas cylinder of 100% argon and a gas cylinder of 2% oxygen in argon, the supply flow rate from each gas cylinder to the chamber is changed to the mass flow. It can implement by setting suitably. Here, the oxygen concentration in the mixed gas means oxygen partial pressure / (oxygen partial pressure + argon partial pressure), which is also the same as dividing the flow rate of oxygen by the sum of the flow rates of oxygen and argon. The oxygen concentration may be appropriately changed in accordance with the desired carrier concentration, but may typically be 1 to 3%, more typically 1 to 2%.

스퍼터 가스의 전체 압력 (total pressure) 은 0.3 ∼ 0.8 Pa 정도로 한다. 전체 압력이 이보다 낮으면, 플라즈마 방전이 시작되기 어려워지고, 시작되어도 플라즈마가 불안정해지고 만다. 또한, 전체 압력이 이보다 높으면, 성막 속도가 느려져, 생산성에 악영향을 미치는 등의 문제가 발생한다.The total pressure of the sputter gas is about 0.3 to 0.8 Pa. If the total pressure is lower than this, plasma discharge becomes difficult to start, and plasma starts to become unstable even when started. In addition, when the total pressure is higher than this, problems such as slowing the film formation speed and adversely affecting productivity occur.

스퍼터 파워는, 타깃 사이즈가 6 인치인 경우, 200 ∼ 1200 W 정도로 성막한다. 스퍼터 파워가 지나치게 작으면, 성막 속도가 작아, 생산성이 떨어지고, 반대로, 지나치게 크면, 타깃의 쪼개짐 등의 문제가 생긴다. 200 ∼ 1200 W 는 스퍼터 파워 밀도로 환산하면, 1.1 W/㎠ ∼ 6.6 W/㎠ 이고, 3.2 ∼ 4.5 W/㎠ 로 하는 것이 바람직하다. 여기서, 스퍼터 파워 밀도란, 스퍼터 파워를 스퍼터링 타깃의 면적으로 나눈 것으로, 같은 스퍼터 파워라도 스퍼터링 타깃 사이즈에 따라서 스퍼터링 타깃이 실제로 받는 파워가 상이하고, 성막 속도가 상이하기 때문에, 스퍼터링 타깃에 인가하는 파워를 통일적으로 표현하기 위한 지표이다.Sputter | spatter power forms into a film about 200-1200 W when target size is 6 inches. If the sputter power is too small, the film formation speed is small, the productivity is lowered. On the contrary, if the sputter power is too large, problems such as splitting of the target occur. 200-1200 W is 1.1 W / cm <2> -6.6 W / cm <2> in conversion with sputter power density, It is preferable to set it as 3.2-4.5 W / cm <2>. Here, the sputter power density is obtained by dividing the sputter power by the area of the sputtering target, and the power applied to the sputtering target is different because the power actually received by the sputtering target and the deposition rate are different depending on the sputtering target size even for the same sputtering power. It is an index for unifying expression.

산화물 소결체로부터 막을 얻는 방법으로는, 진공 증착법, 이온 플레이팅법, PLD (펄스 레이저 디포지션) 법 등도 사용할 수도 있는데, 산업상 이용하기 쉬운 것은, 대면적, 고속 성막, 방전 안정성 등의 요건을 만족하는 DC 마그네트론 스퍼터법이다.As a method of obtaining a film from an oxide sintered body, a vacuum vapor deposition method, an ion plating method, a PLD (pulse laser deposition) method, etc. can also be used, but what is easy to use industrially is that it satisfies requirements such as large area, high speed film formation, and discharge stability. DC magnetron sputtering.

스퍼터 성막시에는, 기판을 가열할 필요가 없다. 기판을 가열하지 않아도 비교적 고이동도를 얻을 수 있기 때문이고, 또한, 승온을 위한 시간이나 에너지를 가할 필요가 없다. 기판을 가열하지 않고 스퍼터 성막하면, 얻어지는 막은 비정질이 된다. 단, 기판을 가열함으로써 실온 성막 후의 어닐과 동일한 효과를 얻는 것도 기대할 수 있기 때문에, 기판 가열로 성막해도 된다.There is no need to heat the substrate at the time of sputtering. This is because relatively high mobility can be obtained without heating the substrate, and there is no need to add time or energy for raising the temperature. When the substrate is sputtered without heating, the resulting film becomes amorphous. However, since the same effect as the annealing after room temperature film-forming can be expected by heating a board | substrate, you may form into a film by board | substrate heating.

(산화물막의 캐리어 농도) (Carrier concentration of oxide film)

산화물막의 캐리어 농도는, 그 막을 트랜지스터의 채널층에 사용했을 때에 트랜지스터의 각종 특성과 상관이 있다. 캐리어 농도가 지나치게 높으면, 트랜지스터의 오프시에도 미소 누설 전류가 발생하여, 온 오프비가 저하되어 버린다. 한편, 캐리어 농도가 지나치게 낮으면, 트랜지스터를 흐르는 전류가 작아진다. 본 발명에서는, 조성의 적정 범위 등에 의해서 산화물막의 캐리어 농도를 1016 1018-3 로 할 수 있고, 이 범위이면, 특성이 양호한 트랜지스터를 제작할 수 있다.The carrier concentration of the oxide film has a correlation with various characteristics of the transistor when the film is used for the channel layer of the transistor. If the carrier concentration is too high, a small leakage current is generated even when the transistor is turned off, and the on-off ratio is lowered. On the other hand, if the carrier concentration is too low, the current flowing through the transistor becomes small. In the present invention, the carrier concentration of the oxide film is changed from 10 16 to the appropriate range of the composition or the like. It can be 10 18 cm -3, and if it is this range, the transistor with a favorable characteristic can be manufactured.

(산화물막의 이동도) (Mobility of oxide film)

이동도는 트랜지스터의 특성 중에서도 가장 중요한 특성의 하나로, 산화물 반도체가 트랜지스터의 채널층으로서 사용되는 경합 재료인 아모르퍼스 실리콘의 이동도인 1 ㎠/Vs 이상인 것이 바람직하다. 이동도는 기본적으로는 높으면 높을수록 좋다. 본 발명에 관련된 산화물막은 조성의 적정 범위 등에 의해서 1 ㎠/Vs 이상의 이동도를 가질 수 있고, 바람직하게는 3 ㎠/Vs 이상의 이동도를 가질 수 있으며, 보다 바람직하게는 5 ㎠/Vs 이상의 이동도를 가질 수 있다. 이것에 의해 아모르퍼스 실리콘보다 우수한 특성이 되어, 산업상 응용 가능성이 보다 높아진다.Mobility is one of the most important characteristics among the transistors, and it is preferable that the oxide semiconductor is 1 cm 2 / Vs or more, which is the mobility of amorphous silicon, which is a competition material used as the channel layer of the transistor. Basically, the higher the mobility, the better. The oxide film according to the present invention may have a mobility of 1 cm 2 / Vs or more, preferably 3 cm 2 / Vs or more, and more preferably 5 cm 2 / Vs or more, depending on an appropriate range of composition. It can have This results in superior characteristics than amorphous silicon, resulting in higher industrial applicability.

본 발명에 관련된 산화물 반도체 박막은 예를 들어 박막 트랜지스터의 활성층으로서 사용할 수 있다. 또한, 상기 제조 방법을 사용하여 얻어진 박막 트랜지스터를 액티브 소자로서 사용하여, 액티브 매트릭스 구동 표시 패널에 이용할 수 있다.The oxide semiconductor thin film according to the present invention can be used, for example, as an active layer of a thin film transistor. In addition, the thin film transistor obtained by using the above manufacturing method can be used as an active element and used in an active matrix drive display panel.

실시예Example

이하에 본 발명의 실시예를 비교예와 함께 나타내는데, 이들 실시예는 본 발명 및 그 이점을 보다 잘 이해하기 위해서 제공하는 것으로, 발명이 한정되는 것을 의도하는 것은 아니다. 따라서, 본 발명은, 본 발명의 기술 사상의 범위 내에서 실시예 이외의 양태 또는 변형을 모두 포함하는 것이다.Examples of the present invention will now be described in conjunction with comparative examples, which are provided for a better understanding of the present invention and its advantages and are not intended to be limiting. Therefore, this invention includes all the aspects or modifications other than an Example within the scope of the technical idea of this invention.

하기의 실시예 및 비교예에 있어서, 소결체 및 막의 물성은 이하의 방법에 의해서 측정하였다.In the following Examples and Comparative Examples, the physical properties of the sintered compact and the film were measured by the following method.

(가) 소결체의 상대밀도 (A) Relative density of sintered body

중량 및 외형 치수의 측정 결과와, 구성 원소로부터의 이론밀도에 의해 구하였다.It calculated | required from the measurement result of a weight and an external dimension, and the theoretical density from a structural element.

(나) 소결체의 벌크 저항 (B) Bulk resistance of sintered body

사탐침법 (JIS K7194) 에 의해, NPS (엔피에스) 사 제조 형식 Σ-5+ 장치를 사용하여 구하였다.It was calculated | required by the four probe method (JIS K7194) using the model Σ-5 + apparatus manufactured by NPS (NPS).

(다) 소결체 및 막의 조성 (C) Composition of sintered body and film

SII 나노테크놀로지사 제조 형식 SPS3000 을 사용하여 ICP (고주파 유도 결합 플라즈마) 분석법에 의해 구하였다.It was calculated | required by ICP (High Frequency Inductively Coupled Plasma) analysis using the model SPS3000 by SII Nanotechnology.

(라) 막두께 (D) Thickness

단차계 (Veeco 사 제조, 형식 Dektak8 STYLUS PROFILER) 를 사용하여 구하였다.It calculated | required using the step | diometer (made by Veeco, model Dektak8 STYLUS PROFILER).

(마) 막의 캐리어 농도 및 이동도 (E) Carrier concentration and mobility of the film

성막한 유리 기판을 약 가로세로 10 mm 로 잘라내고, 네 모서리에 인듐 전극을 붙여, 홀 측정 장치 (토요 테크니카사 제조, 형식 Resitest8200) 에 세팅하고 측정하였다.The glass substrate formed into a film was cut out to about 10 mm in width | variety, the indium electrode was attached to the four corners, it was set in the hall measuring apparatus (Toyo Technica make, model Resitest8200), and it measured.

(바) 막의 결정 또는 비정질 구조 (F) Crystals or amorphous structures of membranes

리가쿠사 제조 RINT-1100 X 선 회절 장치를 사용하여 결정성을 판정하였다. 백그라운드 레벨 이상의 유의한 피크가 인정되지 않은 경우, 비정질로 판단하였다.Crystallinity was determined using a RINT-1100 X-ray diffractometer manufactured by Rigaku Corporation. If no significant peak above background level was recognized, it was determined to be amorphous.

(사) 분체의 평균 입경 (G) Average particle size of powder

시마즈 제작소 제조 SALD-3100 으로 평균 입경을 측정하였다.The average particle diameter was measured by SALD-3100 by Shimadzu Corporation.

<실시예 1> &Lt; Example 1 >

산화인듐 분말 (평균 입경 1.0 ㎛), 산화아연 분말 (평균 입경 1.0 ㎛), 및 산화알루미늄 분말 (평균 입경 1.0 ㎛) 을 금속 원소의 원자수비 (In : Zn : Al) 가 0.4 : 0.3 : 0.3 이 되도록 칭량하여, 습식 혼합 분쇄하였다. 분쇄 후의 혼합 분말의 평균 입경 0.8 ㎛ 였다. 이 혼합 분말을 스프레이 드라이어로 조립 후, 금형에 충전하고 가압 성형한 후, 대기 분위기 중 1450 ℃ 의 고온에서 10 시간 소결하였다. 얻어진 소결체를 직경 6 인치, 두께 6 ㎜ 의 원반상으로 가공하고, 평면 연삭하여 스퍼터링 타깃으로 하였다. 당해 타깃에 관해서, 중량과 외형 치수의 측정 결과와 이론밀도로부터 상대밀도를 산출한 결과 99.8 % 였다. 또한, 사탐침법에 의해 측정한 소결체의 벌크 저항은 2.1 mΩcm 이었다. ICP (고주파 유도 결합 플라즈마) 분석법에 의한 소결체 조성 분석의 결과, In : Zn : Al = 0.4 : 0.3 : 0.3 (원자비) 이었다.The indium oxide powder (average particle diameter 1.0 mu m), the zinc oxide powder (average particle diameter 1.0 mu m), and the aluminum oxide powder (average particle diameter 1.0 mu m) had an atomic ratio of the metal element (In: Zn: Al) of 0.4: 0.3: 0.3 Weighed as desired, and the wet mixed grinding was performed. The average particle diameter of the mixed powder after grinding was 0.8 µm. After this mixed powder was granulated with a spray dryer, it filled into a metal mold | die and pressure-molded, and it sintered for 10 hours at 1450 degreeC high temperature in air | atmosphere. The obtained sintered compact was processed into the disk shape of diameter 6 inch and 6 mm in thickness, it was ground-grinded, and it was set as the sputtering target. About the said target, it was 99.8% when the relative density was computed from the measurement result and theoretical density of a weight and an external dimension. In addition, the bulk resistance of the sintered compact measured by the probe probe method was 2.1 m (ohm) cm. As a result of sintered body composition analysis by ICP (high frequency inductively coupled plasma) analysis, In: Zn: Al = 0.4: 0.3: 0.3 (atomic ratio).

상기에서 제작한 스퍼터링 타깃을 구리제의 배킹 플레이트에 인듐을 납재로서 사용하여 첩부하고, DC 마그네트론 스퍼터 장치 (ANELVA 제 SPL-500 스퍼터 장치) 에 설치하였다. 유리 기판은 코닝 1737 을 사용하고, 스퍼터 조건을, 기판 온도 : 25 ℃, 도달 압력 : 1.2×10-4 Pa, 분위기 가스 : Ar 99 %, 산소 1 %, 스퍼터 압력 (전체 압력) : 0.5 Pa, 투입 전력 500 W 로 하여, 막두께가 약 100 ㎚ 의 박막을 제작하였다. 산화물 반도체 박막의 성막시에는, 이상 방전은 인정되지 않았다.The sputtering target produced above was affixed on the copper backing plate using indium as a solder | pewter, and it installed in the DC magnetron sputtering apparatus (SPL-500 sputtering apparatus made by ANELVA). The glass substrate used Corning 1737, and sputter | spatter conditions were: substrate temperature: 25 degreeC, reaching pressure: 1.2 * 10 <-4> Pa, atmospheric gas: Ar 99%, oxygen 1%, sputter pressure (total pressure): 0.5 Pa, A thin film having a film thickness of about 100 nm was produced with an input power of 500 W. At the time of film-forming of the oxide semiconductor thin film, abnormal discharge was not recognized.

얻어진 막의 홀 측정을 실시한 결과, 캐리어 농도 5.0×1017-3, 이동도 5.1 ㎠/Vs 를 얻었다. ICP (고주파 유도 결합 플라즈마) 분석법에 의한 막조성 분석의 결과, In : Zn : Al = 0.4 : 0.3 : 0.3 (원자비) 이었다. X 선 회절에 의한 측정의 결과, 당해 막은 비정질이었다.As a result of performing the hole measurement of the obtained film | membrane, carrier density | concentration 5.0 * 10 <17> cm <-3> and mobility 5.1cm <2> / Vs were obtained. As a result of membrane composition analysis by ICP (High Frequency Inductively Coupled Plasma) analysis, In: Zn: Al = 0.4: 0.3: 0.3 (atomic ratio). As a result of the measurement by X-ray diffraction, the film was amorphous.

<실시예 2 ∼ 실시예 6> <Example 2-Example 6>

원료 분말의 조성비를 표 1 에 기재된 각각의 값이 되도록 한 것 이외에는, 실시예 1 과 동일하게 하여 산화물 소결체 및 산화물 반도체 박막을 얻었다. 각각의 상대밀도, 벌크 저항, 캐리어 농도, 이동도는 표 1 에 기재된 바와 같았다. 또한, 소결체 및 막의 조성은 각각 원료 분말의 조성비와 동일하였다.An oxide sintered body and an oxide semiconductor thin film were obtained in the same manner as in Example 1 except that the composition ratio of the raw material powders was set to the respective values shown in Table 1. Each relative density, bulk resistance, carrier concentration, and mobility were as listed in Table 1. In addition, the composition of the sintered compact and the film | membrane was the same as the composition ratio of raw material powder, respectively.

<비교예 1 ∼ 비교예 13> <Comparative Example 1- Comparative Example 13>

원료 분말의 조성비를 표 1 에 기재된 각각의 값이 되도록 한 것 이외에는, 실시예 1 과 동일하게 하여 산화물 소결체 및 산화물 반도체 박막을 얻었다. 각각의 상대밀도, 벌크 저항, 캐리어 농도, 이동도는, 표 1 에 기재된 바와 같았다. 또한, 소결체 및 막의 조성은 각각 원료 분말의 조성비와 동일하였다.An oxide sintered body and an oxide semiconductor thin film were obtained in the same manner as in Example 1 except that the composition ratio of the raw material powders was set to the respective values shown in Table 1. Each relative density, bulk resistance, carrier concentration, and mobility were as shown in Table 1. In addition, the composition of the sintered compact and the film | membrane was the same as the composition ratio of raw material powder, respectively.

표 1 에 기재된 결과로부터 알 수 있듯이, 본 발명의 실시예에 따른 산화물 소결체는 상대밀도가 높고, 벌크 저항이 작다. 또한, 본 발명에 관련된 산화물 소결체를 스퍼터링 타깃으로 하여 성막한 경우, 적절한 캐리어 농도 및 높은 이동도를 갖는 산화물 반도체 박막이 얻어진다.As can be seen from the results shown in Table 1, the oxide sintered body according to the embodiment of the present invention has a high relative density and a small bulk resistance. In addition, when the oxide sintered body according to the present invention is formed as a sputtering target, an oxide semiconductor thin film having an appropriate carrier concentration and high mobility is obtained.

Figure 112013025990351-pct00001
Figure 112013025990351-pct00001

Claims (10)

인듐 (In) 과, 아연 (Zn) 과, 금속 원소 X (단, X 는 Ti 을 나타낸다) 와, 산소 (O) 로 이루어지는 산화물 소결체로서, 인듐 (In), 아연 (Zn), 및 금속 원소 X 의 원자수비가 각각, 0.2 ≤ In/(In+Zn+X) ≤ 0.6, 0.1 ≤ Zn/(In+Zn+X) ≤ 0.5, 및 0.2 ≤ X/(In+Zn+X) ≤ 0.5 를 만족하고, 또한, 벌크 저항이 3 mΩcm 이하인, 산화물 소결체.As an oxide sintered body consisting of indium (In), zinc (Zn), metal element X (where X represents Ti), and oxygen (O), indium (In), zinc (Zn), and metal element X Oxide ratios satisfying 0.2 ≦ In / (In + Zn + X) ≦ 0.6, 0.1 ≦ Zn / (In + Zn + X) ≦ 0.5, and 0.2 ≦ X / (In + Zn + X) ≦ 0.5, and the bulk resistance is 3 mΩcm or less, respectively. Sintered body. 제 1 항에 있어서,
상대밀도가 98 % 이상인, 산화물 소결체.
The method of claim 1,
Oxide sintered compact whose relative density is 98% or more.
제 1 항 또는 제 2 항에 있어서,
0.2 (단, 0.2 를 제외한다) ≤ X/(In+Zn+X) ≤ 0.35 이고, 또한, 벌크 저항이 2.5 mΩcm 이하인, 산화물 소결체.
3. The method according to claim 1 or 2,
Oxide sintered compact whose 0.2 (except 0.2) <= X / (In + Zn + X) <0.35 and whose bulk resistance is 2.5 m (ohm) cm or less.
인듐 (In) 과, 아연 (Zn) 과, 금속 원소 X (단, X 는 Ti 을 나타낸다) 와, 산소 (O) 로 이루어지는 산화물 반도체 박막으로서, 인듐 (In), 아연 (Zn), 금속 원소 X 의 원자수비가, 0.2 ≤ In/(In+Zn+X) ≤ 0.6, 0.1 ≤ Zn/(In+Zn+X) ≤ 0.5, 0.2 (단, 0.2 를 제외한다) ≤ X/(In+Zn+X) ≤ 0.35 를 만족하고, 또한, 비정질인, 산화물 반도체 박막.An oxide semiconductor thin film composed of indium (In), zinc (Zn), metal element X (where X represents Ti), and oxygen (O), and includes indium (In), zinc (Zn), and metal element X The atomic ratio of satisfies 0.2 ≦ In / (In + Zn + X) ≦ 0.6, 0.1 ≦ Zn / (In + Zn + X) ≦ 0.5, 0.2 (excluding 0.2) ≦ X / (In + Zn + X) ≦ 0.35, and is amorphous. , Oxide semiconductor thin film. 제 4 항에 있어서,
캐리어 농도가 1016 ∼ 1018-3 인, 산화물 반도체 박막.
5. The method of claim 4,
The carrier concentration is 10 16 ~ 10 18-3 of the oxide semiconductor thin film.
제 4 항 또는 제 5 항에 있어서,
이동도가 1 ㎠/Vs 이상인, 산화물 반도체 박막.
The method according to claim 4 or 5,
Wherein the mobility is at least 1 cm 2 / Vs.
제 4 항 또는 제 5 항에 기재된 산화물 반도체 박막을 활성층으로서 구비한, 박막 트랜지스터.A thin film transistor comprising the oxide semiconductor thin film according to claim 4 or 5 as an active layer. 제 6 항에 기재된 산화물 반도체 박막을 활성층으로서 구비한, 박막 트랜지스터.The thin film transistor provided with the oxide semiconductor thin film of Claim 6 as an active layer. 제 7 항에 기재된 박막 트랜지스터를 구비한, 액티브 매트릭스 구동 표시 패널.An active matrix drive display panel comprising the thin film transistor according to claim 7. 제 8 항에 기재된 박막 트랜지스터를 구비한, 액티브 매트릭스 구동 표시 패널.An active matrix drive display panel comprising the thin film transistor according to claim 8.
KR1020137007631A 2010-08-31 2011-07-27 Sintered oxide and oxide semiconductor thin film KR101331293B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2010-194455 2010-08-31
JP2010194455A JP5081959B2 (en) 2010-08-31 2010-08-31 Oxide sintered body and oxide semiconductor thin film
PCT/JP2011/067133 WO2012029455A1 (en) 2010-08-31 2011-07-27 Sintered oxide and oxide semiconductor thin film

Publications (2)

Publication Number Publication Date
KR20130041365A KR20130041365A (en) 2013-04-24
KR101331293B1 true KR101331293B1 (en) 2013-11-20

Family

ID=45772564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137007631A KR101331293B1 (en) 2010-08-31 2011-07-27 Sintered oxide and oxide semiconductor thin film

Country Status (4)

Country Link
JP (1) JP5081959B2 (en)
KR (1) KR101331293B1 (en)
TW (1) TWI405863B (en)
WO (1) WO2012029455A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130097809A (en) * 2010-12-28 2013-09-03 가부시키가이샤 고베 세이코쇼 Oxide for semiconductor layer of thin film transistor, sputtering target, and thin-film transistor
KR102003077B1 (en) * 2011-06-15 2019-07-23 스미토모덴키고교가부시키가이샤 Electrically conductive oxide and method for producing same, and oxide semiconductor film
CN102779758B (en) * 2012-07-24 2015-07-29 复旦大学 A kind of with the preparation method of the indium Zinc-aluminium thin-film transistor that is channel layer
JP6052967B2 (en) * 2012-08-31 2016-12-27 出光興産株式会社 Sputtering target
TWI591197B (en) * 2012-11-08 2017-07-11 Idemitsu Kosan Co Sputtering target
KR101748017B1 (en) * 2013-10-24 2017-06-15 제이엑스금속주식회사 Oxide sintered compact, oxide sputtering target, conductive oxide thin film having high refractive index, and method for producing the oxide sintered compact
KR102106366B1 (en) * 2015-11-25 2020-05-04 가부시키가이샤 아루박 Thin film transistor, oxide semiconductor film and sputtering target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same
JPH09152940A (en) * 1995-11-30 1997-06-10 Idemitsu Kosan Co Ltd Touch panel
JPH1045496A (en) * 1996-07-31 1998-02-17 Hoya Corp Electrically conductive oxide thin film, article having the same and manufacture of article
JP2009253204A (en) 2008-04-10 2009-10-29 Idemitsu Kosan Co Ltd Field-effect transistor using oxide semiconductor, and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5372776B2 (en) * 2007-12-25 2013-12-18 出光興産株式会社 Oxide semiconductor field effect transistor and manufacturing method thereof
WO2009093625A1 (en) * 2008-01-23 2009-07-30 Idemitsu Kosan Co., Ltd. Field-effect transistor, method for manufacturing field-effect transistor, display device using field-effect transistor, and semiconductor device
JP4555358B2 (en) * 2008-03-24 2010-09-29 富士フイルム株式会社 Thin film field effect transistor and display device
JP5218032B2 (en) * 2008-12-25 2013-06-26 東ソー株式会社 Method for producing sintered body for transparent conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same
JPH09152940A (en) * 1995-11-30 1997-06-10 Idemitsu Kosan Co Ltd Touch panel
JPH1045496A (en) * 1996-07-31 1998-02-17 Hoya Corp Electrically conductive oxide thin film, article having the same and manufacture of article
JP2009253204A (en) 2008-04-10 2009-10-29 Idemitsu Kosan Co Ltd Field-effect transistor using oxide semiconductor, and its manufacturing method

Also Published As

Publication number Publication date
TWI405863B (en) 2013-08-21
KR20130041365A (en) 2013-04-24
WO2012029455A1 (en) 2012-03-08
JP2012054335A (en) 2012-03-15
JP5081959B2 (en) 2012-11-28
TW201213579A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
TWI473896B (en) From InGaO 3 (ZnO) crystal phase, and a method for producing the same
JP5330469B2 (en) Sputtering target, transparent conductive film and transparent electrode
KR101228160B1 (en) Process for producing thin film of a-igzo oxide
EP2278041B1 (en) Sputtering target and transparent conductive film obtainable by the target
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
KR20120051656A (en) Oxide sinter, method for producing same, target and transparent conductive film
EP2428500A1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
TW201538431A (en) Sintered oxide and sputtering target, and method for producing same
KR20170086473A (en) Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same
TWI720188B (en) Oxide sintered body, sputtering target and oxide semiconductor film
KR101303987B1 (en) Sintered oxide and oxide semiconductor thin film
KR20170101981A (en) An oxide sintered body, a target for sputtering, and an oxide semiconductor thin film obtained by using the same
KR101467131B1 (en) Oxide sintered body and oxide semiconductor thin film
KR101324830B1 (en) Sintered oxide and oxide semiconductor thin film
JP2017014535A (en) Sputtering target and production method thereof
TW201522689A (en) Sputtering target and method for producing same
JP2013193945A (en) SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM
JP2017014534A (en) Sputtering target and production method thereof
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181018

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 7