KR101324830B1 - Sintered oxide and oxide semiconductor thin film - Google Patents

Sintered oxide and oxide semiconductor thin film Download PDF

Info

Publication number
KR101324830B1
KR101324830B1 KR1020137006280A KR20137006280A KR101324830B1 KR 101324830 B1 KR101324830 B1 KR 101324830B1 KR 1020137006280 A KR1020137006280 A KR 1020137006280A KR 20137006280 A KR20137006280 A KR 20137006280A KR 101324830 B1 KR101324830 B1 KR 101324830B1
Authority
KR
South Korea
Prior art keywords
metal ions
oxide
ions
thin film
trivalent
Prior art date
Application number
KR1020137006280A
Other languages
Korean (ko)
Other versions
KR20130031392A (en
Inventor
히데오 다카미
고조 오사다
Original Assignee
제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 filed Critical 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Publication of KR20130031392A publication Critical patent/KR20130031392A/en
Application granted granted Critical
Publication of KR101324830B1 publication Critical patent/KR101324830B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

고가의 갈륨 (Ga), 및 막의 안정성에 문제가 있는 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체를 제공하는 것을 과제로 한다. 또, 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공하는 것을 다른 과제로 한다. 3 가의 인듐 이온 (In3+) 과, 2 가의 금속 이온 (X2+) (단, X 는 Mg, Ca, Co 및 Mn 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 3 가의 금속 이온 (Y3+) (단, Y 는 B, Y, Cr 에서 선택되는 1 종 이상의 원소를 나타낸다) 또는 4 가의 금속 이온 (Z4 +) (단, Z 는 Si, Ge, Ti, Zr 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 산소 이온 (O2 -) 으로 이루어지고, 3 가의 인듐 이온 (In3 +), 2 가의 금속 이온 (X2 +), 3 가의 금속 이온 (Y3 +), 및 4 가의 금속 이온 (Z4 +) 의 원자수비가 각각, 0.2

Figure 112013021324022-pct00026
[In3 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00027
0.8, 0.1
Figure 112013021324022-pct00028
[X2 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00029
0.5, 및 0.1
Figure 112013021324022-pct00030
{[Y3 +]+[Z4 +]}/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00031
0.5 를 만족하는 산화물 소결체.An object of the present invention is to provide an oxide sintered body for producing an oxide semiconductor film containing no expensive gallium (Ga) and zinc (Zn) which has problems in film stability. Another object is to provide an oxide semiconductor thin film having the same composition as the oxide sintered body. Trivalent indium ions (In 3+ ), divalent metal ions (X 2+ ) (where X represents at least one element selected from Mg, Ca, Co, and Mn), and trivalent metal ions (Y 3+) (where, Y is one element selected from among B, Y, represents at least one element selected from Cr) or tetravalent metal ions (Z + 4) (where, Z is Si, Ge, Ti, Zr The above elements), oxygen ions (O 2 ), trivalent indium ions (In 3 + ), divalent metal ions (X 2 + ), trivalent metal ions (Y 3 + ), and 4 Atomic ratios of valence metal ions (Z 4 + ) are respectively 0.2
Figure 112013021324022-pct00026
[In 3 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00027
0.8, 0.1
Figure 112013021324022-pct00028
[X 2 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00029
0.5, and 0.1
Figure 112013021324022-pct00030
{[Y 3 + ] + [Z 4 + ]} / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00031
Oxide sintered compact which satisfy | fills 0.5.

Description

산화물 소결체 및 산화물 반도체 박막{SINTERED OXIDE AND OXIDE SEMICONDUCTOR THIN FILM}Oxide sintered body and oxide semiconductor thin film {SINTERED OXIDE AND OXIDE SEMICONDUCTOR THIN FILM}

본 발명은 표시 장치 중의 박막 트랜지스터의 제작에 유용한 산화물 소결체 및 산화물 반도체 박막에 관한 것이다.The present invention relates to an oxide sintered body and an oxide semiconductor thin film useful for manufacturing a thin film transistor in a display device.

산화물 반도체는 액정 표시 장치, 플라즈마 표시 장치 및 유기 EL 표시 장치 등의 표시 장치 중의 박막 트랜지스터의 활성층 외에, 태양 전지 및 터치 패널 등의 전극으로서 이용되고 있다. 종래, 산화물 반도체로는 투명한 In-Ga-Zn-O 계 (이후, 「IGZO 계」라고 기재) 가 알려져 있으며 (비특허문헌 1 참조), 또한 특성 개선을 의도하여 주석 (Sn) 을 첨가한 계에 대한 보고도 있다 (특허문헌 1 및 2 참조). 그러나, 이러한 계의 필수 구성 요소인 갈륨 (Ga) 은 희소 원소이며, 가격도 비싼 등의 이유에서 산업상 대량으로 사용하기에는 큰 제약이 있다.Oxide semiconductors are used as electrodes for solar cells and touch panels, in addition to active layers of thin film transistors in display devices such as liquid crystal display devices, plasma display devices, and organic EL display devices. Conventionally, as an oxide semiconductor, a transparent In-Ga-Zn-O system (hereinafter referred to as "IGZO system") is known (see Non-Patent Document 1), and a system in which tin (Sn) is added for intention of improving characteristics. There is also a report (see Patent Documents 1 and 2). However, gallium (Ga), which is an essential component of such a system, is a rare element, and there is a big limitation in using it in an industrial mass for reasons such as high price.

Ga 를 사용하지 않는 투명 산화물 반도체로는, In-Zn-O 계 (특허문헌 3 참조), In-Zn-Sn-O 계 (특허문헌 4 참조), 및 Zn-Sn-O 계 (특허문헌 5 참조) 의 보고가 있다.Examples of transparent oxide semiconductors that do not use Ga include In-Zn-O based materials (see Patent Document 3), In-Zn-Sn-O based materials (see Patent Document 4), and Zn- ).

일본 공개특허공보 2008-280216호Japanese Patent Application Laid-Open No. 2008-280216 일본 공개특허공보 2010-118407호Japanese Laid-Open Patent Publication No. 2010-118407 일본 공개특허공보 2007-142195호Japanese Patent Application Laid-Open No. 2007-142195 일본 공개특허공보 2008-243928호Japanese Patent Application Laid-Open No. 2008-243928 일본 공개특허공보 2007-142196호Japanese Patent Application Laid-Open No. 2007-142196

Nature 432, p488-492, October 2004  Nature 432, p488-492, October 2004

상기 특허문헌 3 ∼ 5 에 기재된 산화물 반도체에서는, IGZO 계의 필수 구성 요소인 Ga 를 사용하고 있지 않아 제조 비용면에서 유리하지만, 저항률의 시간 경과적 변화 등의 환경 안정성이 떨어지는 등의 문제가 남아 있다. 또, IGZO 계의 다른 필수 구성 요소인 아연 (Zn) 은 휘발되기 쉬운 원소이고, 소결체 제조시의 휘발에 의한 소결체 밀도의 저하, 스퍼터 성막시의 휘발에 의한 타겟 조성과의 어긋남, 막의 저항률의 시간 경과적 변화 등 막의 안정성의 저해 요인이 되고 있다.The oxide semiconductors described in Patent Documents 3 to 5 do not use Ga, which is an essential component of the IGZO system, and are advantageous in terms of manufacturing cost. However, problems such as poor environmental stability such as a change in resistivity over time remain. . In addition, zinc (Zn), which is another essential component of the IGZO system, is an element that tends to be volatilized, and the density of the sintered compact due to volatilization at the time of manufacture of the sintered compact, the deviation from the target composition due to volatilization at the time of sputter deposition, and the resistivity of the film It is becoming a deterrent to membrane stability, such as changes over time.

그래서, 본 발명은, 희소 자원이며, 고가의 갈륨 (Ga), 및 휘발되기 쉽고, 막의 안정성에 문제가 있는 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체를 제공하는 것을 과제로 한다. 또, 본 발명은 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공하는 것을 다른 과제로 한다.Then, an object of this invention is to provide the oxide sinter for oxide semiconductor film manufacture which is a scarce resource, does not contain expensive gallium (Ga) and zinc (Zn) which is easy to volatilize and has a problem of film stability. Another object of the present invention is to provide an oxide semiconductor thin film having the same composition as that of the oxide-sintered body.

본 발명자는 상기 과제를 해결하기 위해서 예의 검토한 결과, 휘발되기 쉬운 아연 (Zn) 의 대체로서 소정의 2 가의 금속을 이용하고, 희소 또한 고가의 원소인 갈륨 (Ga) 의 대체로서 소정의 3 가 또는 4 가의 금속을 이용하고, 나아가 이들의 원자수비, 소결체나 막의 제조 조건 등을 조정함으로써, 갈륨 (Ga) 및 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체 및 산화물 반도체 박막이 얻어지는 것을 알아냈다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to solve the said subject, the present inventor uses predetermined | prescribed divalent metal as a substitute of zinc (Zn) which is easy to volatilize, and predetermined trivalent as a replacement of gallium (Ga) which is a rare and expensive element. Or by using a tetravalent metal and adjusting these atomic ratios, the conditions for producing the sintered body and the film, and the like, to obtain an oxide sintered body for producing an oxide semiconductor film and an oxide semiconductor thin film containing no gallium (Ga) and zinc (Zn). Figured out.

이상의 지견을 기초로 하여 완성된 본 발명은 일 측면에 있어서, 3 가의 인듐 이온 (In3 +) 과, 2 가의 금속 이온 (X2 +) (단, X 는 Mg, Ca, Co 및 Mn 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 3 가의 금속 이온 (Y3+) (단, Y 는 B, Y, Cr 에서 선택되는 1 종 이상의 원소를 나타낸다) 또는 4 가의 금속 이온 (Z4+) (단, Z 는 Si, Ge, Ti, Zr 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 산소 이온 (O2-) 으로 이루어지고, 3 가의 인듐 이온 (In3+), 2 가의 금속 이온 (X2+), 3 가의 금속 이온 (Y3 +), 및 4 가의 금속 이온 (Z4 +) 의 원자수비가 각각, 0.2

Figure 112013021324022-pct00001
[In3+]/{[In3+]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00002
0.8, 0.1
Figure 112013021324022-pct00003
[X2 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00004
0.5, 및 0.1
Figure 112013021324022-pct00005
{[Y3 +]+[Z4 +]}/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00006
0.5 를 만족하는 산화물 소결체이다.The present invention completed based on the above findings, in one aspect, trivalent indium ions (In 3 + ) and divalent metal ions (X 2 + ) (where X is selected from Mg, Ca, Co and Mn) Trivalent metal ions (Y 3+ ) (where Y represents at least one element selected from B, Y and Cr) or tetravalent metal ions (Z 4+ ) ( However, Z represents at least one element selected from Si, Ge, Ti, and Zr, and oxygen ions (O 2- ), trivalent indium ions (In 3+ ), and divalent metal ions (X 2+ ), trivalent metal ions (Y 3 + ), and tetravalent metal ions (Z 4 + ) have an atomic ratio of 0.2, respectively.
Figure 112013021324022-pct00001
[In 3+ ] / {[In 3+ ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00002
0.8, 0.1
Figure 112013021324022-pct00003
[X 2 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00004
0.5, and 0.1
Figure 112013021324022-pct00005
{[Y 3 + ] + [Z 4 + ]} / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00006
It is an oxide sintered body which satisfies 0.5.

본 발명에 관련된 산화물 소결체는 일 실시형태에 있어서, 상대 밀도가 98 % 이상이다.In one Embodiment, the oxide sintered compact which concerns on this invention is 98% or more in relative density.

본 발명에 관련된 산화물 소결체는 다른 일 실시형태에 있어서, 벌크 저항이 3 mΩ 이하이다.In another embodiment, the oxide sintered body according to the present invention has a bulk resistance of 3 mΩ or less.

본 발명은 다른 일 측면에 있어서, 3 가의 인듐 이온 (In3+) 과, 2 가의 금속 이온 (X2+) (단, X 는 Mg, Ca, Co 및 Mn 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 3 가의 금속 이온 (Y3+) (단, Y 는 B, Y, Cr 에서 선택되는 1 종 이상의 원소를 나타낸다) 또는 4 가의 금속 이온 (Z4+) (단, Z 는 Si, Ge, Ti, Zr 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 산소 이온 (O2-) 으로 이루어지고, 3 가의 인듐 이온 (In3+), 2 가의 금속 이온 (X2+), 3 가의 금속 이온 (Y3+), 및 4 가의 금속 이온 (Z4 +) 의 원자수비가 각각, 0.2

Figure 112013021324022-pct00007
[In3 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00008
0.8, 0.1
Figure 112013021324022-pct00009
[X2 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00010
0.5, 및 0.1
Figure 112013021324022-pct00011
{[Y3 +]+[Z4 +]}/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]}
Figure 112013021324022-pct00012
0.5 를 만족하는 산화물 반도체 박막이다.In another aspect of the present invention, trivalent indium ions (In 3+ ) and divalent metal ions (X 2+ ) (where X represents at least one element selected from Mg, Ca, Co, and Mn) ) And trivalent metal ions (Y 3+ ) (where Y represents at least one element selected from B, Y and Cr) or tetravalent metal ions (Z 4+ ) (where Z is Si and Ge , At least one element selected from Ti and Zr), oxygen ions (O 2- ), trivalent indium ions (In 3+ ), divalent metal ions (X 2+ ), and trivalent metals. The atomic ratio of the ions (Y 3+ ) and the tetravalent metal ions (Z 4 + ) is 0.2, respectively.
Figure 112013021324022-pct00007
[In 3 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00008
0.8, 0.1
Figure 112013021324022-pct00009
[X 2 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00010
0.5, and 0.1
Figure 112013021324022-pct00011
{[Y 3 + ] + [Z 4 + ]} / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]}
Figure 112013021324022-pct00012
It is an oxide semiconductor thin film which satisfy | fills 0.5.

본 발명에 관련된 산화물 반도체 박막은 일 실시형태에 있어서, 비정질이다.In one embodiment, the oxide semiconductor thin film according to the present invention is amorphous.

본 발명에 관련된 산화물 반도체 박막은 다른 일 실시형태에 있어서, 캐리어 농도가 1016 ∼ 1018-3 이다.In another embodiment, the oxide semiconductor thin film according to the present invention has a carrier concentration of 10 16 to 10 18 cm -3 .

본 발명에 관련된 산화물 반도체 박막은 또 다른 일 실시형태에 있어서, 이동도가 1 ㎠ /Vs 이상이다.In one Embodiment with an oxide semiconductor thin film which concerns on this invention, mobility is 1 cm <2> / Vs or more.

본 발명은 또 다른 일 측면에 있어서, 상기 산화물 반도체 박막을 활성층으로서 구비한 박막 트랜지스터이다.According to another aspect of the present invention, there is provided a thin film transistor including the oxide semiconductor thin film as an active layer.

본 발명은 또 다른 일 측면에 있어서, 상기 박막 트랜지스터를 구비한 액티브 매트릭스 구동 표시 패널이다.According to another aspect of the present invention, there is provided an active matrix driving display panel including the thin film transistor.

본 발명에 의하면, 희소 자원이며, 고가의 갈륨 (Ga), 및 휘발되기 쉽고, 막의 안정성에 문제가 있는 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체를 제공할 수 있다. 또, 본 발명에 의하면, 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공할 수 있다.According to the present invention, it is possible to provide an oxide sintered body for producing an oxide semiconductor film which is a scarce resource, does not contain expensive gallium (Ga) and zinc (Zn), which is easily volatilized and has a problem in film stability. According to the present invention, an oxide semiconductor thin film having the same composition as that of the oxide-sintered body can be provided.

(산화물 소결체의 조성)(Composition of oxide-sintered body)

본 발명에 관련된 산화물 소결체는, 3 가의 인듐 이온 (In3+) 과, 2 가의 금속 이온 (X2+) (단, X 는 Mg, Ca, Co 및 Mn 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 3 가의 금속 이온 (Y3+) (단, Y 는 B, Y, Cr 에서 선택되는 1 종 이상의 원소를 나타낸다) 또는 4 가의 금속 이온 (Z4+) (단, Z 는 Si, Ge, Ti, Zr 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 산소 이온 (O2-) 으로 이루어진다. 단, 통상 입수 가능한 원료의 정제 공정상, 불가피적으로 함유되는 원소나, 산화물 소결체 제조 프로세스상 불가피적으로 혼입되는 불순물 원소를, 불가피적으로 함유되는 농도 정도, 예를 들어 각 원소 10 ppm 정도까지 함유하는 것은 본 발명에 관련된 소결체에 포함된다.Oxide sintered body which concerns on this invention is trivalent indium ion (In3 + ) and divalent metal ion (X2 + ) (where X represents 1 or more types of elements chosen from Mg, Ca, Co, and Mn) And trivalent metal ions (Y 3+ ) (where Y represents at least one element selected from B, Y and Cr) or tetravalent metal ions (Z 4+ ) (where Z is Si, Ge, At least one element selected from Ti and Zr), and oxygen ions (O 2- ). However, the concentration degree which inevitably contains the element which is inevitably contained in the refinement | purification process of the raw material which can be obtained normally, and the impurity element inevitably mixed in the process of manufacturing an oxide sintered body, for example, to about 10 ppm of each element What contains is contained in the sintered compact which concerns on this invention.

3 가의 인듐 이온 (In3+), 2 가의 금속 이온 (X2+), 3 가의 금속 이온 (Y3+), 및 4 가의 금속 이온 (Z4 +) 의 합계 원자수에 대한 3 가의 인듐 이온 (In3 +) 의 원자수비 [In3 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]} 는 0.2 ∼ 0.8 이다. [In3 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]} 가 0.2 미만이면, 타겟 제작시의 상대 밀도가 작아지고, 벌크 저항이 높아져, 스퍼터시의 이상 방전이 발생하기 쉬워지게 된다. [In3+]/{[In3+]+[X2+]+[Y3+]+[Z4+]} 가 0.8 을 초과하면, 그 조성의 타겟을 스퍼터하여 얻어지는 막의 캐리어 농도가 지나치게 높아져 버려, 트랜지스터의 채널층으로는 온오프비가 작아지게 된다. [In3+]/{[In3+]+[X2+]+[Y3+]+[Z4+]} 는, 보다 바람직하게는 0.25 ∼ 0.6 의 범위이며, 더욱 바람직하게는 0.3 ∼ 0.5 의 범위이다. 여기서, [In3+] 는 인듐의 원자수, [X2+] 는 2 가의 금속 이온 (X2+) 의 원자수, [Y3+] 는 3 가의 금속 이온 (Y3+) 의 원자수, [Z4+] 는 4 가의 금속 이온 (Z4+) 의 원자수를 각각 나타낸다.Trivalent indium ion (In 3+), 2-valent metal ion (X 2+), metal trivalent ions (Y 3+), and tetravalent metal ions, trivalent indium ion to the total number of atoms of (Z + 4) The atomic ratio [In 3 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]} of (In 3 + ) is 0.2 to 0.8. When [In 3 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]} is less than 0.2, the relative density at the time of target manufacture becomes small and bulk resistance becomes high. Abnormal discharge during sputtering is likely to occur. When [In 3+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]} exceeds 0.8, the carrier concentration of the film obtained by sputtering the target of the composition is excessive. It becomes high, and the on-off ratio becomes small for the channel layer of a transistor. [In 3+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}, More preferably, it is the range of 0.25-0.6, More preferably, it is 0.3- It is in the range of 0.5. Where [In 3+ ] is the number of atoms of indium, [X 2+ ] is the number of atoms of divalent metal ions (X 2+ ), and [Y 3+ ] is the number of atoms of trivalent metal ions (Y 3+ ) And [Z 4+ ] represent the number of atoms of the tetravalent metal ion (Z 4+ ), respectively.

3 가의 인듐 이온 (In3+), 2 가의 금속 이온 (X2+), 3 가의 금속 이온 (Y3+), 및 4 가의 금속 이온 (Z4 +) 의 합계 원자수에 대한 2 가의 금속 이온 (X2 +) 의 원자수비 [X2 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]} 는 0.1 ∼ 0.5 이다. [X2 +]/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]} 가 0.1 미만이면, 그 조성의 타겟을 스퍼터하여 얻어지는 막의 캐리어 농도가 지나치게 높아져 버려, 트랜지스터의 채널층으로는 온오프비가 작아지게 된다. [X2+]/{[In3+]+[X2+]+[Y3+]+[Z4+]} 가 0.5 를 초과하면, 타겟 제작시의 상대 밀도가 작아지고, 벌크 저항이 높아져, 스퍼터시의 이상 방전이 발생하기 쉬워지게 된다. [X2+]/{[In3+]+[X2+]+[Y3+]+[Z4+]} 는, 보다 바람직하게는 0.15 ∼ 0.4 의 범위이며, 더욱 바람직하게는 0.2 ∼ 0.35 의 범위이다.Trivalent indium ion (In 3+), a bivalent metal ion (X 2+), trivalent metal ions (Y 3+), and tetravalent metal ions, a divalent metal ion to the total number of atoms of (Z + 4) (X + 2) of the atomic ratio [X + 2] / {[in + 3] + [X + 2] + [Y + 3] + [4 + Z]} is from 0.1 to 0.5. When [X 2 + ] / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]} is less than 0.1, the carrier concentration of the film obtained by sputtering a target having the composition becomes too high. As a result, the on-off ratio becomes small in the channel layer of the transistor. When [X 2+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]} exceeds 0.5, the relative density at the time of target fabrication becomes small and bulk resistance becomes It becomes high, and abnormal discharge at the time of sputtering becomes easy to generate | occur | produce. [X 2+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}, More preferably, it is the range of 0.15-0.4, More preferably, it is 0.2- 0.35.

3 가의 인듐 이온 (In3+), 2 가의 금속 이온 (X2+), 3 가의 금속 이온 (Y3+), 및 4 가의 금속 이온 (Z4+) 의 합계 원자수에 대한 3 가의 금속 이온 (Y3+), 및 4 가의 금속 이온 (Z4 +) 의 합계 원자수비 {[Y3 +]+[Z4 +]}/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]} 는 0.1 ∼ 0.5 이다. {[Y3 +]+[Z4 +]}/{[In3 +]+[X2 +]+[Y3 +]+[Z4 +]} 가 0.1 미만이면, 그 조성의 타겟을 스퍼터하여 얻어지는 막의 캐리어 농도가 지나치게 높아져 버려, 트랜지스터의 채널층으로는 온오프비가 작아지게 된다. {[Y3+]+[Z4+]}/{[In3+]+[X2+]+[Y3+]+[Z4+]} 가 0.5 를 초과하면, 타겟 제작시의 상대 밀도가 작아지고, 벌크 저항이 높아져, 스퍼터시의 이상 방전이 발생하기 쉬워지게 된다. {[Y3+]+[Z4+]}/{[In3+]+[X2+]+[Y3+]+[Z4+]} 는, 보다 바람직하게는 0.15 ∼ 0.4 의 범위이며, 더욱 바람직하게는 0.2 ∼ 0.35 의 범위이다.Trivalent metal ions with respect to the total number of atoms of trivalent indium ions (In 3+ ), divalent metal ions (X 2+ ), trivalent metal ions (Y 3+ ), and tetravalent metal ions (Z 4+ ) Total atomic ratio of (Y 3+ ) and tetravalent metal ions (Z 4 + ) {[Y 3 + ] + [Z 4 + ]} / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]} is 0.1-0.5. If {[Y 3 + ] + [Z 4 + ]} / {[In 3 + ] + [X 2 + ] + [Y 3 + ] + [Z 4 + ]} is less than 0.1, the target of the composition is sputtered. The carrier concentration of the film thus obtained becomes too high, and the on-off ratio becomes small in the channel layer of the transistor. When {[Y 3+ ] + [Z 4+ ]} / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]} exceeds 0.5, the opponent at the time of target preparation Density becomes small, bulk resistance becomes high, and abnormal discharge at the time of sputtering becomes easy to generate | occur | produce. {[Y 3+ ] + [Z 4+ ]} / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]} is more preferably in the range of 0.15 to 0.4 More preferably, it is the range of 0.2-0.35.

(산화물 소결체의 상대 밀도)(Relative density of oxide-sintered body)

산화물 소결체의 상대 밀도는, 스퍼터시의 표면의 노듈 발생과 상관이 있다. 산화물 소결체가 저밀도이면, 그 산화물 소결체를 타겟으로 가공하여 스퍼터 성막할 때, 스퍼터 성막의 경과에 따라, 표면에 인듐의 저급 산화물인, 돌기상의 노듈이라고 불리는 고저항 부분이 발생하여, 그 후의 스퍼터시에 이상 방전의 기점이 되기 쉽다. 본 발명에서는, 조성의 적정 범위나 제조 조건의 적정화에 따라 산화물 소결체의 상대 밀도를 98 % 이상으로 할 수 있고, 이 정도의 고밀도이면, 스퍼터시의 노듈에 의한 악영향은 거의 없다. 상대 밀도는 바람직하게는 99 % 이상이며, 보다 바람직하게는 99.5 % 이상이다.The relative density of the oxide sintered body has a correlation with the generation of nodules on the surface during sputtering. When the oxide sintered body has a low density, when the oxide sintered body is processed into a target and sputtered into a film, a high-resistance part called a protrusion nodule, which is a lower oxide of indium, is formed on the surface as the sputter film is formed. Is likely to be the starting point of the abnormal discharge. In this invention, the relative density of an oxide sintered compact can be 98% or more according to the appropriate range of a composition and the optimization of a manufacturing condition, and if it is this high density, there is hardly an adverse influence by the nodule at the time of sputtering. The relative density is preferably 99% or more, and more preferably 99.5% or more.

또한, 산화물 소결체의 상대 밀도는, 산화물 소결체를 소정의 형상으로 가공한 후의 중량과 외형 치수로부터 산출한 밀도를, 그 산화물 소결체의 이론 밀도로 나눔으로써 구할 수 있다.The relative density of the oxide-sintered body can be obtained by dividing the density calculated from the weight and the external dimension after the oxide-sintered body has been processed into the predetermined shape by the theoretical density of the oxide-sintered body.

(산화물 소결체의 벌크 저항)(Bulk resistance of oxide-sintered body)

산화물 소결체의 벌크 저항은, 스퍼터시의 이상 방전이 발생하기 쉬운 것과 상관이 있고, 벌크 저항이 높으면 스퍼터시에 이상 방전이 발생하기 쉽다. 본 발명에서는, 조성의 적정 범위나 제조 조건의 적정화에 따라 벌크 저항을 3 mΩ㎝ 이하로 할 수 있고, 이 정도의 저벌크 저항이면, 스퍼터시의 이상 방전 발생에 대한 악영향은 거의 없다. 벌크 저항은 바람직하게는 2.7 mΩ㎝ 이하이며, 보다 바람직하게는 2.5 mΩ㎝ 이하이다.The bulk resistance of the oxide sintered body has a correlation with the occurrence of abnormal discharge during sputtering. When the bulk resistance is high, abnormal discharge easily occurs during sputtering. In the present invention, the bulk resistance can be 3 mΩcm or less depending on the proper range of the composition and the optimization of the manufacturing conditions. If the low bulk resistance is about this level, there is little adverse effect on the occurrence of abnormal discharge during sputtering. The bulk resistance is preferably 2.7 mΩcm or less, and more preferably 2.5 mΩcm or less.

또한, 벌크 저항은 사탐침법에 의해 저항률계를 사용하여 측정할 수 있다.In addition, a bulk resistance can be measured using a resistivity meter by the four probe method.

(산화물 소결체의 제조 방법)(Manufacturing Method of Oxide Sintered Body)

본 발명에 관련된 각종 조성의 산화물 소결체는, 예를 들어 원료인 산화 인듐, 산화 마그네슘 등의 각 원료 분체의 배합비나 원료 분체의 입경, 분쇄 시간, 소결 온도, 소결 시간, 소결 분위기 가스 종류 등의 조건을 조정함으로써 얻을 수 있다.Oxide sinters of various compositions according to the present invention are, for example, conditions such as compounding ratios of raw material powders such as indium oxide and magnesium oxide as raw materials, particle diameters of raw material powders, grinding time, sintering temperature, sintering time, types of sintering atmosphere gases, and the like. Can be obtained by adjusting

원료 분말은 평균 입경 1 ∼ 2 ㎛ 인 것이 바람직하다. 평균 입경이 2 ㎛ 를 초과하면, 소결체의 밀도가 향상되기 어려워지기 때문에, 그 원료 분말 단독 또는 혼합 분말로서 습식 미분쇄 등을 실시하여, 평균 입경을 약 1 ㎛ 정도로 작게 하면 좋다. 습식 혼합 분쇄 전에 소결성의 향상을 목적으로 하여, 가소 (假燒) 하는 것도 유효하다. 한편, 1 ㎛ 미만의 원료는 입수하기 어렵고, 또 지나치게 작으면 입자간의 응집이 일어나기 쉬워져 취급하기 어려워진다. 여기서, 원료 분말의 평균 입경은 레이저 회절식의 측정 방법에 의해 측정한 값을 가리킨다. 분쇄 후의 원료 혼합 분말을 스프레이 드라이어 등으로 조립 (造粒) 하여 유동성이나 성형성을 높인 후에 성형하는 것이 바람직하다. 성형은 통상적인 가압 성형이나 냉간 정수압 가압 등의 방법을 채용할 수 있다.It is preferable that raw material powder is an average particle diameter of 1-2 micrometers. When the average particle diameter exceeds 2 m, the density of the sintered compact becomes difficult to be improved. Therefore, wet grinding and the like may be performed as the raw material powder alone or as a mixed powder, and the average particle diameter may be reduced to about 1 m. It is also effective to calcinate for the purpose of improving the sinterability before wet mixed grinding. On the other hand, raw materials of less than 1 µm are difficult to obtain, and when too small, aggregation between particles tends to occur, making it difficult to handle them. Here, the average particle diameter of raw material powder points out the value measured by the laser diffraction measuring method. It is preferable to shape | mold after granulating the raw material mixed powder after grinding | pulverization with a spray dryer etc., to improve fluidity | liquidity and moldability. The molding can be carried out by a conventional method such as press molding or cold isostatic pressing.

그 후, 성형물을 소결하여 소결체를 얻는다. 소결은 1400 ∼ 1600 ℃ 에서 2 ∼ 20 시간 실시하는 것이 바람직하다. 이로써, 상대 밀도를 98 % 이상으로 할 수 있다. 소결 온도가 1400 ℃ 미만에서는, 밀도가 향상되기 어렵고, 소결 온도가 1600 ℃ 를 초과하면, 구성 성분 원소의 휘발 등에 의해 소결체의 조성이 변화되거나, 휘발에 의한 공극 발생으로 인한 밀도 저하의 원인이 되거나 한다. 소결시의 분위기 가스에는 대기를 사용할 수 있고, 소결체로부터의 휘발 억제의 효과에 의해 고밀도의 소결체를 얻을 수 있다. 단, 소결체의 조성에 따라서는, 분위기 가스를 산소로 해도 충분히 고밀도의 소결체를 얻을 수도 있다.Thereafter, the molded product is sintered to obtain a sintered body. The sintering is preferably performed at 1400 to 1600 ° C for 2 to 20 hours. As a result, the relative density can be set to 98% or more. If the sintering temperature is less than 1400 ° C., the density is hardly improved, and if the sintering temperature is more than 1600 ° C., the composition of the sintered body may change due to volatilization of constituent elements, or may cause a decrease in density due to the generation of voids due to volatilization. do. Atmosphere can be used for the atmospheric gas at the time of sintering, and a high density sintered compact can be obtained by the effect of volatilization suppression from a sintered compact. However, depending on the composition of the sintered compact, even if the atmospheric gas is oxygen, a sufficiently high density sintered compact can be obtained.

(스퍼터 성막)(Sputter Deposition)

상기와 같이 하여 얻어진 산화물 소결체는, 연삭이나 연마 등의 가공을 실시함으로써 스퍼터링용 타겟으로 할 수 있고, 이것을 사용하여 성막함으로써 당해 타겟과 동일 조성을 갖는 산화물막을 형성할 수 있다. 가공시에는, 평면 연삭 등의 방법으로 표면을 연삭함으로써, 표면 거침도 (Ra) 를 5 ㎛ 이하로 하는 것이 바람직하다. 표면 거침도를 작게 함으로써, 이상 방전의 원인이 되는 노듈 발생의 기점을 감소시킬 수 있다.The oxide sintered body obtained as mentioned above can be used as a sputtering target by performing grinding | polishing, grinding | polishing, etc., and can form an oxide film which has the same composition as the said target by film-forming using this. At the time of a process, it is preferable to make surface roughness Ra into 5 micrometers or less by grinding a surface by methods, such as surface grinding. By reducing the surface roughness, the origin of nodule generation that causes abnormal discharge can be reduced.

스퍼터링용 타겟은, 구리제 등의 배킹 플레이트에 첩부 (貼付) 하고, 스퍼터 장치 내에 설치하여, 적절한 진공도, 분위기 가스, 스퍼터 파워 등의 적절한 조건에서 스퍼터함으로써 타겟과 거의 동일 조성의 막을 얻을 수 있다.The sputtering target is affixed to a backing plate made of copper or the like, provided in a sputtering device, and sputtered under suitable conditions such as an appropriate degree of vacuum, atmospheric gas, sputter power, and the like, thereby obtaining a film having substantially the same composition as the target.

스퍼터법의 경우, 성막 전의 챔버 내 도달 진공도를 2 × 10-4 ㎩ 이하로 하는 것이 바람직하다. 압력이 지나치게 높으면, 잔류 분위기 가스 중의 불순물의 영향에 의해, 얻어진 막의 이동도가 저하될 가능성이 있다.In the case of the sputtering method, it is preferable that the attained vacuum degree in the chamber before film formation is 2 × 10 −4 Pa or less. If the pressure is excessively high, there is a possibility that the mobility of the obtained film is lowered due to the influence of the impurities in the residual atmosphere gas.

스퍼터 가스로서 아르곤 및 산소의 혼합 가스를 사용할 수 있다. 혼합 가스 중의 산소 농도를 조정하는 방법으로는, 예를 들어 아르곤 100 % 의 가스 봄베와, 아르곤 중의 산소가 2 % 인 가스 봄베를 이용하여, 각각의 가스 봄베로부터 챔버로의 공급 유량을 매스 플로우로 적절히 설정함으로써 실시할 수 있다. 여기서, 혼합 가스 중의 산소 농도란, 산소 분압/(산소 분압 + 아르곤 분압) 을 의미하는 것이며, 산소의 유량을 산소와 아르곤의 유량의 합계로 나눈 것과도 동일하다. 산소 농도는 원하는 캐리어 농도에 따라 적절히 변경하면 되는데, 전형적으로는 1 ∼ 3 % 로 할 수 있고, 보다 전형적으로는 1 ∼ 2 % 로 할 수 있다.A mixed gas of argon and oxygen may be used as the sputter gas. As a method of adjusting the oxygen concentration in the mixed gas, for example, using a gas cylinder of 100% argon and a gas cylinder of 2% oxygen in argon, the supply flow rate from each gas cylinder to the chamber is changed to the mass flow. It can implement by setting suitably. Here, the oxygen concentration in the mixed gas means oxygen partial pressure / (oxygen partial pressure + argon partial pressure), and is also the same as dividing the flow rate of oxygen by the sum of the flow rates of oxygen and argon. What is necessary is just to change oxygen concentration suitably according to desired carrier density | concentration, Typically, it can be 1-3%, More typically, it can be 1-2%.

스퍼터 가스의 전체 압력은 0.3 ∼ 0.8 ㎩ 정도로 한다. 전체 압력이 이보다 낮으면, 플라즈마 방전이 발생하기 어려워지고, 발생하더라도 플라즈마가 불안정하게 된다. 또, 전체 압력이 이보다 높으면, 성막 속도가 느려져, 생산성에 악영향을 미치는 등의 문제가 생긴다.The total pressure of the sputter gas is about 0.3 to 0.8 kPa. If the total pressure is lower than this, plasma discharge is less likely to occur, and the plasma becomes unstable even if it occurs. Moreover, when the total pressure is higher than this, the film forming speed will be slow, which may adversely affect productivity.

스퍼터 파워는, 타겟 사이즈가 6 인치인 경우, 200 ∼ 1200 W 정도에서 성막한다. 스퍼터 파워가 지나치게 작으면, 성막 속도가 작아, 생산성이 떨어지고, 반대로 지나치게 크면, 타겟의 균열 등의 문제가 발생한다. 200 ∼ 1200 W 는, 스퍼터 파워 밀도로 환산하면, 1.1 W/㎠ ∼ 6.6 W/㎠ 이며, 3.2 ∼ 4.5 W/㎠ 로 하는 것이 바람직하다. 여기서, 스퍼터 파워 밀도란, 스퍼터 파워를 스퍼터링 타겟의 면적으로 나눈 것이며, 동일 스퍼터 파워라도 스퍼터링 타겟 사이즈에 따라 스퍼터링 타겟이 실제로 받는 파워가 상이하고, 성막 속도가 상이한 점에서, 스퍼터링 타겟에 인가하는 파워를 통일적으로 표현하기 위한 지표이다.Sputter | spatter power is formed into a film about 200-1200 W when target size is 6 inches. If the sputter power is too small, the deposition rate is small, the productivity is lowered. On the contrary, if the sputter power is too large, problems such as cracking of the target occur. 200-1200 W is 1.1 W / cm <2> -6.6 W / cm <2> in conversion with sputter power density, It is preferable to set it as 3.2-4.5 W / cm <2>. Here, the sputter power density is obtained by dividing the sputter power by the area of the sputtering target, and the power applied to the sputtering target is different from the sputtering target even when the same sputtering power actually differs according to the sputtering target size, and the film formation speed is different. It is an index for unifying expression.

산화물 소결체로부터 막을 얻는 방법으로는, 진공 증착법, 이온 도금법, PLD (펄스 레이저 디포지션) 법 등을 사용할 수도 있지만, 산업상 이용하기 쉬운 것은, 대면적, 고속 성막, 방전 안정성 등의 요건을 만족하는 DC 마그네트론 스퍼터법이다.As a method of obtaining a film from the oxide sintered body, a vacuum vapor deposition method, an ion plating method, a PLD (pulse laser deposition) method, or the like may be used. However, it is easy to use industrially to satisfy requirements such as large area, high speed film formation, and discharge stability. DC magnetron sputtering.

스퍼터 성막시에는 기판을 가열할 필요가 없다. 기판을 가열하지 않고도 비교적 고이동도를 얻을 수 있기 때문이고, 또 승온을 위한 시간이나 에너지를 가할 필요가 없다. 기판을 가열하지 않고 스퍼터 성막하면, 얻어지는 막은 비정질이 된다. 단, 기판을 가열함으로써, 실온 성막 후의 어닐과 동일한 효과를 얻는 것도 기대할 수 있으므로, 기판 가열로 성막해도 된다.At the time of sputter film formation, it is not necessary to heat the substrate. This is because relatively high mobility can be obtained without heating the substrate, and there is no need to add time or energy for raising the temperature. When the substrate is sputtered without heating, the resulting film becomes amorphous. However, by heating the substrate, it is expected that the same effect as annealing after the room temperature film formation can be obtained.

(산화물막의 캐리어 농도)(Carrier concentration of oxide film)

산화물막의 캐리어 농도는, 그 막을 트랜지스터의 채널층에 사용했을 때, 트랜지스터의 각종 특성과 상관이 있다. 캐리어 농도가 지나치게 높으면, 트랜지스터의 오프시에도 미소 누설 전류가 발생하여 온오프비가 저하되게 된다. 한편, 캐리어 농도가 지나치게 낮으면, 트랜지스터를 흐르는 전류가 작아지게 된다. 본 발명에서는, 조성의 적정 범위 등에 따라, 산화물막의 캐리어 농도를 1016 ∼ 1018-3 로 할 수 있고, 이 범위이면 특성이 양호한 트랜지스터를 제작할 수 있다.The carrier concentration of the oxide film has a correlation with various characteristics of the transistor when the film is used for the channel layer of the transistor. If the carrier concentration is too high, a small leakage current is generated even when the transistor is off, and the on-off ratio is lowered. On the other hand, if the carrier concentration is too low, the current flowing through the transistor becomes small. In the present invention, the carrier concentration of the oxide film can be 10 16 to 10 18 cm -3 depending on the appropriate range of the composition, etc., and a transistor having good characteristics can be produced in this range.

(산화물막의 이동도)(Mobility of oxide film)

이동도는 트랜지스터의 특성 중에서도 가장 중요한 특성의 하나이며, 산화물 반도체가 트랜지스터의 채널층으로서 사용되는 경합 재료인 아모르퍼스 실리콘의 이동도인 1 ㎠ /Vs 이상인 것이 바람직하다. 이동도는 기본적으로는 높으면 높을수록 좋다. 본 발명에 관련된 산화물막은 조성의 적정 범위 등에 따라, 1 ㎠ /Vs 이상의 이동도를 가질 수 있고, 바람직하게는 3 ㎠ /Vs 이상의 이동도를 가질 수 있고, 보다 바람직하게는 5 ㎠ /Vs 이상의 이동도를 가질 수 있다. 이로써, 아모르퍼스 실리콘보다 우수한 특성이 되어 산업상의 응용 가능성이 보다 높아진다.The mobility is one of the most important characteristics among the transistors, and it is preferable that the oxide semiconductor is 1 cm 2 / Vs or more, which is the mobility of amorphous silicon, a competitive material used as the channel layer of the transistor. Basically, the higher the mobility, the better. The oxide film according to the present invention may have a mobility of 1 cm 2 / Vs or more, preferably 3 cm 2 / Vs or more, and more preferably 5 cm 2 / Vs or more, depending on an appropriate range of the composition. May have degrees. Thereby, it becomes the characteristic superior to amorphous silicon, and the industrial application possibility becomes high.

본 발명에 관련된 산화물 반도체 박막은 예를 들어 박막 트랜지스터의 활성층으로서 사용할 수 있다. 또, 상기 제조 방법을 사용하여 얻어진 박막 트랜지스터를 액티브 소자로서 사용하여, 액티브 매트릭스 구동 표시 패널에 이용할 수 있다.The oxide semiconductor thin film according to the present invention can be used, for example, as an active layer of a thin film transistor. Moreover, the thin film transistor obtained using the said manufacturing method can be used as an active element, and can be used for an active matrix drive display panel.

실시예Example

이하에 본 발명의 실시예를 비교예와 함께 나타내는데, 이들 실시예는 본 발명 및 그 이점을 보다 잘 이해시키기 위해서 제공하는 것이며, 발명이 한정되는 것을 의도하는 것은 아니다. 따라서, 본 발명은, 본 발명의 기술 사상의 범위 내에서 실시예 이외의 양태 혹은 변형을 모두 포함하는 것이다.Although the Example of this invention is shown with a comparative example below, these Examples are provided in order to understand this invention and its advantage better, and it does not intend that invention is limited. Therefore, this invention includes all the aspects or modifications other than an Example within the scope of the technical idea of this invention.

하기의 실시예 및 비교예에 있어서, 소결체 및 막의 물성은 이하의 방법에 의해 측정하였다.In the following Examples and Comparative Examples, physical properties of the sintered body and the film were measured by the following methods.

(가) 소결체 및 막의 조성(A) Composition of sintered body and membrane

SII 나노테크놀로지사 제조 형식 SPS3000 을 이용하여 ICP (고주파 유도 결합 플라즈마) 분석법에 의해 구하였다.It was calculated | required by the ICP (High Frequency Inductively Coupled Plasma) analysis method using SPS3000 by SII Nanotechnology.

(나) 소결체의 상대 밀도(B) Relative density of sintered body

중량 및 외형 치수의 측정 결과와 구성 원소로부터의 이론 밀도에 의해 구하였다.It calculated | required by the measurement result of a weight and an external dimension, and the theoretical density from a structural element.

(다) 소결체의 벌크 저항(C) Bulk resistance of the sintered body

사탐침법 (JIS K7194) 에 의해, NPS (엔피에스) 사 제조 형식 Σ-5+ 장치를 이용하여 구하였다.It was calculated | required by the four probe method (JIS K7194) using the model Σ-5 + apparatus manufactured by NPS (NPS).

(라) 막두께(D) Thickness

단차계 (Veeco 사 제조, 형식 Dektak8 STYLUS PROFILER) 를 이용하여 구하였다.It was calculated | required using the step | diometer (made by Veeco, model Dektak8 STYLUS PROFILER).

(마) 막의 캐리어 농도 및 이동도(E) Carrier concentration and mobility of the film

성막한 유리 기판을 가로세로 약 10 mm 로 잘라내어, 네 모서리에 인듐 전극을 부착하고, 홀 측정 장치 (토요 테크니카사 제조, 형식 Resitest8200) 에 세트하여 측정하였다.The glass substrate formed into a film was cut out to about 10 mm in width | variety, the indium electrode was attached to four corners, and it set and measured in the hall measuring apparatus (Toyo Technica make, model Resitest8200).

(바) 막의 결정 또는 비정질 구조(F) Crystals or amorphous structures of membranes

리가쿠사 제조 RINT-1100 X 선 회절 장치를 이용하여 결정성을 판정하였다. 이 X 선 회절에 의해 백그라운드 레벨 이상의 유의한 피크가 관찰되지 않은 것을 가지고 비정질로 판단하였다.Crystallinity was determined using the Rigaku Corporation RINT-1100 X-ray diffraction apparatus. This X-ray diffraction judged it to be amorphous with no significant peak observed above the background level.

(사) 분체의 평균 입경(G) Average particle size of powder

분체의 평균 입경은, 시마즈 제작소 제조 SALD-3100 에 의해 측정하였다.The average particle diameter of the powder was measured by SALD-3100 manufactured by Shimadzu Corporation.

<실시예 1>&Lt; Example 1 &gt;

산화 인듐 분말 (평균 입경 1.0 ㎛), 산화 규소 분말 (평균 입경 1.0 ㎛), 및 산화 마그네슘 분말 (평균 입경 1.0 ㎛) 을 금속 원소의 원자수비 (In : Si : Mg) 가 0.4 : 0.3 : 0.3 이 되도록 칭량하여, 습식 혼합 분쇄하였다. 분쇄 후의 혼합 분말의 평균 입경은 0.8 ㎛ 였다. 이 혼합 분말을, 스프레이 드라이어로 조립 후, 금형에 충전하여 가압 성형한 후, 대기 분위기 중 1450 ℃ 의 고온에서 10 시간 소결하였다. 얻어진 소결체를 직경 6 인치, 두께 6 mm 의 원반상으로 가공하여 스퍼터링 타겟으로 하였다. 당해 타겟에 대하여, 중량과 외형 치수의 측정 결과와 이론 밀도로부터 상대 밀도를 산출한 결과 99.5 % 였다. 또, 사탐침법에 의해 측정한 소결체의 벌크 저항은 2.2 mΩ㎝ 였다.The indium oxide powder (average particle diameter 1.0 mu m), silicon oxide powder (average particle diameter 1.0 mu m), and magnesium oxide powder (average particle diameter 1.0 mu m) have an atomic ratio of the metal element (In: Si: Mg) of 0.4: 0.3: 0.3 Weighed as desired, and the wet mixed grinding was performed. The average particle diameter of the mixed powder after grinding | pulverization was 0.8 micrometers. After this mixed powder was granulated with a spray dryer, it filled into a metal mold | die and pressure-molded, and it sintered for 10 hours at 1450 degreeC high temperature in air | atmosphere. The obtained sintered compact was processed into the disk shape of diameter 6 inches and thickness 6mm, and it was set as the sputtering target. It was 99.5% when the relative density was computed from the measurement result and theoretical density of the weight and an external dimension with respect to the said target. Moreover, the bulk resistance of the sintered compact measured by the probe probe method was 2.2 m (ohm) cm.

상기에서 제작한 스퍼터링 타겟을 구리제의 배킹 플레이트에 인듐을 납재로서 사용하여 첩부하고, DC 마그네트론 스퍼터 장치 (ANELVA 제조 SPL-500 스퍼터 장치) 에 설치하였다. 유리 기판은 코닝 1737 을 이용하고, 스퍼터 조건을, 기판 온도 : 25 ℃, 도달 압력 : 1.2 × 10-4 ㎩, 분위기 가스 : Ar 99 %, 산소 1 %, 스퍼터 압력 (전체 압력) : 0.5 ㎩, 투입 전력 500 W 로 하여, 막두께가 약 100 nm 인 박막을 제작하였다. 산화물 반도체 박막의 성막시에는 이상 방전은 관찰되지 않았다.The sputtering target produced above was affixed on the copper backing plate using indium as a solder | pewter, and it installed in the DC magnetron sputtering apparatus (SPL-500 sputtering apparatus made by ANELVA). The glass substrate used Corning 1737, The sputtering conditions, substrate temperature: 25 ℃, pressure reached: 1.2 × 10 -4 Pa, atmosphere gas: Ar 99%, oxygen 1%, sputter pressure (total pressure): 0.5 Pa, A thin film having a film thickness of about 100 nm was produced with an input power of 500 W. No abnormal discharge was observed during the film formation of the oxide semiconductor thin film.

얻어진 막의 홀 측정을 실시하여, 캐리어 농도 및 이동도를 구하였다. 또, X 선 회절에 의한 측정 결과, 당해 막은 비정질이었다. Hole measurement of the obtained film was carried out to determine the carrier concentration and mobility. Moreover, as a result of the measurement by X-ray diffraction, the said film was amorphous.

<실시예 2 ∼ 실시예 12><Example 2-Example 12>

원료 분말의 조성비를 표 1 에 기재된 각각의 값이 되도록 한 것 이외에는, 실시예 1 과 동일하게 하여 산화물 소결체 및 산화물 반도체 박막을 얻었다. 각각의 상대 밀도, 벌크 저항, 캐리어 농도, 이동도는 표 1 에 기재된 바와 같았다. 또, 소결체 및 막의 조성은 각각 원료 분말의 조성비와 동일하였다. 이들 산화물 반도체 박막의 성막시에는 이상 방전은 관찰되지 않았다.An oxide sintered body and an oxide semiconductor thin film were obtained in the same manner as in Example 1 except that the composition ratio of the raw material powders was set to the respective values shown in Table 1. Each of the relative density, bulk resistance, carrier concentration, and mobility were as shown in Table 1. In addition, the composition of the sintered compact and the film | membrane was the same as the composition ratio of raw material powder, respectively. No abnormal discharge was observed during the film formation of these oxide semiconductor thin films.

<비교예 1 ∼ 비교예 10><Comparative Example 1-Comparative Example 10>

원료 분말의 조성비를 표 1 에 기재된 각각의 값이 되도록 한 것 이외에는, 실시예 1 과 동일하게 하여 산화물 소결체 및 산화물 반도체 박막을 얻었다. 각각의 상대 밀도, 벌크 저항, 캐리어 농도, 이동도는 표 1 에 기재된 바와 같았다. 또, 소결체 및 막의 조성은 각각 원료 분말의 조성비와 동일하였다.An oxide sintered body and an oxide semiconductor thin film were obtained in the same manner as in Example 1 except that the composition ratio of the raw material powders was set to the respective values shown in Table 1. Each of the relative density, bulk resistance, carrier concentration, and mobility were as shown in Table 1. In addition, the composition of the sintered compact and the film | membrane was the same as the composition ratio of the raw material powder, respectively.

Figure 112013021324022-pct00013
Figure 112013021324022-pct00013

실시예 1 ∼ 12 에서는, 2 가의 금속 이온 (X2 +) 의 예로서 Mg 및 Ca 를, 3 가의 금속 이온 (Y3 +) 의 예로서 B 를, 4 가의 금속 이온 (Z4 +) 의 예로서 Si 를 함유한 산화물 소결체를 제작하였다. 그러나, 2 가의 금속 이온 (X2 +) 으로서 Co 또는 Mn 을, 3 가의 금속 이온 (Y3 +) 으로서 Y 또는 Cr 을, 4 가의 금속 이온 (Z4 +) 으로서 Ge, Ti 또는 Zr 을 함유한 산화물 소결체를 제작해도, 각각 가수가 동일한 이온을 이용하고 있기 때문에, 실시예 1 ∼ 12 와 동일한 효과를 나타내는 것으로 판단된다.Examples of Examples 1 to 12, divalent metal ions (X 2 +) Mg and Ca to, the B as an example of the trivalent metal ion (Y 3 +), 4-valent metal ion (Z 4 +) as an example of the An oxide sintered body containing Si was produced. However, bivalent a Co or Mn as the metal ion (X 2 +), 3-valent metal ion to Y or Cr as (Y 3 +), a tetravalent metal ion (Z 4 +) containing Ge, Ti or Zr Even if an oxide sintered body is produced, since the valence uses the same ion, respectively, it is judged to have the same effect as Examples 1-12.

실시예 1 ∼ 12 에서는, 캐리어 농도가 1016 ∼ 1018-3 의 범위 내에 있고, 또한 이동도가 1 ㎠ /Vs 이상이었다.In Examples 1-12, carrier density | concentration was in the range of 10 <16> -10 <18> cm <-3> , and mobility was 1 cm <2> / Vs or more.

한편, 비교예 1, 4, 6 ∼ 10 에서는, 캐리어 농도가 1016-3 미만이었다.On the other hand, in Comparative Examples 1, 4 and 6 to 10, the carrier concentration was less than 10 16 cm -3 .

또, 비교예 1, 4, 6, 8, 10 에서는, 이동도가 1 ㎠ /Vs 미만이었다.In Comparative Examples 1, 4, 6, 8, and 10, the mobility was less than 1 cm 2 / Vs.

또, 비교예 2, 3, 5 에서는, 캐리어 농도가 1018-3 초과였다.In Comparative Examples 2, 3, and 5, the carrier concentration was more than 10 18 cm -3 .

Claims (9)

3 가의 인듐 이온 (In3+) 과, 2 가의 금속 이온 (X2+) (단, X 는 Mg, Ca, Co 및 Mn 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 3 가의 금속 이온 (Y3+) (단, Y 는 B, Y, Cr 에서 선택되는 1 종 이상의 원소를 나타낸다) 또는 4 가의 금속 이온 (Z4+) (단, Z 는 Si, Ge, Ti, Zr 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 산소 이온 (O2-) 으로 이루어지고,
3 가의 인듐 이온 (In3+), 2 가의 금속 이온 (X2+), 3 가의 금속 이온 (Y3+), 및 4 가의 금속 이온 (Z4+) 의 원자수비가 각각,
0.2
Figure 112013068754244-pct00014
[In3+]/{[In3+]+[X2+]+[Y3+]+[Z4+]}
Figure 112013068754244-pct00015
0.8,
0.1
Figure 112013068754244-pct00016
[X2+]/{[In3+]+[X2+]+[Y3+]+[Z4+]}
Figure 112013068754244-pct00017
0.5, 및
0.1
Figure 112013068754244-pct00018
{[Y3+]+[Z4+]}/{[In3+]+[X2+]+[Y3+]+[Z4+]}
Figure 112013068754244-pct00019
0.5 를 만족하고,
상대 밀도가 98 % 이상인, 산화물 소결체.
Trivalent indium ions (In 3+ ), divalent metal ions (X 2+ ) (where X represents at least one element selected from Mg, Ca, Co, and Mn), and trivalent metal ions (Y 3+ ) (wherein Y represents one or more elements selected from B, Y and Cr) or tetravalent metal ions (Z 4+ ) (where Z represents one species selected from Si, Ge, Ti, and Zr) Above elements), and oxygen ions (O 2- ),
Atomic ratios of trivalent indium ions (In 3+ ), divalent metal ions (X 2+ ), trivalent metal ions (Y 3+ ), and tetravalent metal ions (Z 4+ ), respectively,
0.2
Figure 112013068754244-pct00014
[In 3+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}
Figure 112013068754244-pct00015
0.8,
0.1
Figure 112013068754244-pct00016
[X 2+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}
Figure 112013068754244-pct00017
0.5, and
0.1
Figure 112013068754244-pct00018
{[Y 3+ ] + [Z 4+ ]} / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}
Figure 112013068754244-pct00019
0.5,
Oxide sintered compact whose relative density is 98% or more.
삭제delete 제 1 항에 있어서,
벌크 저항이 3 mΩ 이하인, 산화물 소결체.
The method of claim 1,
And the bulk resistance is 3 m? Or less.
3 가의 인듐 이온 (In3+) 과, 2 가의 금속 이온 (X2+) (단, X 는 Mg, Ca, Co 및 Mn 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 3 가의 금속 이온 (Y3+) (단, Y 는 B, Y, Cr 에서 선택되는 1 종 이상의 원소를 나타낸다) 또는 4 가의 금속 이온 (Z4+) (단, Z 는 Si, Ge, Ti, Zr 에서 선택되는 1 종 이상의 원소를 나타낸다) 과, 산소 이온 (O2-) 으로 이루어지고,
3 가의 인듐 이온 (In3+), 2 가의 금속 이온 (X2+), 3 가의 금속 이온 (Y3+), 및 4 가의 금속 이온 (Z4+) 의 원자수비가 각각,
0.2
Figure 112013068754244-pct00020
[In3+]/{[In3+]+[X2+]+[Y3+]+[Z4+]}
Figure 112013068754244-pct00021
0.8,
0.1
Figure 112013068754244-pct00022
[X2+]/{[In3+]+[X2+]+[Y3+]+[Z4+]}
Figure 112013068754244-pct00023
0.5, 및
0.1
Figure 112013068754244-pct00024
{[Y3+]+[Z4+]}/{[In3+]+[X2+]+[Y3+]+[Z4+]}
Figure 112013068754244-pct00025
0.5 를 만족하고,
캐리어 농도가 1016 ∼ 1018-3 인, 산화물 반도체 박막.
Trivalent indium ions (In 3+ ), divalent metal ions (X 2+ ) (where X represents at least one element selected from Mg, Ca, Co, and Mn), and trivalent metal ions (Y 3+ ) (wherein Y represents one or more elements selected from B, Y and Cr) or tetravalent metal ions (Z 4+ ) (where Z represents one species selected from Si, Ge, Ti, and Zr) Above elements), and oxygen ions (O 2- ),
Atomic ratios of trivalent indium ions (In 3+ ), divalent metal ions (X 2+ ), trivalent metal ions (Y 3+ ), and tetravalent metal ions (Z 4+ ), respectively,
0.2
Figure 112013068754244-pct00020
[In 3+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}
Figure 112013068754244-pct00021
0.8,
0.1
Figure 112013068754244-pct00022
[X 2+ ] / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}
Figure 112013068754244-pct00023
0.5, and
0.1
Figure 112013068754244-pct00024
{[Y 3+ ] + [Z 4+ ]} / {[In 3+ ] + [X 2+ ] + [Y 3+ ] + [Z 4+ ]}
Figure 112013068754244-pct00025
0.5,
The carrier concentration is 10 16 ~ 10 18-3 of the oxide semiconductor thin film.
제 4 항에 있어서,
비정질인, 산화물 반도체 박막.
5. The method of claim 4,
Amorphous, oxide semiconductor thin film.
삭제delete 제 4 항 또는 제 5 항에 있어서,
이동도가 1 ㎠ /Vs 이상인, 산화물 반도체 박막.
The method according to claim 4 or 5,
An oxide semiconductor thin film having a mobility of 1 cm 2 / Vs or more.
제 4 항 또는 제 5 항에 기재된 산화물 반도체 박막을 활성층으로서 구비한, 박막 트랜지스터.A thin film transistor comprising the oxide semiconductor thin film according to claim 4 or 5 as an active layer. 제 8 항에 기재된 박막 트랜지스터를 구비한, 액티브 매트릭스 구동 표시 패널.An active matrix drive display panel comprising the thin film transistor according to claim 8.
KR1020137006280A 2010-08-31 2011-07-07 Sintered oxide and oxide semiconductor thin film KR101324830B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010194497A JP5367659B2 (en) 2010-08-31 2010-08-31 Oxide sintered body and oxide semiconductor thin film
JPJP-P-2010-194497 2010-08-31
PCT/JP2011/065583 WO2012029407A1 (en) 2010-08-31 2011-07-07 Sintered oxide and oxide semiconductor thin film

Publications (2)

Publication Number Publication Date
KR20130031392A KR20130031392A (en) 2013-03-28
KR101324830B1 true KR101324830B1 (en) 2013-11-01

Family

ID=45772518

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137006280A KR101324830B1 (en) 2010-08-31 2011-07-07 Sintered oxide and oxide semiconductor thin film

Country Status (4)

Country Link
JP (1) JP5367659B2 (en)
KR (1) KR101324830B1 (en)
TW (1) TWI418529B (en)
WO (1) WO2012029407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467131B1 (en) * 2010-08-31 2014-11-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Oxide sintered body and oxide semiconductor thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264023A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813140A (en) * 1994-07-04 1996-01-16 Hitachi Metals Ltd Indium oxide sputtering target, its production, indium oxide film, and production of indium oxide film
JP3803132B2 (en) * 1996-01-31 2006-08-02 出光興産株式会社 Target and manufacturing method thereof
JP3215392B2 (en) * 1998-10-13 2001-10-02 ジオマテック株式会社 Metal oxide sintered body and its use
JP4457669B2 (en) * 2004-01-08 2010-04-28 東ソー株式会社 Sputtering target and manufacturing method thereof
JP2006160535A (en) * 2004-12-02 2006-06-22 Sumitomo Metal Mining Co Ltd Oxide sintered compact, sputtering target and transparent conductive thin film
JP2007238365A (en) * 2006-03-07 2007-09-20 Mitsui Mining & Smelting Co Ltd Oxide sintered compact, its manufacturing method, sputtering target and transparent conductive film
WO2009044891A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide-based transparent electroconductive film and process for producing the indium oxide-based transparent electroconductive film
WO2009081677A1 (en) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. Tin oxide-magnesium oxide sputtering target and transparent semiconductor film
JPWO2010032432A1 (en) * 2008-09-19 2012-02-02 出光興産株式会社 Sintered body containing yttrium oxide and sputtering target
JP5087605B2 (en) * 2009-12-07 2012-12-05 出光興産株式会社 Indium oxide-zinc oxide-magnesium oxide sputtering target and transparent conductive film
JP5367660B2 (en) * 2010-08-31 2013-12-11 Jx日鉱日石金属株式会社 Oxide sintered body and oxide semiconductor thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264023A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467131B1 (en) * 2010-08-31 2014-11-28 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Oxide sintered body and oxide semiconductor thin film

Also Published As

Publication number Publication date
KR20130031392A (en) 2013-03-28
JP2012051745A (en) 2012-03-15
TW201213273A (en) 2012-04-01
TWI418529B (en) 2013-12-11
JP5367659B2 (en) 2013-12-11
WO2012029407A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
KR101080527B1 (en) Sputtering target, transparent conductive film and transparent electrode
JP4933756B2 (en) Sputtering target
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
EP2428500B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
KR20120051656A (en) Oxide sinter, method for producing same, target and transparent conductive film
TWI720188B (en) Oxide sintered body, sputtering target and oxide semiconductor film
KR101303987B1 (en) Sintered oxide and oxide semiconductor thin film
KR101324830B1 (en) Sintered oxide and oxide semiconductor thin film
KR101467131B1 (en) Oxide sintered body and oxide semiconductor thin film
TW201522689A (en) Sputtering target and method for producing same
JP2017014535A (en) Sputtering target and production method thereof
JP2013193945A (en) SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM
JP2017014534A (en) Sputtering target and production method thereof
JP2020164957A (en) Sputtering target and manufacturing method of sputtering target
JP2017179595A (en) Sputtering target material, and its production method
JP2012031521A (en) Sputtering target and transparent conductive film
JP2012131689A (en) Oxide sintered body, oxide mixture, manufacturing methods these, and target using these

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160929

Year of fee payment: 4