JP2006160535A - Oxide sintered compact, sputtering target and transparent conductive thin film - Google Patents

Oxide sintered compact, sputtering target and transparent conductive thin film Download PDF

Info

Publication number
JP2006160535A
JP2006160535A JP2004350207A JP2004350207A JP2006160535A JP 2006160535 A JP2006160535 A JP 2006160535A JP 2004350207 A JP2004350207 A JP 2004350207A JP 2004350207 A JP2004350207 A JP 2004350207A JP 2006160535 A JP2006160535 A JP 2006160535A
Authority
JP
Japan
Prior art keywords
thin film
transparent conductive
conductive thin
film
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004350207A
Other languages
Japanese (ja)
Inventor
Takeshi Obara
剛 小原
Takayuki Abe
能之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004350207A priority Critical patent/JP2006160535A/en
Publication of JP2006160535A publication Critical patent/JP2006160535A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive thin film which is remarkably flat, low in resistance and is amorphous, an oxide sintered compact for stably forming the transparent conductive thin film and a sputtering target using the same. <P>SOLUTION: The oxide sintered compact comprises indium, tungsten, zinc and oxygen, tungsten in the amount of W/In of 0.004-0.034, zinc in the amount of Zn/In of 0.005-0.032 and silicon in the amount of Si/In of 0.007-0.052 each by the number of atoms, and has an indium oxide crystalline phase of a bixbyite structure as a main phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機物を利用する有機エレクトロルミネッセンス(EL)素子、トランジスタ、太陽電池、レーザなどの有機デバイスにおいて、電極として形成される透明導電性薄膜、および該透明導電性薄膜製造用の酸化物焼結体、該酸化物焼結体を用いたスパッタリングターゲットに関する。   The present invention relates to a transparent conductive thin film formed as an electrode in an organic electroluminescence (EL) element utilizing an organic substance, a transistor, a solar cell, a laser, and the like, and an oxide firing for producing the transparent conductive thin film. The present invention relates to a bonded target and a sputtering target using the oxide sintered body.

透明導電性薄膜は、高い導電性(例えば、1×10-3Ωcm以下の比抵抗)と可視光領域での高い透過率とを有することから、太陽電池や表示素子、その他の各種受光素子の電極などに利用されるほか、自動車や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなどの各種の防曇用の透明発熱体としても利用されている。 Since the transparent conductive thin film has high conductivity (for example, a specific resistance of 1 × 10 −3 Ωcm or less) and high transmittance in the visible light region, it can be used for solar cells, display elements, and other various light receiving elements. In addition to being used for electrodes and the like, it is also used as a transparent heating element for various types of anti-fogging, such as a heat ray reflective film, an antistatic film and a freezer showcase for automobiles and buildings.

透明導電性薄膜が使用される表示素子としては、近年、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)などのフラットパネルディスプレイが広く普及しているが、次世代のフラットパネルディスプレイとして、エレクトロルミネッセンス(EL)素子が注目を浴びている。   In recent years, flat panel displays such as liquid crystal displays (LCDs) and plasma displays (PDPs) have become widespread as display elements using transparent conductive thin films. However, as next-generation flat panel displays, electroluminescence ( EL) devices are attracting attention.

透明導電性薄膜が使用されるEL素子は、自己発光のため視認性が高く、完全固体素子であるため耐衝撃性に優れている。EL素子には、発光材料として無機化合物を用いる無機EL素子と、発光材料として有機化合物を用いる有機EL素子とがある。   An EL element using a transparent conductive thin film has high visibility because of self-emission, and is excellent in impact resistance because it is a complete solid element. EL elements include an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound as a light emitting material.

このうち、有機EL素子には、駆動電圧を大幅に低くして小型化することが容易であるという特徴がある。有機EL素子の構成には、透明絶縁性基板/陽極(透明電極)/正孔輸送層/発光層/電子輸送層/陰極(金属電極)の積層構造を基本とし、ガラス板などの透明絶縁性基板上に透明導電性薄膜を形成して、該透明導電性薄膜を陽極とする構成のボトムエミッション型が、通常、採用されている。   Among these, the organic EL element has a feature that it is easy to downsize by greatly reducing the driving voltage. The structure of the organic EL element is based on a laminated structure of a transparent insulating substrate / anode (transparent electrode) / hole transport layer / light emitting layer / electron transport layer / cathode (metal electrode), and transparent insulation such as a glass plate. A bottom emission type in which a transparent conductive thin film is formed on a substrate and the transparent conductive thin film is used as an anode is usually employed.

透明絶縁性基板として、TFT(thin-film transistor)基板を使用する場合、取出し光量を多くするために、前述のボトムエミッション型に代えて、透明絶縁性基板/陽極(金属電極)/正孔輸送層/発光層/電子輸送層/陰極(透明電極)の積層構造を有するトップエミッション型も提案されている。   When a TFT (thin-film transistor) substrate is used as the transparent insulating substrate, the transparent insulating substrate / anode (metal electrode) / hole transport is used instead of the above-mentioned bottom emission type in order to increase the amount of extracted light. A top emission type having a laminated structure of layer / light emitting layer / electron transport layer / cathode (transparent electrode) has also been proposed.

透明導電性薄膜が使用される素子には、前記有機EL素子のほかに、有機物を利用する有機デバイスとして、発光素子、トランジスタ、太陽電池やレーザなどの有機デバイスも、近年、注目を浴びている。   In addition to the organic EL elements, organic devices such as light-emitting elements, transistors, solar cells, and lasers have recently attracted attention as elements using transparent conductive thin films, as well as organic EL elements. .

これらの有機デバイスに使用される透明導電性薄膜には、アンチモンやフッ素をドーパントとして含む酸化スズ(SnO2)や、アルミニウムやガリウムをドーパントとして含む酸化亜鉛(ZnO)や、スズをドーパントとして含む酸化インジウム(In23)などが、広範に利用されている。このうち、スズをドーパントとして含む酸化インジウム膜(In23−Sn系膜)は、ITO(Indium Tin Oxide)膜と称され、特に低抵抗の透明導電性薄膜が容易に得られることから、広く用いられている。 Transparent conductive thin films used in these organic devices include tin oxide (SnO 2 ) containing antimony and fluorine as dopants, zinc oxide (ZnO) containing aluminum and gallium as dopants, and oxide containing tin as dopants. Indium (In 2 O 3 ) and the like are widely used. Among these, an indium oxide film containing tin as a dopant (In 2 O 3 —Sn-based film) is referred to as an ITO (Indium Tin Oxide) film, and in particular, a low-resistance transparent conductive thin film can be easily obtained. Widely used.

これらの透明導電性薄膜を製造する方法としては、スパッタリング法が良く用いられている。スパッタリング法は、蒸気圧の低い材料の成膜や、精密な膜厚制御を必要とする際に、有効な手法であり、操作が非常に簡便であるため、工業的に広範に利用されている。   As a method for producing these transparent conductive thin films, a sputtering method is often used. The sputtering method is an effective method when film formation of a material having a low vapor pressure or precise film thickness control is required, and since the operation is very simple, it is widely used industrially. .

透明導電性薄膜を製造するために使用されるスパッタリング法には、膜成分の原料としてスパッタリングターゲットが用いられ、一般に、約10Pa以下のガス圧のもとで、基板を陽極とし、スパッタリングターゲットを陰極として、これらの間にグロー放電を起こして、アルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のスパッタリングターゲットに衝突させ、これによって弾き飛ばされるターゲット成分の粒子を基板上に堆積させて、膜を形成する。   The sputtering method used to manufacture the transparent conductive thin film uses a sputtering target as a raw material for the film component. Generally, the substrate is used as an anode and the sputtering target is used as a cathode under a gas pressure of about 10 Pa or less. As described above, a glow discharge is caused between them, an argon plasma is generated, an argon cation in the plasma is collided with a sputtering target of the cathode, and particles of a target component to be blown off by this are deposited on the substrate. A film is formed.

また、スパッタリング法には、アルゴンプラズマの発生方法で分類され、高周波プラズマを用いる高周波スパッタリング法、直流プラズマを用いる直流スパッタリング法がある。また、スパッタリングターゲットの裏側にマグネットを配置して、プラズマをスパッタリングターゲットの直上に集中させ、低ガス圧でもアルゴンイオンの発生効率を上げて成膜するマグネトロンスパッタ法もある。一般に、直流スパッタリング法は、導電性ターゲットを用いる必要があるが、高周波スパッタリング法に比べて成膜速度が速く、電源設備が安価で、成膜操作が簡単などの理由で、工業的に広く利用されている。   Further, the sputtering method is classified according to the method of generating argon plasma, and includes a high frequency sputtering method using high frequency plasma and a direct current sputtering method using direct current plasma. There is also a magnetron sputtering method in which a magnet is disposed on the back side of a sputtering target so that plasma is concentrated directly on the sputtering target and the generation efficiency of argon ions is increased even at a low gas pressure. In general, the direct current sputtering method requires the use of a conductive target, but it is widely used industrially for reasons such as higher film formation speed, lower power supply facilities, and easier film formation operation than the high frequency sputtering method. Has been.

しかし、透明導電性薄膜として用いるITO膜は、低抵抗であるものの結晶化温度が150℃前後と低く、基板を加熱しなくても透明導電性薄膜の表面には凹凸が生じる。そのため、ボトムエミッション型の有機EL素子において、正孔輸送層側である陽極にITO膜を用いた場合、表面の凹凸により超薄膜の有機物層に過電流が流れて、有機EL素子に黒点(ダークスポット)が発生し、不具合の一因となっている。正孔輸送層側である陽極としてITO膜を用いる時には、透明絶縁性基板に陽極となるITO膜を成膜後、研磨等により表面の凹凸をなくし、表面を平滑にしてから、正孔輸送層を積層させる。また、トップエミッション型の有機EL素子において、電子輸送層側である陰極にITO膜を用いた場合、結晶粒界を通し拡散した水分および酸素などが下地側の有機物層にダメージを与えるので、素子寿命が短くなるが、該陰極が非晶質の膜であれば、水分および酸素などが拡散し難くなる。従って、成膜後に表面が平滑であり、非晶質で水分および酸素などの拡散の少ない透明電極性薄膜が、電極として望まれることになる。   However, although the ITO film used as the transparent conductive thin film has a low resistance, the crystallization temperature is as low as around 150 ° C., and irregularities are generated on the surface of the transparent conductive thin film without heating the substrate. Therefore, in the bottom emission type organic EL element, when an ITO film is used for the anode on the hole transport layer side, an overcurrent flows through the organic layer of the ultrathin film due to the unevenness of the surface, and black spots (dark Spot) occurs and contributes to the problem. When using an ITO film as the anode on the hole transport layer side, after forming the ITO film serving as the anode on the transparent insulating substrate, removing the surface irregularities by polishing or the like and smoothing the surface, the hole transport layer Laminate. In addition, in the top emission type organic EL element, when an ITO film is used for the cathode on the electron transport layer side, moisture and oxygen diffused through the grain boundary damage the organic layer on the base side. Although the lifetime is shortened, if the cathode is an amorphous film, moisture, oxygen and the like are difficult to diffuse. Therefore, a transparent electrode thin film having a smooth surface after film formation and amorphous and less diffusing moisture and oxygen is desired as an electrode.

また、有機層へ透明導電性薄膜を形成する際には、有機層の耐熱性が悪いため、加熱した成膜は不可能である。このため、低温成膜で低抵抗の薄膜が望まれる。ITOの場合、低抵抗の膜を得るためには、結晶化温度以上の温度において結晶化を促進し、移動度を上げなければならない。室温で成膜した場合、その比抵抗は6×10-4Ωcm程度である。 Further, when forming a transparent conductive thin film on the organic layer, the organic layer is poor in heat resistance, so that it is impossible to form a film with heating. For this reason, a low resistance thin film is desired at low temperature. In the case of ITO, in order to obtain a low resistance film, crystallization must be promoted at a temperature higher than the crystallization temperature, and the mobility must be increased. When the film is formed at room temperature, the specific resistance is about 6 × 10 −4 Ωcm.

透明導電性薄膜を成膜する過程においては、ボトムエミッション型の有機EL素子であるか、トップエミッション型の有機EL素子であるかに関わらず、スパッタリングターゲットに黒化物(ノジュール)が発生すると、薄膜中に粗大粒子が存在するようになる。ボトムエミッション型の場合は、粗大粒子の部分に有機層が蒸着できず、ダークスポットになる。トップエミッション型の場合は、有機層中へ粗大粒子が入り込み、粗大粒子の部分は機能を果たさなくなる。従って、いずれにおいても素子としての機能が低下することになる。   In the process of forming the transparent conductive thin film, regardless of whether it is a bottom emission type organic EL element or a top emission type organic EL element, a thin film (nodule) is generated on the sputtering target. Coarse particles are present inside. In the case of the bottom emission type, the organic layer cannot be deposited on the coarse particles, resulting in dark spots. In the case of the top emission type, coarse particles enter into the organic layer, and the coarse particles do not function. Therefore, in any case, the function as an element is deteriorated.

このため、ITO膜をスパッタリング法で製造する際においては、ノジュールの発生が少ないスパッタリングターゲットが望まれる。ITO膜の製造におけるノジュール発生に対する抑制に関しては、スパッタリングターゲットの焼結密度を高めること、焼結体中の空孔制御、焼結体の強度を高めることなどが知られている。これらの対策を講じると、確かにスパッタリングターゲットでのノジュールの発生は減少するが、完全には抑制できず、その結果、成膜された導電性薄膜に欠陥を生じ、製品歩留まりを悪くしている。また、スパッタリングターゲットの焼結密度を高めても、スパッタ中に焼結割れが発生すると、その部分におけるノジュール発生確率が高くなるので、焼結体の強度は高いほうが好ましい。   For this reason, when manufacturing an ITO film | membrane by sputtering method, the sputtering target with few generation | occurrence | production of a nodule is desired. Regarding suppression of nodule generation in the production of an ITO film, it is known to increase the sintering density of the sputtering target, to control the pores in the sintered body, and to increase the strength of the sintered body. If these measures are taken, the generation of nodules in the sputtering target will certainly be reduced, but it cannot be completely suppressed, resulting in defects in the formed conductive thin film, which deteriorates the product yield. . Further, even if the sintering density of the sputtering target is increased, if a sintering crack occurs during sputtering, the probability of nodule generation at that portion is increased, so that the strength of the sintered body is preferably high.

以上のように、ボトムエミッション型であるか、トップエミッション型であるかに関わらず、有機EL素子の透明導電性薄膜としてITO膜を製造する際に用いられる材料には、表面平滑性、非晶質であること、低い抵抗などが、要求される。また、スパッタリングターゲットについては、ノジュールの発生抑制が求められる。これらの要求は、有機EL素子のほか、有機物を利用するデバイスとして、発光素子、トランジスタ、太陽電池およびレーザなどの有機デバイスに関しても、同様である。   As described above, regardless of whether it is a bottom emission type or a top emission type, materials used for manufacturing an ITO film as a transparent conductive thin film of an organic EL element include surface smoothness, amorphous Quality, low resistance, etc. are required. Moreover, about a sputtering target, generation | occurrence | production suppression of a nodule is calculated | required. These requirements are the same for organic devices such as light emitting elements, transistors, solar cells, and lasers as devices that utilize organic substances in addition to organic EL elements.

酸化インジウム系透明導電性薄膜に関しては、スズ以外の添加物を含む酸化インジウム系透明導電性薄膜が検討されており、ITO膜にはない特徴を有する材料がいくつか見出されている。   As for the indium oxide-based transparent conductive thin film, an indium oxide-based transparent conductive thin film containing additives other than tin has been studied, and several materials having characteristics not found in the ITO film have been found.

酸化インジウム系透明導電性薄膜の製造原料として、特開昭61−136954号公報に、酸化ケイ素(SiO2)および/または酸化ゲルマニウム(GeO2)を含有している酸化インジウム系焼結体が記載されており、また、特開昭62−202415号公報に、かかる酸化ケイ素および/または酸化ゲルマニウムを含有している酸化インジウム系焼結体を用い、高周波スパッタリング法と電子ビーム蒸着法で、Si添加酸化インジウム膜などを成膜する方法が記載されている。 As a raw material for producing an indium oxide-based transparent conductive thin film, JP-A-61-136954 describes an indium oxide-based sintered body containing silicon oxide (SiO 2 ) and / or germanium oxide (GeO 2 ). In addition, in Japanese Patent Laid-Open No. 62-202415, Si is added by high frequency sputtering method and electron beam evaporation method using such an indium oxide-based sintered body containing silicon oxide and / or germanium oxide. A method for forming an indium oxide film or the like is described.

この方法によれば、膜欠陥が解消されたSi添加酸化インジウム膜などが得られるものの、前記酸化インジウム系焼結体から得られるスパッタリングターゲットを用いても、焼結体中に酸化ケイ素および/または酸化ゲルマニウムを含有していることから、導電性物質の母体中に高抵抗物質が含まれたスパッタリングターゲットを用いて直流スパッタリングを行う場合に該当し、アーキングなどが発生して、安定して成膜することができないという問題がある。   According to this method, an Si-added indium oxide film or the like in which film defects are eliminated can be obtained, but even if a sputtering target obtained from the indium oxide-based sintered body is used, silicon oxide and / or Since germanium oxide is contained, this corresponds to the case where direct current sputtering is performed using a sputtering target in which a high-resistance material is contained in the base material of the conductive material. There is a problem that you can not.

また、直流電力を多く投入すれば、高抵抗物質の帯電が起きやすく、成膜中のアーキング発生頻度が増すため、高電力を投入することにより高成膜速度を得ることは難しいという問題もある。   In addition, if a large amount of DC power is applied, charging of a high-resistance material is likely to occur, and the frequency of arcing during film formation increases. Therefore, it is difficult to obtain a high film formation speed by applying high power. .

さらに、得られる透明導電性薄膜の結晶構造が明記されていないことから、この方法により、純アルゴンガス中で高周波スパッタリングにより成膜しても、表面が平滑な膜を得ることはできないものと考えられる。   Furthermore, since the crystal structure of the obtained transparent conductive thin film is not specified, it is considered that a film having a smooth surface cannot be obtained by this method even if the film is formed by high frequency sputtering in pure argon gas. It is done.

これに対して、特許第3224396号公報には、有機EL素子に使用する透明導電性薄膜として、Zn添加In23膜が記載されている。Zn添加In23膜は、非晶質構造をとりやすく、成膜時の基板温度が室温の場合だけでなく、例えば、200℃に加熱しても結晶化しない。従って、表面平滑性に優れた透明導電性薄膜を、安定して作製しやすいという利点も持っている。 On the other hand, Japanese Patent No. 3224396 describes a Zn-added In 2 O 3 film as a transparent conductive thin film used for an organic EL element. The Zn-added In 2 O 3 film tends to have an amorphous structure, and does not crystallize when heated to 200 ° C., for example, not only when the substrate temperature during film formation is room temperature. Therefore, it also has an advantage that a transparent conductive thin film excellent in surface smoothness can be stably produced.

しかし、これには、短波長域における透過率、具体的には400nmにおける透過率がITOよりも低いという問題がある。   However, this has a problem that the transmittance in a short wavelength region, specifically, the transmittance at 400 nm is lower than that of ITO.

特開昭61−136954号公報Japanese Patent Laid-Open No. 61-136954

特開昭62−202415号公報JP-A-62-202415

特許第3224396号公報Japanese Patent No. 3224396

本発明の目的は、極めて平滑で、抵抗が低く、非晶質である透明導電性薄膜と、該透明導電性薄膜を安定的に成膜可能な酸化物焼結体、およびこれを用いたスパッタリングターゲットを提供し、さらには、該スパッタリングターゲットからスパッタリングにより得られた透明導電性薄膜を提供することにある。   An object of the present invention is to provide a transparent conductive thin film that is extremely smooth, low in resistance, and amorphous, an oxide sintered body capable of stably forming the transparent conductive thin film, and sputtering using the same. It is to provide a target, and further to provide a transparent conductive thin film obtained by sputtering from the sputtering target.

本発明の酸化物焼結体は、インジウム、タングステン、亜鉛、シリコンおよび酸素からなり、タングステンがW/In原子数比で0.004〜0.034、亜鉛がZn/In原子数比で0.005〜0.032、シリコンがSi/In原子数比で0.007〜0.052の割合で含有され、かつ、ビックスバイト型構造の酸化インジウム結晶相を主相とする。   The oxide sintered body of the present invention is composed of indium, tungsten, zinc, silicon, and oxygen. Tungsten is 0.004 to 0.034 in W / In atomic ratio, and zinc is 0.00 in Zn / In atomic ratio. 005 to 0.032, silicon is contained at a Si / In atomic ratio of 0.007 to 0.052, and the main phase is an indium oxide crystal phase having a bixbyite structure.

さらに、焼結密度が6.5g/cm3以上であることが望ましく、平均結晶粒径が5μm以下であることが望ましい。 Furthermore, the sintered density is desirably 6.5 g / cm 3 or more, and the average crystal grain size is desirably 5 μm or less.

本発明のスパッタリングターゲットは、前記のいずれかの酸化物焼結体を平板状に加工し、冷却用金属板に貼り合わせて得る。   The sputtering target of the present invention is obtained by processing any one of the above oxide sintered bodies into a flat plate shape and bonding them to a cooling metal plate.

本発明の非晶質の透明導電性薄膜は、インジウム、タングステン、亜鉛およびシリコンからなり、タングステンがW/In原子数比で0.004〜0.034、亜鉛がZn/In原子数比で0.005〜0.032、シリコンがSi/In原子数比で0.007〜0.052の割合で含み、残部が実質的にインジウムおよび酸素からなる。   The amorphous transparent conductive thin film of the present invention is made of indium, tungsten, zinc and silicon, tungsten is 0.004 to 0.034 in W / In atomic ratio, and zinc is 0 in Zn / In atomic ratio. 0.005 to 0.032, silicon is included in a ratio of 0.007 to 0.052 in terms of Si / In atomic ratio, and the balance is substantially made of indium and oxygen.

また、比抵抗が5×10-4Ωcm以下であることが望ましく、表面の平均粗さ(Ra)が、膜厚の1%未満であることが望ましい。 The specific resistance is desirably 5 × 10 −4 Ωcm or less, and the average surface roughness (Ra) is desirably less than 1% of the film thickness.

さらに、400nmにおける透過率が65%を超えることが望ましい。   Furthermore, it is desirable that the transmittance at 400 nm exceeds 65%.

さらに、3nm〜5nmの金属薄膜が積層されていることが望ましい。   Furthermore, it is desirable that a metal thin film of 3 nm to 5 nm is laminated.

本発明の有機EL素子は、前記のいずれかの透明導電性薄膜を用いる。   The organic EL element of the present invention uses any one of the above transparent conductive thin films.

本発明の有機デバイスは、前記のいずれかの透明導電性薄膜を用いる。   The organic device of the present invention uses any one of the above transparent conductive thin films.

本発明の酸化物焼結体を用いたスパッタリングターゲットから、スパッタリング法により、極めて平滑で、抵抗が低く、非晶質である透明導電性薄膜を安定して得ることができる。さらに、該透明導電性薄膜を有機EL素子などの発光素子、トランジスタ、太陽電池およびレーザなどの有機デバイスの電極に使用することで、ダークスポット等の欠陥が抑制された有機デバイスを提供することが可能となる。   From a sputtering target using the oxide sintered body of the present invention, a transparent conductive thin film that is extremely smooth, low in resistance, and amorphous can be stably obtained by sputtering. Furthermore, by using the transparent conductive thin film as a light emitting element such as an organic EL element, an electrode of an organic device such as a transistor, a solar cell, and a laser, an organic device in which defects such as dark spots are suppressed can be provided. It becomes possible.

本発明者等は、前記課題を解決するために鋭意研究を重ねた結果、スパッタリング法によって種々の組成の透明導電性薄膜を形成し、得られた透明導電性薄膜の結晶構造、電気特性および光学特性を検討したところ、インジウム、タングステン、亜鉛、シリコンおよび酸素からなり、タングステンがW/In原子数比で0.004〜0.034、亜鉛がZn/In原子数比で0.005〜0.032、シリコンがSi/In原子数比で0.007〜0.052の割合で含有されたスパッタリングターゲットを用いると、得られた透明導電性薄膜は、表面平滑性、抵抗および結晶性が、有機EL素子の透明導電性薄膜として好適であること、さらには、スパッタリングの際にノジュールの発生が見られないことを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have formed transparent conductive thin films having various compositions by a sputtering method, and the crystal structure, electrical characteristics, and optics of the obtained transparent conductive thin films. When the characteristics were examined, it was composed of indium, tungsten, zinc, silicon, and oxygen. Tungsten was 0.004 to 0.034 in W / In atomic ratio, and zinc was 0.005 to 0.00 in Zn / In atomic ratio. 032, when a sputtering target containing silicon in a proportion of 0.007 to 0.052 in terms of Si / In atomic ratio is used, the obtained transparent conductive thin film has surface smoothness, resistance, and crystallinity. It is suitable as a transparent conductive thin film of an EL element, and further, it has been found that no nodule is generated during sputtering, and the present invention has been completed. It was.

(酸化物焼結体)
本発明の透明導電性薄膜製造用の酸化物焼結体は、インジウム、タングステン、亜鉛、シリコンおよび酸素からなり、タングステンがW/In原子数比で0.004〜0.034、亜鉛がZn/In原子数比で0.005〜0.032、シリコンがSi/In原子数比で0.007〜0.052の割合で含有される。
(Oxide sintered body)
The oxide sintered body for producing the transparent conductive thin film of the present invention comprises indium, tungsten, zinc, silicon and oxygen, and tungsten is 0.004 to 0.034 in terms of W / In atomic ratio, and zinc is Zn / Silicon is contained in a proportion of 0.005 to 0.032 in terms of In atom number and 0.007 to 0.052 in terms of Si / In atom number.

なお、該酸化物焼結体から作製されるスパッタリングターゲット、および該スパッタリングターゲットを用いて成膜された透明導電性薄膜の組成は、前記酸化物焼結体と実質的に同じである。   In addition, the composition of the sputtering target produced from this oxide sintered compact and the transparent conductive thin film formed into a film using this sputtering target is substantially the same as the said oxide sintered compact.

タングステンは、透明導電性薄膜の結晶化温度を上げる効果、および導電性を付与する効果があり、タングステンの添加により、透明導電性薄膜が非晶質となる。W/In原子数比が0.004未満であると、透明導電性薄膜が結晶化してしまう。一方、0.034を超えると、比抵抗が5×10-4Ωcm以上となってしまう。 Tungsten has an effect of increasing the crystallization temperature of the transparent conductive thin film and an effect of imparting conductivity, and the addition of tungsten makes the transparent conductive thin film amorphous. If the W / In atomic ratio is less than 0.004, the transparent conductive thin film will crystallize. On the other hand, if it exceeds 0.034, the specific resistance becomes 5 × 10 −4 Ωcm or more.

また、酸化物焼結体においては、タングステンが酸化物焼結体の結晶粒の成長を妨げる効果があり、W/In原子数比が0.004以上であれば、酸化物焼結体の平均結晶粒径が、5μm以下と非常に微細になる。スパッタリング中に焼結割れが発生すると、ノジュールはその部分に発生しやすくなるが、本発明の酸化物焼結体においては、平均結晶粒径が非常に小さいため、酸化物焼結体の曲げ強さが高くなり、かかる酸化物焼結体から作製したノジュール発生の原因となるスパッタ中の焼結割れが、ほとんど生じなくなる。一方、W/In原子数比が0.034を超えると、Wが焼結を阻害するために、焼結密度が6.5g/cm3未満となってしまう。焼結密度が低いとノジュールの発生原因となったり、スパッタリング時の成膜速度が遅くなるので、生産上、好ましくない。 Further, in the oxide sintered body, tungsten has an effect of hindering the growth of crystal grains of the oxide sintered body, and if the W / In atomic ratio is 0.004 or more, the average of the oxide sintered body The crystal grain size becomes very fine as 5 μm or less. When a sintering crack occurs during sputtering, nodules are likely to be generated in that portion. However, in the oxide sintered body of the present invention, the average crystal grain size is very small. Therefore, sintering cracks during sputtering that cause nodules produced from such an oxide sintered body hardly occur. On the other hand, if the W / In atomic ratio exceeds 0.034, W inhibits sintering, and the sintered density becomes less than 6.5 g / cm 3 . If the sintered density is low, it may cause nodules and the film formation rate during sputtering will be slow, which is not preferable in production.

亜鉛は、酸化物焼結体において、直流スパッタリングが可能な程度の導電性を付与する目的、および結晶化温度を上げる目的で添加する。酸化物焼結体のZn/In原子数比が0.005未満であると、成膜速度が非常に低くなり、生産性に劣り、また、低抵抗および非晶質の透明導電性薄膜を得ることができない。一方、Zn/In原子数比が0.032を超えると、可視域の短波長側(例えば、波長400nm付近)で、優れた透過特性をもつ透明導電性薄膜が得られない。   Zinc is added in the oxide sintered body for the purpose of imparting conductivity to the extent that direct current sputtering is possible and for raising the crystallization temperature. When the Zn / In atomic ratio of the oxide sintered body is less than 0.005, the film forming speed becomes very low, the productivity is inferior, and a low resistance and amorphous transparent conductive thin film is obtained. I can't. On the other hand, when the Zn / In atomic ratio exceeds 0.032, a transparent conductive thin film having excellent transmission characteristics cannot be obtained on the short wavelength side in the visible range (for example, near the wavelength of 400 nm).

シリコンは、結晶化温度の向上に寄与する。酸化物焼結体のSi/In原子数比が0.007未満であると、結晶化温度が低く、加熱せずに成膜を行っても、膜表面に凹凸が生じてしまう。Si/In原子数比が0.052を超えると、得られる透明導電性薄膜の抵抗が上昇してしまう。   Silicon contributes to improvement of the crystallization temperature. When the Si / In atomic ratio of the oxide sintered body is less than 0.007, the crystallization temperature is low, and unevenness occurs on the film surface even when film formation is performed without heating. When the Si / In atomic ratio exceeds 0.052, the resistance of the obtained transparent conductive thin film increases.

(酸化物焼結体の製造)
本発明の酸化物焼結体を製造するためには、平均粒径が0.1μm〜3μm以下の酸化インジウム粉末、酸化タングステン粉末、酸化シリコンおよび酸化亜鉛粉末を原料として用い、これらを所定の割合で調合し、水とともに樹脂製ポットに入れ、湿式ボールミルで混合する。この際、スラリー内への不純物混入を極力、避けるため、硬質ZrO2ボールミルを用いることが好ましい。混合時間は10時間〜30時間が好ましい。10時間より短いと、原料粉末の粉砕が不十分となり、安定的に高密度のターゲットが得られなくなり、30時間より長いと、過粉砕となり、粒子同士の凝集が強くなり、同様に安定して高密度のターゲットを得られなくなる。混合後、スラリーを取り出し、ろ過、乾燥、造粒する。
(Manufacture of oxide sintered bodies)
In order to produce the oxide sintered body of the present invention, indium oxide powder, tungsten oxide powder, silicon oxide and zinc oxide powder having an average particle size of 0.1 μm to 3 μm or less are used as raw materials, and these are used at a predetermined ratio. Prepare with, put into a resin pot with water and mix with a wet ball mill. At this time, it is preferable to use a hard ZrO 2 ball mill in order to avoid mixing impurities into the slurry as much as possible. The mixing time is preferably 10 hours to 30 hours. If it is shorter than 10 hours, the raw material powder is not sufficiently pulverized, and a stable high-density target cannot be obtained. If it is longer than 30 hours, it is excessively pulverized, and the particles are strongly agglomerated. A high-density target cannot be obtained. After mixing, the slurry is taken out, filtered, dried and granulated.

平均粒径25μm〜100μm程度に造粒した造粒粉を、冷間静水圧(CIP)プレスで196MPa〜490MPa(2ton/cm2〜5ton/cm2)の圧力をかけて成形した。圧力は、196MPa(2ton/cm2)よりも低いと、成形体の密度が高まらず、高密度のターゲットが得られなくなり、490MPa(5ton/cm2)を超えると、成形体密度を高めることはできるが、その圧力を得るための工程および設備等の条件調整が大きくなり、製造コストが上がってしまう。 The granulated powder granulated to have an average particle size of about 25 μm to 100 μm was molded by applying a pressure of 196 MPa to 490 MPa ( 2 ton / cm 2 to 5 ton / cm 2 ) with a cold isostatic pressure (CIP) press. When the pressure is lower than 196 MPa ( 2 ton / cm 2 ), the density of the molded body does not increase, and a high-density target cannot be obtained. When the pressure exceeds 490 MPa (5 ton / cm 2 ), the density of the molded body is increased. However, adjustment of conditions such as a process and equipment for obtaining the pressure increases, and the manufacturing cost increases.

次に、得られた成形体を、炉内容積0.01m3当たり10リットル/分の割合で焼結炉内に酸素を導入する雰囲気で、1200℃〜1500℃で、10時間〜30時間、焼結させる。1200℃よりも低温では、安定的に高密度のターゲットを得られず、1500℃を超えると、結晶粒径が大きくなったり、炉床板との反応が発生してしまう。処理時間が、10時間より短いと、安定的に高密度のターゲットを得られず、30時間を超えると、結晶粒径が大きくなってしまう。 Next, the obtained molded body was subjected to 1200 to 1500 ° C. for 10 to 30 hours in an atmosphere in which oxygen was introduced into the sintering furnace at a rate of 10 liters / minute per 0.01 m 3 of the furnace volume. Sinter. If the temperature is lower than 1200 ° C., a high-density target cannot be stably obtained. If the temperature exceeds 1500 ° C., the crystal grain size increases or a reaction with the hearth plate occurs. When the treatment time is shorter than 10 hours, a high-density target cannot be stably obtained, and when it exceeds 30 hours, the crystal grain size becomes large.

前記焼結時には、750℃までを0.5℃/分程度で、750℃から所定の焼結温度までを1℃/分程度で行うことが好ましい。昇温を遅くするのは、炉内の温度分布を均一にするためである。また、焼結終了後には、酸素導入を止め、焼結温度から1300℃までを10℃/分程度で降温し、1300℃で3時間保持した後、放冷した。   At the time of the sintering, it is preferable to perform the process up to 750 ° C. at about 0.5 ° C./min and the process from 750 ° C. to a predetermined sintering temperature at about 1 ° C./min. The reason for slowing the temperature rise is to make the temperature distribution in the furnace uniform. Further, after the completion of sintering, the introduction of oxygen was stopped, the temperature from the sintering temperature to 1300 ° C. was lowered at about 10 ° C./min, kept at 1300 ° C. for 3 hours, and then allowed to cool.

酸化物焼結体において酸化物が存在する場合、異常放電が起こりやすくなり、直流電力を多く投入すれば、高抵抗物質の帯電が起きやすく、成膜中のアーキング発生頻度が増すため、電力を投入することにより高い成膜速度を得ることは難しい。しかし、酸化物焼結体に酸化物が存在せず、全添加元素がインジウムサイトに固溶している場合、このような現象が発生する可能性は小さくなる。本発明の酸化物焼結体においては、平均粒径が0.1μm〜3μm以下の酸化インジウム、酸化タングステン、酸化シリコンおよび酸化亜鉛を原料粉に用いて、十分に混合粉砕を行うことで、全添加元素をインジウムサイトに置換させることができる。前記原料粉の平均粒径が0.1μm未満であると、固溶しやすくなるが、原料粉の凝集が強くなり、高密度化を達成できない。一方、3μmを超えると、粉砕工程において適度な粉砕が行われず、造粒粉に粗い原料粉が存在する。原料粉が不均一になると、焼結が均一に行われなくなり、高密度を達成できず、粗い酸化物の拡散が進まず、酸化物焼結体中に酸化物が存在するという問題が発生する。   When oxide is present in the oxide sintered body, abnormal discharge is likely to occur, and if a large amount of DC power is applied, charging of a high-resistance material is likely to occur, and the frequency of arcing during film formation increases. It is difficult to obtain a high film formation rate by introducing the same. However, when no oxide is present in the oxide sintered body and all the added elements are dissolved in the indium sites, the possibility of such a phenomenon is reduced. In the oxide sintered body of the present invention, by using indium oxide, tungsten oxide, silicon oxide, and zinc oxide having an average particle size of 0.1 μm to 3 μm or less as raw material powder, sufficient mixing and pulverization can be performed. The additive element can be replaced with an indium site. When the average particle diameter of the raw material powder is less than 0.1 μm, it is easy to dissolve, but the aggregation of the raw material powder becomes strong, and high density cannot be achieved. On the other hand, if it exceeds 3 μm, appropriate pulverization is not performed in the pulverization step, and coarse raw material powder exists in the granulated powder. When the raw material powder becomes non-uniform, sintering is not performed uniformly, high density cannot be achieved, diffusion of coarse oxide does not progress, and there is a problem that oxide exists in the oxide sintered body .

得られた酸化物焼結体のスパッタリングする面をカップ砥石などで研磨し、厚さ3mm〜10mm程度に加工し、インジウム系合金などの冷却用金属板(バッキングプレート)に貼り合わせてスパッタリングターゲットとした。   The surface to be sputtered of the obtained oxide sintered body is polished with a cup grindstone or the like, processed to a thickness of about 3 mm to 10 mm, and bonded to a cooling metal plate (backing plate) such as an indium alloy and a sputtering target. did.

(スパッタリング成膜)
本発明の透明導電性薄膜を得るためには、本発明のスパッタリングターゲットを用いて、スパッタリング時のターゲット基板間距離を50mm〜100mmとし、スパッタリングガス圧を0.5Pa〜1.5Paとして、直流マグネトロンスパッタリング法により成膜を行う。
(Sputtering deposition)
In order to obtain the transparent conductive thin film of the present invention, the sputtering target of the present invention is used, the distance between target substrates during sputtering is set to 50 mm to 100 mm, the sputtering gas pressure is set to 0.5 Pa to 1.5 Pa, and the direct current magnetron is used. Film formation is performed by sputtering.

ターゲット基板間距離が50mmよりも短くなると、基板に堆積するスパッタ粒子の運動エネルギーが高く、基板へのダメージが大きくなる。このため、膜自体が低級酸化物になり抵抗が高くなってしまう。また、膜厚分布が悪くなる。100mmより長いと、膜厚分布は良くなるが、基板に堆積するスパッタ粒子の運動エネルギーが低くなりすぎて、基板上で拡散による緻密化が起きず、密度の低い透明導電性薄膜しか得られず、好ましくない。   When the distance between the target substrates is shorter than 50 mm, the kinetic energy of the sputtered particles deposited on the substrate is high, and the damage to the substrate is increased. For this reason, the film itself becomes a lower oxide and the resistance becomes high. Also, the film thickness distribution becomes worse. If it is longer than 100 mm, the film thickness distribution is improved, but the kinetic energy of the sputtered particles deposited on the substrate becomes too low, so that densification due to diffusion does not occur on the substrate, and only a transparent conductive thin film with low density can be obtained. Is not preferable.

スパッタリングガス圧が0.5Paより低いと、基板に堆積するスパッタ粒子の運動エネルギーが高く、基板へのダメージが大きくなる。このため、膜自体が低級酸化物になり抵抗が高くなってしまう。1.5Paより高いと、成膜速度が遅くなるだけでなく、基板に堆積するスパッタ粒子の運動エネルギーが低くなりすぎて、基板上で拡散による緻密化が起きず、密度の低い透明導電性薄膜しか得られず、好ましくない。   When the sputtering gas pressure is lower than 0.5 Pa, the kinetic energy of the sputtered particles deposited on the substrate is high, and the damage to the substrate increases. For this reason, the film itself becomes a lower oxide and the resistance becomes high. If it is higher than 1.5 Pa, not only the film formation rate is slowed, but also the kinetic energy of the sputtered particles deposited on the substrate becomes too low, and densification due to diffusion does not occur on the substrate. However, this is not preferable.

(透明導電性薄膜)
本発明の透明導電性薄膜は、インジウム、タングステン、亜鉛、シリコンおよび酸素からなり、タングステンがW/In原子数比で0.004〜0.034、亜鉛がZn/In原子数比で0.005〜0.032、シリコンがSi/In原子数比で0.007〜0.052の割合で含有される。該透明導電性薄膜は、5×10-4Ωcm以下の低抵抗を示す。
(Transparent conductive thin film)
The transparent conductive thin film of the present invention is composed of indium, tungsten, zinc, silicon and oxygen, and tungsten is 0.004 to 0.034 in W / In atomic ratio and zinc is 0.005 in Zn / In atomic ratio. .About.0.032, silicon is contained at a Si / In atomic ratio of 0.007 to 0.052. The transparent conductive thin film exhibits a low resistance of 5 × 10 −4 Ωcm or less.

本発明の透明導電性薄膜は、加熱せずに成膜したとしても5×10-4Ωcm以下の比抵抗を示す。このため、有機発光層の上に、電極として形成することができ、上面電極である陰極から光を効率的に取り出すことが可能なトップエミッション型有機ELを実現できる。また、低温基板上に、低抵抗で表面平滑性に優れた透明電極を形成することが可能であるため、樹脂フィルム基板を用いたフレキシブル透明有機EL素子の陰極および/または陽極としても利用することができ、工業的価値が極めて高い。 The transparent conductive thin film of the present invention exhibits a specific resistance of 5 × 10 −4 Ωcm or less even when formed without heating. Therefore, it is possible to realize a top emission type organic EL that can be formed as an electrode on the organic light emitting layer and can efficiently extract light from the cathode as the upper surface electrode. Moreover, since it is possible to form a transparent electrode with low resistance and excellent surface smoothness on a low-temperature substrate, it can also be used as a cathode and / or an anode of a flexible transparent organic EL device using a resin film substrate. The industrial value is extremely high.

また、本発明の透明導電性薄膜は、完全に非晶質で、表面が平滑であり、その表面の平均粗さ(Ra)が膜厚の1%未満である。透明導電性薄膜として使用する場合に、さらに低抵抗であることが望まれる場合がある。この場合には、銀、銀合金、アルミニウムまたはアルミニウム合金などの金属薄膜を積層すれば、低抵抗化が可能となる。金属薄膜の膜厚は、3nm〜5nmが好ましい。金属薄膜は、膜厚が5nmを超えて厚くなれば、抵抗値は低くなるが、透過率は悪くなる。逆に、3nm未満であると、金属薄膜の連続性が失われ、金属薄膜を積層する効果が発揮できない。   The transparent conductive thin film of the present invention is completely amorphous and has a smooth surface, and the average roughness (Ra) of the surface is less than 1% of the film thickness. When used as a transparent conductive thin film, it may be desired to have a lower resistance. In this case, the resistance can be reduced by laminating metal thin films such as silver, silver alloy, aluminum or aluminum alloy. The thickness of the metal thin film is preferably 3 nm to 5 nm. When the metal thin film is thicker than 5 nm, the resistance value is lowered, but the transmittance is deteriorated. Conversely, if it is less than 3 nm, the continuity of the metal thin film is lost, and the effect of laminating the metal thin film cannot be exhibited.

酸化物焼結体の製造
(実施例1〜3、比較例1、2)
原料として、平均粒径0.1μm〜3μmのIn23粉(純度99.99質量%)、平均粒径0.1μm〜3μmのWO3粉(純度99.99質量%)、平均粒径0.1μm〜3μmのSiO2粉(純度99.99質量%)、および平均粒径0.1μm〜3μmのZnO粉(純度99.99質量%)を用いた。
Production of oxide sintered bodies (Examples 1 to 3, Comparative Examples 1 and 2)
As raw materials, In 2 O 3 powder (purity 99.99 mass%) with an average particle diameter of 0.1 μm to 3 μm, WO 3 powder (purity 99.99 mass%) with an average particle diameter of 0.1 μm to 3 μm, average particle diameter SiO 2 powder (purity 99.99 mass%) of 0.1 μm to 3 μm and ZnO powder (purity 99.99 mass%) having an average particle size of 0.1 μm to 3 μm were used.

各粉末を、所定量に配合して、純水、分散剤、バインダとともに樹脂製ポットに入れ、硬質ZrO2ボールミルを用いた湿式ボールミルを用いて、20時間、混合した。混合スラリーを取り出し、濾過、乾燥および造粒を行った。得られた造粒粉に、294MPa(3ton/cm2)の圧力をかけて、冷間静水圧プレスで成形した。 Each powder was blended in a predetermined amount, put into a resin pot together with pure water, a dispersant, and a binder, and mixed for 20 hours using a wet ball mill using a hard ZrO 2 ball mill. The mixed slurry was taken out, filtered, dried and granulated. The obtained granulated powder was molded by a cold isostatic press while applying a pressure of 294 MPa (3 ton / cm 2 ).

次に、得られた成形体を、炉内容積0.01m3当たり10リットル/分の割合で焼結炉内に酸素を導入する雰囲気で、1300℃で30時間、焼結した。この際、750℃までを0.5℃/分で、750℃から1300℃までを1℃/分で、それぞれ昇温した。焼結終了後、酸素導入を止め、1300℃から1200℃までを10℃/分で降温し、1200℃を3時間保持した後、放冷した。以上により、酸化物焼結体が得られた。 Next, the obtained molded body was sintered at 1300 ° C. for 30 hours in an atmosphere in which oxygen was introduced into the sintering furnace at a rate of 10 liters / minute per 0.01 m 3 of the furnace volume. At this time, the temperature was raised from 750 ° C. at 0.5 ° C./min and from 750 ° C. to 1300 ° C. at 1 ° C./min. After completion of the sintering, the introduction of oxygen was stopped, the temperature was lowered from 1300 ° C. to 1200 ° C. at 10 ° C./min, 1200 ° C. was maintained for 3 hours, and then allowed to cool. Thus, an oxide sintered body was obtained.

得られた酸化物焼結体の焼結密度を、アルキメデス法で求めた。結晶粒径の測定試料には、得られた酸化物焼結体を表面研磨後、1300℃にてサーマルエッチングを施し、走査型電子顕微鏡(SEM)で観察して、平均粒径を求めた。   The sintered density of the obtained oxide sintered body was determined by Archimedes method. The obtained oxide sintered body was subjected to thermal etching at 1300 ° C. and then observed with a scanning electron microscope (SEM) to obtain an average particle diameter.

インジウムに対するタングステン、シリコンおよび亜鉛の原子数比で求めた酸化物焼結体の組成と、焼結温度と、得られた酸化物焼結体の焼結密度および平均粒径とを、表1に示す。   Table 1 shows the composition of the oxide sintered body obtained by the atomic ratio of tungsten, silicon and zinc to indium, the sintering temperature, and the sintered density and average particle diameter of the obtained oxide sintered body. Show.

Figure 2006160535
Figure 2006160535

焼結密度については、W/In原子数比が0.040である比較例2では、焼結密度が6.5g/cm3未満となり、W量が多くなると焼結性が悪くなることが分かった。平均粒径については、W量の効果が大きく、比較例1のように、W/In原子数比が0.003以下になると、酸化物焼結体の焼結密度の面では問題がないが、平均粒径が5μmよりも大きくなった。 As for the sintered density, in Comparative Example 2 where the W / In atomic ratio is 0.040, the sintered density is less than 6.5 g / cm 3, and it is found that the sinterability deteriorates when the amount of W increases. It was. As for the average particle size, the effect of the W amount is large, and when the W / In atomic ratio is 0.003 or less as in Comparative Example 1, there is no problem in terms of the sintered density of the oxide sintered body. The average particle size was larger than 5 μm.

実施例1〜3、および比較例1、2で得られた酸化物焼結体における添加元素の分布状態ならびに酸化物の有無を、電子プローグマイクロアナライザ(EPMA)およびX線回折装置(XRD)で調査したところ、タングステン、シリコンおよび亜鉛とも均一に分散しており、これらの酸化物の存在は認められなかった。   The distribution state of the additive elements and the presence or absence of oxides in the oxide sintered bodies obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were measured with an electronic probe microanalyzer (EPMA) and an X-ray diffractometer (XRD). As a result of investigation, tungsten, silicon and zinc were uniformly dispersed, and the presence of these oxides was not recognized.

(比較例3)
次に、原料として、平均粒径0.5μmのIn23粉(純度99.99質量%)、平均粒径6μmのWO3粉(純度99.99質量%)、平均粒径0.5μmのSiO2粉(純度99.99質量%)、平均粒径0.5μmのZnO粉(純度99.99質量%)を用いた以外は、実施例1〜3と同様にして、酸化物焼結体を製造した。
(Comparative Example 3)
Next, as raw materials, In 2 O 3 powder (purity 99.99 mass%) with an average particle diameter of 0.5 μm, WO 3 powder (purity 99.99 mass%) with an average particle diameter of 6 μm, average particle diameter of 0.5 μm Sintered oxide in the same manner as in Examples 1 to 3 except that SiO 2 powder (purity 99.99 mass%) and ZnO powder (purity 99.99 mass%) with an average particle size of 0.5 μm were used. The body was manufactured.

電子プローグマイクロアナライザ(EPMA)で、各元素の分布状態を調査したところ、酸化物焼結体の結晶粒径よりも大きい3μmのタングステン酸化物が観察された。このように粗大な酸化物が存在すると、アーキングの原因となり、生産上、好ましくない。シリコンおよび亜鉛は均一に分散していたため、インジウムサイトに固溶していると考えられる。   When the distribution state of each element was investigated with an electronic probe microanalyzer (EPMA), 3 μm tungsten oxide larger than the crystal grain size of the oxide sintered body was observed. The presence of such a coarse oxide causes arcing and is not preferable in production. Since silicon and zinc were uniformly dispersed, it is considered that they were dissolved in the indium site.

成膜
(実施例4〜8、比較例4〜8)
組成を変えた以外は、実施例1と同様にして、実施例4〜8および比較例4〜8の酸化物焼結体を得て、それぞれの酸化物焼結体のスパッタ面を、カップ砥石で磨き、直径152mm、厚さ5mmに加工し、インジウム系合金を用いてバッキングプレートに貼り合わせて、スパッタリングターゲットとした。
Film formation (Examples 4 to 8, Comparative Examples 4 to 8)
Except that the composition was changed, the oxide sintered bodies of Examples 4 to 8 and Comparative Examples 4 to 8 were obtained in the same manner as in Example 1, and the sputter surfaces of the respective oxide sintered bodies were used as cup grindstones. Then, it was processed into a diameter of 152 mm and a thickness of 5 mm, and bonded to a backing plate using an indium alloy to obtain a sputtering target.

図1に概略図を示した直流マグネトロンスパッタ装置の非磁性体ターゲット用カソードに、前記スパッタリングターゲット(2)を取り付け、スパッタリングターゲット(2)の対向面に、厚さ1.1mmの#7059ガラス基板(4)を取り付けた。雰囲気は、Ar+O2とし、全圧0.6Pa、O2/(Ar+O2)×100=2.5%という条件で、ターゲット基板間距離を70mmとし、ガラス基板(4)の上に、膜厚200nmの透明導電性薄膜を形成した。なお、基板加熱は行わなかった。 The sputtering target (2) is attached to the cathode for the non-magnetic target of the DC magnetron sputtering apparatus schematically shown in FIG. 1, and a # 7059 glass substrate having a thickness of 1.1 mm is provided on the opposite surface of the sputtering target (2). (4) was attached. The atmosphere is Ar + O 2 , the total pressure is 0.6 Pa, O 2 / (Ar + O 2 ) × 100 = 2.5%, the distance between the target substrates is 70 mm, and the film thickness is formed on the glass substrate (4). A 200 nm transparent conductive thin film was formed. The substrate was not heated.

実施例4、5および比較例4について、成膜速度を成膜時間と膜厚から求めた。酸化物焼結体の組成、焼結密度および成膜速度を、表2に示す。なお、膜厚は、ガラス基板(4)上にマジックインキでマークし、マークしたマジックインキとその上に堆積した膜とを、成膜後にアセトンで除去し、生じた段差を接触式表面形状測定器(Dektak3ST)で測定して、得た。 For Examples 4 and 5 and Comparative Example 4, the film formation rate was determined from the film formation time and the film thickness. Table 2 shows the composition, sintered density, and deposition rate of the oxide sintered body. The film thickness is marked on the glass substrate (4) with magic ink, the marked magic ink and the film deposited thereon are removed with acetone after film formation, and the resulting step is measured by contact type surface shape measurement. Obtained by measuring with a vessel (Dektak 3 ST).

Figure 2006160535
Figure 2006160535

実施例6〜8および比較例5〜8について、得られた透明導電性薄膜の表面平滑性について、原子間力顕微鏡で平均粗さ(Ra)を測定し、比抵抗を4端針法で測定した。また、透明導電性薄膜の組成をEPMAで、それぞれ求め、基板を含めた400nmにおける光透過率を、分光光度計(日立製作所社製、U−4000)で測定した。透明導電性薄膜の組成、比抵抗、平均粗さ(Ra)および400nmにおける透過率を表3に示す。   About Examples 6-8 and Comparative Examples 5-8, about the surface smoothness of the obtained transparent conductive thin film, an average roughness (Ra) was measured with an atomic force microscope, and a specific resistance was measured with a four-end needle method. did. Moreover, the composition of the transparent conductive thin film was determined with EPMA, and the light transmittance at 400 nm including the substrate was measured with a spectrophotometer (manufactured by Hitachi, Ltd., U-4000). Table 3 shows the composition, specific resistance, average roughness (Ra), and transmittance at 400 nm of the transparent conductive thin film.

結晶性についても、X線回折装置(XRD)にて調査した。   The crystallinity was also investigated with an X-ray diffractometer (XRD).

本発明の実施例4から8のいずれの透明導電性薄膜でも、結晶ピークは観察されず、非晶質であった。   In any of the transparent conductive thin films of Examples 4 to 8 of the present invention, no crystal peak was observed, and the film was amorphous.

Figure 2006160535
Figure 2006160535

酸化物焼結体のZn/In原子数比が0.005以上の実施例4および5では、ITOと同等の50nm/s程度まで成膜速度が高くなった。   In Examples 4 and 5 in which the Zn / In atomic ratio of the oxide sintered body was 0.005 or more, the film formation rate increased to about 50 nm / s, which is equivalent to ITO.

酸化物焼結体のZn/In原子数比が0.005未満の比較例4では、成膜速度がITOの半分程度と、非常に小さい値となり、生産上好ましくない。   In Comparative Example 4 in which the Zn / In atomic ratio of the oxide sintered body is less than 0.005, the film formation rate is about half that of ITO, which is a very small value, which is not preferable for production.

比較例5のように、透明導電性薄膜のW/In原子数比が0.034を超えると、透明導電性薄膜の比抵抗が急激に高くなり、電極としては不適であった。   As in Comparative Example 5, when the W / In atomic ratio of the transparent conductive thin film exceeded 0.034, the specific resistance of the transparent conductive thin film rapidly increased, which was unsuitable as an electrode.

一方、比較例6のように、透明導電性薄膜のSi/In原子数比が0.007未満であると、スパッタ中に透明導電性薄膜が結晶化するために、表面に凹凸が発生し、膜厚の200nmに対して1%である2nm以上の4nmという高い平均粗さ(Ra)を示した。   On the other hand, as in Comparative Example 6, when the Si / In atomic ratio of the transparent conductive thin film is less than 0.007, the transparent conductive thin film crystallizes during sputtering, resulting in unevenness on the surface, A high average roughness (Ra) of 4 nm, which is 2 nm or more, which is 1% with respect to 200 nm of the film thickness was shown.

比較のために、ITO膜も、同様に測定したが、平均粗さ(Ra)は2.2nmと、膜厚の200nmに対して1%である2nm以上の平均粗さ(Ra)を示した。   For comparison, the ITO film was also measured in the same manner, but the average roughness (Ra) was 2.2 nm, showing an average roughness (Ra) of 2 nm or more, which is 1% of the film thickness of 200 nm. .

比較例7のように、透明導電性薄膜のZn/In原子数比が0.032を超えると、400nmにおける透過率が60%以下となってしまった。   As in Comparative Example 7, when the Zn / In atomic ratio of the transparent conductive thin film exceeded 0.032, the transmittance at 400 nm was 60% or less.

比較例8のように、Si/In原子数比が0.052を超えると、比抵抗は5×10-4Ωcmよりも高くなってしまう。 As in Comparative Example 8, when the Si / In atomic ratio exceeds 0.052, the specific resistance becomes higher than 5 × 10 −4 Ωcm.

(実施例9、比較例9)
低抵抗化を目的として、Ag膜との積層を試みた。実施例6と同組成で、同様に作製した膜厚75nmの第1の透明導電性薄膜の上に、Ag層を5nm成膜し、さらに、第1の透明導電性薄膜と同じように第2の透明導電性薄膜を膜厚75nm、積層した。得られた積層膜の比抵抗を測定したところ、5×10-5Ωcmを示し、比抵抗が1桁下がった。
(Example 9, Comparative Example 9)
Lamination with an Ag film was attempted for the purpose of reducing resistance. On the first transparent conductive thin film having the same composition as that of Example 6 and having a thickness of 75 nm, an Ag layer was formed to 5 nm, and the second layer was formed in the same manner as the first transparent conductive thin film. The transparent conductive thin film was laminated with a thickness of 75 nm. When the specific resistance of the obtained laminated film was measured, it showed 5 × 10 −5 Ωcm, and the specific resistance decreased by one digit.

同様に実施例6と同組成で、同様に作製した膜厚75nmの第1の透明導電性薄膜の上に、Ag層を7nm成膜し、さらに、第1の透明導電性薄膜と同じように第2の透明導電性薄膜を膜厚75nm、積層した。得られた積層膜の抵抗値は下がるが、550nmにおける透過率が87%であり、90%以下であった。   Similarly, on the first transparent conductive thin film having the same composition as that of Example 6 and having a thickness of 75 nm, an Ag layer was formed to 7 nm, and in the same manner as the first transparent conductive thin film. The second transparent conductive thin film was laminated with a thickness of 75 nm. Although the resistance value of the obtained laminated film was lowered, the transmittance at 550 nm was 87% and 90% or less.

本発明の実施例で使用する直流マグネトロンスパッタリング装置の概略図である。It is the schematic of the direct current | flow magnetron sputtering apparatus used in the Example of this invention.

符号の説明Explanation of symbols

1 真空チャンバ
2 ターゲット
3 直流電源
4 ガラス基板
5 供給管
6 マグネット
1 Vacuum chamber 2 Target 3 DC power supply 4 Glass substrate 5 Supply pipe 6 Magnet

Claims (11)

インジウム、タングステン、亜鉛、シリコンおよび酸素からなり、タングステンがW/In原子数比で0.004〜0.034、亜鉛がZn/In原子数比で0.005〜0.032、シリコンがSi/In原子数比で0.007〜0.052の割合で含有され、かつ、ビックスバイト型構造の酸化インジウム結晶相を主相とすることを特徴とする酸化物焼結体。   It consists of indium, tungsten, zinc, silicon and oxygen, tungsten is 0.004-0.034 in W / In atomic ratio, zinc is 0.005-0.032 in Zn / In atomic ratio, silicon is Si / An oxide sintered body containing an In atom ratio of 0.007 to 0.052 in terms of In atomic ratio and having a bixbite type indium oxide crystal phase as a main phase. 焼結密度が6.5g/cm3以上である請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, wherein the sintered density is 6.5 g / cm 3 or more. 平均結晶粒径が5μm以下である請求項1または2に記載の酸化物焼結体。   The oxide sintered body according to claim 1 or 2, wherein the average crystal grain size is 5 µm or less. 請求項1〜3のいずれかに記載の酸化物焼結体を平板状に加工し、冷却用金属板に貼り合わせたことを特徴とするスパッタリングターゲット。   A sputtering target, wherein the oxide sintered body according to any one of claims 1 to 3 is processed into a flat plate shape and bonded to a cooling metal plate. インジウム、タングステン、亜鉛およびシリコンからなり、タングステンがW/In原子数比で0.004〜0.034、亜鉛がZn/In原子数比で0.005〜0.032、シリコンがSi/In原子数比で0.007〜0.052の割合で含み、残部が実質的にインジウムおよび酸素からなる非晶質の透明導電性薄膜。   Made of indium, tungsten, zinc and silicon, tungsten is 0.004-0.034 in W / In atomic ratio, zinc is 0.005-0.032 in Zn / In atomic ratio, silicon is Si / In atoms An amorphous transparent conductive thin film comprising a number ratio of 0.007 to 0.052 and the balance being substantially composed of indium and oxygen. 比抵抗が5×10-4Ωcm以下である請求項5に記載の透明導電性薄膜。 The transparent conductive thin film according to claim 5, wherein the specific resistance is 5 × 10 −4 Ωcm or less. 表面の平均粗さ(Ra)が、膜厚の1%未満である請求項5または6に記載の透明導電性薄膜。   The transparent conductive thin film according to claim 5 or 6, wherein the surface has an average roughness (Ra) of less than 1% of the film thickness. 400nmにおける透過率が65%を超えることを特徴とする請求項5〜7のいずれかに記載の透明導電性薄膜。   The transparent conductive thin film according to any one of claims 5 to 7, wherein the transmittance at 400 nm exceeds 65%. 請求項5〜8のいずれかに記載の透明導電性薄膜に3nm〜5nmの金属薄膜が積層されている透明導電性薄膜。   A transparent conductive thin film in which a metal thin film of 3 nm to 5 nm is laminated on the transparent conductive thin film according to claim 5. 請求項5〜9のいずれかに記載の透明導電性薄膜を用いた有機エレクトロルミネッセンス素子。   The organic electroluminescent element using the transparent conductive thin film in any one of Claims 5-9. 請求項5〜9のいずれかに記載の透明導電性薄膜を用いた有機デバイス。   The organic device using the transparent conductive thin film in any one of Claims 5-9.
JP2004350207A 2004-12-02 2004-12-02 Oxide sintered compact, sputtering target and transparent conductive thin film Withdrawn JP2006160535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350207A JP2006160535A (en) 2004-12-02 2004-12-02 Oxide sintered compact, sputtering target and transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350207A JP2006160535A (en) 2004-12-02 2004-12-02 Oxide sintered compact, sputtering target and transparent conductive thin film

Publications (1)

Publication Number Publication Date
JP2006160535A true JP2006160535A (en) 2006-06-22

Family

ID=36662970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350207A Withdrawn JP2006160535A (en) 2004-12-02 2004-12-02 Oxide sintered compact, sputtering target and transparent conductive thin film

Country Status (1)

Country Link
JP (1) JP2006160535A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153453B2 (en) * 2004-04-27 2006-12-26 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, sputtering target, transparent conductive thin film and manufacturing method therefor
JP2008034367A (en) * 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd Display device
JP2008036952A (en) * 2006-08-04 2008-02-21 Asahi Glass Co Ltd Electroconductive laminate and protective plate for plasma display
TWI418529B (en) * 2010-08-31 2013-12-11 Jx Nippon Mining & Metals Corp Oxide sintered body and oxide semiconductor thin film
US8974918B2 (en) 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
WO2015146745A1 (en) * 2014-03-25 2015-10-01 住友電気工業株式会社 Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device
WO2016024442A1 (en) * 2014-08-12 2016-02-18 住友電気工業株式会社 Oxide sintered body and method of manufacturing same, sputter target, and semiconductor device
JP2016216346A (en) * 2014-03-25 2016-12-22 住友電気工業株式会社 Oxide sintered compact and method for producing the same, sputtering target, and semiconductor device
US20170069474A1 (en) 2015-02-13 2017-03-09 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
JP2017057108A (en) * 2015-09-16 2017-03-23 住友電気工業株式会社 Oxide sintered body and manufacturing method therefor, sputter target and manufacturing method of semiconductor device
JP2018087132A (en) * 2018-01-09 2018-06-07 住友電気工業株式会社 Oxide sintered body and production method thereof, sputter target, and method for manufacturing semiconductor device
US10087517B2 (en) 2014-10-22 2018-10-02 Sumitomo Electric Industries, Ltd. Oxide sintered body and semiconductor device
JP2018162210A (en) * 2018-05-31 2018-10-18 住友電気工業株式会社 Oxide sintered body and method for producing the same, sputter target, and method for producing semiconductor device
TWI704123B (en) * 2015-09-16 2020-09-11 日商住友電氣工業股份有限公司 Oxide sintered body, its manufacturing method, sputtering target, and semiconductor device manufacturing method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153453B2 (en) * 2004-04-27 2006-12-26 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, sputtering target, transparent conductive thin film and manufacturing method therefor
JP2008034367A (en) * 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd Display device
US8974918B2 (en) 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2008036952A (en) * 2006-08-04 2008-02-21 Asahi Glass Co Ltd Electroconductive laminate and protective plate for plasma display
TWI418529B (en) * 2010-08-31 2013-12-11 Jx Nippon Mining & Metals Corp Oxide sintered body and oxide semiconductor thin film
EP2980041A4 (en) * 2014-03-25 2017-01-11 Sumitomo Electric Industries, Ltd. Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device
WO2015146745A1 (en) * 2014-03-25 2015-10-01 住友電気工業株式会社 Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device
US10480060B2 (en) 2014-03-25 2019-11-19 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
US9957604B2 (en) 2014-03-25 2018-05-01 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
JP2016216346A (en) * 2014-03-25 2016-12-22 住友電気工業株式会社 Oxide sintered compact and method for producing the same, sputtering target, and semiconductor device
JP2015193525A (en) * 2014-03-25 2015-11-05 住友電気工業株式会社 Oxide sintered body and method for producing the same, sputter target, and semiconductor device
KR102042905B1 (en) * 2014-03-25 2019-11-08 스미토모덴키고교가부시키가이샤 Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device
KR20170049630A (en) * 2014-03-25 2017-05-10 스미토모덴키고교가부시키가이샤 Oxide sintered compact, method for manufacturing same, sputtering target, and semiconductor device
JPWO2016024442A1 (en) * 2014-08-12 2017-05-25 住友電気工業株式会社 Oxide sintered body and manufacturing method thereof, sputter target, and semiconductor device
CN105745183B (en) * 2014-08-12 2018-03-13 住友电气工业株式会社 Oxidate sintered body and its manufacture method, sputtering target and semiconductor devices
CN105745183A (en) * 2014-08-12 2016-07-06 住友电气工业株式会社 Oxide sintered body and method of manufacturing same, sputter target, and semiconductor device
KR101863467B1 (en) 2014-08-12 2018-05-31 스미토모덴키고교가부시키가이샤 Oxide sintered body and method of manufacturing same, sputter target, and semiconductor device
WO2016024442A1 (en) * 2014-08-12 2016-02-18 住友電気工業株式会社 Oxide sintered body and method of manufacturing same, sputter target, and semiconductor device
US10087517B2 (en) 2014-10-22 2018-10-02 Sumitomo Electric Industries, Ltd. Oxide sintered body and semiconductor device
US10475631B2 (en) 2015-02-13 2019-11-12 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
EP3257827A4 (en) * 2015-02-13 2018-10-17 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for producing same, sputter target, and semiconductor device
US10811238B2 (en) 2015-02-13 2020-10-20 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
US20170069474A1 (en) 2015-02-13 2017-03-09 Sumitomo Electric Industries, Ltd. Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
JP2017057108A (en) * 2015-09-16 2017-03-23 住友電気工業株式会社 Oxide sintered body and manufacturing method therefor, sputter target and manufacturing method of semiconductor device
TWI704123B (en) * 2015-09-16 2020-09-11 日商住友電氣工業股份有限公司 Oxide sintered body, its manufacturing method, sputtering target, and semiconductor device manufacturing method
JP2018087132A (en) * 2018-01-09 2018-06-07 住友電気工業株式会社 Oxide sintered body and production method thereof, sputter target, and method for manufacturing semiconductor device
JP2018162210A (en) * 2018-05-31 2018-10-18 住友電気工業株式会社 Oxide sintered body and method for producing the same, sputter target, and method for producing semiconductor device

Similar Documents

Publication Publication Date Title
JP4826066B2 (en) Amorphous transparent conductive thin film and method for producing the same, and sputtering target for obtaining the amorphous transparent conductive thin film and method for producing the same
JP5880667B2 (en) Target and manufacturing method thereof
JP2006193363A (en) Oxide sintered compact, sputtering target, and transparent electroconductive thin film
KR100505536B1 (en) Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
JP6015801B2 (en) Oxide sintered body, manufacturing method thereof, target, and transparent conductive film
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
JP2006160535A (en) Oxide sintered compact, sputtering target and transparent conductive thin film
JP2006188392A (en) Oxide sintered compact, transparent electroconductive thin film, and element packaged with the same
JP3945395B2 (en) Transparent conductive thin film, method for forming the same, transparent conductive substrate for display panel using the same, and organic electroluminescence element
JP2007084881A (en) Tablet of oxide sintered body for vapor deposition, and transparent oxide conductive film
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP2004123479A (en) Oxide sintered compact and sputtering target
JP2004006221A (en) Transparent conductive thin film, manufacturing method thereof, sintering body target for manufacturing the same, organic electroluminescent element and its manufacturing process
WO2007058318A1 (en) Fired material and process for producing the same
JP2005320192A (en) Oxide sintered compact, spattering target, and transparent conductive thin film
JP2006219357A (en) Oxide sintered compact, sputtering target and transparent electroconductive membrane
JP4211558B2 (en) Sputtering target material, manufacturing method thereof, and manufacturing method of transparent conductive film using the same
JP2005298306A (en) Oxide sintered compact, sputtering target and transparent electrically conductive thin film
JP2004339607A (en) Transparent electroconductive film and sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090303