JP2007246318A - Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film - Google Patents

Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film Download PDF

Info

Publication number
JP2007246318A
JP2007246318A JP2006070322A JP2006070322A JP2007246318A JP 2007246318 A JP2007246318 A JP 2007246318A JP 2006070322 A JP2006070322 A JP 2006070322A JP 2006070322 A JP2006070322 A JP 2006070322A JP 2007246318 A JP2007246318 A JP 2007246318A
Authority
JP
Japan
Prior art keywords
oxide
sintered body
oxide sintered
film
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006070322A
Other languages
Japanese (ja)
Inventor
Takayuki Abe
能之 阿部
Noriyuki Nakayama
徳行 中山
Takeshi Obara
剛 小原
Riichiro Wake
理一郎 和気
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006070322A priority Critical patent/JP2007246318A/en
Publication of JP2007246318A publication Critical patent/JP2007246318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide sintered compact with which crazing and cracking do not occur in spite of feeding of a large amount of energies in manufacturing the oxide transparent conductive film by a vacuum vapor deposition method, such as an electron beam vapor deposition method, ion plating method, high-density plasma-assisted vapor deposition method or the like. <P>SOLUTION: The oxide sintered compact contains an indium oxide formed by solid-solubilizing molybdenum, in which the molybdenum is contained at ≥0.001 and ≤0.060 in the ratio of molybdenum atoms to indium, the density is ≥3.7 g/cm<SP>3</SP>and ≤6.5 g/cm<SP>3</SP>, and a metal phase and a crystal phase of a molybdenum oxide are not included. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空蒸着法に用いられるタブレット用の酸化物焼結体、その製造方法、そしてこの酸化物焼結体をタブレットとして用いて酸化物透明導電膜を得る方法、そして得られた太陽電池や表示素子などに用いられる透明導電膜に関する。   The present invention relates to an oxide sintered body for tablets used in a vacuum deposition method, a method for producing the same, a method for obtaining an oxide transparent conductive film using the oxide sintered body as a tablet, and an obtained solar cell. The present invention relates to a transparent conductive film used for a display device and the like.

酸化物透明導電膜は、高い導電性と可視光領域での高い透過率とを有する。このため、太陽電池や液晶表示素子、その他各種受光素子の電極などに利用されているばかりでなく、近赤外線領域の波長での反射吸収特性を生かして、自動車や建築物の窓ガラス等に用いる熱線反射膜や、各種の帯電防止膜、冷凍ショーケースなどの防曇用の透明発熱体としても利用されている。   The oxide transparent conductive film has high conductivity and high transmittance in the visible light region. For this reason, it is used not only for the electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, but also for the window glass of automobiles and buildings by taking advantage of the reflection and absorption characteristics at wavelengths in the near infrared region. It is also used as a transparent heating element for anti-fogging, such as a heat ray reflective film, various antistatic films, and a frozen showcase.

酸化物透明導電膜には、アンチモンやフッ素をドーパントとして含む酸化錫(SnO2)や、アルミニウムやガリウムをドーパントとして含む酸化亜鉛(ZnO)や、錫をドーパントとして含む酸化インジウム(In23)などが広範に利用されている。特に、錫をドーパントとして含む酸化インジウム膜、すなわちIn23−Sn系膜は、ITO(Indium tin oxide)膜と称され、特に低抵抗の酸化物透明導電膜が容易に得られることから、これまでよく用いられてきた。 The oxide transparent conductive film includes tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, zinc oxide (ZnO) containing aluminum or gallium as a dopant, or indium oxide (In 2 O 3 ) containing tin as a dopant. Are widely used. In particular, an indium oxide film containing tin as a dopant, that is, an In 2 O 3 —Sn-based film is referred to as an ITO (Indium tin oxide) film, and a particularly low-resistance oxide transparent conductive film can be easily obtained. It has been often used so far.

これらの酸化物透明導電膜の製造方法としては、真空蒸着法や、イオンプレーティング法、スパッタリング法、透明導電層形成用塗液を塗布する方法が、よく用いられている。その中でも、真空蒸着法やイオンプレーティング法、スパッタリング法は、蒸気圧の低い材料を使用する際や、精密な膜厚制御を必要とする際に有効な手法であり、操作が非常に簡便であるため、工業的に広範に利用されている。   As a manufacturing method of these oxide transparent conductive films, a vacuum deposition method, an ion plating method, a sputtering method, and a method of applying a coating liquid for forming a transparent conductive layer are often used. Among them, the vacuum evaporation method, ion plating method, and sputtering method are effective methods when using materials with low vapor pressure or when precise film thickness control is required, and the operation is very simple. Therefore, it is widely used industrially.

真空蒸着法は、一般に、10-3〜10-2Pa程度の真空中で蒸発源である固体(または液体)を加熱して、一度気体分子や原子に分解した後、再び基板表面上に薄膜として凝縮させる方法である。蒸発源の加熱方式には、抵抗加熱法(RH法)、電子ビーム加熱法(EB法、電子ビーム蒸着法)が一般的であるが、レーザー光を用いる方法や高周波誘導加熱法などもある。また、フラッシュ蒸着法や、アークプラズマ蒸着法、反応性蒸着法なども知られているが、これらも真空蒸着法に含まれる(例えば、非特許文献1参照。)
ITOのような酸化物膜を堆積させる場合には、電子ビーム蒸着法が以前よりよく利用されている。蒸発源にITOの焼結体(ITOタブレットあるいはITOペレットとも呼ぶ。)を用いて、成膜室(チャンバー)に反応ガスであるO2ガスを導入して、熱電子発生用フィラメント(主にW線)から飛び出した熱電子を電界で加速させてITOタブレットに照射すると、照射された部分は局所的に高温になり、蒸発して基板に堆積される。また、蒸発物や反応ガス(O2ガスなど)を、熱電子エミッタやRF放電を用いて活性化させることにより、低温基板上でも低抵抗の膜を作製することができる。この方法は、活性化反応性蒸着法(ARE法)と呼ばれており、ITO成膜には有用な方法である。
In the vacuum deposition method, generally, a solid (or liquid) as an evaporation source is heated in a vacuum of about 10 −3 to 10 −2 Pa, and once decomposed into gas molecules and atoms, a thin film is again formed on the substrate surface. It is the method of condensing as. As a heating method of the evaporation source, a resistance heating method (RH method) and an electron beam heating method (EB method, electron beam evaporation method) are generally used, but there are a method using a laser beam and a high frequency induction heating method. Also known are a flash vapor deposition method, an arc plasma vapor deposition method, a reactive vapor deposition method, and the like, and these are also included in the vacuum vapor deposition method (see, for example, Non-Patent Document 1).
In the case of depositing an oxide film such as ITO, an electron beam evaporation method has been used more frequently than before. Using an ITO sintered body (also referred to as ITO tablet or ITO pellet) as an evaporation source, O 2 gas as a reaction gas is introduced into a film forming chamber (chamber), and a thermoelectron generating filament (mainly W When the thermal electrons emitted from the line) are accelerated by an electric field and irradiated onto the ITO tablet, the irradiated portion becomes locally hot and evaporates and is deposited on the substrate. In addition, a low-resistance film can be formed even on a low-temperature substrate by activating the evaporant or reactive gas (O 2 gas or the like) using a thermionic emitter or RF discharge. This method is called an activated reactive vapor deposition method (ARE method), and is a useful method for forming an ITO film.

また、プラズマガンを用いた高密度プラズマアシスト蒸着法(HDPE法)もITO成膜に広範に用いられている(例えば、非特許文献2参照)。この方法では、プラズマ発生装置(プラズマガン)を用いたアーク放電を利用する。該プラズマガンに内蔵されたカソードと蒸発源の坩堝(アノード)との間でアーク放電が維持される。カソードから放出される電子を磁場によりガイドして、坩堝に仕込まれたITOタブレットの局部に集中して照射する。この電子ビームにより、局所的に高温となった部分から、蒸発物が蒸発して基板に堆積される。気化した蒸発物や導入したO2ガスは、このプラズマ内で活性化されるため、良好な電気特性を持つITO膜を作製することができる。 Further, a high-density plasma-assisted vapor deposition method (HDPE method) using a plasma gun is also widely used for ITO film formation (see, for example, Non-Patent Document 2). In this method, arc discharge using a plasma generator (plasma gun) is used. Arc discharge is maintained between the cathode built in the plasma gun and the crucible (anode) of the evaporation source. The electrons emitted from the cathode are guided by a magnetic field, and concentratedly irradiated to the local part of the ITO tablet charged in the crucible. By this electron beam, the evaporated material is evaporated and deposited on the substrate from the portion where the temperature is locally high. Since the evaporated vapor and the introduced O 2 gas are activated in this plasma, an ITO film having good electrical characteristics can be produced.

真空蒸着法の中で、蒸発物や反応ガスのイオン化を伴うものは、総称してイオンプレーティング法(IP法)と呼ばれ、低抵抗で高透過率のITO膜が得られることから、工業的にも広範に利用されている(例えば、非特許文献3参照。)。   Among the vacuum evaporation methods, those that involve ionization of evaporates and reaction gases are collectively referred to as the ion plating method (IP method), and an ITO film with low resistance and high transmittance can be obtained. It is also widely used (see, for example, Non-Patent Document 3).

一方、酸化物透明導電膜が使用される太陽電池についてみると、太陽電池はp型とn型の半導体を積層したものであり、半導体の種類によって大別される。最も多く使用されている太陽電池は、安全で資源量の豊富なシリコンを用いたものである。シリコンを用いた太陽電池としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンの3種類がある。また、化合物薄膜太陽電池とよばれ、CuInSe2、GaAs、CdTeなどの化合物半導体を用いた太陽電池も開発が行われている。 On the other hand, regarding a solar cell in which an oxide transparent conductive film is used, the solar cell is a laminate of p-type and n-type semiconductors, and is roughly classified according to the type of semiconductor. The most commonly used solar cells are those using safe and resource-rich silicon. There are three types of solar cells using silicon: single crystal silicon, polycrystalline silicon, and amorphous silicon. In addition, a so-called compound thin film solar cell is being developed, and a solar cell using a compound semiconductor such as CuInSe 2 , GaAs, CdTe has been developed.

しかし、何れのタイプの太陽電池でも、光が当たる表側の電極には酸化物透明導電膜が不可欠であり、従来は、ITO膜や、アルミニウムやガリウムがドーピングされた酸化亜鉛(ZnO)膜が利用されてきた。これらの酸化物透明導電膜には、低抵抗であること、太陽光の透過率が高いことなどの特性が求められる。   However, in any type of solar cell, a transparent oxide conductive film is indispensable for the front electrode that is exposed to light. Conventionally, an ITO film or a zinc oxide (ZnO) film doped with aluminum or gallium is used. It has been. These oxide transparent conductive films are required to have characteristics such as low resistance and high sunlight transmittance.

また、本発明者が、特許文献1(特開2002−256423号)に記載したように、主としてインジウムからなり、モリブデンを含む結晶性の酸化物透明導電膜(結晶性In−Mo−O)が、太陽電池の透明電極として有用であることが最近明らかとなってきた。これらの酸化物透明導電膜は、低抵抗で、可視光領域の光透過性能が優れているだけでなく、従来使用されてきた前述のITO膜や酸化亜鉛系膜と比べて、近赤外線領域における光透過性能に優れている。このため、このような酸化物透明導電膜を太陽電池の表側の電極に用いると、近赤外光エネルギーも有効に利用することができる。   Further, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-256423), the inventor has a crystalline oxide transparent conductive film (crystalline In—Mo—O) mainly composed of indium and containing molybdenum. It has recently become clear that it is useful as a transparent electrode for solar cells. These transparent oxide conductive films not only have low resistance and excellent light transmission performance in the visible light region, but also in the near-infrared region, compared to the ITO films and zinc oxide-based films previously used. Excellent light transmission performance. For this reason, when such an oxide transparent conductive film is used for the front electrode of a solar cell, near-infrared light energy can also be utilized effectively.

次に、EL素子について説明する。   Next, the EL element will be described.

EL(エレクトロルミネッセンス)素子は、電界発光を利用したものであり、自己発光のため視認性が高く、かつ、液晶やプラズマディスプレイの表示素子とは異なり、完全固体素子である。このため、EL素子は、耐衝撃性に優れるなどの利点を有し、各種の表示装置における発光素子としての利用が注目されている。   An EL (electroluminescence) element uses electroluminescence, has high visibility because of self-emission, and is a completely solid element unlike a display element of a liquid crystal or a plasma display. For this reason, the EL element has advantages such as excellent impact resistance, and its use as a light emitting element in various display devices has attracted attention.

EL素子には、発光材料として無機化合物を用いる無機EL素子と、有機化合物を用いる有機EL素子とがある。   EL elements include an inorganic EL element using an inorganic compound as a light emitting material and an organic EL element using an organic compound.

このうち、有機EL素子は、駆動電圧を大幅に低くしても(例えば、10V以下の直流電圧)、明るい発光が得られるため、小型化が容易であり、次世代の表示素子としての実用化研究が積極的になされている。   Among these, the organic EL element can be easily reduced in size because it can obtain bright light emission even when the driving voltage is significantly lowered (for example, a DC voltage of 10 V or less), and is practically used as a next-generation display element. Research is being actively conducted.

有機EL素子の構成は、透明絶縁性基板/陽極(透明電極)/正孔輸送層/発光層/電子輸送層/陰極(金属電極)の積層構造を基本とし、ガラス板などの透明絶縁性基板上に透明導電性薄膜を形成して、該透明導電性薄膜を陽極とする構成のボトムエミッション型が、通常、採用されている。この場合、発光は基板側に取り出される。   The structure of the organic EL element is based on a laminated structure of a transparent insulating substrate / anode (transparent electrode) / hole transport layer / light emitting layer / electron transport layer / cathode (metal electrode), and a transparent insulating substrate such as a glass plate. A bottom emission type in which a transparent conductive thin film is formed thereon and the transparent conductive thin film is used as an anode is usually employed. In this case, the emitted light is extracted to the substrate side.

この有機EL素子やLCD(液晶ディスプレイ)用の電極には、表面が平滑な透明導電性薄膜が必要とされている。特に、有機EL素子用の電極の場合、その上に有機化合物の超薄膜を形成するため、透明導電性薄膜には、優れた表面平滑性が要求される。表面平滑性は、一般に、膜の結晶性に大きく左右される。同一組成のものでも、粒界の存在しない非晶質構造の透明導電性薄膜(非晶質膜)の方が、結晶質構造の透明導電性薄膜(結晶質膜)に比べて、表面平滑性は良好である。   A transparent conductive thin film with a smooth surface is required for electrodes for organic EL elements and LCDs (liquid crystal displays). In particular, in the case of an electrode for an organic EL element, an ultra-thin film of an organic compound is formed on the electrode, so that the transparent conductive thin film is required to have excellent surface smoothness. In general, the surface smoothness greatly depends on the crystallinity of the film. Even if the composition is the same, the transparent conductive thin film (amorphous film) with an amorphous structure with no grain boundaries is more smooth than the transparent conductive thin film (crystalline film) with a crystalline structure. Is good.

従来組成のITO膜の場合でも、非晶質の方が表面平滑性に優れている。非晶質ITOは、成膜時の基板温度を下げて、低温(ITOの結晶化温度である150℃未満)で、電子ビーム蒸着やイオンプレーティング、高密度プラズマアシスト蒸着法やスパッタリングで成膜して得ることができる。しかし、非晶質ITO膜の比抵抗は、9×10-4Ωcmが限界であり、表面抵抗の低い膜を形成するためには、膜自体を厚く形成する必要がある。しかし、ITO膜の膜厚が厚くなると、膜の着色という問題が生ずる。 Even in the case of an ITO film having a conventional composition, the amorphous one is superior in surface smoothness. Amorphous ITO is deposited by electron beam vapor deposition, ion plating, high-density plasma assisted vapor deposition, or sputtering at low temperatures (lower than the 150 ° C crystallization temperature of ITO) by lowering the substrate temperature during film formation. Can be obtained. However, the specific resistance of the amorphous ITO film is limited to 9 × 10 −4 Ωcm, and in order to form a film having a low surface resistance, the film itself needs to be formed thick. However, when the thickness of the ITO film is increased, a problem of film coloring occurs.

また、基板を加熱せずに室温で成膜したITO膜でも、電子ビーム蒸着法や、イオンプレーティング法や高密度プラズマアシスト蒸着法、或いはスパッタリング法のようなプラズマを伴う成膜法では、プラズマから受ける熱の影響で基板表面が局所的に温度が上がり、微細な結晶相と非晶質相で構成された膜が得られやすい。微細な結晶相の存在は、X線回折のほか、透過型電子顕微鏡や電子線回折でも確認することができる。しかし、このような微細な結晶相が一部で形成されていると、表面平滑性に大きな影響を及ぼす。また、透明導電性薄膜を所定の形状に、弱酸でエッチング除去する際には、結晶相のみが除去できずに残存することがあり、問題となっている。   In addition, even an ITO film formed at room temperature without heating the substrate, plasma deposition may be performed by plasma deposition, such as electron beam deposition, ion plating, high density plasma assisted deposition, or sputtering. The surface of the substrate locally rises under the influence of heat received from the film, and a film composed of a fine crystalline phase and an amorphous phase is easily obtained. Presence of a fine crystal phase can be confirmed not only by X-ray diffraction but also by a transmission electron microscope or electron diffraction. However, when such a fine crystal phase is partially formed, the surface smoothness is greatly affected. In addition, when the transparent conductive thin film is etched into a predetermined shape with a weak acid, only the crystal phase may remain unremoved, which is problematic.

非晶質ITO膜においては、前述の比抵抗の問題のほかに、安定性の問題もある。LCDや有機EL素子用の電極として、非晶質ITO膜を利用する場合、製造工程の中で、電極形成後の熱履歴により150℃(ITOの結晶化温度)以上の加熱が行われると、透明導電性薄膜が結晶化してしまう場合がある。この理由は、非晶質相が準安定相だからである。非晶質相が結晶化してしまうと、結晶粒が形成されるため、表面平滑性が悪くなり、同時に比抵抗が大きく変化するという問題が生ずる。   In addition to the above-described specific resistance problem, the amorphous ITO film also has a stability problem. When an amorphous ITO film is used as an electrode for an LCD or an organic EL element, heating at 150 ° C. (the crystallization temperature of ITO) or more is performed in the manufacturing process due to a thermal history after electrode formation. The transparent conductive thin film may crystallize. This is because the amorphous phase is a metastable phase. If the amorphous phase is crystallized, crystal grains are formed, resulting in poor surface smoothness and a large change in specific resistance.

有機ELやLCDなどの表示デバイス用の透明導電性薄膜には、以上述べてきた表面平滑性や比抵抗が小さいことが求められるが、本発明者が特許文献2(特開2004−52102号公報)に記載したように、インジウムを主成分とし、所定量のモリブデンを含む非晶質性の酸化物透明導電膜(非晶質In−Mo−O膜)は、有機ELやLCDなどの表示デバイス用の透明導電性薄膜に適する。In−Mo−Oは、ITOよりも結晶化温度が高いため、前記のプラズマを伴う成膜法を用いて成膜しても、安定して非晶質膜を得ることができる。さらに、非晶質In−Mo−O膜は、表面平滑性に優れるだけでなく、低抵抗であるため、有機ELやLCDなどの表示デバイスのように表面平滑性および低い比抵抗が要求される用途において特に好適である。   The transparent conductive thin film for display devices such as organic EL and LCD is required to have low surface smoothness and specific resistance as described above. However, the present inventor has disclosed Patent Document 2 (Japanese Patent Laid-Open No. 2004-52102). ), An amorphous oxide transparent conductive film (amorphous In—Mo—O film) containing indium as a main component and containing a predetermined amount of molybdenum is a display device such as an organic EL or LCD. Suitable for transparent conductive thin film. Since In—Mo—O has a crystallization temperature higher than that of ITO, an amorphous film can be stably obtained even when the film is formed using the film formation method involving plasma. Furthermore, since the amorphous In—Mo—O film has not only excellent surface smoothness but also low resistance, surface smoothness and low specific resistance are required like display devices such as organic EL and LCD. It is particularly suitable for applications.

特に、有機EL素子に用いる透明導電性薄膜の場合、その上に有機化合物の超薄膜が形成されるので、透明導電性薄膜には表面平滑性が要求される。このため、非晶質In−Mo−O膜は有機EL素子に用いる透明導電性薄膜として好適である。透明導電性薄膜の表面に凹凸があると、有機化合物の超薄膜にはリークダメージが生じてしまう。   In particular, in the case of a transparent conductive thin film used for an organic EL element, an ultra thin film of an organic compound is formed thereon, and thus the surface of the transparent conductive thin film is required. For this reason, an amorphous In-Mo-O film | membrane is suitable as a transparent conductive thin film used for an organic EL element. If there are irregularities on the surface of the transparent conductive thin film, leakage damage will occur in the ultrathin film of the organic compound.

以上述べてきた非晶質In−Mo−O膜は、その膜の構成元素を含む酸化物焼結体のタブレット(すなわち、In−Mo−Oの酸化物焼結体のタブレット)を原料として用いて、電子ビーム蒸着法、イオンプレーティング法や高密度プラズマアシスト蒸着法などの各種真空蒸着法で製造することができる。生産性の向上や製造コストの低減を考慮すると、高速で成膜する必要があるが、特に、電子ビーム蒸着法やイオンプレーティング法あるいは高密度プラズマアシスト蒸着法で製造することにより、導電性や透過性に優れた非晶質In−Mo−O膜を高速に製造することができる。前記成膜法では、原料である酸化物焼結体タブレットに与えるエネルギー量を増やすことによって高速成膜が可能となる。   The amorphous In—Mo—O film described above uses, as a raw material, an oxide sintered tablet containing the constituent elements of the film (that is, an In—Mo—O oxide sintered tablet). In addition, various vacuum deposition methods such as an electron beam deposition method, an ion plating method, and a high density plasma assisted deposition method can be used. Considering improvement in productivity and reduction in manufacturing cost, it is necessary to form a film at a high speed, but in particular, by conducting electron beam evaporation, ion plating, or high-density plasma assisted evaporation, conductivity and An amorphous In—Mo—O film having excellent permeability can be manufactured at high speed. In the film formation method, high-speed film formation is possible by increasing the amount of energy applied to the oxide sintered body tablet as a raw material.

しかし、非晶質In−Mo−O膜を高速で成膜するために、電子ビーム等のエネルギーを多量に酸化物焼結体タブレットに与えると、酸化物焼結体タブレットが割れてしまい、安定して成膜を行うことができなかった。成膜中に酸化物焼結体タブレットが割れると、成膜速度が急激に減少するなどの不都合が生じる。また、連続して多量のエネルギーを酸化物焼結体タブレットに与えると、酸化物焼結体構成成分の揮発量が変動し、一定の膜組成が得られず、一定の特性の膜を製造することが困難であった。このため、成膜を中断して、未使用の酸化物焼結体タブレットに交換する必要があり、生産性を悪くする要因となっていた。
特開2002−256423号公報。 特開2004−52102号公報。 「薄膜の作製・評価とその応用技術ハンドブック」、フジ・テクノシステム社、昭和59年11月5日刊、p.250〜255。 「真空」、Vol.44、No.4、2001年、p.435〜439。 「透明導電膜の技術」、オーム社、1999年刊、p.205〜211。
However, if a large amount of energy such as an electron beam is applied to the oxide sintered body tablet in order to form an amorphous In-Mo-O film at high speed, the oxide sintered body tablet breaks and is stable. Thus, film formation could not be performed. If the oxide sintered body tablet breaks during the film formation, there is a disadvantage that the film formation rate is rapidly reduced. In addition, when a large amount of energy is continuously applied to the oxide sintered body tablet, the volatilization amount of the oxide sintered body constituent components fluctuates, and a film having a certain characteristic cannot be obtained because a certain film composition cannot be obtained. It was difficult. For this reason, it is necessary to interrupt the film formation and replace it with an unused oxide sintered body tablet, which has been a factor in reducing productivity.
JP 2002-256423 A. JP 2004-52102 A. “Film Production / Evaluation and Applied Technology Handbook”, published by Fuji Techno System, November 5, 1984, p. 250-255. “Vacuum”, Vol. 44, no. 4, 2001, p. 435-439. “Technology of Transparent Conductive Film”, Ohmsha, 1999, p. 205-211.

本発明は、かかる問題点に鑑みてなされたものであって、電子ビーム蒸着法、イオンプレーティング法、高密度プラズマアシスト蒸着法などの真空蒸着法により酸化物透明導電膜を製造する際に、多量のエネルギーを投入しても、割れやクラックが発生することのない酸化物焼結体とその製造方法、及び酸化物焼結体をタブレットとして用いて得られる透明導電性薄膜とその製造方法の提供を目的とする。   The present invention has been made in view of such problems, and when producing an oxide transparent conductive film by a vacuum vapor deposition method such as an electron beam vapor deposition method, an ion plating method, a high density plasma assisted vapor deposition method, An oxide sintered body that does not generate cracks or cracks even when a large amount of energy is applied, and a manufacturing method thereof, and a transparent conductive thin film obtained by using the oxide sintered body as a tablet and a manufacturing method thereof For the purpose of provision.

本請求項1に係る発明は、In−Mo−O系の酸化物焼結体であり、モリブデンを固溶したインジウム酸化物を含み、モリブデンの量がインジウムに対する原子数比(Mo/In)で0.001〜0.060であり、密度が3.7〜6.5g/cm3のものである。 The invention according to claim 1 is an In—Mo—O-based oxide sintered body, which includes indium oxide in which molybdenum is dissolved, and the amount of molybdenum is an atomic ratio (Mo / In) to indium. The density is 0.001 to 0.060, and the density is 3.7 to 6.5 g / cm 3 .

そして、本請求項2に係る発明は、In−Mo−Zn−O系の酸化物焼結体であり、前記に加え亜鉛を固溶したインジウム酸化物を含み、亜鉛の量がインジウムに対する原子数比(Zn/In)で0.00018〜0.017のものであり、密度が3.7〜6.5g/cm3のものである。 The invention according to claim 2 is an In—Mo—Zn—O-based oxide sintered body, and includes an indium oxide in which zinc is added in addition to the above, and the amount of zinc is the number of atoms relative to indium. The ratio (Zn / In) is 0.00018 to 0.017, and the density is 3.7 to 6.5 g / cm 3 .

そして、本請求項3に係る発明は、請求項1又は2記載の発明において、酸化物焼結体の平均結晶粒径が10μm以下であり、比抵抗が1kΩcm以下のものである。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the oxide sintered body has an average crystal grain size of 10 μm or less and a specific resistance of 1 kΩcm or less.

そして、本請求項4に係る発明は、前記請求項1〜3記載のいずれかの発明において、金属相が含まれていないものである。   And the invention which concerns on this Claim 4 does not contain a metal phase in the invention in any one of the said Claims 1-3.

そして、本請求項5に係る発明は、In−Mo−O系の酸化物焼結体の製造方法であり、主要工程として、モリブデンの量がインジウムに対する原子数比で0.001〜0.060となるように、平均粒径1μm以下の酸化インジウム粉末と平均粒径1μm以下の酸化モリブデン粉末とを調合し、混合する工程1と、工程1で得られた混合粉を、不活性ガス中あるいは真空中で、圧力2.45〜29.40MPa、温度700〜900℃で1〜3時間保持して酸化物焼結体を得る工程2とを有するものである。   The invention according to claim 5 is a method for producing an In—Mo—O-based oxide sintered body, and as a main step, the amount of molybdenum is 0.001 to 0.060 in terms of the atomic ratio with respect to indium. So that indium oxide powder having an average particle diameter of 1 μm or less and molybdenum oxide powder having an average particle diameter of 1 μm or less are mixed and mixed, and the mixed powder obtained in step 1 is mixed in an inert gas or And a step 2 of obtaining an oxide sintered body by holding at a pressure of 2.45 to 29.40 MPa and a temperature of 700 to 900 ° C. for 1 to 3 hours in a vacuum.

そして、本請求項6に係る発明は、In−Mo−O系の酸化物焼結体の製造方法であり、主要工程として、モリブデンの量がインジウムに対する原子数比で0.001〜0.060となるように平均粒径が1μm以下の酸化インジウム粉末と平均粒径が1μm以下の酸化モリブデン粉末を調合し、混合する工程1と、工程1で得られた混合物を、圧力9.8〜294MPaで冷間静水圧プレス成形し、成形体を得る工程2と、工程2で得られた成形体を、常圧で、1300℃以上で5時間以上保持して焼結させて酸化物焼結体を得る工程3とを有するものである。   The invention according to claim 6 is a method for producing an In-Mo-O-based oxide sintered body, and as a main step, the amount of molybdenum is 0.001 to 0.060 in terms of the atomic ratio with respect to indium. A step 1 in which an indium oxide powder having an average particle size of 1 μm or less and a molybdenum oxide powder having an average particle size of 1 μm or less are mixed and mixed, and the mixture obtained in the step 1 is subjected to a pressure of 9.8 to 294 MPa. Step 2 to obtain a compact by cold isostatic pressing at a temperature, and the sintered body obtained by sintering the compact obtained in Step 2 by holding at 1300 ° C. or higher for 5 hours or more at normal pressure. Step 3 to obtain

そして、本請求項7に係る発明は、In−Mo−Zn−O系の酸化物焼結体の製造方法であり、主要工程として、モリブデンの量がインジウムに対する原子数比で0.001〜0.060となるように、また亜鉛の量がインジウムに対する原子数比で0.00018〜0.017となるように平均粒径1μm以下の酸化インジウム粉末と平均粒径1μm以下の酸化モリブデン粉末と平均粒径1μm以下の酸化亜鉛粉末を調合し、湿式混合し、固形物を固液分離し、造粒する工程1と、工程1で得られた造粒物を用いて、圧力9.8〜294MPaで冷間静水圧プレス成形して成形体を得る工程2と、工程2で得られた成形体を、酸素雰囲気下、常圧で、温度1000〜1300℃、時間1〜5h以上で焼結させて酸化物焼結体を得る工程3とを有することを特徴とするものである。   The invention according to claim 7 is a method for producing an In—Mo—Zn—O-based oxide sintered body. As a main process, the amount of molybdenum is 0.001 to 0 in terms of the atomic ratio with respect to indium. 0.060, and indium oxide powder having an average particle size of 1 μm or less and molybdenum oxide powder having an average particle size of 1 μm or less and an average so that the amount of zinc is 0.00018 to 0.017 in terms of the number of atoms with respect to indium. A pressure of 9.8 to 294 MPa is prepared using Step 1 in which a zinc oxide powder having a particle size of 1 μm or less is prepared, wet-mixed, solid-liquid separation is performed, and the granulated product obtained in Step 1 is granulated. Step 2 to obtain a molded body by cold isostatic pressing at a temperature, and the molded body obtained in Step 2 is sintered at a temperature of 1000 to 1300 ° C. for 1 to 5 hours or more at normal pressure in an oxygen atmosphere. Step 3 to obtain an oxide sintered body It is characterized in that.

そして、本請求項8記載の発明は、請求項7記載の発明において、工程3にて、焼結炉内に、炉内容積0.1M3当たり3〜8L/minの割合の酸素を導入しつつ焼結し、焼
結後の炉冷を行うに際して、酸素の導入を停止した後炉冷を行うものである。
And, in the invention described in claim 8, in the invention described in claim 7, in step 3, oxygen is introduced into the sintering furnace at a rate of 3 to 8 L / min per 0.1 M 3 of the furnace volume. Sintering is performed, and when performing furnace cooling after sintering, the furnace cooling is performed after the introduction of oxygen is stopped.

そして、本請求項9記載の発明は、請求項1〜4記載の酸化物焼結体をタブレットとして用いて酸化物透明導電膜を得る方法であり、前記酸化物焼結体のタブレットを用いて、130℃以下の基板上に真空蒸着法によって膜を成膜するものである。     The invention according to claim 9 is a method for obtaining an oxide transparent conductive film using the oxide sintered body according to claims 1 to 4 as a tablet, and the tablet of the oxide sintered body is used. A film is formed on a substrate at 130 ° C. or lower by vacuum vapor deposition.

そして、本請求項10記載の発明は、前記請求項9記載の方法に従い作製された膜を200〜400℃で熱処理をすることを特徴とするものである。   The invention described in claim 10 is characterized in that a film manufactured according to the method described in claim 9 is heat-treated at 200 to 400 ° C.

そして、本請求項11記載の発明は、前記発明に加えて熱処理を不活性ガス中または真空中で実施するものである。
そして、本請求項12記載の発明は、請求項1〜4記載の酸化物焼結体をタブレットとして用い、請求項9の方法に従い作製された酸化物透明導電膜であって、比抵抗が9×10-4Ωcm以下であり、波長400〜800nmの光に対する膜自体の平均透過率が82%以上のものである。
In addition to the above invention, the invention according to claim 11 performs the heat treatment in an inert gas or in a vacuum.
The invention according to claim 12 is an oxide transparent conductive film produced according to the method of claim 9 using the oxide sintered body according to claims 1 to 4 as a tablet, and having a specific resistance of 9. × 10 −4 Ωcm or less, and the average transmittance of the film itself for light having a wavelength of 400 to 800 nm is 82% or more.

そして、本請求項13記載の発明は、前記請求項10又は11記載の方法に従い作製される酸化物透明導電膜であり、波長900〜1100nmの光に対する膜自体の平均透過率が80%以上のものである。   The invention according to claim 13 is an oxide transparent conductive film produced according to the method according to claim 10 or 11, wherein the average transmittance of the film itself with respect to light having a wavelength of 900 to 1100 nm is 80% or more. Is.

なお、本発明に係る酸化物焼結体、およびこれを用いて製造される酸化物透明導電膜は、主に、インジウムおよびモリブデンの酸化物、または、インジウム、モリブデンおよび亜鉛の酸化物からなることを特徴とするが、本発明の特徴を損なわない範囲で、Sn、Ga、Cd、Ti、Ir、Ru、Re、WおよびOsの中から選択される一種以上の他の元素が含むことは許容され、これらの元素を含む酸化物焼結体および酸化物透明導電膜も、本発明の範囲に包含されるものである。   The oxide sintered body according to the present invention and the oxide transparent conductive film produced using the oxide sintered body are mainly composed of oxides of indium and molybdenum, or oxides of indium, molybdenum and zinc. However, it is allowed to contain one or more other elements selected from Sn, Ga, Cd, Ti, Ir, Ru, Re, W and Os within the range not impairing the characteristics of the present invention. In addition, oxide sintered bodies and oxide transparent conductive films containing these elements are also included in the scope of the present invention.

本発明に係る酸化物焼結体からなるタブレットを、電子ビーム蒸着法、イオンプレーティング法、高密度プラズマアシスト蒸着法などの真空蒸着法における蒸着源用タブレットとして用いると、大量のエネルギーをタブレットに投入しても、タブレットに割れやクラックが発生しないため、成膜を中断することなく、安定して成膜することができる。   When the tablet comprising the oxide sintered body according to the present invention is used as a tablet for a deposition source in a vacuum deposition method such as an electron beam deposition method, an ion plating method, or a high density plasma assisted deposition method, a large amount of energy is applied to the tablet. Even if it is added, since no cracks or cracks are generated in the tablet, it is possible to form a film stably without interrupting the film formation.

本発明の酸化物焼結体からなるタブレットを各種の真空蒸着法に用いることによって、低抵抗で、かつ、可視域から近赤外域までの透過率が大きく、太陽電池に好適に用いることができる酸化物透明導電膜や、低抵抗で、かつ、表面平滑性に優れ、表示デバイスに好適に用いることができる酸化物透明導電膜を、高速で安定的に成膜することができ、生産性を向上させることができる。このため、本発明の酸化物焼結体を各種の真空蒸着法用のタブレットとして用いることにより、高効率の太陽電池や性能に優れた有機EL、LCDを低コストに作製することが可能となる。   By using the tablet comprising the oxide sintered body of the present invention in various vacuum deposition methods, it has low resistance and a large transmittance from the visible region to the near infrared region, and can be suitably used for solar cells. An oxide transparent conductive film and an oxide transparent conductive film that has low resistance and excellent surface smoothness and can be suitably used for a display device can be stably formed at high speed. Can be improved. For this reason, by using the oxide sintered body of the present invention as a tablet for various vacuum deposition methods, it becomes possible to produce a high-efficiency solar cell and an organic EL or LCD excellent in performance at a low cost. .

本発明者は、電子ビーム蒸着法やイオンプレーティング法や高密度プラズマアシスト蒸着法などの各種真空蒸着法に用いる蒸着源用のタブレットとして用い、該タブレットに大量のエネルギーを投入しても、該タブレットに割れやクラックの発生がないだけでなく、長時間連続して膜組成の変動(経時変化)なく、安定に成膜することができる酸化物焼結体を得ることを目的に鋭意研究を重ねた。   The present inventor used as a tablet for a deposition source used in various vacuum deposition methods such as an electron beam deposition method, an ion plating method, and a high-density plasma assisted deposition method. Intensive research aimed at obtaining an oxide sintered body that not only does not crack or crack in the tablet, but can be deposited stably for a long time without fluctuations in film composition (time-dependent change). Piled up.

その結果、モリブデンを固溶したインジウム酸化物を含有した酸化物焼結体(以下、In−Mo−O系酸化物焼結体と記す。)タブレットにおいて、所定量のモリブデンを含有させ、密度を所定の範囲にすると、高いエネルギーをタブレットに投入しても割れることなく、電子ビーム蒸着法やイオンプレーティング法や高密度プラズマアシスト蒸着法などの真空蒸着法で高速成膜が実現可能となることを見出した。
また、モリブデン、亜鉛を固溶したインジウム酸化物を主として含有した酸化物焼結体(以下、In−Mo−Zn−O系酸化物焼結体と記す。)タブレットにおいても同様の効果があること、亜鉛量を所定量とすることにより焼結性が著しく向上することも見出した。
さらに、酸化物焼結体の平均結晶粒径が所定の大きさ以下であり、比抵抗が所定の値以下であると、長時間安定して大量のエネルギーをタブレットに投入することが可能であり、高速成膜が持続させることができることも見出した。
本発明は、かかる知見に基づき完成されたものである。以下、本発明に係る酸化物焼結体および酸化物透明導電膜について詳細に説明する。
As a result, in an oxide sintered body containing indium oxide in which molybdenum is dissolved (hereinafter referred to as In-Mo-O-based oxide sintered body) tablet, a predetermined amount of molybdenum is contained, and the density is increased. If it is within the specified range, high-speed film formation can be achieved by vacuum deposition methods such as electron beam deposition, ion plating, and high-density plasma-assisted deposition without cracking even when high energy is applied to the tablet. I found.
In addition, the oxide sintered body mainly containing indium oxide in which molybdenum and zinc are dissolved (hereinafter referred to as In-Mo-Zn-O-based oxide sintered body) tablet has the same effect. It has also been found that the sinterability is remarkably improved by setting the amount of zinc to a predetermined amount.
Furthermore, when the average crystal grain size of the oxide sintered body is not more than a predetermined size and the specific resistance is not more than a predetermined value, it is possible to stably put a large amount of energy into the tablet for a long time. It was also found that high-speed film formation can be sustained.
The present invention has been completed based on such findings. Hereinafter, the oxide sintered body and the oxide transparent conductive film according to the present invention will be described in detail.

1.酸化物焼結体(請求項1〜4記載の発明)
本発明に係るIn−Mo−O系酸化物焼結体は、モリブデンを固溶したインジウムを含み、モリブデンの量がインジウムに対する原子数比(Mo/In)で0.001〜0.060であり、密度が3.7〜6.5g/cm3のものである。
1. Oxide sintered body (Invention according to claims 1 to 4)
The In—Mo—O-based oxide sintered body according to the present invention includes indium in which molybdenum is dissolved, and the amount of molybdenum is 0.001 to 0.060 in terms of the atomic number ratio (Mo / In) to indium. The density is 3.7 to 6.5 g / cm 3 .

また、本発明に係るIn−Mo−Zn−O系酸化物焼結体は、モリブデン、亜鉛が固溶したインジウムを含み、モリブデンの量がインジウムに対する原子数比(以下、「Mo/In原子数比」と示す。)で0.001〜0.060であり、亜鉛の量がインジウムに対する原子数比(以下、「Zn/In原子数比」と示す。)で0.00018〜0.017であり、密度が3.7〜6.5g/cm3のものである。 The In—Mo—Zn—O-based oxide sintered body according to the present invention includes indium in which molybdenum and zinc are dissolved, and the amount of molybdenum is an atomic ratio with respect to indium (hereinafter referred to as “Mo / In atomic number”). The ratio of zinc is 0.001 to 0.060, and the amount of zinc is 0.00018 to 0.017 in terms of the atomic ratio relative to indium (hereinafter referred to as “Zn / In atomic ratio”). The density is 3.7 to 6.5 g / cm 3 .

モリブデンは、得られる酸化物導電膜のキャリア電子の濃度を増加させ導電性を高めるという働きがある。Mo/In原子数比が0.001よりも小さいと、前記の効果が現れず、0.060を超えると、不純物散乱による電子の移動度の低下が顕著になり、得られる酸化物導電膜の抵抗が上昇するだけでなく、キャリア電子密度が増大して近赤外域の透過率も低下する。   Molybdenum serves to increase the carrier electron concentration of the obtained oxide conductive film and increase conductivity. When the Mo / In atomic ratio is less than 0.001, the above effect does not appear. When the Mo / In atomic ratio exceeds 0.060, the mobility of electrons due to impurity scattering is significantly reduced, and the resulting oxide conductive film Not only does the resistance increase, but the carrier electron density increases and the near-infrared transmittance also decreases.

酸化物焼結体の密度が3.7g/cm3を下回ると、焼結体自体の強度が劣るため、僅かな局所的熱膨張に対してクラックや割れが起こりやすくなる。密度が6.5g/cm3を上回ると、成膜時に、これを用いたタブレットに多量のエネルギーを投入した時に発生する局部応力や歪みを吸収することができずに、タブレットにクラックが生じやすくなる。 When the density of the oxide sintered body is less than 3.7 g / cm 3 , the sintered body itself is inferior in strength, so that cracks and cracks are likely to occur with respect to slight local thermal expansion. When the density exceeds 6.5 g / cm 3 , it is difficult to absorb local stress and strain generated when a large amount of energy is applied to the tablet using the film during film formation, and the tablet is likely to crack. Become.

亜鉛は、焼結性を著しく向上させる効果がある。Zn/In原子数比が0.00018よりも小さいと、焼結性向上のための添加効果が現れない。一方、Zn/In原子数比が0.017を超えてZnを添加しても、焼結体の焼結性に更なる効果の向上はみられないばかりか、膜のキャリア電子を増大させてしまい、近赤外域の透過率を低下させてしまうため好ましくない。   Zinc has the effect of significantly improving the sinterability. When the Zn / In atomic ratio is smaller than 0.00018, the effect of addition for improving the sinterability does not appear. On the other hand, when Zn is added at a Zn / In atomic ratio exceeding 0.017, further improvement in the sinterability of the sintered body is not observed, and carrier electrons in the film are increased. Therefore, it is not preferable because the transmittance in the near infrared region is lowered.

本発明に係るIn−Mo−O系酸化物焼結体、In−Mo−Zn−O系酸化物焼結体の平均結晶粒径、比抵抗については、平均結晶粒径は10μm以下、比抵抗は1kΩcm以下であることが好ましい。平均結晶粒径、比抵抗がこの範囲にあると、本発明の酸化物焼結体をタブレットとして用いて酸化物透明導電膜を得るに際して、より長時間、より安定して、多量のエネルギーを該タブレットに投入することが可能となり、高速成膜に有効である。   Regarding the average crystal grain size and specific resistance of the In—Mo—O-based oxide sintered body and In—Mo—Zn—O-based oxide sintered body according to the present invention, the average crystal grain size is 10 μm or less, and the specific resistance. Is preferably 1 kΩcm or less. When the average crystal grain size and the specific resistance are within these ranges, when obtaining the oxide transparent conductive film using the oxide sintered body of the present invention as a tablet, a longer amount of energy is more stably obtained. It can be put into a tablet and is effective for high-speed film formation.

平均の結晶粒径が10μmを超えると、そのような酸化物焼結体より得たタブレットに多量のエネルギーを投入したときに局所加熱が発生し、大きな粒径の結晶に応力が集中しやすく、タブレットにクラックや割れが発生しやすくなる。また、焼結体の比抵抗が1kΩcmを超えると、そのような酸化物焼結体より得たタブレットに多量のエネルギーを投入したときに、タブレットに電荷がたまって帯電し、長時間安定して成膜することができなくなる。   When the average crystal grain size exceeds 10 μm, local heating occurs when a large amount of energy is put into the tablet obtained from such an oxide sintered body, and stress tends to concentrate on crystals with a large grain size, Cracks and cracks are likely to occur on the tablet. Also, if the specific resistance of the sintered body exceeds 1 kΩcm, when a large amount of energy is put into the tablet obtained from such an oxide sintered body, the tablet accumulates electric charge and becomes stable for a long time. It becomes impossible to form a film.

また、上記本発明の酸化物焼結体に、微量のモリブデン酸インジウム化合物が本発明の酸化物焼結体に含まれていてもかまわない。ここにいうモリブデン酸インジウム化合物とは、例えば、In11Mo4062(JCPDSカードNo.39−1095)、In3Mo1117(JCPDSカードNo.48−389)、InMo46(JCPDSカードNo
.42−313)、In2(MoO43(JCPDSカードNo.21−908)、また、これら化合物の非化学量論組成のものが含まれる。これらのモリブデン酸インジウム化合物の蒸気圧は、MoO3やMoO2などのように低くないため、膜−焼結体の組成ずれの拡大には影響を及ぼさない。これらのモリブデン酸インジウム化合物は導電性を有するため、焼結体の比抵抗にも影響を及ぼさない。
The oxide sintered body of the present invention may contain a trace amount of indium molybdate compound in the oxide sintered body of the present invention. Examples of the indium molybdate compound include In 11 Mo 40 O 62 (JCPDS card No. 39-1095), In 3 Mo 11 O 17 (JCPDS card No. 48-389), InMo 4 O 6 (JCPDS). Card No
. 42-313), In 2 (MoO 4 ) 3 (JCPDS card No. 21-908), and non-stoichiometric compositions of these compounds. Since the vapor pressure of these indium molybdate compounds is not as low as that of MoO 3 or MoO 2 , it does not affect the expansion of the composition deviation of the film-sintered body. Since these indium molybdate compounds have conductivity, they do not affect the specific resistance of the sintered body.

さらに、本発明の特徴を損なわない範囲で、他の元素(例えば、Ga、Cd、Ti、Ir、Re、W、Osなど)が含まれていてもかまわない。ただし、添加元素によっては(例えばSnや、Bi、Pbなど)、膜の透過率を減少させたり、比抵抗を悪化させるものもあり、このような元素を添加すると、本発明に係る酸化物焼結体の特徴を損ねてしまう。特にSnが酸化物焼結対中に原子数比Sn/Inで0.001を越えると、Snが形成される膜中にキャリア電子を大幅に増大させて近赤外域の透過率を低下させてしまう。   Furthermore, other elements (for example, Ga, Cd, Ti, Ir, Re, W, Os, etc.) may be included as long as the characteristics of the present invention are not impaired. However, depending on the additive element (for example, Sn, Bi, Pb, etc.), there are those that reduce the transmittance of the film or deteriorate the specific resistance. When such an element is added, the oxide firing according to the present invention is reduced. The characteristics of the body will be damaged. In particular, when Sn exceeds 0.001 in the atomic ratio Sn / In in the sintered oxide pair, carrier electrons are greatly increased in the film in which Sn is formed, and the transmittance in the near infrared region is lowered. End up.

なお、密度が3.7〜6.5g/cm3の酸化物焼結体であっても、焼結体中に微量でも金属相が含まれると電子ビームの投入に対して充分な耐久性を得ることができない。金属相とは、酸化物焼結体を構成する金属元素の金属、或いはこれらの合金などをいう。一般に金属の熱膨張係数は酸化物とくらべて高いため、電子ビーム照射により局所的な加熱がなされると、金属相部分における熱膨張が著しくなり、クラック発生の要因となるからである。 Even if the oxide sintered body has a density of 3.7 to 6.5 g / cm 3 , if the sintered body contains a metal phase even in a trace amount, sufficient durability against the introduction of an electron beam is obtained. Can't get. The metal phase refers to a metal element metal constituting the oxide sintered body or an alloy thereof. This is because a metal generally has a higher coefficient of thermal expansion than that of an oxide, and therefore, if local heating is performed by electron beam irradiation, thermal expansion in the metal phase portion becomes significant and causes cracking.

また、焼結体中に微量でも酸化モリブデン相(MoO3やMoO2など)が含まれると、長時間の連続成膜時に膜組成の変動(経時変化)が生じて、一定の特性の膜が製造できないという現象が生じる。MoO3やMoO2などの酸化モリブデン相の蒸気圧は、酸化インジウム相と比べて蒸気圧が低いため、電子ビームの投入で焼結体が加熱されると、酸化モリブデン相が優勢的に先に昇華されてしまうからである。したがって、酸化モリブデン相を含む焼結体を用いて成膜を行うと、使用初期だけMo成分の多めの膜が製造されるが、徐々にMo成分は減少し、最終的にはMo成分の少なめの膜しか得られなくなってしまう。 In addition, if a small amount of molybdenum oxide phase (MoO 3 , MoO 2, etc.) is contained in the sintered body, the film composition varies (changes with time) during continuous film formation for a long time, and a film with a certain characteristic is formed. The phenomenon that it cannot be produced occurs. Since the vapor pressure of the molybdenum oxide phase such as MoO 3 or MoO 2 is lower than that of the indium oxide phase, when the sintered body is heated by the introduction of the electron beam, the molybdenum oxide phase is predominantly first. Because it will be sublimated. Therefore, when a film is formed using a sintered body containing a molybdenum oxide phase, a film with a large Mo component is produced only in the initial stage of use, but the Mo component gradually decreases, and finally a small amount of the Mo component is obtained. Only this film can be obtained.

2.In−Mo−O系酸化物焼結体の製造方法(請求項5〜6の発明)
In−Mo−O系酸化物焼結体の製造においては、平均粒径が1μm以下のIn23粉末、および平均粒径が1μm以下のMoO3粉末を原料粉末とし、In23粉末とMoO3粉末を、Mo/In原子数比が0.001〜0.060の範囲の所望の割合になるように調合する。また、MoO3粉末の代わりに平均粒径が1μm以下のMoO2粉末を用いることも可能である。調合した原料を乾式ボールミル、Vブレンダーなどで均一に混合し、カーボン容器中に給粉してホットプレス法により焼結する。焼結に際して圧力は2.45〜29.40MPa(25kgf/cm2〜300kgf/cm2)、温度は700〜900℃とし、この温度で1〜3時間保持する。ホットプレス中の雰囲気はArガス等の不活性ガス中または真空中が好ましい。こうした条件を外れた場合には、本発明の酸化物焼結体が得られがたい。
2. Method for producing In-Mo-O-based oxide sintered body (Inventions of claims 5 to 6)
In the production of an In-MoO type oxide-sintered body, the average particle diameter of 1μm or less of In 2 O 3 powder, and an average particle size below MoO 3 powder 1μm as raw material powder, In 2 O 3 powder And the MoO 3 powder are mixed so that the Mo / In atomic ratio is a desired ratio in the range of 0.001 to 0.060. In addition, MoO 2 powder having an average particle size of 1 μm or less can be used instead of MoO 3 powder. The blended raw materials are uniformly mixed by a dry ball mill, a V blender or the like, powdered into a carbon container, and sintered by a hot press method. During sintering, the pressure is 2.45 to 29.40 MPa (25 kgf / cm 2 to 300 kgf / cm 2 ), the temperature is 700 to 900 ° C., and this temperature is maintained for 1 to 3 hours. The atmosphere during hot pressing is preferably in an inert gas such as Ar gas or in a vacuum. If these conditions are not met, it is difficult to obtain the oxide sintered body of the present invention.

3.7g/cm3以上の密度のIn−Mo−O系酸化物焼結体を常圧焼結法で製造する場合は、1300℃以上で5時間以上という、高温で長時間の焼結条件が必要とされ、また、得られる酸化物焼結体の密度も3.7〜4.4g/cm3という密度のものしか得られない。従って、密度4.5〜6.5g/cm3の亜鉛を含まないIn−Mo−O系酸化物焼結体を得るためには、ホットプレス焼結法を用いる必要がある。 When an In—Mo—O-based oxide sintered body having a density of 3.7 g / cm 3 or more is produced by a normal pressure sintering method, the sintering condition is long at a high temperature of 1300 ° C. or more and 5 hours or more. In addition, the density of the obtained oxide sintered body is only 3.7 to 4.4 g / cm 3 . Therefore, in order to obtain an In—Mo—O-based oxide sintered body containing no zinc with a density of 4.5 to 6.5 g / cm 3 , it is necessary to use a hot press sintering method.

3.In−Mo−Zn−O系酸化物焼結体の製造法(請求項7〜8の発明)
平均粒径が1μm以下のIn23粉末、および平均粒径が1μm以下のMoO3粉末、さらに平均粒径が1μm以下のZnO粉末を原料粉末とし、In23粉末とMoO3粉末とZnO粉末を、Mo/In原子数比が0.001〜0.060の範囲内、およびZn/In原子数比が0.00018〜0.017の範囲内の所望の値となるように調合する。調合した原料を樹脂製ポットに入れ、湿式ボールミル等で湿式混合する。この際、混合用ボールとしては、一般的な硬質ZrO2ボールを用いればよい。混合後、スラリーを取り出し、濾過、乾燥、造粒を行う。その後、得られた造粒物に、冷間静水圧プレスで9.8〜294MPa(0.1〜3ton/cm2)程度の圧力をかけて成形する。
3. Method for producing In-Mo-Zn-O-based oxide sintered body (Inventions of claims 7 to 8)
Average particle diameter of 1μm or less of In 2 O 3 powder, and an average particle diameter of 1μm or less of MoO 3 powder, further average particle size less ZnO powder 1μm as a raw material powder, and In 2 O 3 powder and MoO 3 powder The ZnO powder is prepared so that the Mo / In atomic ratio is within a range of 0.001 to 0.060 and a Zn / In atomic ratio is within a range of 0.00018 to 0.017. . The prepared raw material is put in a resin pot and wet mixed with a wet ball mill or the like. At this time, a general hard ZrO 2 ball may be used as the mixing ball. After mixing, the slurry is taken out, filtered, dried and granulated. Then, it shape | molds by applying a pressure of about 9.8-294 MPa (0.1-3 ton / cm < 2 >) to the obtained granulated material with a cold isostatic press.

次に、得られた成形体を、焼結炉内の大気に酸素を導入した雰囲気で、1000℃〜1300℃で1〜5時間程度かけて焼結する。この際、炉内の均熱を悪化させないように、約1℃/分で昇温し、焼結後の冷却の際は、酸素導入を止め、1000℃までを約10℃/分で降温することが好ましい。また、焼結炉内に導入する酸素量は、炉内容積0.1m3当たり3〜8リットル/分の割合とすることが好ましい。導入量を低下させるとMoO3、ZnOの揮発が激しくなり、所定組成の焼結体を得ることが難しくなる。一方、導入量を増加させると炉内の均熱を悪化させる。なお、In−Mo−Zn−O系酸化物焼結体は、In−Mo−O系酸化物焼結体と同様に、ホットプレス法で製造することも可能である。 Next, the obtained molded body is sintered at 1000 ° C. to 1300 ° C. for about 1 to 5 hours in an atmosphere in which oxygen is introduced into the atmosphere in the sintering furnace. At this time, the temperature is raised at about 1 ° C./min so as not to deteriorate the soaking in the furnace, and when cooling after sintering, the introduction of oxygen is stopped and the temperature is lowered to 1000 ° C. at about 10 ° C./min. It is preferable. The amount of oxygen introduced into the sintering furnace is preferably 3 to 8 liters / minute per 0.1 m 3 of the furnace volume. When the amount introduced is reduced, the volatility of MoO 3 and ZnO becomes intense, making it difficult to obtain a sintered body having a predetermined composition. On the other hand, if the amount introduced is increased, soaking in the furnace is worsened. Note that the In—Mo—Zn—O-based oxide sintered body can be manufactured by a hot press method in the same manner as the In—Mo—O-based oxide sintered body.

4.酸化物透明導電膜の作製方法(請求項9〜11の発明)
酸化物透明導電膜の作製条件は特に制限されないが、具体的には、本発明に係る酸化物焼結体をタブレットとして用いて、電子ビーム蒸着法やイオンプレーティング法や高密度プラズマアシスト蒸着法などの真空蒸着法によって、130℃以下の基板上に、主として非晶質構造の酸化物透明導電膜を作製する。
また、要すれば上記方法で得られた酸化物透明導電膜を不活性ガス中あるいは真空中で、200〜400℃でアニールする。これにより前記酸化物透明導電膜は結晶性の酸化物透明導電膜となる。
4). Method for producing oxide transparent conductive film (Invention of claims 9 to 11)
The production conditions of the transparent oxide conductive film are not particularly limited. Specifically, the oxide sintered body according to the present invention is used as a tablet, and an electron beam vapor deposition method, an ion plating method, a high density plasma assisted vapor deposition method, or the like. An oxide transparent conductive film having mainly an amorphous structure is formed on a substrate at 130 ° C. or lower by a vacuum deposition method such as the above.
If necessary, the oxide transparent conductive film obtained by the above method is annealed at 200 to 400 ° C. in an inert gas or in a vacuum. Thereby, the oxide transparent conductive film becomes a crystalline oxide transparent conductive film.

5.酸化物透明導電膜(請求項12〜13の発明)
In−Mo−O系、In−Mo−Zn−O系の酸化物透明導電膜は、前述のように太陽電池や表示デバイスの透明電極用として有用であるが、その理由は、以下の通りである。
これらの酸化物焼結体から酸化物透明導電膜を作製すると、原子価が3価であるインジウム位置を、原子価4〜6価のモリブデンが不純物イオンとして占有し、これによってキャリア電子を放出して、導電率が増加する。一般に、酸化インジウムのようなn型半導体にスズなどの不純物イオンが増加すると、キャリア電子数は大幅に増加するが、不純物イオン散乱によってキャリア電子の移動度が減少する。しかし、モリブデンを不純物イオンとして酸化インジウムに添加すると、移動度を大幅に減少させることなく、キャリア電子数を増加させることができる。従って、モリブデンを含ませると、キャリア電子の移動度が高い状態で、キャリア電子数を増加させることができるため、低抵抗で赤外線透過率の高い酸化物透明導電膜を実現できる。本発明で、モリブデンを含ませる主な理由はここにある。
5). Oxide transparent conductive film (Inventions of claims 12 to 13)
In-Mo-O-based and In-Mo-Zn-O-based oxide transparent conductive films are useful as transparent electrodes for solar cells and display devices as described above, for the following reasons. is there.
When an oxide transparent conductive film is produced from these oxide sintered bodies, molybdenum having 4 to 6 valences occupies the indium position having 3 valences as impurity ions, thereby releasing carrier electrons. Thus, the conductivity increases. In general, when impurity ions such as tin increase in an n-type semiconductor such as indium oxide, the number of carrier electrons greatly increases, but the mobility of carrier electrons decreases due to impurity ion scattering. However, when molybdenum is added as impurity ions to indium oxide, the number of carrier electrons can be increased without significantly reducing mobility. Therefore, when molybdenum is included, the number of carrier electrons can be increased in a state where the mobility of carrier electrons is high, so that an oxide transparent conductive film with low resistance and high infrared transmittance can be realized. This is the main reason for including molybdenum in the present invention.

本発明の方法で、130℃以下の基板上に成膜される主として非晶質構造の酸化物透明導電膜は表面の中心線平均粗さ(Ra)で1.5nm以下であり表面平滑性が良好であり、比抵抗は9×10-4Ωcm以下の高い導電性を有し、波長400〜800nmにおける膜自体の平均透過率が82%以上であり、内部応力も低いため、有機ELなどの透明電極として有用な膜である。 The oxide transparent conductive film mainly having an amorphous structure formed on a substrate of 130 ° C. or lower by the method of the present invention has a surface centerline average roughness (Ra) of 1.5 nm or less and surface smoothness. It has good electrical resistivity of 9 × 10 −4 Ωcm or less, the average transmittance of the film itself at a wavelength of 400 to 800 nm is 82% or more, and the internal stress is also low. It is a film useful as a transparent electrode.

また、前記主として非晶質構造の酸化物透明導電膜をアニールして得られる結晶性の酸化物透明導電膜は、比抵抗が9×10-4Ωcm以下であり、波長400〜800nmの光に対する膜自体の平均透過率が82%以上であり、さらに、波長900〜1100nmの光に対する膜自体の平均透過率が80%以上であり、低抵抗で可視域から近赤外域までの透過率が大きい酸化物透明導電膜である。 Further, the crystalline oxide transparent conductive film obtained by annealing the oxide transparent conductive film mainly having an amorphous structure has a specific resistance of 9 × 10 −4 Ωcm or less, and with respect to light having a wavelength of 400 to 800 nm. The average transmittance of the film itself is 82% or more, and the average transmittance of the film itself for light with a wavelength of 900 to 1100 nm is 80% or more, and the transmittance from the visible region to the near infrared region is large with low resistance. It is an oxide transparent conductive film.

以下、実施例によって本発明をより具体的に説明する。
(実施例1〜6)ホットプレス法によるIn−Mo−O系酸化物焼結体タブレットの作製
平均粒径が1μm以下のIn23粉末、および平均粒径が1μm以下のMoO3粉末を原料粉末とし、In23粉末とMoO3粉末を、原子数比Mo/Inが0.006となるような割合で調合した。これらの原料を乾式ボールミル、Vブレンダーなどで均一に混合し、カーボン製容器中に給粉して各条件でホットプレス法を用いて焼結した。焼結温度は700〜900℃、圧力は2.45MPa(25kgf/cm2)〜29.40MPa(300kgf/cm2)の範囲から選択し、焼結時間は1hで一定とした。雰囲気は不活性ガス(Arガス)中で行った。
Hereinafter, the present invention will be described more specifically with reference to examples.
(Examples 1 to 6) Preparation of In-Mo-O-based oxide sintered body tablet by hot pressing method In 2 O 3 powder having an average particle size of 1 µm or less and MoO 3 powder having an average particle size of 1 µm or less The raw material powder was prepared by mixing In 2 O 3 powder and MoO 3 powder at a ratio such that the atomic ratio Mo / In was 0.006. These raw materials were uniformly mixed by a dry ball mill, a V blender or the like, powdered in a carbon container, and sintered using a hot press method under each condition. The sintering temperature was 700 to 900 ° C., the pressure was selected from the range of 2.45 MPa (25 kgf / cm 2 ) to 29.40 MPa (300 kgf / cm 2 ), and the sintering time was constant at 1 h. The atmosphere was performed in an inert gas (Ar gas).

得られた酸化物焼結体を、直径30mm、厚み40mmの大きさの円柱形状に加工し、体積と質量を測定して密度を算出した。焼結温度や焼結圧力を変えることで種々の密度の酸化物焼結体タブレットを製造した。得られた酸化物焼結体タブレットの密度は3.7〜6.5g/cm3であった。測定結果を表1に示す。 The obtained oxide sintered body was processed into a cylindrical shape having a diameter of 30 mm and a thickness of 40 mm, and the volume and mass were measured to calculate the density. Various density oxide sintered body tablets were manufactured by changing the sintering temperature and the sintering pressure. The density of the obtained oxide sintered body tablet was 3.7 to 6.5 g / cm 3 . The measurement results are shown in Table 1.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、700℃で焼結した酸化物焼結体は、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)を主相として微量のモリブデン酸インジウム化合物(InMo46、JCPDSカードの42−313に記載の相)が含まれており、それ以外の酸化物焼結体はビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンとインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンが固溶していると考えられる。 The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. The oxide sintered body sintered at 700 ° C. was an indium oxide crystal phase of Bixbite. (Phase described in 6-416 of JCPDS card) as a main phase contains a small amount of indium molybdate compound (InMo 4 O 6 , phase described in JCPDS card 42-313), and other oxides The sintered body was composed of a single phase of bixbite indium oxide crystal phase (phase described in JCPDS card 6-416). Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum is dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも4〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.8kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 4-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.8 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

透明導電膜の作製には磁場偏向型電子ビーム蒸着装置を用いた。該蒸着装置の真空排気系はロータリーポンプによる低真空排気系とクライオポンプによる高真空排気系から構成されており、5×10-5Paまで排気することが可能である。電子ビームはフィラメントの加熱により発生し、カソード−アノード間に印加された電界によって加速され、永久磁石の磁場中で曲げられた後、モリブデン製の坩堝内に設置されたタブレットに照射される。電子ビームの強度はフィラメントへの印加電圧を変化させることで調整できる。また、カソード−アノード間の加速電圧を変化させるとビームの照射位置を変化させることができる。 A magnetic field deflection type electron beam evaporation apparatus was used for the production of the transparent conductive film. The vacuum evacuation system of the vapor deposition apparatus is composed of a low vacuum evacuation system using a rotary pump and a high vacuum evacuation system using a cryopump, and can evacuate up to 5 × 10 −5 Pa. The electron beam is generated by heating the filament, accelerated by an electric field applied between the cathode and the anode, bent in the magnetic field of a permanent magnet, and then irradiated onto a tablet installed in a molybdenum crucible. The intensity of the electron beam can be adjusted by changing the voltage applied to the filament. Further, the irradiation position of the beam can be changed by changing the acceleration voltage between the cathode and the anode.

得られた酸化物焼結体タブレットを用いて、以下の手順で成膜を行うことにより、耐久試験を実施した。真空室内にArガスとO2ガスを導入して圧力を1.5×10-2Paに保持した。モリブデン製坩堝に実施例1〜6の円柱状タブレットを立てて配置し、タブレットの円形面の中央部に、60分間連続して電子ビームを照射した。電子銃の設定電圧は9kV、電流値は150mAとした。薄膜を成膜する基板は、ガラス基板(厚み1.1mmのコーニング7059)とし、基板温度は室温〜130℃とした。60分間の電子ビーム照射後に坩堝内のタブレットを観察し、タブレットに割れやクラックが入っていないか目視観察した。 Using the obtained oxide sintered body tablet, a durability test was performed by performing film formation according to the following procedure. Ar gas and O 2 gas were introduced into the vacuum chamber to maintain the pressure at 1.5 × 10 −2 Pa. The columnar tablets of Examples 1 to 6 were placed upright on a molybdenum crucible, and the central part of the tablet circular surface was irradiated with an electron beam continuously for 60 minutes. The set voltage of the electron gun was 9 kV, and the current value was 150 mA. The substrate on which the thin film was formed was a glass substrate (Corning 7059 with a thickness of 1.1 mm), and the substrate temperature was from room temperature to 130 ° C. The tablet in the crucible was observed after the electron beam irradiation for 60 minutes, and it was visually observed whether the tablet was cracked or cracked.

実施例1〜6のタブレットについて、各々20個づつ、上記の条件で耐久試験を行ったが、全て割れやクラックは発生しなかった。このようなタブレットを用いることで、安定に高速成膜を行うことができるため有用である。   About the tablet of Examples 1-6, although the endurance test was done on said conditions 20 by 20 each, all the cracks and cracks did not generate | occur | produce. Use of such a tablet is useful because high-speed film formation can be stably performed.

得られた酸化物焼結体タブレットを用いて、前記磁場偏向型電子ビーム蒸着装置により、成膜を行った。それぞれ200nmの膜厚となるように、それぞれの成膜速度から算出した成膜時間だけ、ガラス基板(厚み1.1mmのコーニング7059)上に成膜して薄膜を作製した。ガラス基板の温度は室温〜130℃とした。   Using the obtained oxide sintered body tablet, a film was formed by the magnetic field deflection type electron beam evaporation apparatus. A thin film was produced by forming a film on a glass substrate (Corning 7059 having a thickness of 1.1 mm) for a film formation time calculated from each film formation speed so that each film thickness was 200 nm. The temperature of the glass substrate was room temperature to 130 ° C.

得られた薄膜について、表面抵抗を四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で測定して比抵抗を算出した。また、分光光度計(日立製作所社製、U−4000)でガラス基板を含めた膜(膜付ガラス基板)の透過率(Tmk(%))およびガラス基板のみの透過率(Tk(%))を測定した。そして、(Tmk÷Tk)×100(%)で膜自体の透過率を算出した。 About the obtained thin film, the surface resistance was measured with a four-end needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type), and the specific resistance was calculated. Further, the transmittance (T mk (%)) of a film (glass substrate with a film) including a glass substrate using a spectrophotometer (manufactured by Hitachi, Ltd., U-4000) and the transmittance (T k (%) of only the glass substrate. )) Was measured. Then, the transmittance of the film itself was calculated by (T mk ÷ T k ) × 100 (%).

また、膜の10μm×10μmの領域における中心線平均表面粗さ(Ra)を原子間力顕微鏡(デジタルインスツルメンツ社製、NS−III、D5000システム)で測定した。膜の結晶性はCuKα線を用いたX線回折測定で測定した。膜の組成はICP発光分析法で測定した。   Further, the center line average surface roughness (Ra) in a 10 μm × 10 μm region of the film was measured with an atomic force microscope (manufactured by Digital Instruments, NS-III, D5000 system). The crystallinity of the film was measured by X-ray diffraction measurement using CuKα rays. The composition of the film was measured by ICP emission spectrometry.

その結果、得られたいずれの薄膜においても、比抵抗は4.5×10-4〜9×10-4Ωcm以下であり、可視域(400〜800nm)の膜自体の平均透過率は83〜90%であり、900〜1100nmの近赤外域での膜自体の平均透過率は60〜74%であり、膜表面の中心線平均表面粗さ(Ra)は1.5nm以下であり、膜質は非晶質であった。このような特性を有する膜は、有機ELやLCDなどの表示素子の透明電極に有用である。なお、膜の組成は用いた酸化物焼結体タブレットの組成とほぼ同じであった。また、長時間連続的に電子ビームと投入しても膜組成の変化はほとんどなかった。 As a result, in any of the thin films obtained, the specific resistance is 4.5 × 10 −4 to 9 × 10 −4 Ωcm or less, and the average transmittance of the visible film (400 to 800 nm) itself is 83 to 83 × 3. The average transmittance of the film itself in the near infrared region of 900 to 1100 nm is 60 to 74%, the center line average surface roughness (Ra) of the film surface is 1.5 nm or less, and the film quality is It was amorphous. A film having such characteristics is useful for a transparent electrode of a display element such as an organic EL or LCD. The composition of the film was almost the same as the composition of the oxide sintered body tablet used. Further, even when the electron beam was continuously applied for a long time, there was almost no change in the film composition.

また、この膜を窒素雰囲気中で250℃にて1時間アニールして同様に特性の評価を行った。アニール後の膜はビックスバイト型構造の酸化インジウム結晶膜であることをX線回折測定で確認した。その結果、可視光領域だけでなく近赤外線領域においても、アニール前と比べて光透過率が良好になり、膜自体の平均透過率は可視域(400〜800nm)で87〜93%となり、900〜1100nmの近赤外域でも85〜89%となった。また、膜の比抵抗は、3×10-4〜8×10-4Ωcmであった。このような酸化物透明導電膜を太陽電池の透明電極に用いると、近赤外光エネルギーも有効に利用することができるため有用である。 Further, this film was annealed in a nitrogen atmosphere at 250 ° C. for 1 hour, and the characteristics were similarly evaluated. It was confirmed by X-ray diffraction measurement that the annealed film was a bixbite type indium oxide crystal film. As a result, not only in the visible light region but also in the near infrared region, the light transmittance is better than before annealing, and the average transmittance of the film itself is 87 to 93% in the visible region (400 to 800 nm). It became 85 to 89% even in the near infrared region of ˜1100 nm. Moreover, the specific resistance of the film was 3 × 10 −4 to 8 × 10 −4 Ωcm. Use of such an oxide transparent conductive film for a transparent electrode of a solar cell is useful because near-infrared light energy can also be used effectively.

(比較例1)ホットプレスによるIn−Mo−O系酸化物焼結体タブレットの作製
焼結温度を700℃、焼結時間を0.5時間、焼結圧力を4.91MPaとした以外は、実施例1〜6と同じ条件でホットプレス焼結法で酸化物焼結体タブレットを作製したところ、密度は3.5g/cm3であった。測定結果を表1に示す。
(Comparative Example 1) Preparation of In-Mo-O oxide sintered body tablet by hot pressing Except that the sintering temperature was 700 ° C, the sintering time was 0.5 hours, and the sintering pressure was 4.91 MPa. When the oxide sintered compact tablet was produced by the hot press sintering method on the same conditions as Examples 1-6, the density was 3.5 g / cm < 3 >. The measurement results are shown in Table 1.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)を主相として微量のモリブデン酸インジウム化合物(InMo46、JCPDSカードの42−313に記載の相)が含まれていた。酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンとインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンが固溶していると考えられる。 The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, an indium oxide crystal phase of Bixbite (phase described in 6-416 of JCPDS card) was obtained. A trace amount of indium molybdate compound (InMo 4 O 6 , phase described in JCPDS card 42-313) was contained as the main phase. In order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum is dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも4〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1.0kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 4-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 1.0 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、全て、割れてしまった。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表1に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, all were broken. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 1.

(比較例2)ホットプレス法によるIn−Mo−O系酸化物焼結体タブレットの作製
焼結温度を900℃、焼結時間を4時間、焼結圧力を29.40MPaとした以外は、実施例1〜6と同じ条件でホットプレス焼結法で酸化物焼結体タブレットを作製したところ、密度は6.9g/cm3であった。測定結果を表1に示す。
(Comparative Example 2) Preparation of In-Mo-O-based oxide sintered body tablet by hot pressing method Implemented except that the sintering temperature was 900 ° C, the sintering time was 4 hours, and the sintering pressure was 29.40 MPa. When the oxide sintered compact tablet was produced with the hot press sintering method on the same conditions as Examples 1-6, the density was 6.9 g / cm < 3 >. The measurement results are shown in Table 1.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンとインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンが固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, the indium oxide crystal phase of Bixbite (phase described in JCPDS card 6-416) was obtained. It consisted of a single phase. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum is dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも4〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.9kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 4-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.9 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、7個にクラックが入っていた。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表1に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, 7 were cracked. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 1.

(比較例3)ホットプレス法によるIn−Mo−O系酸化物焼結体タブレットの作製
焼結温度を1000℃、焼結時間を1時間、焼結圧力を14.70MPaとした以外は、実施例1〜6と同じ条件でホットプレス焼結法で酸化物焼結体タブレットを作製したところ、密度は6.7g/cm3であった。測定結果を表1に示す。
(Comparative Example 3) Production of In-Mo-O-based oxide sintered body tablet by hot pressing method Implemented except that the sintering temperature was 1000 ° C, the sintering time was 1 hour, and the sintering pressure was 14.70 MPa. When the oxide sintered compact tablet was produced by the hot press sintering method on the same conditions as Examples 1-6, the density was 6.7 g / cm < 3 >. The measurement results are shown in Table 1.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)と金属インジウム結晶相(JCPDSカードの5−642に記載の相)で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、酸素の存在が確認され、酸化物相がほとんどであったが、酸素が存在しない金属相の存在も確認された。酸化物相にはモリブデンとインジウムが均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンが固溶していると考えられる。また、金属相は、10〜500μmの大きさで存在していたが、金属インジウムが主成分であり、上述のX線回折測定で確認された金属インジウム結晶相であった。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, a bixbite indium oxide crystal phase (phase described in JCPDS card 6-416) and It was composed of a metal indium crystal phase (phase described in JCPDS card 5-642). Moreover, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and the presence of oxygen was confirmed and the oxide phase was almost all but the metal phase without oxygen. The existence of was also confirmed. Molybdenum and indium were uniformly distributed in the oxide phase. Therefore, it is considered that molybdenum is dissolved in the indium oxide crystal phase. The metal phase was present in a size of 10 to 500 μm, but was mainly composed of metal indium and was a metal indium crystal phase confirmed by the X-ray diffraction measurement described above.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも4〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.6kΩcm以下であった。また全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 4-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.6 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of a raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、15個にクラックが入っていた。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表1に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, 15 were cracked. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 1.

(実施例7〜11)常圧焼結法によるIn−Mo−Zn−O系酸化物焼結体タブレットの作製
平均粒径が1μm以下のIn23粉末、および平均粒径が1μm以下のMoO3粉末、さらに平均粒径が1μm以下のZnO粉末を原料粉末とし、In23粉末とMoO3粉末を、Mo/Inの原子数比が0.006、Zn/Inの原子数比が0.00018〜0.017となるような割合で調合し、樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、乾燥、造粒した。
(Examples 7 to 11) Production of In-Mo-Zn-O-based oxide sintered body tablet by atmospheric pressure sintering method In 2 O 3 powder having an average particle size of 1 µm or less, and an average particle size of 1 µm or less MoO 3 powder, further ZnO powder having an average particle size of 1 μm or less is used as a raw material powder. In 2 O 3 powder and MoO 3 powder, the atomic ratio of Mo / In is 0.006, and the atomic ratio of Zn / In is It mix | blended in the ratio used as 0.00018-0.017, put into the resin-made pot, and mixed with the wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried and granulated.

造粒物に、冷間静水圧プレスで294MPa(3ton/cm2)の圧力を掛けて成形した。 The granulated product was molded by applying a pressure of 294 MPa (3 ton / cm 2 ) with a cold isostatic press.

次に、成形体を次のように焼結した。焼結炉内の大気に、炉内容積0.1m3当たり5リットル/分の割合の酸素を導入する雰囲気で、1100℃で2時間焼結した(常圧焼結法)。この際、1℃/分で昇温し、焼結後の冷却の際は、酸素導入を止め、1000℃までを10℃/分で降温した。 Next, the compact was sintered as follows. Sintering was performed at 1100 ° C. for 2 hours in an atmosphere in which oxygen was introduced at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume into the atmosphere in the sintering furnace (atmospheric pressure sintering method). At this time, the temperature was raised at 1 ° C./min. When cooling after sintering, the introduction of oxygen was stopped, and the temperature was lowered to 1000 ° C. at 10 ° C./min.

得られた酸化物焼結体タブレットを、直径30mm、厚み40mmの大きさの円柱形状に加工し、体積と重量を測定して密度を算出した。焼結温度や焼結時間を変えて種々の密度の酸化物焼結体タブレットを製造した。酸化物焼結体タブレットの密度は4.2〜5.9g/cm3であった。測定結果を表2に示す。 The obtained oxide sintered body tablet was processed into a cylindrical shape having a diameter of 30 mm and a thickness of 40 mm, and the volume and weight were measured to calculate the density. Various density sintered oxide tablets were produced by changing the sintering temperature and the sintering time. The density of the oxide sintered body tablet was 4.2 to 5.9 g / cm 3 . The measurement results are shown in Table 2.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンと亜鉛とインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンと亜鉛が固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, the indium oxide crystal phase of Bixbite (phase described in JCPDS card 6-416) was obtained. It consisted of a single phase. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum, zinc and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum and zinc are dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも2〜7μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 2-7 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 1 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

タブレットの耐久試験を実施例1〜6と同様の条件で行った。実施例7〜11のタブレットについて、各々20個づつ、上記の条件で耐久試験を行ったが、全て割れやクラックは発生しなかった。このようなタブレットを用いることで、安定に高速成膜を行うことができるため有用である。測定結果を表2に示す。   The tablet durability test was performed under the same conditions as in Examples 1-6. About the tablet of Examples 7-11, the durability test was done on said conditions 20 each by 20 pieces, but neither a crack nor a crack generate | occur | produced. Use of such a tablet is useful because high-speed film formation can be stably performed. The measurement results are shown in Table 2.

このようにZnをZn/In原子数比で0.00018〜0.017の割合で含有させると、焼結性が改善され、本発明で規定した焼結体密度(3.7〜6.5g/cm3)をZnを含ませない時より低温の焼結で達成することができる。 Thus, when Zn is contained at a Zn / In atomic ratio of 0.00018 to 0.017, the sinterability is improved, and the sintered body density (3.7 to 6.5 g) defined in the present invention is improved. / Cm 3 ) can be achieved by sintering at a lower temperature than when Zn is not included.

この効果は、Mo/Inの原子数比が0.001、0.025、0.060の組成においても同様であった。この結果から、ZnがZn/In原子数比で0.00018〜0.017の割合で含有されると焼結性が改善されるといえる。   This effect was the same even in the compositions with Mo / In atomic ratios of 0.001, 0.025, and 0.060. From this result, it can be said that when Zn is contained at a Zn / In atomic ratio of 0.00018 to 0.017, the sinterability is improved.

(比較例4)常圧焼結法によるIn−Mo−Zn−O系酸化物焼結体タブレットの作製
原料粉末の調合におけるZnO粉末の量をZn/Inの原子数比で0.00015とした以外は、実施例7〜11と同じ条件で常圧焼結法による酸化物焼結体タブレットを作製したところ、密度は3.5g/cm3であった。測定結果を表2に示す。
(Comparative Example 4) Preparation of In-Mo-Zn-O-based oxide sintered body tablet by atmospheric pressure sintering method The amount of ZnO powder in the preparation of the raw material powder was set to 0.00015 in the Zn / In atomic ratio. Except that, the oxide sintered body tablet by the atmospheric pressure sintering method was produced under the same conditions as in Examples 7 to 11, and the density was 3.5 g / cm 3 . The measurement results are shown in Table 2.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンと亜鉛とインジウムは均一に分布していた。したがって、酸化インジウム結晶相には、モリブデンと亜鉛が固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, the indium oxide crystal phase of Bixbite (phase described in JCPDS card 6-416) was obtained. It consisted of a single phase. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum, zinc and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum and zinc are dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、何れも2〜7μmであった。また、また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 2-7 μm. Also, the surface resistance of the circular surface, which is the electron beam irradiation surface, is measured with a four-end needle method resistivity meter Loresta EP (manufactured by Dia Instruments Co., Ltd., MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. When the specific resistance was calculated by measurement, it was 1 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、全て、割れてしまった。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表2に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, all were broken. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 2.

(比較例5)常圧焼結法によるIn−Mo−O系酸化物焼結体タブレットの作製
平均粒径が1μm以下のIn23粉末、および平均粒径が1μm以下のMoO3粉末を原料粉末とし、In23粉末とMoO3粉末を、Mo/Inの原子数比が0.006となるような割合で調合し、樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、乾燥、造粒した。
(Comparative Example 5) Preparation of In-Mo-O-based oxide sintered body tablet by atmospheric pressure sintering method In 2 O 3 powder having an average particle size of 1 µm or less and MoO 3 powder having an average particle size of 1 µm or less As raw material powders, In 2 O 3 powder and MoO 3 powder were prepared in such a ratio that the atomic ratio of Mo / In was 0.006, put in a resin pot, and mixed by a wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried and granulated.

造粒物に、冷間静水圧プレスで294MPa(3ton/cm2)の圧力を掛けて成形した。 The granulated product was molded by applying a pressure of 294 MPa (3 ton / cm 2 ) with a cold isostatic press.

次に、成形体を次のように焼結した。焼結炉内の大気に、炉内容積0.1m3当たり5リットル/分の割合の酸素を導入する雰囲気で、1100℃で2時間焼結した(常圧焼結法)。この際、1℃/分で昇温し、焼結後の冷却の際は、酸素導入を止め、1000℃までを10℃/分で降温した。 Next, the compact was sintered as follows. Sintering was performed at 1100 ° C. for 2 hours in an atmosphere in which oxygen was introduced at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume into the atmosphere in the sintering furnace (atmospheric pressure sintering method). At this time, the temperature was raised at 1 ° C./min. When cooling after sintering, the introduction of oxygen was stopped, and the temperature was lowered to 1000 ° C. at 10 ° C./min.

得られた酸化物焼結体タブレットを、直径30mm、厚み40mmの大きさの円柱形状に加工し、体積と質量を測定して密度を算出した。得られた酸化物焼結体タブレットを作製したところ、密度は3.0g/cm3であった。測定結果を表2に示す。 The obtained oxide sintered body tablet was processed into a cylindrical shape with a diameter of 30 mm and a thickness of 40 mm, and the volume and mass were measured to calculate the density. When the obtained oxide sintered compact tablet was produced, the density was 3.0 g / cm 3 . The measurement results are shown in Table 2.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶(JCPDSカードの6−416)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンとインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンが固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, it was composed of a single phase of bixbite indium oxide crystals (6-416 of JCPDS card). It was. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum is dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも2〜8μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 2 to 8 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 1 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、全てのタブレットにクラックが入っていた。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表2に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, all tablets were cracked. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 2.

(比較例6)常圧焼結法によるIn−Mo−O系酸化物焼結体タブレットの作製
焼結温度を1150〜1250℃とし、焼結時間を1〜5時間とした以外は、比較例5と同じ条件で常圧焼結法で酸化物焼結体タブレットを作製したところ、密度は3.0〜3.5g/cm3であった。測定結果を表2に示す。
(Comparative Example 6) Preparation of In-Mo-O-based oxide sintered body tablet by atmospheric pressure sintering method Comparative example except that the sintering temperature was 1150 to 1250 ° C and the sintering time was 1 to 5 hours. When the oxide sintered compact tablet was produced by the atmospheric pressure sintering method under the same conditions as 5, the density was 3.0 to 3.5 g / cm 3 . The measurement results are shown in Table 2.

したがって、ZnOを含まない場合は、1250℃以下の焼結温度では、常圧焼結法では、密度が3.7g/cm3以上の焼結体を得ることができないと考えられる。 Therefore, when ZnO is not included, it is considered that a sintered body having a density of 3.7 g / cm 3 or more cannot be obtained by a normal pressure sintering method at a sintering temperature of 1250 ° C. or less.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンとインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンが固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, the indium oxide crystal phase of Bixbite (phase described in JCPDS card 6-416) was obtained. It consisted of a single phase. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum is dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも2〜7μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 2-7 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 1 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、全て、割れてしまった。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表2に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, all were broken. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 2.

この傾向は、酸化物焼結体タブレットの作製時の配合組成(Mo/In原子数比、Zn/In原子数比)が(0.001、0)、(0.025、0)、(0.060、0)の場合でも全く同じであった。   The tendency is that the compounding composition (Mo / In atomic ratio, Zn / In atomic ratio) at the time of producing the oxide sintered body tablet is (0.001, 0), (0.025, 0), (0 .060, 0) was exactly the same.

(実施例12)常圧焼結法によるIn−Mo−O系酸化物焼結体タブレットの作製
焼結温度を1300℃とし、焼結時間を5時間とした以外は、比較例5と同じ条件で常圧焼結法で酸化物焼結体タブレットの作製をしたところ、密度は4.0g/cm3であった。測定結果を表2に示す。
(Example 12) Preparation of In-Mo-O-based oxide sintered body tablet by atmospheric pressure sintering method The same conditions as Comparative Example 5 except that the sintering temperature was 1300 ° C and the sintering time was 5 hours When the oxide sintered body tablet was prepared by the normal pressure sintering method, the density was 4.0 g / cm 3 . The measurement results are shown in Table 2.

したがって、ZnOを含まない場合は、1300℃の高温で5時間の長時間の焼結を行わないと、常圧焼結法では密度が3.7g/cm3以上の焼結体を得ることができないと考えられる。 Therefore, when ZnO is not included, a sintered body having a density of 3.7 g / cm 3 or more can be obtained by atmospheric pressure sintering unless high-temperature sintering is performed at a high temperature of 1300 ° C. for 5 hours. It is considered impossible.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンとインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンが固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, the indium oxide crystal phase of Bixbite (phase described in JCPDS card 6-416) was obtained. It consisted of a single phase. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum is dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも2〜7μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 2-7 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 1 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、全て割れやクラックは発生しなかった。このようなタブレットを用いることで、安定に高速成膜を行うことができるため有用である。測定結果を表2に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, all cracks and cracks did not occur. Use of such a tablet is useful because high-speed film formation can be stably performed. The measurement results are shown in Table 2.

この傾向は、酸化物焼結体タブレットの作製時の配合組成(Mo/In原子数比、Zn/In原子数比)が(0.001、0)、(0.025、0)、(0.060、0)の場合でも全く同じであった。したがって、ZnOを含まない場合であっても、1300℃で5時間という焼結条件を用いれば、常圧焼結法により、密度が3.9〜4.4g/cm3であって、耐久試験で評価しても割れの生じない焼結体を得ることができる。 The tendency is that the compounding composition (Mo / In atomic ratio, Zn / In atomic ratio) at the time of producing the oxide sintered body tablet is (0.001, 0), (0.025, 0), (0 .060, 0) was exactly the same. Therefore, even when ZnO is not included, if the sintering condition of 1300 ° C. for 5 hours is used, the density is 3.9 to 4.4 g / cm 3 by the atmospheric pressure sintering method, and the durability test is performed. Even if it evaluates by, the sintered compact which does not produce a crack can be obtained.

(実施例13〜18)常圧焼結法によるIn−Mo−Zn−O系酸化物焼結体タブレットの作製
平均粒径が1μm以下のIn23粉末、および平均粒径が1μm以下のMoO3粉末、さらに平均粒径が1μm以下のZnO粉末を原料粉末とし、In23粉末とMoO3粉末を、Mo/Inの原子数比が0.012、Zn/Inの原子数比が0.008となるような割合で調合し、樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrO2ボールを用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、乾燥、造粒した。
(Examples 13 to 18) Production of In-Mo-Zn-O-based oxide sintered body tablet by atmospheric pressure sintering method In 2 O 3 powder having an average particle size of 1 µm or less, and an average particle size of 1 µm or less MoO 3 powder and ZnO powder having an average particle size of 1 μm or less are used as raw material powder. In 2 O 3 powder and MoO 3 powder have an Mo / In atomic ratio of 0.012 and a Zn / In atomic ratio. The mixture was prepared at a ratio of 0.008, placed in a resin pot, and mixed with a wet ball mill. At this time, hard ZrO 2 balls were used, and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried and granulated.

造粒物に、冷間静水圧プレスで294MPa(3ton/cm2)の圧力を掛けて成形した。 The granulated product was molded by applying a pressure of 294 MPa (3 ton / cm 2 ) with a cold isostatic press.

次に、成形体を次のように焼結した。焼結炉内の大気に、炉内容積0.1m3当たり5リットル/分の割合の酸素を導入する雰囲気で、1000〜1200℃で1〜2時間、常圧で焼結した。この際、1℃/分で昇温し、焼結後の冷却の際は、酸素導入を止め、1000℃までを10℃/分で降温した。 Next, the compact was sintered as follows. Sintering was performed at 1000 to 1200 ° C. for 1 to 2 hours under normal pressure in an atmosphere in which oxygen at a rate of 5 liters / min per 0.1 m 3 of the furnace volume was introduced into the atmosphere in the sintering furnace. At this time, the temperature was raised at 1 ° C./min. When cooling after sintering, the introduction of oxygen was stopped, and the temperature was lowered to 1000 ° C. at 10 ° C./min.

得られた酸化物焼結体タブレットを、直径30mm、厚み40mmの大きさの円柱形状に加工し、体積と質量を測定して密度を算出した。焼結温度や焼結時間を変えることで種々の密度の酸化物焼結体タブレットを製造した。酸化物焼結体タブレットの密度は4.5〜6.5g/cm3であった。測定結果を表2に示す。 The obtained oxide sintered body tablet was processed into a cylindrical shape with a diameter of 30 mm and a thickness of 40 mm, and the volume and mass were measured to calculate the density. Various density oxide sintered body tablets were manufactured by changing the sintering temperature and sintering time. The density of the oxide sintered body tablet was 4.5 to 6.5 g / cm 3 . The measurement results are shown in Table 2.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンと亜鉛とインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンと亜鉛が固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, the indium oxide crystal phase of Bixbite (phase described in JCPDS card 6-416) was obtained. It consisted of a single phase. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum, zinc and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum and zinc are dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも1〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1.0kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. 1-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 1.0 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

タブレットの耐久試験を実施例1〜6と同様の条件で行った。実施例13〜18のタブレットについて、各々20個づつ、上記の条件で耐久試験を行ったが、全て割れやクラックは発生しなかった。このようなタブレットを用いることで、安定に高速成膜を行うことができるため有用である。測定結果を表2に示す。   The tablet durability test was performed under the same conditions as in Examples 1-6. About the tablet of Examples 13-18, although the durability test was done on said conditions by 20 each, all were not generate | occur | produced in a crack and a crack. Use of such a tablet is useful because high-speed film formation can be stably performed. The measurement results are shown in Table 2.

得られた酸化物焼結体タブレットを用いて、実施例1〜6と同様に、前記磁場偏向型電子ビーム蒸着装置により、成膜を行った。それぞれ200nmの膜厚となるように、それぞれの成膜速度から算出した成膜時間だけ、ガラス基板(厚み1.1mmのコーニング7059)上に成膜して薄膜を作製した。ガラス基板は加熱しなかった。   Using the obtained oxide sintered body tablet, a film was formed by the magnetic field deflection type electron beam evaporation apparatus in the same manner as in Examples 1-6. A thin film was produced by forming a film on a glass substrate (Corning 7059 having a thickness of 1.1 mm) for a film formation time calculated from each film formation speed so that each film thickness was 200 nm. The glass substrate was not heated.

実施例1〜6と同様に、比抵抗、膜自体の透過率、表面粗さ(Ra)、結晶性を評価した。   As in Examples 1 to 6, the specific resistance, the transmittance of the film itself, the surface roughness (Ra), and the crystallinity were evaluated.

その結果、薄膜の比抵抗は3.5×10-4〜8.7×10-4Ωcmであり、可視域(400〜800nm)の膜自体の平均透過率は82〜89%であり、900〜1100nmの近赤外域での膜自体の平均透過率は61〜75%であり、膜表面の中心線平均表面粗さ(Ra)は1.9nm以下の非晶質膜が得られていることがわかった。このような特性の膜は有機ELやLCDなどの表示素子に有用である。なお、膜の組成は酸化物焼結体タブレットの組成とほぼ同じであり、長時間連続的に電子ビームと投入しても膜組成の変化はほとんどなかった。 As a result, the specific resistance of the thin film is 3.5 × 10 −4 to 8.7 × 10 −4 Ωcm, the average transmittance of the film itself in the visible region (400 to 800 nm) is 82 to 89%, and 900 The average transmittance of the film itself in the near infrared region of ˜1100 nm is 61 to 75%, and an amorphous film having a center line average surface roughness (Ra) of 1.9 nm or less is obtained. I understood. A film having such characteristics is useful for display elements such as organic EL and LCD. The composition of the film was almost the same as that of the oxide sintered body tablet, and the film composition hardly changed even when the electron beam was continuously applied for a long time.

また、この膜を窒素雰囲気中で230℃にて1時間アニールして同様に特性の評価を行った。アニール後の膜はビックスバイト型構造の酸化インジウム結晶膜であることをX線回折測定で確認した。その結果、可視光領域だけでなく近赤外線領域においても、光透過率が良好になり、膜自体の平均透過率は可視域(400〜800nm)で87〜91%であり、900〜1100nmの近赤外域でも80〜86%であった。また、膜の比抵抗は、3.1×10-4〜7.5×10-4Ωcmであった。このような酸化物透明導電膜を太陽電池の透明電極に用いると、近赤外光エネルギーも有効に利用することができるため有用である。 Further, this film was annealed at 230 ° C. for 1 hour in a nitrogen atmosphere, and the characteristics were similarly evaluated. It was confirmed by X-ray diffraction measurement that the annealed film was a bixbite type indium oxide crystal film. As a result, the light transmittance is good not only in the visible light region but also in the near infrared region, and the average transmittance of the film itself is 87 to 91% in the visible region (400 to 800 nm), and is close to 900 to 1100 nm. Even in the infrared region, it was 80 to 86%. Moreover, the specific resistance of the film was 3.1 × 10 −4 to 7.5 × 10 −4 Ωcm. Use of such an oxide transparent conductive film for a transparent electrode of a solar cell is useful because near-infrared light energy can also be used effectively.

(比較例7)常圧焼結法によるIn−Mo−Zn−O系酸化物焼結体タブレットの作製焼結時間を0.5時間とした以外は、実施例13と同じ条件で酸化物焼結体タブレットを作製したところ、密度は3.5g/cm3であった。測定結果を表2に示す。 (Comparative Example 7) Preparation of In-Mo-Zn-O oxide sintered body tablet by atmospheric pressure sintering method Oxide sintering under the same conditions as in Example 13 except that the sintering time was 0.5 hour. When a bonded tablet was produced, the density was 3.5 g / cm 3 . The measurement results are shown in Table 2.

酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンと亜鉛とインジウムは均一に分布していた。したがって、酸化インジウム結晶相にはモリブデンと亜鉛が固溶していると考えられる。   Oxide sintered body was pulverized in a mortar, and powder X-ray diffraction measurement was performed using CuKα rays, and it was composed of a single phase of bixbite indium oxide crystal (phase described in JCPDS card 6-416). It had been. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum, zinc and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum and zinc are dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも1〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.9kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. 1-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.9 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、全て、割れてしまった。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表2に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, all were broken. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 2.

(比較例8)常圧焼結法によるIn−Mo−Zn−O系酸化物焼結体タブレットの作製
焼結温度を1200℃とし、焼結時間を6時間とした以外は、実施例18と同じ条件で酸化物焼結体タブレットを作製したところ、密度は7.0g/cm3であった。測定結果を表2に示す。
(Comparative Example 8) Production of In-Mo-Zn-O-based oxide sintered body tablet by atmospheric pressure sintering method Example 18 except that the sintering temperature was 1200 ° C and the sintering time was 6 hours. When an oxide sintered body tablet was produced under the same conditions, the density was 7.0 g / cm 3 . The measurement results are shown in Table 2.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンと亜鉛とインジウムは均一に分布していた。したがって、酸化インジウム結晶相には、モリブデンと亜鉛が固溶していると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, single particles of bixbite indium oxide crystals (phase described in 6-416 of JCPDS card) were obtained. Consisted of phases. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and molybdenum, zinc and indium were uniformly distributed in each crystal grain. Therefore, it is considered that molybdenum and zinc are dissolved in the indium oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも1〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.9kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. 1-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.9 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、7個にクラックが入っていた。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表2に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, 7 were cracked. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 2.

(比較例9)常圧焼結法によるIn−Mo−Zn−O系酸化物焼結体タブレットの作製
焼結中に焼結炉内に酸素を導入しないこととした以外は、実施例17と同じ条件で常圧焼結法により酸化物焼結体タブレットを作製したところ、密度は6.5g/cm3であった。測定結果を表2に示す。
(Comparative Example 9) Preparation of In-Mo-Zn-O-based oxide sintered body tablet by atmospheric pressure sintering method Example 17 except that oxygen was not introduced into the sintering furnace during sintering When an oxide sintered body tablet was produced by the normal pressure sintering method under the same conditions, the density was 6.5 g / cm 3 . The measurement results are shown in Table 2.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)と金属インジウム結晶相(JCPDSカードの5−642に記載の相)で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、酸素の存在が確認された酸化物相がほとんどであったが、酸素が存在しない金属相の存在も確認された。酸化物相にはモリブデンと亜鉛とインジウムが均一に分布していた。したがって、酸化インジウム結晶相には、モリブデンと亜鉛が固溶していると考えられる。また、金属相は、20〜400μmの大きさで存在していたが、金属インジウムが主成分で極微量の亜鉛が固溶しており、上述のX線回折測定で確認された金属インジウム結晶相であると考えられる。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, a bixbite indium oxide crystal phase (phase described in JCPDS card 6-416) and It was composed of a metal indium crystal phase (phase described in JCPDS card 5-642). In addition, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and most of the oxide phases were confirmed to have oxygen, but the metal phase was free of oxygen. The existence of was also confirmed. Molybdenum, zinc, and indium were uniformly distributed in the oxide phase. Therefore, it is considered that molybdenum and zinc are dissolved in the indium oxide crystal phase. Moreover, although the metal phase existed in a size of 20 to 400 μm, the metal indium crystal phase was confirmed by the above-mentioned X-ray diffraction measurement because metal indium was the main component and a trace amount of zinc was dissolved therein. It is thought that.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも4〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.4kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 4-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.4 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

さらに、実施例1〜6と同様に酸化物焼結体タブレットの耐久試験を実施した。20個のタブレットについて試験を行ったところ、12個にクラックが入っていた。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。測定結果を表2に示す。   Furthermore, the durability test of the oxide sintered compact tablet was implemented similarly to Examples 1-6. When 20 tablets were tested, 12 were cracked. If such a tablet is used, high-speed film formation cannot be performed stably. The measurement results are shown in Table 2.

(実施例19)原子数比を変えた例
酸化物焼結体タブレットの組成(原子数比Mo/In、原子数比Zn/In)を(0.001、0)、(0.025、0)、(0.060、0)として、実施例1〜6と同様に、ホットプレス焼結法で焼結条件を変えて種々の密度の蒸着用焼結体タブレットを作製し、同様に電子ビーム照射による耐久性を調べた。
(Example 19) Example of changing atomic ratio The composition (atomic ratio Mo / In, atomic ratio Zn / In) of the oxide sintered body tablet was changed to (0.001, 0), (0.025, 0 ), (0.060, 0), similarly to Examples 1 to 6, the sintering conditions were changed by the hot press sintering method to prepare sintered compact tablets for vapor deposition with various densities. Durability by irradiation was examined.

その結果は全く同じ傾向であり、酸化物焼結体タブレットの密度が3.7〜6.5g/cm3のときに割れやクラックが発生せず安定して使用することができた。 The results were exactly the same, and when the density of the oxide sintered body tablet was 3.7 to 6.5 g / cm 3 , cracks and cracks did not occur and it could be used stably.

また、酸化物焼結体タブレットの組成(原子数比Mo/In、原子数比Zn/In)を(0.001、0.001)、(0.025、0.008)、(0.060、0.017)に対しても、実施例13〜18と同様に、常圧焼結法で焼結条件を変えて種々の密度の酸化物焼結体タブレットを作製し、同様に電子ビーム照射による耐久性を調べた。   Moreover, the composition (atomic ratio Mo / In, atomic ratio Zn / In) of the oxide sintered body tablet is (0.001, 0.001), (0.025, 0.008), (0.060). , 0.017), similarly to Examples 13-18, the sintering conditions were changed by the atmospheric pressure sintering method to produce oxide sintered compact tablets having various densities, and the electron beam irradiation was performed in the same manner. The durability was investigated.

その結果は全く同じ傾向であり、酸化物焼結体タブレットの密度が3.7〜6.5g/cm3のときに割れやクラックが発生せず安定して使用することができた。 The results were exactly the same, and when the density of the oxide sintered body tablet was 3.7 to 6.5 g / cm 3 , cracks and cracks did not occur and it could be used stably.

これらの酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶(JCPDSカードの6−416に記載の相)の単相で構成されていた。酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内で各構成金属元素は均一に分布していた。   When these oxide sintered bodies were pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays, a single phase of bixbite indium oxide crystal (phase described in JCPDS card 6-416) was obtained. Consisted of. In order to investigate the composition distribution of the oxide sintered body, the surface analysis by EPMA was performed on the fracture surface, and each constituent metal element was uniformly distributed in each crystal grain.

これらの焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも1〜9μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.9kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of these sintered bodies with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. 1-9 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.9 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

得られた酸化物焼結体タブレットを用いて、実施例1〜6と同様に、前記磁場偏向型電子ビーム蒸着装置により、成膜を行った。それぞれ200nmの膜厚となるように、それぞれの成膜速度から算出した成膜時間だけ、ガラス基板(厚み1.1mmのコーニング7059)上に成膜して薄膜を作製した。ガラス基板は加熱しなかった。   Using the obtained oxide sintered body tablet, a film was formed by the magnetic field deflection type electron beam evaporation apparatus in the same manner as in Examples 1-6. A thin film was produced by forming a film on a glass substrate (Corning 7059 having a thickness of 1.1 mm) for a film formation time calculated from each film formation speed so that each film thickness was 200 nm. The glass substrate was not heated.

実施例1〜6と同様に、比抵抗、膜自体の透過率、表面粗さ(Ra)、結晶性を評価した。   As in Examples 1 to 6, the specific resistance, the transmittance of the film itself, the surface roughness (Ra), and the crystallinity were evaluated.

その結果、薄膜の比抵抗は2.9×10-4〜8.5×10-4Ωcmであり、可視域(400〜800nm)の膜自体の平均透過率は85〜90%であり、900〜1100nmの近赤外域での膜自体の平均透過率は63〜73%であり、膜表面の中心線平均表面粗さ(Ra)は1.8nm以下の非晶質膜が得られていることがわかった。このような特性の膜は有機ELやLCDなどの表示素子に有用である。なお、膜の組成は酸化物焼結体タブレットの組成とほぼ同じであった。 As a result, the specific resistance of the thin film is 2.9 × 10 −4 to 8.5 × 10 −4 Ωcm, the average transmittance of the film itself in the visible region (400 to 800 nm) is 85 to 90%, and 900 The average transmittance of the film itself in the near infrared region of ˜1100 nm is 63 to 73%, and an amorphous film having a center line average surface roughness (Ra) of 1.8 nm or less is obtained. I understood. A film having such characteristics is useful for display elements such as organic EL and LCD. The composition of the film was almost the same as the composition of the oxide sintered body tablet.

また、この膜を窒素雰囲気中で200〜400℃の各温度にて1時間アニールして同様に特性の評価を行った。アニール後の膜はビックスバイト型構造の酸化インジウム結晶膜であることをX線回折測定で確認した。その結果、可視光領域だけでなく近赤外線領域においても、光透過率が良好になり、膜自体の平均透過率は可視域(400〜800nm)で88〜92%であり、900〜1100nmの近赤外域でも80〜90%であった。また、膜の比抵抗は、2.3×10-4〜8.9×10-4Ωcmであった。このような酸化物透明導電膜を太陽電池の透明電極に用いると、近赤外光エネルギーも有効に利用することができるため有用である。 The film was annealed in a nitrogen atmosphere at each temperature of 200 to 400 ° C. for 1 hour, and the characteristics were similarly evaluated. It was confirmed by X-ray diffraction measurement that the annealed film was a bixbite type indium oxide crystal film. As a result, the light transmittance is good not only in the visible light region but also in the near infrared region, and the average transmittance of the film itself is 88 to 92% in the visible region (400 to 800 nm), and near 900 to 1100 nm. Even in the infrared region, it was 80 to 90%. Moreover, the specific resistance of the film was 2.3 × 10 −4 to 8.9 × 10 −4 Ωcm. Use of such an oxide transparent conductive film for a transparent electrode of a solar cell is useful because near-infrared light energy can also be used effectively.

(比較例10)原料の酸化インジウム粉の粒径を変えた例
平均粒径が約10μmのIn23粉末を用いた以外は実施例3と同様の条件で酸化物焼結体タブレットを作製したところ、密度は4.3g/cm3であった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、0.9kΩcm以下であった。
(Comparative Example 10) Example of changing the particle size of the raw material indium oxide powder An oxide sintered body tablet was produced under the same conditions as in Example 3 except that In 2 O 3 powder having an average particle size of about 10 μm was used. As a result, the density was 4.3 g / cm 3 . In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 0.9 kΩcm or less.

酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内で各構成金属元素は均一に分布していた。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   Oxide sintered body was pulverized in a mortar, and powder X-ray diffraction measurement was performed using CuKα rays, and it was composed of a single phase of bixbite indium oxide crystal (phase described in JCPDS card 6-416). It had been. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and each constituent metal element was uniformly distributed in each crystal grain. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、焼結体中の100個の結晶粒径の平均値を求めたところ、25μmと実施例1〜15のもの(10μm以下)と比べて大きかった。   From the observation of the fracture surface of the sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the sintered body was determined. It was larger than 15 (10 μm or less).

このような結晶粒径の大きい酸化物焼結体タブレットに対し、実施例1〜6と同様の条件で耐久試験を実施した。20個のタブレットについて試験を行ったところ、5個にクラックが入っていた。このようなタブレットを用いたのでは、安定に高速成膜を行うことができないことがわかる。   Durability tests were performed on the oxide sintered body tablets having a large crystal grain size under the same conditions as in Examples 1 to 6. When 20 tablets were tested, 5 were cracked. It can be seen that high-speed film formation cannot be stably performed using such a tablet.

(比較例11)冷却時の酸素導入の効果
酸化物焼結体タブレットの組成(原子数比Mo/In、原子数比Zn/In)を(0.018、0.008)とし、焼結体作製時において、常圧焼結後の冷却の際に焼結炉内に導入していた酸素を止めずに5リットル/分の割合で酸素導入したまま降温した以外は、実施例14と同様の条件で酸化物焼結体タブレットを作製したところ、密度は4.5g/cm3であった。
(Comparative Example 11) Effect of introduction of oxygen during cooling Oxide sintered tablet composition (atomic ratio Mo / In, atomic ratio Zn / In) is (0.018, 0.008), sintered body At the time of preparation, the same as in Example 14 except that the oxygen introduced into the sintering furnace at the time of cooling after atmospheric pressure sintering was not stopped and the temperature was lowered while oxygen was introduced at a rate of 5 liters / minute. When an oxide sintered body tablet was produced under the conditions, the density was 4.5 g / cm 3 .

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶(JCPDSカードの6−416に記載の相)の単相で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内で各構成金属元素は均一に分布していた。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, single particles of bixbite indium oxide crystals (phase described in 6-416 of JCPDS card) were obtained. Consisted of phases. Further, in order to investigate the composition distribution of the oxide sintered body, surface analysis by EPMA was performed on the fracture surface, and each constituent metal element was uniformly distributed in each crystal grain. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、焼結体中の100個の結晶粒径の平均値を求めたところ8μmであった。しかし、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、2.1kΩcmであり、実施例1〜19の酸化物焼結体(1kΩcm以下)と比べて高抵抗であった。   From the observation of the fracture surface of the sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the sintered body was determined to be 8 μm. However, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a Loresta EP (manufactured by Dia Instruments Co., Ltd., MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 2.1 kΩcm, which was higher than that of the oxide sintered bodies of Examples 1 to 19 (1 kΩcm or less).

このような高抵抗の酸化物焼結体タブレットに対し、実施例1〜6と同様の条件で電子ビーム照射による耐久試験を試みたところ、電子ビーム照射開始5分後に電子ビームの照射位置が所定の場所に定まらずに不安定になり、安定な成膜が実施できなかった。タブレットが高抵抗であったため電子ビーム照射により帯電が起きたことが原因と考えられる。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。   When an endurance test by electron beam irradiation was attempted on the high resistance oxide sintered body tablet under the same conditions as in Examples 1 to 6, the irradiation position of the electron beam was predetermined 5 minutes after the start of electron beam irradiation. However, the film was unstable and could not be formed stably. It is thought that charging was caused by electron beam irradiation because the tablet had high resistance. If such a tablet is used, high-speed film formation cannot be performed stably.

(比較例12)原料の酸化モリブデンの粒径を変えた例
MoO3の原料粉末中の平均粒径を12μmとした以外は実施例12と同じ条件で、常圧焼結法で酸化物焼結体タブレットの作製をしたところ、密度は3.8g/cm3であった。測定結果を表2に示す。
(Comparative example 12) Example of changing the particle size of the raw material molybdenum oxide The oxide sintering was performed by the atmospheric pressure sintering method under the same conditions as in Example 12 except that the average particle size in the MoO 3 raw material powder was 12 μm. When the body tablet was produced, the density was 3.8 g / cm 3 . The measurement results are shown in Table 2.

得られた酸化物焼結体を乳鉢で粉砕して、CuKα線を用いた粉末X線回折測定を行ったところ、ビックスバイトの酸化インジウム結晶相(JCPDSカードの6−416に記載の相)の他、MoO3結晶相(JCPDSカードのNo.5−508に記載の相)で構成されていた。また、酸化物焼結体の組成分布を調査するため、破断面についてEPMAによる面分析を行ったところ、各結晶粒内でモリブデンが局所的に固まっている相とモリブデンとインジウムが均一に混ざっている相が存在していた。したがって、酸化物焼結体はモリブデンが固溶した酸化インジウム結晶相と酸化モリブデン結晶相で構成されていると考えられる。 The obtained oxide sintered body was pulverized in a mortar and subjected to powder X-ray diffraction measurement using CuKα rays. As a result, the indium oxide crystal phase of Bixbite (phase described in JCPDS card 6-416) was obtained. In addition, it was composed of a MoO 3 crystal phase (phase described in JCPDS card No. 5-508). Moreover, in order to investigate the composition distribution of the oxide sintered body, the surface analysis by EPMA was performed on the fracture surface. As a result, molybdenum and indium were uniformly mixed with a phase in which molybdenum was locally solidified in each crystal grain. There was a phase. Therefore, it is considered that the oxide sintered body is composed of an indium oxide crystal phase in which molybdenum is dissolved and a molybdenum oxide crystal phase.

酸化物焼結体の破断面の走査型電子顕微鏡(日立製作所社製、S−800)による観察から、酸化物焼結体中の100個の結晶粒径の平均値を求めたところ、いずれも2〜7μmであった。また、酸化物焼結体の電子ビーム照射面に対し、四端針法抵抗率計ロレスタEP(ダイアインスツルメンツ社製、MCP−T360型)で電子ビーム照射面である円形面の表面抵抗を測定して比抵抗を算出したところ、1kΩcm以下であった。また、全ての酸化物焼結体に対してICP発光分析法で組成分析を行ったところ、仕込み組成(原料粉末の調合割合に基づく組成)を有することがわかった。   From the observation of the fracture surface of the oxide sintered body with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd.), the average value of 100 crystal grain sizes in the oxide sintered body was determined. It was 2-7 μm. In addition, the surface resistance of the circular surface, which is the electron beam irradiation surface, was measured with a four-point needle method resistivity meter Loresta EP (manufactured by Dia Instruments, MCP-T360 type) against the electron beam irradiation surface of the oxide sintered body. The specific resistance was calculated to be 1 kΩcm or less. Moreover, when the composition analysis was performed by the ICP emission analysis method with respect to all the oxide sintered compacts, it turned out that it has a preparation composition (composition based on the preparation ratio of raw material powder).

得られた酸化物焼結体タブレットを用いて、実施例1〜6と同様に、前記磁場偏向型電子ビーム蒸着装置により、成膜を行った。それぞれ200nmの膜厚となるように、それぞれの成膜速度から算出した成膜時間だけ、ガラス基板(厚み1.1mmのコーニング7059)上に成膜して薄膜を作製した。ガラス基板は加熱しなかった。   Using the obtained oxide sintered body tablet, a film was formed by the magnetic field deflection type electron beam evaporation apparatus in the same manner as in Examples 1-6. A thin film was produced by forming a film on a glass substrate (Corning 7059 having a thickness of 1.1 mm) for a film formation time calculated from each film formation speed so that each film thickness was 200 nm. The glass substrate was not heated.

実施例1〜6と同様に、比抵抗、膜自体の透過率、表面粗さ(Ra)、結晶性を評価した。   As in Examples 1 to 6, the specific resistance, the transmittance of the film itself, the surface roughness (Ra), and the crystallinity were evaluated.

その結果、薄膜の比抵抗はタブレットの使用初期では5.9×10-4Ωcmであったが、連続的に使用した場合に比抵抗の変化が大きく、最終的には4.3×10-3Ωcmまで上昇していった。膜の組成をICP発光分析にて測定したところ、タブレットの使用初期と終期の膜中のMo量が異なることがわかった。つまり初期ではMo量は多かったが終期では少なかった。このようなタブレットを用いたのでは、安定に高速成膜を行うことができない。 As a result, the specific resistance of the thin film was 5.9 × 10 −4 Ωcm at the initial use of the tablet, but the specific resistance changed greatly when used continuously, and finally 4.3 × 10 − It rose to 3 Ωcm. When the composition of the film was measured by ICP emission analysis, it was found that the amount of Mo in the film at the initial stage of use and the final stage of the tablet was different. In other words, the Mo amount was large in the initial stage, but small in the final stage. If such a tablet is used, high-speed film formation cannot be performed stably.

この傾向は、酸化物焼結体タブレットの作製時の配合組成(Mo/In原子数比、Zn/In原子数比)が(0.001、0)、(0.025、0)、(0.060、0)の場合でも全く同じであった。   The tendency is that the compounding composition (Mo / In atomic ratio, Zn / In atomic ratio) at the time of producing the oxide sintered body tablet is (0.001, 0), (0.025, 0), (0 .060, 0) was exactly the same.

(実施例20)HDPE法を用いた成膜
実施例1〜19、比較例1〜11の酸化物焼結体タブレットを用いて、プラズマガンを用いた高密度プラズマアシスト蒸着法(HDPE法)による成膜を行い、酸化物焼結体タブレットとしての耐久性を調べた。その結果、実施例1〜19、比較例1〜11で得られた結果と同様の傾向を示しており、密度が3.7〜6.5g/cm3の酸化物焼結体タブレットを使用すること、金属相を含まないことで、割れやクラックの発生しない蒸着用タブレットが得られることがわかった。また酸化モリブデン相を含まないことで、連続成膜時での膜組成の安定性が得られることが確認された。
(Example 20) Film formation using HDPE method By using the oxide sintered body tablets of Examples 1 to 19 and Comparative Examples 1 to 11, by a high density plasma assisted vapor deposition method (HDPE method) using a plasma gun. Film formation was performed, and the durability as an oxide sintered body tablet was examined. As a result, the same tendency as the results obtained in Examples 1 to 19 and Comparative Examples 1 to 11 is shown, and oxide sintered compact tablets having a density of 3.7 to 6.5 g / cm 3 are used. In addition, it has been found that a vapor deposition tablet free from cracks and cracks can be obtained by not containing a metal phase. Moreover, it was confirmed that the stability of the film composition during continuous film formation can be obtained by not including the molybdenum oxide phase.

得られた薄膜について、実施例1〜6と同様に、比抵抗、膜自体の透過率、表面粗さ(Ra)、結晶性を評価した。   About the obtained thin film, the specific resistance, the transmittance | permeability of the film | membrane itself, surface roughness (Ra), and crystallinity were evaluated similarly to Examples 1-6.

その結果、加熱しないガラス基板(厚み1.1mmのコーニング7059)上に成膜した薄膜の比抵抗は2.1×10-4〜8.5×10-4Ωcmであり、可視域(400〜800nm)の膜自体の平均透過率は85〜88%であり、900〜1100nmの近赤外域での膜自体の平均透過率は61〜75%であり、膜表面の中心線平均表面粗さ(Ra)は1.8nm以下の非晶質膜が得られていることがわかった。このような特性の膜は有機ELやLCDなどの表示素子に有用である。なお、膜の組成は酸化物焼結体タブレットの組成とほぼ同じであった。また、長時間連続的に電子ビームと投入しても膜組成の変化はほとんどなかった。 As a result, the specific resistance of the thin film formed on the non-heated glass substrate (Corning 7059 having a thickness of 1.1 mm) is 2.1 × 10 −4 to 8.5 × 10 −4 Ωcm, and is visible (400 to The average transmittance of the film itself of 800 nm) is 85 to 88%, the average transmittance of the film itself in the near infrared region of 900 to 1100 nm is 61 to 75%, and the center line average surface roughness ( As for Ra), it was found that an amorphous film of 1.8 nm or less was obtained. A film having such characteristics is useful for display elements such as organic EL and LCD. The composition of the film was almost the same as the composition of the oxide sintered body tablet. Further, even when the electron beam was continuously applied for a long time, there was almost no change in the film composition.

また、この膜を窒素雰囲気中で200〜400℃の各温度にて1時間アニールして同様に特性の評価を行った。アニール後の膜はビックスバイト型構造の酸化インジウム結晶膜であることをX線回折測定で確認した。その結果、可視光領域だけでなく近赤外線領域においても、光透過率が良好になり、膜自体の平均透過率は可視域(400〜800nm)で87〜91%であり、900〜1100nmの近赤外域でも80〜90%であった。また膜の比抵抗は、2.5×10-4〜9.0×10-4Ωcmであった。このような酸化物透明導電膜を太陽電池の透明電極に用いると、近赤外光エネルギーも有効に利用することができるため有用である。

The film was annealed in a nitrogen atmosphere at each temperature of 200 to 400 ° C. for 1 hour, and the characteristics were similarly evaluated. It was confirmed by X-ray diffraction measurement that the annealed film was a bixbite type indium oxide crystal film. As a result, the light transmittance is good not only in the visible light region but also in the near infrared region, and the average transmittance of the film itself is 87 to 91% in the visible region (400 to 800 nm), and near 900 to 1100 nm. Even in the infrared region, it was 80 to 90%. The specific resistance of the film was 2.5 × 10 −4 to 9.0 × 10 −4 Ωcm. Use of such an oxide transparent conductive film for a transparent electrode of a solar cell is useful because near-infrared light energy can also be used effectively.

Claims (13)

モリブデンを固溶したインジウム酸化物を含み、モリブデンの量がインジウムに対する原子数比(Mo/In)で0.001〜0.060であり、密度が3.7〜6.5g/cm3のものであることを特徴とする酸化物焼結体。 Indium oxide containing molybdenum in solid solution, the amount of molybdenum is 0.001 to 0.060 in terms of the number ratio of molybdenum to indium (Mo / In), and the density is 3.7 to 6.5 g / cm 3 An oxide sintered body characterized by being: モリブデンと亜鉛を固溶したインジウム酸化物を含み、モリブデンの量がインジウムに対する原子数比(Mo/In)で0.001〜0.060であり、亜鉛の量がインジウムに対する原子数比(Zn/In)で0.00018〜0.017のものであり、密度が3.7〜6.5g/cm3のものであることを特徴とする酸化物焼結体。 Indium oxide containing molybdenum and zinc as a solid solution is included, and the amount of molybdenum is 0.001 to 0.060 in terms of the number ratio of atoms to indium (Mo / In), and the amount of zinc is the number ratio of atoms to indium (Zn / In) is an oxide sintered body having a density of 0.00018 to 0.017 and a density of 3.7 to 6.5 g / cm 3 . 酸化物焼結体の平均結晶粒径が10μm以下であり、比抵抗が1kΩcm以下のものであることを特徴とする請求項1又は2記載の酸化物焼結体。   3. The oxide sintered body according to claim 1, wherein the oxide sintered body has an average crystal grain size of 10 μm or less and a specific resistance of 1 kΩcm or less. 金属相が含まれていないことを特徴とする請求項3記載の酸化物焼結体。   4. The oxide sintered body according to claim 3, wherein a metal phase is not contained. 主要工程として、モリブデンの量がインジウムに対する原子数比で0.001〜0.060となるように、平均粒径1μm以下の酸化インジウム粉末と平均粒径1μm以下の酸化モリブデン粉末とを調合し、混合する工程1と、工程1で得られた混合粉を、不活性ガス中あるいは真空中で、圧力2.45〜29.40MPa、温度700〜900℃で1〜3時間保持して酸化物焼結体を得る工程2とを有することを特徴とする酸化物焼結体の製造方法。   As a main process, an indium oxide powder having an average particle diameter of 1 μm or less and a molybdenum oxide powder having an average particle diameter of 1 μm or less are prepared so that the amount of molybdenum is 0.001 to 0.060 in terms of the atomic ratio with respect to indium. Step 1 of mixing and the mixed powder obtained in step 1 are maintained in an inert gas or in vacuum at a pressure of 2.45 to 29.40 MPa and a temperature of 700 to 900 ° C. for 1 to 3 hours to oxidize the powder. And a step 2 for obtaining a bonded product. 主要工程として、モリブデンの量がインジウムに対する原子数比で0.001〜0.060となるように平均粒径が1μm以下の酸化インジウム粉末と平均粒径が1μm以下の酸化モリブデン粉末を調合し、混合する工程1と、工程1で得られた混合物を、圧力9.8〜294MPaで冷間静水圧プレス成形し、成形体を得る工程2と、工程2で得られた成形体を、常圧で、1300℃以上で5時間以上保持して焼結させて酸化物焼結体を得る工程3とを有することを特徴とする酸化物焼結体の製造方法。   As a main process, an indium oxide powder having an average particle diameter of 1 μm or less and a molybdenum oxide powder having an average particle diameter of 1 μm or less are prepared so that the amount of molybdenum is 0.001 to 0.060 in terms of the atomic ratio with respect to indium. Step 1 for mixing and the mixture obtained in Step 1 are subjected to cold isostatic pressing at a pressure of 9.8 to 294 MPa to obtain a molded body, and the molded body obtained in Step 2 is subjected to normal pressure. And a step 3 of obtaining an oxide sintered body by holding and sintering at 1300 ° C. or higher for 5 hours or longer to obtain an oxide sintered body. 主要工程として、モリブデンの量がインジウムに対する原子数比で0.001〜0.060となるように、また亜鉛の量がインジウムに対する原子数比で0.00018〜0.017となるように平均粒径1μm以下の酸化インジウム粉末と平均粒径1μm以下の酸化モリブデン粉末と平均粒径1μm以下の酸化亜鉛粉末を調合し、湿式混合し、固形物を固液分離し、造粒する工程1と、工程1で得られた造粒物を用いて、圧力9.8〜294MPaで冷間静水圧プレス成形して成形体を得る工程2と、工程2で得られた成形体を、酸素雰囲気下、常圧で、温度1000〜1300℃、時間1〜5h以上で焼結させて酸化物焼結体を得る工程3とを有することを特徴とする酸化物焼結体の製造方法。   As the main process, the average grain size is adjusted so that the amount of molybdenum is 0.001 to 0.060 in terms of the number of atoms relative to indium and the amount of zinc is 0.00018 to 0.017 in terms of the number of atoms relative to indium. Step 1 of preparing indium oxide powder having a diameter of 1 μm or less, molybdenum oxide powder having an average particle diameter of 1 μm or less, and zinc oxide powder having an average particle diameter of 1 μm or less, wet-mixing, solid-liquid separation, and granulation; Using the granulated product obtained in step 1, cold isostatic pressing at a pressure of 9.8 to 294 MPa to obtain a molded product, and the molded product obtained in step 2 under an oxygen atmosphere, And a step 3 of obtaining an oxide sintered body by sintering at normal pressure at a temperature of 1000 to 1300 ° C. for 1 to 5 hours or longer. 前記工程3において、焼結炉内に、炉内容積0.1M3当たり3〜8L/minの割合
の酸素を導入しつつ焼結し、焼結後の炉冷を行うに際して、酸素の導入を停止した後に炉冷を行うことを特徴とする請求項7記載の酸化物焼結体の製造方法。
In step 3, the sintering is performed while introducing oxygen at a rate of 3 to 8 L / min per 0.1 M 3 of the furnace volume, and oxygen is introduced when performing furnace cooling after sintering. 8. The method for producing an oxide sintered body according to claim 7, wherein furnace cooling is performed after stopping.
請求項1〜4記載の酸化物焼結体をタブレットとして用い、130℃以下の基板上に真空蒸着法によって膜を成膜することを特徴とする酸化物透明導電膜の製造方法。   A method for producing a transparent oxide conductive film, wherein the oxide sintered body according to claim 1 is used as a tablet and a film is formed on a substrate at 130 ° C. or lower by a vacuum vapor deposition method. 前記請求項9記載の方法に従い作製された膜を200〜400℃で熱処理をすることを特徴とする酸化物透明導電膜の製造方法。   The manufacturing method of the oxide transparent conductive film characterized by heat-processing the film | membrane produced according to the method of the said Claim 9 at 200-400 degreeC. 熱処理を不活性ガス中または真空中で実施することを特徴とする請求項10記載の酸化物透明導電膜の製造方法。   The method for producing a transparent oxide conductive film according to claim 10, wherein the heat treatment is performed in an inert gas or in a vacuum. 請求項1〜4記載の酸化物焼結体をタブレットとして用い、請求項9の方法に従い作製された酸化物透明導電膜であって、比抵抗が9×10-4Ωcm以下であり、波長400〜800nmの光に対する膜自体の平均透過率が82%以上であることを特徴とする酸化物透明導電膜。 The oxide transparent conductive film produced according to the method of claim 9, using the oxide sintered body according to claims 1 to 4 as a tablet, having a specific resistance of 9 x 10 -4 Ωcm or less and a wavelength of 400 An oxide transparent conductive film, wherein the average transmittance of the film itself to light of ˜800 nm is 82% or more. 請求項1〜4記載の酸化物焼結体をタブレットとして用い、請求項10又は11記載の方法に従い作製された酸化物透明導電膜であって、波長900〜1100nmの光に対する膜自体の平均透過率が80%以上であることを特徴とする酸化物透明導電膜。



An oxide transparent conductive film produced according to the method of claim 10 or 11 using the oxide sintered body according to claims 1 to 4 as a tablet, wherein the average transmission of the film itself with respect to light having a wavelength of 900 to 1100 nm A transparent oxide conductive film characterized in that the rate is 80% or more.



JP2006070322A 2006-03-15 2006-03-15 Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film Pending JP2007246318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070322A JP2007246318A (en) 2006-03-15 2006-03-15 Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070322A JP2007246318A (en) 2006-03-15 2006-03-15 Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film

Publications (1)

Publication Number Publication Date
JP2007246318A true JP2007246318A (en) 2007-09-27

Family

ID=38591001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070322A Pending JP2007246318A (en) 2006-03-15 2006-03-15 Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film

Country Status (1)

Country Link
JP (1) JP2007246318A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252821A (en) * 2008-04-02 2009-10-29 Fujifilm Corp Inorganic film, manufacturing method therefor, and semiconductor device
JP2010111896A (en) * 2008-11-05 2010-05-20 Tosoh Corp Laminated transparent conductive film and method for production thereof
JP2011132593A (en) * 2009-11-30 2011-07-07 Sumitomo Metal Mining Co Ltd Oxide evaporation material, transparent conducting film, and solar cell
JP2014017490A (en) * 2013-07-18 2014-01-30 Fujifilm Corp Inorganic film manufacturing method
KR101766852B1 (en) 2009-12-22 2017-08-09 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide evaporation material and high-refractive-index transparent film
KR101789548B1 (en) * 2010-01-25 2017-10-26 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide deposition material, vapor deposited thin film, and solar cell
JP2017206746A (en) * 2016-05-19 2017-11-24 住友金属鉱山株式会社 Manufacturing method of oxide sintered body and oxide sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570943A (en) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp High density sintered target material for forming electric conductive transparent thin film by sputtering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570943A (en) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp High density sintered target material for forming electric conductive transparent thin film by sputtering

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252821A (en) * 2008-04-02 2009-10-29 Fujifilm Corp Inorganic film, manufacturing method therefor, and semiconductor device
JP2010111896A (en) * 2008-11-05 2010-05-20 Tosoh Corp Laminated transparent conductive film and method for production thereof
JP2011132593A (en) * 2009-11-30 2011-07-07 Sumitomo Metal Mining Co Ltd Oxide evaporation material, transparent conducting film, and solar cell
KR101759700B1 (en) 2009-11-30 2017-07-20 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide evaporation material, transparent conducting film, and solar cell
KR101766852B1 (en) 2009-12-22 2017-08-09 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide evaporation material and high-refractive-index transparent film
KR101789548B1 (en) * 2010-01-25 2017-10-26 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide deposition material, vapor deposited thin film, and solar cell
KR101805548B1 (en) 2010-01-25 2017-12-07 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide deposition material, vapor deposited thin film, and solar cell
JP2014017490A (en) * 2013-07-18 2014-01-30 Fujifilm Corp Inorganic film manufacturing method
JP2017206746A (en) * 2016-05-19 2017-11-24 住友金属鉱山株式会社 Manufacturing method of oxide sintered body and oxide sintered body

Similar Documents

Publication Publication Date Title
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP4826066B2 (en) Amorphous transparent conductive thin film and method for producing the same, and sputtering target for obtaining the amorphous transparent conductive thin film and method for producing the same
KR101696859B1 (en) Tablet for ion plating, method for producing same, and transparent conductive film
US7011691B2 (en) Oxide sintered body
JP5764828B2 (en) Oxide sintered body and tablet processed the same
TWI422696B (en) Oxide vapor deposition material and transparent conductive film
US9023746B2 (en) Oxide sintered body and sputtering target
TWI438287B (en) Oxide vapor deposition material, vapor deposition film and solar cell
JP2006193363A (en) Oxide sintered compact, sputtering target, and transparent electroconductive thin film
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP2011058012A (en) Semi-conductor oxide
JP2006160535A (en) Oxide sintered compact, sputtering target and transparent conductive thin film
JP4175071B2 (en) Oxide sintered body and sputtering target
JP4760499B2 (en) Oxide sintered body and manufacturing method of oxide film transparent conductive film using the same
JP2004006221A (en) Transparent conductive thin film, manufacturing method thereof, sintering body target for manufacturing the same, organic electroluminescent element and its manufacturing process
JP5320761B2 (en) Zinc oxide-based sintered tablet and method for producing the same
KR20150039753A (en) Oxide Sintered Body and Tablet Obtained by Processing Same
JP2003239063A (en) Transparent conductive thin film, its manufacturing method, and sputtering target used for its manufacture
JP2005320192A (en) Oxide sintered compact, spattering target, and transparent conductive thin film
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP2006219357A (en) Oxide sintered compact, sputtering target and transparent electroconductive membrane
WO2013140838A1 (en) SINTERED In-Ga-Zn-O-BASED OXIDE COMPACT AND METHOD FOR PRODUCING SAME, SPUTTERING TARGET, AND OXIDE SEMICONDUCTOR FILM
JP2012072459A (en) Sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329