KR101467131B1 - Oxide sintered body and oxide semiconductor thin film - Google Patents

Oxide sintered body and oxide semiconductor thin film Download PDF

Info

Publication number
KR101467131B1
KR101467131B1 KR1020137007632A KR20137007632A KR101467131B1 KR 101467131 B1 KR101467131 B1 KR 101467131B1 KR 1020137007632 A KR1020137007632 A KR 1020137007632A KR 20137007632 A KR20137007632 A KR 20137007632A KR 101467131 B1 KR101467131 B1 KR 101467131B1
Authority
KR
South Korea
Prior art keywords
oxide
sintered body
thin film
oxide semiconductor
film
Prior art date
Application number
KR1020137007632A
Other languages
Korean (ko)
Other versions
KR20130063010A (en
Inventor
히데오 다카미
고조 오사다
Original Assignee
제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 filed Critical 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤
Publication of KR20130063010A publication Critical patent/KR20130063010A/en
Application granted granted Critical
Publication of KR101467131B1 publication Critical patent/KR101467131B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

고가인 갈륨 (Ga), 및, 막의 안정성에 문제가 있는 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체를 제공하는 것을 과제로 한다. 또, 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공하는 것을 다른 과제로 한다. 인듐 (In) 과, 마그네슘 (Mg) 과, 금속 원소 X (단, X 는 Al, Fe, Sn, Ti 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지고, 인듐 (In), 마그네슘 (Mg), 및, 금속 원소 X 의 원자수비가 각각, 0.2≤[In]/[In+Mg+X]≤0.8, 0.1≤[Mg]/[In+Mg+X]≤0.5, 및, 0.1≤[X]/[In+Mg+X]≤0.5 를 만족하는 산화물 소결체.An object of the present invention is to provide an oxide sintered body for producing an oxide semiconductor film which does not contain gallium (Ga), which is expensive, and zinc (Zn), which is problematic in film stability. Another object is to provide an oxide semiconductor thin film having the same composition as that of the oxide-sintered body. (In), magnesium (Mg), a metal element X (wherein X represents at least one element selected from Al, Fe, Sn and Ti), oxygen (O) (Mg) / (In + Mg + X) < / = 0.5 and 0.1 < X / [In + Mg + X]? 0.5.

Description

산화물 소결체 및 산화물 반도체 박막{OXIDE SINTERED BODY AND OXIDE SEMICONDUCTOR THIN FILM}TECHNICAL FIELD [0001] The present invention relates to an oxide-sintered body and an oxide semiconductor thin film,

본 발명은 표시 장치 중의 박막 트랜지스터의 제작에 유용한 산화물 소결체 및 산화물 반도체 박막에 관한 것이다.The present invention relates to an oxide sintered body and an oxide semiconductor thin film useful for manufacturing a thin film transistor in a display device.

산화물 반도체는 액정 표시 장치, 플라스마 표시 장치 및 유기 EL 표시 장치 등의 표시 장치 중의 박막 트랜지스터의 활성층 외에, 태양 전지 및 터치 패널 등의 전극으로서 이용되고 있다. 종래, 산화물 반도체로는 투명한 In-Ga-Zn-O 계 (이후, 「IGZO 계」라고 기재) 가 알려져 있고 (비특허문헌 1 참조), 또한, 특성 개선을 의도하여 주석 (Sn) 을 첨가한 계에 대한 보고도 있다 (특허문헌 1 및 2 참조). 그러나, 이들의 계의 필수 구성 요소인 갈륨 (Ga) 은 희소 원소로서, 가격도 고가인 등의 이유로부터, 산업상, 대량으로 사용하기에는 큰 제약이 있다.The oxide semiconductor is used as an electrode of a solar cell, a touch panel, etc. in addition to an active layer of a thin film transistor in a display device such as a liquid crystal display device, a plasma display device and an organic EL display device. In the past, a transparent In-Ga-Zn-O system (hereinafter referred to as "IGZO system") was known as an oxide semiconductor (see Non-Patent Document 1), and further, (See Patent Documents 1 and 2). However, gallium (Ga), which is an indispensable component of these systems, is a rare element, and because of its high price, and the like, there is a great limitation in industrial use in large quantities.

Ga 를 사용하지 않는 투명 산화물 반도체로는, In-Zn-O 계 (특허문헌 3 참조), In-Zn-Sn-O 계 (특허문헌 4 참조), 및 Zn-Sn-O 계 (특허문헌 5 참조) 의 보고가 있다.Examples of transparent oxide semiconductors that do not use Ga include In-Zn-O based materials (see Patent Document 3), In-Zn-Sn-O based materials (see Patent Document 4), and Zn- ).

일본 공개특허공보 2008-280216호Japanese Patent Application Laid-Open No. 2008-280216 일본 공개특허공보 2010-118407호Japanese Laid-Open Patent Publication No. 2010-118407 일본 공개특허공보 2007-142195호Japanese Patent Application Laid-Open No. 2007-142195 일본 공개특허공보 2008-243928호Japanese Patent Application Laid-Open No. 2008-243928 일본 공개특허공보 2007-142196호Japanese Patent Application Laid-Open No. 2007-142196

Nature 432, p488-492, October 2004 Nature 432, p488-492, October 2004

상기 특허문헌 3 ∼ 5 에 기재된 산화물 반도체에서는, IGZO 계의 필수 구성 요소인 Ga 를 사용하고 있지 않아, 제조 비용 면에서 유리하지만, 저항률의 시간 경과적 변화 등의 환경 안정성이 떨어지는 등의 문제가 남아 있다. 또, IGZO 계의 다른 필수 구성 요소인 아연 (Zn) 은, 휘발되기 쉬운 원소이고, 소결체 제조시의 휘발에 의한 소결체 밀도의 저하, 스퍼터 성막시의 휘발에 의한 타깃 조성과의 어긋남, 막의 저항률의 시간 경과적 변화 등, 막의 안정성의 저해 요인이 되고 있다.The oxide semiconductors described in Patent Documents 3 to 5 do not use Ga, which is an indispensable component of the IGZO system, and are advantageous from the viewpoint of manufacturing cost, but there remain problems such as poor environmental stability such as a change in resistivity with time have. Zinc (Zn), which is another indispensable component of the IGZO system, is an element that is easily volatilized. It is caused by a decrease in sintered body density due to volatilization during production of the sintered body, a deviation from the target composition due to volatilization during sputter deposition, And the stability of the film, such as a change over time, has become a factor.

그래서, 본 발명은 희소 자원이고, 고가인 갈륨 (Ga), 및, 휘발되기 쉬워, 막의 안정성에 문제가 있는 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체를 제공하는 것을 과제로 한다. 또, 본 발명은 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공하는 것을 다른 과제로 한다.Therefore, an object of the present invention is to provide an oxide sintered body for producing an oxide semiconductor film which is a scarce resource, which is expensive, gallium (Ga), and which does not contain zinc (Zn) which is easily volatilized and has a problem in stability of the film. Another object of the present invention is to provide an oxide semiconductor thin film having the same composition as that of the oxide-sintered body.

본 발명자는 상기 과제를 해결하기 위해서 예의 검토한 결과, 휘발되기 쉬운 아연 (Zn) 의 대체로서, 산화물 안정적인 마그네슘 (Mg) 을 사용하고, 희소 또한 고가인 원소인 갈륨 (Ga) 의 대체로서, 갈륨과 동일한 3 가의 금속 원소인 알루미늄 (Al) 과 철 (Fe) 및 4 가의 금속 원소인 주석 (Sn) 과 티탄 (Ti) 을 사용하고, 추가로 이들의 원자수비, 소결체나 막의 제조 조건 등을 조정함으로써, 갈륨 (Ga) 및 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체 및 산화물 반도체 박막이 얻어지는 것을 알아냈다.The inventor of the present invention has conducted extensive studies in order to solve the above problems. As a result, it has been found that magnesium oxide (Mg) stable as an oxide is used as a substitute for easily susceptible zinc (Zn), gallium (Al) and iron (Fe) which are the same trivalent metal elements as the trivalent metal elements and tin (Sn) and titanium (Ti) which are tetravalent metal elements are used and further the atomic ratio of these elements, , An oxide-sintered body for producing an oxide semiconductor film containing no gallium (Ga) and zinc (Zn) and an oxide semiconductor thin film can be obtained.

이상의 지견을 기초로 하여 완성한 본 발명은 일 측면에 있어서, 인듐 (In) 과, 마그네슘 (Mg) 과, 금속 원소 X (단, X 는 Al, Fe, Sn, Ti 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지고, 인듐 (In), 마그네슘 (Mg), 및, 금속 원소 X 의 원자수비가 각각, 0.2≤[In]/[In+Mg+X]≤0.8, 0.1≤[Mg]/[In+Mg+X]≤0.5, 및, 0.1≤[X]/[In+Mg+X]≤0.5 를 만족하는 산화물 소결체이다.The present invention has been completed on the basis of the above findings. In one aspect, the present invention provides a method of manufacturing a semiconductor device, comprising the steps of: depositing indium (In), magnesium (Mg), and a metal element X (wherein X is at least one element selected from Al, Fe, And the atomic ratio of the indium (In), the magnesium (Mg) and the metal element X is 0.2? [In] / [In + Mg + X]? 0.8 and 0.1? [Mg] / [In + Mg + X]? 0.5, and 0.1? [X] / [In + Mg + X]? 0.5.

본 발명에 관련된 산화물 소결체는 다른 일 실시형태에 있어서, 상대 밀도가 98 % 이상이다.In another embodiment, the oxide-sintered body related to the present invention has a relative density of 98% or more.

본 발명에 관련된 산화물 소결체는 또 다른 일 실시형태에 있어서, 벌크 저항이 3 mΩ 이하이다.In another embodiment, the oxide sintered body according to the present invention has a bulk resistance of 3 m? Or less.

본 발명은 다른 일 측면에 있어서, 인듐 (In) 과, 마그네슘 (Mg) 과, 금속 원소 X (단, X 는 Al, Fe, Sn, Ti 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지고, 인듐 (In), 마그네슘 (Mg), 금속 원소 X 의 원자수비가, 0.2≤[In]/[In+Mg+X]≤0.8, 0.1≤[Mg]/[In+Mg+X]≤0.5, 0.1≤[X]/[In+Mg+X]≤0.5 를 만족하는 산화물 반도체 박막이다.According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of: depositing indium (In), magnesium (Mg), a metal element X (wherein X represents at least one element selected from Al, Fe, Sn, Ti) (In), magnesium (Mg), and metal element X are in the range of 0.2? [In] / [In + Mg + X]? 0.8, 0.1? [Mg] / [In + Mg + [X] / [In + Mg + X]? 0.5.

본 발명에 관련된 산화물 반도체 박막은 다른 일 실시형태에 있어서, 비정질이다.The oxide semiconductor thin film according to the present invention is, in another embodiment, amorphous.

본 발명에 관련된 산화물 반도체 박막은 또 다른 일 실시형태에 있어서, 캐리어 농도가 1016 ∼ 1018- 3 이다.A 3-oxide semiconductor thin film according to the present invention In a further embodiment, the carrier concentration is 10 16 ~ 10 18 ㎝.

본 발명에 관련된 산화물 반도체 박막은 또 다른 일 실시형태에 있어서, 이동도가 1 ㎠/Vs 이상이다.In another embodiment of the oxide semiconductor thin film according to the present invention, the mobility is 1 cm 2 / Vs or more.

본 발명은 또 다른 일 측면에 있어서, 상기 산화물 반도체 박막을 활성층으로서 구비한 박막 트랜지스터이다.According to another aspect of the present invention, there is provided a thin film transistor including the oxide semiconductor thin film as an active layer.

본 발명은 또 다른 일 측면에 있어서, 상기 박막 트랜지스터를 구비한 액티브 매트릭스 구동 표시 패널이다.According to another aspect of the present invention, there is provided an active matrix driving display panel including the thin film transistor.

본 발명에 의하면, 희소 자원이고, 고가인 갈륨 (Ga), 및, 휘발되기 쉬워, 막의 안정성에 문제가 있는 아연 (Zn) 을 함유하지 않는 산화물 반도체막 제조용 산화물 소결체를 제공할 수 있다. 또, 본 발명에 의하면, 당해 산화물 소결체와 동일 조성을 갖는 산화물 반도체 박막을 제공할 수 있다.According to the present invention, it is possible to provide an oxide sintered body for producing an oxide semiconductor film which is a rare resource, which is expensive gallium (Ga), and which is easily volatilized and contains no zinc (Zn) According to the present invention, an oxide semiconductor thin film having the same composition as that of the oxide-sintered body can be provided.

(산화물 소결체의 조성)(Composition of oxide-sintered body)

본 발명에 관련된 산화물 소결체는, 인듐 (In) 과, 마그네슘 (Mg) 과, 금속 원소 X (단, X 는 Al, Fe, Sn, Ti 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 를 구성 원소로 한다. 단, 통상 입수 가능한 원료의 정제 공정 상, 불가피적으로 함유되게 되는 원소나, 산화물 소결체 제조 프로세스 상 불가피적으로 혼입되는 불순물 원소를, 불가피적으로 함유되는 농도 정도, 예를 들어 각 원소 10 ppm 정도까지 함유하는 것은 본 발명에 관련된 소결체에 포함된다.The oxide-sintered body according to the present invention comprises indium (In), magnesium (Mg), a metal element X (wherein X represents at least one element selected from Al, Fe, Sn and Ti) ) As constituent elements. However, in the process of purifying a generally available raw material, it is preferable that the elements which are inevitably contained or the impurity elements which are inevitably incorporated in the oxide sintered body production process are inevitably contained at a concentration inevitably, for example, about 10 ppm Are included in the sintered body related to the present invention.

인듐, 마그네슘 및 금속 원소 X 의 합계 원자수에 대한 인듐의 원자수의 비 [In]/[In+Mg+X] 는 0.2 ∼ 0.8 이다. [In]/[In+Mg+X] 가 0.2 미만이면, 타깃 제작시의 상대 밀도가 작아지고, 벌크 저항이 높아져, 스퍼터시의 이상 방전이 발생하기 쉬워져 버린다. [In]/[In+Mg+X] 가 0.8 을 초과하면, 그 조성의 타깃을 스퍼터하여 얻어지는 막의 캐리어 농도가 지나치게 높아지고, 트랜지스터의 채널층으로서는 온오프비가 작아진다. [In]/[In+Mg+X] 는, 보다 바람직하게는 0.25 ∼ 0.6 의 범위이고, 더욱 바람직하게는 0.3 ∼ 0.5 의 범위이다. 여기서, [In] 은 인듐의 원자수, [Mg] 는 마그네슘의 원자수, [X] 는 금속 원소 X 의 원자수를 각각 나타낸다.The ratio [In] / [In + Mg + X] of the number of atoms of indium to the total number of atoms of indium, magnesium and metal element X is 0.2 to 0.8. If [In] / [In + Mg + X] is less than 0.2, the relative density at the time of target production becomes small, the bulk resistance becomes high, and anomalous discharge during sputtering tends to occur. If [In] / [In + Mg + X] exceeds 0.8, the carrier concentration of the film obtained by sputtering the target of the composition becomes excessively high, and the on / off ratio of the channel layer of the transistor becomes small. [In] / [In + Mg + X] is more preferably in the range of 0.25 to 0.6, and more preferably in the range of 0.3 to 0.5. Here, [In] represents the number of atoms of indium, [Mg] represents the number of atoms of magnesium, and [X] represents the number of atoms of metal element X, respectively.

인듐, 마그네슘 및 금속 원소 X 의 합계 원자수에 대한 마그네슘의 원자수의 비 [Mg]/([In]+[Mg]+[X]) 는 0.1 ∼ 0.5 이다. [Mg]/([In]+[Mg]+[X]) 가 0.1 미만이면, 막의 캐리어 농도가 지나치게 커져, 스퍼터시의 이상 방전이 발생하기 쉬워져 버린다. [Mg]/([In]+[Mg]+[X]) 가 0.5 를 초과하면, 타깃 제작시의 상대 밀도가 작아진다. [Mg]/([In]+[Mg]+[X]) 는, 보다 바람직하게는 0.15 ∼ 0.4 의 범위이고, 더욱 바람직하게는 0.2 ∼ 0.35 의 범위이다.The ratio [Mg] / ([In] + [Mg] + [X]) of the number of atoms of magnesium to the total number of atoms of indium, magnesium and metal element X is 0.1 to 0.5. If [Mg] / ([In] + [Mg] + [X]) is less than 0.1, the carrier concentration of the film becomes excessively large and an abnormal discharge during sputtering tends to occur easily. If [Mg] / ([In] + [Mg] + [X]) exceeds 0.5, the relative density at the time of target production becomes small. [Mg] / ([In] + [Mg] + [X]) is more preferably in the range of 0.15 to 0.4, and more preferably in the range of 0.2 to 0.35.

인듐, 마그네슘 및 금속 원소 X 의 합계 원자수에 대한 금속 원소 X 의 합계의 원자수의 비 [X]/([In]+[Mg]+[X]) 는 0.1 ∼ 0.5 이다. [X]/([In]+[Mg]+[X]) 가 0.1 미만이면, 그 조성의 타깃을 스퍼터하여 얻어지는 막의 캐리어 농도가 지나치게 높아져, 트랜지스터의 채널층으로서는 온오프비가 작아진다. 반대로, [X]/([In]+[Mg]+[X]) 가 0.5 를 초과하면, 타깃 제작시의 상대 밀도가 작아지고, 벌크 저항이 높아져, 스퍼터시의 이상 방전이 발생하기 쉬워진다. [X]/([In]+[Mg]+[X]) 는, 보다 바람직하게는 0.15 ∼ 0.4 의 범위이고, 더욱 바람직하게는 0.2 ∼ 0.35 의 범위이다.The ratio [X] / ([In] + [Mg] + [X]) of the total number of atoms of the metal element X to the total number of atoms of the indium, magnesium and the metal element X is 0.1 to 0.5. If [X] / ([In] + [Mg] + [X]) is less than 0.1, the carrier concentration of the film obtained by sputtering the target of the composition becomes excessively high and the on / off ratio of the channel layer of the transistor becomes small. Conversely, when [X] / ([In] + [Mg] + [X]) exceeds 0.5, the relative density at the time of target production becomes small and the bulk resistance becomes high and an abnormal discharge during sputtering tends to occur . [X] / ([In] + [Mg] + [X]) is more preferably in the range of 0.15 to 0.4, and more preferably in the range of 0.2 to 0.35.

(산화물 소결체의 상대 밀도) (Relative density of oxide-sintered body)

산화물 소결체의 상대 밀도는, 스퍼터시의 표면의 줄 발생과 상관이 있다. 산화물 소결체가 저밀도이면, 그 산화물 소결체를 타깃으로 가공하여 스퍼터 성막할 때에, 스퍼터의 성막의 경과에 따라, 표면에 인듐의 저급 산화물인, 돌기상의 노듈로 불리는 고저항 부분이 발생하고, 그 후의 스퍼터시에 이상 방전의 기점이 되기 쉽다. 본 발명에서는, 조성의 적정 범위나 제조 조건의 적정화에 의해 산화물 소결체의 상대 밀도를 98 % 이상으로 할 수 있고, 이 정도의 고밀도이면, 스퍼터시의 노듈에 의한 악영향은 거의 없다. 상대 밀도는 바람직하게는 99 % 이상이고, 보다 바람직하게는 99.5 % 이상이다. The relative density of the oxide-sintered body has a correlation with the occurrence of a line on the surface at the time of sputtering. When the oxide-sintered body is low-density, when a sputtering process is performed by processing the oxide-sintered body as a target, a high-resistance portion called nodule on the projection, which is a low-grade oxide of indium, is generated on the surface of the sputtering film, It is likely to become a starting point of an abnormal discharge. In the present invention, the relative density of the oxide-sintered body can be made 98% or more by appropriately adjusting the composition range and the manufacturing conditions, and if the density is so high, there is little adverse effect caused by the nodules at the time of sputtering. The relative density is preferably 99% or more, and more preferably 99.5% or more.

또한, 산화물 소결체의 상대 밀도는, 산화물 소결체를 소정의 형상으로 가공한 후의 중량과 외형 치수로부터 산출한 밀도를, 그 산화물 소결체의 이론 밀도로 나눔으로써 구할 수 있다.The relative density of the oxide-sintered body can be obtained by dividing the density calculated from the weight and the external dimension after the oxide-sintered body has been processed into the predetermined shape by the theoretical density of the oxide-sintered body.

(산화물 소결체의 벌크 저항) (Bulk resistance of oxide-sintered body)

산화물 소결체의 벌크 저항은, 스퍼터시의 이상 방전의 발생이 쉽게 일어나는 것과 상관이 있고, 벌크 저항이 높으면 스퍼터시에 이상 방전이 발생하기 쉽다. 본 발명에서는, 조성의 적정 범위나 제조 조건의 적정화에 의해 벌크 저항을 3 mΩ㎝ 이하로 할 수 있고, 이 정도의 저벌크 저항이면, 스퍼터시의 이상 방전 발생에 대한 악영향은 거의 없다. 벌크 저항은 바람직하게는 2.7 mΩ㎝ 이하이고, 보다 바람직하게는 2.5 mΩ㎝ 이하이다. The bulk resistance of the oxide-sintered body is related to the occurrence of an abnormal discharge easily at the time of sputtering, and when the bulk resistance is high, an abnormal discharge easily occurs at the time of sputtering. In the present invention, the bulk resistance can be made to be 3 m? Cm or less by appropriately setting the appropriate range of the composition and the manufacturing conditions, and there is little adverse effect on the generation of the abnormal discharge at the time of sputtering. The bulk resistance is preferably 2.7 m? Cm or less, and more preferably 2.5 m? Cm or less.

또한, 벌크 저항은 4 탐침법에 의해 저항률계를 사용하여 측정할 수 있다.In addition, the bulk resistance can be measured using a resistivity meter by the 4-probe method.

(산화물 소결체의 제조 방법)(Manufacturing method of oxide-sintered body)

본 발명에 관련된 각종 조성의 산화물 소결체는, 예를 들어, 원료인 산화인듐, 산화마그네슘 등의 각 원료 분체의 배합비나 원료 분체의 입경, 분쇄 시간, 소결 온도, 소결 시간, 소결 분위기 가스 종류 등의 조건을 조정함으로써 얻을 수 있다.The oxide-sintered bodies of various compositions according to the present invention can be obtained, for example, by mixing the raw material powders such as indium oxide and magnesium oxide as raw materials, the particle diameter of the raw powder, the grinding time, the sintering temperature, the sintering time, Can be obtained by adjusting the conditions.

원료분은 평균 입경 1 ∼ 2 ㎛ 인 것이 바람직하다. 평균 입경이 2 ㎛ 를 초과하면, 소결체의 밀도가 잘 향상되지 않기 때문에, 그 원료분 단독 또는 혼합분으로서 습식 미분쇄 등을 실시하여, 평균 입경을 약 1 ㎛ 정도로 작게 하면 된다. 습식 혼합 분쇄 전에 소결성의 향상을 목적으로 하여, 예비 소성하는 것도 유효하다. 한편, 1 ㎛ 미만의 원료는 입수하기 어려우며, 또, 너무 작으면 입자간의 응집이 일어나기 쉬워져 취급하기 어려워진다. 여기서, 원료분의 평균 입경은 레이저 회절식의 측정 방법에 의해 측정한 값을 가리킨다. 분쇄 후의 원료 혼합분을 스프레이 드라이어 등으로 조립 (造粒) 하여 유동성이나 성형성을 높인 후에 성형하는 것이 바람직하다. 성형은 통상적인 가압 성형이나 냉간 정수압 가압 등의 방법을 채용할 수 있다.The raw material powder preferably has an average particle diameter of 1 to 2 占 퐉. If the average particle diameter exceeds 2 占 퐉, the density of the sintered body is not improved well, so that the raw material powder alone or mixed powder may be subjected to wet milling or the like to reduce the average particle diameter to about 1 占 퐉. It is also effective to preliminarily sinter for the purpose of improving the sinterability before wet mixing and grinding. On the other hand, a raw material less than 1 탆 is difficult to obtain, and if it is too small, agglomeration between the particles tends to occur and handling becomes difficult. Here, the average particle diameter of the raw material powder refers to a value measured by a laser diffraction measurement method. It is preferable that the raw material mixture powder after the pulverization is granulated by a spray dryer or the like to increase fluidity and moldability before molding. The molding can be carried out by a conventional method such as press molding or cold isostatic pressing.

그 후, 성형물을 소결하여 소결체를 얻는다. 소결은 1400 ∼ 1600 ℃ 에서 2 ∼ 20 시간 실시하는 것이 바람직하다. 이로써, 상대 밀도를 98 % 이상으로 할 수 있다. 소결 온도가 1400 ℃ 미만에서는, 밀도가 잘 향상되지 않고, 소결 온도가 1600 ℃ 를 초과하면, 구성 성분 원소의 휘발 등에 의해, 소결체의 조성이 변화되거나 휘발에 의한 공극 발생에 의한 밀도 저하의 원인이 되거나 한다. 소결시의 분위기 가스에는, 대기를 사용할 수 있고, 소결체로부터의 휘발 억제의 효과에 의해, 고밀도의 소결체를 얻을 수 있다. 단, 소결체의 조성에 따라서는, 분위기 가스를 산소로 하더라도 충분히 고밀도의 소결체를 얻을 수도 있다.Thereafter, the molded product is sintered to obtain a sintered body. The sintering is preferably performed at 1400 to 1600 ° C for 2 to 20 hours. As a result, the relative density can be set to 98% or more. When the sintering temperature is less than 1400 DEG C, the density is not improved sufficiently. If the sintering temperature exceeds 1600 DEG C, the composition of the sintered body changes due to the volatilization of the constituent elements or the like, or the density decreases due to the generation of pores due to volatilization . An atmosphere can be used as the atmospheric gas at the time of sintering, and a high-density sintered body can be obtained by the effect of suppressing volatilization from the sintered body. However, depending on the composition of the sintered body, a sintered body having a sufficiently high density can be obtained even if the atmosphere gas is oxygen.

(스퍼터 성막) (Sputter Deposition)

상기와 같이 하여 얻어진 산화물 소결체는, 연삭이나 연마 등의 가공을 실시함으로써 스퍼터링용 타깃으로 할 수 있고, 이것을 사용하여 성막함으로써, 당해 타깃과 동일 조성을 갖는 산화물막을 형성할 수 있다. 가공시에는, 평면 연삭 등의 방법으로 표면을 연삭함으로써, 표면 조도 (Ra) 를 5 ㎛ 이하로 하는 것이 바람직하다. 표면 조도를 작게 함으로써, 이상 방전의 원인이 되는 노듈 발생의 기점을 감소시킬 수 있다.The oxide-sintered body obtained as described above can be used as a target for sputtering by performing processing such as grinding or polishing, and an oxide film having the same composition as that of the target can be formed by forming the target. At the time of processing, it is preferable to grind the surface by a method such as planar grinding to set the surface roughness Ra to 5 m or less. By reducing the surface roughness, it is possible to reduce the starting point of nodule generation which causes anomalous discharge.

스퍼터링용 타깃은, 구리제 등의 배킹 플레이트에 첩부(貼付)하여 스퍼터 장치 내에 설치하여, 적절한 진공도, 분위기 가스, 스퍼터 파워 등의 적절 조건에서 스퍼터함으로써, 타깃과 거의 동 조성의 막을 얻을 수 있다.The target for sputtering can be obtained by sticking to a backing plate made of copper or the like, placing it in a sputtering apparatus, and sputtering under appropriate conditions such as appropriate degree of vacuum, atmospheric gas, sputtering power, etc. to obtain a film having almost the same composition as the target.

스퍼터법의 경우, 성막 전의 챔버 내 도달 진공도를, 2×10-4 ㎩ 이하로 하는 것이 바람직하다. 압력이 지나치게 높으면, 잔류 분위기 가스 중의 불순물의 영향에 의해, 얻어진 막의 이동도가 저하될 가능성이 있다.In the case of the sputtering method, it is preferable to set the degree of vacuum in the chamber before the film formation to 2 x 10 < -4 > Pa or less. If the pressure is excessively high, there is a possibility that the mobility of the obtained film is lowered due to the influence of the impurities in the residual atmosphere gas.

스퍼터 가스로서 아르곤 및 산소의 혼합 가스를 사용할 수 있다. 혼합 가스 중의 산소 농도를 조정하는 방법으로는, 예를 들어, 아르곤 100 % 의 가스 봄베와, 아르곤 중의 산소가 2 % 인 가스 봄베를 사용하여, 각각의 가스 봄베에서부터 챔버로의 공급 유량을 매스 플로우로 적당히 설정함으로써 실시할 수 있다. 여기서, 혼합 가스 중의 산소 농도란, 산소 분압/(산소 분압+아르곤 분압) 을 의미하는 것이고, 산소의 유량을 산소와 아르곤의 유량의 합계로 나눈 것과도 동등하다. 산소 농도는 원하는 캐리어 농도에 따라 적당히 변경하면 되는데, 전형적으로는 1 ∼ 3 % 로 할 수 있고, 보다 전형적으로는 1 ∼ 2 % 로 할 수 있다.A mixed gas of argon and oxygen may be used as the sputter gas. As a method for adjusting the oxygen concentration in the mixed gas, for example, a gas bombardment of 100% argon and a gas bombardment of 2% oxygen in argon are used to increase the supply flow rate from each gas cylinder to the chamber, As shown in FIG. Here, the oxygen concentration in the mixed gas means an oxygen partial pressure / (oxygen partial pressure + argon partial pressure), which is equivalent to the flow rate of oxygen divided by the sum of the flow rates of oxygen and argon. The oxygen concentration may be appropriately changed depending on the desired carrier concentration, and may be typically 1 to 3%, and more typically 1 to 2%.

스퍼터 가스의 전체압은 0.3 ∼ 0.8 ㎩ 정도로 한다. 전체압이 이것보다 낮으면 플라스마 방전이 일어나기 어려워지고, 일어났다고 하더라도 플라스마가 불안정해진다. 또, 전체압이 이것보다 높으면 성막 속도가 느려져, 생산성에 악영향을 미치는 등의 문제가 생긴다.The total pressure of the sputter gas is about 0.3 to 0.8 Pa. If the total pressure is lower than this, the plasma discharge becomes difficult to occur, and even if it occurs, the plasma becomes unstable. If the total pressure is higher than the above range, the film forming speed is slowed, and the productivity is adversely affected.

스퍼터 파워는, 타깃 사이즈가 6 인치인 경우, 200 ∼ 1200 W 정도에서 성막한다. 스퍼터 파워가 지나치게 작으면, 성막 속도가 작아, 생산성이 떨어지고, 반대로, 지나치게 크면, 타깃의 균열 등의 문제가 발생한다. 200 ∼ 1200 W 는, 스퍼터 파워 밀도로 환산하면, 1.1 W/㎠ ∼ 6.6 W/㎠ 이고, 3.2 ∼ 4.5 W/㎠ 로 하는 것이 바람직하다. 여기서, 스퍼터 파워 밀도란, 스퍼터 파워를 스퍼터링 타깃의 면적으로 나눈 것이고, 동일한 스퍼터 파워에서도 스퍼터링 타깃 사이즈에 따라, 스퍼터링 타깃이 실제로 받는 파워가 상이하고, 성막 속도가 상이한 점에서, 스퍼터링 타깃에 인가하는 파워를 통일적으로 표현하기 위한 지표이다.When the target size is 6 inches, the sputtering power is about 200 to 1200 W. If the sputtering power is too small, the deposition rate is low and the productivity is low. On the contrary, if the sputtering power is too large, problems such as cracking of the target occur. 200 to 1200 W is preferably 1.1 W / cm 2 to 6.6 W / cm 2 and 3.2 to 4.5 W / cm 2 in terms of the sputter power density. Here, the sputter power density is obtained by dividing the sputtering power by the area of the sputtering target, and is different from that of the sputtering target in that the sputtering target actually receives different powers depending on the sputtering target size even under the same sputtering power, It is an index to express power uniformly.

산화물 소결체로부터 막을 얻는 방법으로는, 진공 증착법, 이온 플레이팅법, PLD (펄스 레이저 디포지션) 법 등도 사용할 수도 있지만, 산업상 이용하기 쉬운 것은, 대면적, 고속 성막, 방전 안정성 등의 요건을 만족하는 DC 마그네트론 스퍼터법이다.As a method of obtaining a film from the oxide sintered body, a vacuum deposition method, an ion plating method, a PLD (Pulsed Laser Deposition) method, or the like can be used, but an industrially applicable method is a method of satisfying requirements such as large area, high speed film formation, DC magnetron sputtering method.

스퍼터 성막시에는, 기판을 가열할 필요가 없다. 기판을 가열하지 않더라도, 비교적 고이동도를 얻을 수 있기 때문이며, 또, 승온을 위한 시간이나 에너지를 가할 필요가 없다. 기판을 가열하지 않고 스퍼터 성막하면, 얻어지는 막은 비정질이 된다. 단, 기판을 가열함으로써, 실온 성막 후의 어닐과 동일한 효과를 얻는 것도 기대할 수 있으므로, 기판 가열로 성막해도 된다.There is no need to heat the substrate at the time of sputtering. This is because even if the substrate is not heated, a relatively high mobility can be obtained, and it is not necessary to apply time or energy for raising the temperature. When the substrate is sputtered without heating, the resulting film becomes amorphous. However, by heating the substrate, it is expected that the same effect as annealing after the room temperature film formation can be obtained.

(산화물막의 캐리어 농도) (Carrier concentration of oxide film)

산화물막의 캐리어 농도는, 그 막을 트랜지스터의 채널층에 사용했을 때에, 트랜지스터의 각종 특성과 상관이 있다. 캐리어 농도가 지나치게 높으면, 트랜지스터의 오프시에도, 미소 리크 전류가 발생하여, 온오프비가 저하된다. 한편, 캐리어 농도가 지나치게 낮으면, 트랜지스터를 흐르는 전류가 작아진다. 본 발명에서는, 조성의 적정 범위 등에 의해, 산화물막의 캐리어 농도를 1016 ∼ 1018- 3 으로 할 수 있고, 이 범위이면, 특성이 양호한 트랜지스터를 제작할 수 있다.The carrier concentration of the oxide film is related to various characteristics of the transistor when the film is used for the channel layer of the transistor. When the carrier concentration is too high, a minute leakage current is generated even when the transistor is turned off, and the on-off ratio is lowered. On the other hand, if the carrier concentration is too low, the current flowing through the transistor becomes small. In the present invention, by the appropriate range of composition, the oxide film carrier concentration 10 16 ~ 10 18- can be a 3, Within this range, the characteristics can be produced in good transistor.

(산화물막의 이동도) (Mobility of oxide film)

이동도는 트랜지스터의 특성 중에서도, 가장 중요한 특성 중 하나이고, 산화물 반도체가 트랜지스터의 채널층으로서 사용되는 경합 재료인 아모르퍼스 실리콘의 이동도인 1 ㎠/Vs 이상인 것이 바람직하다. 이동도는 기본적으로는, 높으면 높을수록 바람직하다. 본 발명에 관련된 산화물막은 조성의 적정 범위 등에 의해, 1 ㎠/Vs 이상의 이동도를 가질 수 있고, 바람직하게는 3 ㎠/Vs 이상의 이동도를 가질 수 있고, 보다 바람직하게는 5 ㎠/Vs 이상의 이동도를 가질 수 있다. 이로써, 아모르퍼스 실리콘보다 우수한 특성이 되어, 산업상 응용가능성이 보다 높아진다.The mobility is one of the most important characteristics among the characteristics of the transistor, and it is preferable that the mobility of the amorphous silicon which is the content material of the oxide semiconductor used as the channel layer of the transistor is 1 cm 2 / Vs or more. Basically, the higher the mobility, the better. The oxide film according to the present invention can have a mobility of 1 cm 2 / Vs or more, preferably 3 m 2 / Vs or more, more preferably 5 cm 2 / Vs or more . As a result, it is superior to amorphous silicon and has higher industrial applicability.

본 발명에 관련된 산화물 반도체 박막은, 예를 들어 박막 트랜지스터의 활성층으로서 사용할 수 있다. 또, 상기 제조 방법을 사용하여 얻어진 박막 트랜지스터를 액티브 소자로서 사용하고, 액티브 매트릭스 구동 표시 패널에 이용할 수 있다.The oxide semiconductor thin film related to the present invention can be used, for example, as an active layer of a thin film transistor. In addition, the thin film transistor obtained by using the above-described manufacturing method can be used as an active element and used for an active matrix driving display panel.

실시예Example

이하에 본 발명의 실시예를 비교예와 함께 나타내지만, 이들의 실시예는 본 발명 및 그 이점을 보다 잘 이해하기 위하여 제공하는 것으로서, 발명이 한정되는 것을 의도하는 것은 아니다. 따라서, 본 발명은, 본 발명의 기술 사상의 범위 내에서, 실시예 이외의 양태 혹은 변형을 모두 포함하는 것이다.Examples of the present invention will be described below with reference to comparative examples. However, these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention. Therefore, the present invention includes all modes or modifications other than the embodiments within the scope of the technical idea of the present invention.

하기의 실시예 및 비교예에 있어서, 소결체 및 막의 물성은 이하의 방법에 의해 측정하였다. In the following Examples and Comparative Examples, physical properties of the sintered body and the film were measured by the following methods.

(가) 소결체 및 막의 조성 (A) Composition of sintered body and membrane

SII 나노테크놀로지사 제조 형식 SPS3000 을 사용하여 ICP (고주파 유도 결합 플라스마) 분석법에 의해 구하였다. And was determined by ICP (High Frequency Inductively Coupled Plasma) analysis using SPS3000 manufactured by SII Nanotechnology.

(나) 소결체의 상대 밀도 (B) Relative density of sintered body

중량 및 외형 치수의 측정 결과와, 구성 원소로부터의 이론 밀도에 의해 구하였다. The weight and the external dimensions, and the theoretical density from the constituent elements.

(다) 소결체의 벌크 저항 (C) Bulk resistance of the sintered body

4 탐침법 (JIS K 7194) 에 의해, NPS (엔피에스) 사 제조 형식 Σ-5+ 장치를 사용하여 구하였다. 4 device manufactured by NPS (NPS) by the 4-probe method (JIS K 7194).

(라) 막두께 (D) Thickness

단차계 (Veeco 사 제조, 형식 Dektak 8 STYLUS PROFILER) 를 사용하여 구하였다. (Manufactured by Veeco, type Dektak 8 STYLUS PROFILER).

(마) 막의 캐리어 농도 및 이동도 (E) Carrier concentration and mobility of the film

성막한 유리 기판을 가로세로 약 10 ㎜ 로 잘라내고, 네 귀퉁이에 인듐 전극을 붙여, 홀 측정 장치 (토요 테크니카사 제조, 형식 Resitest 8200) 에 세트하여 측정하였다. A glass substrate having a film thickness of about 10 mm was cut out, and an indium electrode was attached to each of the four corners of the glass substrate. The indium electrode was set on a hole measuring apparatus (Model Resitest 8200, manufactured by Toyotec Corporation).

(바) 막의 결정 또는 비정질 구조 (F) Crystals or amorphous structures of membranes

리가쿠사 제조 RINT-1100 X 선 회절 장치를 사용하여 결정성을 판정하였다. 이 X 선 회절에 의해, 백그라운드 레벨 이상의 유의(有意)한 피크가 관찰되지 않은 점에서, 비정질로 판단하였다. Crystallinity was determined using a RINT-1100 X-ray diffractometer manufactured by Rigaku Corporation. From this X-ray diffraction, it was judged to be amorphous in that no significant peak above the background level was observed.

(사) 분체의 평균 입경 (G) Average particle size of powder

분체의 평균 입경은, 시마즈 제작소 제조 SALD-3100 에 의해 측정하였다.The average particle diameter of the powder was measured by SALD-3100 manufactured by Shimadzu Corporation.

<실시예 1> ≪ Example 1 >

산화인듐분 (평균 입경 1.0 ㎛), 산화마그네슘분 (평균 입경 1.0 ㎛), 및, 산화알루미늄분 (평균 입경 1.0 ㎛) 을 금속 원소의 원자수비 (In : Mg : Sn) 가 0.4 : 0.3 : 0.3 이 되도록 칭량하고, 습식 혼합 분쇄하였다. 분쇄 후의 혼합분의 평균 입경은 0.8 ㎛ 였다. 이 혼합분을 스프레이 드라이어로 조립 후, 금형에 충전하고, 가압 성형한 후, 공기 분위기 중 1450 ℃ 의 고온에서 10 시간 소결하였다. 얻어진 소결체를 직경 6 인치, 두께 6 ㎜ 의 원반상으로 가공하여 스퍼터링 타깃으로 하였다. 당해 타깃에 대해, 중량과 외형 치수의 측정 결과와 이론 밀도로부터 상대 밀도를 산출한 결과 99.8 % 였다. 또, 4 탐침법에 의해 측정한 소결체의 벌크 저항은 2.1 mΩ㎝ 였다.(In: Mg: Sn) of 0.4: 0.3: 0.3 (average particle diameter: 1.0 占 퐉), magnesium oxide (average particle diameter: 1.0 占 퐉) And wet-mixed and pulverized. The average particle diameter of the mixed powder after the pulverization was 0.8 탆. This mixed powder was assembled with a spray dryer, filled in a mold, press-molded, and then sintered in an air atmosphere at a high temperature of 1450 DEG C for 10 hours. The obtained sintered body was processed into a disk having a diameter of 6 inches and a thickness of 6 mm to form a sputtering target. The relative density of the target was calculated from the measurement results of the weight and the external dimensions and the theoretical density, and as a result, it was found to be 99.8%. The bulk resistance of the sintered body measured by the 4-probe method was 2.1 m? Cm.

상기에서 제작한 스퍼터링 타깃을 구리제의 배킹 플레이트에 인듐을 납재로서 사용하여 첩부하고, DC 마그네트론 스퍼터 장치 (ANELVA 제조 SPL-500 스퍼터 장치) 에 설치하였다. 유리 기판은 코닝 1737 을 사용하고, 스퍼터 조건을, 기판 온도 : 25 ℃, 도달 압력 : 1.2×10-4 ㎩, 분위기 가스 : Ar 99 %, 산소 1 %, 스퍼터 압력 (전체압) : 0.5 ㎩, 투입 전력 500 W 로 하여, 막두께가 약 100 ㎚ 인 박막을 제작하였다. 산화물 반도체 박막의 성막시에는, 이상 방전은 관찰되지 않았다.The sputtering target prepared above was attached to a copper backing plate using indium as a brazing material, and the sputtering target was placed in a DC magnetron sputtering apparatus (SPL-500 sputtering apparatus manufactured by ANELVA). The glass substrate using the Corning 1737, and the sputtering conditions, the substrate temperature: 25 ℃, ultimate pressure: 1.2 × 10 -4 ㎩, atmosphere gas: Ar 99%, 1% oxygen, the sputtering pressure (total pressure): 0.5 ㎩, And an input power of 500 W, thereby producing a thin film having a film thickness of about 100 nm. During the film formation of the oxide semiconductor thin film, no abnormal discharge was observed.

얻어진 막의 홀 측정을 실시하여, 캐리어 농도 및 이동도를 구하였다. 또, X 선 회절에 의한 측정의 결과, 당해 막은 비정질이었다.Hole measurement of the obtained film was carried out to determine the carrier concentration and mobility. As a result of the measurement by X-ray diffraction, the film was amorphous.

<실시예 2 ∼ 실시예 15> ≪ Examples 2 to 15 >

원료분의 조성비를 표 1 에 기재된 각각의 값이 되도록 한 것 이외에는, 실시예 1 과 마찬가지로 하여, 산화물 소결체 및 산화물 반도체 박막을 얻었다. 각각의 상대 밀도, 벌크 저항, 캐리어 농도, 이동도는 표 1 에 기재된 바와 같았다. 또, 소결체 및 막의 조성은 각각 원료분의 조성비와 동일하였다. 산화물 반도체 박막의 성막시에는 이상 방전은 관찰되지 않았다.The oxide-sintered body and the oxide semiconductor thin film were obtained in the same manner as in Example 1, except that the composition ratios of the raw material components were set to the respective values shown in Table 1. Each of the relative density, bulk resistance, carrier concentration, and mobility were as shown in Table 1. The compositions of the sintered body and the film were the same as those of the raw material powder. No abnormal discharge was observed at the time of forming the oxide semiconductor thin film.

<비교예 1 ∼ 비교예 12> ≪ Comparative Examples 1 to 12 >

원료분의 조성비를 표 1 에 기재된 각각의 값이 되도록 한 것 이외에는, 실시예 1 과 마찬가지로 하여, 산화물 소결체 및 산화물 반도체 박막을 얻었다. 각각의 상대 밀도, 벌크 저항, 캐리어 농도, 이동도는 표 1 에 기재된 바와 같았다. 또, 소결체 및 막의 조성은 각각 원료분의 조성비와 동일하였다.The oxide-sintered body and the oxide semiconductor thin film were obtained in the same manner as in Example 1, except that the composition ratios of the raw material components were set to the respective values shown in Table 1. Each of the relative density, bulk resistance, carrier concentration, and mobility were as shown in Table 1. The compositions of the sintered body and the film were the same as those of the raw material powder.

Figure 112013025993129-pct00001
Figure 112013025993129-pct00001

실시예 1 ∼ 15 에서는, 캐리어 농도가 1016 ∼ 1018- 3 의 범위 내에 있으며, 또한, 이동도가 1 ㎠/Vs 이상이었다. Examples 1-15 In, the carrier concentration of 10 16 ~ 10 18- in the range of 3, also, the mobility was 1 ㎠ / Vs or more.

한편, 비교예 1, 4, 6, 8, 10, 12 에서는, 캐리어 농도가 1016-3 미만이며, 또한, 이동도가 1 ㎠/Vs 미만이었다. On the other hand, in Comparative Examples 1, 4, 6, 8, 10, and 12, the carrier concentration was less than 10 16 cm -3 and the mobility was less than 1 cm 2 / Vs.

또, 비교예 2, 3, 5, 7, 9, 11 에서는, 캐리어 농도가 1018- 3 초과였다.Further, Comparative Examples 2, 3, 5, 7, 9, 11, the carrier concentration is 10 18- 3 was exceeded.

Claims (9)

인듐 (In) 과, 마그네슘 (Mg) 과, 금속 원소 X (단, X 는 Al, Fe, Sn 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지고,
인듐 (In), 마그네슘 (Mg), 및, 금속 원소 X 의 원자수비가 각각, 0.2≤[In]/[In+Mg+X]≤0.8, 0.1≤[Mg]/[In+Mg+X]≤0.5, 및, 0.1≤[X]/[In+Mg+X]≤0.5 를 만족하고, 상대 밀도가 98 % 이상인, 산화물 소결체.
(Mg), a metal element X (wherein X represents at least one element selected from Al, Fe, and Sn), and oxygen (O)
Mg, X, and Y satisfy the following relationship: 0.2? [In] / [In + Mg + X]? 0.8, 0.1? [Mg] / [In + Mg + X]? 0.5, and 0.1? X] / [In + Mg + X]? 0.5, and the relative density is 98% or more.
삭제delete 제 1 항에 있어서,
벌크 저항이 3 mΩ 이하인, 산화물 소결체.
The method according to claim 1,
And the bulk resistance is 3 m? Or less.
인듐 (In) 과, 마그네슘 (Mg) 과, 금속 원소 X (단, X 는 Al, Fe, Sn 에서 선택되는 1 종 이상의 원소를 나타낸다) 와, 산소 (O) 로 이루어지고,
인듐 (In), 마그네슘 (Mg), 금속 원소 X 의 원자수비가, 0.2≤[In]/[In+Mg+X]≤0.8, 0.1≤[Mg]/[In+Mg+X]≤0.5, 0.1≤[X]/[In+Mg+X]≤0.5 를 만족하고, 캐리어 농도가 1016 ∼ 1018-3 인, 산화물 반도체 박막.
(Mg), a metal element X (wherein X represents at least one element selected from Al, Fe, and Sn), and oxygen (O)
(In), [Mg], [Mg], [Mg], [Mg], and the atomic ratio of the metal element X is in the range of 0.2 [In] / [In + Mg + ] satisfies ≤0.5, and the carrier concentration is 10 16 ~ 10 18-3 of the oxide semiconductor thin film.
제 4 항에 있어서,
비정질인, 산화물 반도체 박막.
5. The method of claim 4,
Amorphous, oxide semiconductor thin film.
삭제delete 제 4 항 또는 제 5 항에 있어서,
이동도가 1 ㎠/Vs 이상인, 산화물 반도체 박막.
The method according to claim 4 or 5,
Wherein the mobility is at least 1 cm 2 / Vs.
제 4 항 또는 제 5 항에 기재된 산화물 반도체 박막을 활성층으로서 구비한, 박막 트랜지스터.A thin film transistor comprising the oxide semiconductor thin film according to claim 4 or 5 as an active layer. 제 8 항에 기재된 박막 트랜지스터를 구비한 액티브 매트릭스 구동 표시 패널.An active matrix driving display panel comprising the thin film transistor according to claim 8.
KR1020137007632A 2010-08-31 2011-07-07 Oxide sintered body and oxide semiconductor thin film KR101467131B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2010-194510 2010-08-31
JP2010194510A JP5367660B2 (en) 2010-08-31 2010-08-31 Oxide sintered body and oxide semiconductor thin film
PCT/JP2011/065584 WO2012029408A1 (en) 2010-08-31 2011-07-07 Oxide sintered body and oxide semiconductor thin film

Publications (2)

Publication Number Publication Date
KR20130063010A KR20130063010A (en) 2013-06-13
KR101467131B1 true KR101467131B1 (en) 2014-11-28

Family

ID=45772519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137007632A KR101467131B1 (en) 2010-08-31 2011-07-07 Oxide sintered body and oxide semiconductor thin film

Country Status (4)

Country Link
JP (1) JP5367660B2 (en)
KR (1) KR101467131B1 (en)
TW (1) TWI469948B (en)
WO (1) WO2012029408A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367659B2 (en) * 2010-08-31 2013-12-11 Jx日鉱日石金属株式会社 Oxide sintered body and oxide semiconductor thin film
WO2023162849A1 (en) * 2022-02-25 2023-08-31 株式会社アルバック Sputtering target, method for producing sputtering target, oxide semiconductor thin film, thin film semiconductor device and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044890A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide target
WO2009081677A1 (en) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. Tin oxide-magnesium oxide sputtering target and transparent semiconductor film
KR101324830B1 (en) * 2010-08-31 2013-11-01 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered oxide and oxide semiconductor thin film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813140A (en) * 1994-07-04 1996-01-16 Hitachi Metals Ltd Indium oxide sputtering target, its production, indium oxide film, and production of indium oxide film
JPH08264023A (en) * 1995-03-27 1996-10-11 Gunze Ltd Transparent conductive film
JP3803132B2 (en) * 1996-01-31 2006-08-02 出光興産株式会社 Target and manufacturing method thereof
JP3215392B2 (en) * 1998-10-13 2001-10-02 ジオマテック株式会社 Metal oxide sintered body and its use
JP4457669B2 (en) * 2004-01-08 2010-04-28 東ソー株式会社 Sputtering target and manufacturing method thereof
JPWO2010032432A1 (en) * 2008-09-19 2012-02-02 出光興産株式会社 Sintered body containing yttrium oxide and sputtering target
CN102245531B (en) * 2008-12-12 2016-05-11 出光兴产株式会社 Composite oxide sintered body and sputtering target comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044890A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide target
WO2009081677A1 (en) * 2007-12-25 2009-07-02 Idemitsu Kosan Co., Ltd. Tin oxide-magnesium oxide sputtering target and transparent semiconductor film
KR101324830B1 (en) * 2010-08-31 2013-11-01 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Sintered oxide and oxide semiconductor thin film

Also Published As

Publication number Publication date
JP2012051747A (en) 2012-03-15
TW201209006A (en) 2012-03-01
TWI469948B (en) 2015-01-21
WO2012029408A1 (en) 2012-03-08
KR20130063010A (en) 2013-06-13
JP5367660B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
KR101228160B1 (en) Process for producing thin film of a-igzo oxide
EP2428500B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
KR101623735B1 (en) Zn-Sn-O TYPE OXIDE SINTERED BODY AND METHOD FOR PRODUCING SAME
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
KR101331293B1 (en) Sintered oxide and oxide semiconductor thin film
KR20140079384A (en) Zn-Si-O SYSTEM OXIDE SINTERED BODY, METHOD FOR PRODUCING SAME, AND TRANSPARENT CONDUCTIVE FILM
KR101644767B1 (en) Sintered oxide body and sputtering target comprising said sintered oxide body
KR101467131B1 (en) Oxide sintered body and oxide semiconductor thin film
CN108698937B (en) Sn-Zn-O oxide sintered body and method for producing same
KR101303987B1 (en) Sintered oxide and oxide semiconductor thin film
US20110163277A1 (en) Oxide sintered compact for preparing transparent conductive film
JPWO2019031105A1 (en) Oxide sintered body and sputtering target
KR101324830B1 (en) Sintered oxide and oxide semiconductor thin film
TW201522689A (en) Sputtering target and method for producing same
JP2013193945A (en) SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171027

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 6