JP4670877B2 - Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device - Google Patents

Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device Download PDF

Info

Publication number
JP4670877B2
JP4670877B2 JP2008042720A JP2008042720A JP4670877B2 JP 4670877 B2 JP4670877 B2 JP 4670877B2 JP 2008042720 A JP2008042720 A JP 2008042720A JP 2008042720 A JP2008042720 A JP 2008042720A JP 4670877 B2 JP4670877 B2 JP 4670877B2
Authority
JP
Japan
Prior art keywords
zinc oxide
transparent conductive
thin film
film layer
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008042720A
Other languages
Japanese (ja)
Other versions
JP2009199986A (en
Inventor
能之 阿部
徳行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008042720A priority Critical patent/JP4670877B2/en
Publication of JP2009199986A publication Critical patent/JP2009199986A/en
Application granted granted Critical
Publication of JP4670877B2 publication Critical patent/JP4670877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、スパッタリング法若しくはイオンプレーティング法により基板上に成膜されたガリウムを含有する酸化亜鉛系透明導電膜積層体に係り、特に、従来の酸化亜鉛系透明導電膜よりも導電性が改善された酸化亜鉛系透明導電膜積層体と透明導電性基板および太陽電池等のデバイスに関するものである。   The present invention relates to a zinc oxide-based transparent conductive film laminate containing gallium formed on a substrate by sputtering or ion plating, and in particular, has improved conductivity as compared to conventional zinc oxide-based transparent conductive films. The present invention relates to a zinc oxide-based transparent conductive film laminate, a transparent conductive substrate, and a device such as a solar cell.

透明導電膜は、高い導電性と可視光領域での高い透過率とを有し、太陽電池や液晶表示素子、その他各種受光素子の電極等に利用される他、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケース等のための各種防曇用の透明発熱体としても利用され、特に、低抵抗の透明導電膜は、太陽電池、液晶、有機エレクトロルミネッセンスおよび無機エレクトロルミネッセンス等の表示素子やタッチパネル等に好適に用いられている。   The transparent conductive film has high conductivity and high transmittance in the visible light region, and is used for solar cells, liquid crystal display elements, electrodes of other various light receiving elements, etc., and heat ray reflection for automobile windows and buildings. It is also used as a transparent heating element for various types of anti-fogging for films, antistatic films, frozen showcases, etc. Especially, low resistance transparent conductive films are used for solar cells, liquid crystals, organic electroluminescence, inorganic electroluminescence, etc. It is suitably used for display elements and touch panels.

そして、上記透明導電膜には、酸化スズ(SnO)系、酸化亜鉛(ZnO)系、酸化インジウム(In)系の薄膜が知られており、酸化スズ系には、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が利用され、酸化亜鉛系には、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)が利用されている。そして、最も工業的に利用されている透明導電膜は上記酸化インジウム系であり、その中でもスズ(錫)をドーパントとして含む酸化インジウムはITO(Indium-Tin-Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、これまで幅広く利用されてきた。 As the transparent conductive film, tin oxide (SnO 2 ) -based, zinc oxide (ZnO) -based, and indium oxide (In 2 O 3 ) -based thin films are known. (ATO) containing fluorine as a dopant (FTO) containing fluorine as a dopant is used, and zinc oxides containing aluminum as a dopant (AZO) and gallium as a dopant (GZO) are used. . The transparent conductive film most industrially used is the above-mentioned indium oxide type. Among them, indium oxide containing tin (tin) as a dopant is called an ITO (Indium-Tin-Oxide) film, and has a particularly low resistance. Since this film can be easily obtained, it has been widely used so far.

また、これ等透明導電膜の工業的な製造方法としては、スパッタリング法やイオンプレーティング法が良く用いられている。これ等スパッタリング法やイオンプレーティング法は、大面積の低抵抗膜を容易に成膜することができ、蒸気圧の低い材料を成膜する際や、精密な膜厚制御を必要とする際に有効な手法であり、かつ、操作が非常に簡便であるため工業的にもっとも広範に利用されている。   Further, as an industrial production method for these transparent conductive films, a sputtering method or an ion plating method is often used. These sputtering methods and ion plating methods can easily form a large-area low-resistance film, and when depositing a material with low vapor pressure or when precise film thickness control is required. Since it is an effective method and is very easy to operate, it is most widely used industrially.

上記スパッタリング法は、薄膜原料としてスパッタリングターゲットを用いる成膜法で、スパッタリングターゲットは成膜したい薄膜を構成している金属元素を含む固体であり、金属、金属酸化物、金属窒化物、金属炭化物等の焼結体や、場合によっては単結晶が使われる。そして、この方法では、一般に真空装置を一旦高真空にした後、アルゴン等の希ガスを導入し、約10Pa以下のガス圧のもとで、基板を陽極、スパッタリングターゲットを陰極とし、これ等の間にグロー放電を起こしてアルゴンプラズマを発生させ、プラズマ中のアルゴン陽イオンを陰極のスパッタリングターゲットに衝突させ、これによってはじきとばされるターゲット成分の粒子を基板上に堆積させて膜を形成する。   The sputtering method is a film forming method using a sputtering target as a thin film raw material, and the sputtering target is a solid containing a metal element constituting the thin film to be formed, such as metal, metal oxide, metal nitride, metal carbide, etc. In some cases, a single crystal is used. In this method, generally, after the vacuum apparatus is once made into a high vacuum, a rare gas such as argon is introduced, and under a gas pressure of about 10 Pa or less, the substrate is used as an anode and the sputtering target is used as a cathode. In the meantime, glow discharge is generated to generate argon plasma, and argon cations in the plasma are collided with the sputtering target of the cathode, thereby repelling target component particles deposited on the substrate to form a film.

そして、スパッタリング法は、アルゴンプラズマの発生方法で分類され、高周波プラズマを用いるものは高周波スパッタリング法、直流プラズマを用いるものは直流スパッタリング法という。一般に、直流スパッタリング法は、高周波スパッタリング法と比べて成膜速度が速く、電源設備が安価であり、成膜操作が簡単である等の理由で、工業的に広範に利用されている。しかし、絶縁性ターゲットでも成膜することができる高周波スパッタリング法に対し、直流スパッタリング法では導電性ターゲットを用いなければならない。   Sputtering methods are classified according to the generation method of argon plasma. Those using high-frequency plasma are called high-frequency sputtering methods, and those using DC plasma are called DC sputtering methods. In general, the direct current sputtering method is widely used industrially because the film forming speed is higher than that of the high frequency sputtering method, the power supply equipment is inexpensive, and the film forming operation is simple. However, in contrast to the high-frequency sputtering method that can form a film even with an insulating target, the direct current sputtering method must use a conductive target.

また、上記スパッタリング法を用いて成膜するときの成膜速度は、ターゲット物質の化学結合と密接な関係がある。スパッタリング法は、運動エネルギーをもったアルゴン陽イオンがターゲット表面に衝突し、ターゲット表面の物質がエネルギーを受け取って弾き出される現象を用いたものであり、ターゲット物質のイオン間結合若しくは原子間結合が弱い程、スパッタリングによって飛び出す確率は増加する。   In addition, the film formation rate when using the sputtering method is closely related to the chemical bonding of the target material. The sputtering method uses a phenomenon in which argon cations with kinetic energy collide with the target surface, and the material on the target surface receives energy and is ejected, and the target material has weak interion bonds or interatomic bonds. The probability of jumping out by sputtering increases.

そして、上記ITO等酸化物の透明導電膜をスパッタリング法で成膜する方法には、膜を構成する元素の合金ターゲット(ITO膜の場合はIn−Sn合金)を用いてアルゴンと酸素の混合ガス中における反応性スパッタリング法によって酸化物膜を成膜する方法と、膜を構成する元素の酸化物焼結体ターゲット(ITO膜の場合はIn−Sn−O焼結体)を用いてアルゴンと酸素の混合ガス中における反応性スパッタリング法によって酸化物膜を成膜する方法がある。このうち、上記合金ターゲットを用いる方法は、スパッタリング中の酸素ガスを多めに供給するが、成膜速度や膜特性(比抵抗、透過率)の成膜中における導入する酸素ガス量依存性が極めて大きく、安定して一定の膜厚、所望の特性の透明導電膜を製造することが難しい。これに対して上記酸化物焼結体ターゲットを用いる方法は、膜に供給される酸素の一部がターゲットからスパッタリングにより供給され、残りの不足酸素量が酸素ガスとして供給される。このため、成膜中に導入する酸素ガス量に対する成膜速度や膜特性(比抵抗、透過率)の依存性が、合金ターゲットを用いる場合よりも小さく、より安定して一定の膜厚、特性の透明導電膜を製造することができるため、工業的には上記酸化物ターゲットを用いる方法が採られている。   In addition, in the method of forming the transparent conductive film made of an oxide such as ITO by a sputtering method, a mixed gas of argon and oxygen using an alloy target of an element constituting the film (In-Sn alloy in the case of an ITO film). A method of forming an oxide film by a reactive sputtering method in the inside and argon and oxygen using an oxide sintered body target (In-Sn-O sintered body in the case of an ITO film) of an element constituting the film There is a method in which an oxide film is formed by a reactive sputtering method in the mixed gas. Among these, the method using the above alloy target supplies a large amount of oxygen gas during sputtering, but the film formation rate and film characteristics (specific resistance, transmittance) are extremely dependent on the amount of oxygen gas introduced during film formation. It is difficult to produce a transparent conductive film which is large and has a stable and constant film thickness and desired characteristics. On the other hand, in the method using the oxide sintered compact target, a part of oxygen supplied to the film is supplied by sputtering from the target, and the remaining deficient oxygen amount is supplied as oxygen gas. For this reason, the dependency of the film formation speed and film characteristics (specific resistance, transmittance) on the amount of oxygen gas introduced during film formation is smaller than when using an alloy target, and the film thickness and characteristics are more stable and constant. Since a transparent conductive film can be produced, a method using the above oxide target has been adopted industrially.

他方、上記イオンプレーティング法は、膜となるターゲット材の表面をアーク放電で局部的に加熱して昇華、イオン化し、負に帯電させたワーク(基板材料)に付着させて成膜する方法である。この方法でも、低温で密着性のよい膜が得られ、非常に多種の基板性質や膜性質が選択でき、合金や化合物の成膜が可能で、環境にやさしいプロセスであるという特徴を有する。そして、イオンプレーティング法でも、上記スパッタリング法と同様、酸化物タブレットをターゲット材として用いた方が安定して一定の膜厚、特性の透明導電膜を製造することができる。   On the other hand, the ion plating method is a method in which a surface of a target material to be a film is locally heated by arc discharge to be sublimated, ionized, and attached to a negatively charged workpiece (substrate material) to form a film. is there. Even with this method, a film having good adhesion at a low temperature can be obtained, a very wide variety of substrate properties and film properties can be selected, and an alloy or a compound film can be formed, which is an environmentally friendly process. Even in the ion plating method, a transparent conductive film having a certain film thickness and characteristics can be stably produced by using an oxide tablet as a target material, similarly to the sputtering method.

ところで、太陽電池、液晶表示素子、各種受光素子の電極等に利用される上記透明導電膜には、上述したようにITO等の酸化インジウム系材料が工業的に広く用いられているが、希少金属のインジウムが高価であること、インジウム元素が環境や人体に悪影響を与えるような毒性を有する成分を含むことから、近年、非インジウム系の透明導電膜材料が求められている。そして、非インジウム系の材料として、上述したGZOやAZO等の酸化亜鉛系材料、FTOやATO等の酸化スズ系材料が知られており、特に、GZOやAZO等の酸化亜鉛系は、資源として豊富に埋蔵されていて低コスト材料としてあるいは環境や人体にも優しい材料として注目されている。   By the way, as described above, indium oxide-based materials such as ITO are widely used industrially for the transparent conductive film used for electrodes of solar cells, liquid crystal display elements, various light receiving elements, and the like. In recent years, non-indium transparent conductive film materials have been demanded because of the high price of indium and the inclusion of toxic components such that the indium element adversely affects the environment and the human body. As the non-indium-based materials, zinc oxide-based materials such as GZO and AZO described above and tin oxide-based materials such as FTO and ATO are known. In particular, zinc oxide-based materials such as GZO and AZO are used as resources. It is abundantly buried and attracts attention as a low-cost material or a material that is friendly to the environment and the human body.

そして、酸化亜鉛系の透明導電膜材料に関する従来技術として以下が挙げられる。   And the following is mentioned as a prior art regarding a zinc oxide type transparent conductive film material.

アルミニウムをドーパントとして含むAZOに関しては、特開昭62−122011号公報に、酸化亜鉛を主成分とし酸化アルミニウムを混合したターゲットを用いてDCマグネトロンスパッタリング法でC軸配向のAZO透明導電膜を製造する方法が記載されている。また、特開平2−149459号公報には、焼結密度5g/cm以上でかつ比抵抗が1Ω・cm以下の正三価以上の原子価を有する元素を含有する酸化亜鉛焼結体から成るスパッタリングターゲットが紹介され、その中に上記AZOターゲットやIn含有ZnO(IZO)ターゲットが記載されている。更に、ガリウムをドーパントとして含むGZOに関しては、特開平7−138745号公報に、ホットプレス焼結法で作製したガリウムを含む酸化亜鉛焼結体から成るスパッタリングターゲットが紹介されている。 Regarding AZO containing aluminum as a dopant, a C-axis oriented AZO transparent conductive film is produced by DC magnetron sputtering using a target in which zinc oxide is the main component and aluminum oxide is mixed in Japanese Patent Laid-Open No. 62-1222011. A method is described. JP-A-2-14959 discloses sputtering made of a zinc oxide sintered body containing an element having a positive trivalent or higher valence having a sintered density of 5 g / cm 3 or more and a specific resistance of 1 Ω · cm or less. Targets are introduced, and the AZO target and In-containing ZnO (IZO) target are described therein. Further, regarding GZO containing gallium as a dopant, JP-A-7-138745 introduces a sputtering target composed of a zinc oxide sintered body containing gallium produced by a hot press sintering method.

そして、上述した酸化亜鉛系や酸化スズ系等の非インジウム系材料の中で、ガリウムをドーパントとして含む上記酸化亜鉛(GZO)材料が最も低抵抗の透明導電膜を実現することができる。
特開昭62−122011号公報 特開平2−149459号公報 特開平7−138745号公報
And among the above-mentioned non-indium materials such as zinc oxide and tin oxide, the zinc oxide (GZO) material containing gallium as a dopant can realize a transparent conductive film having the lowest resistance.
JP-A-62-122011 JP-A-2-14959 JP-A-7-138745

非インジウム系材料の中でガリウムをドーパントとして含む上記GZO材料が最も低抵抗の透明導電膜を示すものの、広範に利用されているITO材料と比較すると導電性の点で未だ劣っている。また、GZO膜における導電性の膜厚依存性はITO材料と比べて大きく、膜厚が薄くなるとGZO膜の導電性は著しく悪くなり、ITO膜との導電性の差はより顕著になる。このため、透明電極の導電性が重要視される各種デバイス、特に太陽電池には不十分であった。このような技術的背景から、従来よりも低抵抗の非インジウム系透明導電膜、特にZnO系透明導電膜の開発が求められていた。   Although the GZO material containing gallium as a dopant among the non-indium-based materials exhibits the lowest resistance transparent conductive film, it is still inferior in terms of conductivity as compared with the widely used ITO material. In addition, the film thickness dependence of the conductivity in the GZO film is larger than that of the ITO material. When the film thickness is reduced, the conductivity of the GZO film is remarkably deteriorated, and the difference in conductivity with the ITO film becomes more remarkable. For this reason, it was inadequate for the various devices in which the electroconductivity of a transparent electrode is regarded as important, especially a solar cell. From such a technical background, development of a non-indium transparent conductive film having a lower resistance than that of the prior art, in particular, a ZnO transparent conductive film, has been demanded.

そこで、上記課題を解決するため本発明者等が鋭意研究を重ねた結果、ガリウムを含む酸化亜鉛系透明導電膜の膜構成を最適化することで、従来よりも透明導電膜の導電性を改善できることを見出し、本発明を完成するに至った。   Therefore, as a result of extensive research conducted by the present inventors in order to solve the above problems, the conductivity of the transparent conductive film has been improved by optimizing the film configuration of the zinc oxide-based transparent conductive film containing gallium. The present inventors have found that this can be done and have completed the present invention.

すなわち、請求項1に係る発明は、
スパッタリング法若しくはイオンプレーティング法により基板上に成膜されると共に、ガリウム含有量が異なる複数層の酸化亜鉛系透明導電膜により構成された酸化亜鉛系透明導電膜積層体において、
最も基板側に成膜される酸化亜鉛系透明導電膜が、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.6〜10.0%に設定されかつ膜厚が20〜40nmに設定された酸化亜鉛系薄膜層(1)により構成され、この酸化亜鉛系薄膜層(1)上に成膜される単一若しくは複数の酸化亜鉛系透明導電膜が、上記酸化亜鉛系薄膜層(1)よりガリウム含有量が少ない酸化亜鉛系薄膜層(2)により構成されていることを特徴とする。
That is, the invention according to claim 1
In a zinc oxide-based transparent conductive film laminate composed of a plurality of zinc oxide-based transparent conductive films having different gallium contents formed on a substrate by a sputtering method or an ion plating method,
The zinc oxide-based transparent conductive film formed on the most substrate side has a gallium content of 5.6 to 10.0% and a film thickness of 20 to 40 nm at an atomic ratio of Ga / (Zn + Ga). The zinc oxide-based thin film layer (1), and the zinc oxide-based thin film layer (1) is formed on the zinc oxide-based thin film layer (1). ) It is characterized by being constituted by a zinc oxide thin film layer (2) having a lower gallium content.

また、請求項2に係る発明は、
請求項1に記載の発明に係る酸化亜鉛系透明導電膜積層体において、
上記酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)のガリウム含有量が、Ga/(Zn+Ga)の原子数比で3.5〜5.5%であることを特徴とし、
請求項3に係る発明は、
請求項2に記載の発明に係る酸化亜鉛系透明導電膜積層体において、
上記酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)のガリウム含有量が、Ga/(Zn+Ga)の原子数比で4.5〜5.5%であることを特徴とし、
請求項4に係る発明は、
請求項3に記載の発明に係る酸化亜鉛系透明導電膜積層体において、
上記酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2)との合計の膜厚が80nm以上400nm未満で、かつ、比抵抗が8.0×10-4Ωcm以下であることを特徴とし、
請求項5に係る発明は、
請求項2に記載の発明に係る酸化亜鉛系透明導電膜積層体において、
上記酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)が、Ga/(Zn+Ga)の原子数比でガリウム含有量が4.5〜5.5%に設定された酸化亜鉛系薄膜層(2−1)と、この酸化亜鉛系薄膜層(2−1)上に成膜されかつGa/(Zn+Ga)の原子数比でガリウム含有量が3.5〜4.4%に設定された酸化亜鉛系薄膜層(2−2)とで構成されることを特徴とし、
請求項6に係る発明は、
請求項5に記載の発明に係る酸化亜鉛系透明導電膜積層体において、
上記酸化亜鉛系薄膜層(1)と、Ga/(Zn+Ga)の原子数比でガリウム含有量が4.5〜5.5%に設定された上記酸化亜鉛系薄膜層(2−1)と、Ga/(Zn+Ga)の原子数比でガリウム含有量が3.5〜4.4%に設定された上記酸化亜鉛系薄膜層(2−2)との合計の膜厚が400nm以上で、かつ、比抵抗が3.5×10-4Ωcm以下であることを特徴とし、
請求項7に係る発明は、
請求項1〜6のいずれかに記載の発明に係る酸化亜鉛系透明導電膜積層体において、
成膜中の基板温度を100〜500℃に設定して、スパッタリング法により成膜されたことを特徴とするものである。
The invention according to claim 2
In the zinc oxide based transparent conductive film laminate according to the invention of claim 1,
The gallium content of the zinc oxide thin film layer (2) formed on the zinc oxide thin film layer (1) is 3.5 to 5.5% in terms of the atomic ratio of Ga / (Zn + Ga). Features
The invention according to claim 3
In the zinc oxide-based transparent conductive film laminate according to the invention of claim 2,
The gallium content of the zinc oxide thin film layer (2) formed on the zinc oxide thin film layer (1) is 4.5 to 5.5% in terms of the atomic ratio of Ga / (Zn + Ga). Features
The invention according to claim 4
In the zinc oxide based transparent conductive film laminate according to the invention of claim 3,
The total thickness of the zinc oxide-based thin film layer (1) and the zinc oxide-based thin film layer (2) is 80 nm or more and less than 400 nm, and the specific resistance is 8.0 × 10 −4 Ωcm or less. age,
The invention according to claim 5
In the zinc oxide-based transparent conductive film laminate according to the invention of claim 2,
The zinc oxide-based thin film layer (2) formed on the zinc oxide-based thin film layer (1) has a gallium content of 4.5 to 5.5% in terms of the atomic ratio of Ga / (Zn + Ga). The zinc oxide thin film layer (2-1) and the zinc oxide thin film layer (2-1) are formed on the zinc oxide thin film layer (2-1) and have a gallium content of 3.5-4. It is composed of a zinc oxide thin film layer (2-2) set to 4%,
The invention according to claim 6
In the zinc oxide based transparent conductive film laminate according to the invention of claim 5,
The zinc oxide thin film layer (1) and the zinc oxide thin film layer (2-1) in which the gallium content is set to 4.5 to 5.5% by the atomic ratio of Ga / (Zn + Ga); The total film thickness with the zinc oxide thin film layer (2-2) in which the gallium content is set to 3.5 to 4.4% in terms of the atomic ratio of Ga / (Zn + Ga) is 400 nm or more, and The specific resistance is 3.5 × 10 −4 Ωcm or less,
The invention according to claim 7 provides:
In the zinc oxide-based transparent conductive film laminate according to any one of claims 1 to 6,
The substrate temperature during film formation is set to 100 to 500 ° C., and the film is formed by sputtering.

次に、請求項8に係る発明は、
透明導電性基板において、
ガラス基板若しくは樹脂基板と、この基板上に成膜された請求項1〜7のいずれかに記載の酸化亜鉛系透明導電膜積層体とで構成されることを特徴とし、
請求項9に係る発明は、
太陽電池、表示装置または発光デバイスから選択されるデバイスにおいて、
請求項1〜7のいずれかに記載の酸化亜鉛系透明導電膜積層体が、透明電極として組み込まれていることを特徴とするものである。
Next, the invention according to claim 8 is:
In transparent conductive substrate,
It is composed of a glass substrate or a resin substrate and the zinc oxide-based transparent conductive film laminate according to any one of claims 1 to 7 formed on the substrate,
The invention according to claim 9 is:
In a device selected from a solar cell, a display device or a light emitting device,
The zinc oxide based transparent conductive film laminate according to any one of claims 1 to 7 is incorporated as a transparent electrode.

スパッタリング法若しくはイオンプレーティング法により基板上に成膜されると共に、ガリウム含有量が異なる複数層の酸化亜鉛系透明導電膜により構成された本発明の酸化亜鉛系透明導電膜積層体によれば、
最も基板側に成膜される酸化亜鉛系透明導電膜が、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.6〜10.0%に設定されかつ膜厚が20〜40nmに設定された酸化亜鉛系薄膜層(1)により構成され、この酸化亜鉛系薄膜層(1)上に成膜される単一若しくは複数の酸化亜鉛系透明導電膜が、上記酸化亜鉛系薄膜層(1)よりガリウム含有量が少ない酸化亜鉛系薄膜層(2)により構成されているため、従来の酸化亜鉛系透明導電膜と較べて導電性が改善されており、更に、本発明の酸化亜鉛系透明導電膜積層体は、酸化亜鉛を主成分としているため、資源として豊富に埋蔵されていて低コスト材料としてあるいは環境や人体にも優しい効果を有している。
According to the zinc oxide-based transparent conductive film laminate of the present invention formed of a plurality of zinc oxide-based transparent conductive films having different gallium contents while being formed on a substrate by a sputtering method or an ion plating method,
The zinc oxide-based transparent conductive film formed on the most substrate side has a gallium content of 5.6 to 10.0% and a film thickness of 20 to 40 nm at an atomic ratio of Ga / (Zn + Ga). The zinc oxide-based thin film layer (1), and the zinc oxide-based thin film layer (1) is formed on the zinc oxide-based thin film layer (1). ) Since it is composed of the zinc oxide thin film layer (2) having a smaller gallium content, the conductivity is improved as compared with the conventional zinc oxide transparent conductive film, and the zinc oxide transparent of the present invention is further improved. Since the conductive film laminate is mainly composed of zinc oxide, it is abundantly embedded as a resource, and has an effect that is friendly to the environment and the human body as a low-cost material.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

1.酸化亜鉛系透明導電膜積層体
スパッタリング法若しくはイオンプレーティング法により基板上に成膜されると共に、ガリウム含有量が異なる複数層の酸化亜鉛系透明導電膜により構成された本発明の酸化亜鉛系透明導電膜積層体は、図1に示すように、最も基板側に成膜される酸化亜鉛系透明導電膜が、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.6〜10.0%に設定されかつ膜厚が20〜40nmに設定された酸化亜鉛系薄膜層(1)により構成され、この酸化亜鉛系薄膜層(1)上に成膜される単一若しくは複数の酸化亜鉛系透明導電膜が、上記酸化亜鉛系薄膜層(1)よりガリウム含有量が少ない酸化亜鉛系薄膜層(2)により構成されていることを特徴としている。
1. Zinc oxide-based transparent conductive film laminate Zinc oxide-based transparent film of the present invention, which is formed on a substrate by sputtering or ion plating, and is composed of a plurality of zinc oxide-based transparent conductive films having different gallium contents As shown in FIG. 1, in the conductive film laminate, the zinc oxide-based transparent conductive film formed on the most substrate side has a gallium content of 5.6 to 10.0 at a Ga / (Zn + Ga) atomic ratio. % And a zinc oxide thin film layer (1) having a film thickness of 20 to 40 nm, and a single or plural zinc oxide films formed on the zinc oxide thin film layer (1) The transparent conductive film is characterized by being composed of a zinc oxide-based thin film layer (2) having a smaller gallium content than the zinc oxide-based thin film layer (1).

そして、図1に示された本発明に係る酸化亜鉛系透明導電膜積層体は、この酸化亜鉛系透明導電膜積層体と同じ組成で総膜厚も同じである単層構造の酸化亜鉛系薄膜層(2)が基板上に成膜された図3に示す従来の酸化亜鉛系透明導電膜と較べて導電性が改善されている。この改善効果は以下のように解釈することができる。   The zinc oxide-based transparent conductive film laminate according to the present invention shown in FIG. 1 is a single-layer zinc oxide thin film having the same composition and the same total film thickness as the zinc oxide-based transparent conductive film laminate. The conductivity is improved as compared with the conventional zinc oxide transparent conductive film shown in FIG. 3 in which the layer (2) is formed on the substrate. This improvement effect can be interpreted as follows.

まず、ガリウムを含有する酸化亜鉛系透明導電膜の比抵抗に関してそのガリウム含有量の依存性を発明者等が調べたところ、低抵抗を発揮する最適なガリウム含有量が存在し、その最適なガリウム含有量は膜厚によって異なることが分かった。酸化亜鉛系透明導電膜はn型の半導体であり、その導電性は、キャリア濃度と移動度に依存し、キャリア濃度、移動度、何れも高い方が高い導電性を得ることができる。   First, the inventors investigated the dependence of the gallium content on the specific resistance of a zinc oxide-based transparent conductive film containing gallium, and found that there was an optimal gallium content that exhibited low resistance. It turned out that content changes with film thicknesses. The zinc oxide-based transparent conductive film is an n-type semiconductor, and its conductivity depends on the carrier concentration and mobility, and higher conductivity can be obtained with higher carrier concentration and mobility.

ここで、ガラス基板や樹脂基板上にスパッタリング法若しくはイオンプレーティング法により成膜した酸化亜鉛系透明導電膜は、結晶性の膜厚依存性が大きい。すなわち、基板側の膜は結晶性が悪く、基板から遠ざかるほど膜の結晶性は良い。また、膜の結晶性が高いと、粒界が少ないため移動度は高い。酸化亜鉛系透明導電膜はn型の半導体であるため、ガリウムのドーパント量が多くなるとキャリア濃度は多くなるが、キャリア濃度が多くなるとイオン化不純物散乱の影響で移動度は低下する。   Here, a zinc oxide-based transparent conductive film formed on a glass substrate or a resin substrate by a sputtering method or an ion plating method has a large crystallinity dependency. That is, the film on the substrate side has poor crystallinity, and the crystallinity of the film becomes better as the distance from the substrate increases. Moreover, when the crystallinity of the film is high, the mobility is high because there are few grain boundaries. Since the zinc oxide-based transparent conductive film is an n-type semiconductor, the carrier concentration increases as the amount of gallium dopant increases, but the mobility decreases due to the influence of ionized impurity scattering as the carrier concentration increases.

そして、基板上の膜厚が20〜40nmと薄い酸化亜鉛系薄膜の場合、大きな結晶粒を形成しにくく結晶性が極めて悪いため移動度も低い。このような低い移動度の薄膜の導電性は、移動度の組成依存性が小さく、移動度よりもキャリア濃度の方が導電性には支配的で、ドーパントを多くしてキャリア濃度を多くした方が導電性に優勢的に寄与する。従って、基板上に形成される膜厚が20〜40nmと薄い酸化亜鉛系薄膜の場合は、ガリウムの含有量がGa/(Zn+Ga)の原子数比で5.6〜10.0%と多く設定された酸化亜鉛系薄膜の方が最も高い導電性を発揮する。   And in the case of a zinc oxide thin film having a thin film thickness of 20 to 40 nm on the substrate, it is difficult to form large crystal grains, and the crystallinity is very poor, so the mobility is low. The conductivity of such a low mobility thin film is less dependent on the composition of mobility, and the carrier concentration is more dominant than the mobility, and the carrier concentration is increased by increasing the dopant. Contributes predominantly to conductivity. Therefore, in the case of a zinc oxide thin film having a thin film thickness of 20 to 40 nm formed on the substrate, the gallium content is set to a large value of 5.6 to 10.0% in terms of the atomic ratio of Ga / (Zn + Ga). The made zinc oxide thin film exhibits the highest conductivity.

反対に、基板上に形成される酸化亜鉛系薄膜の膜厚がより厚くなると結晶性が改善され、移動度の組成依存性が顕著となって、最も高い導電性は低いガリウム含有量側にシフトする。すなわち、酸化亜鉛系薄膜の膜厚が40nmを超え厚くなって結晶性が良くなると、ドーパント量を多くしてキャリア濃度を増加させると、上述したイオン化不純物散乱の影響で移動度が低下し導電性を悪化させてしまう。従って、ドーパント量が多ければ導電性が高いわけでなく、これ等の影響がでない最適ドーパント量が存在する。   On the other hand, as the thickness of the zinc oxide-based thin film formed on the substrate increases, the crystallinity improves, the composition dependence of mobility becomes significant, and the highest conductivity shifts to the lower gallium content side. To do. That is, when the film thickness of the zinc oxide-based thin film exceeds 40 nm and the crystallinity is improved, increasing the amount of dopant and increasing the carrier concentration lowers the mobility due to the influence of the ionized impurity scattering described above. Will worsen. Therefore, if the amount of dopant is large, the conductivity is not high, and there is an optimum amount of dopant that does not have these effects.

上述した理由から、最も基板側に成膜される酸化亜鉛系透明導電膜については、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.6〜10.0%に設定されかつ膜厚が20〜40nmに設定された酸化亜鉛系薄膜層(1)で構成し、酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系透明導電膜については、上記酸化亜鉛系薄膜層(1)よりガリウム含有量が少ない酸化亜鉛系薄膜層(2)で構成することにより、高い導電性を発揮させることができる。この場合、上記酸化亜鉛系薄膜層(2)については、組成の均一な単一層で構成してもよいし、組成の異なる複数層で構成してもよい。   For the reasons described above, the zinc oxide-based transparent conductive film formed on the most substrate side has a gallium content of 5.6 to 10.0% and a film thickness of Ga / (Zn + Ga) atomic ratio. Is made of a zinc oxide thin film layer (1) set to 20 to 40 nm and is formed on the zinc oxide thin film layer (1), the zinc oxide thin film layer ( 1) By comprising the zinc oxide-based thin film layer (2) having a lower gallium content, high conductivity can be exhibited. In this case, the zinc oxide-based thin film layer (2) may be composed of a single layer having a uniform composition or a plurality of layers having different compositions.

ここで、本発明に係る酸化亜鉛系薄膜層(2)のガリウム含有量は、好ましくはGa/(Zn+Ga)の原子数比で3.5〜5.5%、より好ましくはGa/(Zn+Ga)の原子数比で4.5〜5.5%である。この場合、上記酸化亜鉛系透明導電膜積層体の総膜厚が80nm以上400nm未満の条件で、比抵抗が8.0×10−4Ωcm以下を達成することができる。 Here, the gallium content of the zinc oxide thin film layer (2) according to the present invention is preferably 3.5 to 5.5% in terms of the atomic ratio of Ga / (Zn + Ga), and more preferably Ga / (Zn + Ga). The atomic ratio is 4.5 to 5.5%. In this case, the specific resistance can be 8.0 × 10 −4 Ωcm or less under the condition that the total thickness of the zinc oxide-based transparent conductive film laminate is 80 nm or more and less than 400 nm.

また、本発明に係る酸化亜鉛系薄膜層(2)が組成の異なる複数層で構成される場合、酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)については、図2に示すようにGa/(Zn+Ga)の原子数比でガリウム含有量を4.5〜5.5%に設定した酸化亜鉛系薄膜層(2−1)と、この酸化亜鉛系薄膜層(2−1)上に成膜しかつGa/(Zn+Ga)の原子数比でガリウム含有量を3.5〜4.4%に設定した酸化亜鉛系薄膜層(2−2)とで構成することが好ましい。この場合、酸化亜鉛系透明導電膜積層体の総膜厚が400nm以上の条件で、比抵抗が3.5×10−4Ωcm以下の低抵抗膜を実現することができる。 When the zinc oxide thin film layer (2) according to the present invention is composed of a plurality of layers having different compositions, the zinc oxide thin film layer (2) formed on the zinc oxide thin film layer (1) 2, the zinc oxide thin film layer (2-1) in which the gallium content is set to 4.5 to 5.5% by the atomic ratio of Ga / (Zn + Ga), and this zinc oxide thin film layer (2-1) and a zinc oxide thin film layer (2-2) in which the gallium content is set to 3.5 to 4.4% by atomic ratio of Ga / (Zn + Ga). It is preferable. In this case, a low resistance film having a specific resistance of 3.5 × 10 −4 Ωcm or less can be realized under the condition that the total thickness of the zinc oxide-based transparent conductive film laminate is 400 nm or more.

次に、本発明の酸化亜鉛系透明導電膜は、上述したようにスパッタリング法若しくはイオンプレーティング法により成膜されるが、スパッタリング法は、基板への密着性が高い緻密な薄膜を高速かつ大面積で均一に成膜できるため工業的に有利で好ましく、特に、直流(DC)スパッタリング法は成膜速度が速いためより好ましい。また、成膜中の基板温度が100〜500℃において、上述した酸化亜鉛系薄膜の良導電性(最低比抵抗)における膜厚依存性が顕著となるため、成膜中の基板温度を100〜500℃に設定してスパッタリング成膜すると本発明の効果が顕著となる。   Next, the zinc oxide-based transparent conductive film of the present invention is formed by sputtering or ion plating as described above. The sputtering method is used to form a dense thin film with high adhesion to a substrate at high speed and large size. It is industrially advantageous because it can form a film uniformly in area, and the direct current (DC) sputtering method is particularly preferable because the film forming speed is high. In addition, when the substrate temperature during film formation is 100 to 500 ° C., the film thickness dependency of the above-described good conductivity (minimum specific resistance) of the zinc oxide-based thin film becomes significant. When the sputtering film formation is performed at 500 ° C., the effect of the present invention becomes remarkable.

本発明に係る酸化亜鉛系透明導電膜をスパッタリング法により成膜するには、スパッタリングガスとしてアルゴン等の不活性ガスを用い、かつ、上述したように直流(DC)スパッタリングを用いることが好ましい。また、スパッタリング装置内は、0.1〜1Pa、特に0.2〜0.8Paの圧力条件でスパッタリングすることができ、各層の酸化亜鉛系薄膜を形成するための原料となるターゲットは、その薄膜とほぼ同一組成の酸化亜鉛系焼結体を用いることが導電性の高い薄膜を再現性良く得るためには有効である。本発明においては、例えば、5×10−5Pa以下まで真空排気後、純Arガスを導入し、ガス圧を0.2〜0.8Paとし、0.55〜4.7W/cmの投入直流電力密度(直流投入電力/ターゲットの面積)を印加して直流プラズマを発生させ、プリスパッタを実施することができる。このプリスパッタリングを5〜30分間行った後、必要により基板位置を修正したうえでスパッタリングすることが好ましい。 In order to form the zinc oxide-based transparent conductive film according to the present invention by sputtering, it is preferable to use an inert gas such as argon as a sputtering gas and to use direct current (DC) sputtering as described above. Further, the sputtering apparatus can perform sputtering under a pressure condition of 0.1 to 1 Pa, particularly 0.2 to 0.8 Pa, and the target as a raw material for forming the zinc oxide thin film of each layer is the thin film. In order to obtain a highly conductive thin film with good reproducibility, it is effective to use a zinc oxide-based sintered body having substantially the same composition. In the present invention, for example, after evacuating to 5 × 10 −5 Pa or less, pure Ar gas is introduced, the gas pressure is set to 0.2 to 0.8 Pa, and 0.55 to 4.7 W / cm 2 is charged. Pre-sputtering can be performed by applying DC power density (DC input power / target area) to generate DC plasma. After performing this pre-sputtering for 5 to 30 minutes, it is preferable to perform sputtering after correcting the substrate position if necessary.

また、本発明に係る酸化亜鉛系透明導電膜をイオンプレーティング法で成膜することもできる。この場合の原料はタブレット(ペレットとも呼ぶ)と呼ばれる焼結体であるが、スパッタリングの場合と同様、各層の組成と同じ組成の酸化亜鉛系酸化物焼結体からなる。イオンプレーティング法では、蒸発源となるタブレットに、電子ビームやアーク放電による熱等を照射すると、照射された部分は局所的に高温になり、蒸発粒子が蒸発して基板に堆積される。このとき、蒸発粒子を電子ビームやアーク放電によってイオン化する。イオン化する方法には、様々な方法があるが、プラズマ発生装置(プラズマガン)を用いた高密度プラズマアシスト蒸着法(HDPE法)は、良質な透明導電膜の形成に適している。この方法では、プラズマガンを用いたアーク放電を利用する。プラズマガンに内蔵されたカソードと蒸発源の坩堝(アノード)との間でアーク放電が維持される。カソードから放出される電子を磁場偏向により坩堝内に導入して、坩堝に仕込まれたタブレットの局部に集中して照射する。この電子ビームによって、局所的に高温となった部分から、蒸発粒子が蒸発して基板に堆積される。気化した蒸発粒子や反応ガスとして導入されたOガスは、このプラズマ内でイオン化ならびに活性化されるため、導電性に優れた良質な薄膜を形成することができる。 Further, the zinc oxide based transparent conductive film according to the present invention can be formed by an ion plating method. The raw material in this case is a sintered body called a tablet (also referred to as a pellet), but is made of a zinc oxide-based oxide sintered body having the same composition as the composition of each layer, as in the case of sputtering. In the ion plating method, when a tablet as an evaporation source is irradiated with heat or the like by an electron beam or arc discharge, the irradiated portion becomes locally high in temperature, and evaporated particles are evaporated and deposited on the substrate. At this time, the evaporated particles are ionized by an electron beam or arc discharge. There are various ionization methods. The high-density plasma-assisted deposition method (HDPE method) using a plasma generator (plasma gun) is suitable for forming a high-quality transparent conductive film. In this method, arc discharge using a plasma gun is used. Arc discharge is maintained between the cathode built in the plasma gun and the crucible (anode) of the evaporation source. Electrons emitted from the cathode are introduced into the crucible by magnetic field deflection, and concentrated and irradiated on the local part of the tablet charged in the crucible. By this electron beam, the evaporated particles are evaporated and deposited on the substrate from the portion where the temperature is locally high. Since the vaporized evaporated particles and the O 2 gas introduced as a reaction gas are ionized and activated in the plasma, a high-quality thin film having excellent conductivity can be formed.

次に、スパッタリング法若しくはイオンプレーティング法により成膜した酸化亜鉛系薄膜の上述した傾向はガラス基板や樹脂基板に限られたものでなく、金属、セラミックス、単結晶の基板においても同様であり、更に、これ等表面に酸化亜鉛以外の非晶質あるいは結晶質の酸化物薄膜若しくは金属薄膜が形成された基板においても同様である。酸化亜鉛系薄膜層(1)を成膜する基板表面が酸化亜鉛と同じ結晶構造(ウルツ鉱型構造)の結晶性材料で覆われていなければ同様に適用でき、上述のような効果を発揮する。   Next, the above-mentioned tendency of the zinc oxide-based thin film formed by sputtering or ion plating is not limited to glass substrates and resin substrates, and the same applies to metals, ceramics, and single crystal substrates. Further, the same applies to a substrate on which an amorphous or crystalline oxide thin film or metal thin film other than zinc oxide is formed. If the surface of the substrate on which the zinc oxide-based thin film layer (1) is formed is not covered with a crystalline material having the same crystal structure as that of zinc oxide (wurtzite structure), it can be applied in the same manner and exhibits the above-described effects. .

上記ガラス基板には石英基板も含まれ、樹脂基板にはポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエーテルサルフォン(PES)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)等が含まれるが、基板がこれ等に限定されるわけではない。   The glass substrate includes a quartz substrate, and the resin substrate includes polycarbonate (PC), polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), polyimide (PI), and the like. However, the substrate is not limited thereto.

2.透明導電性基板
本発明に係る透明導電性基板は、ガラス基板若しくは樹脂基板とこれ等基板上に成膜されかつ導電性が改善された上述の酸化亜鉛系透明導電膜積層体とで構成される。上記酸化亜鉛系透明導電膜はスパッタリング法若しくはイオンプレーティング法により成膜されるが、特に、スパッタリング法で基板温度が100〜500℃において形成されることが好ましい。また、本発明に係る透明導電性基板は、太陽電池やタッチパネル、液晶素子、プラズマディスプレイ、EL素子等の部材として有効に利用することができる。
2. Transparent conductive substrate The transparent conductive substrate according to the present invention is composed of a glass substrate or a resin substrate and the above-described zinc oxide-based transparent conductive film laminate formed on these substrates and having improved conductivity. . Although the said zinc oxide type transparent conductive film is formed into a film by sputtering method or an ion plating method, it is preferable to form especially at substrate temperatures of 100-500 degreeC by sputtering method. The transparent conductive substrate according to the present invention can be effectively used as a member for solar cells, touch panels, liquid crystal elements, plasma displays, EL elements and the like.

3.太陽電池等のデバイス
本発明に係るデバイスとしての太陽電池は、上記酸化亜鉛系透明導電膜積層体が透明電極として組み込まれて成る光電変換素子である。太陽電池素子の構造は、特に限定されず、PN接合型、PIN接合型等が挙げられる。
3. Devices such as solar cells A solar cell as a device according to the present invention is a photoelectric conversion element in which the zinc oxide-based transparent conductive film laminate is incorporated as a transparent electrode. The structure of the solar cell element is not particularly limited, and examples thereof include a PN junction type and a PIN junction type.

PN接合型の太陽電池素子は、例えば厚み0.2〜0.5mm程度、大きさ180mm角程度の単結晶や多結晶のシリコン基板を用いることができ、素子のシリコン基板内部にはボロン等のP型不純物を多く含んだP層とリン等のN型不純物を多く含んだN層が接したPN接合が形成される。また、シリコン基板の代わりにガラス板、樹脂板、樹脂フィルム等の透明基板も使用される。本発明においては、透明基板であることが好ましい。その場合、基板に上記酸化亜鉛系透明導電膜積層体を電極として形成した後、非晶質あるいは多結晶のシリコンが積層される。非晶質シリコンでは、PN接合間に絶縁層(I層)が介在したPIN接合とされる。   As the PN junction type solar cell element, for example, a monocrystalline or polycrystalline silicon substrate having a thickness of about 0.2 to 0.5 mm and a size of about 180 mm square can be used. A PN junction is formed in which the P layer containing a large amount of P-type impurities contacts the N layer containing a large amount of N-type impurities such as phosphorus. A transparent substrate such as a glass plate, a resin plate, or a resin film is also used instead of the silicon substrate. In the present invention, a transparent substrate is preferable. In that case, after forming the zinc oxide based transparent conductive film laminate on the substrate as an electrode, amorphous or polycrystalline silicon is laminated. Amorphous silicon is a PIN junction in which an insulating layer (I layer) is interposed between PN junctions.

いずれの型の太陽電池素子でも受光面側および裏面側に、銀ペーストを用いたスクリーンプリント法等によりバスバー電極とフィンガー電極がそれぞれ形成され、またこれ等の電極表面は、その保護と接続タブを取り付けやすくするために、そのほぼ全面に亘りハンダコートされる。尚、太陽電池素子がシリコン基板の場合は、受光面側に、ガラス板、樹脂板、樹脂フィルム等の透明な保護材が設けられる。   In any type of solar cell element, a bus bar electrode and a finger electrode are formed on the light receiving surface side and the back surface side by a screen printing method using a silver paste, respectively, and these electrode surfaces have protection and connection tabs. In order to facilitate the mounting, the entire surface is solder coated. When the solar cell element is a silicon substrate, a transparent protective material such as a glass plate, a resin plate, or a resin film is provided on the light receiving surface side.

上記太陽電池に組み込まれる酸化亜鉛系透明導電膜積層体の厚さは、特に制限されるわけではなく、材料の組成等にもよるが500〜1500nm、特に800〜1300nmであることが望ましい。本発明に係る酸化亜鉛系透明導電膜積層体は、低抵抗であり、350nmの紫外線から2500nmの赤外線までを含む太陽光の透過率が高いため、太陽光の光エネルギーを極めて有効に電気エネルギーに変換することができる。   The thickness of the zinc oxide-based transparent conductive film laminate incorporated in the solar cell is not particularly limited, and is preferably 500 to 1500 nm, particularly preferably 800 to 1300 nm, although it depends on the composition of the material. The zinc oxide-based transparent conductive film laminate according to the present invention has low resistance and high transmittance of sunlight including from 350 nm ultraviolet rays to 2500 nm infrared rays, so that the light energy of sunlight can be converted to electrical energy very effectively. Can be converted.

尚、本発明に係る酸化亜鉛系透明導電膜積層体は、太陽電池以外に、タッチパネルやフラットパネルディスプレイ(LCD、PDP、EL等)や発光デバイス(LED、LD等)の透明電極として適用することができる。   The zinc oxide-based transparent conductive film laminate according to the present invention is applied as a transparent electrode of a touch panel, a flat panel display (LCD, PDP, EL, etc.) and a light emitting device (LED, LD, etc.) in addition to a solar battery. Can do.

次に、実施例により本発明を具体的に説明するが、本発明はこれ等実施例の技術内容に当然のことながら限定されるものではない。
[実施例1〜5]
図1に示す積層構造の酸化亜鉛系透明導電膜積層体を直流スパッタリング法で以下の手順・条件で作製した。薄膜を形成するための原料であるスパッタリングターゲットのサイズは直径152mmの円形状であり、酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2)は、各薄膜層と同じ組成[Ga/(Zn+Ga)の原子数比]のガリウム含有酸化亜鉛系焼結体ターゲットを用いてそれぞれ個別に成膜し、図1に示す積層構造の酸化亜鉛系透明導電膜積層体を作製した。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is naturally not limited to the technical content of these Examples.
[Examples 1 to 5]
A zinc oxide-based transparent conductive film laminate having the laminated structure shown in FIG. 1 was produced by the direct current sputtering method according to the following procedures and conditions. The sputtering target, which is a raw material for forming the thin film, has a circular shape with a diameter of 152 mm. The zinc oxide thin film layer (1) and the zinc oxide thin film layer (2) have the same composition [Ga / Each film was individually formed using a gallium-containing zinc oxide-based sintered body target with a (Zn + Ga) atomic ratio] to prepare a zinc oxide-based transparent conductive film multilayer body having a multilayer structure shown in FIG.

まず、直流電源を装備した直流マグネトロンスパッタリング装置の非磁性体ターゲット用カソードに、上記酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2)の組成に対応した互いに異なる組成を有するスパッタリングターゲットを取り付けた。基板には無アルカリのガラス基板(コーニング♯7059)を用い、ターゲット−基板間の距離を60mmに固定した。   First, a sputtering target having a different composition corresponding to the composition of the zinc oxide-based thin film layer (1) and the zinc oxide-based thin film layer (2) on the cathode for a non-magnetic material target of a DC magnetron sputtering apparatus equipped with a DC power source. Attached. An alkali-free glass substrate (Corning # 7059) was used as the substrate, and the distance between the target and the substrate was fixed to 60 mm.

そして、5×10−5Pa以下まで真空排気後、純Arガスを導入し、ガス圧を0.3Paとし、直流電力200Wを印加して直流プラズマを発生させ、プリスパッタを実施した。十分なプリスパッタリング後、上記スパッタリングターゲットの中心(非エロージョン部)直上に静止して基板を配置し、基板温度200℃にて直流スパッタリング成膜を実施した。この条件で得られる各々の酸化亜鉛系薄膜は、ターゲットの組成[Ga/(Zn+Ga)の原子数比]とほぼ同じであることが得られた薄膜のICP発光分析法による定量分析から確認された。各層の膜厚は、予め測定した成膜速度を元に成膜時間で制御し、異なる組成を有するスパッタリングターゲットの直上に基板を順次移動させて、上記酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2)を所定の膜厚だけ順次成膜し、図1に示す積層構造の実施例1〜5に係る酸化亜鉛系透明導電膜積層体を得た。 Then, after evacuating to 5 × 10 −5 Pa or less, pure Ar gas was introduced, the gas pressure was set to 0.3 Pa, DC power was applied to generate 200 W, and pre-sputtering was performed. After sufficient pre-sputtering, the substrate was placed stationary immediately above the center (non-erosion part) of the sputtering target, and DC sputtering film formation was performed at a substrate temperature of 200 ° C. Each zinc oxide-based thin film obtained under these conditions was confirmed by quantitative analysis by ICP emission spectrometry of the thin film obtained to be almost the same as the target composition [Ga / (Zn + Ga) atomic ratio]. . The film thickness of each layer is controlled by the film formation time based on the film formation rate measured in advance, and the substrate is sequentially moved immediately above the sputtering target having a different composition, so that the zinc oxide-based thin film layer (1) and the zinc oxide are moved. The system thin film layer (2) was sequentially formed by a predetermined film thickness to obtain a zinc oxide based transparent conductive film laminate according to Examples 1 to 5 having a laminated structure shown in FIG.

そして、得られた各実施例に係る酸化亜鉛系透明導電膜積層体の評価は以下のように実施した。   And evaluation of the obtained zinc oxide type transparent conductive film laminated body concerning each Example was implemented as follows.

まず、各実施例に係る酸化亜鉛系透明導電膜積層体の総膜厚はテンコール社製の表面粗さ計で測定した。酸化亜鉛系透明導電膜積層体の比抵抗は四探針法によって測定した表面抵抗と総膜厚の積から算出した。また、酸化亜鉛系透明導電膜積層体の光学特性は日立製作所社製の分光光度計で測定し、酸化亜鉛系透明導電膜積層体の生成相はパナリティカル(PANalytical)社製のX線回折測定装置によって同定した。   First, the total film thickness of the zinc oxide-based transparent conductive film laminate according to each example was measured with a surface roughness meter manufactured by Tencor. The specific resistance of the zinc oxide-based transparent conductive film laminate was calculated from the product of the surface resistance measured by the four probe method and the total film thickness. The optical properties of the zinc oxide-based transparent conductive film laminate were measured with a spectrophotometer made by Hitachi, Ltd., and the generated phase of the zinc oxide-based transparent conductive film laminate was X-ray diffraction measurement made by PANalytical. Identified by instrument.

上記評価の結果、各実施例に係る酸化亜鉛系透明導電膜積層体は、膜厚が20〜40nmでGa/(Zn+Ga)の原子数比でガリウム含有量が5.6〜10.0%である酸化亜鉛系薄膜層(1)と、ガリウム含有量が上記酸化亜鉛系薄膜層(1)よりも少ない酸化亜鉛系薄膜層(2)が順次成膜された総膜厚80nmの透明導電膜積層体であることが確認された。   As a result of the evaluation, the zinc oxide-based transparent conductive film laminate according to each example has a film thickness of 20 to 40 nm and an atomic ratio of Ga / (Zn + Ga) with a gallium content of 5.6 to 10.0%. A transparent conductive film laminate having a total film thickness of 80 nm in which a certain zinc oxide thin film layer (1) and a zinc oxide thin film layer (2) having a gallium content less than the zinc oxide thin film layer (1) are sequentially formed. It was confirmed to be a body.

尚、実施例1〜5に係る酸化亜鉛系透明導電膜積層体の酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2)の各ガリウム含有量と膜厚、および、各酸化亜鉛系透明導電膜積層体の総膜厚と比抵抗を以下の表1にそれぞれ示す。   In addition, each gallium content and film thickness of the zinc oxide-based thin film layer (1) and the zinc oxide-based thin film layer (2) of the zinc oxide-based transparent conductive film laminate according to Examples 1 to 5, and each zinc oxide-based film The total film thickness and specific resistance of the transparent conductive film laminate are shown in Table 1 below.

Figure 0004670877
[比較例1〜6]
基板の種類や成膜条件は実施例1〜5と同様にして、図3に示す単層膜構造の比較例1〜4に係る酸化亜鉛系透明導電膜を作製した。
Figure 0004670877
[Comparative Examples 1-6]
The type of substrate and film forming conditions were the same as in Examples 1 to 5, and zinc oxide-based transparent conductive films according to Comparative Examples 1 to 4 having a single-layer film structure shown in FIG.

すなわち、実施例1〜5における上記酸化亜鉛系薄膜層(1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.1%かつ膜厚が80nmの酸化亜鉛系薄膜層(2)で構成された図3に示す単層膜構造の比較例1に係る酸化亜鉛系透明導電膜を作製し、この比較例1と同様にして、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.9%かつ膜厚が80nmの酸化亜鉛系薄膜層(2)で構成された比較例2に係る酸化亜鉛系透明導電膜と、Ga/(Zn+Ga)の原子数比でガリウム含有量が7.3%かつ膜厚が80nmの酸化亜鉛系薄膜層(2)で構成された比較例3に係る酸化亜鉛系透明導電膜と、Ga/(Zn+Ga)の原子数比でガリウム含有量が10.0%かつ膜厚が80nmの酸化亜鉛系薄膜層(2)で構成された比較例4に係る酸化亜鉛系透明導電膜をそれぞれ作製した。   That is, the zinc oxide thin film layer (1) in Examples 1 to 5 is not included, the zinc oxide thin film layer having a Ga / (Zn + Ga) atomic ratio of 5.1% and a thickness of 80 nm. A zinc oxide-based transparent conductive film according to Comparative Example 1 having the single-layer film structure shown in FIG. 3 configured in (2) was prepared, and in the same manner as Comparative Example 1, the atomic ratio of Ga / (Zn + Ga) was A zinc oxide-based transparent conductive film according to Comparative Example 2 composed of a zinc oxide-based thin film layer (2) having a gallium content of 5.9% and a film thickness of 80 nm, and gallium in an atomic ratio of Ga / (Zn + Ga) A zinc oxide-based transparent conductive film according to Comparative Example 3 composed of a zinc oxide-based thin film layer (2) having a content of 7.3% and a film thickness of 80 nm, and containing gallium in an atomic ratio of Ga / (Zn + Ga) A zinc oxide thin film layer (2) having an amount of 10.0% and a film thickness of 80 nm. It made a comparative Example 4 zinc oxide transparent conductive film according to a were produced.

また、図1に示す積層構造の酸化亜鉛系透明導電膜積層体であって、実施例1〜5における酸化亜鉛系薄膜層(1)の膜厚条件が「20〜40nm」範囲外に設定された比較例5〜6に係る酸化亜鉛系透明導電膜積層体を実施例1〜5と同様の方法で作製した。   Moreover, it is a zinc oxide type transparent conductive film laminated body of the laminated structure shown in FIG. 1, Comprising: The film thickness conditions of the zinc oxide type thin film layer (1) in Examples 1-5 are set out of the "20-40 nm" range. The zinc oxide-based transparent conductive film laminates according to Comparative Examples 5 to 6 were produced in the same manner as in Examples 1 to 5.

すなわち、比較例5に係る酸化亜鉛系透明導電膜積層体は、膜厚が10nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、ガリウム含有量が上記酸化亜鉛系薄膜層(1)よりも少ない酸化亜鉛系薄膜層(2)が順次成膜された総膜厚80nmの積層体で構成され、比較例6に係る酸化亜鉛系透明導電膜積層体は、膜厚が50nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、ガリウム含有量が酸化亜鉛系薄膜層(1)よりも少ない酸化亜鉛系薄膜層(2)が順次成膜された総膜厚80nmの積層体で構成されている。   That is, the zinc oxide-based transparent conductive film laminate according to Comparative Example 5 has a zinc oxide-based thin film layer (1) having a film thickness of 10 nm and a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3%. And a zinc oxide-based thin film layer (2) having a gallium content less than that of the zinc oxide-based thin film layer (1). The transparent transparent conductive film laminate includes a zinc oxide thin film layer (1) having a film thickness of 50 nm and an atomic ratio of Ga / (Zn + Ga) of gallium content of 7.3%, and a gallium content of zinc oxide. A zinc oxide-based thin film layer (2) fewer than the thin film layer (1) is sequentially formed to form a laminate having a total thickness of 80 nm.

そして、比較例1〜6の膜構成と特性評価結果を上記表1に示した。   The film configurations and characteristic evaluation results of Comparative Examples 1 to 6 are shown in Table 1 above.

尚、比較例1〜4に係る酸化亜鉛系透明導電膜の膜厚および比較例5〜6に係る酸化亜鉛系透明導電膜積層体の総膜厚については、成膜速度と成膜時間で制御し各層の目標膜厚の総和と一致させた。また、各酸化亜鉛系透明導電膜の生成相を上述したX線回折測定によって同定したところ、全て六方晶のウルツ鉱構造をとる酸化亜鉛相のみによって構成されていた。この六方晶のウルツ鉱構造をとる酸化亜鉛相の回折ピークはc面(002)反射によるもののみが観察され、c軸配向の薄膜であった。   In addition, about the film thickness of the zinc oxide type transparent conductive film which concerns on Comparative Examples 1-4 and the total film thickness of the zinc oxide type transparent conductive film laminated body which concerns on Comparative Examples 5-6, it controls by the film-forming speed | rate and film-forming time. The total target film thickness of each layer was matched. Moreover, when the production | generation phase of each zinc oxide type transparent conductive film was identified by the X-ray diffraction measurement mentioned above, all were comprised only by the zinc oxide phase which has a hexagonal wurtzite structure. The diffraction peak of the zinc oxide phase having the hexagonal wurtzite structure was only observed due to c-plane (002) reflection, and was a c-axis oriented thin film.

また、比較例1〜4に係る酸化亜鉛系透明導電膜と実施例1〜5および比較例5〜6に係る酸化亜鉛系透明導電膜積層体の可視域(波長380〜780nm)の平均透過率は基板を含めて80%以上であり、可視透明度では共に十分な特性が得られていた。   Moreover, the average transmittance | permeability of the visible region (wavelength 380-780 nm) of the zinc oxide type transparent conductive film concerning Comparative Examples 1-4 and the zinc oxide type transparent conductive film laminated body concerning Examples 1-5 and Comparative Examples 5-6. Was 80% or more including the substrate, and sufficient characteristics were obtained in both visible transparency.

しかし、表1に示された比抵抗に着目すると、実施例1〜5に係る酸化亜鉛系透明導電膜積層体においては710μΩcm(実施例1)〜790μΩcm(実施例3と5)であるのに対し、比較例1〜4に係る酸化亜鉛系透明導電膜および比較例5〜6に酸化亜鉛系透明導電膜積層体においては848μΩcm(比較例5)〜2532μΩcm(比較例4)であり、比較例に較べて各実施例に係る酸化亜鉛系透明導電膜積層体の導電性が改善されていることが確認される。
[実施例6、比較例7〜8]
実施例1〜5と同様の方法により、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が170nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が5.5%である酸化亜鉛系薄膜層(2)が順次成膜された総膜厚200nmの実施例6に係る酸化亜鉛系透明導電膜積層体を作製した。
However, paying attention to the specific resistance shown in Table 1, in the zinc oxide-based transparent conductive film laminates according to Examples 1 to 5, although they are 710 μΩcm (Example 1) to 790 μΩcm (Examples 3 and 5), On the other hand, in the zinc oxide-based transparent conductive film according to Comparative Examples 1 to 4 and Comparative Examples 5 to 6 in the zinc oxide-based transparent conductive film laminate, it is 848 μΩcm (Comparative Example 5) to 2532 μΩcm (Comparative Example 4). It is confirmed that the conductivity of the zinc oxide-based transparent conductive film laminate according to each example is improved as compared with the above.
[Example 6, Comparative Examples 7-8]
In the same manner as in Examples 1 to 5, a zinc oxide thin film layer (1) having a film thickness of 30 nm and a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3%, and a film thickness of 170 nm In addition, a zinc oxide-based transparent conductive film according to Example 6 having a total film thickness of 200 nm on which zinc oxide-based thin film layers (2) each having a Ga / (Zn + Ga) atomic ratio and a gallium content of 5.5% were sequentially formed. A film laminate was prepared.

また、比較例1〜4と同様の方法により、実施例1〜5における上記酸化亜鉛系薄膜層(1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.5%かつ膜厚が200nmの酸化亜鉛系薄膜層(2)で構成された図3に示す単層膜構造の比較例7に係る酸化亜鉛系透明導電膜を作製し、この比較例7と同様にして、上記酸化亜鉛系薄膜層(1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が7.3%かつ膜厚が200nmの酸化亜鉛系薄膜層(2)で構成された図3に示す単層膜構造の比較例8に係る酸化亜鉛系透明導電膜を作製した。   Moreover, by the method similar to Comparative Examples 1-4, the said zinc oxide type thin film layer (1) in Examples 1-5 is not included, but gallium content is 5.5% by the atomic ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film according to Comparative Example 7 having a single-layer film structure shown in FIG. 3 composed of a zinc oxide-based thin film layer (2) having a film thickness of 200 nm was prepared. The zinc oxide thin film layer (1) does not include the zinc oxide thin film layer (2) having a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3% and a film thickness of 200 nm. A zinc oxide-based transparent conductive film according to Comparative Example 8 having a single-layer film structure shown in FIG. 3 was produced.

そして、実施例6、比較例7〜8の膜構成と特性評価の結果を上記表1にそれぞれ示す。   And the film | membrane structure of Example 6 and Comparative Examples 7-8 and the result of characteristic evaluation are shown in the said Table 1, respectively.

比較例7〜8に係る酸化亜鉛系透明導電膜の膜厚および実施例6に係る酸化亜鉛系透明導電膜積層体の総膜厚については、成膜速度と成膜時間で制御し各層の目標膜厚の総和と一致させた。また、各酸化亜鉛系透明導電膜の生成相を上述したX線回折測定によって同定したところ、全て六方晶のウルツ鉱構造をとる酸化亜鉛相のみによって構成されていた。この六方晶のウルツ鉱構造をとる酸化亜鉛相の回折ピークはc面(002)反射によるもののみが観察され、c軸配向の薄膜であった。また、比較例7〜8に係る酸化亜鉛系透明導電膜および実施例6に係る酸化亜鉛系透明導電膜積層体の可視域(波長380〜780nm)の平均透過率は基板を含めて80%以上であり、可視透明度では十分な特性が得られていた。   About the film thickness of the zinc oxide type transparent conductive film which concerns on Comparative Examples 7-8, and the total film thickness of the zinc oxide type transparent conductive film laminated body which concerns on Example 6, it controls by the film-forming speed | rate and film-forming time, and the target of each layer The total film thickness was matched. Moreover, when the production | generation phase of each zinc oxide type transparent conductive film was identified by the X-ray diffraction measurement mentioned above, all were comprised only by the zinc oxide phase which has a hexagonal wurtzite structure. The diffraction peak of the zinc oxide phase having the hexagonal wurtzite structure was only observed due to c-plane (002) reflection, and was a c-axis oriented thin film. Moreover, the average transmittance | permeability of visible region (wavelength 380-780 nm) of the zinc oxide type transparent conductive film which concerns on Comparative Examples 7-8 and the zinc oxide type transparent conductive film laminated body which concerns on Example 6 is 80% or more including a board | substrate. Thus, sufficient characteristics were obtained with visible transparency.

しかし、表1に示された比抵抗に着目すると、実施例6に係る酸化亜鉛系透明導電膜積層体においては575μΩcmであるのに対し、比較例7〜8に係る酸化亜鉛系透明導電膜においては650μΩcm(比較例7)〜950μΩcm(比較例8)であり、比較例に較べて実施例6に係る酸化亜鉛系透明導電膜積層体の導電性が改善されていることが確認される。
[実施例7、比較例9〜10]
実施例6と同様の方法により、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が350nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が4.5%である酸化亜鉛系薄膜層(2)が順次成膜された総膜厚380nmの実施例7に係る酸化亜鉛系透明導電膜積層体を作製した。
However, when focusing on the specific resistance shown in Table 1, in the zinc oxide-based transparent conductive film laminate according to Example 6, it is 575 μΩcm, whereas in the zinc oxide-based transparent conductive film according to Comparative Examples 7-8, Is 650 μΩcm (Comparative Example 7) to 950 μΩcm (Comparative Example 8), and it is confirmed that the conductivity of the zinc oxide-based transparent conductive film laminate according to Example 6 is improved as compared with the comparative example.
[Example 7, Comparative Examples 9 to 10]
In the same manner as in Example 6, a zinc oxide thin film layer (1) having a film thickness of 30 nm and a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3%, a film thickness of 350 nm and Ga Zinc oxide-based transparent conductive film laminate according to Example 7 having a total film thickness of 380 nm, on which the zinc oxide-based thin film layer (2) having a gallium content of 4.5% in the atomic ratio of / (Zn + Ga) was sequentially formed The body was made.

また、比較例7〜8と同様の方法により、実施例6における酸化亜鉛系薄膜層(1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が4.5%かつ膜厚が380nmの酸化亜鉛系薄膜層(2)で構成された図3に示す単層膜構造の比較例9に係る酸化亜鉛系透明導電膜を作製し、同様にして、上記酸化亜鉛系薄膜層(1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が7.3%かつ膜厚が380nmの酸化亜鉛系薄膜層(2)で構成された図3に示す単層膜構造の比較例10に係る酸化亜鉛系透明導電膜を作製した。   Further, by the same method as in Comparative Examples 7 to 8, the zinc oxide thin film layer (1) in Example 6 was not included, the gallium content was 4.5% and the film thickness was Ga / (Zn + Ga) atomic ratio. A zinc oxide-based transparent conductive film according to Comparative Example 9 having a single-layer film structure shown in FIG. 3 composed of a zinc oxide-based thin film layer (2) having a thickness of 380 nm is prepared. Similarly, the zinc oxide-based thin film layer ( 1), and a single layer film structure shown in FIG. 3 composed of a zinc oxide thin film layer (2) having a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3% and a film thickness of 380 nm A zinc oxide-based transparent conductive film according to Comparative Example 10 was prepared.

そして、実施例7、比較例9〜10の膜構成と特性評価の結果を上記表1にそれぞれ示す。   And the film | membrane structure of Example 7 and Comparative Examples 9-10 and the result of characteristic evaluation are shown in the said Table 1, respectively.

比較例9〜10に係る酸化亜鉛系透明導電膜の膜厚および実施例7に係る酸化亜鉛系透明導電膜積層体の総膜厚については、成膜速度と成膜時間で制御し各層の目標膜厚の総和と一致させた。また、各酸化亜鉛系透明導電膜の生成相を上述したX線回折測定によって同定したところ、全て六方晶のウルツ鉱構造をとる酸化亜鉛相のみによって構成されていた。この六方晶のウルツ鉱構造をとる酸化亜鉛相の回折ピークはc面(002)反射によるもののみが観察され、c軸配向の薄膜であった。また、比較例9〜10に係る酸化亜鉛系透明導電膜および実施例7に係る酸化亜鉛系透明導電膜積層体の可視域(波長380〜780nm)の平均透過率は基板を含めて80%以上であり、可視透明度では十分な特性が得られていた。   About the film thickness of the zinc oxide-type transparent conductive film which concerns on Comparative Examples 9-10 and the total film thickness of the zinc oxide-type transparent conductive film laminated body which concerns on Example 7, it controls by the film-forming speed | rate and film-forming time, and the target of each layer The total film thickness was matched. Moreover, when the production | generation phase of each zinc oxide type transparent conductive film was identified by the X-ray diffraction measurement mentioned above, all were comprised only by the zinc oxide phase which has a hexagonal wurtzite structure. The diffraction peak of the zinc oxide phase having the hexagonal wurtzite structure was only observed due to c-plane (002) reflection, and was a c-axis oriented thin film. Moreover, the average transmittance | permeability of visible region (wavelength 380-780 nm) of the zinc oxide type transparent conductive film which concerns on Comparative Examples 9-10 and the zinc oxide type transparent conductive film laminated body which concerns on Example 7 is 80% or more including a board | substrate. Thus, sufficient characteristics were obtained with visible transparency.

しかし、表1に示された比抵抗に着目すると、実施例7に係る酸化亜鉛系透明導電膜積層体においては310μΩcmであるのに対し、比較例9〜10に係る酸化亜鉛系透明導電膜においては410μΩcm(比較例9)〜540μΩcm(比較例10)であり、比較例に較べて実施例7に係る酸化亜鉛系透明導電膜積層体の導電性が改善されていることが確認される。
[実施例8〜11、比較例11〜14]
実施例7と同様の方法により、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が350nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が3.5%である酸化亜鉛系薄膜層(2)が順次成膜された総膜厚380nmの実施例8に係る酸化亜鉛系透明導電膜積層体を作製した。
However, when focusing on the specific resistance shown in Table 1, in the zinc oxide-based transparent conductive film laminate according to Example 7, it is 310 μΩcm, whereas in the zinc oxide-based transparent conductive film according to Comparative Examples 9-10, Is 410 μΩcm (Comparative Example 9) to 540 μΩcm (Comparative Example 10), and it is confirmed that the conductivity of the zinc oxide-based transparent conductive film laminate according to Example 7 is improved as compared with the comparative example.
[Examples 8 to 11 and Comparative Examples 11 to 14]
In the same manner as in Example 7, a zinc oxide thin film layer (1) having a film thickness of 30 nm and a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3%, a film thickness of 350 nm and Ga Zinc oxide-based transparent conductive film laminate according to Example 8 having a total film thickness of 380 nm, on which a zinc oxide-based thin film layer (2) having a gallium content of 3.5% with an atomic ratio of / (Zn + Ga) was sequentially formed The body was made.

同様に、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量が3.8%である点を除き上記実施例8と同一である実施例9に係る酸化亜鉛系透明導電膜積層体を作製し、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量が5.1%である点を除き実施例8と同一である実施例10に係る酸化亜鉛系透明導電膜積層体を作製し、また、Ga/(Zn+Ga)の原子数比で上記酸化亜鉛系薄膜層(2)のガリウム含有量が5.5%である点を除き実施例8と同一である実施例11に係る酸化亜鉛系透明導電膜積層体を作製した。   Similarly, the zinc oxide according to Example 9 which is the same as Example 8 except that the gallium content of the zinc oxide thin film layer (2) is 3.8% in terms of the atomic ratio of Ga / (Zn + Ga). A transparent transparent conductive film laminate was manufactured, and the same operation as in Example 8 except that the gallium content of the zinc oxide thin film layer (2) was 5.1% at an atomic ratio of Ga / (Zn + Ga) A zinc oxide-based transparent conductive film laminate according to Example 10 was prepared, and the gallium content of the zinc oxide-based thin film layer (2) was 5.5% at an atomic ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film laminate according to Example 11 that was the same as Example 8 was prepared.

また、また、比較例9〜10と同様の方法により、実施例8における酸化亜鉛系薄膜層(1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が3.5%かつ膜厚が380nmの酸化亜鉛系薄膜層(2)で構成された図3に示す単層膜構造の比較例11に係る酸化亜鉛系透明導電膜を作製した。   Further, by the same method as in Comparative Examples 9 to 10, the zinc oxide thin film layer (1) in Example 8 was not included, and the gallium content was 3.5% in terms of the atomic ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film according to Comparative Example 11 having a single-layer film structure shown in FIG. 3 composed of a zinc oxide-based thin film layer (2) having a film thickness of 380 nm was produced.

同様に、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量が3.8%である点を除き上記比較例11と同一である比較例12に係る酸化亜鉛系透明導電膜を作製し、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量が5.1%である点を除き比較例11と同一である比較例13に係る酸化亜鉛系透明導電膜を作製し、また、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量が5.5%である点を除き上記比較例11と同一である比較例14に係る酸化亜鉛系透明導電膜を作製した。   Similarly, the zinc oxide according to the comparative example 12 which is the same as the comparative example 11 except that the gallium content of the zinc oxide thin film layer (2) is 3.8% in the atomic ratio of Ga / (Zn + Ga). Comparative Example 13 which is the same as Comparative Example 11 except that a GaN-based transparent conductive film is prepared and the gallium content of the zinc oxide-based thin film layer (2) is 5.1% in the atomic ratio of Ga / (Zn + Ga). Comparative Example 11 except that the zinc oxide-based transparent conductive film according to the present invention was prepared, and the gallium content of the zinc oxide-based thin film layer (2) was 5.5% in terms of the atomic ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film according to Comparative Example 14 that is identical to the above was prepared.

そして、実施例8〜11、比較例11〜14の膜構成と特性評価の結果を上記表1にそれぞれ示す。   And the film | membrane structure of Examples 8-11 and Comparative Examples 11-14 and the result of characteristic evaluation are shown in the said Table 1, respectively.

上記表1に示された比抵抗に着目して、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量が同一である実施例8(510μΩcm)と比較例11(580μΩcm)、実施例9(480μΩcm)と比較例12(550μΩcm)、実施例10(280μΩcm)と比較例13(380μΩcm)および実施例11(350μΩcm)と比較例14(450μΩcm)を比較することにより、上記酸化亜鉛系薄膜層(2)と基板との間にその膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)を介在させた実施例8〜11に係る酸化亜鉛系透明導電膜積層体の導電性が、上記酸化亜鉛系薄膜層(1)を有しない比較例11〜14に係る酸化亜鉛系透明導電膜より改善されていることが確認される。   Focusing on the specific resistance shown in Table 1 above, Example 8 (510 μΩcm) and Comparative Example 11 in which the gallium content of the zinc oxide thin film layer (2) is the same at the atomic ratio of Ga / (Zn + Ga) By comparing Example 9 (480 μΩcm), Example 9 (480 μΩcm), Comparative Example 12 (550 μΩcm), Example 10 (280 μΩcm), Comparative Example 13 (380 μΩcm), Example 11 (350 μΩcm), and Comparative Example 14 (450 μΩcm) The zinc oxide thin film layer (1) having a thickness of 30 nm between the zinc oxide thin film layer (2) and the substrate and a Ga / (Zn + Ga) atomic ratio of 7.3%. The conductivity of the zinc oxide-based transparent conductive film laminates according to Examples 8 to 11 interposing the zinc oxide-based transparent conductive film according to Comparative Examples 11 to 14 having no zinc oxide-based thin film layer (1). It is confirmed to be good.

更に、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量のみが相違する実施例7(4.5%、310μΩcm)、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2)のガリウム含有量のみが相違する実施例8(3.5%、510μΩcm)、実施例9(3.8%、480μΩcm)、実施例10(5.1%、280μΩcm)および実施例11(5.5%、350μΩcm)との比較から、上記酸化亜鉛系薄膜層(2)のガリウム含有量を「4.5〜5.5%」に設定したとき(実施例7、実施例10および実施例11)に特に高い導電性を示すことも確認された。
[実施例12〜16、比較例15〜18]
実施例1と同様の条件並びに方法により、酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)が、Ga/(Zn+Ga)の原子数比でガリウム含有量が4.5〜5.5%に設定された酸化亜鉛系薄膜層(2−1)と、この酸化亜鉛系薄膜層(2−1)上に成膜されかつGa/(Zn+Ga)の原子数比でガリウム含有量が3.5〜4.4%に設定された酸化亜鉛系薄膜層(2−2)とで構成された図2に示す積層構造の実施例12〜16に係る酸化亜鉛系透明導電膜積層体を作製した。
Furthermore, Example 7 (4.5%, 310 μΩcm), in which only the gallium content of the zinc oxide thin film layer (2) is different in the atomic ratio of Ga / (Zn + Ga), in the atomic ratio of Ga / (Zn + Ga) Example 8 (3.5%, 510 μΩcm), Example 9 (3.8%, 480 μΩcm), Example 10 (5.1%, 280 μΩcm) differing only in the gallium content of the zinc oxide-based thin film layer (2) ) And Example 11 (5.5%, 350 μΩcm), when the gallium content of the zinc oxide thin film layer (2) is set to “4.5 to 5.5%” (Example 7) Examples 10 and 11) were also confirmed to exhibit particularly high conductivity.
[Examples 12 to 16, Comparative Examples 15 to 18]
The zinc oxide thin film layer (2) formed on the zinc oxide thin film layer (1) under the same conditions and method as in Example 1 has a Ga / (Zn + Ga) atomic ratio and a gallium content of 4 Zinc oxide thin film layer (2-1) set to 0.5 to 5.5%, and an atomic ratio of Ga / (Zn + Ga) formed on the zinc oxide thin film layer (2-1). Zinc oxide based transparent conductors according to Examples 12 to 16 of the laminated structure shown in FIG. 2 composed of the zinc oxide thin film layer (2-2) having a gallium content set to 3.5 to 4.4%. A film laminate was prepared.

すなわち、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が150nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が5.1%である酸化亜鉛系薄膜層(2−1)と、膜厚が280nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が4.0%である酸化亜鉛系薄膜層(2−2)が順次成膜された総膜厚460nmの実施例12に係る酸化亜鉛系透明導電膜積層体を作製した。   That is, a zinc oxide thin film layer (1) having a film thickness of 30 nm and a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3%, and a film thickness of 150 nm and Ga / (Zn + Ga) atomic number Zinc oxide-based thin film layer (2-1) having a gallium content of 5.1% and an oxide having a film thickness of 280 nm and an atomic ratio of Ga / (Zn + Ga) having a gallium content of 4.0% A zinc oxide-based transparent conductive film laminate according to Example 12 having a total film thickness of 460 nm on which the zinc-based thin film layer (2-2) was sequentially formed was produced.

同様に、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が150nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が5.1%である酸化亜鉛系薄膜層(2−1)と、膜厚が280nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が3.5%である酸化亜鉛系薄膜層(2−2)が順次成膜された総膜厚460nmの実施例13に係る酸化亜鉛系透明導電膜積層体、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が150nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が5.1%である酸化亜鉛系薄膜層(2−1)と、膜厚が280nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が4.4%である酸化亜鉛系薄膜層(2−2)が順次成膜された総膜厚460nmの実施例14に係る酸化亜鉛系透明導電膜積層体、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が150nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が4.5%である酸化亜鉛系薄膜層(2−1)と、膜厚が280nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が4.0%である酸化亜鉛系薄膜層(2−2)が順次成膜された総膜厚460nmの実施例15に係る酸化亜鉛系透明導電膜積層体、および、膜厚が30nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が150nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が5.5%である酸化亜鉛系薄膜層(2−1)と、膜厚が280nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が4.0%である酸化亜鉛系薄膜層(2−2)が順次成膜された総膜厚460nmの実施例16に係る酸化亜鉛系透明導電膜積層体をそれぞれ作製した。   Similarly, a zinc oxide-based thin film layer (1) having a film thickness of 30 nm and a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3%, and a film thickness of 150 nm and Ga / (Zn + Ga) atoms A zinc oxide thin film layer (2-1) having a gallium content of 5.1% by number ratio and a gallium content of 3.5% by an atomic ratio of 280 nm and Ga / (Zn + Ga). A zinc oxide-based transparent conductive film laminate according to Example 13 having a total film thickness of 460 nm on which the zinc oxide-based thin film layer (2-2) was sequentially formed, with a film thickness of 30 nm and an atomic ratio of Ga / (Zn + Ga) A zinc oxide thin film layer (1) having a gallium content of 7.3% and a zinc oxide thin film layer having a film thickness of 150 nm and a Ga / (Zn + Ga) atomic ratio of 5.1% gallium content (2-1), the film thickness is 280 nm, and Ga / (Zn + G Zinc oxide-based transparent conductive film laminate according to Example 14 having a total film thickness of 460 nm, in which the zinc oxide-based thin film layer (2-2) having a gallium content of 4.4% in terms of the atomic ratio is sequentially formed A zinc oxide thin film layer (1) having a film thickness of 30 nm and a Ga / (Zn + Ga) atomic ratio of 7.3%, and a film thickness of 150 nm and Ga / (Zn + Ga) atomic ratio Zinc oxide thin film layer (2-1) having a gallium content of 4.5% and zinc oxide having a film thickness of 280 nm and a Ga / (Zn + Ga) atomic ratio of 4.0% gallium. A zinc oxide-based transparent conductive film laminate according to Example 15 having a total film thickness of 460 nm and a film thickness of 30 nm and an atomic ratio of Ga / (Zn + Ga) A zinc oxide thin film layer (1) having a gallium content of 7.3%; A zinc oxide thin film layer (2-1) having a film thickness of 150 nm and an atomic ratio of Ga / (Zn + Ga) and a gallium content of 5.5%, and a film thickness of 280 nm and the number of atoms of Ga / (Zn + Ga) A zinc oxide-based transparent conductive film laminate according to Example 16 having a total film thickness of 460 nm in which a zinc oxide-based thin film layer (2-2) having a gallium content of 4.0% was sequentially formed was prepared. .

また、比較例11〜14と同様の方法により、実施例12における酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2−1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が3.5%かつ膜厚が460nmの酸化亜鉛系薄膜層(2−2)で構成された図3に示す単層膜構造の比較例15に係る酸化亜鉛系透明導電膜を作製した。   Moreover, by the method similar to Comparative Examples 11-14, the zinc oxide type thin film layer (1) and the zinc oxide type thin film layer (2-1) in Example 12 are not included, and the atomic ratio is Ga / (Zn + Ga). A zinc oxide-based transparent conductive film according to Comparative Example 15 having a single-layer film structure shown in FIG. 3 composed of a zinc oxide-based thin film layer (2-2) having a gallium content of 3.5% and a film thickness of 460 nm was produced. did.

同様に、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2−2)のガリウム含有量が4.0%である点を除き上記比較例15と同一である比較例16に係る酸化亜鉛系透明導電膜を作製し、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2−2)のガリウム含有量が4.4%である点を除き比較例15と同一である比較例17に係る酸化亜鉛系透明導電膜を作製し、また、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2−2)のガリウム含有量が5.1%である点を除き上記比較例15と同一である比較例18に係る酸化亜鉛系透明導電膜を作製した。   Similarly, according to Comparative Example 16, which is the same as Comparative Example 15 except that the gallium content of the zinc oxide thin film layer (2-2) is 4.0% in terms of the atomic ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film was prepared, and was the same as Comparative Example 15 except that the gallium content of the zinc oxide-based thin film layer (2-2) was 4.4% at an atomic ratio of Ga / (Zn + Ga). The zinc oxide type transparent conductive film which concerns on a certain comparative example 17 is produced, and the gallium content of a zinc oxide type thin film layer (2-2) is 5.1% by atomic number ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film according to Comparative Example 18 which was the same as Comparative Example 15 was prepared.

そして、実施例12〜16、比較例15〜18の膜構成と特性評価の結果を以下の表2にそれぞれ示す。   And the film | membrane structure of Examples 12-16 and Comparative Examples 15-18 and the result of characteristic evaluation are shown in the following Table 2, respectively.

Figure 0004670877
上記表2に示された比抵抗に着目すると、実施例12〜16に係る酸化亜鉛系透明導電膜積層体においては295μΩcm(実施例12)〜320μΩcm(実施例14)であるのに対し、比較例15〜18に係る酸化亜鉛系透明導電膜においては352μΩcm(比較例16)〜520μΩcm(比較例18)であり、比較例に較べて各実施例に係る酸化亜鉛系透明導電膜積層体の導電性が改善されていることが確認される。
[実施例17、比較例19〜21]
実施例12と同様の条件並びに方法により、膜厚が40nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が7.3%である酸化亜鉛系薄膜層(1)と、膜厚が340nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が5.1%である酸化亜鉛系薄膜層(2−1)と、膜厚が700nmかつGa/(Zn+Ga)の原子数比でガリウム含有量が4.0%である酸化亜鉛系薄膜層(2−2)が順次成膜された総膜厚1080nmの実施例17に係る酸化亜鉛系透明導電膜積層体を作製した。
Figure 0004670877
Focusing on the specific resistance shown in Table 2 above, the zinc oxide-based transparent conductive film laminates according to Examples 12 to 16 have a comparison of 295 μΩcm (Example 12) to 320 μΩcm (Example 14). In the zinc oxide-based transparent conductive film according to Examples 15 to 18, they are 352 μΩcm (Comparative Example 16) to 520 μΩcm (Comparative Example 18), and the conductivity of the zinc oxide-based transparent conductive film laminate according to each example as compared with Comparative Examples. It is confirmed that the sex is improved.
[Example 17, Comparative Examples 19 to 21]
A zinc oxide thin film layer (1) having a film thickness of 40 nm and a Ga / (Zn + Ga) atomic ratio of gallium content of 7.3% and a film thickness of 340 nm under the same conditions and method as in Example 12. And the zinc oxide thin film layer (2-1) whose Ga / (Zn + Ga) atomic ratio is 5.1% and the gallium content is 5.1%, and the film thickness is 700 nm and Ga / (Zn + Ga) atomic ratio contains gallium. A zinc oxide-based transparent conductive film laminate according to Example 17 having a total film thickness of 1080 nm on which the zinc oxide-based thin film layer (2-2) having an amount of 4.0% was sequentially formed was produced.

また、比較例15〜18と同様の方法により、実施例17における酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2−1)を含まず、Ga/(Zn+Ga)の原子数比でガリウム含有量が4.0%かつ膜厚が1080nmの酸化亜鉛系薄膜層(2−2)で構成された図3に示す単層膜構造の比較例19に係る酸化亜鉛系透明導電膜を作製した。   Moreover, by the method similar to Comparative Examples 15-18, the zinc oxide type thin film layer (1) and the zinc oxide type thin film layer (2-1) in Example 17 are not included, and the atomic ratio of Ga / (Zn + Ga) is used. A zinc oxide-based transparent conductive film according to Comparative Example 19 having a single-layer film structure shown in FIG. 3 composed of a zinc oxide-based thin film layer (2-2) having a gallium content of 4.0% and a film thickness of 1080 nm is prepared. did.

同様に、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2−2)のガリウム含有量が5.1%である点を除き上記比較例19と同一である比較例20に係る酸化亜鉛系透明導電膜を作製し、Ga/(Zn+Ga)の原子数比で酸化亜鉛系薄膜層(2−2)のガリウム含有量が7.3%である点を除き比較例19と同一である比較例21に係る酸化亜鉛系透明導電膜を作製した。   Similarly, according to Comparative Example 20, which is the same as Comparative Example 19 except that the gallium content of the zinc oxide-based thin film layer (2-2) is 5.1% at the atomic ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film was prepared, and the same as Comparative Example 19 except that the gallium content of the zinc oxide-based thin film layer (2-2) was 7.3% at an atomic ratio of Ga / (Zn + Ga). A zinc oxide-based transparent conductive film according to a comparative example 21 was produced.

そして、実施例17、比較例19〜21の膜構成と特性評価の結果を上記表2にそれぞれ示す。   And the film | membrane structure of Example 17 and Comparative Examples 19-21 and the result of characteristic evaluation are shown in the said Table 2, respectively.

上記表2に示された比抵抗に着目すると、実施例17に係る酸化亜鉛系透明導電膜積層体においては210μΩcmであるのに対し、総膜厚が同一の比較例19〜21に係る酸化亜鉛系透明導電膜においては279μΩcm(比較例19)〜750μΩcm(比較例21)であり、比較例に較べて実施例に係る酸化亜鉛系透明導電膜積層体の導電性が改善されていることが確認される。
[実施例18、比較例22]
成膜時における基板[無アルカリのガラス基板(コーニング♯7059)]の温度(200℃)が、100℃、300℃、500℃に変更された点を除き実施例1〜17と同様に行って実施例18に係る酸化亜鉛系透明導電膜積層体群を作製した。
Focusing on the specific resistance shown in Table 2 above, the zinc oxide-based transparent conductive film laminate according to Example 17 is 210 μΩcm, whereas the total film thickness is the same as that of Comparative Examples 19-21. It is 279 μΩcm (Comparative Example 19) to 750 μΩcm (Comparative Example 21) in the system transparent conductive film, and it is confirmed that the conductivity of the zinc oxide based transparent conductive film laminate according to the example is improved as compared with the comparative example. Is done.
[Example 18, comparative example 22]
Performed in the same manner as in Examples 1 to 17 except that the temperature (200 ° C.) of the substrate [non-alkali glass substrate (Corning # 7059)] during film formation was changed to 100 ° C., 300 ° C., and 500 ° C. A zinc oxide-based transparent conductive film laminate group according to Example 18 was produced.

また、成膜時における上記温度(200℃)が、100℃、300℃、500℃に変更された点を除き比較例1〜21と同様に行って比較例22に係る酸化亜鉛系透明導電膜群を作製した。   Further, the zinc oxide-based transparent conductive film according to Comparative Example 22 was performed in the same manner as Comparative Examples 1 to 21 except that the temperature (200 ° C.) during film formation was changed to 100 ° C., 300 ° C., and 500 ° C. Groups were made.

そして、得られた実施例18に係る酸化亜鉛系透明導電膜積層体群と比較例22に係る酸化亜鉛系透明導電膜群の比抵抗に着目して調べたところ、実施例1〜17および比較例1〜21と同じ傾向を示すことが確認された。
[実施例19、比較例23]
上記基板[無アルカリのガラス基板(コーニング♯7059)]の種類について、PC(ポリカーボネート)基板、膜厚20nmの酸化シリコン膜が成膜されたPET(ポリエチレンテレフタレート)基板に変更し、かつ、成膜時の基板温度を100℃に変更した点を除き実施例1〜17と同様に行って実施例19に係る酸化亜鉛系透明導電膜積層体群を作製した。
And when it investigated paying attention to the specific resistance of the zinc oxide type transparent conductive film laminated body group which concerns on obtained Example 18, and the zinc oxide type transparent conductive film group which concerns on the comparative example 22, Examples 1-17 and comparison It was confirmed that the same tendency as Examples 1-21 was shown.
[Example 19, comparative example 23]
The type of the above substrate [non-alkali glass substrate (Corning # 7059)] was changed to a PC (polycarbonate) substrate and a PET (polyethylene terephthalate) substrate on which a 20 nm-thickness silicon oxide film was formed. A zinc oxide-based transparent conductive film laminate group according to Example 19 was produced in the same manner as in Examples 1 to 17 except that the substrate temperature at that time was changed to 100 ° C.

同様に、基板[無アルカリのガラス基板(コーニング♯7059)]の種類について、PC(ポリカーボネート)基板、膜厚20nmの酸化シリコン膜が成膜されたPET(ポリエチレンテレフタレート)基板に変更し、かつ、成膜時の基板温度を100℃に変更した点を除き比較例1〜21と同様に行って比較例23に係る酸化亜鉛系透明導電膜群を作製した。   Similarly, the type of substrate [non-alkali glass substrate (Corning # 7059)] is changed to a PC (polycarbonate) substrate, a PET (polyethylene terephthalate) substrate on which a 20 nm-thickness silicon oxide film is formed, and A zinc oxide-based transparent conductive film group according to Comparative Example 23 was produced in the same manner as Comparative Examples 1 to 21 except that the substrate temperature during film formation was changed to 100 ° C.

そして、得られた実施例19に係る酸化亜鉛系透明導電膜積層体群と比較例23に係る酸化亜鉛系透明導電膜群の比抵抗に着目して調べたところ、実施例1〜17および比較例1〜21と同じ傾向を示すことが確認された。   And when it investigated paying attention to the specific resistance of the zinc oxide type transparent conductive film laminated body group which concerns on obtained Example 19, and the zinc oxide type transparent conductive film group which concerns on the comparative example 23, Example 1-17 and comparison It was confirmed that the same tendency as Examples 1-21 was shown.

本発明に係る酸化亜鉛系透明導電膜積層体は、従来の酸化亜鉛系透明導電膜と較べて導電性が改善されているため、太陽電池、液晶表示素子、各種受光素子の電極等に適用される産業上の利用可能性を有している。   The zinc oxide-based transparent conductive film laminate according to the present invention has improved conductivity as compared with the conventional zinc oxide-based transparent conductive film, and is therefore applied to solar cells, liquid crystal display elements, electrodes of various light receiving elements, and the like. Has industrial applicability.

基板上に形成された本発明に係る酸化亜鉛系透明導電膜積層体の構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing of the zinc oxide type transparent conductive film laminated body based on this invention formed on the board | substrate. 本発明の変形例に係る酸化亜鉛系透明導電膜積層体の構成説明図。Structure explanatory drawing of the zinc oxide type transparent conductive film laminated body which concerns on the modification of this invention. 基板上に形成された比較例に係る酸化亜鉛系透明導電膜の構成説明図。Structure explanatory drawing of the zinc oxide type transparent conductive film which concerns on the comparative example formed on the board | substrate.

Claims (9)

スパッタリング法若しくはイオンプレーティング法により基板上に成膜されると共に、ガリウム含有量が異なる複数層の酸化亜鉛系透明導電膜により構成された酸化亜鉛系透明導電膜積層体において、
最も基板側に成膜される酸化亜鉛系透明導電膜が、Ga/(Zn+Ga)の原子数比でガリウム含有量が5.6〜10.0%に設定されかつ膜厚が20〜40nmに設定された酸化亜鉛系薄膜層(1)により構成され、この酸化亜鉛系薄膜層(1)上に成膜される単一若しくは複数の酸化亜鉛系透明導電膜が、上記酸化亜鉛系薄膜層(1)よりガリウム含有量が少ない酸化亜鉛系薄膜層(2)により構成されていることを特徴とする酸化亜鉛系透明導電膜積層体。
In a zinc oxide-based transparent conductive film laminate composed of a plurality of zinc oxide-based transparent conductive films having different gallium contents formed on a substrate by a sputtering method or an ion plating method,
The zinc oxide-based transparent conductive film formed on the most substrate side has a gallium content of 5.6 to 10.0% and a film thickness of 20 to 40 nm at an atomic ratio of Ga / (Zn + Ga). The zinc oxide-based thin film layer (1), and the zinc oxide-based thin film layer (1) is formed on the zinc oxide-based thin film layer (1). ) A zinc oxide-based transparent conductive film laminate comprising a zinc oxide-based thin film layer (2) having a lower gallium content.
上記酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)のガリウム含有量が、Ga/(Zn+Ga)の原子数比で3.5〜5.5%であることを特徴とする請求項1に記載の酸化亜鉛系透明導電膜積層体。   The gallium content of the zinc oxide thin film layer (2) formed on the zinc oxide thin film layer (1) is 3.5 to 5.5% in terms of the atomic ratio of Ga / (Zn + Ga). The zinc oxide-based transparent conductive film laminate according to claim 1. 上記酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)のガリウム含有量が、Ga/(Zn+Ga)の原子数比で4.5〜5.5%であることを特徴とする請求項2に記載の酸化亜鉛系透明導電膜積層体。   The gallium content of the zinc oxide thin film layer (2) formed on the zinc oxide thin film layer (1) is 4.5 to 5.5% in terms of the atomic ratio of Ga / (Zn + Ga). The zinc oxide-based transparent conductive film laminate according to claim 2. 上記酸化亜鉛系薄膜層(1)と酸化亜鉛系薄膜層(2)との合計の膜厚が80nm以上400nm未満で、かつ、比抵抗が8.0×10-4Ωcm以下であることを特徴とする請求項3に記載の酸化亜鉛系透明導電膜積層体。 The total thickness of the zinc oxide-based thin film layer (1) and the zinc oxide-based thin film layer (2) is 80 nm or more and less than 400 nm, and the specific resistance is 8.0 × 10 −4 Ωcm or less. The zinc oxide-based transparent conductive film laminate according to claim 3. 上記酸化亜鉛系薄膜層(1)上に成膜される酸化亜鉛系薄膜層(2)が、Ga/(Zn+Ga)の原子数比でガリウム含有量が4.5〜5.5%に設定された酸化亜鉛系薄膜層(2−1)と、この酸化亜鉛系薄膜層(2−1)上に成膜されかつGa/(Zn+Ga)の原子数比でガリウム含有量が3.5〜4.4%に設定された酸化亜鉛系薄膜層(2−2)とで構成されることを特徴とする請求項2に記載の酸化亜鉛系透明導電膜積層体。   The zinc oxide-based thin film layer (2) formed on the zinc oxide-based thin film layer (1) has a gallium content of 4.5 to 5.5% in terms of the atomic ratio of Ga / (Zn + Ga). The zinc oxide thin film layer (2-1) and the zinc oxide thin film layer (2-1) are formed on the zinc oxide thin film layer (2-1), and the gallium content is 3.5 to 4.4 in terms of the atomic ratio of Ga / (Zn + Ga). It is comprised with the zinc oxide type thin film layer (2-2) set to 4%, The zinc oxide type transparent conductive film laminated body of Claim 2 characterized by the above-mentioned. 上記酸化亜鉛系薄膜層(1)と、Ga/(Zn+Ga)の原子数比でガリウム含有量が4.5〜5.5%に設定された上記酸化亜鉛系薄膜層(2−1)と、Ga/(Zn+Ga)の原子数比でガリウム含有量が3.5〜4.4%に設定された上記酸化亜鉛系薄膜層(2−2)との合計の膜厚が400nm以上で、かつ、比抵抗が3.5×10-4Ωcm以下であることを特徴とする請求項5に記載の酸化亜鉛系透明導電膜積層体 The zinc oxide thin film layer (1) and the zinc oxide thin film layer (2-1) in which the gallium content is set to 4.5 to 5.5% by the atomic ratio of Ga / (Zn + Ga); The total film thickness with the zinc oxide thin film layer (2-2) in which the gallium content is set to 3.5 to 4.4% in terms of the atomic ratio of Ga / (Zn + Ga) is 400 nm or more, and 6. The zinc oxide-based transparent conductive film laminate according to claim 5, wherein the specific resistance is 3.5 × 10 −4 Ωcm or less . 成膜中の基板温度を100〜500℃に設定して、スパッタリング法により成膜されたことを特徴とする請求項1〜6のいずれかに記載の酸化亜鉛系透明導電膜積層体。   The zinc oxide based transparent conductive film laminate according to any one of claims 1 to 6, wherein the substrate temperature during film formation is set to 100 to 500 ° C and the film is formed by sputtering. ガラス基板若しくは樹脂基板と、この基板上に成膜された請求項1〜7のいずれかに記載の酸化亜鉛系透明導電膜積層体とで構成されることを特徴とする透明導電性基板。 A transparent conductive substrate comprising a glass substrate or a resin substrate and the zinc oxide-based transparent conductive film laminate according to any one of claims 1 to 7 formed on the substrate. 請求項1〜7のいずれかに記載の酸化亜鉛系透明導電膜積層体が、透明電極として組み込まれていることを特徴とする太陽電池、表示装置または発光デバイスから選択されるデバイス。 A device selected from a solar cell, a display device, or a light-emitting device, wherein the zinc oxide-based transparent conductive film laminate according to any one of claims 1 to 7 is incorporated as a transparent electrode.
JP2008042720A 2008-02-25 2008-02-25 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device Expired - Fee Related JP4670877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042720A JP4670877B2 (en) 2008-02-25 2008-02-25 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042720A JP4670877B2 (en) 2008-02-25 2008-02-25 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device

Publications (2)

Publication Number Publication Date
JP2009199986A JP2009199986A (en) 2009-09-03
JP4670877B2 true JP4670877B2 (en) 2011-04-13

Family

ID=41143265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042720A Expired - Fee Related JP4670877B2 (en) 2008-02-25 2008-02-25 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device

Country Status (1)

Country Link
JP (1) JP4670877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101201641B1 (en) 2011-11-02 2012-11-14 주식회사 퀀텀디바이스 Transparent thin film, light emitting device comprising the same, and methods for preparing the same
CN108349803A (en) * 2016-03-31 2018-07-31 积水化学工业株式会社 Intermediate film for laminated glasses, laminated glass and laminated glass system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352878B2 (en) * 2008-03-31 2013-11-27 公立大学法人高知工科大学 Display substrate, method for manufacturing the same, and display device
JP5449836B2 (en) * 2008-06-23 2014-03-19 株式会社日立製作所 Substrate with transparent conductive film, method for producing the same, display element using substrate with transparent conductive film, and solar cell using substrate with transparent conductive film
JP5418242B2 (en) * 2010-01-20 2014-02-19 三菱マテリアル株式会社 Vapor deposition material and method for forming vapor deposition film using the vapor deposition material
KR101183967B1 (en) * 2010-02-16 2012-09-18 조선대학교산학협력단 Functionally graded Transparent conducting oxide film and method for manufacturing thereof, Anode for Organic light emitting diode and window layer for solar cell using functionally graded transparent conducting oxide film
BE1019211A3 (en) * 2010-03-04 2012-04-03 Agc Glass Europe TRANSPARENT CONDUCTIVE SUBSTRATE FOR OPTOELECTRONIC DEVICES.
EP2543074A2 (en) * 2010-03-04 2013-01-09 AGC Glass Europe Transparent conductive substrate for optoelectronic devices
JP5533448B2 (en) 2010-08-30 2014-06-25 住友金属鉱山株式会社 Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
KR20140004143A (en) * 2011-02-25 2014-01-10 미쓰비시 마테리알 가부시키가이샤 Transparent oxide film and process for producing same
JP5796202B2 (en) * 2012-06-06 2015-10-21 パナソニックIpマネジメント株式会社 Transparent electrode and manufacturing method thereof
JP2014031565A (en) * 2012-08-06 2014-02-20 Kochi Univ Of Technology Film structure based on zinc oxide and method for producing the same and sensing device composed of the same
TWI469380B (en) * 2013-11-08 2015-01-11 Ind Tech Res Inst Hit solar cell structure
JP2017059656A (en) * 2015-09-16 2017-03-23 株式会社東芝 Photoelectric conversion element and solar battery
CN113224182A (en) * 2021-05-28 2021-08-06 中威新能源(成都)有限公司 Heterojunction solar cell and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181304A (en) * 1988-09-22 1990-07-16 Nippon Soken Inc Zinc oxide transparent conductive film and manufacture thereof
JPH06338223A (en) * 1993-05-31 1994-12-06 Asahi Glass Co Ltd Transparent conductive film
JPH0874033A (en) * 1994-09-02 1996-03-19 Asahi Glass Co Ltd Electrode for liquid crystal display
JPH11284211A (en) * 1998-03-27 1999-10-15 Showa Shell Sekiyu Kk Manufacture of zno transparent conductive film for thin film solar cell
JP2007258537A (en) * 2006-03-24 2007-10-04 Mitsubishi Heavy Ind Ltd Photoelectric conversion device and its manufacturing method
JP2009170392A (en) * 2008-01-20 2009-07-30 Kanazawa Inst Of Technology Zinc oxide system transparent conductive film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
KR101313327B1 (en) * 2006-06-08 2013-09-27 스미토모 긴조쿠 고잔 가부시키가이샤 Oxide sinter, target, transparent conductive film obtained from the same, and transparent conductive base

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181304A (en) * 1988-09-22 1990-07-16 Nippon Soken Inc Zinc oxide transparent conductive film and manufacture thereof
JPH06338223A (en) * 1993-05-31 1994-12-06 Asahi Glass Co Ltd Transparent conductive film
JPH0874033A (en) * 1994-09-02 1996-03-19 Asahi Glass Co Ltd Electrode for liquid crystal display
JPH11284211A (en) * 1998-03-27 1999-10-15 Showa Shell Sekiyu Kk Manufacture of zno transparent conductive film for thin film solar cell
JP2007258537A (en) * 2006-03-24 2007-10-04 Mitsubishi Heavy Ind Ltd Photoelectric conversion device and its manufacturing method
JP2009170392A (en) * 2008-01-20 2009-07-30 Kanazawa Inst Of Technology Zinc oxide system transparent conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101201641B1 (en) 2011-11-02 2012-11-14 주식회사 퀀텀디바이스 Transparent thin film, light emitting device comprising the same, and methods for preparing the same
WO2013066088A1 (en) * 2011-11-02 2013-05-10 주식회사 퀀텀디바이스 Transparent thin film, light-emitting device comprising same and method for manufacturing same
CN108349803A (en) * 2016-03-31 2018-07-31 积水化学工业株式会社 Intermediate film for laminated glasses, laminated glass and laminated glass system

Also Published As

Publication number Publication date
JP2009199986A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4670877B2 (en) Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device
JP5880667B2 (en) Target and manufacturing method thereof
JP5593612B2 (en) Oxide sintered body, target, transparent conductive film obtained using the same, and transparent conductive substrate
JP4552950B2 (en) Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
JP2007314364A (en) Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
JP6142211B2 (en) Manufacturing method of organic EL element
Mendelsberg et al. Achieving high mobility ZnO: Al at very high growth rates by dc filtered cathodic arc deposition
Park et al. Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes
JP4779798B2 (en) Oxide sintered body, target, and transparent conductive film obtained using the same
CN100595847C (en) Electrically conducting transparent film and its preparing process
WO2004065656A1 (en) Ito thin film, film-forming method of same, transparent conductive film and touch panel
JP2004087451A (en) Transparent conductive thin film, its forming method, transparent conductive substrate for display panel and organic electro-luminescent element using the same
JP4788463B2 (en) Oxide sintered body, transparent oxide film, gas barrier transparent resin substrate, gas barrier transparent conductive resin substrate, and flexible display element
JP4240928B2 (en) Oxide transparent conductive film and method for producing the same
WO2014020788A1 (en) Method for manufacturing organic electroluminescent element
Kim Improvement of structural and optoelectrical properties by post-deposition electron beam annealing of ITO thin films
CN105908127A (en) P-type doped tin dioxide transparent conductive film and preparation method thereof
JP2012132090A (en) Method for forming electrically conductive transparent zinc oxide-based film, electrically conductive transparent zinc oxide-based film, and elecrically conductive transparent substrate
CN101834009B (en) Low-indium doping amount zinc oxide transparent conducting film and preparation method thereof
Park et al. Properties of ITO films deposited with different conductivity ITO targets
Hong et al. Characteristic of Al-In-Sn-ZnO Thin film prepared by FTS system with hetero targets
JP2010211929A (en) Method of manufacturing transparent conductive film, transparent conductive film obtained and transparent conductive member employing the same, electronic display device, and solar cell
Hong et al. Effect of Inductively Coupled Plasma on the Structural and Electrical Properties of Ti-Doped ITO Films Formed by IPVD
JP2005298306A (en) Oxide sintered compact, sputtering target and transparent electrically conductive thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees