KR20140004143A - Transparent oxide film and process for producing same - Google Patents

Transparent oxide film and process for producing same Download PDF

Info

Publication number
KR20140004143A
KR20140004143A KR1020137019308A KR20137019308A KR20140004143A KR 20140004143 A KR20140004143 A KR 20140004143A KR 1020137019308 A KR1020137019308 A KR 1020137019308A KR 20137019308 A KR20137019308 A KR 20137019308A KR 20140004143 A KR20140004143 A KR 20140004143A
Authority
KR
South Korea
Prior art keywords
oxide film
transparent oxide
film
sputtering
refractive index
Prior art date
Application number
KR1020137019308A
Other languages
Korean (ko)
Inventor
고우 야마구치
쇼우빈 장
유이치 곤도우
Original Assignee
미쓰비시 마테리알 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시 마테리알 가부시키가이샤 filed Critical 미쓰비시 마테리알 가부시키가이샤
Publication of KR20140004143A publication Critical patent/KR20140004143A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

굴절률이 낮고 양호한 가스 배리어성을 가진 산화아연계의 투명 산화물막 및 그 제조 방법을 제공한다. 투명 산화물막이 전체 금속 성분량에 대해 Al : 0.9 ∼ 20.0 at%, Si : 25.5 ∼ 68.0 at% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 갖고, 비정질이다. 이 제법은, 전체 금속 성분량에 대해 Al : 0.3 ∼ 4.0 wt%, Si : 6.0 ∼ 14.5 wt% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 가진 산화물 소결체로 이루어지고, 그 소결체의 조직 중에 복합 산화물 Zn2SiO4 와 ZnO 가 존재하는 스퍼터링 타깃을 사용하여, 산소를 함유시킨 불활성 가스 분위기 중 및 기판을 가열한 상태 중 적어도 일방의 환경하에서 DC 스퍼터한다.Provided are a zinc oxide-based transparent oxide film having a low refractive index and good gas barrier properties, and a method of manufacturing the same. A transparent oxide film contains Al: 0.9-20.0 at% and Si: 25.5-68.0 at% with respect to the total amount of metal components, and the balance has an ingredient composition composed of Zn and inevitable impurities, and is amorphous. This production method comprises an oxide sintered body containing Al: 0.3 to 4.0 wt% and Si: 6.0 to 14.5 wt% with respect to the total amount of metal components, the balance having a component composition of Zn and unavoidable impurities, and in the structure of the sintered body Sputtering targets in which the composite oxides Zn 2 SiO 4 and ZnO are present are used for DC sputtering in an inert gas atmosphere containing oxygen and under at least one of the conditions in which the substrate is heated.

Description

투명 산화물막 및 그 제조 방법{TRANSPARENT OXIDE FILM AND PROCESS FOR PRODUCING SAME}Transparent oxide film and its manufacturing method {TRANSPARENT OXIDE FILM AND PROCESS FOR PRODUCING SAME}

본 발명은, 유기 발광 표시 소자, 액정 표시 소자, 일렉트로 루미네선스 표시 소자, 전기 영동 방식 표시 소자, 토너 표시 소자 등의 전자 페이퍼나 필름형 태양 전지 등에 사용되는 가스 배리어층이나 박막 봉지층에 포함되는 무기막, 및 화합물 반도체에 의한 박막 태양 전지의 투명 전극층 상의 가스 배리어층으로서 이용되는 산화아연계의 가스 배리어성이 우수한 투명 산화물막 및 그 제조 방법에 관한 것이다.INDUSTRIAL APPLICABILITY The present invention is included in a gas barrier layer or thin film encapsulation layer used in electronic paper or film type solar cells such as organic light emitting display elements, liquid crystal display elements, electroluminescent display elements, electrophoretic display elements, toner display elements, and the like. The present invention relates to an inorganic film, and a transparent oxide film having excellent zinc oxide-based gas barrier properties used as a gas barrier layer on a transparent electrode layer of a thin film solar cell by a compound semiconductor.

종래, 액정 표시 소자나 일렉트로 루미네선스 표시 소자, 전기 영동 방식 표시 소자, 토너 표시 소자 등의 전자 페이퍼나 필름형 태양 전지 등에 사용되는 가스 배리어층, 및 화합물 반도체에 의한 박막 태양 전지 (예를 들어, CIGS (Cu-In-Ga-Se) 계 태양 전지) 의 투명 전극층 상의 가스 배리어층으로서 투명 산화물막을 스퍼터링법으로 제조하는 기술이 알려져 있다.Conventionally, a gas barrier layer used in electronic paper, film type solar cells, etc., such as a liquid crystal display element, an electroluminescence display element, an electrophoretic display element, a toner display element, and a thin film solar cell by a compound semiconductor (for example, The technique which manufactures a transparent oxide film by the sputtering method as a gas barrier layer on the transparent electrode layer of CIGS (Cu-In-Ga-Se) type solar cell) is known.

예를 들어, 특허문헌 1 에서는, 산화주석과, Si, Ge, Al 로 이루어지는 군에서 선택되는 적어도 1 종의 첨가 원소를 함유하고, 그 첨가 원소는, 첨가 원소와 Sn 의 함유량의 총합에 대해 15 원자% ∼ 63 원자% 의 비율로 함유되고, 결정상의 구성에 첨가 원소의 금속상 (相), 그 첨가 원소의 산화물상, 그 첨가 원소와 Sn 의 복합 산화물상 중 1 종 이상이 함유되고, 그 첨가 원소의 산화물상 및 그 첨가 원소와 Sn 의 복합 산화물상이 평균 입경 50 ㎛ 이하의 크기로 분산되어 있는 산화물 소결체를 스퍼터링 타깃으로서 사용하여, 직류 펄싱법을 이용한 스퍼터링법에 의해 수지 필름 기재의 표면에 투명 산화물막을 형성하는 방법이 제안되어 있다.For example, in patent document 1, tin oxide and at least 1 sort (s) of addition element chosen from the group which consists of Si, Ge, and Al are contained, The addition element is 15 with respect to the sum total of content of an addition element and Sn. It is contained in the ratio of atomic%-63 atomic%, At least 1 sort (s) of the metal phase of an additional element, the oxide phase of this additional element, the composite oxide phase of this additional element, and Sn is contained in the structure of a crystalline phase, On the surface of the resin film base material by the sputtering method using a direct current pulsing method using an oxide sintered body in which the oxide phase of the additive element and the composite oxide phase of the additive element and Sn are dispersed in a size having an average particle diameter of 50 μm or less as a sputtering target. A method of forming a transparent oxide film is proposed.

이 방법으로 얻어진 투명 산화물막은, 산화주석과, Si, Ge, Al 로 이루어지는 군에서 선택되는 적어도 1 종의 첨가 원소를 함유하는 투명 산화물막으로서, 그 첨가 원소는, 첨가 원소와 Sn 의 총합에 대해 15 원자% ∼ 63 원자% 의 비율로 함유되고, 비정질막이고, 또한 파장 633 ㎚ 에 있어서의 굴절률이 1.90 이하라고 되어 있다.The transparent oxide film obtained by this method is a transparent oxide film containing tin oxide and at least one additional element selected from the group consisting of Si, Ge and Al, and the additional element is based on the total of the additive element and Sn. It is contained in the ratio of 15 atomic%-63 atomic%, is an amorphous film, and the refractive index in wavelength 633nm is 1.90 or less.

또, 특허문헌 2 에는, 상 변화 광 디스크용 보호막에 사용되는 광 투과막으로서 용도는 상이하지만, Nb2O5, V2O5, B2O3, SiO2, P2O5 에서 선택된 1 종 이상의 유리 형성 산화물을 0.01 ∼ 20 중량% 와, Al2O3 또는 Ga2O3 을 0.01 ∼ 20 중량% 함유하고, 잔부 In2O3, SnO2, ZnO 에서 선택된 1 종 이상의 산화물인 스퍼터링 타깃을 사용하여, 스퍼터링법에 의해 Nb2O5, V2O5, B2O3, SiO2, P2O5 에서 선택된 1 종 이상의 유리 형성 산화물을 0.01 ∼ 20 중량% 와, Al2O3 또는 Ga2O3 을 0.01 ∼ 20 중량% 함유하고, 잔부 In2O3, SnO2, ZnO 에서 선택된 1 종 이상의 산화물인 광 투과막을 성막하는 방법이 제안되어 있다.In addition, Patent Literature 2 uses 1 selected from Nb 2 O 5 , V 2 O 5 , B 2 O 3 , SiO 2 , and P 2 O 5 , although the use thereof is different as a light transmitting film used for a protective film for a phase change optical disk. and the at least one glass-forming oxide 0.01 to 20 wt%, Al 2 O 3 or Ga 2 O 3 containing 0.01 to 20% by weight, and the balance of in 2 O 3, SnO 2, a sputtering target more than one member selected from ZnO oxide 0.01 to 20% by weight of one or more glass-forming oxides selected from Nb 2 O 5 , V 2 O 5 , B 2 O 3 , SiO 2 , and P 2 O 5 by sputtering, and Al 2 O 3 Alternatively, a method of forming a light-transmitting film containing 0.01 to 20% by weight of Ga 2 O 3 and at least one oxide selected from the balance In 2 O 3 , SnO 2 and ZnO has been proposed.

일본 공개특허공보 2007-290916호Japanese Unexamined Patent Publication No. 2007-290916 일본 공개특허공보 2000-119062호Japanese Unexamined Patent Publication No. 2000-119062

상기 종래의 기술에는 이하의 과제가 남아 있다. 즉, 상기 특허문헌 1 의 기술에 기재된 타깃에서는, 스퍼터링시에 노듈이 많이 발생하여 장치의 청소 등에 수고가 들기 때문에, 산화주석계가 아니라 다른 조성계의 가스 배리어성이 우수한 투명 산화물막이 요망되고 있다. 그러나, 상기 특허문헌 2 의 기술로 제조하는 투명 산화물막은 광 디스크용이기 때문에 굴절률이 높아, 상기 서술한 전자 페이퍼나 태양 전지에 사용하는 수지 필름 기재 상의 가스 배리어층에 채용하려면 수지 필름 기재의 굴절률 (예를 들어 파장 633 ㎚ 에서 굴절률 n : 1.5 ∼ 1.7) 에 근접하게 하기 위해 굴절률을 낮게 할 필요가 있다. 이 때문에, 산화아연계의 투명 산화물막에 SiO2 를 보다 많이 함유시켜 굴절률을 낮추는 것을 생각할 수 있지만, 특허문헌 2 에서 기재되어 있는 바와 같이, SiO2 가 20 wt% 를 초과하면 첨가한 성분인 SiO2 의 결정상이 석출되는 문제가 있었다. 결정상이 석출되면 가스 배리어성 (예를 들어 수증기 배리어성) 으로서의 기능이 저하되기 때문에, 보호막으로서 채용할 수 없다.The following subjects remain in the said prior art. That is, in the target described in the technique of Patent Document 1, since nodules are generated at the time of sputtering, and the labor of cleaning the apparatus is troublesome, a transparent oxide film having excellent gas barrier properties of a composition system other than tin oxide is desired. However, since the transparent oxide film manufactured by the technique of the said patent document 2 is for optical disks, since refractive index is high and it is employ | adopted for the gas barrier layer on the resin film base material used for the above-mentioned electronic paper and a solar cell, the refractive index of a resin film base material ( For example, it is necessary to lower the refractive index in order to approach the refractive index n: 1.5 to 1.7) at a wavelength of 633 nm. For this reason, it is conceivable to contain more SiO 2 in the zinc oxide-based transparent oxide film to lower the refractive index. However, as described in Patent Literature 2, when SiO 2 exceeds 20 wt%, SiO is a component added. There was a problem that 2 crystal phases were precipitated. If the crystal phase precipitates, the function as gas barrier property (for example, water vapor barrier property) is lowered, and thus it cannot be employed as a protective film.

본 발명은, 전술한 과제를 감안하여 이루어진 것으로, 성막 속도가 빠른 스퍼터링법을 사용하여 굴절률이 낮고 양호한 가스 배리어성을 가진 산화아연계의 투명 산화물막 및 그 제조 방법을 제공하는 것을 목적으로 한다.This invention is made | formed in view of the above-mentioned subject, Comprising: It aims at providing the zinc oxide type transparent oxide film with a low refractive index and favorable gas barrier property using the sputtering method with a fast film-forming speed | rate, and its manufacturing method.

본 발명자들은, AZO (Al-Zn-O : Aluminium doped Zinc Oxide : 알루미늄 첨가 산화아연) 막에 SiO2 를 함유시키면 굴절률이 낮아지는 점에서, 투명 산화물막으로서 ZnO-SiO2-Al2O3 막을 스퍼터링에 의해 성막할 수 있도록 연구를 실시하였다. 이 연구에 있어서, 특정 조직으로 이루어지는 스퍼터링 타깃을 사용하고, 스퍼터 성막시의 분위기 또는 기판의 온도를 특정 조건으로 설정함으로써, 투명하고 낮은 굴절률 또한 높은 가스 배리어 성능을 갖는 ZnO-SiO2-Al2O3 막을 얻을 수 있는 것을 알아냈다.The inventors of the present invention propose that a ZnO-SiO 2 -Al 2 O 3 film as a transparent oxide film has a low refractive index when SiO 2 is contained in an AZO (Al-Zn-O: Aluminum doped Zinc Oxide) film. A study was conducted to form a film by sputtering. In this study, ZnO-SiO 2 -Al 2 O having a transparent, low refractive index and high gas barrier performance by using a sputtering target made of a specific structure and setting the atmosphere or the temperature of the substrate at the time of sputtering deposition to specific conditions We found out that we could get 3 acts.

따라서, 본 발명은 상기 지견으로부터 얻어진 것으로, 상기 과제를 해결하기 위해 이하의 구성을 채용하였다. 즉, 본 발명의 투명 산화물막은, 전체 금속 성분량에 대해 Al : 0.9 ∼ 20.0 at%, Si : 25.5 ∼ 68.0 at% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 갖고, 비정질인 것을 특징으로 한다. 즉, 이 투명 산화물막에서는, 전체 금속 성분량에 대해 Al : 0.9 ∼ 20.0 at%, Si : 25.5 ∼ 68.0 at% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 갖고, 비정질이므로 종래보다 가시광역에서 낮은 굴절률이 얻어짐과 함께 높은 가스 배리어성 (예를 들어, 수증기 배리어성) 을 갖고 있다. 또한, 가시광역에서 95 % 이상의 높은 투과율이 얻어져 양호한 투명성을 갖고 있다.Therefore, this invention was obtained from the said knowledge, and the following structures were employ | adopted in order to solve the said subject. That is, the transparent oxide film of this invention contains Al: 0.9-20.0 at% and Si: 25.5-68.0 at% with respect to the total amount of metal components, and has a component composition which consists of Zn and an unavoidable impurity, and is amorphous, It is characterized by the above-mentioned. do. That is, in this transparent oxide film, since it contains Al: 0.9-20.0 at% and Si: 25.5-68.0 at% with respect to the total amount of metal components, and remainder has the component composition which consists of Zn and an unavoidable impurity, it is amorphous, and it is visible range more than before, In addition to having a low refractive index at the same time, it has a high gas barrier property (for example, water vapor barrier property). Moreover, high transmittance | permeability of 95% or more is obtained in visible range, and it has favorable transparency.

또한, 상기 Al 의 함유량을 0.9 ∼ 20.0 at% 로 한 이유는, 0.9 at% 미만의 막을 얻기 위한 조성으로 설정한 스퍼터링 타깃에서는 이상 방전이 발생하여 안정적인 DC 스퍼터를 할 수 없기 때문이고, 20.0 at% 를 초과하는 막을 얻기 위한 조성으로 설정한 스퍼터링 타깃에서도 이상 방전이 발생하여 안정적인 DC 스퍼터를 할 수 없다. 또한, Al의 함유량은 12 at% 이하가 보다 바람직하다. 즉, Al 의 함유량이 12 at% 이하이면, 상대적으로 Si 함유량을 높게 유지할 수 있기 때문에, 보다 낮은 굴절률 및 보다 높은 가스 배리어성이 얻어지기 때문이다. 또, 상기 Si 의 함유량을 25.5 ∼ 68.0 at% 로 한 이유는, 25.5 at% 미만이면 원하는 낮은 굴절률 및 가스 배리어성이 얻어지지 않고, 68.0 at% 를 초과하는 막을 얻기 위한 조성으로 설정한 스퍼터링 타깃에서는 Si 량이 많아져 DC 스퍼터를 할 수 없기 때문이다.The reason why the Al content is 0.9 to 20.0 at% is because abnormal discharge occurs in a sputtering target set to a composition for obtaining a film of less than 0.9 at%, and stable DC sputtering is not possible. Abnormal discharge occurs even in the sputtering target set to the composition for obtaining the film exceeding, and stable DC sputtering is not possible. Moreover, as for content of Al, 12 at% or less is more preferable. That is, since the Si content can be kept relatively high when the Al content is 12 at% or less, a lower refractive index and a higher gas barrier property are obtained. Moreover, the reason which made the said Si content into 25.5-68.0 at% is that if it is less than 25.5 at%, the desired low refractive index and gas barrier property will not be acquired, but in the sputtering target set to the composition for obtaining the film | membrane exceeding 68.0 at%, This is because the amount of Si increases and DC sputtering is not possible.

또, 본 발명의 투명 산화물막은, 파장 750 ㎚ 의 광 투과율이 93 % 이상인 것을 특징으로 한다. 즉, 일반적인 DC 스퍼터로 성막 가능한 산화물과는 상이하고, 도전성 산화물에 있는 전자에 의한 장파장측의 흡수가 적기 때문에, DC 스퍼터로 성막되고, 또한 가시광 장파장의 광을 손실시키지 않는 가시광 전역에서 높은 투명성을 갖는 막이 된다.Moreover, the transparent oxide film of this invention is characterized by the light transmittance of wavelength 750nm being 93% or more. That is, since it is different from the oxide which can be formed by a general DC sputter, and since absorption of the long wavelength side by the electron in an electroconductive oxide is small, it is formed by DC sputter | spatter and high transparency across the visible light which does not lose the light of a long wavelength of visible light. It has a film.

또, 본 발명의 투명 산화물막은, 가시광역에서의 굴절률 평균값이 1.59 ∼ 1.80 이고, 두께 50 ㎚ 이상에서 수증기 투과율이 0.01 g/(㎡·day) 이하인 것을 특징으로 한다. 즉, 이 투명 산화물막에서는, 가시광역에서의 굴절률 평균값이 1.59 ∼ 1.80 이고, 두께 50 ㎚ 이상에서 수증기 투과율이 0.01 g/(㎡·day) 이하이므로, 전자 페이퍼나 태양 전지에서 채용되는 수지 필름 기재 상에 성막된 가스 배리어층으로서 바람직하다. 또한, 여기서 가시광역은 파장 380 ㎚ ∼ 750 ㎚ 의 범위로 한다.The transparent oxide film of the present invention is characterized in that the average refractive index value in the visible region is 1.59 to 1.80, and the water vapor transmission rate is 0.01 g / (m 2 · day) or less at a thickness of 50 nm or more. That is, in this transparent oxide film, since the refractive index average value in visible range is 1.59-1.80, and water vapor transmittance is 0.01 g / (m <2> * day) or less in thickness 50nm or more, the resin film base material employ | adopted for an electronic paper or a solar cell. It is preferable as a gas barrier layer formed on the film. In addition, visible region shall be taken as the range of wavelength 380nm-750nm here.

본 발명의 투명 산화물막의 제조 방법은, 상기 발명의 투명 산화물막을 제조하는 방법으로서, 전체 금속 성분량에 대해 Al : 0.3 ∼ 4.0 wt%, Si : 6.0 ∼ 14.5 wt% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 가진 산화물 소결체로 이루어지고, 그 소결체의 조직 중에 복합 산화물 Zn2SiO4 와 ZnO 가 존재하는 스퍼터링 타깃을 사용하여, 산소를 함유시킨 불활성 가스 분위기 중 및 기판을 가열한 상태의 적어도 일방의 환경하에서 직류 전류를 투입하여 스퍼터하는 것을 특징으로 한다. 즉, 이 투명 산화물막의 제조 방법에서는, 상기 산화물 소결체의 조직 중에 복합 산화물 Zn2SiO4 와 ZnO 가 존재하는 스퍼터링 타깃을 사용하므로 DC 스퍼터가 가능해지고, 또한 산소를 함유시킨 불활성 가스 분위기 중 및 기판을 가열한 상태의 적어도 일방의 환경하에서 직류 전류를 투입하여 스퍼터 (DC 스퍼터) 하므로, Si 를 많이 함유시킨 비정질의 투명 산화물막 (ZnO-SiO2-Al2O3 막) 을 성막할 수 있다. 따라서, 본 발명의 제법에 의하면, 종래보다 SiO2 를 많이 첨가할 수 있고, 굴절률을 낮추면서 비정질이고 가스 배리어성이 높은 투명 산화물막을 DC 스퍼터로 성막할 수 있다.The manufacturing method of the transparent oxide film of this invention is a method of manufacturing the transparent oxide film of the said invention, Comprising: Al: 0.3-4.0 wt% and Si: 6.0-14.5 wt% with respect to the total amount of metal components, and remainder is Zn and inevitable. A sputtering target composed of an oxide sintered body having a component composition composed of impurities and containing complex oxides Zn 2 SiO 4 and ZnO in the structure of the sintered body, at least in an inert gas atmosphere containing oxygen and in a state in which the substrate is heated; It is characterized in that the sputtering by inputting a direct current in one environment. In other words, in the method for producing the transparent oxide film, a sputtering target in which the complex oxides Zn 2 SiO 4 and ZnO exist in the structure of the oxide sintered body is used, so that DC sputtering is possible, and the substrate contains oxygen and an inert gas atmosphere. Since sputtering (DC sputtering) is carried out by injecting a direct current in at least one environment in a heated state, an amorphous transparent oxide film (ZnO-SiO 2 -Al 2 O 3 film) containing a large amount of Si can be formed. Therefore, according to the production method of the present invention, it is possible to much more than the conventional addition of SiO 2, amorphous lowering the refractive index and can be formed a film with high gas barrier transparent oxide by DC sputtering.

또한, 상기 Al 의 함유량을 0.3 ∼ 4.0 wt% 로 한 이유는, 0.3 wt% 미만에서는 이상 방전이 발생하여 DC 스퍼터를 할 수 없기 때문이고, 4.0 wt% 를 초과하면 발생된 Al2O3 과 ZnO 의 복합 산화물 ZnAl2O4 에서 기인하는 이상 방전이 발생하여 DC 스퍼터를 할 수 없기 때문이다. 또, 상기 Si 의 함유량을 6.0 ∼ 14.5 wt% 로 한 이유는, 6.0 wt% 미만에서는 굴절률을 낮추는 충분한 효과가 얻어지지 않기 때문이고, 14.5 wt% 를 초과하면 충분한 도전성을 얻을 수 없고, 이상 방전이 발생하여 DC 스퍼터를 할 수 없기 때문이다.The reason why the content of Al is made 0.3 to 4.0 wt% is that abnormal discharge occurs at less than 0.3 wt% and DC sputtering is not possible, and when it exceeds 4.0 wt%, Al 2 O 3 and ZnO generated are exceeded. This is because an abnormal discharge caused by the composite oxide of ZnAl 2 O 4 occurs to prevent DC sputtering. The reason for the Si content of 6.0 to 14.5 wt% is that a sufficient effect of lowering the refractive index is not obtained at less than 6.0 wt%. If it exceeds 14.5 wt%, sufficient conductivity cannot be obtained, and abnormal discharge is not achieved. This is because DC sputter cannot be generated.

또, 본 발명의 투명 산화물막의 성막 방법은, 상기 기판이 수지 필름 기재이고, 상기 기판의 가열 온도를 100 ∼ 200 ℃ 의 범위로 설정하는 것을 특징으로 한다. 즉, 이 투명 산화물막의 제조 방법에서는, 기판의 가열 온도를 100 ∼ 200 ℃ 의 범위로 설정하므로, 성막하는 수지 필름 기재에 대한 열 영향을 억제하면서, 전자 페이퍼나 태양 전지에서 채용되는 가스 배리어층으로서 충분한 투명성과 낮은 굴절률을 갖는 투명 산화물막이 얻어진다. 또한, 상기 기판의 가열 온도를 100 ∼ 200 ℃ 의 범위로 설정한 이유는, 100 ℃ 미만이면 막 중의 Si 함유량이 적어져 투명성이 저하됨과 함께 굴절률이 변화하기 때문이고, 200 ℃ 를 초과하면 수지 필름 기재가 손상을 받기 때문이다.Moreover, the film formation method of the transparent oxide film of this invention is characterized in that the said board | substrate is a resin film base material and sets the heating temperature of the said board | substrate to the range of 100-200 degreeC. That is, in this manufacturing method of a transparent oxide film, since the heating temperature of a board | substrate is set in the range of 100-200 degreeC, it is used as a gas barrier layer employ | adopted by an electronic paper or a solar cell, suppressing the heat influence on the resin film base material to form into a film. A transparent oxide film having sufficient transparency and low refractive index is obtained. Moreover, the reason why the heating temperature of the said board | substrate was set to the range of 100-200 degreeC is because the Si content in a film | membrane falls below 100 degreeC, transparency falls, and refractive index changes, and when it exceeds 200 degreeC, a resin film This is because the substrate is damaged.

또, 본 발명의 투명 산화물막의 성막 방법은, 상기 산소와 불활성 가스의 분위기 가스 전체에 대한 산소의 가스 분압을 0.05 이상으로 설정하는 것을 특징으로 한다. 즉, 이 투명 산화물막의 제조 방법에서는, 산소와 불활성 가스의 분위기 가스 전체에 대한 산소의 가스 분압을 0.05 이상으로 설정하므로, 전자 페이퍼나 태양 전지에서 채용되는 가스 배리어층으로서 충분한 투명성과 낮은 굴절률을 갖는 투명 산화물막이 얻어진다. 이것은, 산소의 가스 분압을 0.05 미만으로 하면, 막 중의 Si 함유량이 적어져 투명성이 저하됨과 함께 굴절률이 변화하기 때문이다. 또한, 산소의 가스 분압은, 0.2 를 초과하면 스퍼터의 성막 속도가 느려져 생산성이 저하되기 때문에, 0.2 이하로 하는 것이 바람직하다. 이와 같이 본 발명에서는, 상기 기판 가열 온도 및 상기 산소의 가스 분압 중 적어도 일방을 조정하여 DC 스퍼터함으로써, 막 중의 Si 의 함유량을 조정할 수 있다.Moreover, the film formation method of the transparent oxide film of this invention is characterized by setting the gas partial pressure of oxygen with respect to the said atmosphere and the whole atmospheric gas of inert gas to 0.05 or more. In other words, in the method for producing a transparent oxide film, the partial pressure of oxygen with respect to the entire atmosphere gas of oxygen and an inert gas is set to 0.05 or more, so that it has sufficient transparency and low refractive index as a gas barrier layer employed in electronic paper or solar cells. A transparent oxide film is obtained. This is because when the gas partial pressure of oxygen is less than 0.05, the Si content in the film decreases, the transparency decreases, and the refractive index changes. In addition, when the gas partial pressure of oxygen exceeds 0.2, since the film-forming rate of a sputter | spatter slows and productivity falls, it is preferable to set it as 0.2 or less. As described above, in the present invention, the content of Si in the film can be adjusted by adjusting DC sputtering at least one of the substrate heating temperature and the gas partial pressure of the oxygen.

본 발명에 의하면 이하의 효과를 발휘한다. 즉, 본 발명에 관련된 투명 산화물막에 의하면, 전체 금속 성분량에 대해 Al : 0.9 ∼ 28.5 at%, Si : 25.5 ∼ 68.0 at% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 갖고, 비정질이므로, 종래보다 가시광역에서 낮은 굴절률이 얻어짐과 함께 높은 가스 배리어성을 갖고 있다. 또, 본 발명에 관련된 투명 산화물막의 제조 방법 에 의하면, 상기 산화물 소결체의 조직 중에 복합 산화물 Zn2SiO4 와 ZnO 가 존재하는 스퍼터링 타깃을 사용하므로, DC 스퍼터가 가능해지고, 산소를 함유시킨 불활성 가스 분위기 중 및 기판을 가열한 상태의 적어도 일방의 환경하에서 직류 전류를 투입하여 스퍼터하므로, 비정질의 상기 조성의 투명 산화물막 (ZnO-SiO2-Al2O3 막) 을 성막할 수 있다. 따라서, 본 발명의 투명 산화물막을 전자 페이퍼나 태양 전지 등의 가스 배리어층에 채용함으로써, 요구되는 높은 투명성, 낮은 굴절률 및 높은 가스 배리어성이 얻어지고, 높은 신뢰성을 가짐과 함께 시인성이 높은 전자 페이퍼나 변환 효율이 양호한 태양 전지 등을 제조할 수 있다.According to this invention, the following effects are exhibited. That is, according to the transparent oxide film which concerns on this invention, since it contains Al: 0.9-28.5 at% and Si: 25.5-68.0 at% with respect to the total metal component amount, and remainder has the component composition which consists of Zn and an unavoidable impurity, it is amorphous In addition, while having a lower refractive index in the visible region than in the prior art, it has a high gas barrier property. Further, according to the production process the transparent oxide film of the present invention, uses a sputtering target, which is a composite oxide Zn 2 SiO 4 and the ZnO is present in tissues of the oxide sintered body, a DC sputtering becomes possible, an inert gas atmosphere which contains oxygen, Since the direct current is injected and sputtered in at least one environment in which the medium and the substrate are heated, an amorphous transparent oxide film (ZnO-SiO 2 -Al 2 O 3 film) can be formed. Therefore, by employing the transparent oxide film of the present invention in a gas barrier layer such as an electronic paper or a solar cell, the required high transparency, low refractive index and high gas barrier property can be obtained, and high reliability and high visibility electronic paper and The solar cell etc. which have favorable conversion efficiency can be manufactured.

도 1 은, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 일 실시형태에 있어서, 사용하는 스퍼터링 타깃의 제조 공정을 나타내는 플로우 차트이다.
도 2 는, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 실시예에 있어서, 투명 산화물막 (실시예 3) 의 X 선 회절 (XRD) 의 분석 결과를 나타내는 그래프이다.
도 3 은, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 실시예에 있어서, 투명 산화물막 (실시예 5) 의 X 선 회절의 분석 결과를 나타내는 그래프이다.
도 4 는, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 실시예에 있어서, 투명 산화물막 (실시예 6) 의 X 선 회절의 분석 결과를 나타내는 그래프이다.
도 5 는, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 실시예에 있어서, 투명 산화물막 (실시예 11) 의 X 선 회절의 분석 결과를 나타내는 그래프이다.
도 6 은, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 비교예에 있어서, 투명 산화물막 (비교예 4) 의 X 선 회절의 분석 결과를 나타내는 그래프이다.
도 7 은, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 실시예 및 비교예에 있어서, 파장에 대한 투과율을 나타내는 그래프이다.
도 8 은, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 실시예 및 비교예에 있어서, 파장에 대한 굴절률을 나타내는 그래프이다.
도 9 는, 참고예에 있어서, 스퍼터링 타깃의 X 선 회절 (XRD) 의 분석 결과를 나타내는 그래프이다.
도 10 은, 비교 참고예에 있어서, 스퍼터링 타깃의 X 선 회절 (XRD) 의 분석 결과를 나타내는 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows the manufacturing process of the sputtering target used in one Embodiment of the transparent oxide film which concerns on this invention, and its manufacturing method.
FIG. 2 is a graph showing the analysis results of X-ray diffraction (XRD) of the transparent oxide film (Example 3) in the examples of the transparent oxide film and the manufacturing method thereof according to the present invention.
3 is a graph showing the analysis results of X-ray diffraction of the transparent oxide film (Example 5) in the examples of the transparent oxide film and the manufacturing method thereof according to the present invention.
4 is a graph showing the analysis results of X-ray diffraction of the transparent oxide film (Example 6) in the examples of the transparent oxide film and the manufacturing method thereof according to the present invention.
5 is a graph showing an analysis result of X-ray diffraction of the transparent oxide film (Example 11) in the example of the transparent oxide film and the method of manufacturing the same according to the present invention.
6 is a graph showing the analysis results of X-ray diffraction of the transparent oxide film (Comparative Example 4) in the comparative example of the transparent oxide film and the manufacturing method thereof according to the present invention.
7 is a graph showing the transmittance with respect to the wavelength in Examples and Comparative Examples of the transparent oxide film according to the present invention and the manufacturing method thereof.
8 is a graph showing the refractive index with respect to the wavelength in the Example and the comparative example of the transparent oxide film which concerns on this invention, and its manufacturing method.
9 is a graph showing an analysis result of X-ray diffraction (XRD) of a sputtering target in a reference example.
10 is a graph showing an analysis result of X-ray diffraction (XRD) of a sputtering target in a comparative reference example.

이하, 본 발명에 관련된 투명 산화물막 및 그 제조 방법의 일 실시형태를 도 1 을 참조하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, one Embodiment of the transparent oxide film which concerns on this invention, and its manufacturing method is demonstrated with reference to FIG.

본 실시형태의 투명 산화물막은, 상기 서술한 용도의 가스 배리어층으로서 이용되는 막으로서, 전체 금속 성분량에 대해 Al : 0.9 ∼ 20.0 at%, Si : 25.5 ∼ 68.0 at% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 갖고, 비정질이다. 또, 이 투명 산화물막은, 막두께 100 ㎚ 에 있어서의 시트 저항값이 1.0 × 1014 Ω/sq 이상이다. 또한, 이 투명 산화물막은, 가시광역에서의 굴절률 평균값이 1.59 ∼ 1.80 이고, 두께 50 ㎚ 이상에서 수증기 투과율이 0.01 g/(㎡·day) 이하이다. 또한, 수증기 투과율은 JIS 규격의 K7129 법에 따라 모콘법에 의해 측정된 것이다.The transparent oxide film of this embodiment is a film used as a gas barrier layer for the use mentioned above, and contains Al: 0.9-20.0 at% and Si: 25.5-68.0 at% with respect to the total amount of metal components, and remainder is Zn and It has an ingredient composition consisting of unavoidable impurities and is amorphous. The transparent oxide film has a sheet resistance of 1.0 × 10 14 Ω / sq or more at a film thickness of 100 nm. The transparent oxide film has an average refractive index value of 1.59 to 1.80 in the visible region and a water vapor transmission rate of 0.01 g / (m 2 · day) or less at a thickness of 50 nm or more. In addition, the water vapor transmission rate is measured by the mocon method according to the K7129 method of JIS standard.

또, 본 실시형태의 투명 산화물막의 제조 방법은, 전체 금속 성분량에 대해 Al : 0.3 ∼ 4.0 wt%, Si : 6.0 ∼ 14.5 wt% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 가진 산화물 소결체로 이루어지고, 그 소결체의 조직 중에 복합 산화물 Zn2SiO4 와 ZnO 가 존재하는 스퍼터링 타깃을 사용하여, 산소를 함유시킨 불활성 가스 분위기 중 및 기판을 가열한 상태의 적어도 일방의 환경하에서 직류 전류를 투입하여 스퍼터 (DC 스퍼터) 한다.Moreover, the manufacturing method of the transparent oxide film of this embodiment contains Al: 0.3-4.0 wt% and Si: 6.0-14.5 wt% with respect to the total amount of metal components, The oxide sintered compact which has a component composition which remainder consists of Zn and an unavoidable impurity. Using a sputtering target in which the complex oxides Zn 2 SiO 4 and ZnO are present in the structure of the sintered compact, direct current is introduced in an oxygen-containing inert gas atmosphere and under at least one environment in which the substrate is heated. Sputter (DC sputter).

이 때, 수지 필름 기재를 기판으로서 사용하고, 기판의 가열 온도는 100 ∼ 200 ℃ 의 범위로 설정한다. 또, 산소와 불활성 가스의 분위기 가스 전체에 대한 산소의 가스 분압은 0.05 이상으로 설정한다. 상기 투명 필름 기재로는, 아크릴 수지, 폴리아미드 수지, 폴리이미드 수지, 폴리에스테르 수지 셀룰로오스 및 이들의 공중합 수지, 합성한 투명한 기판을 예시할 수 있다. 상세한 예로서 폴리에스테르, 폴리에틸렌테레프탈레이트 (PET), 폴리부틸렌테레프탈레이트, 폴리메틸메타크릴레이트 (PMMA), 아크릴, 폴리카보네이트 (PC), 폴리스티렌, 폴리비닐알코올, 폴리에틸렌 등을 들 수 있지만, 이에 한정되는 것은 아니다. 또한, 상기 스퍼터링 타깃은 소결체의 밀도가 이론 밀도의 100 ∼ 108 % 이다. 또한, 이 스퍼터링 타깃은 벌크 저항값이 1 Ω·㎝ 이하이다.At this time, the resin film base material is used as a board | substrate, and the heating temperature of a board | substrate is set in the range of 100-200 degreeC. In addition, the gas partial pressure of oxygen with respect to the whole atmosphere gas of oxygen and an inert gas is set to 0.05 or more. As said transparent film base material, an acrylic resin, a polyamide resin, a polyimide resin, polyester resin cellulose, these copolymer resins, and the synthesize | combined transparent substrate can be illustrated. Specific examples include polyester, polyethylene terephthalate (PET), polybutylene terephthalate, polymethyl methacrylate (PMMA), acrylic, polycarbonate (PC), polystyrene, polyvinyl alcohol, polyethylene, and the like. It is not limited. Moreover, the density of a sintered compact of the said sputtering target is 100 to 108% of theoretical density. Moreover, this sputtering target has a bulk resistance value of 1 ohm * cm or less.

상기 소결체의 밀도를 이론 밀도비로 100 ∼ 108 % 로 한 이유는, 100 % 미만에서는 타깃이 균열되거나 하는 문제가 발생하기 때문이고, 108 % 를 초과하면 대부분이 복합 산화물 Zn2SiO4 의 조직이 되어 DC 스퍼터에 의한 방전을 할 수 없게 되기 때문이다. 여기서, 이론 밀도비의 계산에는 ZnO 는 5.61 g/㎤, SiO2 는 2.20 g/㎤, Al2O3 은 3.99 g/㎤ 의 값을 사용하여 계산을 실시하고 있다. 또, 스퍼터링 타깃의 벌크 저항값이 1 Ω·㎝ 이하이므로, 안정적이고 양호한 DC 스퍼터가 가능하다.The reason for setting the density of the sintered compact at 100 to 108% in the theoretical density ratio is that a problem occurs that the target is cracked at less than 100%, and when more than 108%, most of the structure becomes a composite oxide Zn 2 SiO 4 . This is because the discharge by the DC sputter cannot be performed. Here, the calculation of the theoretical density ratio is performed using a value of 5.61 g / cm 3 for ZnO, 2.20 g / cm 3 for SiO 2 , and 3.99 g / cm 3 for Al 2 O 3 . Moreover, since the bulk resistance value of a sputtering target is 1 ohm * cm or less, stable and favorable DC sputtering is possible.

이 스퍼터링 타깃을 제조하는 방법은, Al2O3 분말과 SiO2 분말과 ZnO 분말을 Al2O3 : 0.5 ∼ 5.0 wt%, SiO2 : 10 ∼ 22 wt%, 잔부 : ZnO 및 불가피 불순물로 이루어지도록 혼합하여 혼합 분말로 하는 공정과, 이 혼합 분말을 진공 중에서 핫 프레스로 소결하는 공정을 갖고 있다.The method for producing this sputtering target comprises Al 2 O 3 powder, SiO 2 powder and ZnO powder with Al 2 O 3 : 0.5-5.0 wt%, SiO 2 : 10-22 wt%, balance: ZnO and unavoidable impurities It has a process of mixing so that it may become a mixed powder, and the process of sintering this mixed powder by hot press in vacuum.

상기 제법의 일례에 대해 상세하게 서술하면, 예를 들어, 도 1 에 나타내는 바와 같이, 먼저 순도 99.9 % 이상의 Al2O3 분말과 SiO2 분말과 ZnO 분말을 상기 함유량 범위가 되도록 칭량하고, 습식 볼 밀에 의해 분쇄, 혼합하여 혼합 분말을 제조한다. 예를 들어, 칭량하여 얻어진 각 분말과 지르코니아 볼을 폴리 용기 (폴리에틸렌제 포트) 에 넣고, 볼 밀 장치로 소정 시간 습식 혼합하여 혼합 분말로 한다. 또한, 용매에는 예를 들어 알코올을 사용한다.When specifically described on the example of the production method, for example, 1, the first and weighed such that the content range of the purity of at least 99.9% Al 2 O 3 powder and SiO 2 powder and ZnO powder, wet ball The powder is pulverized and mixed with a mill to prepare a mixed powder. For example, each powder and zirconia ball obtained by weighing are put into a poly container (pot made of polyethylene), and it wet-mixes for a predetermined time with a ball mill apparatus, and it is set as mixed powder. In addition, alcohol is used for the solvent, for example.

다음으로, 얻어진 혼합 분말을 건조 후, 예를 들어 메시 : 250 ㎛ 의 체에 걸러 조립 (造粒) 하고, 추가로 진공 건조 후, 예를 들어 1200 ℃ 에서 5 시간, 200 kgf/㎠ 의 압력으로 진공 중에서 핫 프레스하여 소결체로 한다. 또한, 핫 프레스 온도는 1100 ∼ 1250 ℃ 의 범위가 바람직하고, 압력은 150 ∼ 350 kgf/㎠ 의 범위가 바람직하다. 이와 같이 핫 프레스한 소결체는, 통상적으로 방전 가공, 절삭 또는 연삭 공법을 사용하여 타깃의 지정 형상으로 기계 가공하고, 가공 후의 타깃을 In 을 땜납으로 하여, Cu 또는 SUS (스테인리스) 또는 그 밖의 금속 (예를 들어, Mo) 으로 이루어지는 배킹 플레이트에 본딩하여 스퍼터에 제공한다.Next, after drying, the obtained mixed powder is sieved through a sieve of mesh: 250 μm, and further vacuum dried, for example, at 1200 ° C. for 5 hours at a pressure of 200 kgf / cm 2. Hot pressing in vacuo to form a sintered body. Moreover, the range of 1100-1250 degreeC of hot press temperature is preferable, and the range of 150-350 kgf / cm <2> of pressure is preferable. The hot pressed sintered body is usually machined to a target shape using a discharge machining, cutting or grinding method, and the target after processing is In as solder, and Cu or SUS (stainless steel) or other metal ( For example, it bonds to the backing plate which consists of Mo), and provides it to a sputter | spatter.

또한, 다른 제조 방법으로는, 상기 제조 방법의 습식 볼 밀에 의한 분쇄, 혼합을, 순수를 용매로 하여 내용적 300 ℓ 의 볼 밀 장치를 사용하여 실시하고, 그 후, 스프레이 드라이에 의해 건조 조립 (造粒) 한 것을 추가로 건식 볼 밀로 괴쇄 (壞碎) 하고, 이 괴쇄 분말을 상기와 동일하게 핫 프레스하는 방법이어도 상관없다. 또, 상기 건식 볼 밀에 의한 괴쇄 공정을 생략한 방법이어도 상관없다.In addition, as another manufacturing method, the grinding | pulverization and mixing by the wet ball mill of the said manufacturing method are performed using the ball mill apparatus of 300 liter of internal volume using pure water as a solvent, and then dry granulation by spray drying. (Iii) The method may further be crushed with a dry ball mill, and the crushed powder may be hot pressed in the same manner as described above. Moreover, the method which omitted the crushing process by the said dry ball mill may be sufficient.

이 스퍼터링 타깃을 사용하여 본 실시형태의 투명 산화물막을 DC 스퍼터하려면, 상기 스퍼터링 타깃을 마그네트론 스퍼터링 장치에 세팅하고, 소정의 투입 전력, 도달 진공도 및 스퍼터 압력으로 스퍼터 가스 분압을 O2/(Ar + O2) 가 0.05 ∼ 0.2 의 범위, 기판 가열을 100 ℃ 내지 200 ℃ 로 한 조건으로 수지 필름 기재 상에 성막한다.To DC sputtering film transparent oxide in this embodiment by using a sputtering target, the setting of the sputtering target in a magnetron sputtering apparatus, and sputter gas partial pressure to the predetermined input power, reaches a degree of vacuum and the sputtering pressure O 2 / (Ar + O 2 ) It forms into a film on the resin film base material on the conditions which were 0.05 to 0.2 and the board | substrate heating made 100 to 200 degreeC.

이와 같이 본 실시형태의 투명 산화물막에서는, 전체 금속 성분량에 대해 Al : 0.9 ∼ 20.0 at%, Si : 25.5 ∼ 68.0 at% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 갖고, 비정질이므로, 종래보다 가시광역에서 낮은 굴절률이 얻어짐과 함께 높은 가스 배리어성 (예를 들어, 수증기 배리어성) 을 갖고 있다. 특히, 가시광역에서의 굴절률 평균값이 1.59 ∼ 1.80 이고, 두께 50 ㎚ 이상에서 수증기 투과율을 0.01 g/(㎡·day) 이하로 함으로써, 전자 페이퍼나 태양 전지에서 채용되는 수지 필름 기재 상에 성막된 가스 배리어층으로서 바람직하다.Thus, in the transparent oxide film of this embodiment, since it contains Al: 0.9-20.0 at% and Si: 25.5-68.0 at% with respect to the total metal component amount, and remainder has the component composition which consists of Zn and an unavoidable impurity, it is amorphous, The refractive index is lowered in the visible region than in the prior art and has a high gas barrier property (for example, water vapor barrier property). In particular, a gas formed on a resin film substrate employed in electronic paper or solar cells by having an average refractive index in the visible range of 1.59 to 1.80 and a water vapor transmission rate of 0.01 g / (m 2 · day) or less at a thickness of 50 nm or more. It is preferable as a barrier layer.

또, 이 투명 산화물막의 제조 방법에서는, 상기 산화물 소결체의 조직 중에 복합 산화물 Zn2SiO4 와 ZnO 가 존재하는 스퍼터링 타깃을 사용하므로, DC 스퍼터가 가능해지고, 또한 산소를 함유시킨 불활성 가스 분위기 중 및 기판을 가열한 상태의 적어도 일방의 환경하에서 직류 전류를 투입하여 스퍼터하므로, Si 를 많이 함유시킨 비정질의 투명 산화물막 (ZnO-SiO2-Al2O3 막) 을 성막할 수 있다. 따라서, 본 발명의 제법에 의하면, 종래보다 SiO2 를 많이 첨가할 수 있고, 굴절률을 낮추면서 비정질이고 가스 배리어성이 높은 투명 산화물막을 DC 스퍼터로 성막할 수 있다. 또한, 가시광역에서 95 % 이상의 높은 투과율이 얻어져, 양호한 투명성을 가진 막을 얻을 수 있다.In the method for producing the transparent oxide film, a sputtering target in which the complex oxides Zn 2 SiO 4 and ZnO exist in the structure of the oxide sintered body is used, so that DC sputtering is possible and oxygen is contained in the inert gas atmosphere and the substrate. Since a direct current is introduced and sputtered under at least one environment in the state of heating, an amorphous transparent oxide film (ZnO-SiO 2 -Al 2 O 3 film) containing a large amount of Si can be formed. Therefore, according to the production method of the present invention, it is possible to much more than the conventional addition of SiO 2, amorphous lowering the refractive index and can be formed a film with high gas barrier transparent oxide by DC sputtering. In addition, a high transmittance of 95% or more in the visible range is obtained, whereby a film having good transparency can be obtained.

또, 기판의 가열 온도를 100 ∼ 200 ℃ 의 범위로 설정하므로, 성막하는 수지 필름 기재에 대한 열 영향을 억제하면서, 전자 페이퍼나 태양 전지에서 채용되는 가스 배리어층으로서 충분한 투명성과 낮은 굴절률을 갖는 투명 산화물막이 얻어진다. 또한, 산소와 불활성 가스의 분위기 가스 전체에 대한 산소의 가스 분압을 0.05 이상으로 설정하므로, 전자 페이퍼나 태양 전지에서 채용되는 가스 배리어층으로서 충분한 투명성과 낮은 굴절률을 갖는 투명 산화물막이 얻어진다.Moreover, since the heating temperature of a board | substrate is set in the range of 100-200 degreeC, the transparency which has sufficient transparency and low refractive index as a gas barrier layer employ | adopted for electronic paper and a solar cell, suppressing the heat influence on the resin film base material to form into a film, An oxide film is obtained. In addition, since the gas partial pressure of oxygen with respect to the whole atmosphere gas of oxygen and an inert gas is set to 0.05 or more, the transparent oxide film which has sufficient transparency and low refractive index as a gas barrier layer employ | adopted for an electronic paper or a solar cell is obtained.

실시예Example

상기 본 실시형태에 기초하여 제조한 투명 산화물막의 실시예에 대해 평가한 결과를 도 2 내지 도 8 을 참조하여 이하에 설명한다.The evaluation result about the Example of the transparent oxide film manufactured based on the said present embodiment is demonstrated below with reference to FIGS.

본 발명의 실시예의 제조는 이하의 조건으로 실시하였다. 먼저, 표 1 에 나타내는 조성 비율이 되도록 Al2O3 분말과 SiO2 분말과 ZnO 분말을 칭량하고, 얻어진 분말과 그 4 배량 (중량비) 의 지르코니아 볼 (직경 5 ㎜ 의 볼과 직경 10 ㎜ 의 볼을 반씩) 을 10 ℓ 의 폴리 용기 (폴리에틸렌제 포트) 에 넣고, 볼 밀 장치로 48 시간 습식 혼합하여 혼합 분말로 한다. 또한, 용매에는 예를 들어 알코올을 사용하였다.Preparation of the Example of this invention was performed on condition of the following. First, Al 2 O 3 powder, SiO 2 powder, and ZnO powder were weighed so as to have the composition ratio shown in Table 1, and the obtained powder and its four-times (weight ratio) zirconia ball (ball of 5 mm in diameter and ball of 10 mm in diameter) were weighed. In half) into a 10 L polycontainer (polyethylene pot) and wet mixed for 48 hours with a ball mill to obtain a mixed powder. In addition, alcohol was used for the solvent, for example.

다음으로, 얻어진 혼합 분말을 건조 후, 예를 들어 메시 : 250 ㎛ 의 체에 걸러 조립하고, 추가로 진공 건조 후, 1200 ℃ 에서 5 시간, 200 kgf/㎠ 의 압력으로 진공 핫 프레스하여 소결체로 하였다. 이와 같이 핫 프레스한 소결체를 타깃의 지정 형상 (직경 125 ㎜, 두께 10 ㎜) 으로 기계 가공하고, 가공된 것을 무산소 구리로 이루어지는 배킹 플레이트에 본딩하여 본 실시예 1 ∼ 16 의 스퍼터링 타깃을 제조하였다.Next, after drying, the obtained mixed powder was granulated by sieving, for example, a mesh: 250 μm, and further vacuum dried, followed by vacuum hot pressing at 1200 ° C. for 5 hours at a pressure of 200 kgf / cm 2 to obtain a sintered body. . Thus, the hot-pressed sintered compact was machined into the target shape (125 mm in diameter, 10 mm in thickness), and the processed thing was bonded to the backing plate which consists of oxygen-free copper, and the sputtering target of Examples 1-16 was produced.

또한, 이들 스퍼터링 타깃을 마그네트론 스퍼터링 장치에 세팅하고, 전원 : DC, 투입 전력 : 500 W, 도달 진공도 : 1 × 10-4 ㎩, 스퍼터 가스 분압 (산소와 불활성 가스의 분위기 가스 전체에 대한 산소의 가스 분압 : O2/(Ar + O2) 가 0.05 이상, 스퍼터 압력 : 0.67 ㎩, 기판 가열을 100 ℃ 내지 200 ℃ 로 한 조건으로 굴절률 및 투과율 측정용으로서 유리 기판 (코닝사 1737# 세로 : 20 × 가로 : 20, 두께 : 0.7 ㎜) 상에 막두께 150 ㎚, 또 수증기 투과 측정용으로서 PET 필름 (세로 : 100 ㎜ × 가로 : 100 ㎜, 두께 : 120 ㎛) 에 50 ㎚ 를 갖는 투명막의 형성을 시험하였다. 또, 밀착성 시험용으로 폴리이미드 필름 (세로 : 100 ㎜ × 가로 : 100 ㎜, 두께 : 120 ㎛) 에 50 ㎚ 를 갖는 투명막의 형성을 시험하였다.Furthermore, these sputtering targets were set in the magnetron sputtering apparatus, and power supply: DC, input power: 500 W, attained vacuum degree: 1 x 10 -4 Pa, sputter gas partial pressure (oxygen gas to the whole atmosphere gas of oxygen and inert gas). Partial pressure: O 2 / (Ar + O 2 ) is 0.05 or more, sputter pressure: 0.67 kPa, glass substrate (for Corning Co., Ltd. 1737 k length: 20 x horizontal) for the measurement of refractive index and transmittance under the condition that substrate heating was set at 100 ° C to 200 ° C. : 20, thickness: 0.7 mm) The formation of the transparent film which has a film thickness of 150 nm and 50 nm in PET film (length: 100 mm x width: 100 mm, thickness: 120 micrometers) for water vapor transmission measurement was tested. Moreover, formation of the transparent film which has 50 nm in the polyimide film (length: 100 mm x width: 100 mm, thickness: 120 micrometers) for the adhesiveness test was tested.

또한, 비교예의 투명 산화물막으로서 표 1 에 나타내는 조건에 있어서, 기판의 가열 온도를 100 ∼ 200 ℃ 의 범위 외로 설정한 것 (비교예 1, 2) 과, 스퍼터링 타깃의 Si 함유량을 6.08 wt% 미만으로 한 것 (비교예 3, 4) 을 상기 실시예와 동일하게 제조하였다. 또한, 종래예로서 스퍼터링 타깃의 Si 함유량을 6.08 wt% 미만으로 함과 함께 RF 스퍼터에 의해 성막한 것을 상기 실시예와 동일하게 제조하였다.In addition, on the conditions shown in Table 1 as a transparent oxide film of a comparative example, the heating temperature of the board | substrate was set out of the range of 100-200 degreeC (comparative examples 1 and 2), and Si content of a sputtering target is less than 6.08 wt%. (Comparative Examples 3 and 4) were prepared in the same manner as in the above examples. As a conventional example, the Si content of the sputtering target was less than 6.08 wt%, and a film formed by RF sputtering was produced in the same manner as in the above example.

Figure pct00001
Figure pct00001

이와 같이 제조한 본 발명의 실시예, 비교예 및 종래예의 투명 산화물막에 대해 막 조성을 ICP 발광 분석법으로 측정한 결과, 전체 금속 성분에 대한 각 금속 성분은 표 1 에 나타내는 바와 같이 되었다. 또, 본 발명의 실시예 및 비교예의 투명 산화물막에 대해 X 선 회절 (XRD) 의 분석을 실시하고, 결정 피크의 유무에 대해 조사한 결과를 표 1 에 나타낸다. 또한, 대표적으로 실시예 3, 5, 6, 11 및 비교예 4 에 대해 XRD 분석 결과의 그래프를 도 2 ∼ 도 6 에 각각 나타낸다.As a result of measuring the film composition by the ICP emission spectrometry with respect to the transparent oxide film of the Example, the comparative example, and the conventional example of this invention which were manufactured in this way, each metal component with respect to all the metal components became as shown in Table 1. Table 1 shows the results of X-ray diffraction (XRD) analysis on the transparent oxide films of Examples and Comparative Examples of the present invention and the presence or absence of crystal peaks. In addition, the graph of the XRD analysis result about Example 3, 5, 6, 11, and Comparative Example 4 is typically shown to FIGS. 2-6, respectively.

또, 얻어진 각 투명 산화물막의 굴절률은 분광 엘립소미터 (HORIBA Jobin Yvon 사 제조 UVISEL NIA AGMS) 에 의해, 투과율은 분광 광도계 (니혼 분광사 제조 V-550) 에 의해 측정하였다. 측정한 각각의 결과는 표 1 에 나타낸다. 또한, 대표적으로 실시예 3, 5, 6, 11 및 비교예 4 에 대해, 파장에 대한 투과율 특성을 나타내는 그래프를 도 7 에 나타낸다. 또, 투명 산화물막의 막두께 50 ㎚, 100 ㎚, 300 ㎚ 에 있어서의 파장 750 ㎚ 에서의 투과율 결과를 표 2 에 나타낸다.In addition, the refractive index of each obtained transparent oxide film was measured with the spectroscopic ellipsometer (UVISEL NIA AGMS by HORIBA Jobin Yvon), and the transmittance | permeability was measured with the spectrophotometer (V-550 by Nihon spectroscopy). Each result measured is shown in Table 1. In addition, the graph which shows the transmittance | permeability characteristic with respect to a wavelength about Example 3, 5, 6, 11, and Comparative Example 4 is typically shown in FIG. Table 2 shows the results of the transmittance at a wavelength of 750 nm at 50 nm, 100 nm, and 300 nm of the film thickness of the transparent oxide film.

Figure pct00002
Figure pct00002

또한, 수증기 투과율 (수증기 배리어성) 은 모콘법을 사용하고, mocon 사 제조의 PERMATRAN-WMODEL 3/33 을 사용하여 JIS 규격의 K7129 법에 기초하여 측정하였다. 측정된 각각의 결과는 표 1 에 나타낸다. 또한, 대표적으로 실시예 3, 5, 6, 11 및 비교예 4 에 대해, 파장에 대한 굴절률 특성을 나타내는 그래프를 도 8 에 나타낸다.In addition, water vapor transmission rate (water vapor barrier property) was measured based on JIS K7129 method using the mocon method, and PERMATRAN-WMODEL 3/33 by a mocon company. Each result measured is shown in Table 1. In addition, the graph which shows the refractive index characteristic with respect to a wavelength about Example 3, 5, 6, 11, and Comparative Example 4 is typically shown in FIG.

이들 평가의 결과, 비교예 1, 3, 4 에서는 XRD 분석에 있어서 결정 피크가 확인되어 막 중에 결정이 석출되었고, 수증기 투과율도 0.01 g/(㎡·day) 를 초과하였다. 또, 가시광역의 굴절률이 1.80 을 초과하였음과 함께 투과율도 95 % 미만으로 낮다. 또한, 비교예 2 는, 기판 가열 온도가 210 ℃ 로 높기 때문에 수지 필름 기재가 열 변형되어 평가를 할 수 없었다. 또한, RF 스퍼터로 성막한 종래예에서는, Si 의 함유량이 낮고 가시광역의 굴절률이 2.05 로 높음과 함께 투과율도 90.6 % 로 낮았다.As a result of these evaluations, in Comparative Examples 1, 3, and 4, crystal peaks were confirmed in XRD analysis, and crystals precipitated in the film, and the water vapor transmission rate also exceeded 0.01 g / (m 2 · day). Moreover, while the refractive index of visible region exceeded 1.80, the transmittance | permeability is low as less than 95%. In addition, in the comparative example 2, since the substrate heating temperature was high as 210 degreeC, the resin film base material thermally deformed and was not able to evaluate. Moreover, in the conventional example formed into a film by RF sputter | spatter, while content of Si was low, the refractive index of visible region was high as 2.05, and the transmittance | permeability was low as 90.6%.

이들에 대해 본 발명의 실시예는 모두 XRD 분석에 있어서 결정 피크가 확인되지 않고, 비정질인 막이며, 수증기 투과율에 대해서도 0.01 g/(㎡·day) 이하이고, 높은 수증기 배리어성을 갖고 있다. 또, 어느 실시예도 가시광역의 굴절률이 1.80 이하임과 함께 투과율도 95 % 이상으로 높고, 낮은 굴절률 또한 높은 투명성의 막이 얻어졌다. 이와 같이 본 발명의 실시예의 투명 산화물막은, 모두 전자 페이퍼나 태양 전지에 채용되는 가스 배리어층으로서 바람직한 막 특성을 구비하고 있다. 단, 실시예 16 에 기재된 조건에서는 막의 특성은 우수하지만, 스퍼터시의 분위기에서의 O2 량이 많기 때문에 성막 속도가 느려진다.On the other hand, all of the examples of the present invention are amorphous films without XRD analysis, are amorphous films, have a water vapor transmission rate of 0.01 g / (m 2 · day) or less, and have high water vapor barrier properties. In each of the examples, a transparent film having a high refractive index of 95% or more and a low refractive index and a high refractive index of 1.80 or less was obtained. Thus, the transparent oxide film of the Example of this invention is equipped with the film characteristic suitable as a gas barrier layer employ | adopted for all the electronic paper and a solar cell. However, in the conditions described in Example 16 it is excellent in film properties, but the film formation rate is slow due to the large amount of O 2 in the atmosphere during sputtering.

<밀착성의 측정> 밀착성의 측정으로서, 먼저 얻어진 필름 상의 투명 산화물막 (실시예 1 ∼ 17, 비교예 1 ∼ 7, 종래예) 을 유리 기판 상에 양면 테이프로 첩부 (貼付) 하고, 투명 산화물막 상으로부터 커터로 바둑판의 눈 형상으로 100 개의 절입을 형성하였다. 다음으로, 셀로판 점착 테이프를 강하게 첩부한 후, 90˚ 방향으로 급속히 박리시켜 투명 산화물막의 박리의 유무를 조사하였다. 그 결과를 표 3 에 나타낸다. 100 개의 눈 중, 박리되지 않은 눈의 수를 X 로 표시하였다. 즉, 박리된 곳이 있는 경우에는 X/100, 박리된 곳이 없는 경우에는 100/100 으로 나타낸다.<Measurement of adhesiveness> As a measurement of adhesiveness, the transparent oxide film (Examples 1-17, Comparative Examples 1-7, prior art example) on the film obtained first is affixed on a glass substrate with a double-sided tape, and a transparent oxide film 100 incisions were formed in the shape of a checkerboard eye with a cutter from the top. Next, after affixing a cellophane adhesive tape strongly, it peeled rapidly in the 90 degree direction, and examined the presence or absence of peeling of a transparent oxide film. The results are shown in Table 3. Of the 100 eyes, the number of eyes that did not peel was indicated by X. That is, when there exists a peeled place, it shows as X / 100, and when there is no peeled place, it shows as 100/100.

Figure pct00003
Figure pct00003

이들 결과로부터 알 수 있는 바와 같이, 비교예나 종래예에서는 박리가 발생한 반면, 본 발명의 실시예는 모두 박리가 발생하지 않았고, 높은 밀착성이 얻어졌다.As can be seen from these results, peeling occurred in the comparative example and the prior art example, whereas peeling did not occur in all of the examples of the present invention, and high adhesion was obtained.

또한, 본 발명의 기술 범위는 상기 실시형태 및 상기 실시예에 한정되는 것은 아니며, 본 발명의 취지를 일탈하지 않는 범위에 있어서 여러 가지 변경을 가할 수 있다. 예를 들어, 수지 필름 상에 성막할 뿐만 아니라, 반대로 유리 상에 투명 산화물막을 성막하고, 그 위에 수지막을 붙이고, 추가로 유리로부터 수지막과 함께 투명 산화물막을 박리하도록 해도 상관없다.In addition, the technical scope of this invention is not limited to the said embodiment and the said Example, A various change can be added in the range which does not deviate from the meaning of this invention. For example, you may not only form a film on a resin film but also, on the contrary, form a transparent oxide film on glass, apply a resin film on it, and peel a transparent oxide film together with a resin film from glass further.

(스퍼터링 타깃에 관한 참고예) 본 발명에 있어서는, DC 스퍼터에 의한 성막이 요구되지만, DC 스퍼터가 가능한 스퍼터링 타깃에 관하여 검토 결과를 이하에 나타낸다. 본 참고예에 관련된 스퍼터링 타깃의 제조는 이하의 조건으로 실시하였다. 먼저, Al2O3 분말과 SiO2 분말과 ZnO 분말을 표 1 에 나타낸 각 비율로 칭량하고, 얻어진 분말과 그 4 배량 (중량비) 의 지르코니아 볼 (직경 5 ㎜ 의 볼과 직경 10 ㎜ 의 볼을 반씩) 을 10 ℓ 의 폴리 용기 (폴리에틸렌제 포트) 에 넣고, 볼 밀 장치로 48 시간 습식 혼합하여 혼합 분말로 한다. 또한, 용매에는 예를 들어 알코올을 사용하였다.(Reference Example Regarding Sputtering Target) In the present invention, although film formation by DC sputtering is required, the results of examination are shown below regarding sputtering targets capable of DC sputtering. The manufacture of the sputtering target which concerns on this reference example was performed on condition of the following. First, Al 2 O 3 powder, SiO 2 powder, and ZnO powder were weighed at the ratios shown in Table 1, and the obtained powder and 4 times its weight (weight ratio) of zirconia balls (5 mm diameter balls and 10 mm diameter balls) were weighed. Each half) is placed in a 10 L polycontainer (polyethylene pot), wet mixed for 48 hours in a ball mill apparatus to obtain a mixed powder. In addition, alcohol was used for the solvent, for example.

다음으로, 얻어진 혼합 분말을 건조 후, 예를 들어 메시 : 250 ㎛ 의 체에 걸러 조립하고, 추가로 진공 건조 후, 1200 ℃ 에서 5 시간, 200 kgf/㎠ 의 압력으로 진공 핫 프레스하여 소결체로 하였다. 이와 같이 핫 프레스한 소결체를 타깃의 지정 형상 (직경 125 ㎜, 두께 10 ㎜) 으로 기계 가공하고, 가공된 것을 무산소 구리로 이루어지는 배킹 플레이트에 본딩하여 본 참고예의 스퍼터링 타깃을 제조하였다.Next, after drying, the obtained mixed powder was granulated by sieving, for example, a mesh: 250 μm, and further vacuum dried, followed by vacuum hot pressing at 1200 ° C. for 5 hours at a pressure of 200 kgf / cm 2 to obtain a sintered body. . Thus, the hot-pressed sintered compact was machined into the target shape (125 mm in diameter, 10 mm in thickness), and the processed thing was bonded to the backing plate which consists of oxygen-free copper, and the sputtering target of this reference example was manufactured.

또한, 비교 참고예 1 ∼ 11 로서, Al2O3 분말과 SiO2 분말과 ZnO 분말을 표 2 에 나타낸 각 비율로 칭량하고, 얻어진 각 분말을 혼합하고, 0.6 t/㎠ 로 프레스하고, 추가로 CIP (냉간 정수 등방압 프레스) 로 175 ㎫ 로 성형하고, 그것을 1400 ℃ 에서 대기 소성하여 스퍼터링 타깃을 제조하였다. 또, 비교 참고예 12 ∼ 14 로서, 본 발명의 성분 조성의 범위 외로서 표 2 에 나타내는 각 비율로 칭량하고, 본 참고예와 동일한 조건으로 진공 핫 프레스하여 스퍼터링 타깃을 제조하였다.In addition, as Comparative Reference Examples 1 to 11, Al 2 O 3 powder, SiO 2 powder, and ZnO powder were weighed in the ratios shown in Table 2, and the obtained powders were mixed, pressed at 0.6 t / cm 2, and further pressed. It shape | molded at 175 Mpa by CIP (cold-water isotropic press), it air-fired at 1400 degreeC, and produced the sputtering target. Moreover, as Comparative Reference Examples 12-14, it measured in each ratio shown in Table 2 outside the range of the component composition of this invention, and vacuum-hot-pressed on the conditions similar to this reference example, and produced the sputtering target.

또한, 이들 스퍼터링 타깃을 마그네트론 스퍼터링 장치에 세팅하고, 전원 : DC, 투입 전력 : 200 W, 도달 진공도 : 1 × 10-4 ㎩, 스퍼터 가스 : Ar, 스퍼터 압력 : 0.67 ㎩ 로 한 조건으로, 200 ℃ 로 가열된 유리 기판 (코닝사 1737# 세로 : 20 × 가로 : 20, 두께 : 0.7 ㎜) 상에 막두께 : 300 ㎚ 를 갖는 투명막의 형성을 시험하였다.In addition, these sputtering targets were set in a magnetron sputtering apparatus, and the power source: DC, the input power: 200 W, the attained vacuum degree: 1 x 10 -4 kPa, the sputter gas: Ar, the sputtering pressure: 0.67 kPa, 200 degreeC The formation of the transparent film which has a film thickness of 300 nm was tested on the glass substrate (Corning Co., Ltd. 1737 mm length: 20 * width: 20, thickness: 0.7 mm) heated by the furnace.

이와 같이 제조한 본 발명의 참고예 및 비교 참고예에 대해, 소결체의 밀도 (이론 밀도비), X 선 회절법 (XRD) 에 의한 ZnO (101) 및 Zn2SiO4 (410) 의 회절 피크의 유무, DC 스퍼터의 가부, 벌크 저항값, 60 분간의 DC 스퍼터시의 이상 방전 횟수, DC 스퍼터한 투명막의 굴절률 (파장 380 ㎚, 550 ㎚, 750 ㎚ 의 광에 대해) 을 각각 측정, 평가하였다. 이 결과를 표 4 에 나타낸다.For the reference example and comparative reference example of the present invention thus prepared, the density (theoretical density ratio) of the sintered compact, the diffraction peaks of ZnO 101 and Zn 2 SiO 4 (410) by X-ray diffraction method (XRD) The presence / absence of the DC sputter, the bulk resistance value, the number of abnormal discharges during DC sputtering for 60 minutes, and the refractive index (for light having a wavelength of 380 nm, 550 nm, and 750 nm) of the DC sputtered film were measured and evaluated, respectively. The results are shown in Table 4.

Figure pct00004
Figure pct00004

이 결과로부터 알 수 있는 바와 같이, 대기 소성을 사용한 비교 참고예 중 Al2O3 의 함유량이 적고 SiO2 를 함유하지 않는 비교 참고예 1, 2 에서는, 이상 방전 횟수가 많아 안정적인 DC 스퍼터를 할 수 없었고, Al2O3 의 함유량이 어느 정도 있지만 SiO2 를 함유하지 않는 비교 참고예 3 ∼ 5 에서는, 낮은 굴절률이 얻어지지 않았다. 또, 대기 소성을 사용한 비교 참고예 중 Al2O3 의 함유량이 많고 SiO2 를 함유하지 않는 비교 참고예 6, 7 에서는, 이상 방전 횟수가 많아 안정적인 DC 스퍼터를 할 수 없었고, Al2O3 과 SiO2 를 함유하는 비교 참고예 8 ∼ 11 에서는, 이상 방전 횟수가 많거나 또는 타깃에 도전성이 없어 DC 스퍼터를 할 수 없었다. 또한, 비교 참고예 1 ∼ 7 은 모두 밀도가 이론 밀도의 100 % 미만이었다.As can be seen from these results, in Comparative Reference Examples 1 and 2, in which the content of Al 2 O 3 is small and does not contain SiO 2 in the Comparative Reference Examples using atmospheric calcination, the number of abnormal discharges was large, and stable DC sputtering was possible. It had, when the content of Al 2 O 3 to some extent, but in the Comparative reference example 3-5 not containing a SiO 2, a low refractive index could not be obtained. Further, in Comparative Reference Example with the air firing lot when the content of Al 2 O 3 in Comparative Reference Examples 6 and 7 which does not contain SiO 2, it could not be a stable DC sputtering increases more than the number of discharges, and Al 2 O 3 In Comparative Reference Examples 8 to 11 containing SiO 2 , DC sputtering could not be performed because the number of abnormal discharges was large or the target was not conductive. In addition, the density of all the comparative reference examples 1-7 was less than 100% of theoretical density.

또한, 핫 프레스를 사용한 비교 참고예 중 SiO2 의 함유량이 본 발명의 범위보다 적은 비교 참고예 12 에서는, 낮은 굴절률이 얻어지지 않았고, SiO2 의 함유량이 본 발명의 범위보다 많은 비교 참고예 13 에서는, 타깃에 도전성이 없어 DC 스퍼터를 할 수 없었다. 또, Al2O3 의 함유량이 본 발명의 범위보다 많은 비교 참고예 14 에서는, 이상 방전 횟수가 많아 안정적인 DC 스퍼터를 할 수 없었다. 또한, 비교 참고예 8, 12, 14 에서는, XRD 에 있어서 ZnO (101) 및 Zn2SiO4 (410) 의 양 피크가 관찰되었지만, Al 또는 Si 의 함유량이 본 발명의 범위에서 벗어났기 때문에 상기 서술한 문제가 발생하였다.In Comparative Reference Example 12 in which the content of SiO 2 was less than the range of the present invention in the comparative reference example using the hot press, low refractive index was not obtained, and in Comparative Reference Example 13 in which the content of SiO 2 was higher than the range of the present invention. The target was not conductive and DC sputtering could not be performed. In addition, in Comparative Reference Example 14 in which the content of Al 2 O 3 was larger than the range of the present invention, the number of abnormal discharges was large and a stable DC sputtering could not be performed. In Comparative Reference Examples 8, 12, and 14, both peaks of ZnO (101) and Zn 2 SiO 4 (410) were observed in XRD, but because the content of Al or Si was out of the range of the present invention, the above description was made. One problem arose.

이들에 대해 본 참고예는, 모두 XRD 에 있어서 ZnO (101) 및 Zn2SiO4 (410) 의 양 피크가 관찰되었고, 이상 방전 횟수가 매우 적어 안정적으로 양호한 DC 스퍼터를 할 수 있었으며, 굴절률에 대해서도 모두 AZO 막보다 낮은 굴절률이 얻어졌다. 또, 밀도에 대해서도, 본 참고예에서는 모두 이론 밀도의 100 ∼ 108 % 의 범위 내였다.In these reference examples, both peaks of ZnO (101) and Zn 2 SiO 4 (410) were observed in XRD, and the number of abnormal discharges was very small, so that a stable DC sputter was possible. All of the lower refractive indexes than the AZO films were obtained. Moreover, also about density, it was all in the range of 100-108% of theoretical density in this reference example.

다음으로, 표 1 에 나타내는 참고예 3 (SiO2 : 20 wt% ) 에 대해, X 선 회절법 (XRD) 으로 관찰한 결과를 도 9 에 나타낸다. 이 참고예 3 에서는, 복합 산화물 Zn2SiO4 의 (410) 의 회절 피크와 ZnO 의 (101) 의 회절 피크가 모두 높은 강도로 관찰되었다. 이에 반해, 참고예 3 과 동일한 성분 조성에 의해 대기 소성으로 제조한 비교 참고예에서는, 도 10 에 나타내는 바와 같이 ZnO 의 (101) 의 회절 피크가 얻어지지 않았다. 이와 같이 도전성을 얻으려면, 본 참고예와 같이 복합 산화물 Zn2SiO4 와 ZnO 가 조직 중에 공존하는 것이 필요하다.Next, about the reference example 3 (SiO2: 20 wt%) shown in Table 1, the result observed with the X-ray-diffraction method (XRD) is shown in FIG. In this reference example 3, both the diffraction peak of (410) of the composite oxide Zn 2 SiO 4 and the diffraction peak of (101) of ZnO were observed with high intensity. On the other hand, in the comparative reference example manufactured by atmospheric baking by the same component composition as the reference example 3, as shown in FIG. 10, the diffraction peak of (101) of ZnO was not obtained. In order to obtain conductivity in this manner, it is necessary for the composite oxides Zn 2 SiO 4 and ZnO to coexist in the structure as in this reference example.

Claims (6)

전체 금속 성분량에 대해 Al : 0.9 ∼ 20.0 at%, Si : 25.5 ∼ 68.0 at% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 갖고, 비정질인 것을 특징으로 하는 투명 산화물막.A transparent oxide film comprising Al: 0.9 to 20.0 at% and Si: 25.5 to 68.0 at% based on the total amount of metal components, the balance being amorphous, and having a component composition consisting of Zn and inevitable impurities. 제 1 항에 있어서,
파장 750 ㎚ 에 있어서의 투과율이 93 % 이상인 것을 특징으로 하는 투명 산화물막.
The method of claim 1,
The transmittance | permeability in wavelength 750nm is 93% or more, The transparent oxide film characterized by the above-mentioned.
제 1 항에 있어서,
가시광역에서의 굴절률 평균값이 1.59 ∼ 1.80 이고, 두께 50 ㎚ 이상에서 수증기 투과율이 0.01 g/(㎡·day) 이하인 것을 특징으로 하는 투명 산화물막.
The method of claim 1,
The refractive index average value in visible range is 1.59-1.80, and the water vapor transmittance is 0.01 g / (m <2> * day) or less in thickness 50nm or more, The transparent oxide film characterized by the above-mentioned.
제 1 항에 기재된 투명 산화물막을 제조하는 방법으로서,
전체 금속 성분량에 대해 Al : 0.3 ∼ 4.0 wt%, Si : 6.0 ∼ 14.5 wt% 를 함유하고, 잔부가 Zn 및 불가피 불순물로 이루어지는 성분 조성을 가진 산화물 소결체로 이루어지고, 그 소결체의 조직 중에 복합 산화물 Zn2SiO4 와 ZnO 가 존재하는 스퍼터링 타깃을 사용하여, 산소를 함유시킨 불활성 가스 분위기 중 및 기판을 가열한 상태의 적어도 일방의 환경하에서 직류 전류를 투입하여 스퍼터하는 것을 특징으로 하는 투명 산화물막의 제조 방법.
As a method of manufacturing the transparent oxide film according to claim 1,
The composite oxide Zn 2 contains 0.3 to 4.0 wt% of Al and 6.0 to 14.5 wt% of Si, and the balance is composed of an oxide sintered body having a component composition composed of Zn and unavoidable impurities, and in the structure of the sintered body. A sputtering target containing SiO 4 and ZnO, and sputtering by injecting a DC current in at least one environment in an inert gas atmosphere containing oxygen and in a state where the substrate is heated.
제 4 항에 있어서,
상기 기판이 수지 필름 기재이고, 상기 기판의 가열 온도를 100 ∼ 200 ℃ 의 범위로 설정하는 것을 특징으로 하는 투명 산화물막의 제조 방법.
5. The method of claim 4,
The said board | substrate is a resin film base material, and the heating temperature of the said board | substrate is set to the range of 100-200 degreeC, The manufacturing method of the transparent oxide film characterized by the above-mentioned.
제 4 항에 있어서,
상기 산소와 불활성 가스의 분위기 가스 전체에 대한 산소의 가스 분압을 0.05 이상으로 설정하는 것을 특징으로 하는 투명 산화물막의 제조 방법.
5. The method of claim 4,
A gas partial pressure of oxygen with respect to the entire atmosphere gas of the oxygen and the inert gas is set to 0.05 or more.
KR1020137019308A 2011-02-25 2012-02-20 Transparent oxide film and process for producing same KR20140004143A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2011-040441 2011-02-25
JP2011040441 2011-02-25
JPJP-P-2012-030340 2012-02-15
JP2012030340 2012-02-15
PCT/JP2012/001108 WO2012114713A1 (en) 2011-02-25 2012-02-20 Transparent oxide film and process for producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020177018979A Division KR20170084351A (en) 2011-02-25 2012-02-20 Transparent oxide film and process for producing same

Publications (1)

Publication Number Publication Date
KR20140004143A true KR20140004143A (en) 2014-01-10

Family

ID=46720507

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137019308A KR20140004143A (en) 2011-02-25 2012-02-20 Transparent oxide film and process for producing same
KR1020177018979A KR20170084351A (en) 2011-02-25 2012-02-20 Transparent oxide film and process for producing same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020177018979A KR20170084351A (en) 2011-02-25 2012-02-20 Transparent oxide film and process for producing same

Country Status (5)

Country Link
JP (1) JP5884549B2 (en)
KR (2) KR20140004143A (en)
CN (1) CN103380229B (en)
TW (1) TWI572731B (en)
WO (1) WO2012114713A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730729B2 (en) * 2011-09-20 2015-06-10 株式会社カネカ Substrate with transparent electrode
JP6070194B2 (en) * 2011-10-28 2017-02-01 東レ株式会社 Gas barrier film
JP5550768B1 (en) * 2012-07-03 2014-07-16 Jx日鉱日石金属株式会社 Sintered body and amorphous film
WO2014069367A1 (en) * 2012-10-30 2014-05-08 Jx日鉱日石金属株式会社 Electrically conductive oxide sintered body, and low-refractive-index film produced using said electrically conductive oxide
JP2014114467A (en) * 2012-12-07 2014-06-26 Toray Ind Inc Method for producing gas barrier film
KR102196648B1 (en) * 2013-01-11 2020-12-30 도레이 카부시키가이샤 Gas barrier film
JP6493920B2 (en) * 2013-12-26 2019-04-03 国立研究開発法人科学技術振興機構 METAL OXIDE THIN FILM, ORGANIC ELECTROLUMINESCENT DEVICE EQUIPPED WITH THIS THIN FILM, SOLAR CELL, AND ORGANIC SOLAR CELL
JP6149804B2 (en) * 2014-05-30 2017-06-21 住友金属鉱山株式会社 Oxide sintered body and manufacturing method thereof
JP6650770B2 (en) * 2016-01-29 2020-02-19 日東電工株式会社 Conductive laminated film
JP6938112B2 (en) * 2016-01-29 2021-09-22 日東電工株式会社 Optical laminate
JP6945965B2 (en) * 2016-01-29 2021-10-06 日東電工株式会社 Optical laminate
JP6866065B2 (en) * 2016-01-29 2021-04-28 日東電工株式会社 Laminated film
KR102040234B1 (en) 2016-11-28 2019-11-06 주식회사 후본 Different material convergence 3d printer and method for printing using it
WO2018110272A1 (en) * 2016-12-15 2018-06-21 東レフィルム加工株式会社 Gas barrier film and organic el device
JP2018195512A (en) * 2017-05-19 2018-12-06 国立大学法人東京工業大学 Organic EL element
JP2019143245A (en) 2018-02-22 2019-08-29 三菱マテリアル株式会社 Oxide film and manufacturing method of oxide film and nitrogen containing oxide sputtering target
WO2019208240A1 (en) * 2018-04-26 2019-10-31 三菱マテリアル株式会社 Shield layer, method for producing shield layer, and oxide sputtering target
CN110793937B (en) * 2018-08-03 2022-08-16 张家港康得新光电材料有限公司 Membrane type determination method
CN114127029A (en) * 2019-10-23 2022-03-01 三菱综合材料株式会社 Oxide sputtering target

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841388B2 (en) * 1998-02-16 2006-11-01 日鉱金属株式会社 Protective film for optical disk and sputtering target for forming protective film of optical disk
JPH11236219A (en) * 1998-02-20 1999-08-31 Sumitomo Metal Mining Co Ltd Zinc oxide-base sintered compact and its production
JPH11322332A (en) * 1998-05-21 1999-11-24 Sumitomo Metal Mining Co Ltd Zno-based sintered product and its production
JP2000040429A (en) * 1998-07-24 2000-02-08 Sumitomo Metal Mining Co Ltd Manufacturing of zinc oxide transparent conductive film
CN101189358B (en) * 2005-05-30 2010-05-19 日矿金属株式会社 Sputtering target and process for producing the same
JP2007311041A (en) * 2006-05-16 2007-11-29 Bridgestone Corp Film-forming method of crystalline zno system transparent conductive thin film, crystalline zno system transparent conductive thin film and film, as well as resistance film type touch panel
JP2007327079A (en) * 2006-06-06 2007-12-20 Sony Corp Transparent conductive laminate film, and its manufacturing method
JPWO2009078329A1 (en) * 2007-12-19 2011-04-28 日立金属株式会社 Zinc oxide sintered body and manufacturing method thereof, sputtering target, electrode
WO2009078330A1 (en) * 2007-12-19 2009-06-25 Hitachi Metals, Ltd. Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode formed using the sputtering target
JP4670877B2 (en) * 2008-02-25 2011-04-13 住友金属鉱山株式会社 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device
WO2009145152A1 (en) * 2008-05-27 2009-12-03 株式会社カネカ Transparent conductive film and method for producing the same
WO2010032542A1 (en) * 2008-09-17 2010-03-25 三井金属鉱業株式会社 Electrically conductive transparent zinc oxide film, and method for producing same
WO2010113970A1 (en) * 2009-03-31 2010-10-07 帝人株式会社 Transparent conductive laminate and transparent touch panel

Also Published As

Publication number Publication date
TW201247915A (en) 2012-12-01
CN103380229B (en) 2016-05-04
WO2012114713A1 (en) 2012-08-30
TWI572731B (en) 2017-03-01
JP2013189657A (en) 2013-09-26
KR20170084351A (en) 2017-07-19
JP5884549B2 (en) 2016-03-15
CN103380229A (en) 2013-10-30

Similar Documents

Publication Publication Date Title
KR20140004143A (en) Transparent oxide film and process for producing same
KR101136953B1 (en) Oxide Sintered Body, Manufacturing Method Therefor, Transparent Conductive Film, and Solar Cell Using The Same
KR100683585B1 (en) Oxide Sintered Body
KR101841314B1 (en) Sintered oxide material, method for manufacturing same, sputtering target, oxide transparent electrically conductive film, method for manufacturing same, and solar cell
JP5943226B2 (en) Sputtering target for forming transparent film and method for producing the same
TWI525060B (en) An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body
JP6278229B2 (en) Sputtering target for forming transparent oxide film and method for producing the same
TWI564250B (en) Oxide sintered body, sputtering target and oxide film
EP3210952B1 (en) Oxide sintered compact, oxide sputtering target, and oxide thin film
TW201402517A (en) Conductive oxide sintered body and method for producing same
JP2012134434A (en) Transparent electrode film for solar cell, and solar cell using the same
TWI579254B (en) Sintered and amorphous membranes
JP5776563B2 (en) Transparent film, method for producing the same, and sputtering target for forming transparent film
JP5954620B2 (en) Sputtering target for forming transparent oxide film and method for producing the same
JP5761528B2 (en) Transparent oxide film, method for producing the same, and oxide sputtering target
JP2013185175A (en) Transparent oxide film, method for manufacturing the same, and oxide sputtering target
JP2013144820A (en) Oxide sputtering target and protective film for optical recording medium

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
A107 Divisional application of patent
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2017101003353; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20170712

Effective date: 20171030