JP2013189657A - Transparent oxide film and method of producing the same - Google Patents
Transparent oxide film and method of producing the same Download PDFInfo
- Publication number
- JP2013189657A JP2013189657A JP2012039041A JP2012039041A JP2013189657A JP 2013189657 A JP2013189657 A JP 2013189657A JP 2012039041 A JP2012039041 A JP 2012039041A JP 2012039041 A JP2012039041 A JP 2012039041A JP 2013189657 A JP2013189657 A JP 2013189657A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- transparent oxide
- sputtering
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 20
- 238000004544 sputter deposition Methods 0.000 claims abstract description 51
- 239000007789 gas Substances 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 claims abstract description 34
- 238000005477 sputtering target Methods 0.000 claims abstract description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000001301 oxygen Substances 0.000 claims abstract description 24
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 239000011261 inert gas Substances 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 239000011347 resin Substances 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract description 59
- 230000004888 barrier function Effects 0.000 abstract description 32
- 239000011787 zinc oxide Substances 0.000 abstract description 28
- 239000011701 zinc Substances 0.000 abstract description 20
- 239000000203 mixture Substances 0.000 abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 abstract description 6
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 127
- 230000000052 comparative effect Effects 0.000 description 33
- 229910004298 SiO 2 Inorganic materials 0.000 description 27
- 239000000843 powder Substances 0.000 description 20
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 19
- 238000002441 X-ray diffraction Methods 0.000 description 15
- 230000002159 abnormal effect Effects 0.000 description 11
- 239000000654 additive Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000007496 glass forming Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
- H01L31/022483—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03923—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03925—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、有機発光表示素子、液晶表示素子、エレクトロルミネッセンス表示素子、電気泳動方式表示素子、トナー表示素子などの電子ペーパーやフィルム型太陽電池などに用いられるガスバリア層や薄膜封止層に含まれる無機膜、および化合物半導体による薄膜太陽電池の透明電極層上のガスバリア層として利用される酸化亜鉛系のガスバリア性に優れる透明酸化物膜およびその製造方法に関するものである。 The present invention is included in a gas barrier layer or a thin film sealing layer used for an electronic paper such as an organic light emitting display element, a liquid crystal display element, an electroluminescence display element, an electrophoretic display element, a toner display element, or a film type solar cell. The present invention relates to a transparent oxide film having excellent gas barrier properties based on zinc oxide, which is used as a gas barrier layer on a transparent electrode layer of a thin film solar cell made of an inorganic film and a compound semiconductor, and a method for producing the same.
従来、液晶表示素子やエレクトロルミネッセンス表示素子、電気泳動方式表示素子、トナー表示素子などの電子ペーパーやフィルム型太陽電池などに用いられるガスバリア層、および化合物半導体による薄膜太陽電池(例えば、CIGS(Cu−In−Ga−Se)系太陽電池)の透明電極層上のガスバリア層として、透明酸化物膜をスパッタリング法で作製する技術が知られている。 Conventionally, a gas barrier layer used for electronic paper such as a liquid crystal display element, an electroluminescence display element, an electrophoretic display element, a toner display element, a film type solar cell, and the like, and a thin film solar cell using a compound semiconductor (for example, CIGS (Cu-- As a gas barrier layer on a transparent electrode layer of an (In-Ga-Se) solar cell), a technique for producing a transparent oxide film by a sputtering method is known.
例えば、特許文献1では、酸化スズと、Si、Ge、Alからなる群から選ばれる少なくとも1種の添加元素とを含有し、該添加元素は、添加元素とSnの含有量の総和に対して15原子%〜63原子%の割合で含まれ、結晶相の構成に、添加元素の金属相、該添加元素の酸化物相、該添加元素とSnの複合酸化物相のうちの1種以上が含まれ、該添加元素の酸化物相、および、該添加元素とSnの複合酸化物相が、平均粒径50μm以下の大きさで分散している酸化物焼結体をスパッタリングターゲットとして用い、直流パルシング法を利用したスパッタリング法により、樹脂フィルム基材の表面に透明酸化物膜を形成する方法が提案されている。 For example, Patent Document 1 contains tin oxide and at least one additive element selected from the group consisting of Si, Ge, and Al. The additive element is based on the total content of the additive element and Sn. It is contained at a ratio of 15 atomic% to 63 atomic%, and the composition of the crystal phase includes at least one of a metal phase of the additive element, an oxide phase of the additive element, and a composite oxide phase of the additive element and Sn. Using the oxide sintered body in which the oxide phase of the additive element and the composite oxide phase of the additive element and Sn are dispersed with an average particle size of 50 μm or less as a sputtering target, A method of forming a transparent oxide film on the surface of a resin film substrate by a sputtering method using a pulsing method has been proposed.
この方法で得られた透明酸化物膜は、酸化スズと、Si、Ge、Alからなる群から選ばれる少なくとも1種の添加元素とを含有する透明酸化物膜であって、該添加元素は、添加元素とSnの総和に対して15原子%〜63原子%の割合で含まれ、非晶質膜であり、かつ、波長633nmにおける屈折率が1.90以下であるとされている。 The transparent oxide film obtained by this method is a transparent oxide film containing tin oxide and at least one additional element selected from the group consisting of Si, Ge, and Al. It is contained at a ratio of 15 atomic% to 63 atomic% with respect to the total of the additive element and Sn, is an amorphous film, and has a refractive index of 1.90 or less at a wavelength of 633 nm.
また、特許文献2には、相変化光ディスク用保護膜に使用される光透過膜であって用途は異なるが、Nb2O5、V2O5、B2O3、SiO2、P2O5から選択された1種以上のガラス形成酸化物を0.01〜20重量%と、Al2O3又はGa2O3を0.01〜20重量%含有し、残部In2O3、SnO2、ZnOから選択された1種以上の酸化物であるスパッタリングターゲットを用いて、スパッタリング法により、Nb2O5、V2O5、B2O3、SiO2、P2O5から選択された1種以上のガラス形成酸化物を0.01〜20重量%と、Al2O3又はGa2O3を0.01〜20重量%含有し、残部In2O3、SnO2、ZnOから選択された1種以上の酸化物である光透過膜を成膜する方法が提案されている。
上記従来の技術には、以下の課題が残されている。
すなわち、上記特許文献1の技術に記載のターゲットでは、スパッタリング時にノジュールが多く発生して装置の掃除等に手間がかかるため、酸化スズ系ではなく他の組成系のガスバリア性に優れる透明酸化物膜が要望されている。しかしながら、上記特許文献2の技術で作製する透明酸化物膜は、光ディスク用であるために屈折率が高く、上述した電子ペーパーや太陽電池に用いる樹脂フィルム基材上のガスバリア層に採用するには、樹脂フィルム基材の屈折率(例えば波長633nmで屈折率n:1.5〜1.7)に近づけるために屈折率を低くする必要がある。このため、酸化亜鉛系の透明酸化物膜にSiO2をより多く含有させて屈折率を下げることが考えられるが、特許文献2で記載されているように、SiO2が20wt%を超えると添加した成分であるSiO2の結晶相が析出してしまう不都合があった。結晶相が析出してしまうとガスバリア性(例えば水蒸気バリア性)としての機能が低下してしまうため、保護膜として採用することができない。
The following problems remain in the conventional technology.
That is, in the target described in the technique of Patent Document 1, a large amount of nodules is generated at the time of sputtering, and it takes time to clean the apparatus. Is desired. However, the transparent oxide film produced by the technique of the above-mentioned
本発明は、前述の課題に鑑みてなされたもので、成膜速度が速いスパッタリング法を用いて屈折率が低く良好なガスバリア性を有した酸化亜鉛系の透明酸化物膜およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a zinc oxide-based transparent oxide film having a low refractive index and good gas barrier properties using a sputtering method having a high film formation rate, and a method for producing the same. The purpose is to do.
本発明者らは、AZO(Al-Zn-O:Aluminium doped Zinc Oxide:アルミニウム添加酸化亜鉛)膜にSiO2を含有させると屈折率が低くなることから、透明酸化物膜としてZnO−SiO2−Al2O3膜をスパッタリングにより成膜するべく研究を行った。この研究において、特定の組織からなるスパッタリングターゲットを用い、スパッタ成膜時の雰囲気または基板の温度を特定の条件に設定することで、透明で低屈折率かつ高ガスバリア性能を有するZnO−SiO2−Al2O3膜を得られることを突き止めた。 Since the refractive index is lowered when SiO 2 is contained in an AZO (Al-Zn-O: Aluminum doped Zinc Oxide) film, the present inventors have used ZnO—SiO 2 — as a transparent oxide film. Research was conducted to form an Al 2 O 3 film by sputtering. In this research, ZnO-SiO 2 — having a transparent, low refractive index and high gas barrier performance is obtained by using a sputtering target having a specific structure and setting the atmosphere or substrate temperature during sputtering film formation to a specific condition. It has been found that an Al 2 O 3 film can be obtained.
したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。すなわち、本発明の透明酸化物膜は、全金属成分量に対してAl:0.9〜20.0at%、Si:25.5〜68.0at%を含有し、残部がZnおよび不可避不純物からなる成分組成を有し、非晶質であることを特徴とする。
すなわち、この透明酸化物膜では、全金属成分量に対してAl:0.9〜20.0at%、Si:25.5〜68.0at%を含有し、残部がZnおよび不可避不純物からなる成分組成を有し、非晶質であるので、従来よりも可視光域で低い屈折率が得られると共に高いガスバリア性(例えば、水蒸気バリア性)を有している。さらに、可視光域で95%以上の高い透過率が得られ、良好な透明性を有している。
Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems. That is, the transparent oxide film of the present invention contains Al: 0.9 to 20.0 at%, Si: 25.5 to 68.0 at% with respect to the total amount of metal components, and the balance is made of Zn and inevitable impurities. The composition is characterized by being amorphous.
That is, in this transparent oxide film, Al: 0.9 to 20.0 at%, Si: 25.5 to 68.0 at% with respect to the total amount of metal components, with the balance being Zn and inevitable impurities Since it has a composition and is amorphous, it has a lower refractive index in the visible light region than the conventional one and has a high gas barrier property (for example, a water vapor barrier property). Furthermore, a high transmittance of 95% or more is obtained in the visible light region, and the film has good transparency.
なお、上記Alの含有量を0.9〜20.0at%とした理由は、0.9at%未満の膜を得るための組成に設定したスパッタリングターゲットでは異常放電が発生し、安定なDCスパッタができないためであり、20.0at%を超える膜を得るための組成に設定したスパッタリングターゲットでも異常放電が発生し、安定なDCスパッタができない。なお、Alの含有量は、12at%以下がより好ましい。すなわち、Alの含有量が12at%以下であると、相対的にSi含有量を高く維持できるため、より低い屈折率および、より高いガスバリア性が得られるためである。
また、上記Siの含有量を25.5〜68.0at%とした理由は、25.5at%未満であると所望の低屈折率およびガスバリア性が得られず、68.0at%を超える膜を得るための組成に設定したスパッタリングターゲットではSi量が多くなりDCスパッタができないためである。
The reason why the Al content is 0.9-20.0 at% is that abnormal discharge occurs in the sputtering target set to a composition for obtaining a film of less than 0.9 at%, and stable DC sputtering is caused. This is because an abnormal discharge occurs even in a sputtering target set to a composition for obtaining a film exceeding 20.0 at%, and stable DC sputtering cannot be performed. Note that the Al content is more preferably 12 at% or less. That is, when the Al content is 12 at% or less, the Si content can be maintained relatively high, so that a lower refractive index and higher gas barrier properties can be obtained.
The reason why the Si content is 25.5 to 68.0 at% is that if it is less than 25.5 at%, a desired low refractive index and gas barrier property cannot be obtained, and a film exceeding 68.0 at% is formed. This is because the sputtering target set to the composition to obtain has a large amount of Si and cannot perform DC sputtering.
また、本発明の透明酸化物膜は、波長750nmの光透過率が93%以上であることを特徴とする。
すなわち、一般のDCスパッタで成膜可能な酸化物とは異なり、導電性酸化物にあるような電子による長波長側の吸収が少ないため、DCスパッタで成膜され、かつ可視光長波長の光を損失しない可視光全域で高い透明性を持つ膜となる。
The transparent oxide film of the present invention is characterized in that the light transmittance at a wavelength of 750 nm is 93% or more.
In other words, unlike oxides that can be formed by general DC sputtering, there is little absorption on the long wavelength side by electrons as in conductive oxides, so that light is formed by DC sputtering and has a long wavelength of visible light. It becomes a film having high transparency in the entire visible light range without losing the light.
また、本発明の透明酸化物膜は、可視光域での屈折率平均値が、1.59〜1.80であり、厚み50nm以上で水蒸気透過率が0.01g/(m2・day)以下であることを特徴とする。
すなわち、この透明酸化物膜では、可視光域での屈折率平均値が、1.59〜1.80であり、厚み50nm以上で水蒸気透過率が0.01g/(m2・day)以下であるので、電子ペーパーや太陽電池で採用される樹脂フィルム基材上に成膜されたガスバリア層として好適である。なお、ここで可視光域は、波長380nm〜750nmの範囲とする。
The transparent oxide film of the present invention has an average refractive index in the visible light range of 1.59 to 1.80, a thickness of 50 nm or more and a water vapor transmission rate of 0.01 g / (m 2 · day). It is characterized by the following.
That is, in this transparent oxide film, the average refractive index in the visible light region is 1.59 to 1.80, the thickness is 50 nm or more, and the water vapor transmission rate is 0.01 g / (m 2 · day) or less. Therefore, it is suitable as a gas barrier layer formed on a resin film substrate used in electronic paper and solar cells. Here, the visible light region has a wavelength range of 380 nm to 750 nm.
本発明の透明酸化物膜の製造方法は、上記発明の透明酸化物膜を製造する方法であって、全金属成分量に対してAl:0.3〜4.0wt%、Si:6.0〜14.5wt%を含有し、残部がZnおよび不可避不純物からなる成分組成を有した酸化物焼結体からなり、該焼結体の組織中に複合酸化物Zn2SiO4とZnOとが存在するスパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気中および基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタすることを特徴とする。
すなわち、この透明酸化物膜の製造方法では、上記酸化物焼結体の組織中に複合酸化物Zn2SiO4とZnOとが存在するスパッタリングターゲットを用いるので、DCスパッタが可能になり、さらに酸素を含有させた不活性ガス雰囲気中および基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタ(DCスパッタ)するので、Siを多く含有させた非晶質の透明酸化物膜(ZnO−SiO2−Al2O3膜)を成膜することができる。したがって、本発明の製法によれば、従来よりもSiO2を多く添加可能であり、屈折率を下げつつ、非晶質でガスバリア性の高い透明酸化物膜をDCスパッタで成膜可能である。
The method for producing a transparent oxide film of the present invention is a method for producing the transparent oxide film of the above invention, wherein Al: 0.3 to 4.0 wt%, Si: 6.0 with respect to the total amount of metal components. It is composed of an oxide sintered body having a component composition of ˜14.5 wt%, the balance being composed of Zn and inevitable impurities, and the composite oxide Zn 2 SiO 4 and ZnO are present in the structure of the sintered body A sputtering target is used, and sputtering is performed by applying a direct current in an atmosphere of an inert gas containing oxygen and at least one of a heated state of the substrate.
That is, in this method for producing a transparent oxide film, a sputtering target in which the composite oxide Zn 2 SiO 4 and ZnO are present in the structure of the oxide sintered body is used, so that DC sputtering is possible, and oxygen Sputtering (DC sputtering) by applying a direct current in at least one of an atmosphere containing an inert gas and a state in which the substrate is heated. Therefore, an amorphous transparent oxide containing a large amount of Si A film (ZnO—SiO 2 —Al 2 O 3 film) can be formed. Therefore, according to the production method of the present invention, more SiO 2 can be added than before, and an amorphous transparent oxide film having a high gas barrier property can be formed by DC sputtering while lowering the refractive index.
なお、上記Alの含有量を0.3〜4.0wt%とした理由は、0.3wt%未満では、異常放電が発生してDCスパッタができないためであり、4.0wt%を超えると、発生したAl2O3とZnOとの複合酸化物ZnAl2O4に起因する異常放電が発生してDCスパッタができないためである。
また、上記Siの含有量を6.0〜14.5wt%とした理由は、6.0wt%未満では、屈折率を下げる十分な効果が得られないためであり、14.5wt%を超えると、十分な導電性を得ることができず、異常放電が発生してDCスパッタができないためである。
The reason why the Al content is set to 0.3 to 4.0 wt% is that if it is less than 0.3 wt%, abnormal discharge occurs and DC sputtering cannot be performed. If the content exceeds 4.0 wt%, This is because the abnormal discharge caused by the generated composite oxide ZnAl 2 O 4 of Al 2 O 3 and ZnO occurs, and DC sputtering cannot be performed.
The reason why the Si content is 6.0 to 14.5 wt% is that if it is less than 6.0 wt%, a sufficient effect of lowering the refractive index cannot be obtained, and if it exceeds 14.5 wt%. This is because sufficient conductivity cannot be obtained, abnormal discharge occurs, and DC sputtering cannot be performed.
また、本発明の透明酸化物膜の成膜方法は、前記基板が樹脂フィルム基材であり、前記基板の加熱温度を、100〜200℃の範囲に設定することを特徴とする。
すなわち、この透明酸化物膜の製造方法では、基板の加熱温度を、100〜200℃の範囲に設定するので、成膜する樹脂フィルム基材への熱影響を抑えつつ、電子ペーパーや太陽電池で採用されるガスバリア層として十分な透明性と低い屈折率とを有する透明酸化物膜が得られる。
なお、上記基板の加熱温度を100〜200℃の範囲に設定した理由は、100℃未満であると膜中のSi含有量が少なくなり透明性が低下すると共に屈折率が変化してしまうためであり、200℃を超えると樹脂フィルム基材が損傷を受けるためである。
Moreover, the film-forming method of the transparent oxide film of the present invention is characterized in that the substrate is a resin film base material, and the heating temperature of the substrate is set in a range of 100 to 200 ° C.
That is, in this method for producing a transparent oxide film, since the heating temperature of the substrate is set in a range of 100 to 200 ° C., the heat effect on the resin film base material to be formed is suppressed, and electronic paper or solar cells are used. A transparent oxide film having sufficient transparency and a low refractive index as the gas barrier layer employed can be obtained.
The reason why the heating temperature of the substrate is set in the range of 100 to 200 ° C. is that when it is less than 100 ° C., the Si content in the film is reduced, the transparency is lowered and the refractive index is changed. Yes, if the temperature exceeds 200 ° C., the resin film substrate is damaged.
また、本発明の透明酸化物膜の成膜方法は、前記酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧を、0.05以上に設定することを特徴とする。
すなわち、この透明酸化物膜の製造方法では、酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧を、0.05以上に設定するので、電子ペーパーや太陽電池で採用されるガスバリア層として十分な透明性と低い屈折率とを有する透明酸化物膜が得られる。これは、酸素のガス分圧を0.05未満にすると、膜中のSi含有量が少なくなり透明性が低下すると共に屈折率が変化してしまうためである。なお、酸素のガス分圧は、0.2を超えるとスパッタの成膜速度が遅くなって生産性が低下するため、0.2以下とすることが好ましい。
このように本発明では、上記基板加熱温度および上記酸素のガス分圧の少なくとも一方を調整してDCスパッタすることで、膜中のSiの含有量を調整可能である。
Further, the transparent oxide film forming method of the present invention is characterized in that a partial pressure of oxygen with respect to the whole atmosphere gas of oxygen and inert gas is set to 0.05 or more.
That is, in this method for producing a transparent oxide film, the gas partial pressure of oxygen with respect to the entire atmospheric gas of oxygen and inert gas is set to 0.05 or more, so that the gas barrier layer employed in electronic paper and solar cells As a result, a transparent oxide film having sufficient transparency and a low refractive index can be obtained. This is because when the oxygen partial pressure of oxygen is less than 0.05, the Si content in the film decreases, the transparency decreases and the refractive index changes. Note that if the oxygen partial pressure of oxygen exceeds 0.2, the film formation rate of the sputtering is reduced and the productivity is lowered. Therefore, the oxygen partial pressure is preferably 0.2 or less.
As described above, in the present invention, the content of Si in the film can be adjusted by performing DC sputtering by adjusting at least one of the substrate heating temperature and the gas partial pressure of oxygen.
本発明によれば、以下の効果を奏する。
すなわち、本発明に係る透明酸化物膜によれば、全金属成分量に対してAl:0.9〜28.5at%、Si:25.5〜68.0at%を含有し、残部がZnおよび不可避不純物からなる成分組成を有し、非晶質であるので、従来よりも可視光域で低い屈折率が得られると共に高いガスバリア性を有している。また、本発明に係る透明酸化物膜の製造方法によれば、上記酸化物焼結体の組織中に複合酸化物Zn2SiO4とZnOとが存在するスパッタリングターゲットを用いるので、DCスパッタが可能になり、酸素を含有させた不活性ガス雰囲気中および基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタするので、非晶質の上記組成の透明酸化物膜(ZnO−SiO2−Al2O3膜)を成膜することができる。
したがって、本発明の透明酸化物膜を電子ペーパーや太陽電池などのガスバリア層に採用することで、要求される高透明性、低屈折率および高ガスバリア性が得られ、高信頼性を有すると共に視認性の高い電子ペーパーや変換効率の良好な太陽電池などを作製可能である。
The present invention has the following effects.
That is, according to the transparent oxide film according to the present invention, Al: 0.9-28.5 at%, Si: 25.5-68.0 at% with respect to the total metal component amount, with the balance being Zn and Since it has a component composition composed of inevitable impurities and is amorphous, it has a lower refractive index in the visible light region than the conventional one and has a high gas barrier property. Further, according to the method for producing a transparent oxide film according to the present invention, since a sputtering target in which the composite oxide Zn 2 SiO 4 and ZnO are present in the structure of the oxide sintered body is used, DC sputtering is possible. Therefore, sputtering is performed by applying a direct current in at least one of an inert gas atmosphere containing oxygen and a state in which the substrate is heated. Therefore, an amorphous transparent oxide film (ZnO it can be deposited -SiO 2 -Al 2 O 3 film).
Therefore, by adopting the transparent oxide film of the present invention for gas barrier layers such as electronic paper and solar cells, the required high transparency, low refractive index and high gas barrier properties can be obtained, and it has high reliability and is visible. High-performance electronic paper, solar cells with good conversion efficiency, and the like can be manufactured.
以下、本発明に係る透明酸化物膜およびその製造方法の一実施形態を、図1を参照して説明する。 Hereinafter, an embodiment of a transparent oxide film and a method for producing the same according to the present invention will be described with reference to FIG.
本実施形態の透明酸化物膜は、上述した用途のガスバリア層として利用される膜であって、全金属成分量に対してAl:0.9〜20.0at%、Si:25.5〜68.0at%を含有し、残部がZnおよび不可避不純物からなる成分組成を有し、非晶質である。
また、この透明酸化物膜は、膜厚100nmにおけるシート抵抗値が、1.0×1014Ω/sq以上である。
さらに、この透明酸化物膜は、可視光域での屈折率平均値が、1.59〜1.80であり、厚み50nm以上で水蒸気透過率が0.01g/(m2・day)以下である。なお、水蒸気透過率は、JIS規格のK7129法にしたがってモコン法により測定されたものである。
The transparent oxide film of this embodiment is a film used as a gas barrier layer for the above-described applications, and Al: 0.9 to 20.0 at%, Si: 25.5 to 68 with respect to the total amount of metal components. 0.0at%, the balance having a component composition consisting of Zn and inevitable impurities, and being amorphous.
Further, this transparent oxide film has a sheet resistance value of 1.0 × 10 14 Ω / sq or more at a film thickness of 100 nm.
Further, this transparent oxide film has an average refractive index in the visible light region of 1.59 to 1.80, a thickness of 50 nm or more, and a water vapor transmission rate of 0.01 g / (m 2 · day) or less. is there. The water vapor transmission rate is measured by the Mocon method in accordance with JIS standard K7129 method.
また、本実施形態の透明酸化物膜の製造方法は、全金属成分量に対してAl:0.3〜4.0wt%、Si:6.0〜14.5wt%を含有し、残部がZnおよび不可避不純物からなる成分組成を有した酸化物焼結体からなり、該焼結体の組織中に複合酸化物Zn2SiO4とZnOとが存在するスパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気中および基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタ(DCスパッタ)する。 Moreover, the manufacturing method of the transparent oxide film of this embodiment contains Al: 0.3-4.0wt%, Si: 6.0-14.5wt% with respect to the total amount of metal components, and the balance is Zn. And a sputtering target in which a composite oxide Zn 2 SiO 4 and ZnO are present in the structure of the sintered body, and an oxygen-containing non-oxidized body. Sputtering (DC sputtering) is performed by applying a direct current in an active gas atmosphere and / or in an environment where the substrate is heated.
このとき、樹脂フィルム基材を基板として用い、基板の加熱温度は100〜200℃の範囲に設定する。また、酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧は0.05以上に設定する。
上記透明フィルム基材としては、アクリル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂セルロースおよびこれらの共重合樹脂、合成した透明な基板が例示できる。詳しい例として、ポリエステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリメチルメタクリレート(PMMA)、アクリル、ポリカーボネート(PC)、ポリスチレン、ポリビニルアルコール、ポリエチレンなどがあげられるが、この限りではない。
なお、上記スパッタリングターゲットは、焼結体の密度が、理論密度の100〜108%である。さらに、このスパッタリングターゲットは、バルク抵抗値が、1Ω・cm以下である。
At this time, the resin film base material is used as the substrate, and the heating temperature of the substrate is set in the range of 100 to 200 ° C. The gas partial pressure of oxygen with respect to the whole atmosphere gas of oxygen and inert gas is set to 0.05 or more.
Examples of the transparent film substrate include acrylic resins, polyamide resins, polyimide resins, polyester resin celluloses, copolymer resins thereof, and synthesized transparent substrates. Specific examples include, but are not limited to, polyester, polyethylene terephthalate (PET), polybutylene terephthalate, polymethyl methacrylate (PMMA), acrylic, polycarbonate (PC), polystyrene, polyvinyl alcohol, and polyethylene.
In the sputtering target, the density of the sintered body is 100 to 108% of the theoretical density. Furthermore, this sputtering target has a bulk resistance value of 1 Ω · cm or less.
上記焼結体の密度を理論密度比で100〜108%とした理由は、100%未満では、ターゲットが割れてしまう等の問題が生じるためであり、108%を超えると、ほとんどが複合酸化物Zn2SiO4の組織となってしまい、DCスパッタによる放電ができなくなるためである。
ここで、理論密度比の計算には、ZnOは5.61g/cm3、SiO2は2.20g/cm3、Al2O3は3.99g/cm3の値を用いて計算を行っている。
また、スパッタリングターゲットのバルク抵抗値が、1Ω・cm以下であるので、安定して良好なDCスパッタが可能である。
The reason why the density of the sintered body is set to 100 to 108% in terms of the theoretical density ratio is that if it is less than 100%, there is a problem such as the target being cracked. This is because the structure becomes Zn 2 SiO 4 and discharge by DC sputtering cannot be performed.
Here, the calculation of the theoretical density ratio is performed using the values of 5.61 g / cm 3 for ZnO, 2.20 g / cm 3 for SiO 2 and 3.99 g / cm 3 for Al 2 O 3. Yes.
Further, since the bulk resistance value of the sputtering target is 1 Ω · cm or less, stable and good DC sputtering is possible.
このスパッタリングターゲットを作製する方法は、Al2O3粉末とSiO2粉末とZnO粉末とを、Al2O3:0.5〜5.0wt%、SiO2:10〜22wt%、残部:ZnOおよび不可避不純物からなるように混合して混合粉末とする工程と、この混合粉末を真空中でホットプレスにて焼結する工程とを有している。 A method for producing this sputtering target includes Al 2 O 3 powder, SiO 2 powder, and ZnO powder, Al 2 O 3 : 0.5 to 5.0 wt%, SiO 2 : 10 to 22 wt%, balance: ZnO and It has the process of mixing so that it may consist of an unavoidable impurity, and making it a mixed powder, and the process of sintering this mixed powder in a hot press in a vacuum.
上記製法の一例について詳述すれば、例えば、図1に示すように、まず純度99.9%以上のAl2O3粉末とSiO2粉末とZnO粉末とを上記含有量範囲となるように秤量し、湿式ボールミルによって粉砕、混合して混合粉末を作製する。例えば、秤量して得られた各粉末とジルコニアボールとをポリ容器(ポリエチレン製ポット)に入れ、ボールミル装置にて所定時間湿式混合し、混合粉末とする。なお、溶媒には、例えばアルコールを用いる。 If an example of the said manufacturing method is explained in full detail, for example, as shown in FIG. 1, first, Al 2 O 3 powder having a purity of 99.9% or more, SiO 2 powder, and ZnO powder are weighed so as to be in the above content range. Then, it is pulverized and mixed by a wet ball mill to produce a mixed powder. For example, each powder obtained by weighing and zirconia balls are placed in a poly container (polyethylene pot) and wet-mixed for a predetermined time in a ball mill apparatus to obtain a mixed powder. For example, alcohol is used as the solvent.
次に、得られた混合粉末を乾燥後、例えば目開き:250μmの篩にかけて造粒し、さらに真空乾燥後、例えば1200℃にて5時間、200kgf/cm2の圧力で真空中でホットプレスし、焼結体とする。なお、ホットプレス温度は、1100〜1250℃の範囲が好ましく、圧力は、150〜350kgf/cm2の範囲が好ましい。
このようにホットプレスした焼結体は、通常放電加工、切削または研削工法を用いて、ターゲットの指定形状に機械加工し、加工後のターゲットをInを半田として、CuまたはSUS(ステンレス)またはその他金属(例えば、Mo)からなるバッキングプレートにボンディングし、スパッタに供する。
Next, the obtained mixed powder is dried and then granulated through, for example, a sieve having a mesh opening of 250 μm, and further vacuum dried, and then hot-pressed in vacuum at a pressure of 200 kgf / cm 2 at 1200 ° C. for 5 hours, for example. And a sintered body. The hot press temperature is preferably in the range of 1100 to 1250 ° C., and the pressure is preferably in the range of 150 to 350 kgf / cm 2 .
The hot-pressed sintered body is usually machined to a target shape using electrical discharge machining, cutting or grinding, and the processed target is In or soldered to Cu or SUS (stainless steel) or others. Bonding to a backing plate made of metal (for example, Mo) and subjecting to sputtering.
なお、他の製造方法としては、上記製造方法の湿式ボールミルによる粉砕、混合を、純水を溶媒として内容積300Lのボールミル装置を用いて行い、その後、スプレードライにより乾燥造粒したものを、さらに乾式ボールミルで壊砕し、この壊砕粉末を上記と同様にホットプレスする方法でも構わない。また、上記乾式ボールミルによる壊砕工程を省略した方法でも構わない。 In addition, as another manufacturing method, pulverization and mixing by the wet ball mill of the above manufacturing method is performed using a ball mill apparatus having an internal volume of 300 L with pure water as a solvent, and then dried and granulated by spray drying. A method of crushed with a dry ball mill and hot pressing the crushed powder in the same manner as described above may be used. Moreover, the method which abbreviate | omitted the crushing process by the said dry-type ball mill may be used.
このスパッタリングターゲットを用いて本実施形態の透明酸化物膜をDCスパッタするには、上記スパッタリングターゲットを、マグネトロンスパッタリング装置にセットし、所定の投入電力、到達真空度およびスパッタ圧力にて、スパッタガス分圧をO2/(Ar+O2)が0.05〜0.2の範囲、基板加熱を100℃から200℃とした条件で、樹脂フィルム基材上に成膜する。 In order to DC-sputter the transparent oxide film of this embodiment using this sputtering target, the sputtering target is set in a magnetron sputtering apparatus, and the sputtering gas component is set at a predetermined input power, ultimate vacuum, and sputtering pressure. The film is formed on the resin film substrate under the condition that the pressure is O 2 / (Ar + O 2 ) in the range of 0.05 to 0.2 and the substrate heating is 100 ° C. to 200 ° C.
このように本実施形態の透明酸化物膜では、全金属成分量に対してAl:0.9〜20.0at%、Si:25.5〜68.0at%を含有し、残部がZnおよび不可避不純物からなる成分組成を有し、非晶質であるので、従来よりも可視光域で低い屈折率が得られると共に高いガスバリア性(例えば、水蒸気バリア性)を有している。特に、可視光域での屈折率平均値が、1.59〜1.80であり、厚み50nm以上で水蒸気透過率を0.01g/(m2・day)以下とすることで、電子ペーパーや太陽電池で採用される樹脂フィルム基材上に成膜されたガスバリア層として好適である。 As described above, the transparent oxide film of this embodiment contains Al: 0.9 to 20.0 at% and Si: 25.5 to 68.0 at% with respect to the total metal component amount, with the balance being Zn and inevitable. Since it has a component composition consisting of impurities and is amorphous, it has a lower refractive index in the visible light region than the prior art and has high gas barrier properties (for example, water vapor barrier properties). In particular, the average value of the refractive index in the visible light region is 1.59 to 1.80, and the water vapor transmission rate is 0.01 g / (m 2 · day) or less at a thickness of 50 nm or more. It is suitable as a gas barrier layer formed on a resin film substrate used in solar cells.
また、この透明酸化物膜の製造方法では、上記酸化物焼結体の組織中に複合酸化物Zn2SiO4とZnOとが存在するスパッタリングターゲットを用いるので、DCスパッタが可能になり、さらに酸素を含有させた不活性ガス雰囲気中および基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタするので、Siを多く含有させた非晶質の透明酸化物膜(ZnO−SiO2−Al2O3膜)を成膜することができる。したがって、本発明の製法によれば、従来よりもSiO2を多く添加可能であり、屈折率を下げつつ、非晶質でガスバリア性の高い透明酸化物膜をDCスパッタで成膜可能である。さらに、可視光域で95%以上の高い透過率が得られ、良好な透明性を有した膜を得ることができる。 Further, in this method for producing a transparent oxide film, since a sputtering target in which the composite oxide Zn 2 SiO 4 and ZnO are present in the structure of the oxide sintered body is used, DC sputtering is possible, and oxygen Since sputtering is performed by applying a direct current in at least one of an inert gas atmosphere containing silicon and a state where the substrate is heated, an amorphous transparent oxide film containing a large amount of Si (ZnO- SiO 2 —Al 2 O 3 film) can be formed. Therefore, according to the production method of the present invention, more SiO 2 can be added than before, and an amorphous transparent oxide film having a high gas barrier property can be formed by DC sputtering while lowering the refractive index. Furthermore, a high transmittance of 95% or more in the visible light region can be obtained, and a film having good transparency can be obtained.
また、基板の加熱温度を、100〜200℃の範囲に設定するので、成膜する樹脂フィルム基材への熱影響を抑えつつ、電子ペーパーや太陽電池で採用されるガスバリア層として十分な透明性と低い屈折率とを有する透明酸化物膜が得られる。
さらに、酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧を、0.05以上に設定するので、電子ペーパーや太陽電池で採用されるガスバリア層として十分な透明性と低い屈折率とを有する透明酸化物膜が得られる。
In addition, since the heating temperature of the substrate is set in the range of 100 to 200 ° C., it is sufficiently transparent as a gas barrier layer employed in electronic paper and solar cells while suppressing the thermal effect on the resin film substrate to be formed. And a transparent oxide film having a low refractive index.
Furthermore, since the partial pressure of oxygen with respect to the whole atmospheric gas of oxygen and inert gas is set to 0.05 or more, sufficient transparency and a low refractive index as a gas barrier layer employed in electronic paper and solar cells A transparent oxide film having
上記本実施形態に基づいて作製した透明酸化物膜の実施例について評価した結果を、図2から図8を参照して以下に説明する。 The result evaluated about the Example of the transparent oxide film produced based on the said this embodiment is demonstrated below with reference to FIGS.
本発明の実施例の製造は、以下の条件で行った。
まず、表1に示す組成割合になるようにAl2O3粉末とSiO2粉末とZnO粉末とを秤量し、得られた粉末とその4倍量(重量比)のジルコニアボール(直径5mmのボールと直径10mmのボールとを半分ずつ)とを10Lのポリ容器(ポリエチレン製ポット)に入れ、ボールミル装置にて48時間湿式混合し、混合粉末とする。なお、溶媒には、例えばアルコールを用いた。
Manufacture of the Example of this invention was performed on condition of the following.
First, Al 2 O 3 powder, SiO 2 powder, and ZnO powder were weighed so as to have the composition ratio shown in Table 1, and the obtained powder and four times (weight ratio) zirconia balls (balls with a diameter of 5 mm). And a 10 mm diameter ball in half) are placed in a 10 L plastic container (polyethylene pot) and wet mixed for 48 hours in a ball mill apparatus to obtain a mixed powder. For example, alcohol was used as the solvent.
次に、得られた混合粉末を乾燥後、例えば目開き:250μmの篩にかけて造粒し、さらに真空乾燥後、1200℃にて5時間、200kgf/cm2の圧力で真空ホットプレスし、焼結体とした。
このようにホットプレスした焼結体を、ターゲットの指定形状(直径125mm、厚さ10mm)に機械加工し、加工したものを無酸素銅からなるバッキングプレートにボンディングして本実施例1〜16のスパッタリングターゲットを作製した。
Next, the obtained mixed powder is dried, then granulated through, for example, a sieve having an opening of 250 μm, vacuum dried, vacuum hot pressed at 1200 ° C. for 5 hours at a pressure of 200 kgf / cm 2 , and sintered. The body.
The sintered body thus hot pressed was machined into a target shape (diameter 125 mm,
さらに、これらのスパッタリングターゲットを、マグネトロンスパッタリング装置にセットし、電源:DC、投入電力:500W、到達真空度:1×10−4Pa、スパッタガス分圧(酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧:O2/(Ar+O2)が0.05以上、スパッタ圧力:0.67Pa、基板加熱を100℃から200℃とした条件で屈折率および透過率測定用としてガラス基板(コーニング社1737# 縦:20×横:20、厚さ:0.7mm)の上に膜厚150nm、また、水蒸気透過測定用としてPETフィルム(縦:100mm×横:100、厚さ:120μm)に50nmを有する透明膜の形成を試みた。
また、密着性試験用にポリイミドフィルム(縦:100mm×横:100mm、厚さ:120μm)に50nmを有する透明膜の形成を試みた。
Further, these sputtering targets were set in a magnetron sputtering apparatus, and the power source: DC, input power: 500 W, ultimate vacuum: 1 × 10 −4 Pa, sputtering gas partial pressure (the whole atmosphere gas of oxygen and inert gas Oxygen gas partial pressure: O 2 / (Ar + O 2 ) is 0.05 or more, sputtering pressure: 0.67 Pa, substrate heating is 100 ° C. to 200 ° C. Corning 1737 # Vertical: 20 × Horizontal: 20, Thickness: 0.7 mm), 150 nm in thickness, and PET film (Vertical: 100 mm × Horizontal: 100, Thickness: 120 μm) for water vapor transmission measurement An attempt was made to form a transparent film having 50 nm.
For the adhesion test, an attempt was made to form a transparent film having a thickness of 50 nm on a polyimide film (length: 100 mm × width: 100 mm, thickness: 120 μm).
なお、比較例の透明酸化物膜として、表1に示す条件において、基板の加熱温度を100〜200℃の範囲外に設定したもの(比較例1,2)と、スパッタリングターゲットのSi含有量を6.08wt%未満としたもの(比較例3,4)とを上記実施例と同様に作製した。さらに、従来例として、スパッタリングターゲットのSi含有量を6.08wt%未満とすると共にRFスパッタにより成膜したものを上記実施例と同様に作製した。 In addition, as a transparent oxide film of a comparative example, on the conditions shown in Table 1, what set the heating temperature of the board | substrate out of the range of 100-200 degreeC (comparative examples 1 and 2), and Si content of a sputtering target were set. What was made less than 6.08 wt% (Comparative Examples 3 and 4) was produced in the same manner as in the above Example. Further, as a conventional example, a sputtering target having a Si content of less than 6.08 wt% and a film formed by RF sputtering was produced in the same manner as in the above example.
このように作製した本発明の実施例、比較例および従来例の透明酸化物膜について膜組成をICP発光分析法で測定したところ、全金属成分に対する各金属成分は表1に示すようになった。
また、本発明の実施例および比較例の透明酸化物膜についてX線回折(XRD)の分析を行い、結晶ピークの有無について調べた結果を表1に示す。なお、代表的に実施例3,5,6,11および比較例4について、XRD分析結果のグラフを図2〜図6にそれぞれ示す。
When the film compositions of the transparent oxide films of Examples, Comparative Examples, and Conventional Examples of the present invention thus prepared were measured by ICP emission analysis, each metal component relative to all metal components was as shown in Table 1. .
Table 1 shows the results of X-ray diffraction (XRD) analysis of the transparent oxide films of Examples and Comparative Examples of the present invention and the presence or absence of crystal peaks. In addition, about Example 3, 5, 6, 11 and the comparative example 4, the graph of a XRD analysis result is each shown in FIGS.
また、得られた各透明酸化物膜の屈折率は分光エリプソメーター(HORIBA Jobin Yvon社製UVISEL NIA AGMS)によって、透過率は分光光度計(日本分光社製 V−550)によって測定した。測定したそれぞれの結果は表1に示す。なお、代表的に実施例3,5,6,11および比較例4について、波長に対する透過率特性を示すグラフを図7に示す。また、透明酸化物膜の膜厚50nm、100nm、300nmにおける波長750nmでの透過率結果を表2に示す。 The refractive index of each transparent oxide film obtained was measured with a spectroscopic ellipsometer (UVISEL NIA AGMS manufactured by HORIBA Jobin Yvon), and the transmittance was measured with a spectrophotometer (V-550 manufactured by JASCO Corporation). The measured results are shown in Table 1. In addition, about Example 3, 5, 6, 11 and the comparative example 4, the graph which shows the transmittance | permeability characteristic with respect to a wavelength is shown in FIG. Further, Table 2 shows the transmittance results at a wavelength of 750 nm when the film thickness of the transparent oxide film is 50 nm, 100 nm, and 300 nm.
さらに、水蒸気透過率(水蒸気バリア性)は、モコン法を用い、mocon社製PERMATRAN-WMODEL 3/33を用いてJIS規格のK7129法に基づいて測定した。測定されたそれぞれの結果は表1に示す。なお、代表的に実施例3,5,6,11および比較例4について、波長に対する屈折率特性を示すグラフを図8に示す。 Furthermore, the water vapor transmission rate (water vapor barrier property) was measured based on JIS standard K7129 method using the Mocon method and using PERMATRAN-WMODEL 3/33 manufactured by mocon. The measured results are shown in Table 1. In addition, about Example 3, 5, 6, 11 and the comparative example 4, the graph which shows the refractive index characteristic with respect to a wavelength typically is shown in FIG.
これらの評価の結果、比較例1,3,4では、XRD分析において結晶ピークが認められ膜中に結晶が析出しており、水蒸気透過率も0.01g/(m2・day)を超えてしまっていた。また、可視光域の屈折率が1.80を超えていると共に透過率も95%未満と低い。なお、比較例2は、基板加熱温度が210℃と高いために樹脂フィルム基材が熱変形してしまい評価ができなかった。さらに、RFスパッタで成膜した従来例では、Siの含有量が低く可視光域の屈折率が2.05と高いと共に透過率も90.6%と低かった。 As a result of these evaluations, in Comparative Examples 1, 3, and 4, a crystal peak was observed in the XRD analysis, crystals were precipitated in the film, and the water vapor transmission rate exceeded 0.01 g / (m 2 · day). I was sorry. Further, the refractive index in the visible light region exceeds 1.80 and the transmittance is as low as less than 95%. In Comparative Example 2, since the substrate heating temperature was as high as 210 ° C., the resin film base material was thermally deformed and could not be evaluated. Furthermore, in the conventional example formed by RF sputtering, the Si content was low, the refractive index in the visible light region was as high as 2.05, and the transmittance was as low as 90.6%.
これらに対して本発明の実施例はいずれも、XRD分析において結晶ピークが認められず、非晶質な膜であり、水蒸気透過率についても0.01g/(m2・day)以下であり、高い水蒸気バリア性を有している。また、いずれの実施例も可視光域の屈折率が1.80以下であると共に透過率も95%以上と高く、低屈折率かつ高透明性の膜が得られている。このように本発明の実施例の透明酸化物膜は、いずれも電子ペーパーや太陽電池に採用されるガスバリア層として好適な膜特性を備えている。ただし、実施例16に記載の条件では膜の特性は優れているが、スパッタ時の雰囲気でのO2量が多いため、成膜速度が遅くなる。 In contrast, in all of the examples of the present invention, no crystal peak was observed in the XRD analysis, the film was an amorphous film, and the water vapor transmission rate was 0.01 g / (m 2 · day) or less. Has high water vapor barrier properties. In any of the examples, the refractive index in the visible light region is 1.80 or less and the transmittance is as high as 95% or more, and a low refractive index and highly transparent film is obtained. Thus, the transparent oxide film of the Example of this invention is equipped with the film | membrane characteristic suitable for all as a gas barrier layer employ | adopted as an electronic paper or a solar cell. However, the film characteristics are excellent under the conditions described in Example 16, but the film formation rate is slow because of the large amount of O 2 in the atmosphere during sputtering.
<密着性の測定>
密着性の測定として、まず得られたフィルム上の透明酸化物膜(実施例1〜17、比較例1〜7、従来例)をガラス基板の上に両面テープで貼り付け、透明酸化物膜の上から、カッターで碁盤の目状に100個の切り込みを入れた。次に、セロハン粘着テープを強く貼り付けた後、90゜方向に急速に剥し、透明酸化物膜の剥離の有無を調べた。その結果を表3に示す。100目のうち、剥離しない目の数をXで表示した。すなわち、剥離箇所がある場合はX/100、剥離箇所がない場合は100/100と示される。
<Measurement of adhesion>
For the measurement of adhesion, first, the transparent oxide films (Examples 1 to 17, Comparative Examples 1 to 7, Conventional Examples) on the obtained films were pasted on a glass substrate with a double-sided tape. From above, 100 cuts were made in a grid pattern with a cutter. Next, after strongly attaching a cellophane adhesive tape, it was peeled off rapidly in the 90 ° direction, and the presence or absence of peeling of the transparent oxide film was examined. The results are shown in Table 3. Of the 100 eyes, the number of eyes that do not peel is indicated by X. That is, X / 100 is indicated when there is a peeling portion, and 100/100 when there is no peeling portion.
これらの結果からわかるように、比較例や従来例では、剥離が生じているのに対し、本発明の実施例は、いずれも剥離が発生しておらず、高い密着性が得られている。 As can be seen from these results, peeling occurred in the comparative example and the conventional example, whereas no peeling occurred in the examples of the present invention, and high adhesion was obtained.
なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、樹脂フィルム上に成膜するだけでなく、逆にガラス上に透明酸化物膜を成膜し、その上に樹脂膜をつけ、さらにガラスから樹脂膜と共に透明酸化物膜を剥がすようにしても構わない。
The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.
For example, in addition to forming a film on a resin film, conversely, a transparent oxide film is formed on glass, a resin film is attached on the glass, and the transparent oxide film is peeled off from the glass together with the resin film. It doesn't matter.
(スパッタリングターゲットに関する参考例)
本発明においては、DCスパッタによる成膜が求められるが、DCスパッタが可能なスパッタリングターゲットに関して検討結果を以下に示す。
本参考例に係るスパッタリングターゲットの製造は、以下の条件で行った。
まず、Al2O3粉末とSiO2粉末とZnO粉末とを表1に示した各割合で秤量し、得られた粉末とその4倍量(重量比)のジルコニアボール(直径5mmのボールと直径10mmのボールとを半分ずつ)とを10Lのポリ容器(ポリエチレン製ポット)に入れ、ボールミル装置にて48時間湿式混合し、混合粉末とする。なお、溶媒には、例えばアルコールを用いた。
(Reference example regarding sputtering target)
In the present invention, although film formation by DC sputtering is required, the results of studies on a sputtering target capable of DC sputtering are shown below.
The sputtering target according to this reference example was manufactured under the following conditions.
First, Al 2 O 3 powder, SiO 2 powder, and ZnO powder were weighed in the proportions shown in Table 1, and the obtained powder and four times (weight ratio) zirconia balls (balls having a diameter of 5 mm and diameters). A 10 mm ball and a half are put into a 10 L plastic container (polyethylene pot) and wet-mixed for 48 hours in a ball mill apparatus to obtain a mixed powder. For example, alcohol was used as the solvent.
次に、得られた混合粉末を乾燥後、例えば目開き:250μmの篩にかけて造粒し、さらに真空乾燥後、1200℃にて5時間、200kgf/cm2の圧力で真空ホットプレスし、焼結体とした。
このようにホットプレスした焼結体を、ターゲットの指定形状(直径125mm、厚さ10mm)に機械加工し、加工したものを無酸素銅からなるバッキングプレートにボンディングして本参考例のスパッタリングターゲットを作製した。
Next, the obtained mixed powder is dried, then granulated through, for example, a sieve having an opening of 250 μm, vacuum dried, vacuum hot pressed at 1200 ° C. for 5 hours at a pressure of 200 kgf / cm 2 , and sintered. The body.
The sintered body thus hot-pressed is machined into a target shape (diameter 125 mm,
なお、比較参考例1〜11として、Al2O3粉末とSiO2粉末とZnO粉末とを表2に示した各割合で秤量し、得られた各粉末を混合し、0.6t/cm2でプレスし、さらにCIP(冷間静水等方圧プレス)にて175MPaで成形して、それを1400℃で大気焼成してスパッタリングターゲットを作製した。また、比較参考例12〜14として、本発明の成分組成の範囲外であって表2に示す各割合で秤量し、本参考例と同様の条件で真空ホットプレスしてスパッタリングターゲットを作製した。 In addition, as Comparative Reference Examples 1 to 11, Al 2 O 3 powder, SiO 2 powder, and ZnO powder were weighed at the respective ratios shown in Table 2, and the obtained powders were mixed to obtain 0.6 t / cm 2. Then, it was molded at 175 MPa by CIP (cold isostatic pressing) and fired in air at 1400 ° C. to produce a sputtering target. Moreover, as Comparative Reference Examples 12 to 14, they were weighed at respective ratios shown in Table 2 outside the range of the component composition of the present invention, and vacuum hot pressed under the same conditions as in this Reference Example to prepare sputtering targets.
さらに、これらのスパッタリングターゲットを、マグネトロンスパッタリング装置にセットし、電源:DC、投入電力:200W、到達真空度:1×10−4Pa、スパッタガス:Ar、スパッタ圧力:0.67Paとした条件で、200℃に加熱されたガラス基板(コーニング社1737# 縦:20×横:20、厚さ:0.7mm)の上に膜厚:300nmを有する透明膜の形成を試みた。 Furthermore, these sputtering targets were set in a magnetron sputtering apparatus, and the conditions were as follows: power source: DC, input power: 200 W, ultimate vacuum: 1 × 10 −4 Pa, sputtering gas: Ar, sputtering pressure: 0.67 Pa An attempt was made to form a transparent film having a thickness of 300 nm on a glass substrate heated to 200 ° C. (Corning 1737 # length: 20 × width: 20, thickness: 0.7 mm).
このように作製した本発明の参考例および比較参考例について、焼結体の密度(理論密度比)、X線回折法(XRD)によるZnO(101)およびZn2SiO4(410)の回折ピークの有無、DCスパッタの可否、バルク抵抗値、60分間のDCスパッタ時の異常放電回数、DCスパッタした透明膜の屈折率(波長380nm、550nm、750nmの光に対して)をそれぞれ測定、評価した。この結果を表4に示す。 About the reference example and comparative reference example of the present invention thus produced, the sintered body density (theoretical density ratio), diffraction peaks of ZnO (101) and Zn 2 SiO 4 (410) by X-ray diffraction (XRD) Presence / absence, DC sputtering availability, bulk resistance value, number of abnormal discharges during DC sputtering for 60 minutes, and refractive index of the DC-sputtered transparent film (with respect to light with wavelengths of 380 nm, 550 nm, and 750 nm) were measured and evaluated. . The results are shown in Table 4.
この結果からわかるように、大気焼成を用いた比較参考例のうちAl2O3の含有量が少なくSiO2を含まない比較参考例1,2では、異常放電回数が多く安定したDCスパッタができず、Al2O3の含有量がある程度あるがSiO2を含まない比較参考例3〜5では、低い屈折率が得られていない。また、大気焼成を用いた比較参考例のうちAl2O3の含有量が多くSiO2を含まない比較参考例6,7では、異常放電回数が多く安定したDCスパッタができず、Al2O3とSiO2とを含む比較参考例8〜11では、異常放電回数が多いまたはターゲットに導電性がなくDCスパッタができなかった。なお、比較参考例1〜7は、いずれも密度が理論密度の100%未満であった。 As can be seen from these results, in Comparative Reference Examples 1 and 2 that have a low content of Al 2 O 3 and do not contain SiO 2 among Comparative Reference Examples that use atmospheric firing, stable DC sputtering can be performed with a large number of abnormal discharges. In Comparative Reference Examples 3 to 5 having a certain amount of Al 2 O 3 but not containing SiO 2 , a low refractive index was not obtained. Moreover, in Comparative Reference Examples 6 and 7 in which the content of Al 2 O 3 is large and does not contain SiO 2 among the Comparative Reference Examples using atmospheric firing, stable DC sputtering cannot be performed with a large number of abnormal discharges, and Al 2 O In Comparative Reference Examples 8 to 11 containing 3 and SiO 2 , the number of abnormal discharges was large or the target was not conductive and DC sputtering could not be performed. In all of Comparative Reference Examples 1 to 7, the density was less than 100% of the theoretical density.
さらに、ホットプレスを用いた比較参考例のうちSiO2の含有量が本発明の範囲よりも少ない比較参考例12では、低い屈折率が得られず、SiO2の含有量が本発明の範囲よりも多い比較参考例13では、ターゲットに導電性がなくDCスパッタができなかった。また、Al2O3の含有量が本発明の範囲よりも多い比較参考例14では、異常放電回数が多く安定したDCスパッタができなかった。なお、比較参考例8,12,14では、XRDにおいてZnO(101)およびZn2SiO4(410)の両ピークが観察されたが、AlまたはSiの含有量が本発明の範囲から外れているため、上述した不都合が生じている。 Furthermore, in the comparative reference example 12 in which the content of SiO 2 is smaller than the range of the present invention among the comparative reference examples using the hot press, a low refractive index cannot be obtained, and the content of SiO 2 is smaller than the range of the present invention. In Comparative Reference Example 13 having many, the target was not conductive and DC sputtering could not be performed. Further, in Comparative Reference Example 14 in which the content of Al 2 O 3 was larger than the range of the present invention, the number of abnormal discharges was large and stable DC sputtering could not be performed. In Comparative Reference Examples 8, 12, and 14, both peaks of ZnO (101) and Zn 2 SiO 4 (410) were observed in XRD, but the content of Al or Si deviated from the scope of the present invention. Therefore, the inconvenience described above occurs.
これらに対して本参考例は、いずれもXRDにおいてZnO(101)およびZn2SiO4(410)の両ピークが観察され、異常放電回数が非常に少なく安定に良好なDCスパッタができており、屈折率についてもいずれもAZO膜よりも低い屈折率が得られている。また、密度についても、本参考例ではいずれも理論密度の100〜108%の範囲内であった。 On the other hand, in this reference example, both peaks of ZnO (101) and Zn 2 SiO 4 (410) were observed in XRD, the number of abnormal discharges was very small, and stable and good DC sputtering was achieved. As for the refractive index, a refractive index lower than that of the AZO film is obtained. Also, the density was within the range of 100 to 108% of the theoretical density in this reference example.
次に、表1に示す参考例3(SiO2:20wt%)について、X線回折法(XRD)にて観察した結果を、図9に示す。この参考例3では、複合酸化物Zn2SiO4の(410)の回折ピークとZnOの(101)の回折ピークとが、いずれも高い強度で観察されている。これに対して、参考例3と同じ成分組成により大気焼成で作製した比較参考例では、図10に示すようにZnOの(101)の回折ピークが得られていない。このように、導電性を得るには、本参考例のように、複合酸化物Zn2SiO4とZnOとが組織中に共存することが必要である。 Next, FIG. 9 shows the result of observation by X-ray diffraction (XRD) for Reference Example 3 (SiO 2 : 20 wt%) shown in Table 1. In Reference Example 3, the (410) diffraction peak of the complex oxide Zn 2 SiO 4 and the (101) diffraction peak of ZnO are both observed with high intensity. On the other hand, as shown in FIG. 10, the (101) diffraction peak of ZnO was not obtained in the comparative reference example produced by atmospheric firing with the same component composition as in Reference example 3. Thus, in order to obtain conductivity, it is necessary that the composite oxides Zn 2 SiO 4 and ZnO coexist in the structure as in this reference example.
Claims (6)
波長750nmにおける透過率が、93%以上であることを特徴とする透明酸化物膜。 The transparent oxide film according to claim 1,
A transparent oxide film having a transmittance of 93% or more at a wavelength of 750 nm.
可視光域での屈折率平均値が、1.59〜1.80であり、
厚み50nm以上で水蒸気透過率が0.01g/(m2・day)以下であることを特徴とする透明酸化物膜。 The transparent oxide film according to claim 1 or 2,
The average refractive index in the visible light region is 1.59 to 1.80,
A transparent oxide film having a thickness of 50 nm or more and a water vapor transmission rate of 0.01 g / (m 2 · day) or less.
全金属成分量に対してAl:0.3〜4.0wt%、Si:6.0〜14.5wt%を含有し、残部がZnおよび不可避不純物からなる成分組成を有した酸化物焼結体からなり、該焼結体の組織中に複合酸化物Zn2SiO4とZnOとが存在するスパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気中および基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタすることを特徴とする透明酸化物膜の製造方法。 A method for producing the transparent oxide film according to any one of claims 1 to 3,
Oxide sintered body containing Al: 0.3 to 4.0 wt%, Si: 6.0 to 14.5 wt% with respect to the total amount of metal components, with the balance being composed of Zn and inevitable impurities At least one environment in which an oxygen-containing inert gas atmosphere and a substrate are heated using a sputtering target in which a composite oxide Zn 2 SiO 4 and ZnO are present in the structure of the sintered body A method for producing a transparent oxide film, comprising: sputtering under direct current.
前記基板が樹脂フィルム基材であり、
前記基板の加熱温度を、100〜200℃の範囲に設定することを特徴とする透明酸化物膜の製造方法。 In the manufacturing method of the transparent oxide film of Claim 4,
The substrate is a resin film substrate;
A method for producing a transparent oxide film, wherein a heating temperature of the substrate is set in a range of 100 to 200 ° C.
前記酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧を、0.05以上に設定することを特徴とする透明酸化物膜の製造方法。 In the manufacturing method of the transparent oxide film of Claim 4,
A method for producing a transparent oxide film, wherein a partial pressure of oxygen with respect to the whole atmosphere gas of oxygen and inert gas is set to 0.05 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012039041A JP5884549B2 (en) | 2011-02-25 | 2012-02-24 | Transparent oxide film and method for producing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011040441 | 2011-02-25 | ||
JP2011040441 | 2011-02-25 | ||
JP2012030340 | 2012-02-15 | ||
JP2012030340 | 2012-02-15 | ||
JP2012039041A JP5884549B2 (en) | 2011-02-25 | 2012-02-24 | Transparent oxide film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013189657A true JP2013189657A (en) | 2013-09-26 |
JP5884549B2 JP5884549B2 (en) | 2016-03-15 |
Family
ID=46720507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012039041A Active JP5884549B2 (en) | 2011-02-25 | 2012-02-24 | Transparent oxide film and method for producing the same |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5884549B2 (en) |
KR (2) | KR20170084351A (en) |
CN (1) | CN103380229B (en) |
TW (1) | TWI572731B (en) |
WO (1) | WO2012114713A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5550768B1 (en) * | 2012-07-03 | 2014-07-16 | Jx日鉱日石金属株式会社 | Sintered body and amorphous film |
US20160285027A1 (en) * | 2013-12-26 | 2016-09-29 | Japan Science And Technology Agency | Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film |
JP2017132223A (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Laminated film |
WO2017131202A1 (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Conductive laminate film |
WO2017131201A1 (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Optical layered body |
JP2017134370A (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Optical laminate |
WO2018110272A1 (en) * | 2016-12-15 | 2018-06-21 | 東レフィルム加工株式会社 | Gas barrier film and organic el device |
WO2021079947A1 (en) * | 2019-10-23 | 2021-04-29 | 三菱マテリアル株式会社 | Oxide sputtering target |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5730729B2 (en) * | 2011-09-20 | 2015-06-10 | 株式会社カネカ | Substrate with transparent electrode |
JP6070194B2 (en) * | 2011-10-28 | 2017-02-01 | 東レ株式会社 | Gas barrier film |
WO2014069367A1 (en) * | 2012-10-30 | 2014-05-08 | Jx日鉱日石金属株式会社 | Electrically conductive oxide sintered body, and low-refractive-index film produced using said electrically conductive oxide |
JP2014114467A (en) * | 2012-12-07 | 2014-06-26 | Toray Ind Inc | Method for producing gas barrier film |
JP6269476B2 (en) * | 2013-01-11 | 2018-01-31 | 東レ株式会社 | Gas barrier film |
JP6149804B2 (en) * | 2014-05-30 | 2017-06-21 | 住友金属鉱山株式会社 | Oxide sintered body and manufacturing method thereof |
KR102040234B1 (en) | 2016-11-28 | 2019-11-06 | 주식회사 후본 | Different material convergence 3d printer and method for printing using it |
JP2018195512A (en) * | 2017-05-19 | 2018-12-06 | 国立大学法人東京工業大学 | Organic EL element |
JP2019143245A (en) | 2018-02-22 | 2019-08-29 | 三菱マテリアル株式会社 | Oxide film and manufacturing method of oxide film and nitrogen containing oxide sputtering target |
CN111902561B (en) * | 2018-04-26 | 2022-04-08 | 三菱综合材料株式会社 | Shield layer, method for producing shield layer, and oxide sputtering target |
CN110793937B (en) * | 2018-08-03 | 2022-08-16 | 张家港康得新光电材料有限公司 | Membrane type determination method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129410A1 (en) * | 2005-05-30 | 2006-12-07 | Nippon Mining & Metals Co., Ltd. | Sputtering target and process for producing the same |
JP2007311041A (en) * | 2006-05-16 | 2007-11-29 | Bridgestone Corp | Film-forming method of crystalline zno system transparent conductive thin film, crystalline zno system transparent conductive thin film and film, as well as resistance film type touch panel |
WO2009078330A1 (en) * | 2007-12-19 | 2009-06-25 | Hitachi Metals, Ltd. | Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode formed using the sputtering target |
JP2009199986A (en) * | 2008-02-25 | 2009-09-03 | Sumitomo Metal Mining Co Ltd | Zinc oxide transparent conductive film lamination layer, transparent conductive substrate and device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3841388B2 (en) * | 1998-02-16 | 2006-11-01 | 日鉱金属株式会社 | Protective film for optical disk and sputtering target for forming protective film of optical disk |
JPH11236219A (en) * | 1998-02-20 | 1999-08-31 | Sumitomo Metal Mining Co Ltd | Zinc oxide-base sintered compact and its production |
JPH11322332A (en) * | 1998-05-21 | 1999-11-24 | Sumitomo Metal Mining Co Ltd | Zno-based sintered product and its production |
JP2000040429A (en) * | 1998-07-24 | 2000-02-08 | Sumitomo Metal Mining Co Ltd | Manufacturing of zinc oxide transparent conductive film |
JP2007327079A (en) * | 2006-06-06 | 2007-12-20 | Sony Corp | Transparent conductive laminate film, and its manufacturing method |
WO2009078329A1 (en) * | 2007-12-19 | 2009-06-25 | Hitachi Metals, Ltd. | Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode |
WO2009145152A1 (en) * | 2008-05-27 | 2009-12-03 | 株式会社カネカ | Transparent conductive film and method for producing the same |
WO2010032542A1 (en) * | 2008-09-17 | 2010-03-25 | 三井金属鉱業株式会社 | Electrically conductive transparent zinc oxide film, and method for producing same |
EP2415597A4 (en) * | 2009-03-31 | 2014-12-31 | Teijin Ltd | Transparent conductive laminate and transparent touch panel |
-
2012
- 2012-02-20 WO PCT/JP2012/001108 patent/WO2012114713A1/en active Application Filing
- 2012-02-20 KR KR1020177018979A patent/KR20170084351A/en active Search and Examination
- 2012-02-20 CN CN201280007565.1A patent/CN103380229B/en not_active Expired - Fee Related
- 2012-02-20 KR KR1020137019308A patent/KR20140004143A/en active Application Filing
- 2012-02-23 TW TW101106025A patent/TWI572731B/en not_active IP Right Cessation
- 2012-02-24 JP JP2012039041A patent/JP5884549B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129410A1 (en) * | 2005-05-30 | 2006-12-07 | Nippon Mining & Metals Co., Ltd. | Sputtering target and process for producing the same |
JP2007311041A (en) * | 2006-05-16 | 2007-11-29 | Bridgestone Corp | Film-forming method of crystalline zno system transparent conductive thin film, crystalline zno system transparent conductive thin film and film, as well as resistance film type touch panel |
WO2009078330A1 (en) * | 2007-12-19 | 2009-06-25 | Hitachi Metals, Ltd. | Zinc oxide sintered compact, process for producing the zinc oxide sintered compact, sputtering target, and electrode formed using the sputtering target |
JP2009199986A (en) * | 2008-02-25 | 2009-09-03 | Sumitomo Metal Mining Co Ltd | Zinc oxide transparent conductive film lamination layer, transparent conductive substrate and device |
Non-Patent Citations (1)
Title |
---|
JPN6015019805; DENG,Z. et al: '"Effects of Al content on the properties of ZnO:Al films prepared by Al2O3 and ZnO co-sputtering"' Journal of Materials Science. Materials in Electronics Vol.21, No.10, 201010, pp.1030-1035 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5550768B1 (en) * | 2012-07-03 | 2014-07-16 | Jx日鉱日石金属株式会社 | Sintered body and amorphous film |
JP2014141386A (en) * | 2012-07-03 | 2014-08-07 | Jx Nippon Mining & Metals Corp | Sintered body and amorphous film |
JP2014159634A (en) * | 2012-07-03 | 2014-09-04 | Jx Nippon Mining & Metals Corp | Sintered body and amorphous film |
JP2014166950A (en) * | 2012-07-03 | 2014-09-11 | Jx Nippon Mining & Metals Corp | Sintered body and amorphous film |
US20160285027A1 (en) * | 2013-12-26 | 2016-09-29 | Japan Science And Technology Agency | Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film |
US11094909B2 (en) * | 2013-12-26 | 2021-08-17 | Japan Science And Technology Agency | Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film |
JP2017134370A (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Optical laminate |
WO2017131201A1 (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Optical layered body |
WO2017131202A1 (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Conductive laminate film |
JP2017134371A (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Optical laminate |
WO2017131198A1 (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Laminated film |
JP2017132225A (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Conductive laminated film |
WO2017131200A1 (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Optical laminate |
JP2017132223A (en) * | 2016-01-29 | 2017-08-03 | 日東電工株式会社 | Laminated film |
WO2018110272A1 (en) * | 2016-12-15 | 2018-06-21 | 東レフィルム加工株式会社 | Gas barrier film and organic el device |
WO2021079947A1 (en) * | 2019-10-23 | 2021-04-29 | 三菱マテリアル株式会社 | Oxide sputtering target |
KR20220087425A (en) | 2019-10-23 | 2022-06-24 | 미쓰비시 마테리알 가부시키가이샤 | oxide sputtering target |
Also Published As
Publication number | Publication date |
---|---|
CN103380229B (en) | 2016-05-04 |
CN103380229A (en) | 2013-10-30 |
TWI572731B (en) | 2017-03-01 |
TW201247915A (en) | 2012-12-01 |
KR20170084351A (en) | 2017-07-19 |
JP5884549B2 (en) | 2016-03-15 |
KR20140004143A (en) | 2014-01-10 |
WO2012114713A1 (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5884549B2 (en) | Transparent oxide film and method for producing the same | |
JP5943226B2 (en) | Sputtering target for forming transparent film and method for producing the same | |
JP4730204B2 (en) | Oxide sintered compact target and method for producing oxide transparent conductive film using the same | |
JP3906766B2 (en) | Oxide sintered body | |
KR101789347B1 (en) | Transparent conductive films | |
TWI525060B (en) | An oxide sintered body, a sputtering target, a thin film, and an oxide sintered body | |
KR20070080813A (en) | An oxide sintered body and an oxide film obtained by using it, and a transparent base material containing it | |
WO2019176552A1 (en) | Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film | |
TWI564250B (en) | Oxide sintered body, sputtering target and oxide film | |
JP2013047361A (en) | Sputtering target, method for production thereof, thin film using the target, and thin film sheet and laminated sheet provided with the thin film | |
JP2012134434A (en) | Transparent electrode film for solar cell, and solar cell using the same | |
JP2009256762A (en) | Sputtering target and method for producing the same | |
JP5776563B2 (en) | Transparent film, method for producing the same, and sputtering target for forming transparent film | |
JP2012158825A (en) | Zinc oxide-based transparent conductive film-forming material and method for producing the same, target using the same, method for forming zinc oxide-based transparent conductive film, and transparent conductive substrate | |
TWI579254B (en) | Sintered and amorphous membranes | |
JP5761528B2 (en) | Transparent oxide film, method for producing the same, and oxide sputtering target | |
JP2012106880A (en) | Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film | |
JP5747738B2 (en) | Sputtering target, manufacturing method thereof, thin film using the target, thin film sheet including the thin film, and laminated sheet | |
JP2013144821A (en) | Oxide sputtering target and protective film for optical recording medium | |
JP5954620B2 (en) | Sputtering target for forming transparent oxide film and method for producing the same | |
JP2012140696A (en) | Zinc oxide based transparent conductive film forming material, method for producing the material, target using the material, and method for forming zinc oxide based transparent conductive film | |
JP2013185175A (en) | Transparent oxide film, method for manufacturing the same, and oxide sputtering target | |
JP2012140673A (en) | Zinc oxide based transparent conductive film forming material, method for producing the material, target using the material, and method for forming zinc oxide based transparent conductive film | |
JP2013144820A (en) | Oxide sputtering target and protective film for optical recording medium | |
KR20230049562A (en) | Molybdenum oxide based sintered body, metal oxide thin film using the sintered body, and thin film transistors and displa devices comprising the thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5884549 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |