201247915 六、發明說明: 【發明所屬之技術領域】 本發明關於一種氣體遮蔽性優異的氧化鋅系之透明氧 化物膜及其製造方法,其係可利用作爲有機發光顯示元件 、液晶顯示元件、電致發光顯示元件、電泳型顯示元件、 色粉顯示元件等的電子紙或薄膜型太陽能電池等所使用的 氣體遮蔽層或薄膜密封層所含的無機膜及由化合物半導體 形成的薄膜太陽能電池的透明電極層上之氣體遮蔽層。 【先前技術】 在過去,關於液晶顯示元件或電致發光顯示元件、電 泳方式顯示元件、色粉顯示元件等的電子紙或薄膜型太陽 能電池等所使用的氣體遮蔽層及由化合物半導體形成的薄 膜太陽能電池(例如CIGS ( Cu-In-Ga-Se )系太陽能電池 )之透明電極層上的氣體遮蔽層,已知有藉由濺鍍法製作 透明氧化物膜的技術。 例如在專利文獻1中提出了一種之方法,其係使用氧 化物燒結體作爲濺鍍靶,該氧化物燒結體係含有氧化錫與 選自Si、Ge、A1所構成之群中之至少1種添加元素,以 相對於添加元素與Sn的含量之總和而言1 5原子%〜63原 子%的比例含有該添加元素,在結晶相的構成中含有添加 元素的金屬相、該添加元素的氧化物相、該添加元素與 Sn的複合氧化物相之中的1種以上’該添加元素的氧化 物相及該添加元素與Sn的複合氧化物相’並以平均粒徑 -5- 201247915 5 0 μηι以下的大小分散,利用直流脈衝法的濺鍍 在樹脂薄膜基材的表面形成透明氧化物膜。 以此方法所得到的透明氧化物膜係含有氧化 Si、Ge、Al所構成之群中之至少1種添加元素 化物膜,並且該添加元素的含量係相對於添加元 的總和而言的1 5原子%〜6 3原子%的比例,且爲 ,且在波長633nm的折射率爲1.90以下。 另外’在專利文獻2中提出了 一種光透過膜 法,其係相變化光碟用保護膜所使用的光透過膜 途相異,然而使用了含有選自Nb205、V2〇5、B2 、P2O5之1種以上的玻璃形成氧化物:0.01〜20 Al2〇3或Ga203 : 0.0 1〜20重量%,剩餘部分爲選 、Sn02、ZnO之1種以上的氧化物的濺鍍靶,藉 ,使含有選自 Nb205、V205、B2〇3、Si02、P2〇5; 上的玻璃形成氧化物:0.01〜20重量%、AI2O3或 0.01〜20重量%,剩餘部分爲選自ln2〇3、Sn02、 種以上的氧化物。 [先前技術文獻] [專利文獻] [專利文獻1]曰本特開200 7-2909 1 6號公報 [專利文獻2]日本特開2000-1 1 9062號公報 【發明內容】 [發明所欲解決之課題] 法,藉此 錫與選自 的透明氧 ;素與 Sn 非晶質膜 成膜之方 ,雖然用 03 ' Si02 重量%、 自 In2〇3 由濺鍍法 之1種以 Ga2〇3 : ZnO 之 1 -6- 201247915 上述以往的技術殘留了以下的課題。 亦即’在上述專利文獻1之技術所記載之靶中,在濺 鍍時會產生許多瘤狀物’在裝置的清掃等需要花費工夫, 因此希望有一種非氧化錫系而爲其他組成系且氣體遮蔽性 優異的透明氧化物膜。然而,藉由上述專利文獻2的技術 所製作的透明氧化物膜是用在光碟方面,因此折射率高, 在利用於上述電子紙或太陽能電池所使用的樹脂薄膜基材 上的氣體遮蔽層時’接近樹脂薄膜基材的折射率(例如在 波長6 3 3 n m且折射率η : 1 · 5〜1 · 7 ),因此必須降低其折 射率。因此考慮使氧化鋅系之透明氧化物膜含有更多Si02 ’以降低折射率’而專利文獻2所記載般,若Si02超過 2 0wt%,則會有添加的成分的Si02的結晶相析出的不良狀 況。若結晶相析出,則氣體遮蔽性(例如水蒸氣遮蔽性) 的機能降低,因此無法作爲保護膜使用。 本發明鑑於前述課題而完成,目的爲提供一種氧化鋅 系之透明氧化物膜,其係使用成膜速度快的濺鍍法,折射 率低,且具有良好的氣體遮蔽性;以及其製造方法。 [用於解決課題之手段] 由於在 AZO ( Al-Zn-0 : Aluminium doped Zinc Oxide :摻鋁的氧化鋅)膜中含有Si02,則折射率會變低,因此 本發明人等欲藉由濺鍍而使Zn0-Si02-Al203膜成膜以作 爲透明氧化物膜而進行硏究。在此硏究之中,查明了藉由 將濺鍍成膜時的氣體環境或基板的溫度設定在特定的條件 201247915 ,由使用特定的組織所構成之濺鍍靶得到透明、低折射率 且具有高氣體遮蔽性能的ZnO-Si〇2-Al203膜。 所以,本發明是由上述見解而完成,爲了解決前述課 題而採用以下的構成。亦即,本發明之透明氧化物膜,其 特徵爲:具有下述成分組成:相對於金屬成分總量而言含 有 A丨:0.9〜2 0.0 at %、S i : 2 5.5〜6 8.0 at %,剩餘部分係由 Zn及無法避免的雜質所構成,且爲非晶質。 亦即,在此透明氧化物膜中,由於具有下述成分組成 :相對於金屬成分總量而言含有A1: 0.9〜20.0 at %、Si: 25.5〜68.Oat%,剩餘部分係由Zn及無法避免的雜質所構 成,且爲非晶質,因此在可見光區可得到比以往還低的折 射率,同時具有高氣體遮蔽性(例如水蒸氣遮蔽性)。進 —步在可見光區可得到95 %以上的高透過率,而具有良好 的透明性。 此外,將上述 A1的含量定爲 0.9〜20.0at%的理由是 因爲在將濺鍍靶設定成用以得到未達0.9at%的膜的組成的 情況,會發生異常放電,無法安定地進行DC濺鍍,將濺 鍍靶設定成用以得到超過2 0.0 at%的膜的組成也會發生異 常放電’而無法安定地進行DC濺鍍。此外,A1的含量係 以12at%以下爲較佳。亦即,若A1的含量爲12at%以下, 則相對而言可維持高S i含量,因此可得到較低的折射率 、及較高的氣體遮蔽性。 另外’將上述Si的含量定爲25.5〜68.Oat%的理由是 因爲若未達25.5at%,則無法得到所希望之低折射率及氣 201247915 體遮蔽性,在將濺鍍靶設定成用以得到超過68.Oat%的膜 的組成的情況,Si量變多,而無法進行DC濺鍍。 另外,本發明之透明氧化物膜,其特徵爲:在波長 75 0nm的透光率爲93%以上。 亦即,與一般能夠以DC濺鍍成膜的氧化物不同,如 導電性氧化物般,電子造成長波長側的吸收小,因此能夠 製成可藉由DC濺鍍成膜,且可見光長波長的光線不會損 失,在可見光全區域具有高透明性的膜。 另外,本發明之透明氧化物膜,其特徵爲:在可見光 區的折射率平均値爲1.59〜1.80,厚度50nm以上且水蒸 氣透過率爲0.01g/(m2_day)以下。 亦即,在此透明氧化物膜中,在可見光區的折射率平 均値爲1.59〜1.80,厚度50nm以上且水蒸氣透過率爲 0.01/(m2‘day)以下,因此適合作爲成膜於電子紙或太陽 能電池所可採用的樹脂薄膜基材上的氣體遮蔽層。此外, 此處可見光區定爲波長380nm〜750nm的範圍。 本發明之透明氧化物膜之製造方法,其係製造上述發 明之透明氧化物膜之方法,其特徵爲:使用濺鍍靶,在含 有氧的惰性氣體環境中及將基板加熱的狀態之至少一種環 境下,通入直流電流以進行濺鍍,該濺鍍靶係由氧化物燒 結體所構成,該氧化物燒結體係具有下述成分組成··相對 於金屬成分總量而言含有A1: 0.3〜4.Owt %、Si: 6.0〜 1 4 · 5 wt%,剩餘部分係由Zn及無法避免的雜質所構成,該 燒結體之組織中存在複合氧化物Zn2Si〇4與ZnO。 201247915 亦即,在此透明氧化物膜之製造方法中’係使用在上 述氧化物燒結體之組織中存在複合氧化物Zn2Si〇4與ZnO 的濺鍍靶,因此可進行DC濺鍍,進一步在含有氧的惰性 氣體環境中及將基板加熱的狀態之至少一種環境下,通入 直流電流以進行濺鑛(DC濺鍍),因此可使含有許多Si 的非晶質透明氧化物膜(Zn0-Si02-Al203膜)成膜。所以 ,依據本發明之製法,可添加比以往還多的Si02,降低折 射率,同時能夠使非晶質且氣體遮蔽性高的透明氧化物膜 以DC濺鍍成膜。 此外,將上述A1的含量定爲0.3〜4.0 wt%的理由是因 爲在未達〇.3wt%的情況會發生異常放電而無法進行DC濺 鍍,若超過4.0wt%,則所產生的Al2〇3與ZnO的複合氧 化物ΖηΑ1204導致異常放電發生,而無法進行DC濺鎞。 另外,將上述Si的含量定爲6.0〜14.5wt%的理由是 因爲在未達6.0wt%的情況無法充分得到降低折射率的效 果,若超過1 4.5 wt%,則無法得到充足的導電性,並且發 生異常放電,而無法進行DC濺鍍。 另外,本發明之透明氧化物膜之成膜方法,其特徵爲 :前述基板爲樹脂薄膜基材,將前述基板之加熱溫度設定 在100〜200 °C的範圍。 亦即,在此透明氧化物膜之製造方法中,將基板的加 熱溫度設定在100〜200 °C的範圍,因此可抑制熱對於成膜 的樹脂薄膜基材的影#,同時可得到具有充足的透明性與 低折射率的透明氧化物膜以作爲電子紙或太陽能電池所可 -10- 201247915 採用的氣體遮蔽層。 此外,將上述基板之加熱溫度設定在100〜200°c 圍的理由是因爲若未達100 °C,則膜中的Si含量變少 明性降低,同時折射率變化,若超過200 °c,則樹脂 基材會受到損傷。 另外,本發明之透明氧化物膜之成膜方法,其特 :將前述氧相對於氧與惰性氣體之環境氣體全體而言 體分壓設定在0.05以上。 亦即,此在透明氧化物膜之製造方法中,將氧相 氧與惰性氣體之環境氣體全體而言的氣體分壓設定在 以上,因此可得到具有充足的透明性與低折射率的透 化物膜以作爲電子紙或太陽能電池所可採用的氣體遮 〇 這是因爲若使氧的氣體分壓未達0.05,則膜中g 含量變少,透明性降低,並且折射率發生變化。此外 氧氣的氣體分壓超過0.2,則濺鍍的成膜速度變慢, 力降低,因此以定爲0.2以下爲佳。 以這樣的方式,在本發明中,調整上述基板加熱 及上述氧的氣體分壓之至少一者而進行DC濺鍍,可 膜中S i的含量。 [發明之效果] 依據本發明,可發揮出以下的效果。 亦即,依據本發明所關連之透明氧化物膜,由於 的範 ,透 薄膜 徵爲 的氣 對於 0.05 明氧 蔽層 勺Si ,若 生產 溫度 調整 具有 -11 - 201247915 下述成分組成:相對於金屬成分總量而1 2 8.5 at %、S i : 2 5 · 5 〜6 8.0 at %,剩餘部分 f; 免的雜質所構成,且爲非晶質,因此在可 以往還低的折射率,同時具有高氣體遮葡 本發明所關連之透明氧化物膜之製造方祛 述氧化物燒結體之組織中存在複合氧化物 的濺鍍靶,因此可進行DC濺鍍,在含笮 境中及將基板加熱的狀態之至少一種環境 流以進行濺鍍,因此可使非晶質的上述組 膜(Zn0-Si02-Al203 膜)成膜。 所以,藉由採用本發明之透明氧化物 太陽能電池等的氣體遮蔽層,可得到所要 低折射率及高氣體遮蔽性,能夠製作出具 高視認性的電子紙或轉換效率良好的太陽 【實施方式】 以下參照圖1對本發明所關連之透明 造方法其中一個實施形態作說明。 本實施形態之透明氧化物膜爲可利用 氣體遮蔽層的膜,其係具有下述成分組成 分總量而言含有A1: 0.9〜20.Oat%、Si: 剩餘部分係由Zn及無法避免的雜質所構 〇 另外,此透明氧化物膜在膜厚lOOnm 『含有 A丨:0.9〜 爸由Zn及無法避 見光區可得到比 性。另外,依據 ,由於使用在上 Zn2Si04 與 ZnO 氧的惰性氣體環 下,通入直流電 成之透明氧化物 膜作爲電子紙或 求的高透明性、 有高信賴性以及 能電池等。 氧化物膜及其製 作爲上述用途之 =相對於金屬成 25·5 〜68.0at%, 成,且爲非晶質 時的薄片電阻値 -12- 201247915 爲 1.0xl0l4D/sq 以上。 進一步,此透明氧化物膜在可見光區的折射率平均値 爲1.59〜1.80,厚度50 nm以上且水蒸氣透過率爲〇.〇1 g/ (m2· day )以下。此外,水蒸氣透過率係根據JIS規格的 K7 129法,藉由MOCON法所測得的値。 另外,本實施形態之透明氧化物膜之製造方法,係使 用濺鍍靶,在含有氧的惰性氣體環境中及將基板加熱的狀 態之至少一種環境下,通入直流電流以進行濺鍍(DC濺 鍍),該濺鍍靶係由氧化物燒結體所構成,該氧化物燒結 體係具有下述成分組成:相對於金屬成分總量而言含有A1 :0.3〜4.0wt%、Si : 6.0〜14.5wt%,剩餘部分係由Zn及 無法避免的雜質所構成,在該燒結體的組織中存在複合氧 化物 Zn2Si04 與 ZnO。 此時,使用樹脂薄膜基材作爲基板,並將基板的加熱 溫度設定在1〇〇〜200°C的範圍。另外’氧相對於氧與惰性 氣體之環境氣體全體而言的氣體分壓設定在〇·〇5以上。 上述透明薄膜基材可例示丙烯酸樹脂、聚醯胺樹脂、 聚醯亞胺樹脂、聚酯樹脂纖維素及該等的共聚合樹脂、合 成的透明基板。 詳細的例子可列舉聚酯、聚對苯二甲酸乙二酯(PET )、聚對苯二甲酸丁二酯、聚甲基丙烯酸甲酯(pmma) 、丙烯酸、聚碳酸酯(PC)、聚苯乙烯、聚乙烯醇、聚乙 烯等,然而並不在此限。 此外,上述濺鍍靶的燒結體密度爲理論密度的1 〇〇〜 -13- 201247915 10 8%。進一步而言,此濺鍍靶的本體電阻値爲1Ω· cm以 下。 將上述燒結體密度定爲理論密度比的100〜108%的理 由是因爲在未達100%的情況會發生靶破裂等的問題’若 超過108%,則幾乎變成複合氧化物Zn2Si〇4的組織,而 變得無法藉由DC濺鍍進行放電。 此處,理論密度比的計算’,係使用ZnO爲5.61g/cm3 、Si〇2 爲 2.20g/cm3、AI2O3 爲 3.99g/cm3 之値進行計算。 另外,濺鍍靶的本體電阻値爲1 Ω · cm以下,因此可 安定而良好地進行DC濺鍍。 此製作濺鍍靶之方法係具有,將ai2o3粉末、Si02粉 末、ZnO粉末混合,使其成爲Al2〇3: 0.5〜5.0wt%、Si02 :10〜22wt%、剩餘部分:由ZnO及無法避免的雜質所構 成,而製成混合粉末之步驟;以及在真空中將此混合粉末 熱壓延並且燒結之步驟。 若針對上述製法的一個例子作詳細敘述,則例如圖1 所示般’首先,秤量純度99.9%以上的八1203粉末、8丨02 粉末與ZnO粉末,使其成爲上述含量範圍,藉由濕式球磨 機粉碎、混合,而製作出混合粉末。例如將秤量而得的各 粉末與锆球置入塑膠容器(聚乙烯製罐子),以球磨機裝 置進fl濕式混合既定時間’而製成混合粉末。此外,溶劑 係使用例如醇。 接下來,使所得到的混合粉末乾燥後,例如通過孔徑 2 5 0 μηι的飾網而造粒’進一步真空乾燥後,例如以丨2 〇 〇。〇 -14- 201247915 、200kgf/cm2的壓力在真空中熱壓延5小時,而製成燒結 體。此外,熱壓延溫度係以1 1 0 0〜1 2 5 0 °C的範圍爲佳,壓 力係以150〜3 5 0kgf/cm2的範圍爲佳。 以這種方式熱壓延而得的燒結體,通常使用放電加工 、切削或硏磨加工來進行機械加工而成爲指定形狀的靶, 並以In作爲焊料將加工後的靶焊接於由Cu或SUS (不銹 鋼)或其他金屬(例如 Mo )所構成之靶座(Backing plate ),然後供給至濺鍍。 此外,關於其他製造方法,亦可藉由上述製造方法的 濕式球磨機,以純水作爲溶劑,使用內部容積300L的球 磨裝置磨碎、混合,然後,將藉由噴霧乾燥法進行乾燥造 粒而得的物體,進一步以乾式球磨機磨碎,將此磨碎粉末 ,與上述同樣的方式進行熱壓延之方法。此外亦可省略上 述藉由乾式球磨機進行的磨碎步驟。 爲了使用此濺鍍靶進行DC濺鑛以得到本實施形態的 透明氧化物膜,將上述濺鍍靶設置於磁控濺鍍裝置,在既 定的輸入電力、所到達的真空度、以及濺鍍壓力下,並將 濺鍍氣體分壓設定在02/(Ar + 02)爲0.05〜0.2的範圍、基 板加熱定爲100°C至200°C,在此條件下成膜於樹脂薄膜 基材上。 以這樣的方式得到的本實施形態的透明氧化物膜,由 於具有下述之成分組成:相對於金屬成分總量而言含有A1 :0 · 9 〜2 0.0 at%、S i : 2 5 . 5 〜6 8.0 at%,剩餘部分係由 Zn 及無法避免的雜質所構成,且爲非晶質,因此在可見光區 -15- 201247915 可得到比以往還低的折射率,同時具有高氣體遮蔽性 如水蒸氣遮蔽性)。尤其在可見光區的折射率平均 1.59〜1.80,並藉由將厚度定爲5 0nm以上且水蒸氣 率定爲〇.〇lg/(m2*day)以下,而適合成膜於電子紙或 能電池所可採用的樹脂薄膜基材上以作爲氣體遮蔽層 另外,此在透明氧化物膜之製造方法中,係使用 述氧化物燒結體之組織中存在複合氧化物Zn2Si04與 的濺鍍靶,因此可進行DC濺鍍,進一步在含有氧的 氣體環境中及將基板加熱的狀態之至少一種環境下, 直流電流以進行濺鍍,因此可使含有許多的非晶 明氧化物膜(Zn0-Si02-Al203膜)成膜。所以,依據 明的製法,可添加比以往還多的Si02,降低折射率, 能夠使非晶質且氣體遮蔽性高的透明氧化物膜以DC 成膜。進一步在可見光區可得到95 %以上的高透過率 得到具有良好的透明性的膜。 另外,由於將基板的加熱溫度設定在1〇〇〜2 00 °C 圍,因此可抑制熱對於成膜的樹脂薄膜基材產生的影 同時可得到具有充足的透明性與低折射率的透明氧化 以作爲電子紙或太陽能電池所能夠採用的氣體遮蔽層 進一步,將氧相對於氧與惰性氣體之環境氣體全 言的氣體分壓設定在〇.〇5以上,因此可得到具有充 透明性與低折射率的透明氧化物膜以作爲電子紙或太 電池所能夠採用的氣體遮蔽層。 (例 値爲 透過 太陽 〇 在上 ZnO 惰性 通入 質透 本發 同時 濺鍍 ,可 的範 響, 物膜 〇 體而 足的 陽能 -16- 201247915 [實施例] 基於上述本實施形態’對所製作出的透明氧化物膜之 實施例進行評估’於以下參照圖2至圖8對於所得到的結 果作說明。 本發明之實施例的製造係藉由以下條件進行。 首先,秤量Al2〇3粉末、Si〇2粉末與ZnO粉末使其成 爲表1所示的組成比例’將所得到的粉末與其4倍量(重 量比)的鉻球(直徑5mm的球與直徑10ϊηΐη的球各一半) 置入10L塑膠容器(聚乙烯製罐子),以球磨機裝置進行 濕式混合4 8小時,而製成混合粉末。此外,溶劑採用例 如醇類。 接下來使所得到的混合粉末乾燥後,例如通過孔徑 250μηι的餘網而造粒’進一步真空乾燥後,在下、 200kgf/Cm2的壓力進行真空熱壓延5小時,而製成燒結體 〇 將以這樣的方式熱壓延而得的燒結體機械加工成指定 形狀的靶(直徑125mm,厚度l〇mm),將加工後的靶焊 接於由無氧銅所構成的靶座,而製作出本實施例1〜16的 濺鍍靶。 進一步將這些濺鏟靶設置於磁控濺鍍裝置,條件設定 爲電源:DC、輸入電力:500W、所到達的真空度:lx 10_4Pa、濺鍍氣體分壓(氧相對於氧與惰性氣體之環境氣 體全體而言的氣體分壓:02/(Ar + 02)爲〇.〇5以上,濺鍍壓 力:0‘6 7Pa、基板加熱溫度i〇〇°C至200。(:,而嘗試在折 -17- 201247915 射率及透過率測定用的玻璃基板(Corning公司 長:2〇χ寬:20,厚:〇.7mm)上形成膜厚 150nm 膜,另外,在水蒸氣透過測定用的 PET薄膜 lOOmmx 寬:100mm,厚:120μηι)形成厚 50nm 的 〇 另外,作爲密著性測試用,嘗試在聚醯亞胺薄 :100mmx 寬:10 0mm > 厚:1 2 0 μιη )开多成厚 5 0 n m 膜。 此外,關於比較例的透明氧化物膜,在表1所 件之中將基板的加熱溫度定爲在1〇〇〜200°c的範圍 較例1、2):以及將濺鍍靶的Si含量定爲未達6 (比較例3、4 ),並以與上述實施例同樣的方式製 。進一步,關於以往例,將濺鍍靶的Si含量定 6 · 0 8 wt%,並且以與上述實施例同樣的方式製作出藉 濺鍍成膜的膜。201247915 VI. [Technical Field] The present invention relates to a zinc oxide-based transparent oxide film excellent in gas shielding properties and a method for producing the same, which can be used as an organic light-emitting display element, a liquid crystal display element, and electricity. An inorganic film contained in a gas shielding layer or a film sealing layer used for an electronic paper such as an electroluminescent display element, an electrophoretic display element or a toner display element, or a thin film solar cell, and a transparent film solar cell formed of a compound semiconductor a gas shielding layer on the electrode layer. [Prior Art] In the past, a gas shielding layer used for an electronic paper or a thin film type solar cell such as a liquid crystal display element, an electroluminescence display element, an electrophoretic display element, a toner display element, or the like, and a thin film formed of a compound semiconductor A technique for producing a transparent oxide film by a sputtering method is known as a gas shielding layer on a transparent electrode layer of a solar cell (for example, a CIGS (Cu-In-Ga-Se)-based solar cell). For example, Patent Document 1 proposes a method in which an oxide sintered body containing at least one selected from the group consisting of Si, Ge, and A1 is used as a sputtering target. The element contains the added element in a ratio of 15 atomic % to 63 atomic % with respect to the total of the content of the additive element and Sn, and the metal phase containing the added element and the oxide phase of the added element in the constitution of the crystal phase One or more of the additive element and the composite oxide phase of Sn, 'the oxide phase of the additive element and the composite oxide phase of the additive element and Sn', and having an average particle diameter of -5 - 201247915 5 0 μηι or less The size is dispersed, and a transparent oxide film is formed on the surface of the resin film substrate by sputtering by a direct current pulse method. The transparent oxide film obtained by this method contains at least one additive element film of a group consisting of oxidized Si, Ge, and Al, and the content of the additive element is 15 5 with respect to the sum of the additive elements. The ratio of atomic % to 6 3 atomic % is, and the refractive index at a wavelength of 633 nm is 1.90 or less. Further, Patent Document 2 proposes a light transmission film method in which a light-transmissive film used for a phase change optical disk is different in the film, but a film selected from Nb205, V2〇5, B2, and P2O5 is used. More than one type of glass forming oxide: 0.01 to 20 Al2〇3 or Ga203: 0.01 to 20% by weight, and the remainder is a sputtering target of one or more oxides selected from Sn02 and ZnO. Nb205, V205, B2〇3, SiO2, P2〇5; glass forming oxide: 0.01~20% by weight, AI2O3 or 0.01~20% by weight, and the remaining part is selected from the group consisting of ln2〇3, Sn02, and above Things. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A No. 2000-7-2 No. The problem is that the film is formed by the tin and the transparent oxygen selected from the group; and the Sn and the amorphous film are formed, and the amount of the film is 0.32% by weight, and the type of sputtering is made from In2〇3 by Ga2〇3. : ZnO 1 -6- 201247915 The above-mentioned conventional technology has the following problems. In other words, in the target described in the technique of Patent Document 1, many tumors are generated during sputtering, and it takes time and effort to clean the device. Therefore, it is desirable to have a non-tin oxide system and other components. A transparent oxide film excellent in gas shielding properties. However, the transparent oxide film produced by the technique of the above Patent Document 2 is used for an optical disk, and therefore has a high refractive index when used in a gas shielding layer on a resin film substrate used in the above electronic paper or solar cell. 'The refractive index close to the resin film substrate (for example, at a wavelength of 63 3 nm and the refractive index η: 1 · 5 to 1 · 7 ), so the refractive index thereof must be lowered. Therefore, it is considered that the zinc oxide-based transparent oxide film contains more SiO 2 'in order to lower the refractive index. As described in Patent Document 2, when SiO 2 exceeds 20% by weight, there is a possibility that the crystal phase of the added component is precipitated. situation. When the crystal phase is precipitated, the gas barrier property (for example, water vapor shielding property) is lowered, so that it cannot be used as a protective film. The present invention has been made in view of the above problems, and an object of the invention is to provide a zinc oxide-based transparent oxide film which has a high deposition rate, has a low refractive index, and has good gas shielding properties, and a method for producing the same. [Means for Solving the Problem] Since TiO2 is contained in AZO (Al-Zn-0: Aluminium doped Zinc Oxide) film, the refractive index is lowered, so the inventors want to splash The Zn0-SiO 2 -Al 2 2 film was plated to form a film as a transparent oxide film. In this investigation, it was found that the gas atmosphere or the temperature of the substrate when the sputtering film is formed is set to a specific condition 201247915, and a sputtering target composed of a specific structure is used to obtain a transparent, low refractive index and ZnO-Si〇2-Al203 film with high gas shielding properties. Therefore, the present invention has been completed by the above findings, and the following configuration is adopted in order to solve the above problems. That is, the transparent oxide film of the present invention is characterized in that it has a composition of A: 0.9 to 2 0.0 at %, S i : 2 5.5 to 6 8.0 at % with respect to the total amount of the metal component. The remainder is composed of Zn and unavoidable impurities and is amorphous. That is, in the transparent oxide film, it has a composition of: A1: 0.9 to 20.0 at %, Si: 25.5 to 68. Oat%, and the balance is Zn and the total amount of the metal component. Since the impurities are unavoidable and are amorphous, a refractive index lower than that in the prior art can be obtained in the visible light region, and high gas shielding properties (for example, water vapor shielding properties) can be obtained. Further, in the visible light region, a high transmittance of more than 95% is obtained, and good transparency is obtained. Further, the reason why the content of the above A1 is set to 0.9 to 20.0 at% is because when the sputtering target is set to have a composition of a film of less than 0.9 at%, abnormal discharge occurs, and DC cannot be stably performed. In the case of sputtering, the sputtering target is set such that the composition of the film for obtaining more than 2 0.0 at% also causes abnormal discharge, and DC sputtering cannot be performed stably. Further, the content of A1 is preferably 12 at% or less. That is, when the content of A1 is 12 at% or less, the high Si content can be relatively maintained, so that a low refractive index and a high gas shielding property can be obtained. In addition, the reason why the content of Si described above is 25.5 to 68. Oat% is that if it is less than 25.5 at%, the desired low refractive index and gas 201247915 bulk shielding property cannot be obtained, and the sputtering target is set to be used. In the case of obtaining a composition of a film exceeding 68.Oat%, the amount of Si is increased, and DC sputtering cannot be performed. Further, the transparent oxide film of the present invention is characterized in that the light transmittance at a wavelength of 75 nm is 93% or more. That is, unlike oxides which are generally capable of being formed by DC sputtering, such as conductive oxides, electrons cause small absorption on the long wavelength side, and thus can be formed by DC sputtering, and visible light has a long wavelength. The light does not lose, and the film has high transparency in the entire visible light region. Further, the transparent oxide film of the present invention is characterized in that the refractive index average 値 in the visible light region is 1.59 to 1.80, the thickness is 50 nm or more, and the water vapor transmission rate is 0.01 g/(m2_day) or less. In other words, in the transparent oxide film, the refractive index average 値 in the visible light region is 1.59 to 1.80, the thickness is 50 nm or more, and the water vapor transmission rate is 0.01/(m 2 'day) or less, so that it is suitable for film formation on electronic paper. Or a gas shielding layer on a resin film substrate that can be used for a solar cell. Further, the visible light region here is set to a wavelength of 380 nm to 750 nm. A method for producing a transparent oxide film according to the present invention, which is characterized in that the method of producing a transparent oxide film according to the invention is characterized in that at least one of a sputtering target, an inert gas atmosphere containing oxygen, and a state in which the substrate is heated is used. In the environment, a direct current is applied to perform sputtering, and the sputtering target is composed of an oxide sintered body having the following composition: · A1: 0.3~ with respect to the total amount of the metal component 4. Owt %, Si: 6.0 to 1 4 · 5 wt%, the remainder is composed of Zn and unavoidable impurities, and the composite oxides Zn2Si〇4 and ZnO are present in the structure of the sintered body. In the method for producing a transparent oxide film, the sputtering target having the composite oxides Zn2Si〇4 and ZnO in the structure of the oxide sintered body is used, so that DC sputtering can be performed and further contained. In at least one environment in an inert gas atmosphere of oxygen and a state in which the substrate is heated, a direct current is applied to perform sputtering (DC sputtering), so that an amorphous transparent oxide film (Zn0-SiO2) containing a large amount of Si can be used. -Al203 film) film formation. Therefore, according to the production method of the present invention, more SiO 2 than conventionally can be added, and the refractive index can be lowered, and a transparent oxide film having high amorphous gas shielding properties can be formed by DC sputtering. Further, the reason why the content of the above A1 is set to 0.3 to 4.0% by weight is because abnormal discharge occurs in the case where the amount of A3 is not reached, and DC sputtering cannot be performed. If it exceeds 4.0% by weight, the generated Al2〇 3 The composite oxide ZnOηΑ1204 with ZnO causes abnormal discharge to occur, and DC sputtering cannot be performed. Further, the reason why the content of Si described above is 6.0 to 14.5 wt% is because the effect of lowering the refractive index cannot be sufficiently obtained in the case of less than 6.0% by weight, and if it exceeds 14.5% by weight, sufficient conductivity cannot be obtained. And abnormal discharge occurs, and DC sputtering cannot be performed. Further, in the method for forming a transparent oxide film of the present invention, the substrate is a resin film substrate, and the heating temperature of the substrate is set to a range of 100 to 200 °C. That is, in the method for producing a transparent oxide film, since the heating temperature of the substrate is set in the range of 100 to 200 ° C, it is possible to suppress the influence of heat on the film-forming resin film substrate, and at the same time, it is sufficient. The transparency and the low refractive index transparent oxide film serve as a gas shielding layer for the use of electronic paper or solar cells. Further, the reason why the heating temperature of the substrate is set to 100 to 200 ° C is because if the temperature is less than 100 ° C, the Si content in the film is less, the visibility is lowered, and the refractive index is changed. If it exceeds 200 ° C, Then the resin substrate is damaged. Further, in the method for forming a transparent oxide film of the present invention, the partial pressure of oxygen in the entire atmosphere of oxygen and an inert gas is set to 0.05 or more. In other words, in the method for producing a transparent oxide film, the gas partial pressure of the oxygen-phase oxygen and the atmosphere gas of the inert gas is set to be higher than the above, so that a sufficient transparency and a low refractive index permeate can be obtained. The film is concealed by a gas which can be used as an electronic paper or a solar cell. When the partial pressure of oxygen gas is less than 0.05, the content of g in the film is reduced, the transparency is lowered, and the refractive index is changed. Further, when the partial pressure of oxygen gas exceeds 0.2, the film formation speed of the sputtering becomes slow and the force is lowered. Therefore, it is preferably 0.2 or less. In this manner, in the present invention, at least one of the heating of the substrate and the partial pressure of the gas of the oxygen is adjusted to perform DC sputtering, and the content of Si in the film can be made. [Effects of the Invention] According to the present invention, the following effects can be exhibited. That is, according to the transparent oxide film of the present invention, due to the vane, the gas permeable to the film is 0.05 for the oxygen masking layer Si, if the production temperature is adjusted to have the following composition: -11 - 201247915: relative to the metal The total amount of the components is 1 2 8.5 at %, S i : 2 5 · 5 〜 6 8.0 at %, and the remaining portion f; is composed of impurities and is amorphous, so that it has a lower refractive index and has a lower refractive index. High gas occlusion of the transparent oxide film of the present invention, the sputtering target of the composite oxide exists in the structure of the oxide sintered body, so that DC sputtering can be performed, and the substrate is heated in the atmosphere At least one of the environmental flows is sputtered, so that the amorphous film (Zn0-SiO 2 -Al 2 O 2 film) can be formed into a film. Therefore, by using the gas shielding layer such as the transparent oxide solar cell of the present invention, it is possible to obtain a desired low refractive index and high gas shielding property, and it is possible to produce an electronic paper having high visibility or a solar with high conversion efficiency. One embodiment of the transparent manufacturing method of the present invention will now be described with reference to FIG. The transparent oxide film of the present embodiment is a film capable of using a gas shielding layer, and has a composition of the following components: A1: 0.9 to 20. Oat%, Si: the remainder is Zn and unavoidable In addition, the transparent oxide film has a film thickness of 100 nm "containing A 丨: 0.9 ~ dad by Zn and unavoidable light region can be obtained. Further, it is based on the use of a transparent oxide film formed of a direct current Zn2Si04 and ZnO oxygen as a high-transparency, high-reliability, and energy-saving battery. Oxide film and its use as the above-mentioned use = 25 to 58.0 at% of the metal, and the sheet resistance 値-12-201247915 when it is amorphous is 1.0x1014D/sq or more. Further, the transparent oxide film has an average refractive index 値 of 1.59 to 1.80 in the visible light region, a thickness of 50 nm or more, and a water vapor transmission rate of 〇.〇1 g/(m2·day) or less. Further, the water vapor transmission rate is enthalpy measured by the MOCON method in accordance with the K7 129 method of JIS standard. Further, in the method for producing a transparent oxide film of the present embodiment, a sputtering target is used, and a direct current is applied to perform sputtering in at least one of an atmosphere containing an inert gas of oxygen and a state in which the substrate is heated. Sputtering, the sputtering target is composed of an oxide sintered body having a composition of A1: 0.3 to 4.0% by weight, Si: 6.0 to 14.5 with respect to the total amount of the metal component. The wt%, the remainder is composed of Zn and unavoidable impurities, and the composite oxides Zn2Si04 and ZnO are present in the structure of the sintered body. At this time, a resin film substrate was used as the substrate, and the heating temperature of the substrate was set to be in the range of 1 Torr to 200 °C. Further, the gas partial pressure of the oxygen relative to the entire atmosphere of the oxygen and the inert gas is set to 〇·〇5 or more. The transparent film substrate may, for example, be an acrylic resin, a polyamide resin, a polyimide resin, a polyester resin cellulose, or a copolymerized resin or a synthetic transparent substrate. Specific examples include polyester, polyethylene terephthalate (PET), polybutylene terephthalate, polymethyl methacrylate (pmma), acrylic acid, polycarbonate (PC), polyphenylene. Ethylene, polyvinyl alcohol, polyethylene, etc., but not limited to this. Further, the sintered body density of the above sputtering target is 1 〇〇 to -13 - 201247915 10 8% of the theoretical density. Further, the sputtering target has a body resistance 値 of 1 Ω·cm or less. The reason why the density of the sintered body is set to 100 to 108% of the theoretical density ratio is that a problem such as a target crack occurs when it is less than 100%. If it exceeds 108%, the structure of the composite oxide Zn2Si〇4 is almost formed. It becomes impossible to discharge by DC sputtering. Here, the calculation of the theoretical density ratio was calculated using ZnO of 5.61 g/cm3, Si〇2 of 2.20 g/cm3, and AI2O3 of 3.99 g/cm3. In addition, since the sputtering target has a body resistance 値 of 1 Ω · cm or less, DC sputtering can be performed stably and satisfactorily. The method for producing a sputtering target has a method of mixing ai2o3 powder, SiO 2 powder, and ZnO powder to form Al 2 〇 3: 0.5 to 5.0 wt%, SiO 2 : 10 to 22 wt%, and the remainder: ZnO and unavoidable a step of forming a mixed powder by forming impurities; and a step of thermally calendering and sintering the mixed powder in a vacuum. When an example of the above-described production method is described in detail, for example, as shown in Fig. 1, first, eight 1203 powder, 8丨02 powder, and ZnO powder having a purity of 99.9% or more are weighed to have the above content range, by wet type. The ball mill is pulverized and mixed to prepare a mixed powder. For example, each of the weighed powder and the zirconium ball are placed in a plastic container (polyethylene can), and the ball mill is placed in a wet mixing mode for a predetermined time to prepare a mixed powder. Further, the solvent is, for example, an alcohol. Next, the obtained mixed powder is dried, and then granulated by, for example, a decorative mesh having a pore diameter of 250 μm. After further vacuum drying, for example, 丨2 〇 〇. 〇 -14- 201247915, a pressure of 200 kgf/cm 2 was hot rolled in a vacuum for 5 hours to prepare a sintered body. Further, the hot rolling temperature is preferably in the range of 1 1 0 0 to 1 2 50 ° C, and the pressure is preferably in the range of 150 to 3 50 kgf/cm 2 . The sintered body obtained by hot rolling in this manner is usually machined by electric discharge machining, cutting or honing to obtain a target of a predetermined shape, and the target after processing is welded to Cu or SUS with In as a solder. A (Backing plate) made of (stainless steel) or other metal (such as Mo) is then supplied to the sputtering. Further, other production methods may be carried out by a wet ball mill of the above-described production method, using pure water as a solvent, grinding and mixing using a ball mill having an internal volume of 300 L, and then drying and granulating by a spray drying method. The obtained object was further ground by a dry ball mill, and the ground powder was subjected to hot rolling in the same manner as above. Further, the grinding step by the dry ball mill described above may be omitted. In order to obtain DC transparent sputtering using the sputtering target to obtain the transparent oxide film of the present embodiment, the sputtering target is placed in a magnetron sputtering apparatus at a predetermined input power, the degree of vacuum reached, and the sputtering pressure. Next, the partial pressure of the sputtering gas was set to a range of 0.05 to (Ar + 02) of 0.05 to 0.2, and the substrate was heated to 100 ° C to 200 ° C under the conditions to form a film on the resin film substrate. The transparent oxide film of this embodiment obtained in this manner has a component composition containing A1:0·9 〜2 0.0 at% and S i : 2 5 . 5 with respect to the total amount of the metal component. ~6 8.0 at%, the remainder is composed of Zn and unavoidable impurities, and is amorphous. Therefore, in the visible light region -15-201247915, a lower refractive index than before can be obtained, and high gas shielding properties such as water Vapor shielding). In particular, the refractive index in the visible light region is on average 1.59 to 1.80, and is suitable for film formation on electronic paper or energy battery by setting the thickness to 50 nm or more and setting the water vapor rate to 〇.〇lg/(m2*day) or less. In the resin film substrate which can be used as a gas shielding layer, in the method for producing a transparent oxide film, a sputtering target having a composite oxide Zn2Si04 and a structure in the structure of the oxide sintered body is used. DC sputtering is performed, and further, a direct current is sputtered in at least one of an atmosphere containing oxygen and a state in which the substrate is heated, so that a large amount of amorphous oxide film (Zn0-SiO 2 - Al 203) can be contained. Film) film formation. Therefore, according to the method of the prior art, more SiO 2 than conventionally can be added to lower the refractive index, and a transparent oxide film having high amorphous gas shielding properties can be formed into a film by DC. Further, a high transmittance of 95% or more can be obtained in the visible light region to obtain a film having good transparency. Further, since the heating temperature of the substrate is set to be about 1 〇〇 to 20,000 ° C, it is possible to suppress the occurrence of heat on the film-forming resin film substrate and to obtain transparent oxidation having sufficient transparency and low refractive index. Further, as a gas shielding layer which can be used as an electronic paper or a solar battery, the gas partial pressure of oxygen relative to the ambient gas of oxygen and an inert gas is set to 〇.5 or more, so that transparency and lowness can be obtained. The refractive index transparent oxide film serves as a gas shielding layer which can be used as an electronic paper or a battery. (Example is that the ZnO is infiltrated into the permeable medium through the solar ray and is sputtered at the same time, and the singularity of the smear of the smear and the smear of the smear of the smear is -16479. The embodiment of the produced transparent oxide film was evaluated. The results obtained are described below with reference to Figs. 2 to 8. The fabrication of the embodiment of the present invention is carried out by the following conditions. First, weigh Al2〇3 The powder, the Si 〇 2 powder and the ZnO powder were brought to the composition ratio shown in Table 1 'The obtained powder was placed in a four-fold (weight ratio) chrome ball (the ball having a diameter of 5 mm and the half of the ball having a diameter of 10 ϊηΐη). A 10 L plastic container (polyethylene can) was wet-mixed in a ball mill apparatus for 48 hours to prepare a mixed powder. Further, the solvent was, for example, an alcohol. Next, the obtained mixed powder was dried, for example, through an aperture. 250 μηι of the remaining mesh and granulated 'further vacuum drying, vacuum hot rolling at a pressure of 200 kgf / Cm 2 for 5 hours, and the sintered body 制成 will be heat-rolled in this manner. The structure was machined into a target of a predetermined shape (diameter: 125 mm, thickness: 10 mm), and the processed target was welded to a target holder made of oxygen-free copper to prepare sputtering targets of the first to sixth embodiments. Further, these sprinkler targets are placed in a magnetron sputtering device, and the conditions are set as power supply: DC, input power: 500 W, vacuum degree reached: lx 10_4 Pa, and sputtering gas partial pressure (oxygen vs. oxygen and inert gas environment) Gas partial pressure for gas as a whole: 02/(Ar + 02) is 〇.〇5 or more, sputtering pressure: 0'6 7Pa, substrate heating temperature i〇〇°C to 200. (:, and try to fold -17- 201247915 A glass substrate with a film thickness of 150 nm is formed on a glass substrate (Corning's length: 2 〇χ width: 20, thickness: 〇. 7 mm) for measuring the transmittance and transmittance, and a PET film for water vapor transmission measurement. lOOmmx width: 100mm, thickness: 120μηι) to form a crucible with a thickness of 50nm. In addition, as a test for adhesion, try to thin the polyimine: 100mmx width: 10 0mm > thickness: 1 2 0 μιη) 0 nm film. In addition, the transparent oxide film of the comparative example will be listed in Table 1. The heating temperature of the plate was set to be in the range of 1 〇〇 to 200 ° C compared with Examples 1 and 2): and the Si content of the sputtering target was set to be less than 6 (Comparative Examples 3 and 4), and in the above embodiment The same way. Further, in the conventional example, the Si content of the sputtering target was set to 6.8 wt%, and a film formed by sputtering was formed in the same manner as in the above Example.
> 1737# 的透明 (長: 透明膜 膜(長 的透明 示的條 外(比 .0 8 w t % 作出膜 爲未達 ΐ由RF -18- 201247915>1737# transparent (long: transparent film (long transparent strips outside the strip (than .0 8 w t % made the film is not reached by RF -18- 201247915
表 rL g 镅 m |380ηπι 〜750nm 1 1 96.8 I L 97.8 | I 99.0 I L_ _ 97.6 1 丨 98.1 1 1 98.3 I 1________97.7 I 丨_ _ 98.5 I I 98.3 1 l_. 98,1 1 L 97.8 I | 96.3 I 1 95.8 1 I 95.3 | L___98.4 I 1 95,1! I 96.2· ύ 担 痣 m u 伥 m Wt 璐 m 锇 m I l__ _ 85.2 1 1_ 91.1 I 1 98.3 I I 93.8 | 1 95.8 1 1 90.6 1 C 探· |380nm 〜750nm| 1___LL3.I L___^ 168 I s 1_LZ5 1 [^ 1,78 I 1 1.78 1 1_L2QJ 1_L59.I 1_____ 1.74] I_L26J 1_____ 1.69 I 1_L77J 1_U9J 1___1.801 1_L78J S !_LZ6J 1___L81 1 1_1.91] S L 1,61 ! I_L84I t_LZ8J 1 2.05 1 I水蒸氣遮蔽性I $ "S (N e 10.01以下 1 n O d Ά 〇 O H- Ξ$ ο d n 〇 d 10.01以下 I Ε d Ά 〇 〇 〇 d K- 〇 d 〇 d ο d 卜 ο ο 10.01以下 1 lo.om 下 1 Ι0.0彳以下 I 10.01以下 1 1 0.041 1___0111 1_0J2I I_O^LI 〇 d !_ 10.01以下 | IXRD | 1結晶蜂 1 鹿 墀 璀 m m 埋 m m 薜 展 m 壊 墀 鹿 埋 m 裢 挪: UP 挺 堞 链 珀 m «5 a Φ: 筢 狴 丨殘餘部分丨 l殘餘部分I φ 铝 毪 ss I殘餘部分I 1殘餘部分1 1殘餘部分1 φ: 铯 雄 I殘餘部分I I殘餘部分I 丨殘餘部分1 1殘餘部分1 1殘餘部芬Ί 筢 涟 欲 Φ 筢 涯 ί殘餘部召^ 1殘餘部Μ 丨殘餘部分1 活 涟 丨殘餘部分1 活 雔 ®5 I殘餘部分I 铝 m 額 Φ 垢 毪 S3 W € (0 1__4MJ I_50JJ I 55.3 I 1 35.8 1 I 32.8 I 1 30.21 _5L3J 1 68.0 1 I_313J I 35.9 I 1__ 1 26.3 I 1 26.2 1 「25.5」 1 33.2 | _25,6] 「25.5 1 1_25U — CO 1_1MJ I_mj I_2MJ 1_2MJ to <D < CO C0 CO to 5 Γ0 to O) i/S CM in CO CD CO 0> η 1_1MI C0 <〇 CNl cb <〇 LO <〇 Γ 19.01 CO CM 00 1_1MI _ (D 一 進 I |02 屋 I [02/(Ar+02) 1 〇 ο 〇 1 0.051 5 eg d 5 〇 CM 〇 Ο 〇 1 0.051 ο 〇 〇 I_ 〇 5 5 ο d ο 〇 ο Ο Μ m P 〇 〇 s o ί^ϊιπ 熱 1 I未加熱 l 疾 异 伥 _15〇^ 〇 CM 彌卩熱 I I_1Ρ〇Ι 1 2001 癍 伥 癍 a 伥 熱 1 S g 〇 CM S ο g I 2001 症 层 伥 铤 1 200| 丨未加熱 I IDC/RF I 〇 Q ο ο 〇 ο o Ο 〇 〇 〇 c 〇 〇 ο 〇 〇 〇 Ο Ο ο Ο 〇 链 珐 B 5 | CO 铯 趙 浆 聒 趙 餡 ill餘部分I 垢 趙 m _餘部分^ 1殘餘部分1 链 貉 Φ 锚 趙 您 锭 缒 软 筢 雔 聒 雜 您 1殘餘部分1 丨殘餘部分1 筢 錐 聒 鋰 活 m 饀 Φ 铌 毪 1殘餘部分1 ¢: 筢 銓 m 搿 m 饀 Φ 铝 貉 欲 聒 貉 浆 Φ 雜 貉 像 Φ 筢 錐 S5 Φ 铯 錐 (Λ |at%(wt%) | C4 CM S' cvi 5 si 124.9(12.8)1 〇〇 〇i s s 124.9(12.8)1 124.9(12.8)1 ίο C4 5 t 5 CO 0*4 5 1D 5 s ο oi σ> ai 5 1 〇> I 〇> | 119.0(9.4) | σ> 〇 cri CO σ> I σι I 119.0(9.4) I η ίο ιό 16.5(3.0) 1 00 C4 in 124.9(12.8)1 S <Ν I m cb < iat%(wt%) | CvJ Csj -9· \AM2.2)\ 14.4(2.2) 1 Q < <· 3 C0 〇 S P-; ΙΟ § 40 § in m — ΐη ”·· 14.5(2,1) I #·*-« csi CO CO § ϊη 兮’ § ϊο 丨 4.6(2.0) 1 Cvj (Ο C4 co ui 一 c5 119.0(10.6)1 1 to 匡 m ΓΪΤ施例2 I K施例3 1 m to m m u 1苡施例6 | 施例7 1 1苡施例8 1 m施例9 I 1贲施例10 I m 闺 CM 匡 m |贲施例13 I m Ιϊί施例15 I 1资施例16 I Irr施例π | 1比較例1 I 1比較例2 1 CO £ 1比較例4 I m 您 £ to m 挺 1比較例7 1 -19- 201247915 關於以這種方式製作出的本發明之實施例、比較例及 以往例之透明氧化物膜,將藉由ICP發光分析法測定膜組 成的結果,各金屬成分相對於全部金屬成分的比値揭示於 表1 〇 另外,對本發明之實施例及比較例之透明氧化物膜進 行X射線繞射(XRD )的分析,將針對結晶峰的有無調査 的結果揭示於表1。此外,代表性地將實施例3、5、6、 1 1及比較例4的XRD分析結果的圖形分別表示於圖2〜 圖6。 另外,所得到的各透明氧化物膜之折射率係藉由分光 橢圓偏光計(HORIBA Jobin Yvon 公司製 UVISEL NIA AGMS),透過率係藉由分光光度計(日本分光公司製V-5 5 0 )作測定。將各測定結果揭示於表1。此外,代表性地 將實施例3、5、6、11及比較例4的透過率特性對波長的 圖形表示於圖7。另外,將透明氧化物膜的膜厚爲50nm、 100nm、300nm時在波長750nm的透過率結果揭示於表2 -20- 201247915 [表2] 透過率測定 50nm 100nm 300nm 實施例1 99.8 97.2 94.8 實施例2 99.9 97.7 95.8 實施例3 99.9 98.5 97.0 實施例4 99.8 97.8 95.6 實施例5 99.8 97.6 95.0 實施例6 99.9 98.1 96.3 實施例7 99.8 97.7 95.7 實施例8 99.9 98.1 96.5 實施例9 99.9 98.1 96.3 實施例10 99.9 98.0 96.1 實施例11 99.8 97.8 95.5 實施例12 99.7 96.9 94.3 實施例13 99.7 96.8 93.8 實施例14 99.7 96.5 93.3 實施例15 99.9 98.0 96.4 實施例16 99.7 96.6 93.1 實施例17 99.7 96.8 94.1 比較例1 99.5 93.2 91.6 比較例2 因爲薄膜變形而未實施 比較例3 96.2 86.2 82.4 比較例4 97.7 94.0 92.0 比較例5 99.9 98.8 98.0 比較例6 99.5 95.7 92.1 比較例7 99.6 96.8 93.7 以往例1 97.3 94.2 90.2 進一步使用 MOCON法,並使用 mo con公司製 PERMATRAN-WMODEL3/33,根據 JIS 規格的 K7129 法而 -21 - 201247915 測定水蒸氣透過率(水蒸氣遮蔽性)。所測得的各結 表1所示。此外,代表性地將實施例3、5、6、1 1及 例4的折射率特性對波長的的圖形表示於圖8。 該等的評估的結果,比較例1、3、4在XRD分 中觀察到結晶峰,在膜中有結晶析出,水蒸氣透過率 過0.01g/(m2.day)。另外,可見光區的折射率超過 ,同時透過率也低,而未達9 5 %。此外,比較例2的 加熱溫度高達2 1 0 °C,因此樹脂薄膜基材發生熱變形 無法進行評估。進一步而言,在藉由RF濺鍍成膜的 例的情況,S i的含量低,可見光區的折射率高達2.0 5 時透過率亦低達9 0.6 %。 相對於該等而言,本發明之實施例任一者皆在 分析之中並未觀察到結晶峰,而爲非晶質的膜,水蒸 過率亦在0.01 g/ ( m2 · day )以下,而具有高水蒸氣遮 。另外,任一實施例在可見光區的折射率皆爲1.80 ,同時透過率亦高達9 5 %以上,可得到低折射率且高 性的膜。 像這樣,本發明實施例之透明氧化物膜任一者爲 子紙或太陽能電池所能夠採用的氣體遮蔽層,具備適 膜特性。但是,以實施例1 6所記載的條件雖然膜的 優異,然而在濺鍍時氣體環境的〇2量多,因此成膜 變慢" <密著性的測定> 果如 比較 析之 亦超 1.80 基板 ,而 以往 ,同 XRD 氣透 蔽性 以下 透明 皆電 合的 特性 速度 -22- 201247915 關於密著性的測定,首先將所得到的薄膜上之透明氧 化物膜(實施例1〜1 7、比較例1〜7、以往例)以雙面膠 帶黏貼在玻璃基板上,在透明氧化物膜上以切刀刻劃成 100個棋盤格狀。接下來,在將玻璃紙黏著膠帶貼牢之後 ,往90°方向急速剝離,並檢查透明氧化物膜剝離的有無 。將其結果揭示於表3。將1 00格之中並未剝離的格子數 目以X表示。亦即,有剝離處的情況以X/1 00表示,沒有 剝離處的情況以1 00/1 00表示。 -23- 201247915 [表3] 由這些結果可知 相對於此,本發明之 剝離, ,可得 ,在比較例或以 實施例任一者皆 往例中發生了 剝離並未發生 聚醯亞胺薄膜 PET薄膜 實施例1 100/100 100/100 實施例2 100/100 100/100 實施例3 100/100 100/100 實施例4 100/100 100/100 實施例5 100/100 100/100 實施例6 100/100 100/100 實施例7 100/100 100/100 實施例8 100/100 100/100 實施例9 100/100 100/100 實施例10 100/100 100/100 實施例11 100/100 100/100 實施例12 100/100 100/100 雛例13 100/100 100/100 雛例14 100/100 100/100 實施例15 100/100 100/100 實施例16 100/100 100/100 雛例Π 100/100 100/100 比較例1 98/100 97/100 比較例2 因爲薄膜變形而未實施評估 比較例3 93/100 89/100 比較例4 93/100 90/100 比較例5 97/100 96/100 比較例6 100/100 100/100 比較例7 94/100 92/100 以往例 89/100 87/100 到高密著性。 此外, 本發明的技術範圍並不受上述實施形態及上述 實施例所限定,在不脫離本發明旨趣的範圍’可加入各種 -24- 201247915 變更。 例如不只在樹脂薄膜上成膜,相反地,使透明氧化物 膜成膜在玻璃上,於其上附加樹脂膜,亦可進一步將樹脂 膜與透明氧化物膜一起由玻璃剝離。 (關於濺鍍靶的參考例) 在本發明中需要藉由DC濺鍍進行成膜,而關於可進 行D C濺鍍的濺鍍靶,將檢討結果揭示如下。 本參考例所關連之濺鑛靶之製造係藉由以下條件來進 行。 首先,以表1所示的各比例秤量A12 0 3粉末、S i 0 2粉 末、ZnO粉末,將所得到的粉末與其4倍量(重量比)的 銷球(直徑5mm的球與直徑l〇mm的球各一半)置入10L 塑膠容器(聚乙烯製罐子),以球磨機裝置濕式混合48 小時,而製成混合粉末。此外,溶劑係使用例如醇類。 接下來使所得到的混合粉末乾燥後,例如孔徑2 5 0 μηι 的篩網而造粒,進一步真空乾燥後,在1 200 °C下,以 2 0 0kgf/cm2的壓力真空熱壓延5小時,而製成燒結體。 將以這種方式熱壓延而得的燒結體,機械加工成指定 形狀的靶(直徑125mm、厚度10mm),將加工後的靶焊 接於由無氧銅所構成之靶座,而製作出本參考例之濺鍍靶 〇 此外,關於比較參考例1〜π,以表2所示的各比例 秤量Al2〇3粉末、Si02粉末、ZnO粉末,將所得到的各粉 -25- 201247915 末混合,以〇.6t/cm2壓延,進一步藉由CIP (冷均壓法) 以175MPa使其成形,將其在大氣下以1 400°C進行燒成, 而製作出濺鍍靶。另外,將比較參考例12〜14設定在本 發明之成分組成的範圍外,以表2所示的各比例秤量,並 以與本參考例同樣的條件進行真空熱壓延,而製作出濺鍍 靶。 進一步將這些濺鍍靶設置於磁控濺鍍裝置,以設定爲 電源:DC、輸入電力:200W、所到達的真空度:lxl(T4Pa 、濺鍍氣體:Ar、濺鍍壓力:0.67Pa的條件,加熱至200 °C,嘗試在玻璃基板(Corning公司1 73 7#長:2〇χ寬:20 ,厚:0.7mm )上形成膜厚爲3 00nm的透明膜。 對於以這種方式製作出的本發明之參考例及比較參考 例,分別測定以及評估燒結體的密度(理論密度比)、藉 由X射線繞射法(XRD )觀察的ZnO ( 101)及Zn2Si04 ( 410)的繞射峰的有無、DC濺鎪的可否、本體電阻値、60 分鐘的DC濺鍍時的異常放電次數、DC濺鍍後的透明膜的 折射率(對於波長3 80nm、5 5 0nm、750nm的光線)。將 其結果揭示於表4。 -26- 201247915 折射率 750 nm 1 I 1.87 1.74 I.6S 1 1 1.73 1 1 I 1.72 I I 1.71 1 1.68 1.63 1.62 1.73 1.63 1.65 1.62 1 S to 1 I r.9s 1.86 3 1 1 1.83 1 1 I IMS I I s φ 〇> s s 380 nm 1 I 2.15 2.10 2.07 1 1 1M 1 1 I 1.9B I I 1.Θ5 1.72 1.67 1.64 1.87 1.66 1.70 1.66 異常放電I 次數 (60分鐘) 1S80 1 - cvj \Λ B9J 1470 2042 1 1 I ο I 762 - eg 严 〇 - o r> 電阻値 (Ω *cm) 4.6x ΙΟ·2 1.8 X 1〇'3 2.3 x 10's 6.8 x 10~* 7.2X10-4 8.6 xlO-4 9.1 X 10— 8.8 X10-4 OV.RQ OV.RQ OV.RQ 1.0Χ10*3 OV.RG 6.9 x 10*3 7〇 X 2.2 XI0*3 3.2 x 10*3 n X CO 七 5.2 X10"3 X 〇> | 9.3 x 10 3 3.3x1 O'3 可否進行 DC t? 151 I? 1不可| 1不可| I不可| 不可 1? XRD峰 ΖΠ2$ΐ〇4 (410) m m 璀 璀 壊 薜 鹿 擗 w w 擗 2ηΟ (101) 擗 擗 m 壊 雔 m 理論 密度比 91% 〇> 94K 98% 97¾ 97% 97¾ 104S 109« 109% 110« 103% 10M I 102S 1 104X 104% 106% I_ 108% 102X s 1 10GK Ϊ5 ο 理論密度 g/cm* 5.61 5.61 5.59 5.54 5.50 5.43 5.39 5.15 4Λ1 4力2 4JE6 5Λ5 4.10 4.20 4.81 4.51 4.24 4.15 4.84 4.17 4.28 4.22 製法 燒成I 燒成 Hi成] |燒成1 丨燒成] 丨燒 R成] 1燒成| 成] X X X X X α a 僅靶金屣成分的重位% r5 剩餘部分 剩餘部分 剩餘部分 剩餘部分 剰餘部分 Γ剩餘部分1 剩餘部分 剩餘部分 剩餘部分 剩餘部分 剰餘部分 剰餘部分 剩餘部分 |剩餘部分1 剩餘部分 剰餘部分 剩餘部分 剩餘部分 剰餘部分 剩餘部分 剩餘部分 剰餘部分 <3 〇 〇 〇 〇 e 〇 〇 η 6.14 9.38 12.79 14.98 12.99 <d 9.41 12.64 I_ 14.26 ,6.09 ! 14.15 | 1^72 I 12.94 5 0.07 CM3 0.66 OI 3.35 5.42 | 6.82 2.04 2.08 1.42 1.45 2.04 S I 4.41 2.08 2.13 2.18 CM csi 0.69 ! 0.73 | 0.36 ! 3.66 原料混合組成 ΖηΟ 「剩餘部$ 剩餘部分 |剩餘部分| I剩餘部分 丨剰餘部分I 剩餘部分 剩餘部分I 剩餘部分| 剩餘部分I 剩餘部分| 剩餘部分I 剩餘部分I 剩餘部分 1剩餘部分 !剩餘部分 剰餘部分| 剩餘部分 !剩餘部分 丨剩餘部分 !剰餘部分 |剩餘部分 1剰餘部分 Si02 I 1 I 1 1 1 I 5wtX 10wt% 15w% 20wt% SwtM 23wt% 20wtX 10wtS 15wtS 20wtS 22wt% 10wt% 22wt% 20wt% 20wt% Α1203 0.1 ννΟό 0.2wt% I Iwt% 3wt9i 5wtS 1 8wt?i 10wt% 3wtS 3wtS 2wtS 2wt% 3wt?i 3wt?i 6wtX 3wt% 3wt94 3wtS 3wt% lw04 1wtS 0.5wtS 5wt% OJ η 1 U? (Ο r* CO 〇> ο CO •9 η ΙΟ to r- 00 比較 參考例 參考例 -27- 201247915 由此結果可知,採用大氣燒成的比較參考例之中’在 Al2〇3的含量少且不含Si02的比較參考例1、2的情況’ 異常放電次數多,無法安定地進行DC濺鍍,在Al2〇3的 含量達某程度然而不含Si 02的比較參考例3〜5的情況’ 並未得到低折射率。另外,在採用大氣燒成的比較參考例 之中,在Al2〇3的含量多且不含Si〇2的比較參考例6、7 的情況,異常放電次數多,無法安定地進行DC濺鍍,在 含有Al2〇3與Si〇2的比較參考例8〜11中,異常放電次數 多,或靶不具有導電性,而無法進行DC濺鍍。此外’比 較參考例1〜7任一者的密度皆未達理論密度的1 00%。 進一步而言,使用熱壓延的比較參考例之中,在Si〇2 的含量少於本發明範圍的比較參考例1 2的情況,無法得 到低折射率,在Si02的含量高於本發明範圍的比較參考 例13的情況,靶不具有導電性,而無法進行DC濺鍍。另 外,在 Al2〇3的含量高於本發明的範圍的比較參考例14 中,異常放電次數多,無法安定地進行DC濺鍍。此外, 在比較參考例8、12、14的情況,在XRD之中觀察到 ZnO ( 101 )及Zn2SiO4(410)這兩個峰,然而A1或Si的 含量在本發明的範圍外,因此發生上述不良狀況。 相對於該等而言,本參考例任一者皆在XRD之中觀 察到ZnO ( 101 )及Zn2Si04 ( 410 )這兩個峰,異常放電 次數非常少,可安定而良好地進行DC濺鑛,關於折射率 ,任一者皆可得低於到AZO膜的折射率。 另外,關於密度,在本參考例的情況,任一者皆在理 -28- 201247915 論密度的100〜108%的範圍內。 接下來將藉由X射線繞射法(XRD )對於表1所示的 參考例3 ( Si02 = 20wt% )進行觀察所得到的結果表示於 圖9。在此參考例3中,複合氧化物Zn2 Si 〇4的(4 1 0 )繞 射峰與ZnO的(1 0 1 )繞射峰任一者皆可觀察到高強度》 相對於此,在由與參考例3相同的成分組成於大氣下進行 燒成所製作出的比較參考例的情況,如圖1 0所示般,並 未得到ZnO的(1 01 )繞射峰。像這樣爲了得到導電性, 如本參考例般,複合氧化物Zn2Si04與ZnO必須共存於組 織中。 【圖式簡單說明】 圖1係表示本發明所關連之透明氧化物膜及其製造方 法其中一個實施形態中,所使用的濺鍍靶之製造步驟之流 程圖。 圖2係表示在本發明所關連之透明氧化物膜及其製造 方法之實施例之中,透明氧化物膜(實施例3 )之X射線 繞射(XRD )之分析結果之圖形。 圖3係表示在本發明所關連之透明氧化物膜及其製造 方法之實施例之.中,透明氧化物膜(實施例5 )之X射線· 繞射之分析結果之圖形。 圖4係表示在本發明所關連之透明氧化物膜及其製造 方法之實施例之中,透明氧化物膜(實施例6 )之X射線 繞射之分析結果之圖形。 -29- 201247915 圖5係表示在本發明所關連之透明氧化物膜及其製造 方法之實施例之中,透明氧化物膜(實施例1 1 )之X射 線繞射之分析結果之圖形》 圖6係表示在本發明所關連之透明氧化物膜及其製造 方法之比較例之中,透明氧化物膜(比較例4 )之X射線 繞射之分析結果之圖形。 圖7係表示在本發明所關連之透明氧化物膜及其製造 方法之實施例及比較例之中,透過率對於波長之圖形。 圖8係表示在本發明所關連之透明氧化物膜及其製造 方法之實施例及比較例之中,折射率對於波長之圖形。 圖9係表示在參考例之中,濺鍍祀之x射線繞射( XRD)之分析結果之圖形。 圖10係表示在比較參考例之中,灘鍍耙之x射線繞 射(XRD )之分析結果之圖形。 -30-Table rL g 镅m |380ηπι ~750nm 1 1 96.8 IL 97.8 | I 99.0 I L_ _ 97.6 1 丨98.1 1 1 98.3 I 1________97.7 I 丨_ _ 98.5 II 98.3 1 l_. 98,1 1 L 97.8 I | 96.3 I 1 95.8 1 I 95.3 | L___98.4 I 1 95,1! I 96.2· ύ 痣 mu 伥m Wt 璐m 锇m I l__ _ 85.2 1 1_ 91.1 I 1 98.3 II 93.8 | 1 95.8 1 1 90.6 1 C探· |380nm ~750nm| 1___LL3.I L___^ 168 I s 1_LZ5 1 [^ 1,78 I 1 1.78 1 1_L2QJ 1_L59.I 1_____ 1.74] I_L26J 1_____ 1.69 I 1_L77J 1_U9J 1___1.801 1_L78J S !_LZ6J 1___L81 1 1_1. 91] SL 1,61 ! I_L84I t_LZ8J 1 2.05 1 I Water vapor shielding I $ "S (N e 10.01 or less 1 n O d Ά 〇O H- Ξ$ ο dn 〇d 10.01 or less I Ε d Ά 〇〇 IXd K- 〇d 〇d ο d οο ο 10.01 or less 1 lo.om Lower 1 Ι0.0彳 Below I 10.01 or less 1 1 0.041 1___0111 1_0J2I I_O^LI 〇d !_ 10.01 or less | IXRD | 1 Crystal Bee 1 Luhan mm buried mm 薜 exhibition m 壊墀 埋 buried m 裢 move: UP 堞 chain m m «5 a Φ: 筢狴丨 residual part 丨 l residual part I φ aluminum 毪 ss I residual part I 1 residual part 1 1 residual Divided into 1 φ: 铯雄 I Residual part II Residual part I 丨 Residual part 1 1 Residual part 1 1 Residual part Ί 筢涟 Φ 筢 ί ί Remaining part of the ^ 1 Residual part 丨 Residual part 1 Remaining part of the activity 1 雔 雔® 5 I Residue I Aluminium m Amount Φ 毪 S3 W € (0 1__4MJ I_50JJ I 55.3 I 1 35.8 1 I 32.8 I 1 30.21 _5L3J 1 68.0 1 I_313J I 35.9 I 1__ 1 26.3 I 1 26.2 1 "25.5 1 33.2 | _25,6] "25.5 1 1_25U - CO 1_1MJ I_mj I_2MJ 1_2MJ to <D < CO C0 CO to 5 Γ0 to O) i/S CM in CO CD CO 0> η 1_1MI C0 <〇CNl Cb <〇LO <〇Γ 19.01 CO CM 00 1_1MI _ (D I enter I |02 House I [02/(Ar+02) 1 〇ο 〇1 0.051 5 eg d 5 〇CM 〇Ο 〇1 0.051 ο 〇〇I_ 〇5 5 ο d ο 〇ο Ο Μ m P 〇〇so ί^ϊιπ heat 1 I not heated l disease 伥 伥 伥 伥 伥 伥 伥 伥 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 Heat 1 S g 〇CM S ο g I 2001 症 伥铤 1 200| 丨 Unheated I IDC/RF I 〇Q ο ο 〇ο o Ο 〇〇〇c 〇〇ο 〇〇〇Ο Ο ο Ο 〇 chain珐B 5 | CO铯 聒 聒 聒 Zhao filling ill remaining part I scale Zhao m _ remaining part ^ 1 residual part 1 chain 貉 Φ anchor Zhao your ingot 缒 soft noisy you 1 residual part 1 丨 residual part 1 筢 cone 聒 lithium live m 饀Φ 铌毪1 Residual part 1 ¢: 筢铨m 搿m 饀Φ Aluminum 貉 聒貉 Φ 貉 貉 Φ Φ S S S at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at at 124.9(12.8)1 〇〇〇iss 124.9(12.8)1 124.9(12.8)1 ίο C4 5 t 5 CO 0*4 5 1D 5 s ο oi σ> ai 5 1 〇> I 〇> | 119.0(9.4 σ> 〇cri CO σ> I σι I 119.0(9.4) I η ίο ιό 16.5(3.0) 1 00 C4 in 124.9(12.8)1 S <Ν I m cb < iat%(wt%) | CvJ Csj -9· \AM2.2)\ 14.4(2.2) 1 Q <<· 3 C0 〇S P-; ΙΟ § 40 § in m — ΐη ”··· 14.5(2,1) I #·*- « csi CO CO § ϊη 兮' § ϊο 丨4.6(2.0) 1 Cvj (Ο C4 co ui a c5 119.0(10.6)1 1 to 匡m ΓΪΤExample 2 IK Example 3 1 m to mmu 1苡Example 6 Example 7 1 1苡Example 8 1 m Example 9 I 1贲Example 10 I m 闺CM 匡m |贲Example 13 I m ΙϊίExample 15 I 1 Capital Example 16 I Irr Example π | 1 Comparative Example 1 I 1 Comparative Example 2 1 CO £ 1 Comparative Example 4 I m You £ to m Very Comparative Example 7 1 -19- 201247915 Regarding the examples and comparisons of the present invention produced in this manner In the transparent oxide film of the example and the conventional example, the film composition was measured by ICP emission spectrometry, and the ratio of each metal component to the total metal component is disclosed in Table 1. Further, the examples and comparative examples of the present invention are used. The transparent oxide film was analyzed by X-ray diffraction (XRD), and the results of investigation on the presence or absence of the crystallization peak are disclosed in Table 1. Further, the graphs of the XRD analysis results of Examples 3, 5, 6, and 1 and Comparative Example 4 are representatively shown in Figs. 2 to 6 , respectively. Further, the refractive index of each of the obtained transparent oxide films was measured by a spectroscopic ellipsometer (UVISEL NIA AGMS, manufactured by HORIBA Jobin Yvon Co., Ltd.), and the transmittance was measured by a spectrophotometer (V-5 50 manufactured by JASCO Corporation). For measurement. The results of each measurement are disclosed in Table 1. Further, the patterns of the transmittance characteristics versus wavelengths of Examples 3, 5, 6, 11 and Comparative Example 4 are representatively shown in Fig. 7 . Further, the results of the transmittance at a wavelength of 750 nm when the thickness of the transparent oxide film is 50 nm, 100 nm, and 300 nm are disclosed in Table 2-20-201247915 [Table 2] Transmittance Measurement 50 nm 100 nm 300 nm Example 1 99.8 97.2 94.8 Example 2 99.9 97.7 95.8 Example 3 99.9 98.5 97.0 Example 4 99.8 97.8 95.6 Example 5 99.8 97.6 95.0 Example 6 99.9 98.1 96.3 Example 7 99.8 97.7 95.7 Example 8 99.9 98.1 96.5 Example 9 99.9 98.1 96.3 Example 10 99.9 98.0 96.1 Example 11 99.8 97.8 95.5 Example 12 99.7 96.9 94.3 Example 13 99.7 96.8 93.8 Example 14 99.7 96.5 93.3 Example 15 99.9 98.0 96.4 Example 16 99.7 96.6 93.1 Example 17 99.7 96.8 94.1 Comparative Example 1 99.5 93.2 91.6 Comparative Example 2 Comparative Example 3 was not carried out because of film deformation. 96.2 86.2 82.4 Comparative Example 4 97.7 94.0 92.0 Comparative Example 5 99.9 98.8 98.0 Comparative Example 6 99.5 95.7 92.1 Comparative Example 7 99.6 96.8 93.7 Conventional Example 1 97.3 94.2 90.2 Further use of the MOCON method, And using PERMATRAN-WMODEL3/33 made by mo con company, it is determined according to JIS specification K7129 method - 21 - 201247915 Water vapor transmission rate (water vapor shielding property). The measured results are shown in Table 1. Further, the patterns of the refractive index characteristics versus wavelengths of Examples 3, 5, 6, 11 and 4 are representatively shown in Fig. 8. As a result of the evaluation, in Comparative Examples 1, 3, and 4, a crystallization peak was observed in the XRD fraction, and crystals were precipitated in the film, and the water vapor transmission rate was 0.01 g/(m2.day). In addition, the refractive index of the visible light region is exceeded, and the transmittance is also low, and is less than 95%. Further, in Comparative Example 2, the heating temperature was as high as 2 1 0 °C, and thus the thermal deformation of the resin film substrate could not be evaluated. Further, in the case of film formation by RF sputtering, the content of Si is low, and the transmittance in the visible light region is as high as 2.05, and the transmittance is as low as 90.6 %. With respect to these, any of the examples of the present invention did not observe a crystallization peak in the analysis, but an amorphous film, and the water evaporation rate was also below 0.01 g/(m2 · day ). And with high water vapor cover. Further, in any of the embodiments, the refractive index in the visible light region is 1.80, and the transmittance is also as high as 95% or more, whereby a film having a low refractive index and high properties can be obtained. As described above, any of the transparent oxide films of the examples of the present invention is a gas shielding layer which can be used for a paper or a solar cell, and has a film-forming property. However, the film described in Example 16 is excellent in the film, but the amount of 〇2 in the gas atmosphere at the time of sputtering is large, so that the film formation becomes slower <<Measurement of adhesion> It also exceeds 1.80 substrates, and in the past, the characteristic speed of the above-mentioned XRD gas permeability is as follows. -22-201247915 For the measurement of the adhesion, the transparent oxide film on the obtained film is first used (Example 1~ 17. Comparative Examples 1 to 7, and the conventional examples were adhered to a glass substrate with a double-sided tape, and were cut into 100 checkerboard shapes by a cutter on a transparent oxide film. Next, after adhering the cellophane adhesive tape, it was quickly peeled off in the direction of 90°, and the presence or absence of peeling of the transparent oxide film was examined. The results are disclosed in Table 3. The number of grids that have not been stripped out of 100 squares is indicated by X. That is, the case where there is a peeling point is represented by X/1 00, and the case where there is no peeling is represented by 1 00/1 00. -23-201247915 [Table 3] From these results, it is understood that the peeling of the present invention is obtained, and in the comparative example or in any of the examples, the peeling did not occur and the polyimide film did not occur. PET film Example 1 100/100 100/100 Example 2 100/100 100/100 Example 3 100/100 100/100 Example 4 100/100 100/100 Example 5 100/100 100/100 Example 6 100/100 100/100 Example 7 100/100 100/100 Example 8 100/100 100/100 Example 9 100/100 100/100 Example 10 100/100 100/100 Example 11 100/100 100/ 100 Example 12 100/100 100/100 Case 13 100/100 100/100 Case 14 100/100 100/100 Example 15 100/100 100/100 Example 16 100/100 100/100 Case Π 100 /100 100/100 Comparative Example 1 98/100 97/100 Comparative Example 2 Evaluation was not carried out because of film deformation Comparative Example 3 93/100 89/100 Comparative Example 4 93/100 90/100 Comparative Example 5 97/100 96/ 100 Comparative Example 6 100/100 100/100 Comparative Example 7 94/100 92/100 Conventional Example 89/100 87/100 High adhesion. Further, the technical scope of the present invention is not limited to the above-described embodiments and the above-described embodiments, and various modifications can be added without departing from the scope of the present invention. For example, not only a film is formed on the resin film, but a transparent oxide film is formed on the glass, and a resin film is added thereto, and the resin film may be further peeled off from the glass together with the transparent oxide film. (Reference Example of Sputtering Target) In the present invention, it is necessary to form a film by DC sputtering, and the results of the review regarding the sputtering target which can perform DC plating are disclosed as follows. The manufacture of the splash target associated with this reference example was carried out under the following conditions. First, the A12 0 3 powder, the S i 0 2 powder, and the ZnO powder were weighed in the respective ratios shown in Table 1, and the obtained powder and its 4 times (weight ratio) pin balls (balls having a diameter of 5 mm and diameter l〇) Half of the mm balls were placed in a 10L plastic container (polyethylene can) and mixed in a ball mill for 48 hours to make a mixed powder. Further, as the solvent, for example, an alcohol is used. Next, the obtained mixed powder is dried, for example, granulated by a sieve having a pore size of 20.5 μm, further dried under vacuum, and then vacuum-rolled at 1 200 ° C for 5 hours under a pressure of 200 kgf/cm 2 . And made into a sintered body. The sintered body obtained by hot rolling in this manner is machined into a target of a predetermined shape (diameter: 125 mm, thickness: 10 mm), and the processed target is welded to a target block made of oxygen-free copper to prepare a sintered body. In addition, with reference to the reference examples 1 to π, the Al 2 〇 3 powder, the SiO 2 powder, and the ZnO powder were weighed in the respective ratios shown in Table 2, and the obtained powders 25-201247915 were mixed. The film was rolled at 66 m/cm2, further molded by CIP (cold pressure equalization method) at 175 MPa, and fired at 1,400 ° C in the air to prepare a sputtering target. Further, Comparative Reference Examples 12 to 14 were set outside the range of the component composition of the present invention, and weighed at each ratio shown in Table 2, and subjected to vacuum hot rolling under the same conditions as in the present reference example to prepare sputtering. target. Further, these sputtering targets are set in a magnetron sputtering device to be set as a power source: DC, input power: 200 W, vacuum degree reached: lxl (T4Pa, sputtering gas: Ar, sputtering pressure: 0.67 Pa) , heating to 200 ° C, try to form a transparent film with a film thickness of 300 nm on a glass substrate (Corning 1 73 7# length: 2 〇χ width: 20, thickness: 0.7 mm). The reference examples and comparative reference examples of the present invention respectively measure and evaluate the density (theoretical density ratio) of the sintered body and the diffraction peaks of ZnO (101) and Zn2Si04 (410) observed by X-ray diffraction (XRD). The presence or absence, the possibility of DC sputtering, the bulk resistance 値, the number of abnormal discharges during DC sputtering for 60 minutes, and the refractive index of the transparent film after DC sputtering (light for wavelengths of 380 nm, 550 nm, and 750 nm). The results are disclosed in Table 4. -26- 201247915 Refractive index 750 nm 1 I 1.87 1.74 I.6S 1 1 1.73 1 1 I 1.72 II 1.71 1 1.68 1.63 1.62 1.73 1.63 1.65 1.62 1 S to 1 I r.9s 1.86 3 1 1 1.83 1 1 I IMS II s φ 〇> ss 380 nm 1 I 2.15 2.10 2.07 1 1 1M 1 1 I 1.9 BII 1.Θ5 1.72 1.67 1.64 1.87 1.66 1.70 1.66 Abnormal discharge I times (60 minutes) 1S80 1 - cvj \Λ B9J 1470 2042 1 1 I ο I 762 - eg Strict o - o r> Resistance 値 (Ω *cm) 4.6 x ΙΟ·2 1.8 X 1〇'3 2.3 x 10's 6.8 x 10~* 7.2X10-4 8.6 xlO-4 9.1 X 10— 8.8 X10-4 OV.RQ OV.RQ OV.RQ 1.0Χ10*3 OV.RG 6.9 x 10*3 7〇X 2.2 XI0*3 3.2 x 10*3 n X CO 7.5.2 X10"3 X 〇> | 9.3 x 10 3 3.3x1 O'3 Can DC t? 151 I? 1 not available | 1 not | I not | not 1? XRD peak 2$ΐ〇4 (410) mm Elk 擗ww 擗2ηΟ (101) 擗擗m 壊雔m Theoretical density ratio 91% 〇> 94K 98% 973⁄4 97% 973⁄4 104S 109« 109% 110« 103% 10M I 102S 1 104X 104% 106% I_ 108% 102X s 1 10GK Ϊ5 ο Theoretical density g/cm* 5.61 5.61 5.59 5.54 5.50 5.43 5.39 5.15 4Λ1 4 force 2 4JE6 5Λ5 4.10 4.20 4.81 4.51 4.24 4.15 4.84 4.17 4.28 4.22 Method of firing I Baked into Hi] | Baked into 1 丨 Baked into ] 丨 R R 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成 成R5 remaining Part of the remaining part Remaining part Remaining part Remaining part Remaining part 1 Remaining part Remaining part Remaining part Remaining part Remaining part Remaining part Remaining part | Remaining part 1 Remaining part Remaining part Remaining part Remaining part Remaining part Remaining part Remaining part Remaining part The remaining part <3 〇〇〇〇e 〇〇η 6.14 9.38 12.79 14.98 12.99 <d 9.41 12.64 I_ 14.26 ,6.09 ! 14.15 | 1^72 I 12.94 5 0.07 CM3 0.66 OI 3.35 5.42 | 6.82 2.04 2.08 1.42 1.45 2.04 SI 4.41 2.08 2.13 2.18 CM csi 0.69 ! 0.73 | 0.36 ! 3.66 Mixing composition of raw materials ΖηΟ "Remaining part $ remaining part | remaining part | I remaining part remaining part I remaining part remaining part I remaining part | remaining part I remaining part | Remaining part I Remaining part I Remaining part 1 remaining part! Remaining part remaining part | Remaining part! Remaining part 丨 remaining part! Remaining part | Remaining part 1 Remaining part Si02 I 1 I 1 1 1 I 5wtX 10wt% 15w% 20wt% SwtM 23wt% 20wtX 10wtS 15wtS 20wtS 22wt% 10wt% 22wt% 20wt% 20wt% Α1203 0.1 ννΟό 0.2wt% I Iw T% 3wt9i 5wtS 1 8wt?i 10wt% 3wtS 3wtS 2wtS 2wt% 3wt?i 3wt?i 6wtX 3wt% 3wt94 3wtS 3wt% lw04 1wtS 0.5wtS 5wt% OJ η 1 U? (Ο r* CO 〇> ο CO • 9 η ΙΟ to r- 00 Comparative Reference Example Reference Example -27-201247915 From the results, it can be seen that in the comparative reference example of the atmospheric firing, the comparative reference examples 1 and 2 in which the content of Al 2 〇 3 is small and SiO 2 is not contained In the case of the abnormal discharge, the DC sputtering was not performed stably, and the low refractive index was not obtained in the case of Comparative Reference Examples 3 to 5 in which the content of Al 2 〇 3 was a certain degree but Si 02 was not contained. In addition, in the comparative reference examples using the atmospheric firing, in the case of Comparative Reference Examples 6 and 7 in which the content of Al 2 〇 3 was large and Si 〇 2 was not contained, the number of abnormal discharges was large, and DC sputtering could not be performed stably. In Comparative Reference Examples 8 to 11 containing Al2〇3 and Si〇2, the number of abnormal discharges was large, or the target did not have conductivity, and DC sputtering could not be performed. Further, the density of any of Reference Examples 1 to 7 did not reach 100% of the theoretical density. Further, among the comparative reference examples using hot calendering, in the case of Comparative Reference Example 12 in which the content of Si〇2 is less than the range of the present invention, a low refractive index cannot be obtained, and the content of SiO 2 is higher than the range of the present invention. In the case of Comparative Reference Example 13, the target was not electrically conductive, and DC sputtering could not be performed. Further, in Comparative Reference Example 14 in which the content of Al2〇3 was higher than the range of the present invention, the number of abnormal discharges was large, and DC sputtering could not be performed stably. Further, in the case of comparing Reference Examples 8, 12, and 14, two peaks of ZnO (101) and Zn2SiO4 (410) were observed in XRD, but the content of A1 or Si was outside the range of the present invention, and thus the above occurred. Bad condition. With respect to these, any of the present examples has observed two peaks of ZnO (101) and Zn2Si04 (410) in XRD, and the number of abnormal discharges is very small, and DC splashing can be performed stably and satisfactorily. Regarding the refractive index, either one may be lower than the refractive index to the AZO film. In addition, regarding the density, in the case of this reference example, either of them is within the range of 100 to 108% of the density of -28-201247915. Next, the results obtained by observing Reference Example 3 (SiO 2 = 20 wt%) shown in Table 1 by X-ray diffraction (XRD) are shown in Fig. 9. In Reference Example 3, a high intensity can be observed in either the (4 1 0 ) diffraction peak of the composite oxide Zn 2 Si 〇 4 and the (1 0 1 ) diffraction peak of ZnO. In the case of the comparative reference example produced by firing in the same composition as in Reference Example 3, as shown in Fig. 10, the (1 01 ) diffraction peak of ZnO was not obtained. In order to obtain conductivity as described above, the composite oxide Zn2Si04 and ZnO must coexist in the structure as in the present reference example. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a manufacturing step of a sputtering target used in one embodiment of a transparent oxide film and a method for producing the same according to the present invention. Fig. 2 is a graph showing the results of analysis of X-ray diffraction (XRD) of a transparent oxide film (Example 3) in an embodiment of a transparent oxide film and a method for producing the same according to the present invention. Fig. 3 is a graph showing the results of analysis of X-ray diffraction of a transparent oxide film (Example 5) in an embodiment of a transparent oxide film and a method for producing the same according to the present invention. Fig. 4 is a graph showing the results of analysis of X-ray diffraction of a transparent oxide film (Example 6) in the embodiment of the transparent oxide film and the method for producing the same according to the present invention. -29-201247915 FIG. 5 is a view showing a result of analysis of X-ray diffraction of a transparent oxide film (Example 11) in an embodiment of a transparent oxide film and a method of manufacturing the same according to the present invention. 6 is a graph showing the results of analysis of X-ray diffraction of a transparent oxide film (Comparative Example 4) in a comparative example of the transparent oxide film and the method for producing the same according to the present invention. Fig. 7 is a view showing the transmittance versus wavelength in the examples and comparative examples of the transparent oxide film and the method for producing the same according to the present invention. Fig. 8 is a graph showing the refractive index versus wavelength in the examples and comparative examples of the transparent oxide film and the method for producing the same according to the present invention. Fig. 9 is a graph showing the results of analysis of x-ray diffraction (XRD) of sputtering ruthenium in the reference example. Fig. 10 is a graph showing the results of analysis of x-ray diffraction (XRD) of beach rhodium plating in a comparative reference example. -30-