WO2009145152A1 - Transparent conductive film and method for producing the same - Google Patents

Transparent conductive film and method for producing the same Download PDF

Info

Publication number
WO2009145152A1
WO2009145152A1 PCT/JP2009/059542 JP2009059542W WO2009145152A1 WO 2009145152 A1 WO2009145152 A1 WO 2009145152A1 JP 2009059542 W JP2009059542 W JP 2009059542W WO 2009145152 A1 WO2009145152 A1 WO 2009145152A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
zinc oxide
oxide
conductive film
zinc
Prior art date
Application number
PCT/JP2009/059542
Other languages
French (fr)
Japanese (ja)
Inventor
崇 口山
憲治 山本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2009145152A1 publication Critical patent/WO2009145152A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the present invention mainly includes touch panels, PDPs, LCDs, electroluminescence (EL) display materials, transparent electrodes and back electrodes of solar cells, transparent intermediate layers of hybrid solar cells, low dielectric constant films used in compound semiconductor high-speed devices, and surface elasticity.
  • the present invention relates to a transparent conductive film capable of achieving high environmental variability and a method for producing the same in a heater material.
  • ITO indium tin oxide
  • tin oxide zinc oxide
  • a transparent conductive layer is formed by a physical vapor deposition method (PVD method) such as magnetron sputtering method or molecular beam epitaxy method or a chemical vapor deposition method (CVD method) such as thermal CVD or plasma CVD
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • thermal CVD or plasma CVD vapor deposition method
  • electroless method A method formed by an electroless method is known.
  • ITO is a very excellent material as a transparent conductive material, and is currently widely used for a transparent conductive layer.
  • indium as a raw material may be depleted, and there is an urgent need to search for a material that can replace ITO in terms of resources and cost.
  • Non-patent document 1 describes that ZnO is excellent in transparency as compared with ITO, but is inferior in stability to moisture and heat.
  • Patent Documents 1 to 3 describe techniques for improving the chemical stability of ZnO by adding chromium, cobalt, silicon, or the like to ZnO.
  • Patent Documents 1 and 2 are limited to qualitative evaluation of etching characteristics, and quantitative properties are not clear regarding chemical stability, and durability in a high-temperature and high-humidity environment is not satisfactory.
  • Patent Document 3 states that the chemical stability is effective in durability in a high-temperature and high-humidity environment.
  • silicon is contained in an amount of about 5 atom%, the conductivity is lowered.
  • the present inventors have conducted intensive studies, and as a result, by adding silicon atoms to the zinc oxide structure in the zinc oxide transparent conductive layer, amorphous zinc oxide transparent conductive oxide can be obtained. It has been found that a physical layer can be formed, and that by adding a conductive dopant, the zinc oxide transparent conductive layer can exhibit high conductivity and can improve environmental variability.
  • the present invention has the following configuration.
  • the ratio of the surface resistance immediately after the formation of the transparent conductive film and the surface resistance after standing for 10 days in an environment of 85 ° C./85% RH is 0.5 to 2.0.
  • a transparent conductive film exhibiting good characteristics in “conductivity” and “environmental variability” which are particularly important elements in a touch panel, an electroluminescence electrode substrate, a solar cell, and the like.
  • the present invention provides a transparent conductive film having a transparent conductive oxide layer composed mainly of at least one zinc oxide on a base material, wherein the zinc oxide has an amorphous structure, and aluminum or gallium is changed to zinc.
  • the transparent conductive film is characterized by containing 0.1 to 3.0 atom% and further containing 3.0 to 18.0 atom% of silicon atoms with respect to zinc.
  • Zinc oxide is a compound with strong ion binding properties, and thin film materials are weak against water and chemicals. In order to reinforce this weak point, a method of blocking moisture by first providing a clothing layer on the surface of the zinc oxide transparent thin film is considered.
  • a moisture barrier material is generally a material such as a metal material or polyolefin, and is often not suitable for a transparent conductive film material such as an opaque material or an insulator.
  • Japanese Patent Application Laid-Open No. 10-237630 describes a method of forming a transparent conductive layer by a reactive sputtering method using a reactive gas such as carbon dioxide as a carrier gas on a metal target.
  • FIG. 1 is a cross-sectional view of a transparent conductive film according to the present invention.
  • a zinc oxide transparent conductive oxide layer 2 is formed on the substrate 1 (FIG. 1).
  • the base material 1 may be selected depending on the application, but when used as a transparent electrode, the hard or soft material is not particularly limited as long as it is a substrate that is transparent at least in the visible light region. As long as it is a hard material, a glass substrate such as alkali glass, borosilicate glass, or non-alkali glass is a typical example, but a sapphire substrate or the like can also be used.
  • a glass substrate such as alkali glass, borosilicate glass, or non-alkali glass is a typical example, but a sapphire substrate or the like can also be used.
  • the thickness of the glass substrate can be arbitrarily selected depending on the purpose of use, but 0.5 to 4.5 mm can be exemplified as a preferable range in consideration of the balance between handling and weight.
  • a glass substrate that is too thin is not easily strong enough to be broken by impact.
  • a glass substrate that is too thick becomes heavy and affects the thickness of the device, making it difficult to use it for portable devices.
  • a thick substrate is not preferable in terms of transparency and cost.
  • soft materials include thermoplastic resins such as acrylic resins, polyesters, and polycarbonate resins, and films made of thermosetting resins such as polyurethane, but particularly excellent optical isotropy and water vapor barrier properties.
  • a film mainly composed of a cycloolefin polymer (COP) which is excellent in the above can be used effectively.
  • the COP film examples include a norbornene polymer, a copolymer of norbornene and an olefin, and an unsaturated alicyclic hydrocarbon polymer such as cyclopentadiene. From the viewpoint of water vapor barrier properties, it is preferable that the main chain and side chain of the film constituting molecule do not contain a functional group having a large polarity, such as a carbonyl group or a hydroxyl group.
  • the thickness of these substrates can be arbitrarily selected according to the purpose of use, but handling is easy if it is about 0.03 mm to 3.0 mm.
  • Thin films are difficult to handle and lack strength. Also, thick films have problems with transparency and cost, and increase the thickness of the device, making it difficult to use for portable devices.
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • the substrate film can be stretched to give a phase difference.
  • a phase difference it is possible to produce a low reflection panel by combining with a polarizing plate, and it is expected that the visibility of an image is greatly improved.
  • phase difference can be imparted by using a known method. For example, it is possible by stretching or orientation treatment such as uniaxial stretching or biaxial stretching. At this time, the orientation of the polymer skeleton can be promoted by applying a temperature close to the glass transition temperature to the film.
  • the preferred range of the retardation value varies depending on the intended function, but in the case of providing an antireflection function, it is preferable to select the retardation value within the range of 50 to 300 nm. Thus, the vicinity of 137 nm, which is 1/4, is more preferable.
  • the zinc oxide transparent conductive oxide of the present invention can be formed thereon using a photoelectric conversion layer or a light emitting layer as a base material.
  • the photoelectric conversion layer may be a layer made of amorphous or crystalline silicon or a multi-component compound semiconductor.
  • an organic metal complex having aluminum or rare earth atom as a metal center can be used.
  • the zinc oxide transparent conductive oxide layer 2 in the present invention is amorphous.
  • the zinc oxide transparent conductive oxide layer 2 in the present invention is amorphous.
  • the doping amount is preferably 3.0 to 18.0 atom% of silicon atoms with respect to zinc atoms.
  • 4.0 to 16.0 atom% is preferable, and 5.0 to 15.0 atom% is more preferable. In terms of reliability testing, 9.0 to 16.0 atom% is preferable.
  • Silicon dioxide necessary for making the zinc oxide transparent conductive oxide into an amorphous structure is, for example, Wakabayashi, J. et al. Soc. Mat. Sci. , Japan, 49, 6, 617 (2000), requires 7 to 10 atom% or more. Further, the obtained oxide has very low conductivity and does not function as a transparent conductive oxide. However, in the present invention, by using a conductive dopant simultaneously with silicon dioxide, it becomes a transparent conductive oxide having an amorphous structure even at a lower doping amount, and can be used as a transparent conductive film.
  • a doping agent is added to the zinc oxide transparent conductive oxide layer 2 for the purpose of imparting conductivity.
  • the doping agent aluminum or gallium is suitable.
  • the doping amount is 0.1 to 3.0 atom% with respect to zinc, it is possible to obtain the conductivity of the transparent conductive oxide necessary for the present invention, and 0.3 to 0.3 to exhibit higher conductivity. It is preferably 2.8 atom%, more preferably 0.4 to 2.6 atom%, and particularly preferably 0.5 to 2.5 atom%.
  • the doping amount is small, the conductivity is not improved due to insufficient doping.
  • the doping amount is large, the excess dopant is segregated near the crystal grain boundary of zinc oxide or enters between the lattices and hinders the movement of carriers, so that the conductivity is lowered.
  • the transparent conductive oxide layer can be deposited on the substrate by irradiation with any of plasma particles, electron beams, molecular beams, and lasers. . Further, the irradiation can be performed by irradiating the sintered body of zinc oxide.
  • the sintered body of zinc oxide preferably has the same composition as the transparent conductive oxide layer.
  • plasma particle, electron beam, molecular beam, and laser irradiation means include magnetron sputtering, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), and pulsed laser deposition (PLD).
  • EB electron beam
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • a transparent conductive film can be suitably produced by any of the above methods.
  • a large area such as a roll-to-roll film substrate
  • the magnetron sputtering method is suitable among the above methods.
  • the target material used for magnetron sputtering is a mixture of oxide containing zinc oxide as the main component, conductive oxide aluminum oxide or gallium oxide, and silicon dioxide for amorphous structuring. It can be produced by adhering to a backing plate.
  • the conductivity of the transparent conductive oxide necessary for the present invention can be obtained when zinc oxide is doped with aluminum oxide or gallium oxide in an amount of 0.1 to 3.0 atom% of aluminum or gallium with respect to zinc. In order to exhibit higher conductivity, 0.3 to 2.8 atom% is preferable, 0.4 to 2.6 atom% is more preferable, and 0.5 to 2.5 atom% is particularly preferable.
  • the transparent conductive film necessary for the present invention can be produced by doping the thin film to be formed in a necessary amount. If the doping amount is 3.0 to 18.0 atom% of silicon with respect to zinc, the zinc oxide transparent conductive oxide has an amorphous structure, and the characteristics necessary for the present invention can be achieved. Further, from the viewpoint of conductivity and the like, 4.0 to 16.0 atom% is preferable, and 5.0 to 15.0 atom% is more preferable. In terms of reliability testing, 9.0 to 16.0 atom% is preferable.
  • the plasma power is not particularly limited, but is preferably 10 W to 600 W from the viewpoint of productivity and crystallinity. If it is too low, the film may not be formed. If it is too high, there is a concern about damage to the substrate and damage to the device.
  • the film thickness of the transparent conductive oxide layer 2 is preferably 150 to 1000 mm. By using a transparent conductive oxide layer having a thickness in this range, a transparent conductive film having both high transparency and conductivity can be produced.
  • a method for detecting the doping amount contained in the transparent conductive oxide layer 2 will be described.
  • the detection of the doping amount can be accurately detected by any method as long as it is a method usually used for elemental analysis.
  • elemental analysis means such as atomic absorption analysis and fluorescent X-ray analysis
  • spectroscopic techniques such as X-ray photoelectron spectroscopy, Auger electron spectroscopy, electron beam microanalyzer, and secondary ion mass spectrometry.
  • energy dispersive X-ray analysis is a relatively simple technique that can perform elemental analysis with high accuracy simultaneously with shape observation using a scanning electron microscope (SEM) or transmission electron microscope (TEM).
  • the doping amount can be easily calculated by the following equation by relative comparison with zinc.
  • the surface resistance of the transparent conductive film to be produced varies depending on the intended use. For example, in the case of a solar cell or an EL element, about 10 to 20 ⁇ / ⁇ is preferable, and in the case of a touch panel or the like, about 200 to 1000 ⁇ / ⁇ . preferable.
  • a scanning electron microscope JSM-6390-LA manufactured by JEOL Ltd.
  • the crystallinity was evaluated by an X-ray diffraction method.
  • a resistivity meter Loresta GP MCT-610 manufactured by Mitsubishi Chemical Corporation was used. The ratio between the surface resistance immediately after the formation of the transparent conductive film and the surface resistance after being left in an environment of 85 ° C./85% RH for 10 days was defined as a reliability test result.
  • the reliability test was evaluated as follows. After measuring the surface resistance of the transparent conductive film immediately after film formation, put it into a constant temperature and humidity tester set at 85 ° C / 85% RH, leave it for 10 days, take out the transparent conductive film, and cool it down to room temperature. Was measured. The evaluation was performed using the following formula.
  • the value of the reliability test result indicates the quality stability of the transparent conductive film, and this value is preferably 0.5 to 2.0. 0.8 to 2.0 is more preferable, 1.0 to 2.0 is more preferable, and 1.0 to 1.6 is particularly preferable. Most preferred is 1.0 to 1.3.
  • the resistance is unstable, which leads to deterioration of the image for display materials, deterioration of conversion efficiency for materials such as solar cells, and deterioration of accuracy for materials such as touch panels. It is not preferable for the above reason that the value of the surface resistance increases or decreases after the reliability test.
  • Examples 1 to 10, Comparative Examples 1 to 3 A transparent conductive oxide layer was magnetron-sputtered on alkali-free glass (trade name OA-10, film thickness 0.7 mm, manufactured by Nippon Electric Glass Co., Ltd.).
  • alkali-free glass trade name OA-10, film thickness 0.7 mm, manufactured by Nippon Electric Glass Co., Ltd.
  • sintered bodies having respective compositions were used as the target.
  • the film forming conditions were as follows: substrate temperature was 200 ° C., argon gas was used at 10.0 sccm as a carrier gas, DC power of 200 W was applied at a pressure of 1.5 Pa, and a film was formed for 5 minutes to form a 500-inch zinc oxide transparent conductive film. An oxide layer was produced.
  • Table 1 shows the examination results of the above examples and comparative examples.

Abstract

When a zinc oxide-based transparent conductive oxide is formed into a thin film, the resistivity thereof is easily increased due to the air or moisture, and thus the zinc oxide-based transparent conductive oxide cannot be used as a transparent conductive film.  Although the zinc oxide-based transparent conductive oxide is made to have an amorphous structure for the purpose of suppressing the resistivity increase due to grain boundary scattering, zinc oxide has good crystallinity and thus it has been difficult to form a conductive amorphous zinc oxide-based transparent conductive oxide layer. By adding silicon dioxide as an additive for amorphization and adding aluminum or gallium as a conductive doping agent, a conductive amorphous zinc oxide-based transparent conductive oxide layer can be formed.  As a result, a practical transparent conductive film can be produced.

Description

透明導電膜およびその製造方法Transparent conductive film and method for producing the same
 本発明は、主としてタッチパネルやPDP、LCDやエレクトロルミネッセンス(EL)ディスプレイ材料、太陽電池の透明電極や裏面電極、ハイブリッド型太陽電池の透明中間層、化合物半導体高速デバイスに用いる低誘電率膜、表面弾性波素子、赤外線カットなどを目的とした窓ガラスコーティング、ガスセンサー、非線形光学を活用したプリズムシート、透明磁性体、光学記録素子、光スイッチ、光導波路、光スプリッタ、光音響材料への活用、高温発熱ヒーター材料において、高い耐環境変動性を達成可能な透明導電膜とその製造方法に関するものである。 The present invention mainly includes touch panels, PDPs, LCDs, electroluminescence (EL) display materials, transparent electrodes and back electrodes of solar cells, transparent intermediate layers of hybrid solar cells, low dielectric constant films used in compound semiconductor high-speed devices, and surface elasticity. Wave elements, window glass coatings for the purpose of cutting infrared rays, gas sensors, prism sheets utilizing nonlinear optics, transparent magnetic materials, optical recording elements, optical switches, optical waveguides, optical splitters, utilization for photoacoustic materials, high temperature The present invention relates to a transparent conductive film capable of achieving high environmental variability and a method for producing the same in a heater material.
 タッチパネルやディスプレイ材料、太陽電池などに使用される透明導電膜は、その透明導電層として酸化インジウム錫(ITO)や酸化錫、酸化亜鉛などが広く使用されている。このような透明導電層はマグネトロンスパッタリング法やモレキュラービームエピタキシー法などの物理気相堆積法(PVD法)や熱CVDやプラズマCVDなどの化学気相堆積法(CVD法)などにより形成されるほか、無電解法により形成される方法が知られている。中でもITOは透明導電材料として非常に優れた材料であり、現在広く透明導電層に使用されている。しかしながら、原料のインジウムが枯渇する可能性があり、資源的にもコスト的にもITOに替わる材料の探索が急務となっている。 In transparent conductive films used for touch panels, display materials, solar cells, and the like, indium tin oxide (ITO), tin oxide, zinc oxide, and the like are widely used as the transparent conductive layer. Such a transparent conductive layer is formed by a physical vapor deposition method (PVD method) such as magnetron sputtering method or molecular beam epitaxy method or a chemical vapor deposition method (CVD method) such as thermal CVD or plasma CVD, A method formed by an electroless method is known. Among them, ITO is a very excellent material as a transparent conductive material, and is currently widely used for a transparent conductive layer. However, there is a possibility that indium as a raw material may be depleted, and there is an urgent need to search for a material that can replace ITO in terms of resources and cost.
 ITOに替わる材料としては酸化亜鉛(ZnO)が代表として挙げられる。ZnOはITOと比較して透明性に優れる反面、水分や熱に対する安定性に劣ることが非特許文献1に記載されている。 A representative example of a material replacing ITO is zinc oxide (ZnO). Non-patent document 1 describes that ZnO is excellent in transparency as compared with ITO, but is inferior in stability to moisture and heat.
 特許文献1~3にはZnOにクロムやコバルト、ケイ素などを添加することで、ZnOの化学的安定性を向上する技術が述べられている。しかし、特許文献1および2はエッチング特性の定性的な評価にとどまっており、化学的安定性に関して定量性が明確になっておらず高温高湿環境での耐久性については満足できるものではなかった。一方特許文献3は化学的安定性として高温高湿環境での耐久性に効果があることが述べられているが、珪素を約5atom%程度含有するために、導電性が低下している。また、導電性を向上させるために珪素の含有量を減らすと、耐久性が悪くなるという結果が報告されている。 Patent Documents 1 to 3 describe techniques for improving the chemical stability of ZnO by adding chromium, cobalt, silicon, or the like to ZnO. However, Patent Documents 1 and 2 are limited to qualitative evaluation of etching characteristics, and quantitative properties are not clear regarding chemical stability, and durability in a high-temperature and high-humidity environment is not satisfactory. . On the other hand, Patent Document 3 states that the chemical stability is effective in durability in a high-temperature and high-humidity environment. However, since silicon is contained in an amount of about 5 atom%, the conductivity is lowered. In addition, it has been reported that if the silicon content is reduced in order to improve the conductivity, the durability deteriorates.
 以上のように、ITO代替としてZnOの透明導電層への利用は幅広く開発が行われているが、現在主流となっているITO以上にすぐれた材料は実用化に至っていない。 As described above, ZnO as a substitute for ITO has been widely used for transparent conductive layers, but materials superior to ITO, which is currently mainstream, have not been put into practical use.
 化学的な安定性については、論文・学会などで多くの議論がされているが、一つとしては結晶粒界に酸素が付着することで、結晶粒子間の電荷移動を妨げることが推測されている。それに対して、酸化亜鉛を非晶質として結晶粒界をなくすことで、化学的安定性が向上することが想定されるが、酸化亜鉛は結晶性の良い化合物であり、これまでに導電性かつ非晶質の酸化亜鉛透明導電性酸化物は酸化インジウムを含有するIZOが報告されている程度であり(非特許文献2)、これも酸化亜鉛の含有量は10atom%程度と主成分は酸化インジウムである。このように、資源として豊富な酸化亜鉛を主成分とする非晶質な酸化亜鉛透明導電性酸化物はこれまで見出されていない。 There are many discussions on chemical stability in papers and academic societies, but one of them is that oxygen is attached to the grain boundaries, and it is assumed that charge transfer between crystal grains is hindered. Yes. On the other hand, it is assumed that the chemical stability is improved by making the zinc oxide amorphous and eliminating the grain boundaries. However, zinc oxide is a compound with good crystallinity, so far conductive and Amorphous zinc oxide transparent conductive oxide is the extent to which IZO containing indium oxide has been reported (Non-patent Document 2), and the content of zinc oxide is about 10 atom%, and the main component is indium oxide. It is. Thus, an amorphous zinc oxide transparent conductive oxide mainly composed of abundant zinc oxide as a resource has not been found so far.
特開2002-75061号公報Japanese Patent Laid-Open No. 2002-75061 特開2002-75062号公報JP 2002-75062 A 特開平8-45352号公報JP-A-8-45352
 上記課題を解決する為に、本発明者らは鋭意検討を重ねた結果、酸化亜鉛透明導電層中の酸化亜鉛の構造に珪素原子を含有させることで、非晶質の酸化亜鉛透明導電性酸化物層を形成可能であり、さらに導電性のドーピング剤を加えることで酸化亜鉛透明導電層の高い導電性を示し、かつ耐環境変動性を向上することが可能であることを見出した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, by adding silicon atoms to the zinc oxide structure in the zinc oxide transparent conductive layer, amorphous zinc oxide transparent conductive oxide can be obtained. It has been found that a physical layer can be formed, and that by adding a conductive dopant, the zinc oxide transparent conductive layer can exhibit high conductivity and can improve environmental variability.
 すなわち本発明は、以下の構成を有するものである。 That is, the present invention has the following configuration.
 1). 基材上に少なくとも1層からなる酸化亜鉛を主成分とする透明導電性酸化物層を有する透明導電膜において、該透明導電性酸化物層を構成する酸化亜鉛透明導電性酸化物が非晶質構造であり、アルミニウムおよび/またはガリウムを亜鉛に対して0.1~3.0atom%含み、さらに珪素原子を亜鉛に対して3.0~18.0atom%含んでいることを特徴とする透明導電膜。 1). A transparent conductive film having a transparent conductive oxide layer composed mainly of zinc oxide on at least one layer on a base material, wherein the zinc oxide transparent conductive oxide constituting the transparent conductive oxide layer is amorphous A transparent conductive material having a structure containing 0.1 to 3.0 atom% of aluminum and / or gallium with respect to zinc and further containing 3.0 to 18.0 atom% of silicon atom with respect to zinc film.
 2). 透明導電膜形成直後の表面抵抗と、85℃/85%RH環境下で10日間放置した後の表面抵抗の比が0.5~2.0であることを特徴とする、1)に記載の透明導電膜。 2). The ratio of the surface resistance immediately after the formation of the transparent conductive film and the surface resistance after standing for 10 days in an environment of 85 ° C./85% RH is 0.5 to 2.0. Transparent conductive film.
 3). プラズマ状粒子、電子線、分子線またはレーザーのいずれかを照射することにより透明導電性酸化物層を基材上に付着させることを特徴とする1)または2)に記載の透明導電膜の製造方法。 3). The transparent conductive film according to 1) or 2), wherein the transparent conductive oxide layer is deposited on the substrate by irradiating any one of plasma particles, electron beam, molecular beam or laser. Method.
 4). 酸化亜鉛の焼結体にプラズマ状粒子、電子線、分子線またはレーザーのいずれかを照射することを特徴とする3)に記載の透明導電膜の製造方法。 4). The method for producing a transparent conductive film according to 3), wherein the sintered body of zinc oxide is irradiated with any of plasma particles, electron beam, molecular beam or laser.
 5). 酸化亜鉛の焼結体が透明導電性酸化物層と同じ組成であることを特徴とする4)に記載の透明導電膜の製造方法。 5). The method for producing a transparent conductive film according to 4), wherein the sintered body of zinc oxide has the same composition as the transparent conductive oxide layer.
 本発明により、タッチパネルやエレクトロルミネッセンス電極基板、太陽電池などで特に重要な要素である「導電性」「耐環境変動性」において良好な特性を示す透明導電膜を形成することが可能となる。 According to the present invention, it is possible to form a transparent conductive film exhibiting good characteristics in “conductivity” and “environmental variability” which are particularly important elements in a touch panel, an electroluminescence electrode substrate, a solar cell, and the like.
 本発明は「基材上に少なくとも1層からなる酸化亜鉛を主成分とする透明導電性酸化物層を有する透明導電膜において、該酸化亜鉛が非晶質構造であり、アルミニウムまたはガリウムを亜鉛に対して0.1~3.0atom%含み、さらに珪素原子を亜鉛に対して3.0~18.0atom%含んでいることを特徴とする透明導電膜」である。 The present invention provides a transparent conductive film having a transparent conductive oxide layer composed mainly of at least one zinc oxide on a base material, wherein the zinc oxide has an amorphous structure, and aluminum or gallium is changed to zinc. The transparent conductive film is characterized by containing 0.1 to 3.0 atom% and further containing 3.0 to 18.0 atom% of silicon atoms with respect to zinc.
 酸化亜鉛はイオン結合性の強い化合物であり、薄膜材料では水や薬品に対して弱い性質がある。この弱点を補強するには、酸化亜鉛透明薄膜表面に被服層を設けて水分を遮断する方法が第一に考えられる。このような水分遮断性の材料は一般的に金属材料やポリオレフィンのような物質であり、不透明であったり、絶縁体であったりと透明導電膜材料には適していないものが多い。第二には、酸化亜鉛へのドーピングによる安定性の付与が考えられ、特許文献1~3にコバルトやクロム、ケイ素をドーピングすることで安定性が向上することが記載されている。 Zinc oxide is a compound with strong ion binding properties, and thin film materials are weak against water and chemicals. In order to reinforce this weak point, a method of blocking moisture by first providing a clothing layer on the surface of the zinc oxide transparent thin film is considered. Such a moisture barrier material is generally a material such as a metal material or polyolefin, and is often not suitable for a transparent conductive film material such as an opaque material or an insulator. Secondly, it is conceivable to impart stability to zinc oxide by doping, and Patent Documents 1 to 3 describe that the stability is improved by doping cobalt, chromium, or silicon.
 これらの手法では、金属酸化物や金属塩化物を酸化亜鉛と混合した後に製膜する方法や、酸化亜鉛と二酸化ケイ素を共スパッタする方法などが用いられている。また特開平10-237630号公報には金属ターゲットに二酸化炭素のような反応性ガスをキャリアガスとする、反応性スパッタ法により透明導電層を形成する方法が述べられている。 In these methods, a method of forming a film after mixing a metal oxide or metal chloride with zinc oxide, a method of co-sputtering zinc oxide and silicon dioxide, or the like is used. Japanese Patent Application Laid-Open No. 10-237630 describes a method of forming a transparent conductive layer by a reactive sputtering method using a reactive gas such as carbon dioxide as a carrier gas on a metal target.
 以下、本発明に係る透明導電膜の代表的な態様を説明する。図1は本発明に係る透明導電膜の断面図である。基材1上に酸化亜鉛透明導電性酸化物層2が形成される(図1)。 Hereinafter, typical aspects of the transparent conductive film according to the present invention will be described. FIG. 1 is a cross-sectional view of a transparent conductive film according to the present invention. A zinc oxide transparent conductive oxide layer 2 is formed on the substrate 1 (FIG. 1).
 上記基材1については、用途によって使い分けられるが、透明電極として使用する場合には、少なくとも可視光領域において透明な基板であれば、硬質または軟質材料は特に限定されない。硬質材料であれば、アルカリガラスやホウ珪酸ガラス、無アルカリガラスなどのガラス基板がその代表例であるが、サファイヤ基板なども使用できる。 The base material 1 may be selected depending on the application, but when used as a transparent electrode, the hard or soft material is not particularly limited as long as it is a substrate that is transparent at least in the visible light region. As long as it is a hard material, a glass substrate such as alkali glass, borosilicate glass, or non-alkali glass is a typical example, but a sapphire substrate or the like can also be used.
 ガラス基板の厚みは使用目的により任意に選択することができるが、取り扱いと重量のバランスを加味して、0.5mm~4.5mmが好ましい範囲として例示できる。薄すぎるガラス基板は強度が不足するために、衝撃により割れやすい。また厚すぎるガラス基板は重量が重くなることと、機器の厚みに影響を及ぼすことから、ポータブル機器への利用は困難となる。 The thickness of the glass substrate can be arbitrarily selected depending on the purpose of use, but 0.5 to 4.5 mm can be exemplified as a preferable range in consideration of the balance between handling and weight. A glass substrate that is too thin is not easily strong enough to be broken by impact. In addition, a glass substrate that is too thick becomes heavy and affects the thickness of the device, making it difficult to use it for portable devices.
 また厚い基材は透明性とコストの面からも好ましくない。一方、軟質な材料としては、アクリル樹脂やポリエステル、ポリカーボネート樹脂などの熱可塑性樹脂や、ポリウレタンなどの熱硬化性樹脂からなるフィルムが代表例であるが、特に優れた光学等方性と水蒸気遮断性に優れているシクロオレフィンポリマー(COP)を主成分とするフィルムが有効に使用できる。 Also, a thick substrate is not preferable in terms of transparency and cost. On the other hand, examples of soft materials include thermoplastic resins such as acrylic resins, polyesters, and polycarbonate resins, and films made of thermosetting resins such as polyurethane, but particularly excellent optical isotropy and water vapor barrier properties. A film mainly composed of a cycloolefin polymer (COP) which is excellent in the above can be used effectively.
 COPフィルムとしては、ノルボルネンの重合体やノルボルネンとオレフィンとの共重合体、シクロペンタジエンなどの不飽和脂環式炭化水素の重合体などが挙げられる。水蒸気遮断性の観点から、フィルム構成分子の主鎖および側鎖には大きな極性を示す官能基、例えばカルボニル基やヒドロキシル基、を含まないことが好ましい。これらの基板の厚みは使用目的により任意に選択することができるが、0.03mm~3.0mm程度であれば取り扱いが容易である。 Examples of the COP film include a norbornene polymer, a copolymer of norbornene and an olefin, and an unsaturated alicyclic hydrocarbon polymer such as cyclopentadiene. From the viewpoint of water vapor barrier properties, it is preferable that the main chain and side chain of the film constituting molecule do not contain a functional group having a large polarity, such as a carbonyl group or a hydroxyl group. The thickness of these substrates can be arbitrarily selected according to the purpose of use, but handling is easy if it is about 0.03 mm to 3.0 mm.
 薄いフィルムはハンドリングが困難であることと、強度が不足する点が課題となる。また厚いフィルムは透明性とコストに課題があり、機器の厚みも増すことから、ポータブル機器には使用が困難である。その他耐熱性に優れるという観点から、ポリエチレンナフタレート(PEN)やポリエーテルスルホン(PES)なども使用できる。 Thin films are difficult to handle and lack strength. Also, thick films have problems with transparency and cost, and increase the thickness of the device, making it difficult to use for portable devices. In addition, from the viewpoint of excellent heat resistance, polyethylene naphthalate (PEN), polyethersulfone (PES), and the like can also be used.
 上記基材1としてフィルム基板を用いる場合は、基板フィルムを延伸して位相差を付与することができる。位相差を付与することで、偏光板との組み合わせにより低反射パネルを作製することが可能であり、画像の視認性が大幅に向上することが期待される。 When a film substrate is used as the substrate 1, the substrate film can be stretched to give a phase difference. By providing a phase difference, it is possible to produce a low reflection panel by combining with a polarizing plate, and it is expected that the visibility of an image is greatly improved.
 上記基材1への位相差付与の方法について説明する。位相差付与には既知の手法を用いることで可能となる。例えば一軸延伸や二軸延伸などの延伸や配向処理により可能である。この際フィルムにガラス転移温度近くの温度をかけることで、ポリマー骨格の配向を促進することが可能となる。レタデーション値の好ましい範囲は、目的とする機能によりことなるが、反射防止機能を付与する場合には50~300nmの範囲で選択する事が好ましく、人間が最も強く認識する波長である約550nmに対して1/4となる137nm付近がより好ましい。 A method for imparting phase difference to the substrate 1 will be described. The phase difference can be imparted by using a known method. For example, it is possible by stretching or orientation treatment such as uniaxial stretching or biaxial stretching. At this time, the orientation of the polymer skeleton can be promoted by applying a temperature close to the glass transition temperature to the film. The preferred range of the retardation value varies depending on the intended function, but in the case of providing an antireflection function, it is preferable to select the retardation value within the range of 50 to 300 nm. Thus, the vicinity of 137 nm, which is 1/4, is more preferable.
 太陽電池やELデバイス中の中間層として使用する場合は、光電変換層や発光層を基材として、その上に本発明の酸化亜鉛透明導電性酸化物を製膜することができる。この場合の光電変換層は、非晶質または結晶シリコンや多元系化合物半導体からなる層を使用できる。発光層はアルミニウムや希土類原子などを金属中心とする有機金属錯体などが使用できる。 When used as an intermediate layer in a solar cell or an EL device, the zinc oxide transparent conductive oxide of the present invention can be formed thereon using a photoelectric conversion layer or a light emitting layer as a base material. In this case, the photoelectric conversion layer may be a layer made of amorphous or crystalline silicon or a multi-component compound semiconductor. For the light emitting layer, an organic metal complex having aluminum or rare earth atom as a metal center can be used.
 本発明における酸化亜鉛透明導電性酸化物層2は非晶質であることが本発明の重要な技術である。結晶粒界を持たない非晶質構造とすることで、粒界に付着する酸素や水の影響が解消され、キャリアの移動が恒久的に不変となることが推定される。酸化亜鉛透明導電性酸化物を非晶質構造とするためには、二酸化珪素をドーピングすることで達成可能である。ドーピング量としては、亜鉛原子に対して珪素原子が3.0~18.0atom%含まれることが好ましい。さらに導電性などの観点からは4.0~16.0atom%が、さらには5.0~15.0atom%、であることが好ましい。また、信頼性試験の面では9.0から16.0atom%が好ましい。 It is an important technique of the present invention that the zinc oxide transparent conductive oxide layer 2 in the present invention is amorphous. By adopting an amorphous structure having no crystal grain boundary, it is estimated that the influence of oxygen and water adhering to the grain boundary is eliminated, and the movement of carriers becomes permanently unchanged. In order to make the zinc oxide transparent conductive oxide have an amorphous structure, it can be achieved by doping silicon dioxide. The doping amount is preferably 3.0 to 18.0 atom% of silicon atoms with respect to zinc atoms. Further, from the viewpoint of conductivity and the like, 4.0 to 16.0 atom% is preferable, and 5.0 to 15.0 atom% is more preferable. In terms of reliability testing, 9.0 to 16.0 atom% is preferable.
 この範囲でドーピングすることで、透明導電性酸化物層を非晶質としながら、且つ絶縁体になることを防止することが可能となる。二酸化珪素のドーピング量が少ない場合は、透明導電性酸化物層が結晶性となり、上記効果が期待できないために高温高湿環境下での耐久性が劣る。一方に酸化珪素のドーピング量が多い場合には、非晶質構造となるが、導電性が著しく低下し絶縁体となるために、透明導電層として使用できない。 By doping in this range, it becomes possible to prevent the transparent conductive oxide layer from becoming an insulator while being amorphous. When the doping amount of silicon dioxide is small, the transparent conductive oxide layer becomes crystalline and the above effect cannot be expected, so that the durability under a high temperature and high humidity environment is inferior. On the other hand, when the doping amount of silicon oxide is large, an amorphous structure is obtained. However, since the conductivity is remarkably lowered and an insulator is formed, it cannot be used as a transparent conductive layer.
 酸化亜鉛透明導電性酸化物を非晶質構造にするために必要な二酸化珪素は、例えば若林、J.Soc.Mat.Sci.,Japan、49、6、617(2000)では7~10atom%以上必要とされている。また、得られた酸化物は導電性が非常に低く、透明導電酸化物としては機能しないものである。しかし本発明では二酸化珪素と同時に導電性のドーピング剤を用いることにより、より低いドーピング量においても非晶質構造の透明導電酸化物となり、透明導電膜として用いることが可能である。 Silicon dioxide necessary for making the zinc oxide transparent conductive oxide into an amorphous structure is, for example, Wakabayashi, J. et al. Soc. Mat. Sci. , Japan, 49, 6, 617 (2000), requires 7 to 10 atom% or more. Further, the obtained oxide has very low conductivity and does not function as a transparent conductive oxide. However, in the present invention, by using a conductive dopant simultaneously with silicon dioxide, it becomes a transparent conductive oxide having an amorphous structure even at a lower doping amount, and can be used as a transparent conductive film.
 酸化亜鉛透明導電性酸化物層2には導電性の付与を目的としてドーピング剤を添加する。ドーピング剤としては、アルミニウムやガリウムが適している。ドーピング量としては亜鉛に対して0.1~3.0atom%において本発明に必要な透明導電酸化物の導電性を得ることが可能であり、さらに高い導電性を示す為には0.3~2.8atom%が、さらには0.4~2.6atom%が、特には0.5~2.5atom%が好ましい。ドーピング量が少ない場合は、ドーピング不足により導電性が向上しない。逆にドーピング量が多い場合は、過剰なドーピング剤が酸化亜鉛の結晶粒界付近に偏析したり、格子間に入り込みキャリアの移動を妨げたりするために導電性が低下する。 A doping agent is added to the zinc oxide transparent conductive oxide layer 2 for the purpose of imparting conductivity. As the doping agent, aluminum or gallium is suitable. When the doping amount is 0.1 to 3.0 atom% with respect to zinc, it is possible to obtain the conductivity of the transparent conductive oxide necessary for the present invention, and 0.3 to 0.3 to exhibit higher conductivity. It is preferably 2.8 atom%, more preferably 0.4 to 2.6 atom%, and particularly preferably 0.5 to 2.5 atom%. When the doping amount is small, the conductivity is not improved due to insufficient doping. On the other hand, when the doping amount is large, the excess dopant is segregated near the crystal grain boundary of zinc oxide or enters between the lattices and hinders the movement of carriers, so that the conductivity is lowered.
 本発明にかかる透明導電性酸化物層2の形成方法としては、プラズマ状粒子・電子線・分子線・レーザーのいずれかの照射により透明導電性酸化物層を基材上に付着させることが出来る。また、それらの照射を酸化亜鉛の焼結体に照射させて行うことができる。また、酸化亜鉛の焼結体は透明導電性酸化物層と同じ組成であることが好ましい。 As a method of forming the transparent conductive oxide layer 2 according to the present invention, the transparent conductive oxide layer can be deposited on the substrate by irradiation with any of plasma particles, electron beams, molecular beams, and lasers. . Further, the irradiation can be performed by irradiating the sintered body of zinc oxide. The sintered body of zinc oxide preferably has the same composition as the transparent conductive oxide layer.
 プラズマ状粒子・電子線・分子線・レーザーの照射手段としては、それぞれマグネトロンスパッタリング法・電子線(EB)蒸着法・分子線エピタキシー(MBE)・パルスレーザー堆積(PLD)などが具体例として挙げられる。枚葉式の製膜でA4サイズ基材の製膜であれば、上記のどの方法でも好適に透明導電膜を作製可能であるが、例えばフィルム基材でのロールトゥロールのような大面積の連続製膜の場合には上記の方法の中でもマグネトロンスパッタリング方が適している。 Specific examples of plasma particle, electron beam, molecular beam, and laser irradiation means include magnetron sputtering, electron beam (EB) vapor deposition, molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). . As long as it is a single-wafer type film-forming A4 size substrate, a transparent conductive film can be suitably produced by any of the above methods. For example, a large area such as a roll-to-roll film substrate In the case of continuous film formation, the magnetron sputtering method is suitable among the above methods.
 マグネトロンスパッタリングに用いられるターゲット材料は、酸化亜鉛を主成分とする酸化物と導電性のドーピング剤である酸化アルミニウムまたは酸化ガリウム、非晶質構造化のために二酸化珪素を混ぜたものを焼結し、バッキングプレートに接着することで作製することができる。酸化亜鉛への酸化アルミニウムまたは酸化ガリウムのドーピング量はアルミニウムまたはガリウムが亜鉛に対して0.1~3.0atom%において本発明に必要な透明導電酸化物の導電性を得ることが可能である。さらに高い導電性を示す為には0.3~2.8atom%が、さらには0.4~2.6atom%が、特には0.5~2.5atom%であることが好ましい。 The target material used for magnetron sputtering is a mixture of oxide containing zinc oxide as the main component, conductive oxide aluminum oxide or gallium oxide, and silicon dioxide for amorphous structuring. It can be produced by adhering to a backing plate. The conductivity of the transparent conductive oxide necessary for the present invention can be obtained when zinc oxide is doped with aluminum oxide or gallium oxide in an amount of 0.1 to 3.0 atom% of aluminum or gallium with respect to zinc. In order to exhibit higher conductivity, 0.3 to 2.8 atom% is preferable, 0.4 to 2.6 atom% is more preferable, and 0.5 to 2.5 atom% is particularly preferable.
 マグネトロンスパッタリング法で製膜する場合、酸化亜鉛とこれらの導電性ドーピング剤は同組成のまま製膜されて透明導電性酸化物層となるので、必要なドーピング量をターゲットに添加することで、所望の導電性薄膜を形成することが可能となる。 When forming a film by magnetron sputtering, zinc oxide and these conductive dopants are formed with the same composition to form a transparent conductive oxide layer. Therefore, by adding the necessary doping amount to the target, It is possible to form a conductive thin film.
 珪素についても、マグネトロンスパッタリング製膜では亜鉛と同比率で製膜されるので、形成される薄膜に必要な量ドーピングすることで、本発明に必要な透明導電膜が作製可能となる。ドーピング量は珪素が亜鉛に対して3.0~18.0atom%であれば酸化亜鉛透明導電酸化物が非晶質構造となり、本発明に必要な特性を達成することが可能となる。さらに導電性などの観点からは4.0~16.0atom%が、さらには5.0~15.0atom%、であることが好ましい。また、信頼性試験の面では9.0から16.0atom%が好ましい。 Since silicon is also formed at the same ratio as zinc in the magnetron sputtering film formation, the transparent conductive film necessary for the present invention can be produced by doping the thin film to be formed in a necessary amount. If the doping amount is 3.0 to 18.0 atom% of silicon with respect to zinc, the zinc oxide transparent conductive oxide has an amorphous structure, and the characteristics necessary for the present invention can be achieved. Further, from the viewpoint of conductivity and the like, 4.0 to 16.0 atom% is preferable, and 5.0 to 15.0 atom% is more preferable. In terms of reliability testing, 9.0 to 16.0 atom% is preferable.
 透明導電性酸化物層2の形成には必要に応じてプラズマ放電を利用することができる。プラズマのパワーには特に制限はないが、生産性や結晶性の観点から10W~600Wが好ましい。低すぎる場合には製膜されない可能性がある。高すぎる場合には基板へのダメージや装置へのダメージが懸念される。 For the formation of the transparent conductive oxide layer 2, plasma discharge can be used as necessary. The plasma power is not particularly limited, but is preferably 10 W to 600 W from the viewpoint of productivity and crystallinity. If it is too low, the film may not be formed. If it is too high, there is a concern about damage to the substrate and damage to the device.
 透明導電性酸化物層2の膜厚は150~1000Åであることが好ましい。この範囲の膜厚の透明導電性酸化物層を用いることで、高い透明性と導電性を併せ持つ透明導電膜を作製することができる。 The film thickness of the transparent conductive oxide layer 2 is preferably 150 to 1000 mm. By using a transparent conductive oxide layer having a thickness in this range, a transparent conductive film having both high transparency and conductivity can be produced.
 透明導電性酸化物層2に含まれるドーピング量の検出方法について説明する。ドーピング量の検出は、通常元素分析に用いられる手法であれば、どのような方法においても精度良く検出可能である。例えば、原子吸光分析や蛍光X線分析などの元素分析手段の他にX線光電子分光やオージェ電子分光、電子線マイクロアナライザなどの分光学的手法や二次イオン質量分析などの手法がある。中でも、エネルギー分散型X線分析(EDX)は走査電子顕微鏡(SEM)や透過電子顕微鏡(TEM)による形状観察と同時に精度良く元素分析を行うことができ、かつ比較的簡便な手法である。 A method for detecting the doping amount contained in the transparent conductive oxide layer 2 will be described. The detection of the doping amount can be accurately detected by any method as long as it is a method usually used for elemental analysis. For example, in addition to elemental analysis means such as atomic absorption analysis and fluorescent X-ray analysis, there are spectroscopic techniques such as X-ray photoelectron spectroscopy, Auger electron spectroscopy, electron beam microanalyzer, and secondary ion mass spectrometry. In particular, energy dispersive X-ray analysis (EDX) is a relatively simple technique that can perform elemental analysis with high accuracy simultaneously with shape observation using a scanning electron microscope (SEM) or transmission electron microscope (TEM).
 これらの手法を用いる場合、ドーピング量は、亜鉛との相対比較により次式で容易に計算することができる。 When these methods are used, the doping amount can be easily calculated by the following equation by relative comparison with zinc.
 (ドーピング量)=(ドーピング剤の原子数)÷((ドーピング剤の原子数)+(亜鉛の原子数))×100。 (Doping amount) = (Number of atoms of doping agent) ÷ (Number of atoms of doping agent) + (Number of atoms of zinc)) × 100.
 作製される透明導電膜の表面抵抗は、使用用途によってさまざまであるが、例えば太陽電池やEL素子の場合では10~20Ω/□程度が好ましく、タッチパネル用途などの場合は200~1000Ω/□程度が好ましい。 The surface resistance of the transparent conductive film to be produced varies depending on the intended use. For example, in the case of a solar cell or an EL element, about 10 to 20Ω / □ is preferable, and in the case of a touch panel or the like, about 200 to 1000Ω / □. preferable.
 本発明において、ドーピング量測定には走査電子顕微鏡JSM-6390-LA(日本電子社製)を用いた。結晶性については、X線回折法により評価した。表面抵抗測定は抵抗率計ロレスタGP MCT-610(三菱化学社製)を用いた。
透明導電膜形成直後の表面抵抗と、85℃/85%RH環境下で10日間放置した後の表面抵抗の比を信頼性試験結果とした。
In the present invention, a scanning electron microscope JSM-6390-LA (manufactured by JEOL Ltd.) was used for the doping amount measurement. The crystallinity was evaluated by an X-ray diffraction method. For the surface resistance measurement, a resistivity meter Loresta GP MCT-610 (manufactured by Mitsubishi Chemical Corporation) was used.
The ratio between the surface resistance immediately after the formation of the transparent conductive film and the surface resistance after being left in an environment of 85 ° C./85% RH for 10 days was defined as a reliability test result.
 信頼性試験については以下のように評価した。製膜直後の透明導電膜の表面抵抗測定後に、85℃/85%RH設定の恒温恒湿試験機に投入し、10日間放置した後に透明導電膜を取出し、室温まで十分に冷ました後に表面抵抗を測定した。評価は次式の値で評価した。 The reliability test was evaluated as follows. After measuring the surface resistance of the transparent conductive film immediately after film formation, put it into a constant temperature and humidity tester set at 85 ° C / 85% RH, leave it for 10 days, take out the transparent conductive film, and cool it down to room temperature. Was measured. The evaluation was performed using the following formula.
 信頼性試験結果の値は、透明導電膜の品質安定性を示すものであり、この値は0.5~2.0であることが好ましい。0.8~2.0がより好ましく、さらには1.0~2.0が、特には1.0~1.6が好ましい。最も好ましいのは1.0~1.3である。この値が大きいものでは、抵抗の不安定性のために、ディスプレイ材料では画像の悪化、太陽電池などの材料では変換効率の悪化、タッチパネルなどの材料では精度の悪化へとつながるため使用ができない。表面抵抗の値は、信頼性試験後に上昇することも低下することも、上記の理由から好ましくない。
(信頼性試験結果)=(10日後の表面抵抗)÷(製膜直後の表面抵抗)
The value of the reliability test result indicates the quality stability of the transparent conductive film, and this value is preferably 0.5 to 2.0. 0.8 to 2.0 is more preferable, 1.0 to 2.0 is more preferable, and 1.0 to 1.6 is particularly preferable. Most preferred is 1.0 to 1.3. When the value is large, the resistance is unstable, which leads to deterioration of the image for display materials, deterioration of conversion efficiency for materials such as solar cells, and deterioration of accuracy for materials such as touch panels. It is not preferable for the above reason that the value of the surface resistance increases or decreases after the reliability test.
(Reliability test result) = (Surface resistance after 10 days) ÷ (Surface resistance immediately after film formation)
 以下に、実施例をもって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 (実施例1~10、比較例1~3)
 無アルカリガラス(商品名OA-10、膜厚0.7mm、日本電気硝子社製)に、透明導電性酸化物層をマグネトロンスパッタリング製膜した。ターゲットはそれぞれの組成の焼結体を用いた。製膜条件は、基板温度を200℃、キャリアガスとしてアルゴンガスを10.0sccm使用し、1.5Paの圧力で200WのDCパワーをかけ、5分間製膜することで、500Åの酸化亜鉛透明導電性酸化物層を作製した。
(Examples 1 to 10, Comparative Examples 1 to 3)
A transparent conductive oxide layer was magnetron-sputtered on alkali-free glass (trade name OA-10, film thickness 0.7 mm, manufactured by Nippon Electric Glass Co., Ltd.). As the target, sintered bodies having respective compositions were used. The film forming conditions were as follows: substrate temperature was 200 ° C., argon gas was used at 10.0 sccm as a carrier gas, DC power of 200 W was applied at a pressure of 1.5 Pa, and a film was formed for 5 minutes to form a 500-inch zinc oxide transparent conductive film. An oxide layer was produced.
 このようにして作製した透明導電膜の結晶性・表面抵抗・信頼性試験の評価を実施した。ただし、比較例3の透明導電膜は、表面抵抗が測定装置の上限であり、表面抵抗および信頼性試験の評価ができなかった。 Evaluation of crystallinity, surface resistance, and reliability test of the transparent conductive film thus prepared was performed. However, in the transparent conductive film of Comparative Example 3, the surface resistance was the upper limit of the measuring device, and the surface resistance and the reliability test could not be evaluated.
 以上の実施例および比較例の検討結果を表1に示す。 Table 1 shows the examination results of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果から、酸化亜鉛透明導電性酸化物を非晶質構造として、さらに導電性を持たせることで、高温高湿環境下での信頼性に優れた透明導電膜を作製可能であることがわかった。 From this result, it was found that a transparent conductive film with excellent reliability in a high temperature and high humidity environment can be produced by making the zinc oxide transparent conductive oxide an amorphous structure and further providing conductivity. It was.
本願発明に係る透明導電膜の断面説明図Cross-sectional explanatory drawing of the transparent conductive film according to the present invention
 1  基板
 2  透明導電性酸化物層
1 substrate 2 transparent conductive oxide layer

Claims (5)

  1.  基材上に少なくとも1層からなる酸化亜鉛を主成分とする透明導電性酸化物層を有する透明導電膜において、該透明導電性酸化物層を構成する酸化亜鉛透明導電性酸化物が非晶質構造であり、アルミニウムおよび/またはガリウムを亜鉛に対して0.1~3.0atom%含み、さらに珪素原子を亜鉛に対して3.0~18.0atom%含んでいることを特徴とする透明導電膜。 A transparent conductive film having a transparent conductive oxide layer composed mainly of zinc oxide on at least one layer on a base material, wherein the zinc oxide transparent conductive oxide constituting the transparent conductive oxide layer is amorphous A transparent conductive material having a structure containing 0.1 to 3.0 atom% of aluminum and / or gallium with respect to zinc and further containing 3.0 to 18.0 atom% of silicon atom with respect to zinc film.
  2.  透明導電膜形成直後の表面抵抗と、85℃/85%RH環境下で10日間放置した後の表面抵抗の比が0.5~2.0であることを特徴とする、請求項1に記載の透明導電膜。 The ratio of the surface resistance immediately after formation of the transparent conductive film and the surface resistance after standing for 10 days in an environment of 85 ° C / 85% RH is 0.5 to 2.0. Transparent conductive film.
  3.  プラズマ状粒子、電子線、分子線またはレーザーのいずれかを照射することにより透明導電性酸化物層を基材上に付着させることを特徴とする請求項1または2に記載の透明導電膜の製造方法。 3. The transparent conductive film according to claim 1, wherein the transparent conductive oxide layer is deposited on the substrate by irradiation with any of plasma particles, electron beam, molecular beam or laser. Method.
  4.  酸化亜鉛の焼結体にプラズマ状粒子、電子線、分子線またはレーザーのいずれかを照射することを特徴とする請求項3に記載の透明導電膜の製造方法。 4. The method for producing a transparent conductive film according to claim 3, wherein the sintered body of zinc oxide is irradiated with any of plasma particles, electron beam, molecular beam or laser.
  5.  酸化亜鉛の焼結体が透明導電性酸化物層と同じ組成であることを特徴とする請求項4に記載の透明導電膜の製造方法。 The method for producing a transparent conductive film according to claim 4, wherein the sintered body of zinc oxide has the same composition as the transparent conductive oxide layer.
PCT/JP2009/059542 2008-05-27 2009-05-25 Transparent conductive film and method for producing the same WO2009145152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008137400 2008-05-27
JP2008-137400 2008-05-27

Publications (1)

Publication Number Publication Date
WO2009145152A1 true WO2009145152A1 (en) 2009-12-03

Family

ID=41377025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059542 WO2009145152A1 (en) 2008-05-27 2009-05-25 Transparent conductive film and method for producing the same

Country Status (1)

Country Link
WO (1) WO2009145152A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090101A1 (en) * 2009-02-06 2010-08-12 株式会社カネカ Thin film photoelectric conversion device and manufacturing method therefor
CN102560391A (en) * 2010-12-24 2012-07-11 海洋王照明科技股份有限公司 Conducting film, and preparation method and application thereof
JP2013069420A (en) * 2011-09-20 2013-04-18 Kaneka Corp Substrate with transparent electrode
CN103380229A (en) * 2011-02-25 2013-10-30 三菱综合材料株式会社 Transparent oxide film and process for producing same
JP2013237188A (en) * 2012-05-15 2013-11-28 Toray Ind Inc Gas barrier film
JP2014055348A (en) * 2012-08-10 2014-03-27 Mitsubishi Materials Corp Sputtering target for forming transparent oxide film and method for producing the same
WO2014069367A1 (en) * 2012-10-30 2014-05-08 Jx日鉱日石金属株式会社 Electrically conductive oxide sintered body, and low-refractive-index film produced using said electrically conductive oxide
JP2014514442A (en) * 2011-03-25 2014-06-19 ▲海▼洋王照明科技股▲ふん▼有限公司 Multi-element doped zinc oxide thin film, fabrication method and application
JP5550768B1 (en) * 2012-07-03 2014-07-16 Jx日鉱日石金属株式会社 Sintered body and amorphous film
TWI631579B (en) * 2012-07-03 2018-08-01 Jx日鑛日石金屬股份有限公司 Sintered body and amorphous film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433811A (en) * 1987-04-04 1989-02-03 Gunze Kk Transparent conductive film and its manufacture
JPH0845352A (en) * 1994-08-02 1996-02-16 Sekisui Chem Co Ltd Transparent conductor
JPH08111123A (en) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd Transparent conductive film, producing method thereof and sputtering terget
JPH11322413A (en) * 1998-02-16 1999-11-24 Japan Energy Corp Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film
JP2000040429A (en) * 1998-07-24 2000-02-08 Sumitomo Metal Mining Co Ltd Manufacturing of zinc oxide transparent conductive film
JP2002217429A (en) * 2001-01-22 2002-08-02 Sanyo Electric Co Ltd Photoelectric conversion device
JP2004292873A (en) * 2003-03-26 2004-10-21 Sumitomo Heavy Ind Ltd Zinc oxide film manufacturing method
WO2006129410A1 (en) * 2005-05-30 2006-12-07 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433811A (en) * 1987-04-04 1989-02-03 Gunze Kk Transparent conductive film and its manufacture
JPH0845352A (en) * 1994-08-02 1996-02-16 Sekisui Chem Co Ltd Transparent conductor
JPH08111123A (en) * 1994-08-17 1996-04-30 Asahi Glass Co Ltd Transparent conductive film, producing method thereof and sputtering terget
JPH11322413A (en) * 1998-02-16 1999-11-24 Japan Energy Corp Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film
JP2000040429A (en) * 1998-07-24 2000-02-08 Sumitomo Metal Mining Co Ltd Manufacturing of zinc oxide transparent conductive film
JP2002217429A (en) * 2001-01-22 2002-08-02 Sanyo Electric Co Ltd Photoelectric conversion device
JP2004292873A (en) * 2003-03-26 2004-10-21 Sumitomo Heavy Ind Ltd Zinc oxide film manufacturing method
WO2006129410A1 (en) * 2005-05-30 2006-12-07 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010090101A1 (en) * 2009-02-06 2012-08-09 株式会社カネカ Thin film photoelectric conversion device and manufacturing method thereof
WO2010090101A1 (en) * 2009-02-06 2010-08-12 株式会社カネカ Thin film photoelectric conversion device and manufacturing method therefor
CN102560391A (en) * 2010-12-24 2012-07-11 海洋王照明科技股份有限公司 Conducting film, and preparation method and application thereof
CN103380229A (en) * 2011-02-25 2013-10-30 三菱综合材料株式会社 Transparent oxide film and process for producing same
JP2014514442A (en) * 2011-03-25 2014-06-19 ▲海▼洋王照明科技股▲ふん▼有限公司 Multi-element doped zinc oxide thin film, fabrication method and application
JP2013069420A (en) * 2011-09-20 2013-04-18 Kaneka Corp Substrate with transparent electrode
JP2013237188A (en) * 2012-05-15 2013-11-28 Toray Ind Inc Gas barrier film
JP5550768B1 (en) * 2012-07-03 2014-07-16 Jx日鉱日石金属株式会社 Sintered body and amorphous film
JP2014141392A (en) * 2012-07-03 2014-08-07 Jx Nippon Mining & Metals Corp Sintered body and amorphous film
JP2014141386A (en) * 2012-07-03 2014-08-07 Jx Nippon Mining & Metals Corp Sintered body and amorphous film
JP2014159634A (en) * 2012-07-03 2014-09-04 Jx Nippon Mining & Metals Corp Sintered body and amorphous film
JP2014166950A (en) * 2012-07-03 2014-09-11 Jx Nippon Mining & Metals Corp Sintered body and amorphous film
TWI631579B (en) * 2012-07-03 2018-08-01 Jx日鑛日石金屬股份有限公司 Sintered body and amorphous film
JP2014055348A (en) * 2012-08-10 2014-03-27 Mitsubishi Materials Corp Sputtering target for forming transparent oxide film and method for producing the same
WO2014069367A1 (en) * 2012-10-30 2014-05-08 Jx日鉱日石金属株式会社 Electrically conductive oxide sintered body, and low-refractive-index film produced using said electrically conductive oxide

Similar Documents

Publication Publication Date Title
WO2009145152A1 (en) Transparent conductive film and method for producing the same
JP5697449B2 (en) Substrate with transparent electrode and method for producing substrate with transparent electrode
Jeong et al. Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering
EP1981036A1 (en) Transparent electroconductive film and process for producing transparent electroconductive film
US8303856B2 (en) Conductive laminated body and method for preparing the same
US20090286071A1 (en) Transparent conductive film and method for production thereof
KR20070057075A (en) Transparent conductive film and meethod of fabicating the same, transparent conductive base material, and light-emitting device
Sato et al. Study on inverse spinel zinc stannate, Zn2SnO4, as transparent conductive films deposited by rf magnetron sputtering
Pandey et al. Structural and electrical properties of fluorine-doped zinc tin oxide thin films prepared by radio-frequency magnetron sputtering
Jung et al. Electrical and optical properties of Ga doped zinc oxide thin films deposited at room temperature by continuous composition spread
JP5313568B2 (en) Transparent conductive film
JP2009295545A (en) Transparent conductive film and method for manufacturing the same
KR101884643B1 (en) Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
Tabassum et al. Sol–gel and rf sputtered AZO thin films: analysis of oxidation kinetics in harsh environment
KR101183967B1 (en) Functionally graded Transparent conducting oxide film and method for manufacturing thereof, Anode for Organic light emitting diode and window layer for solar cell using functionally graded transparent conducting oxide film
US9546415B2 (en) Composite transparent electrodes
JP5390776B2 (en) Method for producing transparent conductive film and transparent conductive film produced according to the method
JP2010160917A (en) Substrate with transparent electrode and its manufacturing method
JP2020537321A (en) Manufacturing method of transparent conductive film
JP5430251B2 (en) Substrate with transparent electrode and method for producing substrate with transparent electrode
Hiramatsu et al. Characterization of copper selenide thin film hole-injection layers deposited at room temperature for use with p-type organic semiconductors
TW201811118A (en) Transparent conductive film and method for producing transparent conductive film
US10654248B2 (en) Conductive structure and electronic device comprising same
JP5730729B2 (en) Substrate with transparent electrode
Lee et al. Nanometer-thick amorphous-SnO 2 layer as an oxygen barrier coated on a transparent AZO electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09754660

Country of ref document: EP

Kind code of ref document: A1