WO2017131201A1 - Optical layered body - Google Patents

Optical layered body Download PDF

Info

Publication number
WO2017131201A1
WO2017131201A1 PCT/JP2017/003050 JP2017003050W WO2017131201A1 WO 2017131201 A1 WO2017131201 A1 WO 2017131201A1 JP 2017003050 W JP2017003050 W JP 2017003050W WO 2017131201 A1 WO2017131201 A1 WO 2017131201A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
polarizer
optical laminate
layer
optical
Prior art date
Application number
PCT/JP2017/003050
Other languages
French (fr)
Japanese (ja)
Inventor
幸大 宮本
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187021639A priority Critical patent/KR20180109897A/en
Priority to CN201780008635.8A priority patent/CN108603964B/en
Publication of WO2017131201A1 publication Critical patent/WO2017131201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption

Definitions

  • the present invention relates to an optical laminate.
  • this invention relates to the optical laminated body which can function as a barrier film and a polarizing plate.
  • a barrier film is used for an image display device (for example, a liquid crystal display device, an organic electroluminescence (EL) display device).
  • an image display device for example, a liquid crystal display device, an organic electroluminescence (EL) display device.
  • a transparent oxide obtained by adding SiO 2 to an Al—Zn—O (aluminum-added zinc oxide) film as a barrier film having a high film forming speed, a low refractive index, and a good gas barrier property.
  • a material film has been proposed (Patent Document 1).
  • this transparent oxide film has extremely insufficient chemical resistance (for example, acid resistance and alkali resistance).
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide an optical layered body that functions as a barrier film and a polarizing plate and that suppresses the occurrence of cracks. It is in.
  • the optical layered body of the present invention has a polarizer, a base material, a first oxide layer containing ZnO, Al and SiO 2 and a second oxide layer composed of SiO 2 in this order.
  • the surface roughness Ra of the surface of the substrate on the first oxide layer side is 0.30 nm to 50 nm.
  • the optical layered body further includes a protective layer on at least one side of the polarizer.
  • the thickness of the first oxide layer is 10 nm to 100 nm.
  • the thickness of the second oxide layer is 10 nm to 100 nm.
  • the optical laminate, moisture permeability is less than 3.0 ⁇ 10 -2 g / m 2 / 24hr.
  • the optical laminate, the gas barrier property is 1.0 ⁇ 10 -7 g / m 2 /24hr ⁇ 0.5g/m 2 / 24hr. In one embodiment, the optical laminate, the moisture permeability after dropping hydrochloric acid or sodium hydroxide solution is less than 1.0 ⁇ 10 -1 g / m 2 / 24hr.
  • a laminated structure of a first oxide layer containing ZnO, Al, and SiO 2 and a second oxide layer composed of SiO 2 is adopted as a barrier layer, and further a polarizer.
  • a polarizer By laminating the optical laminate, it is possible to realize an optical laminate having excellent moisture permeability and gas barrier properties and excellent chemical resistance, flexibility and heat resistance. That is, it is possible to realize an optical laminate that can exhibit an excellent function as a barrier film and a polarizing plate.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminated body 100 of this embodiment has the polarizer 41, the base material 10, the 1st oxide layer 20, and the 2nd oxide layer 30 in this order.
  • the optical layered body according to the embodiment of the present invention can function as both a barrier film and a polarizing plate of an image display device.
  • protective layers 42 and / or 43 are provided on at least one side of the polarizer (in the illustrated example, protective layers 42 and 43 are provided on both sides of the polarizer 41).
  • the polarizer 41 is laminated on the substrate 10 as the polarizing plate 40 and can be introduced into the optical laminate.
  • the first oxide layer 20 may include ZnO, Al and SiO 2.
  • the second oxide layer 30 is composed of SiO 2.
  • the thickness of the first oxide layer 20 is preferably 10 nm to 100 nm.
  • the thickness of the second oxide layer 30 is preferably 10 nm to 100 nm.
  • the surface roughness Ra of the surface of the substrate 10 on the first oxide layer 20 side is 0.30 nm to 50 nm.
  • the dimensional change (typically shrinkage) of the polarizer is significantly larger than that of other components. . Therefore, stress and strain due to the contraction of the polarizer propagate to the base material, the first oxide layer, and the second oxide layer, and as a result, in the first oxide layer and / or the second oxide layer. Cracks may occur in the thickness direction.
  • the adhesion between the base material and the first oxide layer is improved.
  • the first oxide layer (as a result, the second oxide layer) can follow the dimensional change.
  • the generation of cracks mainly resulting from the contraction of the polarizer is remarkably suppressed, and the excellent barrier property due to the laminated structure of the first oxide layer and the second oxide layer can be maintained. Therefore, it is possible to integrate the polarizer and the barrier film (a laminate of the base material, the first oxide layer, and the second oxide layer). This is because the thickness of the image display device and the manufacturing process are reduced. Can contribute significantly to simplification. This is a knowledge obtained by trial and error in order to solve the problem recognized only after integrating the polarizer and the barrier film, and is an unexpectedly excellent effect.
  • the optical layered body has a barrier property against moisture and gas (for example, oxygen).
  • the water vapor transmission rate at 90% RH conditions is preferably 1.0 ⁇ 10 -1 g / m less than 2/24 hr or.
  • the lower the lower limit of moisture permeability the better.
  • Measurement limit of moisture permeability for example, 0.1 ⁇ 10 -6 g / m 2 / 24hr approximately.
  • the lower limit of the moisture permeability for example, 0.1 ⁇ 10 -4 g / m 2 / 24hr.
  • the preferable upper limit of moisture permeability can vary depending on the application.
  • the upper limit of moisture permeability for example, an image display device of the indoor (e.g., PC display) in applications was 5.0 ⁇ 10 -2 g / m 2 / 24hr, outdoor image display apparatus in (digital signage) applications 3.0 ⁇ a 10 -2 g / m 2 / 24hr , the indoor harsh environment applications such as automotive display is 1.0 ⁇ 10 -2 g / m 2 / 24hr. 60 ° C. of the optical stack, gas barrier properties 90% RH conditions is preferably 1.0 ⁇ 10 -7 g / m 2 /24hr ⁇ 0.5g/m 2 / 24hr, more preferably 1.
  • moisture permeability and gas barrier properties are within such ranges, when the optical laminate is bonded to the image display device, the image display device can be well protected from moisture and oxygen in the air. Both moisture permeability and gas barrier properties can be measured according to JIS K7126-1.
  • the optical layered body preferably has chemical resistance. More specifically, the optical laminate preferably has acid resistance and alkali resistance.
  • the term “acid resistance” means that a 2% hydrochloric acid solution (pH 0.3) is dropped onto the optical laminate, and the moisture permeability after wiping off the hydrochloric acid solution after 10 minutes is 1.0 ⁇ 10 ⁇ 1 g. / refers to m is less than 2/24 hr or.
  • the "alkali resistance” was added dropwise a 2% sodium hydroxide solution (pH 13.7) to the optical stack, moisture permeability after wiping sodium hydroxide solution after 10 minutes is 1.0 ⁇ 10 - It refers to less than 1 g / m 2 / 24hr.
  • the achievement of such excellent chemical resistance while maintaining the desired barrier properties and transparency as described above is one of the achievements of the present invention.
  • the optical layered body has a flexibility such that cracks and cracks do not occur even when it is bent with a curvature radius of 7 mm, more preferably with a curvature radius of 5 mm.
  • Optical stack are preferably 500 hours at 95 ° C., more preferably 600 hours, more preferably heat as moisture permeability be heated 700 hours is less than 1.0 ⁇ 10 -1 g / m 2 / 24hr Have sex.
  • the optical layered body of the present invention is elongated.
  • the long optical laminate can be stored and / or transported, for example, wound in a roll. Since the optical layered body is excellent in flexibility, no problem occurs even if it is wound into a roll. In this case, the absorption axis direction of the polarizer is typically substantially parallel to the longitudinal direction. If it is such a structure, an optical laminated body can be produced by what is called a roll-to-roll.
  • a retardation layer (not shown) may be provided between the polarizing plate 40 and the base material 10 and / or on the opposite side of the polarizing plate 40 from the base material.
  • Optical properties of the retardation layer for example, refractive index ellipsoid, in-plane retardation, thickness direction retardation, Nz coefficient, wavelength dispersion characteristic, photoelastic coefficient), mechanical characteristics, number of arrangements, combinations, etc.
  • a retardation layer that exhibits the wavelength dependence of reverse dispersion and can function as a so-called ⁇ / 4 plate can be disposed on the opposite side of the substrate of the polarizing plate 40.
  • the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is typically about 45 °.
  • the polarizer 41 is typically laminated on the substrate 10 as the polarizer 40 and can be introduced into the optical laminate.
  • the polarizing plate 40 (substantially the protective layer 42, or the polarizer 41 in the absence of the protective layer 42) may be any suitable pressure-sensitive adhesive layer (for example, acrylic pressure-sensitive adhesive layer) or adhesive layer (for example, It is bonded to the substrate 10 via a PVA resin adhesive layer).
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, still more preferably 3 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
  • the thickness of the polarizer is in such a range, it can contribute to the thinning of the optical laminate (as a result, the organic EL display device).
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the protective layer 42 is formed of any suitable film that can be used as a protective layer for a polarizer.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the protective layer 42 is typically disposed on the viewing side. Therefore, the protective layer 42 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, antisticking treatment, and antiglare treatment as necessary. Further / or, if necessary, the protective layer 42 is provided with a treatment for improving visibility when viewed through polarized sunglasses (typically, an (elliptical) circular polarization function is imparted, an ultrahigh phase difference is provided. May be applied). By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the optical laminate can be suitably applied to an image display device that can be used outdoors.
  • polarized sunglasses typically, an (elliptical) circular polarization function is imparted, an ultrahigh phase difference is provided. May be applied.
  • the thickness of the protective layer 42 is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 100 ⁇ m, and still more preferably 35 ⁇ m to 95 ⁇ m.
  • the protective layer 43 is preferably optically isotropic.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the in-plane retardation Re (550) of the substrate is preferably 0 nm to 5 nm, and the thickness direction retardation Rth (550) is preferably -5 nm to +5 nm.
  • Rth (550) is a retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C.
  • Re (nx ⁇ nz) ⁇ determined by d.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction)
  • ny is the direction orthogonal to the slow axis in the plane (that is, fast phase). (Nz direction)
  • nz is the refractive index in the thickness direction.
  • the material, thickness, and the like of the protective layer 43 are as described above for the protective layer 42.
  • the protective layers 42 and 43 are typically bonded to the polarizer 41 via any appropriate adhesive layer (for example, a PVA resin adhesive layer).
  • the base material 10 is preferably transparent.
  • the total light transmittance of visible light (for example, light having a wavelength of 550 nm) is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the substrate 10 is optically isotropic in one embodiment. With such a configuration, when the optical laminate is applied to an image display device, adverse effects on the display characteristics of the image display device can be prevented.
  • the average refractive index of the substrate is preferably less than 1.7, more preferably 1.59 or less, and further preferably 1.4 to 1.55.
  • the average refractive index is in such a range, there is an advantage that back surface reflection can be suppressed and high light transmittance can be achieved.
  • the surface roughness Ra of the surface on the first oxide layer side of the substrate is 0.30 nm or more, preferably 0.40 nm or more, more preferably 0.50 nm or more, and still more preferably. Is 0.60 nm or more.
  • the upper limit of the surface roughness Ra of the surface is, for example, 50 nm. If the surface roughness of the surface is in such a range, as described above, excellent adhesion between the substrate and the first oxide layer is realized, and as a result, the first due to the contraction of the polarizer. Cracks in the oxide layer and / or the second oxide layer (typically, cracks in the thickness direction) can be significantly suppressed.
  • the transmittance of the optical laminate can be further improved. This is considered to be because a layer having an intermediate refractive index is formed by the first oxide layer entering the concave portion of the concave and convex portion of the substrate, and this functions as a refractive index matching layer.
  • Ra exceeds 50 nm, a so-called haze that appears to be visually cloudy due to light scattering occurs, and the effect of the layer having an intermediate refractive index may be offset.
  • Such surface roughness can be realized by any appropriate roughening treatment. Examples of the roughening treatment include embossing, sand blasting, stretching and bending, and introduction of fine particles.
  • the surface roughness Ra can be measured according to JIS B 0601.
  • any appropriate material that can satisfy the above characteristics can be used.
  • the material constituting the substrate include resins having no conjugated system such as norbornene resins and olefin resins, resins having a cyclic structure such as a lactone ring and a glutarimide ring in the acrylic main chain, and polyester-based materials. Examples thereof include resins and polycarbonate resins. With such a material, when the base material is formed, the expression of the phase difference accompanying the orientation of the molecular chain can be kept small.
  • the base material may have a predetermined phase difference in another embodiment.
  • the substrate may have an in-plane retardation that can function as a so-called ⁇ / 4 plate.
  • a good circular polarization function is imparted to the optical laminate without separately providing a retardation layer, so that the optical laminate is not only used as a barrier film for an image display device but also an antireflection film.
  • the angle formed by the slow axis of the substrate and the absorption axis of the polarizer 41 is typically about 45 °.
  • Such a substrate can be formed, for example, by stretching a film of norbornene resin or polycarbonate resin under appropriate conditions.
  • the thickness of the substrate is preferably 10 ⁇ m to 50 ⁇ m or less, and more preferably 20 ⁇ m to 35 ⁇ m or less.
  • the first oxide layer 20 includes ZnO, Al, and SiO 2 as described above.
  • the first oxide layer preferably contains Al in a proportion of 2.5% to 3.5% by weight and SiO 2 preferably in a proportion of 20.0% to 62.4% by weight with respect to the total weight. .
  • ZnO is preferably the remaining amount.
  • the thickness of the first oxide layer is preferably 10 nm to 100 nm, more preferably 10 nm to 60 nm, and still more preferably 20 nm to 40 nm. If the thickness is in such a range, there is an advantage that both high light transmittance and excellent barrier properties can be achieved.
  • the average refractive index of the first oxide layer is preferably 1.59 to 1.80.
  • the average refractive index is in such a range, there is an advantage that high light transmittance can be achieved.
  • the first oxide layer is preferably transparent.
  • the first oxide layer preferably has a total light transmittance of visible light (for example, light having a wavelength of 550 nm) of 85% or more, more preferably 90% or more, and further preferably 95% or more. .
  • the first oxide layer can be typically formed on the substrate by sputtering.
  • the first oxide layer can be formed by a sputtering method in an inert gas atmosphere containing oxygen using, for example, a sputtering target containing Al, SiO 2 and ZnO.
  • a sputtering method a magnetron sputtering method, an RF sputtering method, an RF superimposed DC sputtering method, a pulse sputtering method, a dual magnetron sputtering method, or the like can be employed.
  • the heating temperature of the substrate is, for example, ⁇ 8 ° C. to 200 ° C.
  • the gas partial pressure of oxygen with respect to the whole atmospheric gas of oxygen and inert gas is, for example, 0.05 or more.
  • the second oxide layer 30 is made of SiO 2 (it may contain inevitable impurities). By forming such a second oxide layer on the surface of the first oxide layer, the chemical resistance and transparency of the optical laminate can be improved while maintaining good characteristics of the first oxide layer. It can be improved significantly. Furthermore, since the second oxide layer can function as a low refractive index layer, it is possible to impart good antireflection characteristics to the optical laminate.
  • the thickness of the second oxide layer is preferably 10 nm to 100 nm, more preferably 50 nm to 100 nm, and still more preferably 60 nm to 100 nm.
  • the thickness is in such a range, there is an advantage that both high light transmittance, excellent barrier properties, and excellent chemical resistance can be achieved.
  • the average refractive index of the second oxide layer is preferably 1.44 to 1.50.
  • the second oxide layer can function well as a low refractive index layer (antireflection layer).
  • the second oxide layer is preferably transparent.
  • the total light transmittance of visible light (for example, light having a wavelength of 550 nm) is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more. .
  • the second oxide layer can be formed on the first oxide layer, typically by sputtering.
  • the second oxide layer is sputtered using, for example, Si, SiC, SiN, or SiO, and an inert gas containing oxygen (for example, argon, nitrogen, CO, CO 2 , or a mixed gas thereof). Can be formed. Since both the first oxide layer and the second oxide layer contain SiO 2 , the adhesion between the first oxide layer and the second oxide layer is very excellent. Therefore, in order to develop a sufficient barrier function at the interface between the first oxide layer and the second oxide layer, the thickness of the first oxide layer is 10 nm or more as described above. Is preferred.
  • the ratio of the so-called incubation layer, which is the initial growth film, can be sufficiently reduced, and an oxide layer having the desired physical properties can be formed.
  • the total thickness of the first oxide layer and the second oxide layer is preferably 200 nm or less, and more preferably 140 nm or less.
  • optical laminate of the present invention can be suitably used as an optical member having the functions of both a barrier layer (barrier film) and a polarizing plate of an image display device. More specifically, the optical laminate of the present invention can be used as an optical member of a liquid crystal display device and an organic EL display device, preferably an organic EL display device, more preferably a bendable organic EL display device.
  • the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
  • the measuring method of each characteristic is as follows.
  • Thickness The thicknesses of the first oxide layer and the second oxide layer were measured by observing a cross section using a transmission electron microscope (H-7650 manufactured by Hitachi, Ltd.). The thickness of other components of the optical laminate was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock).
  • Second Surface roughness Ra Measurement was performed according to JIS B 0601. An optical surface roughness meter (manufactured by Veeco Metrology Group, trade name “Wyko NT9100”) was used as a measuring machine.
  • (3) Reliability The optical laminates obtained in the examples and comparative examples were cut into 50 mm ⁇ 50 mm sizes and used as measurement samples. This measurement sample was bonded to quartz glass, stored in an oven at 95 ° C.
  • Example 1> (Production of laminated barrier film) A commercially available COP film (trade name “Zeonor”, manufactured by Nippon Zeon Co., Ltd., thickness 40 ⁇ m) is used as a base material, and a sputtering target containing Al, SiO 2 and ZnO is used to form the first on the base material by DC magnetron sputtering. An oxide layer (thickness 30 nm) was formed. Next, a second oxide layer (50 nm) was formed on the first oxide layer of the base material / first oxide layer stack using a Si target. In this way, a laminated barrier film having a configuration of base material / first oxide layer (AZO) / second oxide layer (SiO 2 ) was produced. The surface of the substrate to be sputtered was previously roughened by corona treatment. The surface roughness Ra of the surface was 0.51 nm.
  • polarizer (Production of polarizer)
  • a long roll of polyvinyl alcohol (PVA) resin film (product name “PE3000”, manufactured by Kuraray Co., Ltd.) having a thickness of 30 ⁇ m is uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine.
  • Swelling, dyeing, crosslinking, and washing treatment were performed, and finally a drying treatment was performed to produce a polarizer having a thickness of 12 ⁇ m.
  • the swelling treatment was stretched 2.2 times while being treated with pure water at 20 ° C.
  • the dyeing treatment is performed in an aqueous solution at 30 ° C.
  • the weight ratio of iodine and potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the obtained polarizer is 45.0%.
  • the film was stretched 1.4 times.
  • the crosslinking treatment employed a two-stage crosslinking treatment, and the first-stage crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C.
  • the boric acid content of the aqueous solution of the first-stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the cross-linking treatment at the second stage was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C.
  • the boric acid content of the aqueous solution of the second crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed with an aqueous potassium iodide solution at 20 ° C.
  • the potassium iodide content of the aqueous solution for the washing treatment was 2.6% by weight.
  • the drying process was performed at 70 ° C. for 5 minutes to obtain a polarizer.
  • HC-TAC film (thickness 32 ⁇ m) having a hard coat (HC) layer formed on one side of the TAC film by a hard coat treatment on one side of the polarizer via a polyvinyl alcohol adhesive on the other side
  • a normal TAC film (thickness 25 ⁇ m) was bonded to each other with a roll-to-roll through a polyvinyl alcohol-based adhesive to obtain a long polarizing plate having a protective layer / polarizer / protective layer configuration.
  • Example 2 An optical laminate was produced in the same manner as in Example 1 except that the surface roughness Ra of the surface on the first oxide layer side of the substrate was 0.66 nm. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • Example 3 An optical laminate was produced in the same manner as in Example 1 except that the surface roughness Ra of the surface on the first oxide layer side of the substrate was 0.85 nm. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
  • the first oxide layer side of the base material By setting the surface roughness to a predetermined value or more, reliability can be remarkably improved while maintaining excellent barrier properties and chemical resistance. More specifically, cracks due to the heat shrinkage of the polarizer can be remarkably suppressed.
  • the optical layered body of the present invention can be suitably used as an optical member having the functions of both a barrier layer (barrier film) and a polarizing plate of an image display device. More specifically, the optical laminate of the present invention can be used as an optical member of a liquid crystal display device and an organic EL display device, preferably an organic EL display device, more preferably a bendable organic EL display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An optical layered body, which functions as a barrier film and a polarizing plate and in which the occurrence of cracks is suppressed, is provided. This optical layered body includes a polarizer, a substrate, a first oxide layer containing ZnO, Al and SiO2, and a second oxide layer composed of SiO2 in this order. The surface roughness Ra of the surface of the substrate on the first oxide layer side is 0.30-50 nm. In one embodiment, the optical layered body has a moisture permeability of 3.0 × 10-2 g/m2/24hr or less.

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。より詳細には、本発明は、バリアフィルムおよび偏光板として機能し得る光学積層体に関する。 The present invention relates to an optical laminate. In more detail, this invention relates to the optical laminated body which can function as a barrier film and a polarizing plate.
 従来、画像表示装置(例えば、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置)には、バリアフィルムが用いられている。このようなバリアフィルムの開発において、製膜速度が速く、屈折率が低く、良好なガスバリア性を有するバリアフィルムとして、Al-Zn-O(アルミニウム添加酸化亜鉛)膜にSiOを添加した透明酸化物膜(フィルム)が提案されている(特許文献1)。しかし、この透明酸化物膜は、耐薬品性(例えば、耐酸性、耐アルカリ性)がきわめて不十分である。 Conventionally, a barrier film is used for an image display device (for example, a liquid crystal display device, an organic electroluminescence (EL) display device). In the development of such a barrier film, a transparent oxide obtained by adding SiO 2 to an Al—Zn—O (aluminum-added zinc oxide) film as a barrier film having a high film forming speed, a low refractive index, and a good gas barrier property. A material film has been proposed (Patent Document 1). However, this transparent oxide film has extremely insufficient chemical resistance (for example, acid resistance and alkali resistance).
特開2013-189657号公報JP 2013-189657 A
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、バリアフィルムおよび偏光板として機能し、かつ、クラックの発生が抑制された光学積層体を提供することにある。 The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide an optical layered body that functions as a barrier film and a polarizing plate and that suppresses the occurrence of cracks. It is in.
 本発明の光学積層体は、偏光子と、基材と、ZnO、AlおよびSiOを含む第1の酸化物層と、SiOで構成された第2の酸化物層と、をこの順に有し、該基材の該第1の酸化物層側の表面の表面粗さRaが0.30nm~50nmである。
 1つの実施形態においては、上記光学積層体は、上記偏光子の少なくとも一方の側に保護層をさらに有する。
 1つの実施形態においては、上記第1の酸化物層の厚みは10nm~100nmである。
 1つの実施形態においては、上記第2の酸化物層の厚みは10nm~100nmである。
 1つの実施形態においては、上記光学積層体は、透湿度が3.0×10-2g/m/24hr以下である。
 1つの実施形態においては、上記光学積層体は、ガスバリア性が1.0×10-7g/m/24hr~0.5g/m/24hrである。
 1つの実施形態においては、上記光学積層体は、塩酸または水酸化ナトリウム溶液滴下後の透湿度が1.0×10-1g/m/24hr未満である。
The optical layered body of the present invention has a polarizer, a base material, a first oxide layer containing ZnO, Al and SiO 2 and a second oxide layer composed of SiO 2 in this order. The surface roughness Ra of the surface of the substrate on the first oxide layer side is 0.30 nm to 50 nm.
In one embodiment, the optical layered body further includes a protective layer on at least one side of the polarizer.
In one embodiment, the thickness of the first oxide layer is 10 nm to 100 nm.
In one embodiment, the thickness of the second oxide layer is 10 nm to 100 nm.
In one embodiment, the optical laminate, moisture permeability is less than 3.0 × 10 -2 g / m 2 / 24hr.
In one embodiment, the optical laminate, the gas barrier property is 1.0 × 10 -7 g / m 2 /24hr~0.5g/m 2 / 24hr.
In one embodiment, the optical laminate, the moisture permeability after dropping hydrochloric acid or sodium hydroxide solution is less than 1.0 × 10 -1 g / m 2 / 24hr.
 本発明の実施形態によれば、バリア層としてZnO、AlおよびSiOを含む第1の酸化物層とSiOで構成された第2の酸化物層との積層構造を採用し、さらに偏光子を積層することにより、優れた透湿性およびガスバリア性を有し、かつ、優れた耐薬品性、屈曲性および耐熱性を有する光学積層体を実現することができる。すなわち、バリアフィルムとしても偏光板としても優れた機能を発揮し得る光学積層体を実現することができる。さらに、本発明の実施形態においては、基材の第1の酸化物層側の表面の表面粗さRaを所定値以上とすることにより、上記のようなバリアフィルムおよび偏光板としての優れた特性を維持しつつ、第1の酸化物層および/または第2の酸化物層におけるクラックの発生を顕著に抑制することができる。 According to the embodiment of the present invention, a laminated structure of a first oxide layer containing ZnO, Al, and SiO 2 and a second oxide layer composed of SiO 2 is adopted as a barrier layer, and further a polarizer. By laminating the optical laminate, it is possible to realize an optical laminate having excellent moisture permeability and gas barrier properties and excellent chemical resistance, flexibility and heat resistance. That is, it is possible to realize an optical laminate that can exhibit an excellent function as a barrier film and a polarizing plate. Furthermore, in the embodiment of the present invention, by setting the surface roughness Ra of the surface on the first oxide layer side of the base material to a predetermined value or more, excellent characteristics as the barrier film and the polarizing plate as described above. While maintaining the above, the occurrence of cracks in the first oxide layer and / or the second oxide layer can be remarkably suppressed.
本発明の1つの実施形態による光学積層体の概略断面図である。It is a schematic sectional drawing of the optical laminated body by one Embodiment of this invention.
 以下、本発明の代表的な実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, representative embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.光学積層体の全体構成
 図1は、本発明の1つの実施形態による光学積層体の概略断面図である。本実施形態の光学積層体100は、偏光子41と基材10と第1の酸化物層20と第2の酸化物層30とをこの順に有する。このような構成を有することにより、本発明の実施形態による光学積層体は、画像表示装置のバリアフィルムおよび偏光板の両方として機能し得る。実用的には、偏光子の少なくとも一方の側には保護層42および/または43が設けられる(図示例では、偏光子41の両側に保護層42および43が設けられている)。この場合、代表的には、偏光子41は偏光板40として基材10に積層され、光学積層体に導入され得る。第1の酸化物層20は、ZnO、AlおよびSiOを含む。第2の酸化物層30は、SiOで構成されている。第1の酸化物層20の厚みは、好ましくは10nm~100nmである。第2の酸化物層30の厚みは、好ましくは10nm~100nmである。
A. FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminated body 100 of this embodiment has the polarizer 41, the base material 10, the 1st oxide layer 20, and the 2nd oxide layer 30 in this order. By having such a configuration, the optical layered body according to the embodiment of the present invention can function as both a barrier film and a polarizing plate of an image display device. Practically, protective layers 42 and / or 43 are provided on at least one side of the polarizer (in the illustrated example, protective layers 42 and 43 are provided on both sides of the polarizer 41). In this case, typically, the polarizer 41 is laminated on the substrate 10 as the polarizing plate 40 and can be introduced into the optical laminate. The first oxide layer 20 may include ZnO, Al and SiO 2. The second oxide layer 30 is composed of SiO 2. The thickness of the first oxide layer 20 is preferably 10 nm to 100 nm. The thickness of the second oxide layer 30 is preferably 10 nm to 100 nm.
 本発明の実施形態においては、基材10の第1の酸化物層20側の表面の表面粗さRaは0.30nm~50nmである。当該表面がこのような表面粗さを有することにより、以下の効果が得られる:光学積層体においては偏光子の寸法変化(代表的には、収縮)が他の構成要素に比べて顕著に大きい。したがって、偏光子の収縮による応力や歪みが基材、第1の酸化物層および第2の酸化物層に伝搬し、結果として、第1の酸化物層および/または第2の酸化物層において厚み方向にクラックが発生する場合がある。ここで、上記のとおり基材の第1の酸化物層側の表面の表面粗さを所定値以上とすることにより、基材と第1の酸化物層との密着性が向上し、基材の寸法変化に第1の酸化物層が(結果として、第2の酸化物層も)追随し得る。その結果、偏光子の収縮に主に起因するクラックの発生が顕著に抑制され、第1の酸化物層と第2の酸化物層との積層構造による優れたバリア性が維持され得る。したがって、偏光子とバリアフィルム(基材と第1の酸化物層と第2の酸化物層との積層体)の一体化が可能となり、このことは、画像表示装置の薄型化および製造プロセスの簡略化に顕著に貢献し得る。これは、偏光子とバリアフィルムとを一体化してはじめて認識された課題を解決するために試行錯誤することにより得られた知見であり、予期せぬ優れた効果である。 In the embodiment of the present invention, the surface roughness Ra of the surface of the substrate 10 on the first oxide layer 20 side is 0.30 nm to 50 nm. When the surface has such a surface roughness, the following effects can be obtained: In the optical laminate, the dimensional change (typically shrinkage) of the polarizer is significantly larger than that of other components. . Therefore, stress and strain due to the contraction of the polarizer propagate to the base material, the first oxide layer, and the second oxide layer, and as a result, in the first oxide layer and / or the second oxide layer. Cracks may occur in the thickness direction. Here, as described above, by setting the surface roughness of the surface of the base material on the first oxide layer side to a predetermined value or more, the adhesion between the base material and the first oxide layer is improved. The first oxide layer (as a result, the second oxide layer) can follow the dimensional change. As a result, the generation of cracks mainly resulting from the contraction of the polarizer is remarkably suppressed, and the excellent barrier property due to the laminated structure of the first oxide layer and the second oxide layer can be maintained. Therefore, it is possible to integrate the polarizer and the barrier film (a laminate of the base material, the first oxide layer, and the second oxide layer). This is because the thickness of the image display device and the manufacturing process are reduced. Can contribute significantly to simplification. This is a knowledge obtained by trial and error in order to solve the problem recognized only after integrating the polarizer and the barrier film, and is an unexpectedly excellent effect.
 光学積層体は、水分およびガス(例えば酸素)に対するバリア性を有する。光学積層体の40℃、90%RH条件下での水蒸気透過率(透湿度)は、好ましくは1.0×10-1g/m/24hr未満である。バリア性の観点からは、透湿度の下限は低いほど好ましい。透湿度の測定限界は、例えば0.1×10-6g/m/24hr程度である。1つの実施形態においては、デバイス構成物から経時的に発生するアウトガスを放出するという観点から、透湿度の下限は、例えば0.1×10-4g/m/24hrである。透湿度の好ましい上限は、用途によって変動し得る。透湿度の上限は、例えば室内の画像表示装置(例えば、PCディスプレー)用途では5.0×10-2g/m/24hrであり、屋外の画像表示装置(デジタルサイネージ)用途では3.0×10-2g/m/24hrであり、車載ディスプレー等の室内過酷環境用途では1.0×10-2g/m/24hrである。光学積層体の60℃、90%RH条件下でのガスバリア性は、好ましくは1.0×10-7g/m/24hr~0.5g/m/24hrであり、より好ましくは1.0×10-7g/m/24hr~0.1g/m/24hrである。透湿度およびガスバリア性がこのような範囲であれば、光学積層体を画像表示装置に貼り合わせた場合に、当該画像表示装置を空気中の水分および酸素から良好に保護し得る。なお、透湿度およびガスバリア性はいずれも、JIS K7126-1に準じて測定され得る。 The optical layered body has a barrier property against moisture and gas (for example, oxygen). 40 ° C. of the optical stack, the water vapor transmission rate at 90% RH conditions (moisture permeability) is preferably 1.0 × 10 -1 g / m less than 2/24 hr or. From the viewpoint of barrier properties, the lower the lower limit of moisture permeability, the better. Measurement limit of moisture permeability, for example, 0.1 × 10 -6 g / m 2 / 24hr approximately. In one embodiment, from the viewpoint of releasing the outgassing over time generated from the device composition, the lower limit of the moisture permeability, for example, 0.1 × 10 -4 g / m 2 / 24hr. The preferable upper limit of moisture permeability can vary depending on the application. The upper limit of moisture permeability, for example, an image display device of the indoor (e.g., PC display) in applications was 5.0 × 10 -2 g / m 2 / 24hr, outdoor image display apparatus in (digital signage) applications 3.0 × a 10 -2 g / m 2 / 24hr , the indoor harsh environment applications such as automotive display is 1.0 × 10 -2 g / m 2 / 24hr. 60 ° C. of the optical stack, gas barrier properties 90% RH conditions is preferably 1.0 × 10 -7 g / m 2 /24hr~0.5g/m 2 / 24hr, more preferably 1. 0 × a 10 -7 g / m 2 /24hr~0.1g/m 2 / 24hr. When the moisture permeability and gas barrier properties are within such ranges, when the optical laminate is bonded to the image display device, the image display device can be well protected from moisture and oxygen in the air. Both moisture permeability and gas barrier properties can be measured according to JIS K7126-1.
 光学積層体は、好ましくは耐薬品性を有する。より詳細には、光学積層体は、好ましくは耐酸性および耐アルカリ性を有する。本明細書において「耐酸性」とは、2%の塩酸溶液(pH0.3)を光学積層体に滴下し、10分後に塩酸溶液を拭き取った後の透湿度が1.0×10-1g/m/24hr未満であることをいう。また、「耐アルカリ性」とは、2%の水酸化ナトリウム溶液(pH13.7)を光学積層体に滴下し、10分後に水酸化ナトリウム溶液を拭き取った後の透湿度が1.0×10-1g/m/24hr未満であることをいう。上記のような所望のバリア性および透明性を維持しつつ、このような優れた耐薬品性を実現したことが、本発明の成果の1つである。 The optical layered body preferably has chemical resistance. More specifically, the optical laminate preferably has acid resistance and alkali resistance. In this specification, the term “acid resistance” means that a 2% hydrochloric acid solution (pH 0.3) is dropped onto the optical laminate, and the moisture permeability after wiping off the hydrochloric acid solution after 10 minutes is 1.0 × 10 −1 g. / refers to m is less than 2/24 hr or. Further, the "alkali resistance", was added dropwise a 2% sodium hydroxide solution (pH 13.7) to the optical stack, moisture permeability after wiping sodium hydroxide solution after 10 minutes is 1.0 × 10 - It refers to less than 1 g / m 2 / 24hr. The achievement of such excellent chemical resistance while maintaining the desired barrier properties and transparency as described above is one of the achievements of the present invention.
 光学積層体は、好ましくは曲率半径7mm、より好ましくは曲率半径5mmで屈曲しても割れおよびクラックが生じないような屈曲性を有する。上記所定の第1の酸化物層と第2の酸化物層との積層構造を採用することにより、優れた耐薬品性と優れた屈曲性および耐熱性(後述)とを両立することができる。 The optical layered body has a flexibility such that cracks and cracks do not occur even when it is bent with a curvature radius of 7 mm, more preferably with a curvature radius of 5 mm. By adopting a laminated structure of the predetermined first oxide layer and the second oxide layer, it is possible to achieve both excellent chemical resistance and excellent flexibility and heat resistance (described later).
 光学積層体は、95℃で好ましくは500時間、より好ましくは600時間、さらに好ましくは700時間加熱しても透湿度が1.0×10-1g/m/24hr未満であるような耐熱性を有する。上記所定の第1の酸化物層と第2の酸化物層との積層構造を採用することにより、優れた耐薬品性と優れた屈曲性および耐熱性とを両立することができる。 Optical stack are preferably 500 hours at 95 ° C., more preferably 600 hours, more preferably heat as moisture permeability be heated 700 hours is less than 1.0 × 10 -1 g / m 2 / 24hr Have sex. By adopting a laminated structure of the predetermined first oxide layer and second oxide layer, it is possible to achieve both excellent chemical resistance and excellent flexibility and heat resistance.
 1つの実施形態においては、本発明の光学積層体は長尺状である。長尺状の光学積層体は、例えば、ロール状に巻回されて保管および/または運搬され得る。光学積層体は屈曲性に優れるので、ロール状に巻回されても不具合は生じない。この場合、偏光子の吸収軸方向は、代表的には長尺方向に実質的に平行である。このような構成であれば、光学積層体をいわゆるロールトゥロールで作製することができる。 In one embodiment, the optical layered body of the present invention is elongated. The long optical laminate can be stored and / or transported, for example, wound in a roll. Since the optical layered body is excellent in flexibility, no problem occurs even if it is wound into a roll. In this case, the absorption axis direction of the polarizer is typically substantially parallel to the longitudinal direction. If it is such a structure, an optical laminated body can be produced by what is called a roll-to-roll.
 必要に応じて、偏光板40と基材10との間、および/または、偏光板40の基材と反対側に位相差層(図示せず)が設けられてもよい。位相差層の光学特性(例えば、屈折率楕円体、面内位相差、厚み方向位相差、Nz係数、波長分散特性、光弾性係数)、機械的特性、配置される数、組み合わせ等は、目的に応じて適切に設定され得る。例えば、偏光板40の基材と反対側に、逆分散の波長依存性を示し、かつ、いわゆるλ/4板として機能し得る位相差層が配置され得る。この場合、位相差層の遅相軸と偏光子の吸収軸とのなす角度は、代表的には約45°である。このような構成であれば、光学積層体に良好な円偏光機能が付与されるので、光学積層体が画像表示装置の反射防止フィルムとしても良好に機能し得る。 If necessary, a retardation layer (not shown) may be provided between the polarizing plate 40 and the base material 10 and / or on the opposite side of the polarizing plate 40 from the base material. Optical properties of the retardation layer (for example, refractive index ellipsoid, in-plane retardation, thickness direction retardation, Nz coefficient, wavelength dispersion characteristic, photoelastic coefficient), mechanical characteristics, number of arrangements, combinations, etc. Appropriately. For example, a retardation layer that exhibits the wavelength dependence of reverse dispersion and can function as a so-called λ / 4 plate can be disposed on the opposite side of the substrate of the polarizing plate 40. In this case, the angle formed by the slow axis of the retardation layer and the absorption axis of the polarizer is typically about 45 °. With such a configuration, a good circular polarization function is imparted to the optical layered body, so that the optical layered body can function well as an antireflection film of an image display device.
 以下、光学積層体の構成要素について説明する。 Hereinafter, components of the optical laminate will be described.
B.偏光板
 上記のとおり、偏光子41は、代表的には、偏光板40として基材10に積層され、光学積層体に導入され得る。偏光板40(実質的には保護層42、保護層42が存在しない場合には偏光子41)は、任意の適切な粘着剤層(例えば、アクリル系粘着剤層)または接着剤層(例えば、PVA系樹脂接着剤層)を介して基材10に貼り合わせられる。
B. Polarizer As described above, the polarizer 41 is typically laminated on the substrate 10 as the polarizer 40 and can be introduced into the optical laminate. The polarizing plate 40 (substantially the protective layer 42, or the polarizer 41 in the absence of the protective layer 42) may be any suitable pressure-sensitive adhesive layer (for example, acrylic pressure-sensitive adhesive layer) or adhesive layer (for example, It is bonded to the substrate 10 via a PVA resin adhesive layer).
B-1.偏光子
 偏光子41としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B-1. Polarizer Any appropriate polarizer can be adopted as the polarizer 41. For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films. In addition, there may be mentioned polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products. Preferably, a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye | stain after extending | stretching. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of a polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin Examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate. For example, a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate. Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは3μm~10μmであり、特に好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。さらに、偏光子の厚みがこのような範囲であれば、光学積層体(結果として、有機EL表示装置)の薄型化に貢献し得る。 The thickness of the polarizer is preferably 15 μm or less, more preferably 1 μm to 12 μm, still more preferably 3 μm to 10 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained. Furthermore, if the thickness of the polarizer is in such a range, it can contribute to the thinning of the optical laminate (as a result, the organic EL display device).
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは43.0%~46.0%であり、より好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance of the polarizer is preferably 43.0% to 46.0%, more preferably 44.5% to 46.0%. The polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
B-2.保護層
 保護層42は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. Protective layer The protective layer 42 is formed of any suitable film that can be used as a protective layer for a polarizer. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials. And transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
 本発明の光学積層体は、代表的には画像表示装置の視認側に配置され、保護層42は、代表的にはその視認側に配置される。したがって、保護層42には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、保護層42には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、光学積層体は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 The optical layered body of the present invention is typically disposed on the viewing side of the image display device, and the protective layer 42 is typically disposed on the viewing side. Therefore, the protective layer 42 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, antisticking treatment, and antiglare treatment as necessary. Further / or, if necessary, the protective layer 42 is provided with a treatment for improving visibility when viewed through polarized sunglasses (typically, an (elliptical) circular polarization function is imparted, an ultrahigh phase difference is provided. May be applied). By performing such processing, excellent visibility can be achieved even when the display screen is viewed through a polarizing lens such as polarized sunglasses. Therefore, the optical laminate can be suitably applied to an image display device that can be used outdoors.
 保護層42の厚みは、好ましくは20μm~200μm、より好ましくは30μm~100μm、さらに好ましくは35μm~95μmである。 The thickness of the protective layer 42 is preferably 20 μm to 200 μm, more preferably 30 μm to 100 μm, and still more preferably 35 μm to 95 μm.
 保護層43は、光学的に等方性であることが好ましい。本明細書において「光学的に等方性」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。基材の面内位相差Re(550)は好ましくは0nm~5nmであり、厚み方向の位相差Rth(550)は好ましくは-5nm~+5nmである。なお、「Re(550)」は、23℃における波長550nmの光で測定したフィルムの面内位相差であり、フィルムの厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。「Rth(550)」は、23℃における波長550nmの光で測定したフィルムの厚み方向の位相差であり、フィルムの厚みをd(nm)としたとき、式:Re=(nx-nz)×dによって求められる。ここで、「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。 The protective layer 43 is preferably optically isotropic. In this specification, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. The in-plane retardation Re (550) of the substrate is preferably 0 nm to 5 nm, and the thickness direction retardation Rth (550) is preferably -5 nm to +5 nm. “Re (550)” is the in-plane retardation of the film measured with light having a wavelength of 550 nm at 23 ° C., and the formula: Re = (nx−ny) where d (nm) is the thickness of the film. It is calculated | required by xd. “Rth (550)” is a retardation in the thickness direction of the film measured with light having a wavelength of 550 nm at 23 ° C. When the thickness of the film is d (nm), the formula: Re = (nx−nz) × determined by d. Here, “nx” is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (that is, fast phase). (Nz direction), and “nz” is the refractive index in the thickness direction.
 保護層43の材料および厚み等は、保護層42に関して上記で説明したとおりである。 The material, thickness, and the like of the protective layer 43 are as described above for the protective layer 42.
 保護層42および43は、代表的には、任意の適切な接着剤層(例えば、PVA系樹脂接着剤層)を介して偏光子41に貼り合わせられる。 The protective layers 42 and 43 are typically bonded to the polarizer 41 via any appropriate adhesive layer (for example, a PVA resin adhesive layer).
C.基材
 基材10は、好ましくは透明である。基材は、可視光(例えば、波長550nmの光)の全光線透過率が、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。
C. Base material The base material 10 is preferably transparent. The total light transmittance of visible light (for example, light having a wavelength of 550 nm) is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
 基材10は、1つの実施形態においては、光学的に等方性である。このような構成であれば、光学積層体を画像表示装置に適用した場合に当該画像表示装置の表示特性に対する悪影響を防止できる。 The substrate 10 is optically isotropic in one embodiment. With such a configuration, when the optical laminate is applied to an image display device, adverse effects on the display characteristics of the image display device can be prevented.
 基材の平均屈折率は、好ましくは1.7未満であり、より好ましくは1.59以下であり、さらに好ましくは1.4~1.55である。平均屈折率がこのような範囲であれば、裏面反射を抑制でき、高い光透過率を達成できるという利点を有する。 The average refractive index of the substrate is preferably less than 1.7, more preferably 1.59 or less, and further preferably 1.4 to 1.55. When the average refractive index is in such a range, there is an advantage that back surface reflection can be suppressed and high light transmittance can be achieved.
 基材の第1の酸化物層側の表面の表面粗さRaは、上記のとおり0.30nm以上であり、好ましくは0.40nm以上であり、より好ましくは0.50nm以上であり、さらに好ましくは0.60nm以上である。当該表面の表面粗さRaの上限は、例えば50nmである。当該表面の表面粗さがこのような範囲であれば、上記のとおり、基材と第1の酸化物層との優れた密着性が実現され、結果として、偏光子の収縮に起因する第1の酸化物層および/または第2の酸化物層のクラック(代表的には、厚み方向のクラック)が顕著に抑制され得る。また、Raを0.3nm~50nmとすることによって、光学積層体の透過率がさらに向上し得る。これは、基材の凹凸部分の凹部に第一の酸化物層が入りこむことにより中間的な屈折率を有する層が形成され、これが屈折率マッチング層として機能するためであると考えられる。Raが50nmを超えると、光散乱により視覚的に曇ったように見える、いわゆるヘイズが発生し、上記の中間的な屈折率を有する層の効果が相殺されてしまう場合がある。このような表面粗さは、任意の適切な粗面化処理により実現され得る。粗面化処理としては、例えば、エンボス加工、サンドブラスト、延伸折り曲げ、微粒子の導入が挙げられる。表面粗さRaは、JIS  B 0601に準じて測定され得る。 As described above, the surface roughness Ra of the surface on the first oxide layer side of the substrate is 0.30 nm or more, preferably 0.40 nm or more, more preferably 0.50 nm or more, and still more preferably. Is 0.60 nm or more. The upper limit of the surface roughness Ra of the surface is, for example, 50 nm. If the surface roughness of the surface is in such a range, as described above, excellent adhesion between the substrate and the first oxide layer is realized, and as a result, the first due to the contraction of the polarizer. Cracks in the oxide layer and / or the second oxide layer (typically, cracks in the thickness direction) can be significantly suppressed. Further, by setting Ra to 0.3 nm to 50 nm, the transmittance of the optical laminate can be further improved. This is considered to be because a layer having an intermediate refractive index is formed by the first oxide layer entering the concave portion of the concave and convex portion of the substrate, and this functions as a refractive index matching layer. When Ra exceeds 50 nm, a so-called haze that appears to be visually cloudy due to light scattering occurs, and the effect of the layer having an intermediate refractive index may be offset. Such surface roughness can be realized by any appropriate roughening treatment. Examples of the roughening treatment include embossing, sand blasting, stretching and bending, and introduction of fine particles. The surface roughness Ra can be measured according to JIS B 0601.
 基材を構成する材料としては、上記特性を満足し得る任意の適切な材料を用いることができる。基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂、ラクトン環やグルタルイミド環などの環状構造をアクリル系主鎖中に有する樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂が挙げられる。このような材料であれば、基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。 As the material constituting the base material, any appropriate material that can satisfy the above characteristics can be used. Examples of the material constituting the substrate include resins having no conjugated system such as norbornene resins and olefin resins, resins having a cyclic structure such as a lactone ring and a glutarimide ring in the acrylic main chain, and polyester-based materials. Examples thereof include resins and polycarbonate resins. With such a material, when the base material is formed, the expression of the phase difference accompanying the orientation of the molecular chain can be kept small.
 基材は、別の実施形態においては、所定の位相差を有していてもよい。例えば、基材がいわゆるλ/4板として機能し得るような面内位相差を有していてもよい。このような構成であれば、位相差層を別途配置することなく、光学積層体に良好な円偏光機能が付与されるので、光学積層体が画像表示装置のバリアフィルムとしてのみならず反射防止フィルムとしても良好に機能し得る。この場合、基材の遅相軸と偏光子41の吸収軸とのなす角度は、代表的には約45°である。このような基材は、例えば、ノルボルネン系樹脂やポリカーボネート系樹脂のフィルムを適切な条件で延伸することにより形成され得る。 The base material may have a predetermined phase difference in another embodiment. For example, the substrate may have an in-plane retardation that can function as a so-called λ / 4 plate. With such a configuration, a good circular polarization function is imparted to the optical laminate without separately providing a retardation layer, so that the optical laminate is not only used as a barrier film for an image display device but also an antireflection film. As well. In this case, the angle formed by the slow axis of the substrate and the absorption axis of the polarizer 41 is typically about 45 °. Such a substrate can be formed, for example, by stretching a film of norbornene resin or polycarbonate resin under appropriate conditions.
 基材の厚みは、好ましくは10μm~50μm以下であり、より好ましくは20μm~35μm以下である。 The thickness of the substrate is preferably 10 μm to 50 μm or less, and more preferably 20 μm to 35 μm or less.
D.第1の酸化物層
 第1の酸化物層20は、上記のとおり、ZnO、AlおよびSiOを含む。第1の酸化物層は、全重量に対して、Alを好ましくは2.5重量%~3.5重量%、SiOを好ましくは20.0重量%~62.4重量%の割合で含む。ZnOは、好ましくは残量である。ZnOをこのような範囲で含有することにより、非晶性、バリア性、屈曲性および耐熱性に優れた層を形成することができる。Alをこのような範囲で含有することにより、第1の酸化物層は代表的にはスパッタリングで形成されるところ、ターゲットの導電率を増大させることができる。SiOをこのような範囲で含有することにより、異常放電を発生させることなく、かつ、バリア性を損なうことなく、第1の酸化物層の屈折率を小さくすることができる。
D. First Oxide Layer The first oxide layer 20 includes ZnO, Al, and SiO 2 as described above. The first oxide layer preferably contains Al in a proportion of 2.5% to 3.5% by weight and SiO 2 preferably in a proportion of 20.0% to 62.4% by weight with respect to the total weight. . ZnO is preferably the remaining amount. By containing ZnO in such a range, a layer excellent in amorphous property, barrier property, flexibility and heat resistance can be formed. By containing Al in such a range, the first oxide layer is typically formed by sputtering, but the conductivity of the target can be increased. By containing SiO 2 in such a range, the refractive index of the first oxide layer can be reduced without causing abnormal discharge and without impairing the barrier property.
 第1の酸化物層の厚みは、上記のとおり好ましくは10nm~100nmであり、より好ましくは10nm~60nmであり、さらに好ましくは20nm~40nmである。厚みがこのような範囲であれば、高い光透過性と優れたバリア性とを両立できるという利点を有する。 As described above, the thickness of the first oxide layer is preferably 10 nm to 100 nm, more preferably 10 nm to 60 nm, and still more preferably 20 nm to 40 nm. If the thickness is in such a range, there is an advantage that both high light transmittance and excellent barrier properties can be achieved.
 第1の酸化物層の平均屈折率は、好ましくは1.59~1.80である。平均屈折率がこのような範囲であれば、高い光透過性を達成できるという利点を有する。 The average refractive index of the first oxide layer is preferably 1.59 to 1.80. When the average refractive index is in such a range, there is an advantage that high light transmittance can be achieved.
 第1の酸化物層は、好ましくは透明である。第1の酸化物層は、可視光(例えば、波長550nmの光)の全光線透過率が、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 The first oxide layer is preferably transparent. The first oxide layer preferably has a total light transmittance of visible light (for example, light having a wavelength of 550 nm) of 85% or more, more preferably 90% or more, and further preferably 95% or more. .
 第1の酸化物層は、代表的にはスパッタリングにより基材上に形成され得る。第1の酸化物層は、例えば、Al、SiOおよびZnOを含むスパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気下において、スパッタリング法により形成され得る。スパッタリングの方法としては、マグネトロンスパッタリング法、RFスパッタリング法、RF重畳DCスパッタリング法、パルススパッタ法、デュアルマグネトロンスパッタリング法などを採用することができる。基板の加熱温度は例えば―8℃~200℃である。酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧は、例えば0.05以上である。 The first oxide layer can be typically formed on the substrate by sputtering. The first oxide layer can be formed by a sputtering method in an inert gas atmosphere containing oxygen using, for example, a sputtering target containing Al, SiO 2 and ZnO. As a sputtering method, a magnetron sputtering method, an RF sputtering method, an RF superimposed DC sputtering method, a pulse sputtering method, a dual magnetron sputtering method, or the like can be employed. The heating temperature of the substrate is, for example, −8 ° C. to 200 ° C. The gas partial pressure of oxygen with respect to the whole atmospheric gas of oxygen and inert gas is, for example, 0.05 or more.
 第1の酸化物層を構成するAZO膜およびその製造方法の詳細については、例えば特開2013-189657号公報に記載されている。当該公報の記載は、本明細書に参考として援用される。 The details of the AZO film constituting the first oxide layer and the manufacturing method thereof are described in, for example, Japanese Patent Application Laid-Open No. 2013-189657. The description of the publication is incorporated herein by reference.
E.第2の酸化物層
 第2の酸化物層30は、上記のとおり、SiOで構成される(不可避の不純物も含まれ得る)。このような第2の酸化物層を第1の酸化物層の表面に形成することにより、第1の酸化物層による良好な特性を維持しつつ、光学積層体の耐薬品性および透明性を格段に向上させることができる。さらに、第2の酸化物層は低屈折率層として機能し得るので、光学積層体に良好な反射防止特性を付与し得る。
E. Second Oxide Layer As described above, the second oxide layer 30 is made of SiO 2 (it may contain inevitable impurities). By forming such a second oxide layer on the surface of the first oxide layer, the chemical resistance and transparency of the optical laminate can be improved while maintaining good characteristics of the first oxide layer. It can be improved significantly. Furthermore, since the second oxide layer can function as a low refractive index layer, it is possible to impart good antireflection characteristics to the optical laminate.
 第2の酸化物層の厚みは、上記のとおり好ましくは10nm~100nmであり、より好ましくは50nm~100nmであり、さらに好ましくは60nm~100nmである。厚みがこのような範囲であれば、高い光透過性と優れたバリア性と優れた耐薬品性とを両立できるという利点を有する。 As described above, the thickness of the second oxide layer is preferably 10 nm to 100 nm, more preferably 50 nm to 100 nm, and still more preferably 60 nm to 100 nm. When the thickness is in such a range, there is an advantage that both high light transmittance, excellent barrier properties, and excellent chemical resistance can be achieved.
 第2の酸化物層の平均屈折率は、好ましくは1.44~1.50である。その結果、第2の酸化物層は、低屈折率層(反射防止層)として良好に機能し得る。 The average refractive index of the second oxide layer is preferably 1.44 to 1.50. As a result, the second oxide layer can function well as a low refractive index layer (antireflection layer).
 第2の酸化物層は、好ましくは透明である。第2の酸化物層は、可視光(例えば、波長550nmの光)の全光線透過率が、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 The second oxide layer is preferably transparent. In the second oxide layer, the total light transmittance of visible light (for example, light having a wavelength of 550 nm) is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more. .
 第2の酸化物層は、代表的にはスパッタリングにより第1の酸化物層上に形成され得る。第2の酸化物層は、例えば、Si、SiC、SiNまたはSiOをターゲットとし、酸素を含有した不活性ガス(例えば、アルゴン、窒素、CO、CO、およびこれらの混合ガス)を用いてスパッタを行うことにより形成され得る。第1の酸化物層および第2の酸化物層はいずれもSiOを含むので、第1の酸化物層と第2の酸化物層との密着性は非常に優れたものとなる。このことから、第1の酸化物層と第2の酸化物層との界面で十分なバリア機能を発現させるためには、第1の酸化物層の厚みは、上記のとおり10nm以上であることが好ましい。その理由としては、成長初期膜である、いわゆるインキュベーションレイヤーの割合を十分小さくでき、目的の物性を有する酸化物層を形成できるからである。また、第1の酸化物層と第2の酸化物層とのトータル厚みは、好ましくは200nm以下であり、より好ましくは140nm以下である。 The second oxide layer can be formed on the first oxide layer, typically by sputtering. The second oxide layer is sputtered using, for example, Si, SiC, SiN, or SiO, and an inert gas containing oxygen (for example, argon, nitrogen, CO, CO 2 , or a mixed gas thereof). Can be formed. Since both the first oxide layer and the second oxide layer contain SiO 2 , the adhesion between the first oxide layer and the second oxide layer is very excellent. Therefore, in order to develop a sufficient barrier function at the interface between the first oxide layer and the second oxide layer, the thickness of the first oxide layer is 10 nm or more as described above. Is preferred. This is because the ratio of the so-called incubation layer, which is the initial growth film, can be sufficiently reduced, and an oxide layer having the desired physical properties can be formed. Further, the total thickness of the first oxide layer and the second oxide layer is preferably 200 nm or less, and more preferably 140 nm or less.
F.光学積層体の用途
 本発明の光学積層体は、画像表示装置のバリア層(バリアフィルム)および偏光板の両方の機能を有する光学部材として好適に用いられ得る。より詳細には、本発明の光学積層体は、液晶表示装置および有機EL表示装置、好ましくは有機EL表示装置、より好ましくは屈曲可能な有機EL表示装置の光学部材として用いられ得る。
F. Use of optical laminate The optical laminate of the present invention can be suitably used as an optical member having the functions of both a barrier layer (barrier film) and a polarizing plate of an image display device. More specifically, the optical laminate of the present invention can be used as an optical member of a liquid crystal display device and an organic EL display device, preferably an organic EL display device, more preferably a bendable organic EL display device.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各特性の測定方法は以下の通りである。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, the measuring method of each characteristic is as follows.
(1)厚み
 第1の酸化物層および第2の酸化物層の厚みは、透過型電子顕微鏡(日立製作所製H-7650)を用いて断面を観察し、測定を行なった。光学積層体のその他の構成要素の厚みは膜厚計(Peacock社製デジタルダイアルゲージDG-205)を用いて測定した。
(2)表面粗さRa
 JIS  B 0601に準じて測定した。測定機には、光学式表面粗さ計(Veeco  Metrogy  Group社製、商品名「Wyko  NT9100」)を用いた。
(3)信頼性
 実施例および比較例で得られた光学積層体を50mm×50mmサイズに切り出し、測定試料とした。この測定試料を石英ガラスに貼りあわせ、95℃のオーブンに500時間保管し、保管後の透湿度を測定し、以下の基準で評価した。
    ○:1.0×10-1g/m/24hr未満
    ×:1.0×10-1g/m/24hr以上
(4)透湿度
 実施例および比較例で得られた光学積層体を10cmΦの円状に切り出し、測定試料とした。この測定試料について、テクノロックス社製「DELTAPERM」を用いて、40℃、90%RHの試験条件で透湿度を測定した。
(5)耐薬品性
 実施例および比較例で得られた光学積層体を100mm×100mmサイズに切り出し、測定試料とした。2%の水酸化ナトリウム溶液(pH13.7)を測定試料に滴下し、10分後に水酸化ナトリウム溶液を拭き取り、透湿度を測定し、以下の基準で評価した。
    ○:1.0×10-1g/m/24hr未満
    ×:1.0×10-1g/m/24hr以上
(1) Thickness The thicknesses of the first oxide layer and the second oxide layer were measured by observing a cross section using a transmission electron microscope (H-7650 manufactured by Hitachi, Ltd.). The thickness of other components of the optical laminate was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock).
(2) Surface roughness Ra
Measurement was performed according to JIS B 0601. An optical surface roughness meter (manufactured by Veeco Metrology Group, trade name “Wyko NT9100”) was used as a measuring machine.
(3) Reliability The optical laminates obtained in the examples and comparative examples were cut into 50 mm × 50 mm sizes and used as measurement samples. This measurement sample was bonded to quartz glass, stored in an oven at 95 ° C. for 500 hours, measured for moisture permeability after storage, and evaluated according to the following criteria.
○: 1.0 × 10 -1 g / m 2 / 24hr less ×: 1.0 × 10 -1 g / m 2 / 24hr or more (4) obtained in moisture permeability Examples and Comparative Examples optical laminate A 10 cmφ circular shape was cut out and used as a measurement sample. About this measurement sample, moisture permeability was measured on 40 degreeC and 90% RH test conditions using "DELTATAPERM" by Technolox.
(5) Chemical resistance The optical laminates obtained in the examples and comparative examples were cut into a size of 100 mm × 100 mm and used as measurement samples. A 2% sodium hydroxide solution (pH 13.7) was dropped onto the measurement sample, and after 10 minutes, the sodium hydroxide solution was wiped off, the moisture permeability was measured, and the following criteria were evaluated.
○: 1.0 × 10 -1 g / m 2 / 24hr less ×: 1.0 × 10 -1 g / m 2 / 24hr or more
<実施例1>
(積層バリアフィルムの作製)
 市販のCOPフィルム(日本ゼオン株式会社製、商品名「ゼオノア」、厚み40μm)を基材として、Al、SiOおよびZnOを含むスパッタリングターゲットを用いて、DCマグネトロンスパッタリング法により基材上に第1の酸化物層(厚み30nm)を形成した。次に、Siターゲットを用いて、基材/第1の酸化物層の積層体の第1の酸化物層上に第2の酸化物層(50nm)を形成した。このようにして、基材/第1の酸化物層(AZO)/第2の酸化物層(SiO)の構成を有する積層バリアフィルムを作製した。基材のスパッタリングされる面にはコロナ処理によりあらかじめ粗面化処理を施した。当該表面の表面粗さRaは0.51nmであった。
<Example 1>
(Production of laminated barrier film)
A commercially available COP film (trade name “Zeonor”, manufactured by Nippon Zeon Co., Ltd., thickness 40 μm) is used as a base material, and a sputtering target containing Al, SiO 2 and ZnO is used to form the first on the base material by DC magnetron sputtering. An oxide layer (thickness 30 nm) was formed. Next, a second oxide layer (50 nm) was formed on the first oxide layer of the base material / first oxide layer stack using a Si target. In this way, a laminated barrier film having a configuration of base material / first oxide layer (AZO) / second oxide layer (SiO 2 ) was produced. The surface of the substrate to be sputtered was previously roughened by corona treatment. The surface roughness Ra of the surface was 0.51 nm.
(偏光子の作製)
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
(Production of polarizer)
At the same time, a long roll of polyvinyl alcohol (PVA) resin film (product name “PE3000”, manufactured by Kuraray Co., Ltd.) having a thickness of 30 μm is uniaxially stretched in the longitudinal direction so as to be 5.9 times in the longitudinal direction by a roll stretching machine. Swelling, dyeing, crosslinking, and washing treatment were performed, and finally a drying treatment was performed to produce a polarizer having a thickness of 12 μm.
Specifically, the swelling treatment was stretched 2.2 times while being treated with pure water at 20 ° C. Next, the dyeing treatment is performed in an aqueous solution at 30 ° C. in which the weight ratio of iodine and potassium iodide is 1: 7, the iodine concentration of which is adjusted so that the single transmittance of the obtained polarizer is 45.0%. The film was stretched 1.4 times. Furthermore, the crosslinking treatment employed a two-stage crosslinking treatment, and the first-stage crosslinking treatment was stretched 1.2 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 40 ° C. The boric acid content of the aqueous solution of the first-stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. The cross-linking treatment at the second stage was stretched 1.6 times while being treated in an aqueous solution in which boric acid and potassium iodide were dissolved at 65 ° C. The boric acid content of the aqueous solution of the second crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. In addition, the cleaning treatment was performed with an aqueous potassium iodide solution at 20 ° C. The potassium iodide content of the aqueous solution for the washing treatment was 2.6% by weight. Finally, the drying process was performed at 70 ° C. for 5 minutes to obtain a polarizer.
(偏光板の作製)
 上記偏光子の片側に、ポリビニルアルコール系接着剤を介して、TACフィルムの片面にハードコート処理により形成されたハードコート(HC)層を有するHC-TACフィルム(厚み32μm)を、もう一方の側に、ポリビニルアルコール系接着剤を介して、通常のTACフィルム(厚み25μm)をロールトゥロールにより貼り合わせ、保護層/偏光子/保護層の構成を有する長尺状の偏光板を得た。
(Preparation of polarizing plate)
An HC-TAC film (thickness 32 μm) having a hard coat (HC) layer formed on one side of the TAC film by a hard coat treatment on one side of the polarizer via a polyvinyl alcohol adhesive on the other side In addition, a normal TAC film (thickness 25 μm) was bonded to each other with a roll-to-roll through a polyvinyl alcohol-based adhesive to obtain a long polarizing plate having a protective layer / polarizer / protective layer configuration.
(光学積層体の作製)
 上記で得られた偏光板のHC-TAC面と上記で得られた積層バリアフィルムの基材面とを、アクリル系粘着剤を介してロールトゥロールにより貼り合わせ、保護層/偏光子/保護層/基材/第1の酸化物層/第2の酸化物層の構成を有する長尺状の光学積層体を得た。得られた光学積層体を上記(3)~(5)の評価に供した。結果を表1に示す。
(Production of optical laminate)
The HC-TAC surface of the polarizing plate obtained above and the base material surface of the laminated barrier film obtained above are bonded together by roll-to-roll through an acrylic adhesive, and protective layer / polarizer / protective layer A long optical laminate having a structure of / base material / first oxide layer / second oxide layer was obtained. The obtained optical laminate was subjected to the evaluations (3) to (5) above. The results are shown in Table 1.
<実施例2>
 基材の第1の酸化物層側の表面の表面粗さRaを0.66nmとしたこと以外は実施例1と同様にして光学積層体を作製した。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
<Example 2>
An optical laminate was produced in the same manner as in Example 1 except that the surface roughness Ra of the surface on the first oxide layer side of the substrate was 0.66 nm. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<実施例3>
 基材の第1の酸化物層側の表面の表面粗さRaを0.85nmとしたこと以外は実施例1と同様にして光学積層体を作製した。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
<Example 3>
An optical laminate was produced in the same manner as in Example 1 except that the surface roughness Ra of the surface on the first oxide layer side of the substrate was 0.85 nm. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例1>
 基材の第1の酸化物層側の表面の表面粗さRaを0.20nmとしたこと以外は実施例1と同様にして光学積層体を作製した。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 1>
An optical laminate was produced in the same manner as in Example 1 except that the surface roughness Ra of the surface on the first oxide layer side of the substrate was 0.20 nm. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
<比較例2>
 基材の第1の酸化物層側の表面の表面粗さRaを0.28nmとしたこと以外は実施例1と同様にして光学積層体を作製した。得られた光学積層体を実施例1と同様の評価に供した。結果を表1に示す。
<Comparative Example 2>
An optical laminate was produced in the same manner as in Example 1 except that the surface roughness Ra of the surface on the first oxide layer side of the substrate was 0.28 nm. The obtained optical laminate was subjected to the same evaluation as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<評価>
 表1から明らかなように、バリア層(第1の酸化物層および第2の酸化物層)と基材と偏光子とを有する光学積層体において、基材の第1の酸化物層側の表面の表面粗さを所定値以上とすることにより、優れたバリア性および耐薬品性を維持しつつ、信頼性を顕著に改善することができる。より詳細には、偏光子の加熱収縮に起因するクラックを顕著に抑制することができる。
<Evaluation>
As is clear from Table 1, in the optical laminate having the barrier layer (the first oxide layer and the second oxide layer), the base material, and the polarizer, the first oxide layer side of the base material By setting the surface roughness to a predetermined value or more, reliability can be remarkably improved while maintaining excellent barrier properties and chemical resistance. More specifically, cracks due to the heat shrinkage of the polarizer can be remarkably suppressed.
 本発明の光学積層体は、画像表示装置のバリア層(バリアフィルム)および偏光板の両方の機能を有する光学部材として好適に用いられ得る。より詳細には、本発明の光学積層体は、液晶表示装置および有機EL表示装置、好ましくは有機EL表示装置、より好ましくは屈曲可能な有機EL表示装置の光学部材として用いられ得る。 The optical layered body of the present invention can be suitably used as an optical member having the functions of both a barrier layer (barrier film) and a polarizing plate of an image display device. More specifically, the optical laminate of the present invention can be used as an optical member of a liquid crystal display device and an organic EL display device, preferably an organic EL display device, more preferably a bendable organic EL display device.
 10   基材
 20   第1の酸化物層
 30   第2の酸化物層
 40   偏光板
 41   偏光子
 42   保護層
 43   保護層
100   光学積層体
DESCRIPTION OF SYMBOLS 10 Base material 20 1st oxide layer 30 2nd oxide layer 40 Polarizing plate 41 Polarizer 42 Protective layer 43 Protective layer 100 Optical laminated body

Claims (7)

  1.  偏光子と、基材と、ZnO、AlおよびSiOを含む第1の酸化物層と、SiOで構成された第2の酸化物層と、をこの順に有し、
     該基材の該第1の酸化物層側の表面の表面粗さRaが0.30nm~50nmである、
     光学積層体。
    Having a polarizer, a base material, a first oxide layer containing ZnO, Al and SiO 2 , and a second oxide layer composed of SiO 2 in this order;
    The surface roughness Ra of the surface of the substrate on the first oxide layer side is 0.30 nm to 50 nm.
    Optical laminate.
  2.  前記偏光子の少なくとも一方の側に保護層をさらに有する、請求項1に記載の光学積層体。 The optical laminate according to claim 1, further comprising a protective layer on at least one side of the polarizer.
  3.  前記第1の酸化物層の厚みが10nm~100nmである、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the thickness of the first oxide layer is 10 nm to 100 nm.
  4.  前記第2の酸化物層の厚みが10nm~100nmである、請求項1から3のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the thickness of the second oxide layer is 10 nm to 100 nm.
  5.  透湿度が3.0×10-2g/m/24hr以下である、請求項1から4のいずれかに記載の光学積層体。 Moisture permeability is 3.0 × 10 -2 g / m 2 / 24hr or less, the optical laminate according to any one of claims 1 to 4.
  6.  ガスバリア性が1.0×10-7g/m/24hr~0.5g/m/24hrである、請求項5に記載の光学積層体。 Gas barrier property is 1.0 × 10 -7 g / m 2 /24hr~0.5g/m 2 / 24hr, optical laminate according to claim 5.
  7.  塩酸または水酸化ナトリウム溶液滴下後の透湿度が1.0×10-1g/m/24hr未満である、請求項1から6のいずれかに記載の光学積層体。
     
     
    Moisture permeability after dropping hydrochloric acid or sodium hydroxide solution is less than 1.0 × 10 -1 g / m 2 / 24hr, optical laminate according to any one of claims 1 to 6.

PCT/JP2017/003050 2016-01-29 2017-01-27 Optical layered body WO2017131201A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187021639A KR20180109897A (en) 2016-01-29 2017-01-27 The optical laminate
CN201780008635.8A CN108603964B (en) 2016-01-29 2017-01-27 Optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016528 2016-01-29
JP2016016528A JP6938112B2 (en) 2016-01-29 2016-01-29 Optical laminate

Publications (1)

Publication Number Publication Date
WO2017131201A1 true WO2017131201A1 (en) 2017-08-03

Family

ID=59398159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003050 WO2017131201A1 (en) 2016-01-29 2017-01-27 Optical layered body

Country Status (4)

Country Link
JP (1) JP6938112B2 (en)
KR (1) KR20180109897A (en)
CN (1) CN108603964B (en)
WO (1) WO2017131201A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400180A (en) * 2018-01-25 2018-08-14 北京工业大学 Texture substrate enhances the electrical stability of flexible device under mechanical stress
WO2019163461A1 (en) * 2018-02-26 2019-08-29 日東電工株式会社 Polarizing plate with anti-reflection layer and method for producing same
CN112639548A (en) * 2018-11-02 2021-04-09 株式会社Lg化学 Circular polarizing plate
EP3876000A4 (en) * 2018-11-02 2022-01-26 LG Chem, Ltd. Circular polarizing plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031263A1 (en) 2017-08-10 2019-02-14 東洋紡株式会社 Gas barrier laminate
WO2020121708A1 (en) * 2018-12-10 2020-06-18 日本ゼオン株式会社 Laminate, method for producing same, circular polarizer, display device, and touch panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089857A (en) * 2011-11-28 2012-05-10 Dainippon Printing Co Ltd Method of producing patterned body, and organic thin film transistor
JP2013123914A (en) * 2011-12-16 2013-06-24 Mitsubishi Plastics Inc Gas barrier film
JP2013189657A (en) * 2011-02-25 2013-09-26 Mitsubishi Materials Corp Transparent oxide film and method of producing the same
WO2013161894A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
JP2015131421A (en) * 2014-01-10 2015-07-23 住友金属鉱山株式会社 Metal-clad laminate board, wiring board, and multilayer wiring board

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305992A (en) * 2000-04-21 2001-11-02 Matsushita Electric Ind Co Ltd Optical substrate for display element and method for manufacturing the same, as well as liquid crystal display element using the same, and method for manufacturing the same
JP2002156524A (en) * 2000-11-20 2002-05-31 Nitto Denko Corp Circularly polarizing plate, organic el light emitting device and liquid crystal display device
JP5020255B2 (en) * 2006-11-16 2012-09-05 三菱樹脂株式会社 Gas barrier film laminate
JP2008225401A (en) * 2007-03-16 2008-09-25 Citizen Holdings Co Ltd Liquid crystal display element
JP5657297B2 (en) * 2010-07-27 2015-01-21 富士フイルム株式会社 Gas barrier film and electronic device
JP6585333B2 (en) * 2013-12-03 2019-10-02 日東電工株式会社 Polarizing film, polarizing film with pressure-sensitive adhesive layer, and image display device
WO2015111572A1 (en) * 2014-01-27 2015-07-30 東レ株式会社 Gas barrier film
JP6340843B2 (en) * 2014-03-14 2018-06-13 東レ株式会社 Gas barrier film
JP5932098B2 (en) * 2014-04-17 2016-06-08 日東電工株式会社 Transparent conductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189657A (en) * 2011-02-25 2013-09-26 Mitsubishi Materials Corp Transparent oxide film and method of producing the same
JP2012089857A (en) * 2011-11-28 2012-05-10 Dainippon Printing Co Ltd Method of producing patterned body, and organic thin film transistor
JP2013123914A (en) * 2011-12-16 2013-06-24 Mitsubishi Plastics Inc Gas barrier film
WO2013161894A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
JP2015131421A (en) * 2014-01-10 2015-07-23 住友金属鉱山株式会社 Metal-clad laminate board, wiring board, and multilayer wiring board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400180B (en) * 2018-01-25 2020-06-16 北京工业大学 Textured substrate enhances electrical stability of flexible devices under mechanical stress
CN108400180A (en) * 2018-01-25 2018-08-14 北京工业大学 Texture substrate enhances the electrical stability of flexible device under mechanical stress
CN111742250B (en) * 2018-02-26 2022-07-19 日东电工株式会社 Polarizing plate with antireflection layer and method for producing same
KR20200108450A (en) * 2018-02-26 2020-09-18 닛토덴코 가부시키가이샤 Polarizing plate with antireflection layer and manufacturing method thereof
CN111742250A (en) * 2018-02-26 2020-10-02 日东电工株式会社 Polarizing plate with antireflection layer and method for producing same
JPWO2019163461A1 (en) * 2018-02-26 2020-12-10 日東電工株式会社 Polarizing plate with antireflection layer and its manufacturing method
WO2019163461A1 (en) * 2018-02-26 2019-08-29 日東電工株式会社 Polarizing plate with anti-reflection layer and method for producing same
TWI802645B (en) * 2018-02-26 2023-05-21 日商日東電工股份有限公司 Polarizing plate with anti-reflection layer and manufacturing method thereof
KR102566689B1 (en) * 2018-02-26 2023-08-14 닛토덴코 가부시키가이샤 Polarizing plate with antireflection layer and manufacturing method thereof
CN112639548A (en) * 2018-11-02 2021-04-09 株式会社Lg化学 Circular polarizing plate
EP3876001A4 (en) * 2018-11-02 2022-01-19 LG Chem, Ltd. Circular polarizing plate
EP3876000A4 (en) * 2018-11-02 2022-01-26 LG Chem, Ltd. Circular polarizing plate
US11985847B2 (en) 2018-11-02 2024-05-14 Lg Chem, Ltd. Circularly polarizing plate
US12010900B2 (en) 2018-11-02 2024-06-11 Lg Chem, Ltd. Circular polarizing plate

Also Published As

Publication number Publication date
CN108603964B (en) 2021-09-21
JP2017134371A (en) 2017-08-03
JP6938112B2 (en) 2021-09-22
CN108603964A (en) 2018-09-28
KR20180109897A (en) 2018-10-08

Similar Documents

Publication Publication Date Title
WO2017131201A1 (en) Optical layered body
WO2017038417A1 (en) Optical compensation layer-equipped polarizing plate and organic el panel using same
TWI785140B (en) Polarizing plate with anti-reflection layer and manufacturing method thereof
TWI737807B (en) Optical laminate and image display device
WO2017038416A1 (en) Longitudinally oriented optical compensation layer-equipped polarizing plate and organic el panel using same
CN111556976B (en) Retardation plate, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
TWI657268B (en) Polarizing plate with anti-reflection layer and anti-glare layer and manufacturing method thereof
KR102627997B1 (en) Optical laminates and image display devices
TW201905507A (en) Method for manufacturing retardation film, circular polarizing plate and retardation film
WO2017131200A1 (en) Optical laminate
JP2019091091A (en) Circularly polarizing plate and bendable display device
CN111542770A (en) Retardation film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP2022152302A (en) Polarizing plate and manufacturing method therefor
KR102601679B1 (en) Laminate, a polarizing plate including thereof and preparing method for the same
KR102659448B1 (en) Polarizing plate and optical display apparatus comprising the same
TW201931386A (en) Electroconductive film for transfer
JP2022179511A (en) Optical laminate and display
TW202307486A (en) Display device
TW202216427A (en) Polarizing plate, retardation-layer-equipped polarizing plate, and image display device
JP2021189422A (en) Optical laminate and display
TW202303199A (en) Optical laminate and display device
KR20230056688A (en) Polarizing plate, polarizing plate with retardation layer, and organic electroluminescent display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187021639

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744431

Country of ref document: EP

Kind code of ref document: A1