WO2020121708A1 - Laminate, method for producing same, circular polarizer, display device, and touch panel - Google Patents

Laminate, method for producing same, circular polarizer, display device, and touch panel Download PDF

Info

Publication number
WO2020121708A1
WO2020121708A1 PCT/JP2019/044248 JP2019044248W WO2020121708A1 WO 2020121708 A1 WO2020121708 A1 WO 2020121708A1 JP 2019044248 W JP2019044248 W JP 2019044248W WO 2020121708 A1 WO2020121708 A1 WO 2020121708A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin layer
polymer
laminate
base material
Prior art date
Application number
PCT/JP2019/044248
Other languages
French (fr)
Japanese (ja)
Inventor
幹文 柏木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020559839A priority Critical patent/JP7355036B2/en
Priority to KR1020217016752A priority patent/KR20210102228A/en
Priority to CN201980073702.3A priority patent/CN112996657A/en
Publication of WO2020121708A1 publication Critical patent/WO2020121708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a laminated body and a manufacturing method thereof, a circularly polarizing plate, a display device, and a touch panel.
  • Patent Document 1 conductive glass in which an indium oxide thin film is formed on a glass plate is known as a conductive member.
  • the conductive glass is inferior in flexibility because the base material is glass and is difficult to apply depending on the application. Therefore, as a conductive member having excellent flexibility, a conductive member using resin has been proposed (Patent Document 1).
  • Patent Document 1 describes a conductive member including a flexible base material, a conductive layer formed on the flexible base material, and an adhesive layer formed on the conductive layer. There is.
  • a conductive member may be used for a touch panel or the like.
  • a phenomenon called migration may occur in which the metal material contained in the conductive layer is ionized and moved to be regenerated as a metal.
  • the touch panel does not operate normally, so improvement is required.
  • the present invention was devised in view of the above problems, and has a laminated body having excellent flexibility and an excellent migration preventing effect, and a method for producing the same; circularly polarized light provided with the laminated body. It is an object to provide a display device including a plate and a touch panel; and the circularly polarizing plate.
  • the laminate is a thermoplastic resin layer having a predetermined moisture permeability and a predetermined storage elastic modulus, a conductive layer, and a substrate, It has been found that, by providing in this order, the laminate can be made excellent in flexibility and migration prevention effect, and the present invention has been completed. That is, the present invention includes the following.
  • thermoplastic resin layer has a moisture permeability of 5 g/m 2 ⁇ 24 h or less and a storage elastic modulus at 25° C. of 1300 MPa or less
  • the said conductive layer is a laminated body containing the element of at least 1 type of Sn, Pb, Ag, Cu, and Au.
  • thermoplastic resin layer contains a polymer having a silyl group.
  • polymer having a silyl group is a silyl group-modified product of a block copolymer.
  • a touch panel comprising the laminate according to any one of [1] to [13].
  • the touch panel according to [17] including a polarizing plate provided in contact with the thermoplastic resin layer of the laminate.
  • [19] comprises the laminate and a polarizing plate, Comprising the laminate and a polarizing plate,
  • Step 1 of forming the conductive layer on the substrate A step 2 of forming the thermoplastic resin layer on the conductive layer,
  • the said process 2 is a manufacturing method of a laminated body including thermocompression-bonding the said thermoplastic resin layer, or applying the solution containing a thermoplastic resin.
  • a display device provided with the display device can be provided.
  • FIG. 1 is a sectional view schematically showing a laminated body according to an embodiment of the present invention.
  • the “long film” means a film having a length of 5 times or more, preferably 10 times or more, specifically, a width of the film. It has a length that allows it to be rolled up and stored or transported.
  • the upper limit of the ratio of the length to the width of the film is not particularly limited, but may be 100,000 times or less, for example.
  • nx is the refractive index in the in-plane slow axis direction of the film (maximum in-plane refractive index)
  • ny is the refractive index in the direction perpendicular to the in-plane slow axis of the film
  • d is the thickness (nm) of the film.
  • the measurement wavelength is 590 nm which is a typical wavelength in the visible light region.
  • FIG. 1 is a sectional view schematically showing a laminated body 10 according to an embodiment of the present invention.
  • a laminate 10 according to an embodiment of the present invention includes a thermoplastic resin layer 110, a conductive layer 120, and a base material 130 in this order in the thickness direction.
  • the thermoplastic resin layer has a predetermined moisture permeability and a predetermined storage elastic modulus
  • the conductive layer contains a predetermined element.
  • the thermoplastic resin layer is a layer formed of a thermoplastic resin.
  • the thermoplastic resin layer is a layer having a moisture permeability of 5 g/m 2 ⁇ 24 h or less and a storage elastic modulus at 25° C. of 1300 MPa or less.
  • the water vapor permeability of the thermoplastic resin layer is 5 g/m 2 ⁇ 24 h or less, preferably 4 g/m 2 ⁇ 24 h or less, more preferably 3 g/m 2 ⁇ 24 h or less.
  • the lower limit of the moisture permeability of the thermoplastic resin is not particularly limited, but is preferably 1 g/m 2 ⁇ 24 h or more, more preferably 2 g/m 2 ⁇ 24 h or more.
  • the water vapor transmission rate of the thermoplastic resin layer can be measured by the Lissi method (measuring instrument L80-5000 type (manufactured by Systec Illinois), temperature condition 40°C, humidity 90%).
  • the storage elastic modulus at 25° C. of the thermoplastic resin layer is 1300 MPa or less, preferably 1100 MPa or less, and preferably 100 MPa or more. By setting the storage elastic modulus at 25° C. of the thermoplastic resin layer to the upper limit value or less, the flexibility of the thermoplastic resin layer can be made excellent.
  • the ratio (E 2 /E 1 ) of the storage elastic modulus E 2 of the thermoplastic resin layer at 100° C. to the storage elastic modulus E 1 of ⁇ 40° C. is preferably 15 or less, and more preferably It is 12 or less.
  • the lower limit of E 2 /E 1 is not particularly limited, but is preferably 5 or more, more preferably 8 or more.
  • Each storage elastic modulus of the thermoplastic resin layer can be measured using a dynamic viscoelasticity measuring device under the condition of a frequency of 1 Hz.
  • a dynamic viscoelasticity measuring device under the condition of a frequency of 1 Hz.
  • the conditions of Examples described later can be adopted.
  • the retardation Re in the in-plane direction of the thermoplastic resin layer is preferably 10 nm or less, more preferably 5 nm or less.
  • the lower limit of Re can be 0 nm.
  • thermoplastic resin As the thermoplastic resin forming the thermoplastic resin layer, a thermoplastic resin that contains a polymer (hereinafter, also referred to as “polymer X”) and may further contain any component as necessary can be used. As the polymer X, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • thermoplastic resin As the polymer X contained in the thermoplastic resin, a polymer having a silyl group is preferable.
  • a thermoplastic resin layer formed from a thermoplastic resin containing a polymer having a silyl group exhibits high adhesion to other materials. Therefore, since the thermoplastic resin layer formed of a resin containing a polymer having a silyl group has excellent adhesion to the conductive layer, it is possible to prevent entry of water and the like and effectively prevent migration, and thus the laminate Overall, the mechanical strength can be improved.
  • the polymer having a silyl group a block copolymer modified with a silyl group is preferable.
  • silyl group-modified products of block copolymers include block copolymers and hydrogenated products thereof in which a silyl group is introduced.
  • the silyl group-containing polymer is preferably a silyl group-modified product of a copolymer of an aromatic vinyl monomer and a conjugated diene monomer.
  • the silyl group-modified product of the copolymer of an aromatic vinyl monomer and a conjugated diene monomer includes a copolymer of an aromatic vinyl monomer and a conjugated diene monomer or a hydride thereof with a silyl group.
  • the thing which introduced is mentioned.
  • the polymer and the constituent elements of the polymer used in the present invention are not limited by the production method thereof.
  • the polymer having a silyl group is a block copolymer containing a polymer block [A] containing an aromatic vinyl monomer unit and a polymer block [B] containing a conjugated diene monomer unit.
  • a hydride having a silyl group introduced, and a polymer block [A] containing an aromatic vinyl monomer unit, and a polymer block containing an aromatic vinyl monomer unit and a conjugated diene monomer unit It is more preferable to introduce a silyl group into a hydride of a block copolymer containing [C].
  • the present invention is not limited to this.
  • the block copolymer containing the polymer block [A] and the polymer block [B] or the polymer block [C] may be referred to as a block copolymer [1].
  • the hydride of the block copolymer [1] may be called a hydride [2].
  • the block copolymer [1] includes two or more polymer blocks [A] per molecule of the block copolymer [1] and one or more polymer blocks [1] per molecule of the block copolymer [1]. B] or the polymer block [C] is particularly preferable.
  • the polymer block [A] is a polymer block containing an aromatic vinyl monomer unit.
  • the aromatic vinyl monomer unit refers to a structural unit having a structure formed by polymerizing an aromatic vinyl compound, and is also referred to as an aromatic vinyl compound unit.
  • Examples of the aromatic vinyl compound corresponding to the aromatic vinyl monomer unit contained in the polymer block [A] include styrene; ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2 Styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, such as 4,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t-butylstyrene, and 5-t-butyl-2-methylstyrene; 4 -Styrenes having a halogen atom as a substituent, such as chlorostyrene, dichlorostyrene, 4-monofluorostyrene; Styrenes having an alkoxy group having 1 to 6 carbon atoms as a substituent, such as 4-methoxystyrene; 4- Examples thereof include styrenes having an aryl group as a substituent such
  • aromatic vinyl compounds containing no polar group such as styrene and styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, are preferable because of their low hygroscopicity, and they are industrially easily available. Therefore, styrene is particularly preferable.
  • the content of the aromatic vinyl monomer unit in the polymer block [A] is preferably 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 99% by weight or more.
  • the amount of the aromatic vinyl monomer unit is large in the polymer block [A] as described above, the hardness and heat resistance of the thermoplastic resin layer can be increased.
  • the polymer block [A] may contain any structural unit in addition to the aromatic vinyl monomer unit.
  • the polymer block [A] may contain one type of any structural unit alone or may contain two or more types in combination at any ratio.
  • Examples of the optional structural unit that can be contained in the polymer block [A] include a conjugated diene monomer unit.
  • the conjugated diene monomer unit refers to a structural unit having a structure formed by polymerizing a conjugated diene compound, and is also referred to as a conjugated diene compound unit.
  • Examples of the conjugated diene compound corresponding to the conjugated diene monomer unit include the same examples as the examples of the conjugated diene compound corresponding to the conjugated diene monomer unit included in the polymer block [B].
  • a structural unit having a structure formed by polymerizing any unsaturated compound other than the aromatic vinyl compound and the chain conjugated diene compound can be mentioned.
  • the optional unsaturated compound include vinyl compounds such as chain vinyl compounds and cyclic vinyl compounds; unsaturated cyclic acid anhydrides; unsaturated imide compounds; and the like. These compounds may have a substituent such as a nitrile group, an alkoxycarbonyl group, a hydroxycarbonyl group, or a halogen group.
  • the content of any structural unit in the polymer block [A] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
  • the number of polymer blocks [A] in one molecule of block copolymer [1] is preferably 2 or more, preferably 5 or less, more preferably 4 or less, and particularly preferably 3 or less.
  • the plural polymer blocks [A] in one molecule may be the same or different from each other.
  • the polymer block [B] is a polymer block containing a conjugated diene monomer unit.
  • the conjugated diene monomer unit means, for example, a structural unit having a structure formed by polymerizing a conjugated diene compound and is also called a conjugated diene compound unit.
  • Examples of the conjugated diene compound corresponding to the conjugated diene monomer unit contained in the polymer block [B] include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and 1,3- Examples thereof include chain conjugated diene compounds such as pentadiene. These may be used individually by 1 type and may be used in combination of 2 or more types in arbitrary ratios. Among them, a chain conjugated diene compound containing no polar group is preferable, and 1,3-butadiene and isoprene are particularly preferable, because they can reduce hygroscopicity.
  • the content of the conjugated diene monomer unit in the polymer block [B] is preferably 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 99% by weight or more.
  • the content of the conjugated diene monomer unit in the polymer block [B] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
  • the polymer block [B] may contain an arbitrary structural unit in addition to the conjugated diene monomer unit.
  • the polymer block [B] may contain one kind of any structural unit alone or may contain two or more kinds of structural units in combination at any ratio.
  • the arbitrary structural unit that can be contained in the polymer block [B] is formed, for example, by polymerizing an aromatic vinyl compound unit and any unsaturated compound other than the aromatic vinyl compound and the chain conjugated diene compound.
  • the structural unit which has a structure is mentioned.
  • the aromatic vinyl compound unit and the structural unit having a structure formed by polymerizing any unsaturated compound are exemplified as those which may be contained in the polymer block [A]. And the same example.
  • the content of any structural unit in the polymer block [B] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
  • the content of the optional structural unit in the polymer block [B] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
  • the number of polymer blocks [B] in one molecule of the block copolymer [1] is usually 1 or more, but may be 2 or more. When the number of polymer blocks [B] in the block copolymer [1] is 2 or more, those polymer blocks [B] may be the same as or different from each other.
  • the polymer block [C] is a polymer block containing an aromatic vinyl monomer unit and a conjugated diene monomer unit.
  • the conjugated diene monomer unit means, for example, a structural unit having a structure formed by polymerizing a conjugated diene compound and is also called a conjugated diene compound unit.
  • the aromatic vinyl monomer unit refers to a structural unit having a structure formed by polymerizing an aromatic vinyl monomer unit, for example, and is also called an aromatic vinyl compound unit.
  • the aromatic vinyl compound corresponding to the aromatic vinyl monomer unit contained in the polymer block [C] is exemplified as the aromatic vinyl compound corresponding to the aromatic vinyl monomer unit contained in the polymer block [A].
  • the conjugated diene compound corresponding to the conjugated diene monomer unit contained in the polymer block [C] include those exemplified as the conjugated diene compound corresponding to the conjugated diene monomer unit contained in the polymer block [B]. ..
  • the content of the aromatic vinyl monomer unit in the polymer block [C] is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 76% by weight or less, more preferably 60% by weight. It is particularly preferably 55% by weight or less.
  • the content of the aromatic vinyl monomer unit in the polymer block [C] is within the above range, the hardness and heat resistance of the thermoplastic resin layer can be increased.
  • the content of the conjugated diene monomer unit in the polymer block [C] is preferably 24% by weight or more, more preferably 40% by weight or more, particularly preferably 45% by weight or more, preferably 70% by weight or less, It is more preferably 60% by weight or less.
  • the content of the conjugated diene monomer unit in the polymer block [C] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
  • the polymer block [C] may contain any structural unit in addition to the aromatic vinyl monomer unit and the conjugated diene monomer unit.
  • the polymer block [C] may contain one kind of any structural unit alone or may contain two or more kinds of structural units in combination at any ratio.
  • a structural unit having a structure formed by polymerizing any unsaturated compound other than the aromatic vinyl compound and the chain conjugated diene compound can be mentioned. ..
  • Examples of the structural unit having a structure formed by polymerizing an arbitrary unsaturated compound include the same examples as those exemplified as those which may be contained in the polymer block [A].
  • the content of any structural unit in the polymer block [C] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
  • the content of the optional structural unit in the polymer block [C] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
  • the number of polymer blocks [C] in one molecule of the block copolymer [1] is usually 1 or more, but may be 2 or more. When the number of polymer blocks [C] in the block copolymer [1] is 2 or more, those polymer blocks [C] may be the same as or different from each other.
  • the block form of the block copolymer [1] may be a chain type block or a radial type block. Among them, a chain block is preferable because it has excellent mechanical strength.
  • the block copolymer [1] has the form of a chain type block, the both ends of the molecular chain of the block copolymer [1] are polymer blocks [A], and thus the stickiness of the thermoplastic resin layer is desired. Can be suppressed to a low value.
  • a particularly preferred block morphology of the block copolymer [1] is a polymer block [B] as represented by [A]-[B]-[A] and [A]-[C]-[A].
  • Or [C] a triblock copolymer having polymer blocks [A] bonded to both ends; [A]-[B]-[A]-[B]-[A] and [A]-[C] As represented by -[A]-[C]-[A], the polymer block [B] or [C] is bonded to both ends of the polymer block [A], and further both polymer blocks [B] ]
  • Or [C] is a pentablock copolymer in which the polymer block [A] is bonded to the other end, respectively.
  • a triblock copolymer of [A]-[B]-[A] and [A]-[C]-[A] facilitates production and facilitates physical properties within a desired range. It is particularly preferable because it can be stored.
  • the weight fraction wA of the polymer block [A] in the whole block copolymer [1] and the polymer block [B] in the whole block copolymer [1] The ratio (wA/wB) to the weight fraction wB of is preferably within a specific range. Specifically, the ratio (wA/wB) is preferably 30/70 or more, more preferably 40/60 or more, particularly preferably 45/55 or more, preferably 85/15 or less, and further preferably 70/30 or less, particularly preferably 55/45 or less.
  • the ratio wA/wB is not less than the lower limit value of the above range, the rigidity and heat resistance of the thermoplastic resin layer can be improved and the birefringence can be reduced. Further, when the ratio wA/wB is equal to or less than the upper limit value of the above range, the flexibility of the thermoplastic resin layer can be improved.
  • the weight fraction wA of the polymer block [A] indicates the weight fraction of the whole polymer block [A]
  • the weight fraction wB of the polymer block [B] is the whole polymer block [B]. The weight fraction of is shown.
  • the weight fraction wA of the polymer block [A] in the whole block copolymer [1] and the polymer block [C] in the whole block copolymer [1] The ratio (wA/wC) to the weight fraction wC of is preferably within a specific range. Specifically, the ratio (wA/wC) is preferably 30/70 or more, more preferably 40/60 or more, particularly preferably 45/55 or more, preferably 85/15 or less, and further preferably 70/30 or less, particularly preferably 55/45 or less.
  • the ratio wA/wC When the ratio wA/wC is equal to or more than the lower limit value of the above range, the rigidity and heat resistance of the thermoplastic resin layer can be improved and the birefringence can be reduced. Further, when the ratio wA/wC is equal to or less than the upper limit value of the above range, the flexibility of the thermoplastic resin layer can be improved.
  • the weight fraction wA of the polymer block [A] indicates the weight fraction of the whole polymer block [A]
  • the weight fraction wC of the polymer block [C] is the whole polymer block [C]. The weight fraction of is shown.
  • the weight average molecular weight (Mw) of the block copolymer [1] is preferably 30,000 or more, more preferably 40,000 or more, particularly preferably 50,000 or more, preferably 200,000 or less, It is more preferably 150,000 or less, and particularly preferably 100,000 or less.
  • the molecular weight distribution (Mw/Mn) of the block copolymer [1] is preferably 3 or less, more preferably 2 or less, particularly preferably 1.5 or less, and preferably 1.0 or more.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the block copolymer [1] are as polystyrene-converted values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent. It can be measured.
  • the methods described in International Publication No. 2015/0909079 and JP-A-2016-204217 can be adopted.
  • Hydride [2] is a polymer obtained by hydrogenating the unsaturated bond of block copolymer [1].
  • the unsaturated bond of the block copolymer [1] to be hydrogenated includes aromatic and non-aromatic carbon-carbon unsaturated of the main chain and side chain of the block copolymer [1]. Both include bonds.
  • the hydrogenation rate of the hydride [2] is preferably 90% or more, more preferably 97% or more, and particularly preferably 99% or more.
  • the aromatic vinyl monomer unit has a hydrogenation rate of 90% or more
  • the conjugated diene monomer unit has a hydrogenation rate of 90% or more.
  • the hydrogenation rate of the hydride [2] is the same as that of the aromatic and non-aromatic carbon-carbon unsaturated bonds in the main chain and side chains of the block copolymer [1]. It is the rate of hydrogenated bonds.
  • the hydrogenation rate of the hydride [2] can be determined by measurement by 1 H-NMR.
  • the upper limit of the hydrogenation rate may be 100%.
  • the hydrogenation rate of the non-aromatic carbon-carbon unsaturated bond is preferably 95% or more, more preferably 99% or more.
  • the light resistance and oxidation resistance of the thermoplastic resin layer can be further increased.
  • the hydrogenation rate of the aromatic carbon-carbon unsaturated bond is preferably 90% or more, more preferably 93% or more, and particularly preferably 95% or more.
  • the weight average molecular weight (Mw) of the hydride [2] is preferably 30,000 or more, more preferably 40,000 or more, still more preferably 45,000 or more, preferably 200,000 or less, more preferably It is 150,000 or less, and more preferably 100,000 or less.
  • Mw weight average molecular weight
  • the molecular weight distribution (Mw/Mn) of the hydride [2] is preferably 3 or less, more preferably 2 or less, particularly preferably 1.8 or less, and preferably 1.0 or more.
  • Mw/Mn molecular weight distribution of the hydride [2] is within the above range, the mechanical strength and heat resistance of the thermoplastic resin layer can be improved, and the birefringence of the thermoplastic resin layer can be reduced. Easy to do.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the hydride [2] can be measured in terms of polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • the above-mentioned hydride [2] can be produced by hydrogenating the block copolymer [1].
  • a hydrogenation method a hydrogenation method that can increase the hydrogenation rate and that causes less chain cleavage reaction of the block copolymer [1] is preferable. Examples of such a hydrogenation method include the methods described in International Publication No. 2015/0999079 and JP-A-2016-204217.
  • the hydride [2] is preferably one having a silyl group introduced.
  • those into which a silyl group is introduced may be appropriately referred to as "silyl group-modified product [3]" hereinafter. Due to the introduction of the silyl group, the silyl group-modified product [3] exhibits high adhesion to other materials. Therefore, since the thermoplastic resin layer formed of the thermoplastic resin containing the silyl group-modified product [3] has excellent adhesion to the conductive layer, the mechanical strength of the laminate as a whole can be improved.
  • the silyl modified product (silyl group modified product [3]) of the block copolymer is a polymer obtained by introducing a silyl group into the hydride (hydride [2]) of the block copolymer described above.
  • Examples of the silyl group introduced into the block copolymer include an alkoxysilyl group.
  • the silyl group introduced into the block copolymer may be directly bonded to the above-mentioned hydride [2], or may be indirectly bonded through a divalent organic group such as an alkylene group. ..
  • the amount of the silyl group introduced in the modified silyl group [3] is preferably 0.1 part by weight or more, more preferably 0.2 part by weight, based on 100 parts by weight of the hydride [2] before the introduction of the silyl group.
  • the amount is particularly preferably 0.3 part by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and particularly preferably 3 parts by weight or less.
  • the amount of silyl group introduced can be measured by 1 H-NMR spectrum. Further, when measuring the introduction amount of the silyl group, if the introduction amount is small, it is possible to increase the number of times of integration and perform the measurement.
  • the weight average molecular weight (Mw) of the silyl group-modified product [3] is usually smaller than the weight average molecular weight (Mw) of the hydride [2] before the silyl group is introduced, because the amount of the introduced silyl group is small. Does not change significantly.
  • the hydride [2] is usually subjected to a modification reaction in the presence of a peroxide, so that the crosslinking reaction and the cleavage reaction of the hydride [2] proceed and the molecular weight distribution is It tends to change greatly.
  • the weight average molecular weight (Mw) of the silyl group-modified product [3] is preferably 30,000 or more, more preferably 40,000 or more, still more preferably 45,000 or more, and preferably 200,000 or less, It is preferably 150,000 or less, and more preferably 100,000 or less.
  • the molecular weight distribution (Mw/Mn) of the modified silyl group [3] is preferably 3.5 or less, more preferably 2.5 or less, particularly preferably 2.0 or less, and preferably 1.0 or more. Is.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw/Mn) of the silyl group-modified product [3] are in this range, good mechanical strength and tensile elongation of the thermoplastic resin layer can be maintained.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the silyl group-modified product [3] can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • the modified silyl group [3] can be produced by introducing an alkoxysilyl group into the hydride [2] of the block copolymer [1] described above.
  • Examples of the method of introducing an alkoxysilyl group into the hydride [2] include the methods described in International Publication No. 2015/099079 and JP-A-2016-204217.
  • the proportion of the polymer X such as hydride [2] (including silyl group modified product [3]) in the thermoplastic resin is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight. , Particularly preferably 95 to 100% by weight.
  • the ratio of the polymer in the resin B is within the above range, the storage elastic modulus of the resin B is easily within the above range.
  • the thermoplastic resin layer may contain an arbitrary component in combination with the polymer X described above.
  • optional components include inorganic fine particles; stabilizers such as antioxidants, heat stabilizers, ultraviolet absorbers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; coloring agents such as dyes and pigments. And antistatic agents.
  • one type may be used alone, or two or more types may be used in combination at any ratio. From the viewpoint of remarkably exerting the effect of the present invention, it is preferable that the content ratio of any component is small.
  • the thermoplastic resin layer usually has high transparency.
  • the specific total light transmittance of the thermoplastic resin layer is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more.
  • the total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer.
  • the upper limit of the total light transmittance is preferably 100%, but may be a value less than 100%.
  • the thickness of the thermoplastic resin layer is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, particularly preferably 60 ⁇ m or less.
  • the thickness of the thermoplastic resin layer is equal to or more than the lower limit value of the above range, the thermoplastic resin layer can prevent water from entering the conductive layer and effectively prevent migration.
  • the thickness of the thermoplastic resin layer is not more than the upper limit value of the above range, flexibility can be effectively enhanced.
  • thermoplastic resin layer There is no limitation on the manufacturing method of the thermoplastic resin layer.
  • the method for producing the thermoplastic resin layer include a melt molding method and a solution casting method.
  • the melt molding method is preferable because it is possible to suppress the volatile components such as the solvent from remaining in the thermoplastic resin layer.
  • the extrusion molding method, the inflation molding method and the press molding method are preferable, and the thermoplastic resin layer can be produced efficiently and easily.
  • the extrusion molding method is particularly preferable from the viewpoint that it can be formed.
  • the conductive layer contains at least one element selected from Sn (tin), Pb (lead), Ag (silver), Cu (copper), and Au (gold).
  • the element is a material that can cause migration, but in the present invention, the occurrence of migration can be prevented by providing a thermoplastic resin layer having a predetermined moisture permeability and a predetermined storage elastic modulus.
  • a transparent conductive layer can be obtained by forming the conductive layer into a thin linear shape.
  • a transparent conductive layer can be obtained by forming the conductive layer as a metal mesh layer formed in a grid pattern.
  • the conductive layer is formed of a material containing the above element (hereinafter also referred to as “conductive material”).
  • a conductive material include a metal material.
  • the metal material is a material formed by metal bonding of metal atoms. Examples of such a metal material include metal particles and metal nanowires.
  • the conductive material one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the conductive layer can be formed by, for example, a forming method including applying a conductive layer forming composition containing metal particles. At this time, by printing the conductive layer forming composition in a predetermined lattice pattern, a conductive layer as a metal mesh layer can be obtained. Furthermore, for example, by applying a composition for forming a conductive layer containing metal particles such as silver salt and silver nanoparticles, and forming a thin metal wire into a predetermined lattice pattern by an exposure treatment and a development treatment, the conductive layer is formed into a metal mesh. It can be formed as a layer. For details of such a conductive layer and a method for forming the conductive layer, reference can be made to JP-A-2012-18634 and JP-A-2003-331654.
  • ⁇ Metallic nanowire refers to a conductive substance with a needle-like or thread-like shape and a diameter of nanometer.
  • the metal nanowire may be linear or curved.
  • Such metal nanowires can form a good electrical conduction path even with a small amount of metal nanowires by forming a gap between the metal nanowires and forming a mesh-like shape, and thus a conductive material with low electrical resistance can be formed. Layers can be realized. Further, since the metal wire has a mesh shape, an opening is formed in a gap between meshes, so that a conductive layer having high light transmittance can be obtained.
  • the ratio of the thickness d to the length L of metal nanowires is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 10 1,000.
  • the metal nanowires having a large aspect ratio as described above the metal nanowires can be crossed well and high conductivity can be exhibited by a small amount of the metal nanowires.
  • a laminate having excellent transparency can be obtained.
  • the "thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, the short diameter when the cross section is elliptical, and the most when it is polygonal. Means a long diagonal.
  • the thickness and length of the metal nanowire can be measured by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, still more preferably 10 nm to 100 nm, and particularly preferably 10 nm to 50 nm. Thereby, the transparency of the conductive layer can be increased.
  • the length of the metal nanowire is preferably 2.5 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 20 ⁇ m to 100 ⁇ m. Thereby, the conductivity of the conductive layer can be increased.
  • the metal contained in the metal nanowire is preferably a metal having high conductivity.
  • suitable metals include gold, silver and copper, more preferably silver.
  • a material obtained by plating the above metal for example, gold plating
  • one kind of the above materials may be used alone, or two or more kinds thereof may be used in combination at an arbitrary ratio.
  • any appropriate method can be adopted as the method for producing the metal nanowire.
  • a method of reducing silver nitrate in a solution a method of applying an applied voltage or current to the precursor surface from the tip of the probe, extracting the metal nanowire at the tip of the probe, and continuously forming the metal nanowire;
  • a silver nanowire can be synthesized by liquid-phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone.
  • Uniformly sized silver nanowires are described, for example, in Xia, Y. et al. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. Mass production is possible according to the method described in Nano letters (2003) 3(7), 955-960.
  • the conductive layer containing metal nanowires can be formed by, for example, a forming method including applying and drying a metal nanowire dispersion liquid obtained by dispersing metal nanowires in a solvent.
  • the solvent contained in the metal nanowire dispersion liquid for example, water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents, and the like, among them, from the viewpoint of environmental load reduction, It is preferable to use water. Further, the solvent may be used alone or in combination of two or more kinds at an arbitrary ratio.
  • the concentration of the metal nanowires in the metal nanowire dispersion liquid is preferably 0.1% by weight to 1% by weight. This makes it possible to form a conductive layer having excellent conductivity and transparency.
  • the metal nanowire dispersion liquid may contain an optional component in combination with the metal nanowire and the solvent.
  • the optional component include a corrosion inhibitor that suppresses corrosion of the metal nanowires, a surfactant that suppresses aggregation of the conductive nanowires, and a binder polymer for holding the conductive nanowires in the conductive layer.
  • one type of optional component may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • Examples of the coating method of the metal nanowire dispersion liquid include a spray coating method, a bar coating method, a roll coating method, a die coating method, an inkjet coating method, a screen coating method, a dip coating method, a slot die coating method, a relief printing method, an intaglio printing method. , A gravure printing method and the like.
  • Any appropriate drying method for example, natural drying, blast drying, heat drying
  • the drying temperature may be 100°C to 200°C and the drying time may be 1 minute to 10 minutes.
  • the proportion of metal nanowires in the conductive layer is preferably 80% by weight to 100% by weight, more preferably 85% by weight to 99% by weight, based on the total weight of the conductive layer. This makes it possible to obtain a conductive layer having excellent conductivity and light transmittance.
  • the conductive layer may include any conductive material other than the above in addition to the above conductive material.
  • Examples of the optional conductive material include carbon nanotubes and conductive polymers.
  • the carbon nanotubes for example, so-called multi-walled carbon nanotubes, double-walled carbon nanotubes, single-walled carbon nanotubes having a diameter of 0.3 nm to 100 nm and a length of 0.1 ⁇ m to 20 ⁇ m are used. Among them, single-walled or double-walled carbon nanotubes having a diameter of 10 nm or less and a length of 1 ⁇ m to 10 ⁇ m are preferable from the viewpoint of high conductivity. Further, it is preferable that the aggregate of carbon nanotubes does not contain impurities such as amorphous carbon and catalytic metal. Any appropriate method can be adopted as a method for producing carbon nanotubes. Carbon nanotubes produced by the arc discharge method are preferably used. Carbon nanotubes produced by the arc discharge method are preferable because they have excellent crystallinity.
  • polythiophene-based polymer for example, polythiophene-based polymer, polyacetylene-based polymer, polyparaphenylene-based polymer, polyaniline-based polymer, polyparaphenylenevinylene-based polymer, polypyrrole-based polymer, polyphenylene-based polymer, polyester-based modified with acrylic polymer
  • polymers include polymers. Among them, polythiophene-based polymers, polyacetylene-based polymers, polyparaphenylene-based polymers, polyaniline-based polymers, polyparaphenylenevinylene-based polymers and polypyrrole-based polymers are preferable.
  • polythiophene-based polymers are particularly preferable.
  • a polythiophene-based polymer By using a polythiophene-based polymer, a conductive layer having excellent transparency and chemical stability can be obtained.
  • Specific examples of the polythiophene-based polymer include polythiophene; poly(3-C 1-8 alkyl-thiophene) such as poly(3-hexylthiophene); poly(3,4-ethylenedioxythiophene), poly(3,4 -Propylenedioxythiophene), poly[3,4-(1,2-cyclohexylene)dioxythiophene] and other poly(3,4-(cyclo)alkylenedioxythiophenes); polythienylenevinylene, etc. ..
  • C 1-8 alkyl refers to an alkyl group having 1 to 8 carbon atoms.
  • the said electroconductive polymer may be used individually by 1 type, and may be used in combination of 2 or more types by
  • the conductive polymer is preferably polymerized in the presence of an anionic polymer.
  • the polythiophene-based polymer is preferably oxidatively polymerized in the presence of an anionic polymer.
  • the anionic polymer include a polymer having a carboxyl group, a sulfonic acid group, or a salt thereof.
  • an anionic polymer having a sulfonic acid group such as polystyrene sulfonic acid is used.
  • the conductive layer is formed of the conductive material as described above, it has conductivity.
  • the conductivity of the conductive layer can be represented by, for example, a surface resistance value.
  • the specific surface resistance value of the conductive layer can be set according to the application of the laminate.
  • the surface resistance value of the conductive layer is preferably 1000 ⁇ /sq. Or less, more preferably 900 ⁇ /sq. The following is particularly preferable 800 ⁇ /sq. It is below.
  • the lower limit of the surface resistance value of the conductive layer is not particularly limited, it is preferably 1 ⁇ /sq. Or more, more preferably 2.5 ⁇ /sq. Above, especially preferably 5 ⁇ /sq. That is all.
  • the conductive layer may be formed entirely or partially between the thermoplastic resin layer and the base material.
  • the conductive layer may be patterned and formed into a pattern having a predetermined planar shape.
  • the planar shape means a shape when viewed from the thickness direction of the layer.
  • the planar shape of the pattern of the conductive layer can be set according to the application of the laminate.
  • the planar shape of the conductive layer may be formed in a pattern corresponding to the wiring shape of the circuit.
  • the planar shape of the conductive layer is preferably a pattern that works well as a touch panel (for example, a capacitive touch panel).
  • the patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799 and JP-A-2010-541109 can be mentioned.
  • the conductive layer usually has high transparency. Therefore, visible light can usually pass through this conductive layer.
  • the specific transparency of the conductive layer can be adjusted according to the application of the laminate.
  • the specific total light transmittance of the conductive layer is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more.
  • each conductive layer is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 3 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m.
  • a polymer film containing a polymer (hereinafter, also referred to as “polymer Y”) can be used.
  • the polymer film it is possible to use a film formed of a resin containing the polymer Y and further containing any component as required.
  • the polymer Y one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the polymer Y is preferably a polymer containing an alicyclic structure.
  • a polymer containing an alicyclic structure may be appropriately referred to as a “polymer containing an alicyclic structure”.
  • the alicyclic structure-containing polymer has excellent mechanical strength. Further, the alicyclic structure-containing polymer is usually excellent in transparency, low water absorption, moisture resistance, dimensional stability and light weight.
  • Alicyclic structure-containing polymer is a polymer containing an alicyclic structure in the repeating unit, for example, a polymer or a hydride thereof obtained by a polymerization reaction using a cyclic olefin as a monomer. Can be mentioned.
  • the alicyclic structure-containing polymer both a polymer having an alicyclic structure in its main chain and a polymer having an alicyclic structure in its side chain can be used.
  • the alicyclic structure-containing polymer preferably has an alicyclic structure in the main chain. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and the cycloalkane structure is preferable from the viewpoint of thermal stability and the like.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, more preferably 6 or more, preferably 30 or less, more preferably 20 or less, Particularly preferably, it is 15 or less.
  • the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
  • the proportion of repeating units having an alicyclic structure in the alicyclic structure-containing polymer is preferably 30% by weight or more, more preferably 50% by weight or more, further preferably 70% by weight or more, particularly preferably 90% by weight. That is all.
  • heat resistance can be improved.
  • the balance other than the repeating unit having an alicyclic structure is not particularly limited and may be appropriately selected according to the purpose of use.
  • the alicyclic structure-containing polymer either a polymer having crystallinity or a polymer having no crystallinity may be used, or both may be used in combination.
  • the crystalline polymer means a polymer having a melting point Mp.
  • the polymer having the melting point Mp means a polymer whose melting point Mp can be observed by a differential scanning calorimeter (DSC). Since the alicyclic structure-containing polymer having crystallinity is solvent resistant, by using it as a material of the base material, a thermoplastic resin layer can be formed by applying a thermoplastic resin dissolved in a solvent. it can.
  • the mechanical strength of the laminate can be effectively increased.
  • an alicyclic structure-containing polymer having no crystallinity is used as the material of the base material, the production cost of the laminate can be reduced.
  • Examples of the alicyclic structure-containing polymer having crystallinity include the following polymers ( ⁇ ) to ( ⁇ ). Among these, the polymer ( ⁇ ) is preferable as the crystalline alicyclic structure-containing polymer because a laminated body having excellent heat resistance can be easily obtained.
  • Polymer ( ⁇ ) A hydride of the polymer ( ⁇ ) having crystallinity.
  • Polymer ( ⁇ ) A hydride or the like of the polymer ( ⁇ ) having crystallinity.
  • the alicyclic structure-containing polymer having crystallinity is a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydride of the ring-opening polymer of dicyclopentadiene.
  • those having crystallinity are more preferable, and hydrides of ring-opening polymers of dicyclopentadiene which have crystallinity are particularly preferable.
  • the ring-opening polymer of dicyclopentadiene the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50 wt% or more, preferably 70 wt% or more, more preferably 90 wt% or more, More preferably, it means 100% by weight of the polymer.
  • the alicyclic structure-containing polymer having crystallinity may not be crystallized before producing the laminated body. However, after the laminated body is produced, the crystalline alicyclic structure-containing polymer contained in the laminated body can usually have high crystallinity because it is crystallized.
  • the specific range of the crystallinity can be appropriately selected according to the desired performance, but it is preferably 10% or more, more preferably 15% or more.
  • the melting point Mp of the crystalline alicyclic structure-containing polymer is preferably 200° C. or higher, more preferably 230° C. or higher, and preferably 290° C. or lower.
  • the alicyclic structure-containing polymer having crystallinity as described above can be produced, for example, by the method described in International Publication No. 2016/067893.
  • the alicyclic structure-containing polymer having no crystallinity is, for example, (1) norbornene-based polymer, (2) monocyclic cycloolefin polymer, (3) cyclic conjugated diene polymer, (4) Examples thereof include vinyl alicyclic hydrocarbon polymers and their hydrides. Among these, the norbornene-based polymer and its hydride are more preferable from the viewpoint of transparency and moldability.
  • Examples of the norbornene-based polymer include ring-opening polymers of norbornene-based monomers, ring-opening copolymers of norbornene-based monomers with other monomers capable of ring-opening copolymerization, and hydrides thereof; Examples thereof include addition polymers and addition copolymers with other monomers that are copolymerizable with norbornene-based monomers. Among these, hydrides of ring-opening polymers of norbornene-based monomers are particularly preferable from the viewpoint of transparency.
  • the alicyclic structure-containing polymer is selected, for example, from the polymers disclosed in JP-A-2002-321302.
  • the weight average molecular weight (Mw) of the polymer Y contained in the base material is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, and preferably 100,000 or less. It is preferably 80,000 or less, particularly preferably 50,000 or less.
  • the polymer Y having such a weight average molecular weight has an excellent balance of mechanical strength, moldability and heat resistance.
  • the molecular weight distribution (Mw/Mn) of the polymer Y contained in the base material is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, preferably 3.5 or less, It is more preferably 3.4 or less, and particularly preferably 3.3 or less.
  • Mw/Mn The molecular weight distribution is at least the lower limit value of the above range, the productivity of the polymer Y can be increased and the production cost can be suppressed. Further, when it is at most the upper limit value, the amount of the low-molecular component becomes small, so that the relaxation upon exposure to high temperature can be suppressed and the stability of the laminate can be enhanced.
  • the weight average molecular weight Mw and the number average molecular weight Mn of the polymer Y are determined by gel permeation chromatography (hereinafter, abbreviated as “GPC”) using cyclohexane (toluene when the resin does not dissolve) as a solvent.
  • the value can be measured in terms of polyisoprene (in terms of polystyrene when the solvent is toluene).
  • the proportion of the polymer Y in the substrate is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight, from the viewpoint of obtaining a laminate having particularly excellent heat resistance and bending bending resistance. It is preferably 95% to 100% by weight, particularly preferably 98% to 100% by weight.
  • the base material may contain an optional component in combination with the above-mentioned polymer Y.
  • the optional component include the same examples as those exemplified as the optional component that may be contained in the thermoplastic resin layer.
  • the optional component one type may be used alone, or two or more types may be used in combination at any ratio.
  • the glass transition temperature Tg of the resin containing the polymer Y is preferably 130° C. or higher. Since the resin Y has the high glass transition temperature Tg as described above, the heat resistance of the resin Y can be enhanced, so that the dimensional change of the base material in a high temperature environment can be suppressed. Since the base material has excellent heat resistance as described above, the conductive layer can be appropriately formed. In particular, the substrate having excellent heat resistance is useful when it is desired to form a conductive layer having a fine pattern shape.
  • the upper limit of the glass transition temperature of the resin Y is preferably 200° C. or lower, more preferably 190° C. or lower, and particularly preferably 180° C. or lower from the viewpoint of easy availability of the resin Y.
  • the glass transition temperature can be measured by the method described in Examples below.
  • the base material usually has high transparency.
  • the specific total light transmittance of the substrate is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more.
  • the total light transmittance of at least one of the thermoplastic resin layer and the base material layer is preferably 80% or more, and more preferably the total light transmittance of both is 80% or more.
  • the laminate has high transparency, which is suitable for use in a display device or the like.
  • the water vapor permeability of the base material is preferably 3 g/m 2 ⁇ 24 h or less, more preferably 2 g/m 2 ⁇ 24 h or less.
  • the lower limit of the water vapor transmission rate of the base material is not particularly limited, but is preferably 0 g/m 2 ⁇ 24 h or more.
  • the storage elastic modulus at 25° C. of the base material is preferably 2000 MPa or more, more preferably 2500 MPa or more, and preferably 3000 MPa or less. By setting the storage elastic modulus of the base material to the upper limit or less, the flexibility of the laminate can be made excellent.
  • the storage elastic modulus of the base material can be measured using a dynamic viscoelasticity measuring device under the condition of a frequency of 1 Hz.
  • the thickness of the base material is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, particularly preferably 60 ⁇ m or less.
  • the thickness of the base material is equal to or more than the lower limit value of the above range, it is possible to suppress infiltration of water into the conductive layer by the base material. Therefore, the occurrence of migration can be effectively suppressed.
  • the thickness of the base material is not more than the upper limit value of the above range, the flexibility of the laminate can be effectively enhanced.
  • the retardation Re in the in-plane direction of the base material can be arbitrarily set according to the application of the laminate.
  • a retardation Re in the in-plane direction that can function as a quarter-wave plate.
  • the retardation Re in the in-plane direction is preferably 100 nm or more, more preferably 110 nm or more, preferably 180 nm or less, more preferably 170 nm or less.
  • it is not particularly limited, but is preferably 10 nm or less, more preferably 5 nm or less.
  • the method of manufacturing the base material there is no limit to the method of manufacturing the base material.
  • the method for producing the base material include a melt molding method and a solution casting method.
  • the melt molding method is preferable because it is possible to suppress the volatile components such as the solvent from remaining on the substrate.
  • the melt molding method can be classified into an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, a stretch molding method and the like.
  • an extrusion molding method, an inflation molding method and a press molding method are preferable in order to obtain a base material excellent in mechanical strength and surface accuracy, and an extrusion molding method is preferable from the viewpoint of easily and efficiently manufacturing the base material. Is particularly preferable.
  • the shape of the substrate is not particularly limited, but a long film is preferable. Further, the substrate is preferably a long film having a slow axis in a direction oblique to the width direction.
  • the oblique direction is an in-plane direction of the film and is a direction that is not parallel to both the longitudinal direction of the film and the width direction of the film.
  • the film having the slow axis in the oblique direction can be obtained by stretching a long film in the oblique direction with respect to the width direction.
  • the direction of the optical axis is a direction inclined with respect to the width direction of the film. Therefore, when a film having a slow axis in the oblique direction (obliquely stretched film) is used as the substrate, the laminate of the present invention is obtained.
  • the body is preferable because it can be easily manufactured roll-to-roll.
  • the diagonal stretching method and the stretching machine used for the diagonal stretching are not particularly limited, and a conventionally known tenter type stretching machine can be used. Further, the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, etc., but is not particularly limited as long as it can continuously stretch a long film obliquely, and various types of stretching Machine can be used.
  • the laminate may include any layer in addition to the thermoplastic resin layer, the conductive layer and the base material.
  • the laminated body may be provided with an arbitrary layer at a position such as a side of the thermoplastic resin layer opposite to the conductive layer or a side of the base material opposite to the conductive layer.
  • the optional layer include a support layer, a hard coat layer, an index matching layer, an adhesive layer, a retardation layer, a polarizer layer, and an optical compensation layer.
  • the base material and the conductive layer are in direct contact with each other. Further, it is preferable that the conductive layer and the thermoplastic resin layer are in direct contact with each other.
  • the term "directly" in which two layers are in contact with each other means that there is no other layer between the two layers.
  • the laminate is a film having a three-layer structure including only a base material, a conductive layer and a thermoplastic resin layer.
  • the total light transmittance of the laminate is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. When the total light transmittance of the laminate is at least the lower limit value, it is suitable for use as an optical member. Further, the haze of the laminate is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less from the viewpoint of enhancing the image clarity of the image display device incorporating the laminate, and ideally Is 0%.
  • the thickness of the laminate is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, even more preferably 7.5 ⁇ m or more, particularly preferably 10 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 175 ⁇ m or less, particularly preferably 150 ⁇ m or less. is there.
  • the thickness of the laminate is not less than the lower limit of the above range, the mechanical strength of the laminate can be increased and wrinkles can be prevented when forming the conductive layer.
  • the thickness of the laminated body is not more than the upper limit value of the above range, the flexibility of the laminated body can be improved, and the laminated body can be thinned.
  • the thermoplastic resin layer has a moisture permeability of 5 g/m 2 ⁇ 24 h or less and a storage elastic modulus at 25°C of 1300 MPa or less. That is, in the present invention, since the thermoplastic resin layer has a moisture permeability in an appropriate range, it is possible to enhance the adhesiveness with the conductive layer and thereby enhance the migration prevention effect. Further, in the present invention, since the thermoplastic resin film has a storage elastic modulus in an appropriate range, it is possible to make the laminate excellent in flexibility. As a result, according to the present invention, it is possible to provide a laminate having excellent flexibility and an excellent effect of preventing migration.
  • the laminate since the laminate has a flexible base material and a thermoplastic resin layer as a layer for supporting the conductive layer, the laminate usually has impact resistance and processing property higher than that of the conductive glass. Excellent in performance. Furthermore, the laminate is usually lighter than the conductive glass.
  • the method for producing the laminate is not limited, but the above-mentioned laminate includes, for example, Step 1 of forming a conductive layer on a base material and Step 2 of forming a thermoplastic resin layer on the conductive layer. It can be manufactured by a method. According to such a manufacturing method, since the thermoplastic resin layer can be easily formed, the manufacturing method can be simplified.
  • Step 1 is a step of forming a conductive layer on the base material.
  • the base material used in the step 1 can be formed from the resin Y by the above-described base material manufacturing method, for example. When an obliquely stretched film is used as the base material, the stretching step is performed before performing step 1.
  • the conductive layer is formed on the base material by the above-described conductive layer forming method.
  • the conductive layer may be indirectly formed on the base material via any layer.
  • the conductive layer is preferably formed directly on the substrate.
  • Step 2 is a step of forming a thermoplastic resin layer on the conductive layer.
  • a thermoplastic resin layer is formed on the conductive layer formed on the base material.
  • the thermoplastic resin layer may be indirectly formed on the conductive layer via any layer.
  • the thermoplastic resin layer manufactured by the above-described method for manufacturing a thermoplastic resin layer may be formed by adhering it to the conductive layer via a pressure-sensitive adhesive or an adhesive.
  • it is preferable that the thermoplastic resin layer is formed directly on the conductive layer.
  • Step 2 preferably includes thermocompression-bonding the thermoplastic resin layer or applying a solution containing the thermoplastic resin. According to this method, the manufacturing method can be simplified.
  • the method of thermocompression-bonding the thermoplastic resin layer is a method of pressure-bonding the thermoplastic resin layer produced by the above-mentioned method for producing a thermoplastic resin layer to the surface of the conductive layer while heating as necessary.
  • the method of applying a solution containing a thermoplastic resin is a method of forming a thermoplastic resin layer directly on the conductive layer by applying a solution containing a thermoplastic resin on the conductive layer and drying it if necessary. is there.
  • the thermoplastic resin layer can be easily formed by adopting this method.
  • the solution containing the thermoplastic resin can be obtained by dissolving or dispersing the thermoplastic resin in a solvent.
  • the method for manufacturing a laminated body may further include an optional step in combination with the above-mentioned steps.
  • the laminate of the present invention Since the laminate of the present invention has excellent flexibility and an excellent effect of preventing migration, it can be suitably used for optical applications such as circularly polarizing plates and touch panels, and applications such as circuit boards. ..
  • a circularly polarizing plate of the present invention includes the above-mentioned laminated body of the present invention and a polarizing plate.
  • the circularly polarizing plate can be obtained, for example, by laminating the polarizing plate in a laminate so that the angle ⁇ 1 formed by the slow axis of the base material and the absorption axis of the polarizing plate is 45°.
  • the angle ⁇ 1 formed by the slow axis of the substrate and the absorption axis of the polarizing plate may include an error within a range of ⁇ 5°, ⁇ 3°, ⁇ 2° or ⁇ 1°.
  • the polarizing plate is a long film having an absorption axis in the lengthwise direction or the width direction, it is easy to set the direction of the slow axis of the substrate and the direction of the absorption axis of the polarizing plate at an appropriate angle, and the circularly polarized light It is preferable because the plate can be easily manufactured.
  • the polarizing film may be produced, for example, by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath. ..
  • it may be produced by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film, stretching it, and further modifying a part of the polyvinyl alcohol unit in the molecular chain into a polyvinylene unit.
  • a polarizing film having a function of separating polarized light into reflected light and transmitted light such as a grid polarizing plate or a multilayer polarizing plate, may be used.
  • a polarizing film containing polyvinyl alcohol is preferable.
  • the polarization degree of the polarizing film is preferably 98% or more, more preferably 99% or more.
  • an adhesive When laminating the polarizing plate and the laminated body, an adhesive may be used.
  • the adhesive is not particularly limited as long as it is optically transparent, and examples thereof include a water-based adhesive, a solvent-based adhesive, a two-component curable adhesive, an ultraviolet curable adhesive, and a pressure-sensitive adhesive. Among these, a water-based adhesive is preferable, and a polyvinyl alcohol-based water-based adhesive is particularly preferable.
  • the adhesive may be used alone or in combination of two or more at an arbitrary ratio.
  • the average thickness of the layer formed by the adhesive is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the method of laminating the laminated body on the polarizing plate there is no limitation on the method of laminating the laminated body on the polarizing plate, but a method of applying an adhesive on one surface of the polarizing plate and then bonding the polarizing plate and the laminated body using a roll laminator and drying is preferable.
  • the surface of the laminate Prior to bonding, the surface of the laminate may be subjected to surface treatment such as corona discharge treatment and plasma treatment.
  • the drying time and the drying temperature are appropriately selected according to the type of adhesive.
  • the obtained circularly polarizing plate can be cut into an appropriate size if necessary and used as an antireflection film of an organic electroluminescence display element (hereinafter, also referred to as an “organic EL display element” as appropriate).
  • the display device of the present invention includes the circularly polarizing plate of the present invention.
  • an organic electroluminescence display device hereinafter, also referred to as “organic EL display device” as appropriate
  • the circularly polarizing plate of the present invention can be used as an antireflection film.
  • the circularly polarizing plate of the present invention is used as an antireflection film
  • the circularly polarizing plate described above is provided on the surface of the organic EL display device so that the surface on the polarizing plate side faces the viewing side, so that the light is incident from the outside of the device.
  • Light can be suppressed from being reflected inside the device and emitted to the outside of the device, and as a result, an undesired phenomenon such as glare on the display surface of the organic EL display device can be suppressed.
  • the touch panel of the present invention includes the laminate of the present invention.
  • the arrangement direction of the laminate is not limited, but it is preferable that the laminate is provided so that the thermoplastic resin layer, the conductive layer, and the base material are sequentially discharged from the viewing side.
  • the touch panel of the present invention may include a laminate and a polarizing plate provided in contact with the thermoplastic resin layer of the laminate.
  • the angle ⁇ 2 of the absorption axis of the polarizing plate with respect to the slow axis of the base material of the laminate may include an error within the range of ⁇ 5°, ⁇ 3°, ⁇ 2° or ⁇ 1°.
  • a touch panel usually has an image display element in combination with a laminated body.
  • the image display element include a liquid crystal display element and an organic electroluminescence display element (hereinafter, also referred to as “organic EL display element” as appropriate).
  • the laminate is provided on the viewing side of the image display device.
  • a flexible image display element (flexible display element)
  • examples of such flexible image display elements include organic EL display elements.
  • An organic EL display device usually includes a first electrode layer, a light emitting layer and a second electrode layer on a substrate in this order, and the light emitting layer emits light when a voltage is applied from the first electrode layer and the second electrode layer. Can occur.
  • the material forming the organic light emitting layer include polyparaphenylene vinylene-based materials, polyfluorene-based materials, and polyvinylcarbazole-based materials.
  • the light emitting layer may have a laminated body of a plurality of layers having different emission colors or a mixed layer in which a certain dye layer is doped with different dyes.
  • the organic EL display element may include functional layers such as a barrier layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • thermoplastic resin layer and the substrate were measured using an ultraviolet/visible spectrometer in the wavelength range of 400 nm to 700 nm.
  • the storage elastic moduli of the thermoplastic resin layer and the substrate used in each example were measured under the conditions of 25° C. and a frequency of 1 Hz using a dynamic viscoelastic device (“DMS6100” manufactured by SII).
  • DMS6100 dynamic viscoelastic device
  • the storage elastic modulus at ⁇ 40° C. and 100° C. was measured in addition to the storage elastic modulus at 25° C.
  • the ratio (E 2 /E 1 ) of the storage elastic modulus E 2 at 100° C. to the storage elastic modulus E 1 at ⁇ 40° C. was calculated.
  • thermoplastic resin layer side of the laminate produced in each example was scribed to form 100 1 mm ⁇ 1 mm sections in a grid pattern.
  • Cellophane tape manufactured by Nichiban Co., Ltd., width: 24 mm
  • ⁇ Evaluation criteria> A: The number of peels is 3 or less in a 100 cross-cut test (JIS standard).
  • B 100 pieces of cross-cut test (JIS standard), the number of peeling is 4 or more and 10 or less.
  • C The number of peels was 11 or more in the 100 cross-cut test (JIS standard).
  • thermoplastic resin layer was formed on the base material on which the conductive layer was formed to manufacture the evaluation substrate.
  • a substrate for evaluation was formed by comb-forming the ITO layer during the production of the laminate of Comparative Example 1.
  • ⁇ Evaluation method> The evaluation substrate of each example was allowed to stand under conditions of 85° C. and 90% RH in heat and humidity, and a voltage of 50 V was applied between the electrodes in this state to perform a migration test.
  • the resistance value of the comb-shaped electrode was measured, and the time (hour) until the resistance value suddenly dropped was measured.
  • “the resistance value sharply decreases” means that the resistance value decreases by 4 digits or more (energizes). The longer the time, the higher the effect of preventing migration.
  • thermoplastic resin layer A (A-3. Production of thermoplastic resin layer) Using a twin-screw extruder equipped with a side feeder and a T-die with a width of 400 mm (“TEM-37B” manufactured by Toshiba Machine Co., Ltd.), and a sheet take-up machine equipped with a cast roll and a release film supply device, the following method Then, a thermoplastic resin layer A was manufactured.
  • the alkoxysilyl modified product (ia1-s) was supplied to a twin-screw extruder to be in a molten state.
  • This alkoxysilyl modified product (ia1-s) (molten resin) in a molten state was extruded from a T die onto a cast roll to form a film.
  • This extrusion was performed under the molding conditions of a molten resin temperature of 180° C., a T die temperature of 180° C., and a cast roll temperature of 40° C.
  • the extruded molten resin was cooled by a cast roll to obtain a thermoplastic resin layer having a thickness of 50 ⁇ m.
  • thermoplastic resin layer A A polyethylene terephthalate (PET) film (thickness: 50 ⁇ m) for release is supplied to one surface of the thermoplastic resin layer extruded on the cast roll, and the thermoplastic resin layer and the PET film are overlapped and wound into a roll shape. , Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained. The multilayer film was pulled out from the film roll of the multilayer film and the PET film was peeled off to obtain a thermoplastic resin layer A. The moisture permeability of this thermoplastic resin layer A was 2 g/m 2 ⁇ 24 h, the storage elastic modulus at 25°C was 1000 MPa, and E 2 /E 1 was 10. The thermoplastic resin layer A had a total light transmittance of 92% and an in-plane retardation Re of 10 nm.
  • thermoplastic resin layer B (B-3. Production of thermoplastic resin layer) Using the sheet take-off machine used in (A-3) of Production Example 1, a thermoplastic resin layer B was produced by the following method.
  • the alkoxysilyl modified product (ib1-s) was fed to a twin-screw extruder.
  • Hydrogenated polybutene was continuously supplied from the side feeder so that the ratio of the hydrogenated polybutene (“pearlream (registered trademark) 24” manufactured by NOF CORPORATION) 20 parts to 100 parts of the alkoxysilyl modified product (ib1-s).
  • pearlream (registered trademark) 24” manufactured by NOF CORPORATION) 20 parts to 100 parts of the alkoxysilyl modified product (ib1-s).
  • this molten resin was extruded from a T-die onto a cast roll to form a film.
  • This extrusion was performed under the molding conditions of a molten resin temperature of 180° C., a T die temperature of 180° C., and a cast roll temperature of 40° C.
  • the extruded molten resin was cooled by a cast roll to obtain a thermoplastic resin layer having a thickness of 50 ⁇ m.
  • a polyethylene terephthalate (PET) film (thickness: 50 ⁇ m) for release is supplied to one surface of the thermoplastic resin layer extruded on the cast roll, and the thermoplastic resin layer and the PET film are overlapped and wound into a roll shape. , Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained.
  • PET polyethylene terephthalate
  • thermoplastic resin layer B The multilayer film was pulled out from the film roll of the multilayer film and the PET film was peeled off to obtain a thermoplastic resin layer B.
  • the moisture permeability of the thermoplastic resin layer B was 5 g/m 2 ⁇ 24 h
  • the storage elastic modulus at 25°C was 128 MPa
  • E 2 /E 1 was 10.
  • the total light transmittance of the thermoplastic resin layer B was 92%.
  • the thermoplastic resin layer B was manufactured by the following method. A thermoplastic resin layer B was obtained by pulling out the multilayer film from the film roll of the multilayer film including the thermoplastic resin layer and the PET film obtained by the above method and peeling the PET film.
  • thermoplastic resin layer B The water vapor permeability of the thermoplastic resin layer B was 5 g/m 2 ⁇ 24 h, the storage elastic modulus at 25°C was 12.8 MPa, and E 2 /E 1 was 10.
  • the thermoplastic resin layer B had a total light transmittance of 90% and an in-plane retardation Re of 10 nm.
  • thermoplastic resin layer C Using the triblock copolymer hydride (ib1) (polymer before silylation) obtained in Production Example 2 (B-1), a thermoplastic resin layer C was produced by the following method.
  • thermoplastic resin layer C was produced using the sheet take-off machine used in (A-3) of Production Example 1. Instead of the alkoxysilyl modified product (ia1-s) in Preparation Example 1 (A-3), the triblock copolymer hydride (ib1) was supplied to the twin-screw extruder. The same operation as in (A-3) was performed to obtain a thermoplastic resin layer having a thickness of 50 ⁇ m.
  • thermoplastic resin layer extruded on the cast roll On one surface of the thermoplastic resin layer extruded on the cast roll, a polyethylene terephthalate (PET) film for release (thickness 50 ⁇ m) was supplied, the thermoplastic resin layer and the PET film were overlapped and rolled up into a roll, Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained. The multilayer film was pulled out from the film roll of the multilayer film and the PET film was peeled off to obtain a thermoplastic resin layer C.
  • the water vapor permeability of the thermoplastic resin layer C was 10 g/m 2 ⁇ 24 h, the storage elastic modulus at 25°C was 128 MPa, and E 2 /E 1 was 10.
  • the thermoplastic resin layer C had a total light transmittance of 92% and an in-plane retardation Re of 10 nm.
  • thermoplastic resin layer D Using the triblock copolymer hydride (ib1) (polymer before silylation) obtained in (B-1) of Production Example 2 and a silane coupling agent, a thermoplastic resin layer is prepared by the following method. D was produced.
  • thermoplastic resin layer D was produced using the sheet take-off machine used in (A-3) of Production Example 1.
  • a thermoplastic resin layer D was produced using the sheet take-off machine used in (A-3) of Production Example 1.
  • a silane coupling agent (3-aminopropyltrieoxysilane (KE903, manufactured by Shin-Etsu Chemical Co., Ltd.)) was supplied to the twin-screw extruder, the same operation as in (A-3) of Production Example 1 was performed, and the thickness was 50 ⁇ m.
  • a thermoplastic resin layer was produced using the sheet take-off machine used in (A-3) of Production Example 1.
  • a silane coupling agent (3-aminopropyltrieoxysilane (KE903, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • thermoplastic resin layer D On one surface of the thermoplastic resin layer extruded on the cast roll, a polyethylene terephthalate (PET) film for release (thickness 50 ⁇ m) was supplied, the thermoplastic resin layer and the PET film were overlapped and rolled up into a roll, Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained. The multilayer film was pulled out from the film roll of the multilayer film, and the PET film was peeled off to obtain a thermoplastic resin layer D.
  • the water vapor permeability of the thermoplastic resin layer D was 10 g/m 2 ⁇ 24 h, the storage elastic modulus at 25°C was 128 MPa, and E 2 /E 1 was 10.
  • the thermoplastic resin layer D had a total light transmittance of 90% and an in-plane retardation Re of 10 nm.
  • Example 1 (1-1) Preparation of Base Material A
  • a resin film formed of a norbornene-based polymer as an alicyclic structure-containing polymer having no crystallinity manufactured by Nippon Zeon Co., Ltd., “Zeonoa Film”) ZF16”; thickness 50 ⁇ m; glass transition temperature of resin 160° C., hereinafter also referred to as “base material A”).
  • the storage elastic modulus of the substrate A at 25° C. was 2300 MPa.
  • the water vapor permeability of the base material A was 2 g/m 2 ⁇ 24 h, and the in-plane retardation Re was 5 nm.
  • the total light transmittance of the base material A was 90%.
  • the surface of the base material A was plasma-treated. While flowing nitrogen and dry air at a nitrogen flow rate of 0.5 NL/min and a dry air flow rate of 0.1 NL/min, the substrate A was irradiated with plasma at a moving frequency of 5 cm/min at a resonance frequency of 25 kHz. The distance between the plasma generation source and the film was 5 mm.
  • a positive photoresist (Zeon Corporation, "ZPP1700” manufactured by Nippon Zeon Co., Ltd.) is applied on this, dried, exposed, and developed to form a pattern, which is then subjected to etching treatment with an acidic etching solution to form a base material A.
  • a conductive layer was formed on. This obtained the base material A provided with a conductive layer.
  • thermoplastic resin layer A produced in Production Example 1 as the thermoplastic resin layer. After heating the base material A provided with the conductive layer to about 100° C. on a hot plate, the thermoplastic resin layer A was placed on the conductive layer and subjected to thermocompression bonding at a pressure of 0.3 MPa. In this way, a laminate was obtained in which the thermoplastic resin layer was thermocompression bonded onto the conductive layer. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
  • Example 2 In this example, a step of forming a thermoplastic resin layer on the conductive layer using a crystalline resin film (base material B) produced by the following method in place of the base material A is performed using a solution containing a thermoplastic resin. The coating method was used to obtain a laminate. The method for manufacturing the laminate of this example will be described below.
  • a solution was prepared by dissolving 0.014 part of a tetrachlorotungsten phenylimide (tetrahydrofuran) complex in 0.70 part of toluene. To this solution, 0.061 part of a diethylaluminum ethoxide/n-hexane solution having a concentration of 19% was added and stirred for 10 minutes to prepare a catalyst solution. This catalyst solution was added to the pressure resistant reactor to start the ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene were 8,750 and 28,100, respectively, and the molecular weight distribution (Mw/Mn) obtained from them was obtained.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • a filter aid (“Radiolite (registered trademark) #1500” manufactured by Showa Chemical Industry Co., Ltd.) was added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Corp.) was used as an adsorbent. The solution was filtered off.
  • a filter aid (“Radiolite (registered trademark) #1500” manufactured by Showa Chemical Industry Co., Ltd.) was added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Corp.) was used as an adsorbent.
  • TCP-HX PP pleated cartridge filter
  • the hydride and the solution contained in the reaction solution were separated using a centrifuge and dried under reduced pressure at 60° C. for 24 hours to give a hydride of a crystalline ring-opening polymer of dicyclopentadiene 28. 5 parts were obtained.
  • the hydride had a hydrogenation ratio of 99% or more, a glass transition temperature Tg of 93° C., a melting point Mp of 262° C., and a racemo dyad ratio of 89%.
  • An antioxidant tetrakis[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane was added to 100 parts of the hydride of the obtained ring-opening polymer of dicyclopentadiene.
  • IRGANOX registered trademark
  • TEM-37B twin-screw extruder
  • a resin is formed into a strand-shaped molded product by hot melt extrusion molding using a twin-screw extruder, and then shredded with a strand cutter to obtain a resin containing a crystalline alicyclic structure-containing polymer (crystalline COP Resin (y1) pellets were obtained.
  • the crystalline COP resin (y1) is a resin containing a hydride of a ring-opening polymer of dicyclopentadiene as a crystalline alicyclic structure-containing polymer.
  • the crystalline COP resin (y1) obtained in (1) was supplied to a T die at an extrusion screw temperature of 280° C., discharged from the T die at a die extrusion temperature of 280° C., and cast on a cooling roll whose temperature was adjusted to 60° C., A film having a thickness of 15 ⁇ m and made of a crystalline COP resin was produced.
  • the film was annealed in an oven at 170° C. for 30 seconds to obtain a crystalline resin film (base material B).
  • the storage elastic modulus at 25° C. of the base material B was 2500 MPa, the moisture permeability was 2 g/m 2 ⁇ 24 h, and the in-plane retardation Re was 5 nm.
  • the total light transmittance of the base material B was 90%.
  • thermoplastic resin layer A produced in Production Example 1 was dissolved in cyclohexane to prepare a solution containing 20% by weight of the thermoplastic resin (resin solution).
  • This resin solution was slit-coated on a base material B having a conductive layer and then heated on a hot plate at 90° C. for 60 seconds to obtain a laminate having a thermoplastic resin layer A having a thickness of 35 ⁇ m.
  • a folding test was conducted on the obtained laminate, and the results are shown in Table 1.
  • Example 3 A laminate was obtained by performing the same operation as in Example 1 except that a polyethylene terephthalate (PET) film (PET film, "Substrate C” manufactured by Teijin Ltd.) was used in place of the substrate A. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
  • the storage elastic modulus at 25° C. of the substrate C was 2300 MPa, the moisture permeability was 10 g/m 2 ⁇ 24 h, and the in-plane retardation Re was 150 nm.
  • the total light transmittance of the base material C was 88%.
  • Example 4 A laminated body was obtained by performing the same operation as in Example 1 except that the thermoplastic resin layer B produced in Production Example 2 was used instead of the thermoplastic resin layer A. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
  • Example 5 The same operation as in Example 1 was performed except that the thermoplastic resin layer B produced in Production Example 2 was used instead of the thermoplastic resin layer A, and the base material B was used instead of the base material A. A laminated body was obtained. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
  • thermoplastic resin layer B instead of the thermoplastic resin layer A, the thermoplastic resin layer B produced in Production Example 2 was used, and instead of the base material A, crystallinity having a slow axis in the direction of 45° with respect to the longitudinal direction was used.
  • a laminate was obtained by performing the same operation as in Example 1 except that a film containing an alicyclic structure-containing polymer (Zeonor film ZD series, thickness 80 ⁇ m, “Substrate D”) was used.
  • a folding test was conducted on the obtained laminate, and the results are shown in Table 1.
  • the storage elastic modulus at 25° C. of the substrate D was 2000 MPa, the moisture permeability was 2 g/m 2 ⁇ 24 h, and the in-plane retardation Re was 140 nm.
  • the total light transmittance of the substrate D was 92%.
  • Example 1 The same operation as in Example 1 was repeated except that a film of a resin containing an ethylene-vinyl acetate copolymer (UBE Maruzen Polyethylene Co., Ltd., UBE polyethylene V115, EVA film, thickness 100 ⁇ m) was used instead of the thermoplastic resin layer A. Then, a laminated body was obtained. A folding test was conducted on the obtained laminate, and the results are shown in Table 2.
  • the EVA film had a water vapor transmission rate of 50 g/m 2 ⁇ 24 h, a storage elastic modulus at 25°C of 15 MPa, and an E 2 /E 1 of 250.
  • the EVA film had a total light transmittance of 89% and an in-plane retardation Re of 10 nm.
  • Example 2 A laminate was obtained by performing the same operations as in Example 1 except that an EVA film was used instead of the thermoplastic resin layer A and a base material C was used instead of the base material A. A folding test was conducted on the obtained laminate, and the results are shown in Table 2. The EVA film used was the same as that used in Comparative Example 1.
  • Example 1 was repeated except that the thermoplastic resin layer A was replaced with the thermoplastic resin layer C (thermoplastic resin layer containing triblock copolymer hydride before silylation) produced in Production Example 3. The same operation was performed to obtain a laminated body. A folding test was conducted on the obtained laminate, and the results are shown in Table 2.
  • thermoplastic resin layer D thermoplastic resin layer containing a triblock copolymer hydride before silylation and a silane coupling agent
  • thermoplastic resin layer A thermoplastic resin layer containing a triblock copolymer hydride before silylation and a silane coupling agent
  • Example 5 The same operation as in Example 1 was performed except that a resin film containing a copolymer of tetrafluoroethylene and ethylene (“Fluon” manufactured by AGC Co., ETFE film, thickness 100 ⁇ m) was used instead of the thermoplastic resin layer A. Then, a laminated body was obtained. A folding test was conducted on the obtained laminate, and the results are shown in Table 2.
  • the ETFE film had a water vapor permeability of 3 g/m 2 ⁇ 24 h, a storage elastic modulus at 25°C of 2400 MPa, and an E 2 /E 1 of 30.
  • the ETFE film had a total light transmittance of 90% and an in-plane retardation Re of 100 nm.
  • Example 7 The circularly polarizing plate of the commercially available display device (organic EL display element) having the circularly polarizing plate disposed on the outermost surface was peeled off, and the laminated body of Example 6 was mounted so that the thermoplastic resin layer was on the outermost surface. A display device including the laminated body was obtained. The reflectance before and after mounting the laminated body on the display surface of the display device was measured by a reflectance measuring spectroscope MCP-9800 manufactured by Otsuka Electronics Co., Ltd., and the reflectance from the external light of the display device was suppressed by 95%. We were able to.
  • HSIS silyl modified product block copolymer hydride silyl modified product.
  • Ag-NW silver nanowire.
  • EVA EVA film.
  • HSIS block copolymer hydride.
  • ETFE ETFE film.
  • HSIS silyl modified product block copolymer hydride silyl modified product. “1000 ⁇ ”: more than 1000 times. "100000 ⁇ ”: over 100,000 hours.

Abstract

Provided are: a laminate comprising a thermoplastic resin layer, an electorconductive layer, and a substrate in the stated order, the thermoplastic resin layer having a moisture permeability of 5 g/m2⋅24 h or less and having a storage elastic modulus at 25°C of 1300 MPa or less, and the electroconductive layer including at least one element selected from among Sn, Pb, Ag, Cu, and Au; and a circular polarizer, a display device, and a touch panel that include the laminate. Also provided is a method for producing the laminate. The thermoplastic resin layer preferably includes a polymer having a silyl group. The polymer having a silyl group is preferably a silyl-group-modified substance of a block copolymer.

Description

積層体及びその製造方法、円偏光板、表示装置並びにタッチパネルLaminated body and manufacturing method thereof, circularly polarizing plate, display device and touch panel
 本発明は、積層体及びその製造方法、円偏光板、表示装置並びにタッチパネルに関する。 The present invention relates to a laminated body and a manufacturing method thereof, a circularly polarizing plate, a display device, and a touch panel.
 従来、導電性部材として、ガラス板上に酸化インジウム薄膜を形成した導電性ガラスが知られている。しかし、導電性ガラスは、基材がガラスであるために、可撓性に劣り、用途によっては適用が困難である。そこで、可撓性に優れる導電性部材として、樹脂を利用した導電性部材が提案されている(特許文献1)。 Conventionally, conductive glass in which an indium oxide thin film is formed on a glass plate is known as a conductive member. However, the conductive glass is inferior in flexibility because the base material is glass and is difficult to apply depending on the application. Therefore, as a conductive member having excellent flexibility, a conductive member using resin has been proposed (Patent Document 1).
特開2017-65217号公報JP, 2017-65217, A
 特許文献1には、可撓性基材と、この可撓性基材上に形成された導電層と、この導電層上に形成された粘着剤層とを備えた導電性部材が記載されている。このような導電性部材はタッチパネル等に用いることがある。このような場合、その使用環境によっては、導電層に含まれる金属材料がイオン化して移動し再び金属として生成されるマイグレーションという現象が発生することがあった。マイグレーションが発生すると、タッチパネルが正常に駆動しなくなるため、改善が求められている。 Patent Document 1 describes a conductive member including a flexible base material, a conductive layer formed on the flexible base material, and an adhesive layer formed on the conductive layer. There is. Such a conductive member may be used for a touch panel or the like. In such a case, depending on the environment of use, a phenomenon called migration may occur in which the metal material contained in the conductive layer is ionized and moved to be regenerated as a metal. When the migration occurs, the touch panel does not operate normally, so improvement is required.
 本発明は、前記の課題に鑑みて創案されたもので、優れた可撓性を有し、かつ、優れたマイグレーション防止効果を有する積層体及びその製造方法;前記の積層体を備えた円偏光板及びタッチパネル;並びに前記円偏光板を備えた表示装置を提供することを目的とする。 The present invention was devised in view of the above problems, and has a laminated body having excellent flexibility and an excellent migration preventing effect, and a method for producing the same; circularly polarized light provided with the laminated body. It is an object to provide a display device including a plate and a touch panel; and the circularly polarizing plate.
 本発明者は、前記の課題を解決するべく鋭意検討を行った結果、積層体が、所定の透湿度及び所定の貯蔵弾性率を有する熱可塑性樹脂層と、導電層と、基材と、をこの順に備えることにより、当該積層体を、可撓性及びマイグレーション防止効果に優れたものとすることができることを見出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor, as a result of intensive studies to solve the above problems, the laminate is a thermoplastic resin layer having a predetermined moisture permeability and a predetermined storage elastic modulus, a conductive layer, and a substrate, It has been found that, by providing in this order, the laminate can be made excellent in flexibility and migration prevention effect, and the present invention has been completed.
That is, the present invention includes the following.
 〔1〕 熱可塑性樹脂層と導電層と基材とをこの順に備え、
 前記熱可塑性樹脂層は、透湿度が5g/m・24h以下で、25℃における貯蔵弾性率が1300MPa以下であり、
 前記導電層は、Sn、Pb、Ag、Cu及びAuのうちの少なくとも一種の元素を含む、積層体。
 〔2〕 前記熱可塑性樹脂層が、シリル基を有する重合体を含む、〔1〕に記載の積層体。
 〔3〕 前記シリル基を有する重合体が、ブロック共重合体のシリル基変性物である、〔2〕に記載の積層体。
 〔4〕 前記シリル基を有する重合体が、芳香族ビニル単量体と共役ジエン単量体との共重合体のシリル基変性物である、〔2〕又は〔3〕に記載の積層体。
 〔5〕 前記芳香族ビニル単量体に基づく単位の水素化率が90%以上であり、且つ前記共役ジエン単量体に基づく単位の水素化率が90%以上である、〔4〕に記載の積層体。
 〔6〕 前記熱可塑性樹脂層の-40℃における貯蔵弾性率Eに対する、前記熱可塑性樹脂層の100℃における貯蔵弾性率Eの比(E/E)が、15以下である、〔1〕~〔5〕のいずれか1項記載の積層体。
 〔7〕 前記基材の透湿度が、3g/m・24h以下である、〔1〕~〔6〕のいずれか1項記載の積層体。
 〔8〕 前記基材が、重合体を含む重合体フィルムである、〔1〕~〔7〕のいずれか1項記載の積層体。
 〔9〕 前記基材が、脂環式構造含有重合体を含む、〔1〕~〔8〕のいずれか1項記載の積層体。
 〔10〕 前記基材が、長尺状のフィルムであり、当該フィルムの幅方向に対して斜め方向に遅相軸を有する、〔1〕~〔9〕のいずれか1項記載の積層体。
 〔11〕 前記基材の25℃における貯蔵弾性率が、2000~3000MPaである、〔1〕~〔10〕のいずれか1項記載の積層体。
 〔12〕 前記熱可塑性樹脂層の、面内方向の位相差が、10nm以下である、〔1〕~〔11〕のいずれか1項記載の積層体。
 〔13〕 前記熱可塑性樹脂層及び前記基材の少なくとも一方の全光線透過率が、80%以上である、〔1〕~〔12〕のいずれか1項記載の積層体。
 〔14〕 〔1〕~〔13〕のいずれか1項記載の積層体と、偏光板と、を備える、円偏光板。
 〔15〕 〔14〕記載の円偏光板を備える表示装置。
 〔16〕 前記表示装置が有機エレクトロルミネッセンス装置である〔15〕記載の表示装置。
 〔17〕 〔1〕~〔13〕のいずれか1項記載の積層体を備える、タッチパネル。
 〔18〕 前記積層体の前記熱可塑性樹脂層に接して設けた偏光板を備える、〔17〕記載のタッチパネル。
 〔19〕 前記積層体と、偏光板とを備え、
 前記積層体と、偏光板とを備え、
 前記積層体の前記基材の遅相軸に対する、前記偏光板の吸収軸のなす角が45°である、〔17〕または〔18〕記載のタッチパネル。
 〔20〕 〔1〕~〔13〕のいずれか1項に記載の積層体の製造方法であって、
 前記基材上に前記導電層を形成する工程1と、
 前記導電層上に前記熱可塑性樹脂層を形成する工程2と、を含み、
 前記工程2は、前記熱可塑性樹脂層を熱圧着すること、または熱可塑性樹脂を含む溶液を塗布することを含む、積層体の製造方法。
[1] A thermoplastic resin layer, a conductive layer, and a base material are provided in this order,
The thermoplastic resin layer has a moisture permeability of 5 g/m 2 ·24 h or less and a storage elastic modulus at 25° C. of 1300 MPa or less,
The said conductive layer is a laminated body containing the element of at least 1 type of Sn, Pb, Ag, Cu, and Au.
[2] The laminate according to [1], wherein the thermoplastic resin layer contains a polymer having a silyl group.
[3] The laminate according to [2], wherein the polymer having a silyl group is a silyl group-modified product of a block copolymer.
[4] The laminate according to [2] or [3], wherein the polymer having a silyl group is a silyl group-modified product of a copolymer of an aromatic vinyl monomer and a conjugated diene monomer.
[5] The hydrogenation rate of the unit based on the aromatic vinyl monomer is 90% or more, and the hydrogenation rate of the unit based on the conjugated diene monomer is 90% or more, [4] Stack of.
[6] The ratio (E 2 /E 1 ) of the storage elastic modulus E 2 at 100° C. of the thermoplastic resin layer to the storage elastic modulus E 1 at −40° C. of the thermoplastic resin layer is 15 or less. The laminate according to any one of [1] to [5].
[7] The laminate according to any one of [1] to [6], wherein the water vapor permeability of the base material is 3 g/m 2 ·24 h or less.
[8] The laminate according to any one of [1] to [7], wherein the substrate is a polymer film containing a polymer.
[9] The laminate according to any one of [1] to [8], wherein the base material contains an alicyclic structure-containing polymer.
[10] The laminate according to any one of [1] to [9], wherein the base material is a long film and has a slow axis in a direction oblique to the width direction of the film.
[11] The laminate according to any one of [1] to [10], wherein the substrate has a storage elastic modulus at 25° C. of 2000 to 3000 MPa.
[12] The laminate according to any one of [1] to [11], wherein the thermoplastic resin layer has a retardation in the in-plane direction of 10 nm or less.
[13] The laminate according to any one of [1] to [12], wherein the total light transmittance of at least one of the thermoplastic resin layer and the substrate is 80% or more.
[14] A circularly polarizing plate comprising the laminate according to any one of [1] to [13] and a polarizing plate.
[15] A display device including the circularly polarizing plate according to [14].
[16] The display device according to [15], wherein the display device is an organic electroluminescence device.
[17] A touch panel comprising the laminate according to any one of [1] to [13].
[18] The touch panel according to [17], including a polarizing plate provided in contact with the thermoplastic resin layer of the laminate.
[19] comprises the laminate and a polarizing plate,
Comprising the laminate and a polarizing plate,
The touch panel according to [17] or [18], wherein an angle formed by an absorption axis of the polarizing plate with respect to a slow axis of the base material of the laminate is 45°.
[20] The method for producing a laminate according to any one of [1] to [13],
Step 1 of forming the conductive layer on the substrate,
A step 2 of forming the thermoplastic resin layer on the conductive layer,
The said process 2 is a manufacturing method of a laminated body including thermocompression-bonding the said thermoplastic resin layer, or applying the solution containing a thermoplastic resin.
 本発明によれば、優れた可撓性を有し、かつ、優れたマイグレーション防止効果を有する積層体及びその製造方法;前記の積層体を備えた円偏光板及びタッチパネル;並びに前記円偏光板を備えた表示装置を提供することができる。 According to the present invention, a laminate having excellent flexibility and an excellent effect of preventing migration, and a method for producing the same; a circularly polarizing plate and a touch panel including the laminate, and the circularly polarizing plate are provided. A display device provided with the display device can be provided.
図1は、本発明の一実施形態に係る積層体を模式的に示す断面図である。FIG. 1 is a sectional view schematically showing a laminated body according to an embodiment of the present invention.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and exemplifications. However, the present invention is not limited to the embodiments and exemplifications shown below, and may be implemented by being arbitrarily modified within the scope of the claims of the present invention and the scope of equivalents thereof.
 本願において、「長尺状」のフィルムとは、フィルムの幅に対して、5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。フィルムの幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。 In the present application, the “long film” means a film having a length of 5 times or more, preferably 10 times or more, specifically, a width of the film. It has a length that allows it to be rolled up and stored or transported. The upper limit of the ratio of the length to the width of the film is not particularly limited, but may be 100,000 times or less, for example.
 本願において、フィルムの面内方向の位相差Reは、式Re=(nx-ny)×dに従って算出する。ここで、nxは、フィルムの面内の遅相軸方向の屈折率(面内の最大屈折率)であり、nyは、フィルムの面内の遅相軸に垂直な方向の屈折率であり、dは、フィルムの厚み(nm)である。測定波長は、別に断らない限り、可視光領域の代表的な波長である590nmとする。 In the present application, the retardation Re in the in-plane direction of the film is calculated according to the formula Re=(nx−ny)×d. Here, nx is the refractive index in the in-plane slow axis direction of the film (maximum in-plane refractive index), and ny is the refractive index in the direction perpendicular to the in-plane slow axis of the film, d is the thickness (nm) of the film. Unless otherwise specified, the measurement wavelength is 590 nm which is a typical wavelength in the visible light region.
 [1.積層体の概要]
 図1は、本発明の一実施形態に係る積層体10を模式的に示す断面図である。
 図1に示すように、本発明の一実施形態に係る積層体10は、熱可塑性樹脂層110と、導電層120と、基材130とを、厚み方向においてこの順に備える。本発明において、熱可塑性樹脂層は、所定の透湿度と、所定の貯蔵弾性率を有し、導電層は、所定の元素を含む。
[1. Overview of laminate]
FIG. 1 is a sectional view schematically showing a laminated body 10 according to an embodiment of the present invention.
As shown in FIG. 1, a laminate 10 according to an embodiment of the present invention includes a thermoplastic resin layer 110, a conductive layer 120, and a base material 130 in this order in the thickness direction. In the present invention, the thermoplastic resin layer has a predetermined moisture permeability and a predetermined storage elastic modulus, and the conductive layer contains a predetermined element.
 [2.熱可塑性樹脂層]
 熱可塑性樹脂層は、熱可塑性樹脂で形成された層である。熱可塑性樹脂層は透湿度が5g/m・24h以下で、25℃における貯蔵弾性率が1300MPa以下の層である。熱可塑性樹脂層の透湿度を前記範囲とし、かつ貯蔵弾性率を前記範囲とすることにより、熱可塑性樹脂層と導電層との密着度を高めて、マイグレーション防止効果を向上しつつ、積層体の可撓性を向上することができる。
[2. Thermoplastic resin layer]
The thermoplastic resin layer is a layer formed of a thermoplastic resin. The thermoplastic resin layer is a layer having a moisture permeability of 5 g/m 2 ·24 h or less and a storage elastic modulus at 25° C. of 1300 MPa or less. The moisture permeability of the thermoplastic resin layer in the above range, and by setting the storage elastic modulus in the above range, by increasing the adhesion between the thermoplastic resin layer and the conductive layer, while improving the migration prevention effect, the laminate Flexibility can be improved.
 熱可塑性樹脂層の透湿度は5g/m・24h以下、好ましくは4g/m・24h以下、より好ましくは3g/m・24h以下である。熱可塑性樹脂の透湿度の下限値は特に限定はないが、好ましくは、1g/m・24h以上、より好ましくは2g/m・24h以上である。透湿度を上限値以下とすることにより、熱可塑性樹脂層と導電層との密着度を高めて、マイグレーション防止効果を向上することができる。 The water vapor permeability of the thermoplastic resin layer is 5 g/m 2 ·24 h or less, preferably 4 g/m 2 ·24 h or less, more preferably 3 g/m 2 ·24 h or less. The lower limit of the moisture permeability of the thermoplastic resin is not particularly limited, but is preferably 1 g/m 2 ·24 h or more, more preferably 2 g/m 2 ·24 h or more. By setting the water vapor permeability to the upper limit or less, the degree of adhesion between the thermoplastic resin layer and the conductive layer can be increased, and the migration preventing effect can be improved.
 熱可塑性樹脂層の透湿度は、リッシー法(測定機器L80-5000型(システックイリノイ社製)、温度条件40℃湿度90%)により測定しうる。 The water vapor transmission rate of the thermoplastic resin layer can be measured by the Lissi method (measuring instrument L80-5000 type (manufactured by Systec Illinois), temperature condition 40°C, humidity 90%).
 熱可塑性樹脂層の25℃における貯蔵弾性率は1300MPa以下、好ましくは1100MPa以下であり、好ましくは100MPa以上である。熱可塑性樹脂層の、25℃における貯蔵弾性率を上限値以下とすることにより熱可塑性樹脂層の可撓性を優れたものとすることができる。 The storage elastic modulus at 25° C. of the thermoplastic resin layer is 1300 MPa or less, preferably 1100 MPa or less, and preferably 100 MPa or more. By setting the storage elastic modulus at 25° C. of the thermoplastic resin layer to the upper limit value or less, the flexibility of the thermoplastic resin layer can be made excellent.
 熱可塑性樹脂層の-40℃における貯蔵弾性率Eに対する、熱可塑性樹脂層の100℃における貯蔵弾性率Eの比(E/E)は、好ましくは15以下であり、より好ましくは12以下である。E/Eの下限値は、特に限定されないが、好ましくは5以上であり、より好ましくは8以上である。E/Eを上記上限値以下とすることにより、温度差のある環境下において、積層体の可撓性を優れたものとしうる。 The ratio (E 2 /E 1 ) of the storage elastic modulus E 2 of the thermoplastic resin layer at 100° C. to the storage elastic modulus E 1 of −40° C. is preferably 15 or less, and more preferably It is 12 or less. The lower limit of E 2 /E 1 is not particularly limited, but is preferably 5 or more, more preferably 8 or more. By setting E 2 /E 1 to be equal to or less than the above upper limit, the flexibility of the laminate can be made excellent in an environment with a temperature difference.
 熱可塑性樹脂層の各貯蔵弾性率は、動的粘弾性測定装置を用いて、周波数1Hzの条件で、測定しうる。具体的な測定条件は、後述する実施例の条件を採用しうる。 Each storage elastic modulus of the thermoplastic resin layer can be measured using a dynamic viscoelasticity measuring device under the condition of a frequency of 1 Hz. As specific measurement conditions, the conditions of Examples described later can be adopted.
 熱可塑性樹脂層の面内方向の位相差Reは好ましくは10nm以下であり、より好ましくは5nm以下である。Reの下限は、0nmとしうる。 The retardation Re in the in-plane direction of the thermoplastic resin layer is preferably 10 nm or less, more preferably 5 nm or less. The lower limit of Re can be 0 nm.
 [2.1.熱可塑性樹脂]
 熱可塑性樹脂層を形成する熱可塑性樹脂としては、重合体(以下、「重合体X」ともいう)を含み、更に必要に応じて任意の成分を含みうる熱可塑性樹脂を用いることができる。重合体Xは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[2.1. Thermoplastic resin]
As the thermoplastic resin forming the thermoplastic resin layer, a thermoplastic resin that contains a polymer (hereinafter, also referred to as “polymer X”) and may further contain any component as necessary can be used. As the polymer X, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 熱可塑性樹脂が含む重合体Xとしては、シリル基を有する重合体が好ましい。シリル基を有する重合体を含む熱可塑性樹脂から形成した熱可塑性樹脂層は、他の材料に対して高い密着性を示す。よって、シリル基を有する重合体を含む樹脂で形成された熱可塑性樹脂層は、導電層に対する密着性に優れるので、水等の侵入を防止してマイグレーションを有効に防止することができ、積層体全体として、機械的強度を向上させることができる。 As the polymer X contained in the thermoplastic resin, a polymer having a silyl group is preferable. A thermoplastic resin layer formed from a thermoplastic resin containing a polymer having a silyl group exhibits high adhesion to other materials. Therefore, since the thermoplastic resin layer formed of a resin containing a polymer having a silyl group has excellent adhesion to the conductive layer, it is possible to prevent entry of water and the like and effectively prevent migration, and thus the laminate Overall, the mechanical strength can be improved.
 シリル基を有する重合体としては、ブロック共重合体のシリル基変性物が好ましい。ブロック共重合体のシリル基変性物としては、ブロック共重合体及びその水素化物にシリル基を導入したものが挙げられる。また、シリル基を有する重合体としては、芳香族ビニル単量体と共役ジエン単量体との共重合体のシリル基変性物が好ましい。芳香族ビニル単量体と共役ジエン単量体との共重合体のシリル基変性物としては、芳香族ビニル単量体と共役ジエン単量体との共重合体またはその水素化物に、シリル基を導入したものが挙げられる。ただし、本発明において用いる重合体及び重合体の構成要素は、その製造方法によって限定されない。 As the polymer having a silyl group, a block copolymer modified with a silyl group is preferable. Examples of silyl group-modified products of block copolymers include block copolymers and hydrogenated products thereof in which a silyl group is introduced. Further, the silyl group-containing polymer is preferably a silyl group-modified product of a copolymer of an aromatic vinyl monomer and a conjugated diene monomer. The silyl group-modified product of the copolymer of an aromatic vinyl monomer and a conjugated diene monomer includes a copolymer of an aromatic vinyl monomer and a conjugated diene monomer or a hydride thereof with a silyl group. The thing which introduced is mentioned. However, the polymer and the constituent elements of the polymer used in the present invention are not limited by the production method thereof.
 シリル基を有する重合体としては、芳香族ビニル単量体単位を含有する重合体ブロック[A]と、共役ジエン単量体単位を含有する重合体ブロック[B]とを含むブロック共重合体の水素化物にシリル基を導入したもの、及び、芳香族ビニル単量体単位を含有する重合体ブロック[A]と、芳香族ビニル単量体単位及び共役ジエン単量体単位を含有する重合体ブロック[C]とを含むブロック共重合体の水素化物にシリル基を導入したものがより好ましい。 The polymer having a silyl group is a block copolymer containing a polymer block [A] containing an aromatic vinyl monomer unit and a polymer block [B] containing a conjugated diene monomer unit. A hydride having a silyl group introduced, and a polymer block [A] containing an aromatic vinyl monomer unit, and a polymer block containing an aromatic vinyl monomer unit and a conjugated diene monomer unit It is more preferable to introduce a silyl group into a hydride of a block copolymer containing [C].
 以下、シリル基を有する重合体として好適な、重合体ブロック[A]と、重合体ブロック[B]または重合体ブロック[C]とを含むブロック共重合体の水素化物にシリル基を導入したものについて、説明するが、本発明はこれに限定されない。以下の説明において、重合体ブロック[A]と、重合体ブロック[B]または重合体ブロック[C]とを含むブロック共重合体を、ブロック共重合体[1]と呼ぶことがある。また、ブロック共重合体[1]の水素化物を水素化物[2]と呼ぶことがある。 Hereinafter, a hydride of a block copolymer containing a polymer block [A] and a polymer block [B] or a polymer block [C], which is suitable as a polymer having a silyl group, having a silyl group introduced therein. However, the present invention is not limited to this. In the following description, the block copolymer containing the polymer block [A] and the polymer block [B] or the polymer block [C] may be referred to as a block copolymer [1]. Moreover, the hydride of the block copolymer [1] may be called a hydride [2].
 ブロック共重合体[1]は、ブロック共重合体[1]の1分子当たり2個以上の重合体ブロック[A]と、ブロック共重合体[1]1分子あたり1個以上の重合体ブロック[B]または重合体ブロック[C]とを有することが、特に好ましい。 The block copolymer [1] includes two or more polymer blocks [A] per molecule of the block copolymer [1] and one or more polymer blocks [1] per molecule of the block copolymer [1]. B] or the polymer block [C] is particularly preferable.
 重合体ブロック[A]は、芳香族ビニル単量体単位を含有する重合体ブロックである。ここで、芳香族ビニル単量体単位とは、芳香族ビニル化合物を重合して形成される構造を有する構造単位のことをいい、芳香族ビニル化合物単位ともいう。 The polymer block [A] is a polymer block containing an aromatic vinyl monomer unit. Here, the aromatic vinyl monomer unit refers to a structural unit having a structure formed by polymerizing an aromatic vinyl compound, and is also referred to as an aromatic vinyl compound unit.
 重合体ブロック[A]が有する芳香族ビニル単量体単位に対応する芳香族ビニル化合物としては、例えば、スチレン;α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン等の、置換基として炭素数1~6のアルキル基を有するスチレン類;4-クロロスチレン、ジクロロスチレン、4-モノフルオロスチレン等の、置換基としてハロゲン原子を有するスチレン類;4-メトキシスチレン等の、置換基として炭素数1~6のアルコキシ基を有するスチレン類;4-フェニルスチレン等の、置換基としてアリール基を有するスチレン類;1-ビニルナフタレン、2-ビニルナフタレン等のビニルナフタレン類;等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも、吸湿性を低くできることから、スチレン、置換基として炭素数1~6のアルキル基を有するスチレン類等の、極性基を含有しない芳香族ビニル化合物が好ましく、工業的入手のし易さから、スチレンが特に好ましい。 Examples of the aromatic vinyl compound corresponding to the aromatic vinyl monomer unit contained in the polymer block [A] include styrene; α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2 Styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, such as 4,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t-butylstyrene, and 5-t-butyl-2-methylstyrene; 4 -Styrenes having a halogen atom as a substituent, such as chlorostyrene, dichlorostyrene, 4-monofluorostyrene; Styrenes having an alkoxy group having 1 to 6 carbon atoms as a substituent, such as 4-methoxystyrene; 4- Examples thereof include styrenes having an aryl group as a substituent such as phenylstyrene; vinylnaphthalenes such as 1-vinylnaphthalene and 2-vinylnaphthalene. These may be used individually by 1 type and may be used in combination of 2 or more types in arbitrary ratios. Of these, aromatic vinyl compounds containing no polar group, such as styrene and styrenes having an alkyl group having 1 to 6 carbon atoms as a substituent, are preferable because of their low hygroscopicity, and they are industrially easily available. Therefore, styrene is particularly preferable.
 重合体ブロック[A]における芳香族ビニル単量体単位の含有率は、好ましくは90重量%以上、より好ましくは95重量%以上、特に好ましくは99重量%以上である。重合体ブロック[A]において芳香族ビニル単量体単位の量が前記のように多いことにより、熱可塑性樹脂層の硬さ及び耐熱性を高めることができる。 The content of the aromatic vinyl monomer unit in the polymer block [A] is preferably 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 99% by weight or more. When the amount of the aromatic vinyl monomer unit is large in the polymer block [A] as described above, the hardness and heat resistance of the thermoplastic resin layer can be increased.
 重合体ブロック[A]は、芳香族ビニル単量体単位以外に、任意の構造単位を含んでいてもよい。重合体ブロック[A]は、任意の構造単位を、1種類で単独でも含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。 The polymer block [A] may contain any structural unit in addition to the aromatic vinyl monomer unit. The polymer block [A] may contain one type of any structural unit alone or may contain two or more types in combination at any ratio.
 重合体ブロック[A]が含みうる任意の構造単位としては、例えば、共役ジエン単量体単位が挙げられる。ここで、共役ジエン単量体単位とは、共役ジエン化合物を重合して形成される構造を有する構造単位のことをいい、共役ジエン化合物単位ともいう。共役ジエン単量体単位に対応する共役ジエン化合物としては、例えば、重合体ブロック[B]が有する共役ジエン単量体単位に対応する共役ジエン化合物の例として挙げるものと同じ例が挙げられる。 Examples of the optional structural unit that can be contained in the polymer block [A] include a conjugated diene monomer unit. Here, the conjugated diene monomer unit refers to a structural unit having a structure formed by polymerizing a conjugated diene compound, and is also referred to as a conjugated diene compound unit. Examples of the conjugated diene compound corresponding to the conjugated diene monomer unit include the same examples as the examples of the conjugated diene compound corresponding to the conjugated diene monomer unit included in the polymer block [B].
 また、重合体ブロック[A]が含みうる任意の構造単位としては、例えば、芳香族ビニル化合物及び鎖状共役ジエン化合物以外の任意の不飽和化合物を重合して形成される構造を有する構造単位が挙げられる。任意の不飽和化合物としては、例えば、鎖状ビニル化合物、環状ビニル化合物等のビニル化合物;不飽和の環状酸無水物;不飽和イミド化合物;等が挙げられる。これらの化合物は、ニトリル基、アルコキシカルボニル基、ヒドロキシカルボニル基、又はハロゲン基等の置換基を有していてもよい。これらの中でも、吸湿性の観点から、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-エイコセン、4-メチル-1-ペンテン、4,6-ジメチル-1-ヘプテン等の1分子当たり炭素数2~20の鎖状オレフィン;ビニルシクロヘキサン等の1分子当たり炭素数5~20の環状オレフィン;等の、極性基を有しないビニル化合物が好ましく、1分子当たり炭素数2~20の鎖状オレフィンがより好ましく、エチレン、プロピレンが特に好ましい。 Further, as the arbitrary structural unit that can be contained in the polymer block [A], for example, a structural unit having a structure formed by polymerizing any unsaturated compound other than the aromatic vinyl compound and the chain conjugated diene compound can be mentioned. Can be mentioned. Examples of the optional unsaturated compound include vinyl compounds such as chain vinyl compounds and cyclic vinyl compounds; unsaturated cyclic acid anhydrides; unsaturated imide compounds; and the like. These compounds may have a substituent such as a nitrile group, an alkoxycarbonyl group, a hydroxycarbonyl group, or a halogen group. Among these, from the viewpoint of hygroscopicity, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-eicosene, Chain olefins having 2 to 20 carbon atoms per molecule such as 4-methyl-1-pentene and 4,6-dimethyl-1-heptene; cyclic olefins having 5 to 20 carbon atoms per molecule such as vinylcyclohexane; A vinyl compound having no polar group is preferable, a chain olefin having 2 to 20 carbon atoms per molecule is more preferable, and ethylene and propylene are particularly preferable.
 重合体ブロック[A]における任意の構造単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは1重量%以下である。 The content of any structural unit in the polymer block [A] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
 ブロック共重合体[1]1分子における重合体ブロック[A]の数は、好ましくは2個以上であり、好ましくは5個以下、より好ましくは4個以下、特に好ましくは3個以下である。1分子中に複数個ある重合体ブロック[A]は、互いに同じであってもよく、異なっていてもよい。 The number of polymer blocks [A] in one molecule of block copolymer [1] is preferably 2 or more, preferably 5 or less, more preferably 4 or less, and particularly preferably 3 or less. The plural polymer blocks [A] in one molecule may be the same or different from each other.
 重合体ブロック[B]は、共役ジエン単量体単位を含有する重合体ブロックである。前述のように、共役ジエン単量体単位とは、例えば共役ジエン化合物を重合して形成される構造を有する構造単位のことをいい、共役ジエン化合物単位ともいう。 The polymer block [B] is a polymer block containing a conjugated diene monomer unit. As described above, the conjugated diene monomer unit means, for example, a structural unit having a structure formed by polymerizing a conjugated diene compound and is also called a conjugated diene compound unit.
 この重合体ブロック[B]が有する共役ジエン単量体単位に対応する共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等の鎖状共役ジエン化合物が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、吸湿性を低くできることから、極性基を含有しない鎖状共役ジエン化合物が好ましく、1,3-ブタジエン、イソプレンが特に好ましい。 Examples of the conjugated diene compound corresponding to the conjugated diene monomer unit contained in the polymer block [B] include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and 1,3- Examples thereof include chain conjugated diene compounds such as pentadiene. These may be used individually by 1 type and may be used in combination of 2 or more types in arbitrary ratios. Among them, a chain conjugated diene compound containing no polar group is preferable, and 1,3-butadiene and isoprene are particularly preferable, because they can reduce hygroscopicity.
 重合体ブロック[B]における共役ジエン単量体単位の含有率は、好ましくは90重量%以上、より好ましくは95重量%以上、特に好ましくは99重量%以上である。重合体ブロック[B]において共役ジエン単量体単位の含有率が前記範囲であることにより、熱可塑性樹脂層の可撓性を向上させることができる。 The content of the conjugated diene monomer unit in the polymer block [B] is preferably 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 99% by weight or more. When the content of the conjugated diene monomer unit in the polymer block [B] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
 重合体ブロック[B]は、共役ジエン単量体単位以外に、任意の構造単位を含んでいてもよい。重合体ブロック[B]は、任意の構造単位を、1種類で単独でも含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。 The polymer block [B] may contain an arbitrary structural unit in addition to the conjugated diene monomer unit. The polymer block [B] may contain one kind of any structural unit alone or may contain two or more kinds of structural units in combination at any ratio.
 重合体ブロック[B]が含みうる任意の構造単位としては、例えば、芳香族ビニル化合物単位、並びに、芳香族ビニル化合物及び鎖状共役ジエン化合物以外の任意の不飽和化合物を重合して形成される構造を有する構造単位が挙げられる。これらの芳香族ビニル化合物単位、並びに、任意の不飽和化合物を重合して形成される構造を有する構造単位としては、例えば、重合体ブロック[A]に含まれていてもよいものとして例示したものと同じ例が挙げられる。 The arbitrary structural unit that can be contained in the polymer block [B] is formed, for example, by polymerizing an aromatic vinyl compound unit and any unsaturated compound other than the aromatic vinyl compound and the chain conjugated diene compound. The structural unit which has a structure is mentioned. The aromatic vinyl compound unit and the structural unit having a structure formed by polymerizing any unsaturated compound are exemplified as those which may be contained in the polymer block [A]. And the same example.
 重合体ブロック[B]における任意の構造単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは1重量%以下である。重合体ブロック[B]における任意の構造単位の含有率が前記範囲であることにより、熱可塑性樹脂層の可撓性を向上させることができる。 The content of any structural unit in the polymer block [B] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less. When the content of the optional structural unit in the polymer block [B] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
 ブロック共重合体[1]1分子における重合体ブロック[B]の数は、通常1個以上であるが、2個以上であってもよい。ブロック共重合体[1]における重合体ブロック[B]の数が2個以上である場合、それらの重合体ブロック[B]は、互いに同じでもよく、異なっていてもよい。 The number of polymer blocks [B] in one molecule of the block copolymer [1] is usually 1 or more, but may be 2 or more. When the number of polymer blocks [B] in the block copolymer [1] is 2 or more, those polymer blocks [B] may be the same as or different from each other.
 重合体ブロック[C]は、芳香族ビニル単量体単位及び共役ジエン単量体単位を含有する重合体ブロックである。前述のように、共役ジエン単量体単位とは、例えば共役ジエン化合物を重合して形成される構造を有する構造単位のことをいい、共役ジエン化合物単位ともいう。芳香族ビニル単量体単位とは、例えば芳香族ビニル単量体単位を重合して形成される構造を有する構造単位のことをいい、芳香族ビニル化合物単位ともいう。 The polymer block [C] is a polymer block containing an aromatic vinyl monomer unit and a conjugated diene monomer unit. As described above, the conjugated diene monomer unit means, for example, a structural unit having a structure formed by polymerizing a conjugated diene compound and is also called a conjugated diene compound unit. The aromatic vinyl monomer unit refers to a structural unit having a structure formed by polymerizing an aromatic vinyl monomer unit, for example, and is also called an aromatic vinyl compound unit.
 重合体ブロック[C]が有する芳香族ビニル単量体単位に対応する芳香族ビニル化合物としては、重合体ブロック[A]が有する芳香族ビニル単量体単位に対応する芳香族ビニル化合物として例示したものが挙げられる。重合体ブロック[C]が有する共役ジエン単量体単位に対応する共役ジエン化合物としては、重合体ブロック[B]が有する共役ジエン単量体単位に対応する共役ジエン化合物として例示したものが挙げられる。 The aromatic vinyl compound corresponding to the aromatic vinyl monomer unit contained in the polymer block [C] is exemplified as the aromatic vinyl compound corresponding to the aromatic vinyl monomer unit contained in the polymer block [A]. There are things. Examples of the conjugated diene compound corresponding to the conjugated diene monomer unit contained in the polymer block [C] include those exemplified as the conjugated diene compound corresponding to the conjugated diene monomer unit contained in the polymer block [B]. ..
 重合体ブロック[C]における、芳香族ビニル単量体単位の含有率は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは76重量%以下、より好ましくは60重量%以下、特に好ましくは55重量%以下である。重合体ブロック[C]において芳香族ビニル単量体単位の含有率が前記範囲であることにより、熱可塑性樹脂層の硬さ及び耐熱性を高めることができる。 The content of the aromatic vinyl monomer unit in the polymer block [C] is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 76% by weight or less, more preferably 60% by weight. It is particularly preferably 55% by weight or less. When the content of the aromatic vinyl monomer unit in the polymer block [C] is within the above range, the hardness and heat resistance of the thermoplastic resin layer can be increased.
 重合体ブロック[C]における共役ジエン単量体単位の含有率は、好ましくは24重量%以上、より好ましくは40重量%以上、特に好ましくは45重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。重合体ブロック[C]において共役ジエン単量体単位の含有率が前記範囲であることにより、熱可塑性樹脂層の可撓性を向上させることができる。 The content of the conjugated diene monomer unit in the polymer block [C] is preferably 24% by weight or more, more preferably 40% by weight or more, particularly preferably 45% by weight or more, preferably 70% by weight or less, It is more preferably 60% by weight or less. When the content of the conjugated diene monomer unit in the polymer block [C] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
 重合体ブロック[C]は、芳香族ビニル単量体単位および共役ジエン単量体単位以外に、任意の構造単位を含んでいてもよい。重合体ブロック[C]は、任意の構造単位を、1種類で単独でも含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。 The polymer block [C] may contain any structural unit in addition to the aromatic vinyl monomer unit and the conjugated diene monomer unit. The polymer block [C] may contain one kind of any structural unit alone or may contain two or more kinds of structural units in combination at any ratio.
 重合体ブロック[C]が含みうる任意の構造単位としては、例えば、芳香族ビニル化合物及び鎖状共役ジエン化合物以外の任意の不飽和化合物を重合して形成される構造を有する構造単位が挙げられる。任意の不飽和化合物を重合して形成される構造を有する構造単位としては、例えば、重合体ブロック[A]に含まれていてもよいものとして例示したものと同じ例が挙げられる。 As an arbitrary structural unit that can be contained in the polymer block [C], for example, a structural unit having a structure formed by polymerizing any unsaturated compound other than the aromatic vinyl compound and the chain conjugated diene compound can be mentioned. .. Examples of the structural unit having a structure formed by polymerizing an arbitrary unsaturated compound include the same examples as those exemplified as those which may be contained in the polymer block [A].
 重合体ブロック[C]における任意の構造単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは1重量%以下である。重合体ブロック[C]における任意の構造単位の含有率が前記範囲であることにより、熱可塑性樹脂層の可撓性を向上させることができる。 The content of any structural unit in the polymer block [C] is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less. When the content of the optional structural unit in the polymer block [C] is within the above range, the flexibility of the thermoplastic resin layer can be improved.
 ブロック共重合体[1]1分子における重合体ブロック[C]の数は、通常1個以上であるが、2個以上であってもよい。ブロック共重合体[1]における重合体ブロック[C]の数が2個以上である場合、それらの重合体ブロック[C]は、互いに同じでもよく、異なっていてもよい。 The number of polymer blocks [C] in one molecule of the block copolymer [1] is usually 1 or more, but may be 2 or more. When the number of polymer blocks [C] in the block copolymer [1] is 2 or more, those polymer blocks [C] may be the same as or different from each other.
 ブロック共重合体[1]のブロックの形態は、鎖状型ブロックでもよく、ラジアル型ブロックでもよい。中でも、鎖状型ブロックが、機械的強度に優れ、好ましい。ブロック共重合体[1]が鎖状型ブロックの形態を有する場合、ブロック共重合体[1]の分子鎖の両端が重合体ブロック[A]であることにより、熱可塑性樹脂層のベタツキを所望の低い値に抑えることができる。 The block form of the block copolymer [1] may be a chain type block or a radial type block. Among them, a chain block is preferable because it has excellent mechanical strength. When the block copolymer [1] has the form of a chain type block, the both ends of the molecular chain of the block copolymer [1] are polymer blocks [A], and thus the stickiness of the thermoplastic resin layer is desired. Can be suppressed to a low value.
 ブロック共重合体[1]の特に好ましいブロックの形態は、[A]-[B]-[A]及び[A]-[C]-[A]で表されるように、重合体ブロック[B]または[C]の両端に重合体ブロック[A]が結合したトリブロック共重合体;[A]-[B]-[A]-[B]-[A]及び[A]-[C]-[A]-[C]-[A]で表されるように、重合体ブロック[A]の両端に重合体ブロック[B]または[C]が結合し、更に該両重合体ブロック[B]または[C]の他端にそれぞれ重合体ブロック[A]が結合したペンタブロック共重合体;である。特に、[A]-[B]-[A]及び[A]-[C]-[A]のトリブロック共重合体であることが、製造が容易であり且つ物性を所望の範囲に容易に収めることができるため、特に好ましい。 A particularly preferred block morphology of the block copolymer [1] is a polymer block [B] as represented by [A]-[B]-[A] and [A]-[C]-[A]. ] Or [C], a triblock copolymer having polymer blocks [A] bonded to both ends; [A]-[B]-[A]-[B]-[A] and [A]-[C] As represented by -[A]-[C]-[A], the polymer block [B] or [C] is bonded to both ends of the polymer block [A], and further both polymer blocks [B] ] Or [C] is a pentablock copolymer in which the polymer block [A] is bonded to the other end, respectively. In particular, a triblock copolymer of [A]-[B]-[A] and [A]-[C]-[A] facilitates production and facilitates physical properties within a desired range. It is particularly preferable because it can be stored.
 ブロック共重合体[1]において、ブロック共重合体[1]の全体に占める重合体ブロック[A]の重量分率wAと、ブロック共重合体[1]の全体に占める重合体ブロック[B]の重量分率wBとの比(wA/wB)は、特定の範囲に収まることが好ましい。具体的には、前記の比(wA/wB)は、好ましくは30/70以上、更に好ましくは40/60以上、特に好ましくは45/55以上であり、好ましくは85/15以下、更に好ましくは70/30以下、特に好ましくは55/45以下である。前記の比wA/wBが前記範囲の下限値以上であることにより、熱可塑性樹脂層の剛性及び耐熱性を向上させたり、複屈折を小さくしたりすることができる。また、前記の比wA/wBが前記範囲の上限値以下であることにより、熱可塑性樹脂層の可撓性を向上させることができる。ここで、重合体ブロック[A]の重量分率wAは、重合体ブロック[A]全体の重量分率を示し、重合体ブロック[B]の重量分率wBは、重合体ブロック[B]全体の重量分率を示す。 In the block copolymer [1], the weight fraction wA of the polymer block [A] in the whole block copolymer [1] and the polymer block [B] in the whole block copolymer [1] The ratio (wA/wB) to the weight fraction wB of is preferably within a specific range. Specifically, the ratio (wA/wB) is preferably 30/70 or more, more preferably 40/60 or more, particularly preferably 45/55 or more, preferably 85/15 or less, and further preferably 70/30 or less, particularly preferably 55/45 or less. When the ratio wA/wB is not less than the lower limit value of the above range, the rigidity and heat resistance of the thermoplastic resin layer can be improved and the birefringence can be reduced. Further, when the ratio wA/wB is equal to or less than the upper limit value of the above range, the flexibility of the thermoplastic resin layer can be improved. Here, the weight fraction wA of the polymer block [A] indicates the weight fraction of the whole polymer block [A], and the weight fraction wB of the polymer block [B] is the whole polymer block [B]. The weight fraction of is shown.
 ブロック共重合体[1]において、ブロック共重合体[1]の全体に占める重合体ブロック[A]の重量分率wAと、ブロック共重合体[1]の全体に占める重合体ブロック[C]の重量分率wCとの比(wA/wC)は、特定の範囲に収まることが好ましい。具体的には、前記の比(wA/wC)は、好ましくは30/70以上、更に好ましくは40/60以上、特に好ましくは45/55以上であり、好ましくは85/15以下、更に好ましくは70/30以下、特に好ましくは55/45以下である。前記の比wA/wCが前記範囲の下限値以上であることにより、熱可塑性樹脂層の剛性及び耐熱性を向上させたり、複屈折を小さくしたりすることができる。また、前記の比wA/wCが前記範囲の上限値以下であることにより、熱可塑性樹脂層の可撓性を向上させることができる。ここで、重合体ブロック[A]の重量分率wAは、重合体ブロック[A]全体の重量分率を示し、重合体ブロック[C]の重量分率wCは、重合体ブロック[C]全体の重量分率を示す。 In the block copolymer [1], the weight fraction wA of the polymer block [A] in the whole block copolymer [1] and the polymer block [C] in the whole block copolymer [1] The ratio (wA/wC) to the weight fraction wC of is preferably within a specific range. Specifically, the ratio (wA/wC) is preferably 30/70 or more, more preferably 40/60 or more, particularly preferably 45/55 or more, preferably 85/15 or less, and further preferably 70/30 or less, particularly preferably 55/45 or less. When the ratio wA/wC is equal to or more than the lower limit value of the above range, the rigidity and heat resistance of the thermoplastic resin layer can be improved and the birefringence can be reduced. Further, when the ratio wA/wC is equal to or less than the upper limit value of the above range, the flexibility of the thermoplastic resin layer can be improved. Here, the weight fraction wA of the polymer block [A] indicates the weight fraction of the whole polymer block [A], and the weight fraction wC of the polymer block [C] is the whole polymer block [C]. The weight fraction of is shown.
 前記のブロック共重合体[1]の重量平均分子量(Mw)は、好ましくは30,000以上、より好ましくは40,000以上、特に好ましくは50,000以上であり、好ましくは200,000以下、より好ましくは150,000以下、特に好ましくは100,000以下である。
 また、ブロック共重合体[1]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.5以下であり、好ましくは1.0以上である。
 前記ブロック共重合体[1]の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によって、ポリスチレン換算の値として測定しうる。
The weight average molecular weight (Mw) of the block copolymer [1] is preferably 30,000 or more, more preferably 40,000 or more, particularly preferably 50,000 or more, preferably 200,000 or less, It is more preferably 150,000 or less, and particularly preferably 100,000 or less.
The molecular weight distribution (Mw/Mn) of the block copolymer [1] is preferably 3 or less, more preferably 2 or less, particularly preferably 1.5 or less, and preferably 1.0 or more.
The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the block copolymer [1] are as polystyrene-converted values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent. It can be measured.
 ブロック共重合体[1]の製造方法としては、例えば、国際公開第2015/099079号、特開2016-204217号公報に記載の方法を採用しうる。 As a method for producing the block copolymer [1], for example, the methods described in International Publication No. 2015/0909079 and JP-A-2016-204217 can be adopted.
 水素化物[2]は、ブロック共重合体[1]の不飽和結合を水素化して得られる重合体である。ここで、水素化されるブロック共重合体[1]の不飽和結合には、ブロック共重合体[1]の主鎖及び側鎖の、芳香族性及び非芳香族性の炭素-炭素不飽和結合を、いずれも含む。 Hydride [2] is a polymer obtained by hydrogenating the unsaturated bond of block copolymer [1]. Here, the unsaturated bond of the block copolymer [1] to be hydrogenated includes aromatic and non-aromatic carbon-carbon unsaturated of the main chain and side chain of the block copolymer [1]. Both include bonds.
 水素化物[2]の水素化率は、好ましくは90%以上、より好ましくは97%以上、特に好ましくは99%以上である。また、水素化物[2]において、芳香族ビニル単量体単位の水素化率が90%以上であり、且つ共役ジエン単量体単位の水素化率が90%以上であることが好ましい。水素化物[2]の水素化率は、別に断らない限り、ブロック共重合体[1]の主鎖及び側鎖の、芳香族性及び非芳香族性の炭素-炭素不飽和結合のうちの、水素化された結合の割合である。水素化率が高いほど、熱可塑性樹脂層の透明性、耐熱性及び耐候性を良好にでき、更には熱可塑性樹脂層の複屈折を小さくし易い。ここで、水素化物[2]の水素化率は、H-NMRによる測定により求めうる。水素化率の上限は、100%としうる。 The hydrogenation rate of the hydride [2] is preferably 90% or more, more preferably 97% or more, and particularly preferably 99% or more. In the hydride [2], it is preferable that the aromatic vinyl monomer unit has a hydrogenation rate of 90% or more, and the conjugated diene monomer unit has a hydrogenation rate of 90% or more. Unless otherwise specified, the hydrogenation rate of the hydride [2] is the same as that of the aromatic and non-aromatic carbon-carbon unsaturated bonds in the main chain and side chains of the block copolymer [1]. It is the rate of hydrogenated bonds. The higher the hydrogenation rate, the better the transparency, heat resistance, and weather resistance of the thermoplastic resin layer, and the more easily the birefringence of the thermoplastic resin layer can be reduced. Here, the hydrogenation rate of the hydride [2] can be determined by measurement by 1 H-NMR. The upper limit of the hydrogenation rate may be 100%.
 特に、非芳香族性の炭素-炭素不飽和結合の水素化率は、好ましくは95%以上、より好ましくは99%以上である。非芳香族性の炭素-炭素不飽和結合の水素化率を高めることにより、熱可塑性樹脂層の耐光性及び耐酸化性を更に高くできる。 Particularly, the hydrogenation rate of the non-aromatic carbon-carbon unsaturated bond is preferably 95% or more, more preferably 99% or more. By increasing the hydrogenation rate of the non-aromatic carbon-carbon unsaturated bond, the light resistance and oxidation resistance of the thermoplastic resin layer can be further increased.
 また、芳香族性の炭素-炭素不飽和結合の水素化率は、好ましくは90%以上、より好ましくは93%以上、特に好ましくは95%以上である。芳香族性の炭素-炭素不飽和結合の水素化率を高めることにより、重合体ブロック[A]を水素化して得られる重合体ブロックのガラス転移温度が高くなるので、熱可塑性樹脂層の耐熱性を効果的に高めることができる。さらに、熱可塑性樹脂の光弾性係数を下げることができる。 The hydrogenation rate of the aromatic carbon-carbon unsaturated bond is preferably 90% or more, more preferably 93% or more, and particularly preferably 95% or more. By increasing the hydrogenation rate of the aromatic carbon-carbon unsaturated bond, the glass transition temperature of the polymer block obtained by hydrogenating the polymer block [A] becomes high, so that the heat resistance of the thermoplastic resin layer is improved. Can be effectively increased. Furthermore, the photoelastic coefficient of the thermoplastic resin can be lowered.
 水素化物[2]の重量平均分子量(Mw)は、好ましくは30,000以上、より好ましくは40,000以上、さらにより好ましくは45,000以上であり、好ましくは200,000以下、より好ましくは150,000以下、さらにより好ましくは100,000以下である。水素化物[2]の重量平均分子量(Mw)が前記の範囲に収まることにより、熱可塑性樹脂層の機械強度及び耐熱性を向上させることができ、更には熱可塑性樹脂層の複屈折を小さくし易い。 The weight average molecular weight (Mw) of the hydride [2] is preferably 30,000 or more, more preferably 40,000 or more, still more preferably 45,000 or more, preferably 200,000 or less, more preferably It is 150,000 or less, and more preferably 100,000 or less. When the weight average molecular weight (Mw) of the hydride [2] is within the above range, the mechanical strength and heat resistance of the thermoplastic resin layer can be improved, and further the birefringence of the thermoplastic resin layer can be reduced. easy.
 水素化物[2]の分子量分布(Mw/Mn)は、好ましくは3以下、より好ましくは2以下、特に好ましくは1.8以下であり、好ましくは1.0以上である。水素化物[2]の分子量分布(Mw/Mn)が前記の範囲に収まることにより、熱可塑性樹脂層の機械強度及び耐熱性を向上させることができ、更には熱可塑性樹脂層の複屈折を小さくし易い。 The molecular weight distribution (Mw/Mn) of the hydride [2] is preferably 3 or less, more preferably 2 or less, particularly preferably 1.8 or less, and preferably 1.0 or more. When the molecular weight distribution (Mw/Mn) of the hydride [2] is within the above range, the mechanical strength and heat resistance of the thermoplastic resin layer can be improved, and the birefringence of the thermoplastic resin layer can be reduced. Easy to do.
 水素化物[2]の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを溶媒としたゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算の値で測定しうる。 The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the hydride [2] can be measured in terms of polystyrene by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
 前述した水素化物[2]は、ブロック共重合体[1]を水素化することにより、製造しうる。水素化方法としては、水素化率を高くでき、ブロック共重合体[1]の鎖切断反応の少ない水素化方法が好ましい。このような水素化方法としては、例えば、国際公開第2015/099079号、特開2016-204217号公報に記載された方法が挙げられる。 The above-mentioned hydride [2] can be produced by hydrogenating the block copolymer [1]. As a hydrogenation method, a hydrogenation method that can increase the hydrogenation rate and that causes less chain cleavage reaction of the block copolymer [1] is preferable. Examples of such a hydrogenation method include the methods described in International Publication No. 2015/0999079 and JP-A-2016-204217.
 前記水素化物[2]としては、シリル基が導入されたものが好ましい。水素化物[2]の中でも特にシリル基を導入されたものを、以下、適宜「シリル基変性物[3]」と呼ぶことがある。シリル基が導入されたことにより、シリル基変性物[3]は、他の材料に対して高い密着性を示す。よって、シリル基変性物[3]を含む熱可塑性樹脂で形成された熱可塑性樹脂層は、導電層に対する密着性に優れるので、積層体の全体として機械的強度を向上させることができる。 The hydride [2] is preferably one having a silyl group introduced. Among the hydrides [2], those into which a silyl group is introduced may be appropriately referred to as "silyl group-modified product [3]" hereinafter. Due to the introduction of the silyl group, the silyl group-modified product [3] exhibits high adhesion to other materials. Therefore, since the thermoplastic resin layer formed of the thermoplastic resin containing the silyl group-modified product [3] has excellent adhesion to the conductive layer, the mechanical strength of the laminate as a whole can be improved.
 ブロック共重合体のシリル変性物(シリル基変性物[3])は、上述したブロック共重合体の水素化物(水素化物[2])にシリル基を導入することにより得られる重合体である。ブロック共重合体に導入されるシリル基としては、アルコキシシリル基が挙げられる。ブロック共重合体に導入されるシリル基は、上述した水素化物[2]に直接結合していてもよく、例えばアルキレン基などの2価の有機基を介して間接的に結合していてもよい。 The silyl modified product (silyl group modified product [3]) of the block copolymer is a polymer obtained by introducing a silyl group into the hydride (hydride [2]) of the block copolymer described above. Examples of the silyl group introduced into the block copolymer include an alkoxysilyl group. The silyl group introduced into the block copolymer may be directly bonded to the above-mentioned hydride [2], or may be indirectly bonded through a divalent organic group such as an alkylene group. ..
 シリル基変性物[3]におけるシリル基の導入量は、シリル基の導入前の水素化物[2]100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、特に好ましくは0.3重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下、特に好ましくは3重量部以下である。シリル基の導入量を前記範囲に収めると、水分等で分解されたシリル基同士の架橋度が過剰に高くなることを抑制できるので、熱可塑性樹脂層の密着性を高く維持することができる。
 シリル基の導入量は、H-NMRスペクトルにて計測しうる。また、シリル基の導入量の計測の際、導入量が少ない場合は、積算回数を増やして計測しうる。
The amount of the silyl group introduced in the modified silyl group [3] is preferably 0.1 part by weight or more, more preferably 0.2 part by weight, based on 100 parts by weight of the hydride [2] before the introduction of the silyl group. The amount is particularly preferably 0.3 part by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and particularly preferably 3 parts by weight or less. When the introduced amount of the silyl group is within the above range, it is possible to prevent the degree of crosslinking between the silyl groups decomposed by water or the like from becoming excessively high, so that the adhesiveness of the thermoplastic resin layer can be maintained high.
The amount of silyl group introduced can be measured by 1 H-NMR spectrum. Further, when measuring the introduction amount of the silyl group, if the introduction amount is small, it is possible to increase the number of times of integration and perform the measurement.
 シリル基変性物[3]の重量平均分子量(Mw)は、導入されるシリル基の量が少ないため、通常は、シリル基を導入する前の水素化物[2]の重量平均分子量(Mw)から大きく変化しない。ただし、シリル基を導入する際には、通常は過酸化物の存在下で水素化物[2]を変性反応させるので、その水素化物[2]の架橋反応及び切断反応が進行し、分子量分布は大きく変化する傾向がある。シリル基変性物[3]の重量平均分子量(Mw)は、好ましくは30,000以上、より好ましくは40,000以上、さらにより好ましくは45,000以上であり、好ましくは200,000以下、より好ましくは150,000以下、さらにより好ましくは100,000以下である。また、シリル基変性物[3]の分子量分布(Mw/Mn)は、好ましくは3.5以下、より好ましくは2.5以下、特に好ましくは2.0以下であり、好ましくは1.0以上である。シリル基変性物[3]の重量平均分子量(Mw)及び分子量分布(Mw/Mn)がこの範囲であると、熱可塑性樹脂層の良好な機械強度及び引張り伸びが維持できる。
 シリル基変性物[3]の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを溶媒としたゲル・パーミエーション・クロマトグラフィー(GPC)によって、ポリスチレン換算の値として測定しうる。
The weight average molecular weight (Mw) of the silyl group-modified product [3] is usually smaller than the weight average molecular weight (Mw) of the hydride [2] before the silyl group is introduced, because the amount of the introduced silyl group is small. Does not change significantly. However, when the silyl group is introduced, the hydride [2] is usually subjected to a modification reaction in the presence of a peroxide, so that the crosslinking reaction and the cleavage reaction of the hydride [2] proceed and the molecular weight distribution is It tends to change greatly. The weight average molecular weight (Mw) of the silyl group-modified product [3] is preferably 30,000 or more, more preferably 40,000 or more, still more preferably 45,000 or more, and preferably 200,000 or less, It is preferably 150,000 or less, and more preferably 100,000 or less. The molecular weight distribution (Mw/Mn) of the modified silyl group [3] is preferably 3.5 or less, more preferably 2.5 or less, particularly preferably 2.0 or less, and preferably 1.0 or more. Is. When the weight average molecular weight (Mw) and the molecular weight distribution (Mw/Mn) of the silyl group-modified product [3] are in this range, good mechanical strength and tensile elongation of the thermoplastic resin layer can be maintained.
The weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the silyl group-modified product [3] can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
 シリル基変性物[3]は、前述したブロック共重合体[1]の水素化物[2]にアルコキシシリル基を導入することにより、製造しうる。水素化物[2]にアルコキシシリル基を導入する方法としては、例えば、国際公開第2015/099079号、特開2016-204217号公報に記載された方法が挙げられる。 The modified silyl group [3] can be produced by introducing an alkoxysilyl group into the hydride [2] of the block copolymer [1] described above. Examples of the method of introducing an alkoxysilyl group into the hydride [2] include the methods described in International Publication No. 2015/099079 and JP-A-2016-204217.
 熱可塑性樹脂中の水素化物[2](シリル基変性物[3]を含む)等の重合体Xの割合は、好ましくは80重量%~100重量%、より好ましくは90重量%~100重量%、特に好ましくは95重量%~100重量%である。樹脂Bにおける重合体の割合が前記範囲に収まることにより、樹脂Bの貯蔵弾性率を上述した範囲に収めやすい。 The proportion of the polymer X such as hydride [2] (including silyl group modified product [3]) in the thermoplastic resin is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight. , Particularly preferably 95 to 100% by weight. When the ratio of the polymer in the resin B is within the above range, the storage elastic modulus of the resin B is easily within the above range.
 熱可塑性樹脂層は、上述した重合体Xに組み合わせて、任意の成分を含んでいてもよい。任意の成分としては、例えば、無機微粒子;酸化防止剤、熱安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;滑剤、可塑剤等の樹脂改質剤;染料や顔料等の着色剤;及び帯電防止剤が挙げられる。これらの任意の成分としては、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。本発明の効果を顕著に発揮させる観点からは、任意の成分の含有割合は少ないことが好ましい。 The thermoplastic resin layer may contain an arbitrary component in combination with the polymer X described above. Examples of optional components include inorganic fine particles; stabilizers such as antioxidants, heat stabilizers, ultraviolet absorbers and near infrared absorbers; resin modifiers such as lubricants and plasticizers; coloring agents such as dyes and pigments. And antistatic agents. As these optional components, one type may be used alone, or two or more types may be used in combination at any ratio. From the viewpoint of remarkably exerting the effect of the present invention, it is preferable that the content ratio of any component is small.
 熱可塑性樹脂層は、通常、高い透明性を有する。熱可塑性樹脂層の具体的な全光線透過率は、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。全光線透過率の上限は、100%であることが好ましいが、100%未満の値としうる。 The thermoplastic resin layer usually has high transparency. The specific total light transmittance of the thermoplastic resin layer is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more. The total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer. The upper limit of the total light transmittance is preferably 100%, but may be a value less than 100%.
 熱可塑性樹脂層の厚みは、好ましくは10μm以上、より好ましくは20μm以上、特に好ましくは30μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは60μm以下である。熱可塑性樹脂層の厚みが前記範囲の下限値以上であることにより、熱可塑性樹脂層によって導電層への水分の浸入を抑制し、マイグレーションを効果的に防止することができる。他方、熱可塑性樹脂層の厚みが、前記範囲の上限値以下であることにより、可撓性を効果的に高めることができる。 The thickness of the thermoplastic resin layer is preferably 10 μm or more, more preferably 20 μm or more, particularly preferably 30 μm or more, preferably 100 μm or less, more preferably 80 μm or less, particularly preferably 60 μm or less. When the thickness of the thermoplastic resin layer is equal to or more than the lower limit value of the above range, the thermoplastic resin layer can prevent water from entering the conductive layer and effectively prevent migration. On the other hand, when the thickness of the thermoplastic resin layer is not more than the upper limit value of the above range, flexibility can be effectively enhanced.
 熱可塑性樹脂層の製造方法に制限は無い。熱可塑性樹脂層の製造方法としては、例えば、溶融成形法、溶液流延法などが挙げられる。中でも、溶媒等の揮発性成分の熱可塑性樹脂層への残留を抑制できることから、溶融成形法が好ましい。さらには、機械強度及び表面精度に優れた熱可塑性樹脂層を得るために、溶融成形法の中でも、押出成形法、インフレーション成形法及びプレス成形法が好ましく、効率よく簡単に熱可塑性樹脂層を製造できる観点から、押出成形法が特に好ましい。 There is no limitation on the manufacturing method of the thermoplastic resin layer. Examples of the method for producing the thermoplastic resin layer include a melt molding method and a solution casting method. Among them, the melt molding method is preferable because it is possible to suppress the volatile components such as the solvent from remaining in the thermoplastic resin layer. Furthermore, in order to obtain a thermoplastic resin layer having excellent mechanical strength and surface accuracy, among the melt molding methods, the extrusion molding method, the inflation molding method and the press molding method are preferable, and the thermoplastic resin layer can be produced efficiently and easily. The extrusion molding method is particularly preferable from the viewpoint that it can be formed.
 [3.導電層]
 本発明において、導電層は、Sn(スズ)、Pb(鉛)、Ag(銀)、Cu(銅)及びAu(金)のうちの少なくとも一種の元素を含む。前記元素は、マイグレーションを発生しうる材料であるが、本発明では、所定の透湿度と所定の貯蔵弾性率を有する熱可塑性樹脂層を備えることにより、マイグレーションの発生を防止し得る。
[3. Conductive layer]
In the present invention, the conductive layer contains at least one element selected from Sn (tin), Pb (lead), Ag (silver), Cu (copper), and Au (gold). The element is a material that can cause migration, but in the present invention, the occurrence of migration can be prevented by providing a thermoplastic resin layer having a predetermined moisture permeability and a predetermined storage elastic modulus.
 前記元素のうち、好ましくはAg、Cu及びAuであり、より好ましくはAgである。これらの金属は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これらの金属によって導電層を形成する場合、導電層を細い線状に形成することによって、透明な導電層を得ることができる。例えば、格子状に形成された金属メッシュ層として導電層を形成することにより、透明な導電層を得ることができる。 Among the above elements, Ag, Cu and Au are preferable, and Ag is more preferable. These metals may be used alone or in combination of two or more at an arbitrary ratio. When the conductive layer is formed of these metals, a transparent conductive layer can be obtained by forming the conductive layer into a thin linear shape. For example, a transparent conductive layer can be obtained by forming the conductive layer as a metal mesh layer formed in a grid pattern.
 導電層は、前記元素を含む材料(以下「導電材料」ともいう)により形成される。このような導電材料としては、金属材料が挙げられる。ここでいう金属材料とは、所謂金属酸化物とは異なり、金属原子同士が金属結合することにより形成された材料である。このような金属材料としては、金属粒子及び金属ナノワイヤなどが挙げられる。導電材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The conductive layer is formed of a material containing the above element (hereinafter also referred to as “conductive material”). Examples of such a conductive material include a metal material. Unlike the so-called metal oxide, the metal material here is a material formed by metal bonding of metal atoms. Examples of such a metal material include metal particles and metal nanowires. As the conductive material, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 導電層は、例えば、金属粒子を含む導電層形成用組成物を塗布することを含む形成方法によって、形成できる。このとき、前記の導電層形成用組成物を所定の格子パターンに印刷することによって、金属メッシュ層としての導電層を得ることができる。さらに、例えば、銀塩及び銀ナノ粒子等の金属粒子を含む導電層形成用組成物を塗布し、露光処理及び現像処理によって金属細線を所定の格子パターンに形成することにより、導電層を金属メッシュ層として形成できる。このような導電層及びその形成方法の詳細については、特開2012-18634号公報、特開2003-331654号公報を参照しうる。 The conductive layer can be formed by, for example, a forming method including applying a conductive layer forming composition containing metal particles. At this time, by printing the conductive layer forming composition in a predetermined lattice pattern, a conductive layer as a metal mesh layer can be obtained. Furthermore, for example, by applying a composition for forming a conductive layer containing metal particles such as silver salt and silver nanoparticles, and forming a thin metal wire into a predetermined lattice pattern by an exposure treatment and a development treatment, the conductive layer is formed into a metal mesh. It can be formed as a layer. For details of such a conductive layer and a method for forming the conductive layer, reference can be made to JP-A-2012-18634 and JP-A-2003-331654.
 金属ナノワイヤとは、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。このような金属ナノワイヤは、金属ナノワイヤ同士が隙間を形成して網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい導電層を実現できる。また、金属ワイヤは、網の目状となることにより、網の目の隙間に開口部を形成するので、光透過率の高い導電層を得ることができる。 ㆍMetallic nanowire refers to a conductive substance with a needle-like or thread-like shape and a diameter of nanometer. The metal nanowire may be linear or curved. Such metal nanowires can form a good electrical conduction path even with a small amount of metal nanowires by forming a gap between the metal nanowires and forming a mesh-like shape, and thus a conductive material with low electrical resistance can be formed. Layers can be realized. Further, since the metal wire has a mesh shape, an opening is formed in a gap between meshes, so that a conductive layer having high light transmittance can be obtained.
 金属ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい金属ナノワイヤを用いれば、金属ナノワイヤが良好に交差して、少量の金属ナノワイヤにより高い導電性を発現させることができる。その結果、透明性に優れる積層体を得ることができる。ここで、「金属ナノワイヤの太さ」とは、金属ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって測定しうる。 The ratio of the thickness d to the length L of metal nanowires (aspect ratio: L/d) is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 10 1,000. By using the metal nanowires having a large aspect ratio as described above, the metal nanowires can be crossed well and high conductivity can be exhibited by a small amount of the metal nanowires. As a result, a laminate having excellent transparency can be obtained. Here, the "thickness of the metal nanowire" means the diameter when the cross section of the metal nanowire is circular, the short diameter when the cross section is elliptical, and the most when it is polygonal. Means a long diagonal. The thickness and length of the metal nanowire can be measured by a scanning electron microscope or a transmission electron microscope.
 金属ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、更に好ましくは10nm~100nmであり、特に好ましくは10nm~50nmである。これにより、導電層の透明性を高めることができる。 The thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, still more preferably 10 nm to 100 nm, and particularly preferably 10 nm to 50 nm. Thereby, the transparency of the conductive layer can be increased.
 金属ナノワイヤの長さは、好ましくは2.5μm~1000μmであり、より好ましくは10μm~500μmであり、特に好ましくは20μm~100μmである。これにより、導電層の導電性を高めることができる。 The length of the metal nanowire is preferably 2.5 μm to 1000 μm, more preferably 10 μm to 500 μm, and particularly preferably 20 μm to 100 μm. Thereby, the conductivity of the conductive layer can be increased.
 金属ナノワイヤに含まれる金属としては、導電性の高い金属が好ましい。好適な金属の例としては、金、銀及び銅が挙げられ、より好ましくは銀である。また、上記金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。さらに、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The metal contained in the metal nanowire is preferably a metal having high conductivity. Examples of suitable metals include gold, silver and copper, more preferably silver. Alternatively, a material obtained by plating the above metal (for example, gold plating) may be used. Furthermore, one kind of the above materials may be used alone, or two or more kinds thereof may be used in combination at an arbitrary ratio.
 金属ナノワイヤの製造方法としては、任意の適切な方法が採用され得る。例えば、溶液中で硝酸銀を還元する方法;前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法;等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、およびポリビニルピロリドンの存在下で、硝酸銀等の銀塩の液相還元をすることによりにより、銀ナノワイヤが合成され得る。均一サイズの銀ナノワイヤは、例えば、Xia, Y.etal., Chem.Mater.(2002)、14、4736-4745、 Xia, Y.etal., Nano letters(2003)3(7)、955-960に記載される方法に準じて、大量生産が可能である。 Any appropriate method can be adopted as the method for producing the metal nanowire. For example, a method of reducing silver nitrate in a solution; a method of applying an applied voltage or current to the precursor surface from the tip of the probe, extracting the metal nanowire at the tip of the probe, and continuously forming the metal nanowire; Can be mentioned. In the method of reducing silver nitrate in a solution, a silver nanowire can be synthesized by liquid-phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniformly sized silver nanowires are described, for example, in Xia, Y. et al. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. Mass production is possible according to the method described in Nano letters (2003) 3(7), 955-960.
 金属ナノワイヤを含む導電層は、例えば、金属ナノワイヤを溶媒に分散させて得られた金属ナノワイヤ分散液を塗布及び乾燥させることを含む形成方法により、形成できる。 The conductive layer containing metal nanowires can be formed by, for example, a forming method including applying and drying a metal nanowire dispersion liquid obtained by dispersing metal nanowires in a solvent.
 金属ナノワイヤ分散液に含まれる溶媒としては、例えば、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒等が挙げられ、中でも、環境負荷低減の観点から、水を用いることが好ましい。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the solvent contained in the metal nanowire dispersion liquid, for example, water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents, and the like, among them, from the viewpoint of environmental load reduction, It is preferable to use water. Further, the solvent may be used alone or in combination of two or more kinds at an arbitrary ratio.
 金属ナノワイヤ分散液における金属ナノワイヤの濃度は、好ましくは0.1重量%~1重量%である。これにより、導電性および透明性に優れる導電層を形成することができる。 The concentration of the metal nanowires in the metal nanowire dispersion liquid is preferably 0.1% by weight to 1% by weight. This makes it possible to form a conductive layer having excellent conductivity and transparency.
 金属ナノワイヤ分散液は、金属ナノワイヤ及び溶媒に組み合わせて、任意の成分を含みうる。任意の成分としては、例えば、金属ナノワイヤの腐食を抑制する腐食抑制剤、導電性ナノワイヤの凝集を抑制する界面活性剤、導電性ナノワイヤを導電層に保持するためのバインダーポリマー等が挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The metal nanowire dispersion liquid may contain an optional component in combination with the metal nanowire and the solvent. Examples of the optional component include a corrosion inhibitor that suppresses corrosion of the metal nanowires, a surfactant that suppresses aggregation of the conductive nanowires, and a binder polymer for holding the conductive nanowires in the conductive layer. In addition, one type of optional component may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 金属ナノワイヤ分散液の塗布方法としては、例えば、スプレーコート法、バーコート法、ロールコート法、ダイコート法、インクジェットコート法、スクリーンコート法、ディップコート法、スロットダイコート法、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用されうる。例えば、加熱乾燥の場合には、乾燥温度は100℃~200℃であり、乾燥時間は1分~10分としうる。 Examples of the coating method of the metal nanowire dispersion liquid include a spray coating method, a bar coating method, a roll coating method, a die coating method, an inkjet coating method, a screen coating method, a dip coating method, a slot die coating method, a relief printing method, an intaglio printing method. , A gravure printing method and the like. Any appropriate drying method (for example, natural drying, blast drying, heat drying) can be adopted as the drying method. For example, in the case of heat drying, the drying temperature may be 100°C to 200°C and the drying time may be 1 minute to 10 minutes.
 導電層における金属ナノワイヤの割合は、導電層の全重量に対して、好ましくは80重量%~100重量%であり、より好ましくは85重量%~99重量%である。これにより、導電性および光透過性に優れる導電層を得ることができる。 The proportion of metal nanowires in the conductive layer is preferably 80% by weight to 100% by weight, more preferably 85% by weight to 99% by weight, based on the total weight of the conductive layer. This makes it possible to obtain a conductive layer having excellent conductivity and light transmittance.
 導電層は、上記導電材料とともに、上記以外の任意の導電材料を含んでいてもよい。任意の導電材料としては、カーボンナノチューブ、導電性ポリマー等が挙げられる。 The conductive layer may include any conductive material other than the above in addition to the above conductive material. Examples of the optional conductive material include carbon nanotubes and conductive polymers.
 カーボンナノチューブとしては、例えば、直径が0.3nm~100nm、長さ0.1μm~20μm程度の、いわゆる多層カーボンナノチューブ、二層カーボンナノチューブ、単層カーボンナノチューブ等が用いられる。なかでも、導電性が高い点から、直径10nm以下、長さ1μm~10μmの単層もしくは二層カーボンナノチューブが好ましい。また、カーボンナノチューブの集合体には、アモルファスカーボン及び触媒金属などの不純物は、含まないことが好ましい。カーボンナノチューブの製造方法としては、任意の適切な方法が採用されうる。好ましくは、アーク放電法で作製されたカーボンナノチューブが用いられる。アーク放電法で作製されたカーボンナノチューブは結晶性に優れるため好ましい。 As the carbon nanotubes, for example, so-called multi-walled carbon nanotubes, double-walled carbon nanotubes, single-walled carbon nanotubes having a diameter of 0.3 nm to 100 nm and a length of 0.1 μm to 20 μm are used. Among them, single-walled or double-walled carbon nanotubes having a diameter of 10 nm or less and a length of 1 μm to 10 μm are preferable from the viewpoint of high conductivity. Further, it is preferable that the aggregate of carbon nanotubes does not contain impurities such as amorphous carbon and catalytic metal. Any appropriate method can be adopted as a method for producing carbon nanotubes. Carbon nanotubes produced by the arc discharge method are preferably used. Carbon nanotubes produced by the arc discharge method are preferable because they have excellent crystallinity.
 導電性ポリマーとしては、例えば、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリパラフェニレン系ポリマー、ポリアニリン系ポリマー、ポリパラフェニレンビニレン系ポリマー、ポリピロール系ポリマー、ポリフェニレン系ポリマー、アクリル系ポリマーで変性されたポリエステル系ポリマー等が挙げられる。中でも、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリパラフェニレン系ポリマー、ポリアニリン系ポリマー、ポリパラフェニレンビニレン系ポリマーおよびポリピロール系ポリマーが好ましい。 As the conductive polymer, for example, polythiophene-based polymer, polyacetylene-based polymer, polyparaphenylene-based polymer, polyaniline-based polymer, polyparaphenylenevinylene-based polymer, polypyrrole-based polymer, polyphenylene-based polymer, polyester-based modified with acrylic polymer Examples thereof include polymers. Among them, polythiophene-based polymers, polyacetylene-based polymers, polyparaphenylene-based polymers, polyaniline-based polymers, polyparaphenylenevinylene-based polymers and polypyrrole-based polymers are preferable.
 その中でも、特に、ポリチオフェン系ポリマーが好ましい。ポリチオフェン系ポリマーを用いることにより、透明性及び化学的安定性に優れる導電層を得ることができる。ポリチオフェン系ポリマーの具体例としては、ポリチオフェン;ポリ(3-ヘキシルチオフェン)等のポリ(3-C1-8アルキル-チオフェン);ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ[3,4-(1,2-シクロヘキシレン)ジオキシチオフェン]等のポリ(3,4-(シクロ)アルキレンジオキシチオフェン);ポリチエニレンビニレン等が挙げられる。ここで、「C1-8アルキル」とは、炭素原子数が1~8のアルキル基を示す。また、前記の導電性ポリマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Among them, polythiophene-based polymers are particularly preferable. By using a polythiophene-based polymer, a conductive layer having excellent transparency and chemical stability can be obtained. Specific examples of the polythiophene-based polymer include polythiophene; poly(3-C 1-8 alkyl-thiophene) such as poly(3-hexylthiophene); poly(3,4-ethylenedioxythiophene), poly(3,4 -Propylenedioxythiophene), poly[3,4-(1,2-cyclohexylene)dioxythiophene] and other poly(3,4-(cyclo)alkylenedioxythiophenes); polythienylenevinylene, etc. .. Here, “C 1-8 alkyl” refers to an alkyl group having 1 to 8 carbon atoms. Moreover, the said electroconductive polymer may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
 導電性ポリマーは、好ましくは、アニオン性ポリマーの存在下で重合される。例えば、ポリチオフェン系ポリマーは、アニオン性ポリマーの存在下で酸化重合させることが好ましい。アニオン性ポリマーとしては、カルボキシル基、スルホン酸基、又はその塩を有する重合体が挙げられる。好ましくは、ポリスチレンスルホン酸等のスルホン酸基を有するアニオン性ポリマーが用いられる。 The conductive polymer is preferably polymerized in the presence of an anionic polymer. For example, the polythiophene-based polymer is preferably oxidatively polymerized in the presence of an anionic polymer. Examples of the anionic polymer include a polymer having a carboxyl group, a sulfonic acid group, or a salt thereof. Preferably, an anionic polymer having a sulfonic acid group such as polystyrene sulfonic acid is used.
 導電層は、前記のような導電材料で形成されているので、導電性を有する。導電層の導電性は、例えば、表面抵抗値で表すことができる。導電層の具体的な表面抵抗値は、積層体の用途に応じて設定しうる。ある実施形態において、導電層の表面抵抗値は、好ましくは1000Ω/sq.以下、より好ましくは900Ω/sq.以下、特に好ましくは800Ω/sq.以下である。導電層の表面抵抗値の下限に特段の制限は無いが、製造が容易であることから、好ましくは1Ω/sq.以上、より好ましくは2.5Ω/sq.以上、特に好ましくは5Ω/sq.以上である。 Since the conductive layer is formed of the conductive material as described above, it has conductivity. The conductivity of the conductive layer can be represented by, for example, a surface resistance value. The specific surface resistance value of the conductive layer can be set according to the application of the laminate. In one embodiment, the surface resistance value of the conductive layer is preferably 1000 Ω/sq. Or less, more preferably 900 Ω/sq. The following is particularly preferable 800 Ω/sq. It is below. Although the lower limit of the surface resistance value of the conductive layer is not particularly limited, it is preferably 1 Ω/sq. Or more, more preferably 2.5Ω/sq. Above, especially preferably 5Ω/sq. That is all.
 導電層は、熱可塑性樹脂層及び基材の間の全体に形成されていてもよく、一部に形成されていてもよい。例えば、導電層は、所定の平面形状を有するパターンにパターン化されて形成されていてもよい。ここで平面形状とは、層の厚み方向から見た場合の形状を言う。導電層のパターンの平面形状は、積層体の用途に応じて設定しうる。例えば、積層体を回路基板として用いる場合、導電層の平面形状は、回路の配線形状に対応したパターンに形成してもよい。また、例えば、積層体をタッチパネル用のセンサフィルムとして用いる場合、導電層の平面形状は、タッチパネル(例えば、静電容量方式タッチパネル)として良好に動作するパターンが好ましく、具体例を挙げると、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。 The conductive layer may be formed entirely or partially between the thermoplastic resin layer and the base material. For example, the conductive layer may be patterned and formed into a pattern having a predetermined planar shape. Here, the planar shape means a shape when viewed from the thickness direction of the layer. The planar shape of the pattern of the conductive layer can be set according to the application of the laminate. For example, when the laminate is used as a circuit board, the planar shape of the conductive layer may be formed in a pattern corresponding to the wiring shape of the circuit. Further, for example, when the laminated body is used as a sensor film for a touch panel, the planar shape of the conductive layer is preferably a pattern that works well as a touch panel (for example, a capacitive touch panel). The patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799 and JP-A-2010-541109 can be mentioned.
 導電層は、通常、高い透明性を有する。よって、可視光線は、通常、この導電層を透過することができる。導電層の具体的な透明性は、積層体の用途に応じて調整しうる。導電層の具体的な全光線透過率は、好ましくは80%以上であり、より好ましくは90%以上、さらに好ましくは95%以上である。 The conductive layer usually has high transparency. Therefore, visible light can usually pass through this conductive layer. The specific transparency of the conductive layer can be adjusted according to the application of the laminate. The specific total light transmittance of the conductive layer is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more.
 導電層の1層当たりの厚みは、好ましくは0.01μm~10μm、より好ましくは0.05μm~3μm、特に好ましくは0.1μm~1μmである。 The thickness of each conductive layer is preferably 0.01 μm to 10 μm, more preferably 0.05 μm to 3 μm, and particularly preferably 0.1 μm to 1 μm.
 [4.基材]
 基材としては、重合体(以下、「重合体Y」ともいう)を含む重合体フィルムを用いうる。重合体フィルムとしては、重合体Yを含み、更に必要に応じて任意の成分を含む樹脂で形成されたフィルムを用いることができる。重合体Yは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[4. Base material]
As the substrate, a polymer film containing a polymer (hereinafter, also referred to as “polymer Y”) can be used. As the polymer film, it is possible to use a film formed of a resin containing the polymer Y and further containing any component as required. As the polymer Y, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 重合体Yとしては、脂環式構造を含有する重合体が好ましい。以下、脂環式構造を含有する重合体を、適宜「脂環式構造含有重合体」ということがある。 The polymer Y is preferably a polymer containing an alicyclic structure. Hereinafter, a polymer containing an alicyclic structure may be appropriately referred to as a “polymer containing an alicyclic structure”.
 脂環式構造含有重合体は、機械的強度に優れる。また、脂環式構造含有重合体は、通常、透明性、低吸水性、耐湿性、寸法安定性及び軽量性に優れる。 The alicyclic structure-containing polymer has excellent mechanical strength. Further, the alicyclic structure-containing polymer is usually excellent in transparency, low water absorption, moisture resistance, dimensional stability and light weight.
 脂環式構造含有重合体は、繰り返し単位中に脂環式構造を含有する重合体であり、例えば、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素化物などが挙げられる。また、前記の脂環式構造含有重合体としては、主鎖中に脂環式構造を含有する重合体、及び、側鎖に脂環式構造を含有する重合体のいずれも用いることができる。中でも、脂環式構造含有重合体は、主鎖に脂環式構造を含有することが好ましい。脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。 Alicyclic structure-containing polymer is a polymer containing an alicyclic structure in the repeating unit, for example, a polymer or a hydride thereof obtained by a polymerization reaction using a cyclic olefin as a monomer. Can be mentioned. As the alicyclic structure-containing polymer, both a polymer having an alicyclic structure in its main chain and a polymer having an alicyclic structure in its side chain can be used. Among them, the alicyclic structure-containing polymer preferably has an alicyclic structure in the main chain. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and the cycloalkane structure is preferable from the viewpoint of thermal stability and the like.
 1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上、より好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。 The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, more preferably 6 or more, preferably 30 or less, more preferably 20 or less, Particularly preferably, it is 15 or less. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
 脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を有する繰り返し単位の割合を前記のように多くすることにより、耐熱性を高めることができる。
 また、脂環式構造含有重合体において、脂環式構造を有する繰り返し単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
The proportion of repeating units having an alicyclic structure in the alicyclic structure-containing polymer is preferably 30% by weight or more, more preferably 50% by weight or more, further preferably 70% by weight or more, particularly preferably 90% by weight. That is all. By increasing the proportion of repeating units having an alicyclic structure as described above, heat resistance can be improved.
Further, in the alicyclic structure-containing polymer, the balance other than the repeating unit having an alicyclic structure is not particularly limited and may be appropriately selected according to the purpose of use.
 脂環式構造含有重合体としては、結晶性を有するもの、及び、結晶性を有さないもののいずれを用いてもよく、両者を組み合わせて用いてもよい。ここで、結晶性を有する重合体とは、融点Mpを有する重合体をいう。また、融点Mpを有する重合体とは、すなわち、示差走査熱量計(DSC)で融点Mpを観測することができる重合体をいう。結晶性を有する脂環式構造含有重合体は耐溶剤性であるので、基材の材料として用いることにより、熱可塑性樹脂層を、溶剤に溶解した熱可塑性樹脂を塗布することにより形成することができる。また、基材の材料として結晶性を有する脂環式構造含有重合体を用いることにより、積層体の機械的強度を特に効果的に高めることができる。基材の材料として結晶性を有さない脂環式構造含有重合体を用いた場合には、積層体の製造コストを下げることができる。 As the alicyclic structure-containing polymer, either a polymer having crystallinity or a polymer having no crystallinity may be used, or both may be used in combination. Here, the crystalline polymer means a polymer having a melting point Mp. Further, the polymer having the melting point Mp means a polymer whose melting point Mp can be observed by a differential scanning calorimeter (DSC). Since the alicyclic structure-containing polymer having crystallinity is solvent resistant, by using it as a material of the base material, a thermoplastic resin layer can be formed by applying a thermoplastic resin dissolved in a solvent. it can. Further, by using a crystalline alicyclic structure-containing polymer as the material of the base material, the mechanical strength of the laminate can be effectively increased. When an alicyclic structure-containing polymer having no crystallinity is used as the material of the base material, the production cost of the laminate can be reduced.
 結晶性を有する脂環式構造含有重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる積層体が得られ易いことから、結晶性を有する脂環式構造含有重合体としては、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物等であって、結晶性を有するもの。
Examples of the alicyclic structure-containing polymer having crystallinity include the following polymers (α) to (δ). Among these, the polymer (β) is preferable as the crystalline alicyclic structure-containing polymer because a laminated body having excellent heat resistance can be easily obtained.
Polymer (α): A ring-opening polymer of a cyclic olefin monomer, which has crystallinity.
Polymer (β): A hydride of the polymer (α) having crystallinity.
Polymer (γ): Addition polymer of cyclic olefin monomer, which has crystallinity.
Polymer (δ): A hydride or the like of the polymer (γ) having crystallinity.
 具体的には、結晶性を有する脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。 Specifically, the alicyclic structure-containing polymer having crystallinity is a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydride of the ring-opening polymer of dicyclopentadiene. Of these, those having crystallinity are more preferable, and hydrides of ring-opening polymers of dicyclopentadiene which have crystallinity are particularly preferable. Here, the ring-opening polymer of dicyclopentadiene, the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50 wt% or more, preferably 70 wt% or more, more preferably 90 wt% or more, More preferably, it means 100% by weight of the polymer.
 結晶性を有する脂環式構造含有重合体は、積層体を製造するよりも前においては、結晶化していなくてもよい。しかし、積層体が製造された後においては、当該積層体に含まれる結晶性を有する脂環式構造含有重合体は、通常、結晶化していることにより、高い結晶化度を有することができる。具体的な結晶化度の範囲は所望の性能に応じて適宜選択しうるが、好ましくは10%以上、より好ましくは15%以上である。積層体に含まれる脂環式構造含有重合体の結晶化度を前記範囲の下限値以上にすることにより、積層体に高い耐熱性及び耐薬品性を付与することができる。結晶化度は、X線回折法によって測定しうる。 The alicyclic structure-containing polymer having crystallinity may not be crystallized before producing the laminated body. However, after the laminated body is produced, the crystalline alicyclic structure-containing polymer contained in the laminated body can usually have high crystallinity because it is crystallized. The specific range of the crystallinity can be appropriately selected according to the desired performance, but it is preferably 10% or more, more preferably 15% or more. By setting the crystallinity of the alicyclic structure-containing polymer contained in the laminate to be at least the lower limit value of the above range, it is possible to impart high heat resistance and chemical resistance to the laminate. The crystallinity can be measured by an X-ray diffraction method.
 結晶性を有する脂環式構造含有重合体の融点Mpは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Mpを有する結晶性を有する脂環式構造含有重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた積層体を得ることができる。 The melting point Mp of the crystalline alicyclic structure-containing polymer is preferably 200° C. or higher, more preferably 230° C. or higher, and preferably 290° C. or lower. By using a crystalline alicyclic structure-containing polymer having such a melting point Mp, it is possible to obtain a laminate having a better balance between moldability and heat resistance.
 前記のような結晶性を有する脂環式構造含有重合体は、例えば、国際公開第2016/067893号に記載の方法により、製造しうる。 The alicyclic structure-containing polymer having crystallinity as described above can be produced, for example, by the method described in International Publication No. 2016/067893.
 他方、結晶性を有さない脂環式構造含有重合体は、例えば、(1)ノルボルネン系重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素化物などが挙げられる。これらの中でも、透明性及び成形性の観点から、ノルボルネン系重合体及びこの水素化物がより好ましい。 On the other hand, the alicyclic structure-containing polymer having no crystallinity is, for example, (1) norbornene-based polymer, (2) monocyclic cycloolefin polymer, (3) cyclic conjugated diene polymer, (4) Examples thereof include vinyl alicyclic hydrocarbon polymers and their hydrides. Among these, the norbornene-based polymer and its hydride are more preferable from the viewpoint of transparency and moldability.
 ノルボルネン系重合体としては、例えば、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーと開環共重合可能なその他のモノマーとの開環共重合体、及びそれらの水素化物;ノルボルネン系モノマーの付加重合体、ノルボルネン系モノマーと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネン系モノマーの開環重合体水素化物が特に好ましい。
 上記の脂環式構造含有重合体は、例えば特開2002-321302号公報に開示されている重合体から選ばれる。
Examples of the norbornene-based polymer include ring-opening polymers of norbornene-based monomers, ring-opening copolymers of norbornene-based monomers with other monomers capable of ring-opening copolymerization, and hydrides thereof; Examples thereof include addition polymers and addition copolymers with other monomers that are copolymerizable with norbornene-based monomers. Among these, hydrides of ring-opening polymers of norbornene-based monomers are particularly preferable from the viewpoint of transparency.
The alicyclic structure-containing polymer is selected, for example, from the polymers disclosed in JP-A-2002-321302.
 結晶性を有さない脂環式構造含有重合体を含む樹脂としては、様々な商品が市販されているので、それらのうち、所望の特性を有するものを適宜選択し、使用しうる。かかる市販品の例としては、商品名「ZEONOR」(日本ゼオン株式会社製)、「アートン」(JSR株式会社製)、「アペル」(三井化学株式会社製)、「TOPAS」(ポリプラスチックス社製)の製品群が挙げられる。 As various resins are commercially available as a resin containing an alicyclic structure-containing polymer having no crystallinity, it is possible to appropriately select and use a resin having desired properties among them. Examples of such commercially available products include trade names "ZEONOR" (manufactured by Zeon Corporation), "Arton" (manufactured by JSR Corporation), "Apel" (manufactured by Mitsui Chemicals, Inc.), "TOPAS" (Polyplastics Co., Ltd.). Products).
 基材に含まれる重合体Yの重量平均分子量(Mw)は、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。このような重量平均分子量を有する重合体Yは、機械的強度、成形加工性及び耐熱性のバランスに優れる。 The weight average molecular weight (Mw) of the polymer Y contained in the base material is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, and preferably 100,000 or less. It is preferably 80,000 or less, particularly preferably 50,000 or less. The polymer Y having such a weight average molecular weight has an excellent balance of mechanical strength, moldability and heat resistance.
 基材に含まれる重合体Yの分子量分布(Mw/Mn)は、好ましくは1.2以上、より好ましくは1.5以上、特に好ましくは1.8以上であり、好ましくは3.5以下、より好ましくは3.4以下、特に好ましくは3.3以下である。分子量分布が前記範囲の下限値以上であることにより、重合体Yの生産性を高め、製造コストを抑制できる。また、上限値以下であることにより、低分子成分の量が小さくなるので、高温曝露時の緩和を抑制して、積層体の安定性を高めることができる。 The molecular weight distribution (Mw/Mn) of the polymer Y contained in the base material is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, preferably 3.5 or less, It is more preferably 3.4 or less, and particularly preferably 3.3 or less. When the molecular weight distribution is at least the lower limit value of the above range, the productivity of the polymer Y can be increased and the production cost can be suppressed. Further, when it is at most the upper limit value, the amount of the low-molecular component becomes small, so that the relaxation upon exposure to high temperature can be suppressed and the stability of the laminate can be enhanced.
 重合体Yの重量平均分子量Mw及び数平均分子量Mnは、溶媒としてシクロヘキサン(樹脂が溶解しない場合にはトルエン)を用いたゲル・パーミエーション・クロマトグラフィー(以下、「GPC」と略す。)により、ポリイソプレン換算(溶媒がトルエンのときは、ポリスチレン換算)の値で測定しうる。 The weight average molecular weight Mw and the number average molecular weight Mn of the polymer Y are determined by gel permeation chromatography (hereinafter, abbreviated as “GPC”) using cyclohexane (toluene when the resin does not dissolve) as a solvent. The value can be measured in terms of polyisoprene (in terms of polystyrene when the solvent is toluene).
 基材における重合体Yの割合は、耐熱性及び耐折れ曲げ性に特に優れた積層体を得る観点から、好ましくは80重量%~100重量%、より好ましくは90重量%~100重量%、更に好ましは95重量%~100重量%、特に好ましくは98重量%~100重量%である。 The proportion of the polymer Y in the substrate is preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight, from the viewpoint of obtaining a laminate having particularly excellent heat resistance and bending bending resistance. It is preferably 95% to 100% by weight, particularly preferably 98% to 100% by weight.
 基材は、上述した重合体Yに組み合わせて、任意の成分を含んでいてもよい。任意の成分としては、熱可塑性樹脂層が含みうる任意の成分と例示したものと同様の例が挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The base material may contain an optional component in combination with the above-mentioned polymer Y. Examples of the optional component include the same examples as those exemplified as the optional component that may be contained in the thermoplastic resin layer. As the optional component, one type may be used alone, or two or more types may be used in combination at any ratio.
 重合体Yを含む樹脂(「樹脂Y」ともいう)のガラス転移温度Tgは、好ましくは130℃以上である。樹脂Yが前記のように高いガラス転移温度Tgを有することにより、樹脂Yの耐熱性を高められるので、高温環境における基材の寸法変化を抑制できる。基材が前記のように優れた耐熱性を有することにより、導電層の形成を適切に行うことが可能である。特に、基材が優れた耐熱性を有することは、微細なパターン形状を有する導電層を形成したい場合に、有用である。樹脂Yのガラス転移温度の上限は、樹脂Yの入手を容易にする観点から、好ましくは200℃以下、より好ましくは190℃以下、特に好ましくは180℃以下である。ガラス転移温度は、後述する実施例に記載の方法によって測定できる。 The glass transition temperature Tg of the resin containing the polymer Y (also referred to as “resin Y”) is preferably 130° C. or higher. Since the resin Y has the high glass transition temperature Tg as described above, the heat resistance of the resin Y can be enhanced, so that the dimensional change of the base material in a high temperature environment can be suppressed. Since the base material has excellent heat resistance as described above, the conductive layer can be appropriately formed. In particular, the substrate having excellent heat resistance is useful when it is desired to form a conductive layer having a fine pattern shape. The upper limit of the glass transition temperature of the resin Y is preferably 200° C. or lower, more preferably 190° C. or lower, and particularly preferably 180° C. or lower from the viewpoint of easy availability of the resin Y. The glass transition temperature can be measured by the method described in Examples below.
 基材は、通常、高い透明性を有する。基材の具体的な全光線透過率は、好ましくは80%以上、より好ましくは85%以上、更に好ましくは90%以上である。本発明においては、熱可塑性樹脂層及び基材層の少なくとも一方の全光線透過率が80%以上であるのが好ましく、双方の全光線透過率が80%以上であるとより好ましい。少なくとも一方の層の全光線透過率が80%以上であれば、積層体が高い透明性を有するので、表示装置等に用いる場合に好適である。 The base material usually has high transparency. The specific total light transmittance of the substrate is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more. In the present invention, the total light transmittance of at least one of the thermoplastic resin layer and the base material layer is preferably 80% or more, and more preferably the total light transmittance of both is 80% or more. When the total light transmittance of at least one layer is 80% or more, the laminate has high transparency, which is suitable for use in a display device or the like.
 基材の透湿度は、好ましくは3g/m・24h以下、より好ましくは2g/m・24h以下である。基材の透湿度の下限値は特に限定はないが、好ましくは、0g/m・24h以上である。基材の透湿度を、上限値以下とすることにより、基材と導電層との密着度を高めて、マイグレーション防止効果を向上することができる。基材の透湿度は、リッシー法(測定機器L80-5000型(システックイリノイ社製)、温度条件40℃湿度90%)により測定しうる。 The water vapor permeability of the base material is preferably 3 g/m 2 ·24 h or less, more preferably 2 g/m 2 ·24 h or less. The lower limit of the water vapor transmission rate of the base material is not particularly limited, but is preferably 0 g/m 2 ·24 h or more. By setting the water vapor permeability of the base material to be not more than the upper limit value, the degree of adhesion between the base material and the conductive layer can be increased, and the migration prevention effect can be improved. The moisture permeability of the base material can be measured by the Lissie method (measuring instrument L80-5000 type (manufactured by Systec Illinois Co., Ltd., temperature condition 40°C, humidity 90%).
 基材の25℃における貯蔵弾性率は、好ましくは2000MPa以上、より好ましくは2500MPa以上であり、好ましくは3000MPa以下である。基材の貯蔵弾性率を上限値以下とすることにより、積層体の可撓性を優れたものとすることができる。基材の貯蔵弾性率は、動的粘弾性測定装置を用いて、周波数1Hzの条件で、測定しうる。 The storage elastic modulus at 25° C. of the base material is preferably 2000 MPa or more, more preferably 2500 MPa or more, and preferably 3000 MPa or less. By setting the storage elastic modulus of the base material to the upper limit or less, the flexibility of the laminate can be made excellent. The storage elastic modulus of the base material can be measured using a dynamic viscoelasticity measuring device under the condition of a frequency of 1 Hz.
 基材の厚みは、好ましくは1μm以上、より好ましくは10μm以上、特に好ましくは15μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、特に好ましくは60μm以下である。基材の厚みが前記範囲の下限値以上であることにより、基材により導電層への水分の浸入を抑制できる。よって、マイグレーションの発生を効果的に抑制することができる。他方、基材の厚みが、前記範囲の上限値以下であることにより、積層体の可撓性を効果的に高めることができる。 The thickness of the base material is preferably 1 μm or more, more preferably 10 μm or more, particularly preferably 15 μm or more, preferably 100 μm or less, more preferably 80 μm or less, particularly preferably 60 μm or less. When the thickness of the base material is equal to or more than the lower limit value of the above range, it is possible to suppress infiltration of water into the conductive layer by the base material. Therefore, the occurrence of migration can be effectively suppressed. On the other hand, when the thickness of the base material is not more than the upper limit value of the above range, the flexibility of the laminate can be effectively enhanced.
 基材の面内方向の位相差Reは、積層体の用途に応じて任意に設定できる。特に、直線偏光板と組み合わせて円偏光板として用いる場合には、1/4波長板として機能できる面内方向の位相差Reを有することが望ましい。その場合の面内方向の位相差Reは、好ましくは100nm以上、より好ましくは110nm以上であり、好ましくは180nm以下、より好ましくは170nm以下である。その他の用途の場合は、特に制限されないが、好ましくは10nm以下であり、より好ましくは5nm以下である。 The retardation Re in the in-plane direction of the base material can be arbitrarily set according to the application of the laminate. In particular, when used as a circularly polarizing plate in combination with a linearly polarizing plate, it is desirable to have a retardation Re in the in-plane direction that can function as a quarter-wave plate. In that case, the retardation Re in the in-plane direction is preferably 100 nm or more, more preferably 110 nm or more, preferably 180 nm or less, more preferably 170 nm or less. For other uses, it is not particularly limited, but is preferably 10 nm or less, more preferably 5 nm or less.
 基材の製造方法に制限は無い。基材の製造方法としては、例えば、溶融成形法、溶液流延法などが挙げられる。中でも、溶媒等の揮発性成分の基材への残留を抑制できることから、溶融成形法が好ましい。溶融成形法は、さらに詳細には、押出成形法、プレス成形法、インフレーション成形法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの方法の中でも、機械強度及び表面精度に優れた基材を得るために、押出成形法、インフレーション成形法及びプレス成形法が好ましく、効率よく簡単に基材を製造できる観点から、押出成形法が特に好ましい。 There is no limit to the method of manufacturing the base material. Examples of the method for producing the base material include a melt molding method and a solution casting method. Among them, the melt molding method is preferable because it is possible to suppress the volatile components such as the solvent from remaining on the substrate. More specifically, the melt molding method can be classified into an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, a stretch molding method and the like. Among these methods, an extrusion molding method, an inflation molding method and a press molding method are preferable in order to obtain a base material excellent in mechanical strength and surface accuracy, and an extrusion molding method is preferable from the viewpoint of easily and efficiently manufacturing the base material. Is particularly preferable.
 基材の形状は特に限定されないが、長尺状のフィルムであることが好ましい。また、基材は、長尺状のフィルムであって、その幅方向に対して斜め方向に、遅相軸を有しているフィルムであることが好ましい。斜め方向とは、フィルムの面内方向であって、フィルムの長手方向及びフィルムの幅方向のいずれとも非平行な方向をいう。斜め方向に遅相軸を有するフィルムは、長尺状のフィルムを、幅方向に対して斜め方向に延伸することにより得ることができる。斜め延伸したフィルムでは、光軸の向きがフィルムの幅方向に対して傾斜した方向になるので、基材として斜め方向に遅相軸を有するフィルム(斜め延伸フィルム)を使用すると、本発明の積層体をロール・トゥ・ロールで容易に製造することができ、好適である。 The shape of the substrate is not particularly limited, but a long film is preferable. Further, the substrate is preferably a long film having a slow axis in a direction oblique to the width direction. The oblique direction is an in-plane direction of the film and is a direction that is not parallel to both the longitudinal direction of the film and the width direction of the film. The film having the slow axis in the oblique direction can be obtained by stretching a long film in the oblique direction with respect to the width direction. In the obliquely stretched film, the direction of the optical axis is a direction inclined with respect to the width direction of the film. Therefore, when a film having a slow axis in the oblique direction (obliquely stretched film) is used as the substrate, the laminate of the present invention is obtained. The body is preferable because it can be easily manufactured roll-to-roll.
 斜め延伸の方法及び斜め延伸に用いる延伸機は特に制限されず、従来公知のテンター式延伸機を使用することができる。また、テンター式延伸機には、横一軸延伸機、同時二軸延伸機などがあるが、長尺のフィルムを連続的に斜め延伸できるものであれば、特に制限されず、種々のタイプの延伸機を使用することができる。 The diagonal stretching method and the stretching machine used for the diagonal stretching are not particularly limited, and a conventionally known tenter type stretching machine can be used. Further, the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, etc., but is not particularly limited as long as it can continuously stretch a long film obliquely, and various types of stretching Machine can be used.
 [5.任意の層]
 積層体は、熱可塑性樹脂層、導電層及び基材以外に、任意の層を含みうる。例えば、積層体は、熱可塑性樹脂層の導電層とは反対側、基材の導電層とは反対側、などの位置に任意の層を備えていてもよい。任意の層としては、例えば、支持体層、ハードコート層、インデックスマッチング層、接着層、位相差層、偏光子層、光学補償層などが挙げられる。
[5. Any layer]
The laminate may include any layer in addition to the thermoplastic resin layer, the conductive layer and the base material. For example, the laminated body may be provided with an arbitrary layer at a position such as a side of the thermoplastic resin layer opposite to the conductive layer or a side of the base material opposite to the conductive layer. Examples of the optional layer include a support layer, a hard coat layer, an index matching layer, an adhesive layer, a retardation layer, a polarizer layer, and an optical compensation layer.
 積層体において、基材と導電層とは、直接に接していることが好ましい。また、導電層と熱可塑性樹脂層とは、直接に接していることが好ましい。ここで、ある2層が接する態様が「直接」とは、それら2層の間に他の層が無いことを言う。更には、積層体は、基材、導電層及び熱可塑性樹脂層のみを備える3層構造のフィルムであることが特に好ましい。 In the laminated body, it is preferable that the base material and the conductive layer are in direct contact with each other. Further, it is preferable that the conductive layer and the thermoplastic resin layer are in direct contact with each other. Here, the term "directly" in which two layers are in contact with each other means that there is no other layer between the two layers. Furthermore, it is particularly preferable that the laminate is a film having a three-layer structure including only a base material, a conductive layer and a thermoplastic resin layer.
 [6.積層体の物性及び厚み]
 積層体の全光線透過率は、好ましくは70%以上、より好ましくは80%以上、更に好ましくは90%以上である。積層体の全光線透過率が下限値以上であると、光学部材の用途において好適である。
 また、積層体のヘイズは、積層体を組み込んだ画像表示装置の画像鮮明性を高める観点から、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
[6. Physical properties and thickness of laminate]
The total light transmittance of the laminate is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. When the total light transmittance of the laminate is at least the lower limit value, it is suitable for use as an optical member.
Further, the haze of the laminate is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less from the viewpoint of enhancing the image clarity of the image display device incorporating the laminate, and ideally Is 0%.
 積層体の厚みは、好ましくは2μm以上、より好ましくは5μm以上、更に好ましくは7.5μm以上、特に好ましくは10μm以上であり、好ましくは200μm以下、より好ましくは175μm以下、特に好ましくは150μm以下である。積層体の厚みが、前記範囲の下限値以上であることにより、積層体の機械的強度を高め、導電層を形成する際にしわを防ぐことができる。また、積層体の厚みが、前記範囲の上限値以下であることにより、積層体の可撓性性を良好にすることができ、更には積層体の薄膜化が可能である。 The thickness of the laminate is preferably 2 μm or more, more preferably 5 μm or more, even more preferably 7.5 μm or more, particularly preferably 10 μm or more, preferably 200 μm or less, more preferably 175 μm or less, particularly preferably 150 μm or less. is there. When the thickness of the laminate is not less than the lower limit of the above range, the mechanical strength of the laminate can be increased and wrinkles can be prevented when forming the conductive layer. Further, when the thickness of the laminated body is not more than the upper limit value of the above range, the flexibility of the laminated body can be improved, and the laminated body can be thinned.
 [7.本発明の作用・効果]
 本発明において、熱可塑性樹脂層は透湿度が5g/m・24h以下で、25℃における貯蔵弾性率が1300MPa以下の層である。つまり、本発明において、熱可塑性樹脂層は適切な範囲の透湿度を有するので、導電層との密着性を高くし、これによりマイグレーション防止効果を高めることができる。また、本発明において、熱可塑性樹脂フィルムは、適切な範囲の貯蔵弾性率を有するので、積層体の可撓性を優れたものとすることができる。その結果、本発明によれば、優れた可撓性と、優れたマイグレーション防止効果を有する積層体を提供することができる。
[7. Actions and effects of the present invention]
In the present invention, the thermoplastic resin layer has a moisture permeability of 5 g/m 2 ·24 h or less and a storage elastic modulus at 25°C of 1300 MPa or less. That is, in the present invention, since the thermoplastic resin layer has a moisture permeability in an appropriate range, it is possible to enhance the adhesiveness with the conductive layer and thereby enhance the migration prevention effect. Further, in the present invention, since the thermoplastic resin film has a storage elastic modulus in an appropriate range, it is possible to make the laminate excellent in flexibility. As a result, according to the present invention, it is possible to provide a laminate having excellent flexibility and an excellent effect of preventing migration.
 また、本発明において、積層体は、導電層を支持するための層として可撓性を有する基材及び熱可塑性樹脂層を備えるので、導電性ガラスに比べて、通常は、耐衝撃性及び加工性に優れる。さらに、積層体は、通常、導電性ガラスよりも、軽量である。 Further, in the present invention, since the laminate has a flexible base material and a thermoplastic resin layer as a layer for supporting the conductive layer, the laminate usually has impact resistance and processing property higher than that of the conductive glass. Excellent in performance. Furthermore, the laminate is usually lighter than the conductive glass.
 [8.積層体の製造方法]
 積層体の製造方法に制限は無いが、上述の積層体は、例えば、基材上に導電層を形成する工程1と、導電層上に熱可塑性樹脂層を形成する工程2と、を含む製造方法により、製造し得る。このような製造方法によれば、熱可塑性樹脂層の形成を容易に行うことができるので、製造方法の簡素化が可能である。
[8. Manufacturing method of laminated body]
The method for producing the laminate is not limited, but the above-mentioned laminate includes, for example, Step 1 of forming a conductive layer on a base material and Step 2 of forming a thermoplastic resin layer on the conductive layer. It can be manufactured by a method. According to such a manufacturing method, since the thermoplastic resin layer can be easily formed, the manufacturing method can be simplified.
 (工程1)
 工程1は、基材上に導電層を形成する工程である。
 工程1で用いる基材は、例えば、前述した基材の製造方法により、樹脂Yから形成しうる。基材として斜め延伸フィルムを用いる場合、工程1を行う前に延伸工程を行う。
(Process 1)
Step 1 is a step of forming a conductive layer on the base material.
The base material used in the step 1 can be formed from the resin Y by the above-described base material manufacturing method, for example. When an obliquely stretched film is used as the base material, the stretching step is performed before performing step 1.
 工程1では、例えば、前述した導電層の形成方法により、基材上に導電層を形成する。導電層は、基材上に、任意の層を介して間接的に形成してもよい。ただし、導電層は、基材上に直接に形成することが好ましい。 In step 1, for example, the conductive layer is formed on the base material by the above-described conductive layer forming method. The conductive layer may be indirectly formed on the base material via any layer. However, the conductive layer is preferably formed directly on the substrate.
 (工程2)
 工程2は、導電層上に熱可塑性樹脂層を形成する工程である。
 工程2では、基材に形成した導電層の上に、熱可塑性樹脂層を形成する。熱可塑性樹脂層は、導電層上に、任意の層を介して間接的に形成してもよい。例えば、上記の熱可塑性樹脂層の製造方法により製造した熱可塑性樹脂層を、粘着剤又は接着剤を介して導電層に貼り合わせることに形成してもよい。ただし、熱可塑性樹脂層は、導電層上に直接に形成することが好ましい。
(Process 2)
Step 2 is a step of forming a thermoplastic resin layer on the conductive layer.
In step 2, a thermoplastic resin layer is formed on the conductive layer formed on the base material. The thermoplastic resin layer may be indirectly formed on the conductive layer via any layer. For example, the thermoplastic resin layer manufactured by the above-described method for manufacturing a thermoplastic resin layer may be formed by adhering it to the conductive layer via a pressure-sensitive adhesive or an adhesive. However, it is preferable that the thermoplastic resin layer is formed directly on the conductive layer.
 工程2は、熱可塑性樹脂層を熱圧着すること、または熱可塑性樹脂を含む溶液を塗布することを含むことが好ましい。当該方法によれば、製造方法を簡素化することができる。 Step 2 preferably includes thermocompression-bonding the thermoplastic resin layer or applying a solution containing the thermoplastic resin. According to this method, the manufacturing method can be simplified.
 熱可塑樹脂層を熱圧着する方法は、上述の熱可塑性樹脂層の製造方法により製造した熱可塑性樹脂層を、必要に応じて加熱しながら導電層の表面に圧着する方法である。
 熱可塑性樹脂を含む溶液を塗布する方法は、熱可塑性樹脂を含む溶液を導電層上に塗布し、必要に応じて乾燥させることによって、導電層上に直接に熱可塑性樹脂層を形成する方法である。基材の材料が耐溶剤性である場合は、この方法を採ることにより容易に熱可塑性樹脂層を形成することができる。熱可塑性樹脂を含む溶液は、熱可塑性樹脂を溶剤に溶解または分散させることにより得ることができる。
The method of thermocompression-bonding the thermoplastic resin layer is a method of pressure-bonding the thermoplastic resin layer produced by the above-mentioned method for producing a thermoplastic resin layer to the surface of the conductive layer while heating as necessary.
The method of applying a solution containing a thermoplastic resin is a method of forming a thermoplastic resin layer directly on the conductive layer by applying a solution containing a thermoplastic resin on the conductive layer and drying it if necessary. is there. When the material of the base material is solvent resistant, the thermoplastic resin layer can be easily formed by adopting this method. The solution containing the thermoplastic resin can be obtained by dissolving or dispersing the thermoplastic resin in a solvent.
 積層体の製造方法は、前述した工程に組み合わせて、更に任意の工程を含んでいてもよい。 The method for manufacturing a laminated body may further include an optional step in combination with the above-mentioned steps.
 [9.積層体の用途]
 本発明の積層体は、優れた可撓性を有し、かつ、優れたマイグレーション防止効果を有するので、例えば、円偏光板、タッチパネル等の光学用途や、回路基板等の用途に好適に用い得る。
[9. Applications of laminate]
Since the laminate of the present invention has excellent flexibility and an excellent effect of preventing migration, it can be suitably used for optical applications such as circularly polarizing plates and touch panels, and applications such as circuit boards. ..
 [10.円偏光板]
 本発明の円偏光板は、上記の本発明の積層体と、偏光板と、を備える。円偏光板は、例えば、基材の遅相軸と偏光板の吸収軸とのなす角θ1が45°となるように、偏光板を積層体に積層することにより得ることができる。基材の遅相軸と偏光板の吸収軸とのなす角θ1は、例えば±5°、±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。このような態様とすると、例えば円偏光板を表示装置に用いた場合に、入射外光の反射光により表示内容が視認しづらくなるのを防止しうる。偏光板は長尺方向または幅方向に吸収軸を有する長尺のフィルムであると、基材の遅相軸の方向と偏光板の吸収軸の方向とを適切な角度に設定しやすく、円偏光板の製造を容易なものとすることができ、好ましい。
[10. Circular polarizer]
A circularly polarizing plate of the present invention includes the above-mentioned laminated body of the present invention and a polarizing plate. The circularly polarizing plate can be obtained, for example, by laminating the polarizing plate in a laminate so that the angle θ1 formed by the slow axis of the base material and the absorption axis of the polarizing plate is 45°. The angle θ1 formed by the slow axis of the substrate and the absorption axis of the polarizing plate may include an error within a range of ±5°, ±3°, ±2° or ±1°. With such a configuration, when a circularly polarizing plate is used in a display device, for example, it is possible to prevent the display contents from being difficult to be visually recognized due to reflected light of incident external light. When the polarizing plate is a long film having an absorption axis in the lengthwise direction or the width direction, it is easy to set the direction of the slow axis of the substrate and the direction of the absorption axis of the polarizing plate at an appropriate angle, and the circularly polarized light It is preferable because the plate can be easily manufactured.
 偏光板として長尺の偏光フィルムを用いる場合、当該偏光フィルムは、例えば、ポリビニルアルコールフィルムにヨウ素若しくは二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって製造してもよい。また、例えば、ポリビニルアルコールフィルムにヨウ素もしくは二色性染料を吸着させ延伸し、さらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって製造してもよい。さらに、例えば、グリッド偏光板、多層偏光板などの、偏光を反射光と透過光とに分離する機能を有する偏光フィルムを用いてもよい。これらの中でも、ポリビニルアルコールを含んでなる偏光フィルムが好ましい。偏光フィルムの偏光度は、好ましくは98%以上、より好ましくは99%以上である。 When a long polarizing film is used as the polarizing plate, the polarizing film may be produced, for example, by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath. .. Alternatively, for example, it may be produced by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film, stretching it, and further modifying a part of the polyvinyl alcohol unit in the molecular chain into a polyvinylene unit. Furthermore, for example, a polarizing film having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizing plate or a multilayer polarizing plate, may be used. Among these, a polarizing film containing polyvinyl alcohol is preferable. The polarization degree of the polarizing film is preferably 98% or more, more preferably 99% or more.
 偏光板と積層体とを積層する場合、接着剤を用いてもよい。接着剤としては、光学的に透明であれば特に限定されず、例えば、水性接着剤、溶剤型接着剤、二液硬化型接着剤、紫外線硬化型接着剤、感圧性接着剤などが挙げられる。この中でも、水性接着剤が好ましく、特にポリビニルアルコール系の水性接着剤が好ましい。なお、接着剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 When laminating the polarizing plate and the laminated body, an adhesive may be used. The adhesive is not particularly limited as long as it is optically transparent, and examples thereof include a water-based adhesive, a solvent-based adhesive, a two-component curable adhesive, an ultraviolet curable adhesive, and a pressure-sensitive adhesive. Among these, a water-based adhesive is preferable, and a polyvinyl alcohol-based water-based adhesive is particularly preferable. The adhesive may be used alone or in combination of two or more at an arbitrary ratio.
 接着剤により形成される層(接着層)の平均厚みは、好ましくは0.05μm以上、より好ましくは0.1μm以上であり、好ましくは5μm以下、より好ましくは1μm以下である。 The average thickness of the layer formed by the adhesive (adhesive layer) is preferably 0.05 μm or more, more preferably 0.1 μm or more, preferably 5 μm or less, more preferably 1 μm or less.
 偏光板に積層体を積層する方法に制限は無いが、偏光板の一方の面に接着剤を塗布した後、ロールラミネーターを用いて偏光板と積層体とを貼り合せ、乾燥させる方法が好ましい。貼り合せの前に、積層体の表面に、例えばコロナ放電処理、プラズマ処理などの表面処理を施してもよい。乾燥時間及び乾燥温度は、接着剤の種類に応じて適宜選択される。 There is no limitation on the method of laminating the laminated body on the polarizing plate, but a method of applying an adhesive on one surface of the polarizing plate and then bonding the polarizing plate and the laminated body using a roll laminator and drying is preferable. Prior to bonding, the surface of the laminate may be subjected to surface treatment such as corona discharge treatment and plasma treatment. The drying time and the drying temperature are appropriately selected according to the type of adhesive.
 得られた円偏光板は、必要に応じ適宜な大きさに裁断して、有機エレクトロルミネッセンス表示素子(以下、適宜「有機EL表示素子」ということがある。)の反射防止フィルムとして用いうる。 The obtained circularly polarizing plate can be cut into an appropriate size if necessary and used as an antireflection film of an organic electroluminescence display element (hereinafter, also referred to as an “organic EL display element” as appropriate).
 [11.表示装置]
 本発明の表示装置は、本発明の円偏光板を備える。本発明の表示装置としては有機エレクトロルミネッセンス表示装置(以下、適宜「有機EL表示装置」ということがある。)が好ましい。このような有機EL表示装置において、本発明の円偏光板は反射防止フィルムとして用いうる。
[11. Display device]
The display device of the present invention includes the circularly polarizing plate of the present invention. As the display device of the present invention, an organic electroluminescence display device (hereinafter, also referred to as “organic EL display device” as appropriate) is preferable. In such an organic EL display device, the circularly polarizing plate of the present invention can be used as an antireflection film.
 本発明の円偏光板を反射防止フィルムとして用いる場合、有機EL表示装置の表面に、上述の円偏光板を、偏光板側の面が視認側に向くように設けることにより、装置外部から入射した光が装置内で反射して装置外部へ出射することを抑制することができ、その結果、有機EL表示装置の表示面のぎらつきなどの不所望な現象を抑制しうる。 When the circularly polarizing plate of the present invention is used as an antireflection film, the circularly polarizing plate described above is provided on the surface of the organic EL display device so that the surface on the polarizing plate side faces the viewing side, so that the light is incident from the outside of the device. Light can be suppressed from being reflected inside the device and emitted to the outside of the device, and as a result, an undesired phenomenon such as glare on the display surface of the organic EL display device can be suppressed.
 [12.タッチパネル]
 本発明のタッチパネルは、本発明の積層体を備える。
 タッチパネルにおいて、積層体の配置方向は限定されないが、視認側から順に、熱可塑性樹脂層、導電層及び基材の順に排されるように設けられていることが好ましい。
[12. Touch panel]
The touch panel of the present invention includes the laminate of the present invention.
In the touch panel, the arrangement direction of the laminate is not limited, but it is preferable that the laminate is provided so that the thermoplastic resin layer, the conductive layer, and the base material are sequentially discharged from the viewing side.
 本発明のタッチパネルは、積層体と、積層体の熱可塑性樹脂層に接して設けた偏光板を備えていてもよい。この場合、積層体の基材の遅相軸に対して偏光板の吸収軸がなす角θ2が45°となるように、偏光板を設けるのが好ましい。このような態様とすることにより、入射外光の反射光により表示内容が視認しづらくなるのを防止することが可能となる。積層体の基材の遅相軸に対する偏光板の吸収軸の角度θ2は、例えば±5°、±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。 The touch panel of the present invention may include a laminate and a polarizing plate provided in contact with the thermoplastic resin layer of the laminate. In this case, it is preferable to provide the polarizing plate so that the angle θ2 formed by the absorption axis of the polarizing plate with respect to the slow axis of the base material of the laminate is 45°. With such a mode, it becomes possible to prevent the display contents from becoming difficult to be visually recognized due to the reflected light of the incident external light. The angle θ2 of the absorption axis of the polarizing plate with respect to the slow axis of the base material of the laminate may include an error within the range of ±5°, ±3°, ±2° or ±1°.
 タッチパネルは、通常、積層体に組み合わせて、画像表示素子を備える。画像表示素子としては、例えば、液晶表示素子、有機エレクトロルミネッセンス表示素子(以下、適宜「有機EL表示素子」ということがある。)が挙げられる。通常、積層体は、前記の画像表示素子の視認側に設けられる。 A touch panel usually has an image display element in combination with a laminated body. Examples of the image display element include a liquid crystal display element and an organic electroluminescence display element (hereinafter, also referred to as “organic EL display element” as appropriate). Usually, the laminate is provided on the viewing side of the image display device.
 可撓性を有するタッチパネルを得るためには、画像表示素子として、可撓性を有する画像表示素子(フレキシブルディスプレイ素子)を採用することが好ましい。このように可撓性を有する画像表示素子としては、例えば、有機EL表示素子が挙げられる。 In order to obtain a flexible touch panel, it is preferable to employ a flexible image display element (flexible display element) as the image display element. Examples of such flexible image display elements include organic EL display elements.
 有機EL表示素子は、通常、基板上に、第一電極層、発光層及び第二電極層をこの順に備え、第一電極層及び第二電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL表示素子は、バリア層、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。 An organic EL display device usually includes a first electrode layer, a light emitting layer and a second electrode layer on a substrate in this order, and the light emitting layer emits light when a voltage is applied from the first electrode layer and the second electrode layer. Can occur. Examples of the material forming the organic light emitting layer include polyparaphenylene vinylene-based materials, polyfluorene-based materials, and polyvinylcarbazole-based materials. Further, the light emitting layer may have a laminated body of a plurality of layers having different emission colors or a mixed layer in which a certain dye layer is doped with different dyes. Furthermore, the organic EL display element may include functional layers such as a barrier layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples described below, and may be implemented by being arbitrarily modified within the scope of the claims and equivalents thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。 In the following description, "%" and "parts" representing amounts are by weight unless otherwise specified. In addition, the operations described below were performed under the conditions of normal temperature and normal pressure unless otherwise specified.
 [評価方法]
 〔分子量の測定方法〕
 重合体の重量平均分子量及び数平均分子量は、テトラヒドロフランを溶離液とするゲル・パーミエーション・クロマトグラフィーによる標準ポリスチレン換算値として38℃において測定した。測定装置としては、東ソー社製HLC8320GPCを用いた。
[Evaluation method]
[Measurement method of molecular weight]
The weight average molecular weight and number average molecular weight of the polymer were measured at 38° C. as a standard polystyrene conversion value by gel permeation chromatography using tetrahydrofuran as an eluent. As a measuring device, HLC8320GPC manufactured by Tosoh Corporation was used.
 〔水素化率の測定方法〕
 重合体の水素化率は、H-NMR測定により測定した。
[Method of measuring hydrogenation rate]
The hydrogenation rate of the polymer was measured by 1 H-NMR measurement.
 〔ガラス転移温度Tgの測定方法〕
 示差走査熱量計(DSC)を用いて、10℃/分で昇温して試料のガラス転移温度Tgを求めた。
[Measuring method of glass transition temperature Tg]
Using a differential scanning calorimeter (DSC), the glass transition temperature Tg of the sample was determined by raising the temperature at 10°C/min.
 〔面内位相差Reの測定方法〕
 実施例および比較例(以下「各例」ともいう)で用いた基材及び熱可塑性樹脂層のReは、波長590nmで位相差測定装置(Axometric社製 製品名「Axoscan」)を用いて測定した。
[Measurement method of in-plane retardation Re]
Re of the base material and the thermoplastic resin layer used in Examples and Comparative Examples (hereinafter also referred to as “each example”) was measured at a wavelength of 590 nm by using a phase difference measuring device (product name “Axoscan” manufactured by Axometric). ..
 〔全光線透過率の測定〕
 熱可塑性樹脂層及び基材の全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定した。
[Measurement of total light transmittance]
The total light transmittances of the thermoplastic resin layer and the substrate were measured using an ultraviolet/visible spectrometer in the wavelength range of 400 nm to 700 nm.
 〔貯蔵弾性率の測定方法〕
 各例で用いた熱可塑性樹脂層及び基材の貯蔵弾性率は、動的粘弾性装置(SII社製「DMS6100」)を用いて、25℃、周波数1Hzの条件で測定した。熱可塑性樹脂層については、25℃における貯蔵弾性率に加えて、-40℃及び100℃における貯蔵弾性率を測定した。これらの測定結果を用いて、-40℃における貯蔵弾性率Eに対する100℃における貯蔵弾性率Eの比(E/E)を算出した。
[Method of measuring storage modulus]
The storage elastic moduli of the thermoplastic resin layer and the substrate used in each example were measured under the conditions of 25° C. and a frequency of 1 Hz using a dynamic viscoelastic device (“DMS6100” manufactured by SII). For the thermoplastic resin layer, the storage elastic modulus at −40° C. and 100° C. was measured in addition to the storage elastic modulus at 25° C. Using these measurement results, the ratio (E 2 /E 1 ) of the storage elastic modulus E 2 at 100° C. to the storage elastic modulus E 1 at −40° C. was calculated.
 〔透湿度の測定方法〕
 各例で用いた熱可塑性樹脂層及び基材の透湿度は、それぞれ、リッシー法により、測定した(測定機器L80-5000型(システックイリノイ社製)、温度条件40℃湿度90%)。
[Measurement method of moisture permeability]
The moisture vapor transmission rates of the thermoplastic resin layer and the substrate used in each example were measured by the Lissi method (measuring instrument L80-5000 type (manufactured by Systec Illinois, Inc., temperature condition 40° C., humidity 90%).
 〔密着性評価試験(碁盤目剥離試験)〕
 各例で製造した積層体の熱可塑性樹脂層側に刻みを付けて1mm×1mmの大きさの区画を100個、碁盤目状に形成した。セロハンテープ(ニチバン社製、幅24mm)を100個の前記区画上に貼り付け1秒以内に剥がし、剥がれた基材の区画個数を計数し、下記評価基準により評価した。
 <評価基準>
 A:100個の碁盤目試験(JIS基準)で、剥がれ数が3個以下である。
 B:100個の碁盤目試験(JIS基準)で、剥がれ数が4個以上10個以下である。
 C:100個の碁盤目試験(JIS基準)で、剥がれ数が11個以上である。
[Adhesion evaluation test (cross-cut peel test)]
The thermoplastic resin layer side of the laminate produced in each example was scribed to form 100 1 mm×1 mm sections in a grid pattern. Cellophane tape (manufactured by Nichiban Co., Ltd., width: 24 mm) was adhered onto 100 compartments and peeled off within 1 second, and the number of compartments of the peeled base material was counted and evaluated according to the following evaluation criteria.
<Evaluation criteria>
A: The number of peels is 3 or less in a 100 cross-cut test (JIS standard).
B: 100 pieces of cross-cut test (JIS standard), the number of peeling is 4 or more and 10 or less.
C: The number of peels was 11 or more in the 100 cross-cut test (JIS standard).
 〔マイグレーション防止効果の評価〕
 <実施例1~6および比較例2~6の評価用基板の作製>
 櫛状の導電層を有する積層体を製造し評価用基板とした。具体的には各例で用いる基材の上に、バーコーターを用いて、銀インク(シグマ-アルドリッチ ジャパン製「Silver Nanoparticle Ink」)を塗布し、120℃で60秒間乾燥させた。これにより、基材上に厚み0.7μmの銀粒子を含む層が形成された。この上にポジ型フォトレジスト(日本ゼオン(株)製「ZPP1700」)を用いて塗布、乾燥、露光及び現像を行いレジストパターンを形成した。その後、酸性のエッチング液によりエッチング処理を行い、櫛状の電極パターンを作成し導電層を得た。各電極のライン幅は400μmであり、電極相互間の間隙は100μmであった。次に、各例で用いる熱可塑性樹脂層の材料及び形成方法に従い、導電層が形成された基材の上に熱可塑性樹脂層を形成して評価用基板を製造した。
[Evaluation of migration prevention effect]
<Production of Evaluation Substrates of Examples 1 to 6 and Comparative Examples 2 to 6>
A laminate having a comb-shaped conductive layer was manufactured and used as an evaluation substrate. Specifically, a silver ink (“Silver Nanoparticle Ink” manufactured by Sigma-Aldrich Japan) was applied on the substrate used in each example using a bar coater, and dried at 120° C. for 60 seconds. As a result, a layer containing silver particles having a thickness of 0.7 μm was formed on the base material. A positive photoresist (“ZPP1700” manufactured by Nippon Zeon Co., Ltd.) was applied on this, followed by coating, drying, exposing and developing to form a resist pattern. After that, etching treatment was performed with an acidic etching solution to form a comb-shaped electrode pattern to obtain a conductive layer. The line width of each electrode was 400 μm, and the gap between the electrodes was 100 μm. Next, according to the material and forming method of the thermoplastic resin layer used in each example, the thermoplastic resin layer was formed on the base material on which the conductive layer was formed to manufacture the evaluation substrate.
 <比較例1の評価用基板の作製>
 比較例1の積層体の製造の際に、ITO層を櫛状に形成したものについて、評価用基板とした。
<Production of Evaluation Board of Comparative Example 1>
A substrate for evaluation was formed by comb-forming the ITO layer during the production of the laminate of Comparative Example 1.
 <評価方法>
 各例の評価用基板を、85℃、90%RHの湿熱条件下に静置し、この状態で電極間に50Vの電圧を印加し、マイグレーション試験を行った。櫛形電極の抵抗値を測定し急激に抵抗値が下がるまでの時間(時間)を測定した。ここで「急激に抵抗値が下がる」とは抵抗値が4桁以上、下がる(通電してしまう)ことをいう。前記時間は、長いほうが、マイグレーション防止効果が高い。
<Evaluation method>
The evaluation substrate of each example was allowed to stand under conditions of 85° C. and 90% RH in heat and humidity, and a voltage of 50 V was applied between the electrodes in this state to perform a migration test. The resistance value of the comb-shaped electrode was measured, and the time (hour) until the resistance value suddenly dropped was measured. Here, "the resistance value sharply decreases" means that the resistance value decreases by 4 digits or more (energizes). The longer the time, the higher the effect of preventing migration.
 〔折り返し試験による表面変化の評価〕
 各例で製造した積層体について、折り返し試験を行った。この折り返し試験では、屈曲試験機(ユアサシステム機器社製「TCDM111LH」)を用いて、積層体に対して、曲率半径5mmでの折り返し操作を行い、導電層の断線及び各層の剥離現象のうちの少なくとも一方が起きたときの、折り曲げの回数を測定した。折り曲げの回数が多いほど耐折り曲げ性が高い。
[Evaluation of surface change by folding test]
A folding back test was conducted on the laminated body manufactured in each example. In this folding back test, a bending tester (“TCDM111LH” manufactured by Yuasa System Equipment Co., Ltd.) was used to perform folding back operation with a radius of curvature of 5 mm on the laminated body, which caused disconnection of the conductive layer and peeling phenomenon of each layer. The number of folds was measured when at least one occurred. The greater the number of folds, the higher the fold resistance.
 [製造例1.熱可塑性樹脂層Aの製造]
 (A-1.ブロック共重合体の水素化物の製造)
 国際公開2014/077267号に記載された方法を参考にして、スチレン25部、スチレン26部及びイソプレン24部の混合物、ならびにスチレン25部をこの順に重合して、トリブロック共重合体水素化物(ia1)(重量平均分子量Mw=81,000;分子量分布Mw/Mn=1.11;主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合の水素化率≒100%)を製造した。
[Production Example 1. Production of Thermoplastic Resin Layer A]
(A-1. Production of hydride of block copolymer)
With reference to the method described in International Publication No. 2014/077267, a mixture of 25 parts of styrene, 26 parts of styrene and 24 parts of isoprene, and 25 parts of styrene are polymerized in this order to give a triblock copolymer hydride (ia1). ) (Weight average molecular weight Mw=81,000; molecular weight distribution Mw/Mn=1.11; hydrogenation rate of carbon-carbon unsaturated bond of main chain and side chain, and carbon-carbon unsaturated bond of aromatic ring ≈ 100%).
 (A-2.シリル基変性物の製造)
 さらに、前記国際公開2014/077267号に記載された方法を参考にして、前記のトリブロック共重合体水素化物(ia1)100部に、ビニルトリメトキシシラン1.8部を結合させて、トリブロック共重合体水素化物のアルコキシシリル変性物(ia1-s)のペレットを製造した。
(A-2. Production of modified silyl group)
Further, referring to the method described in International Publication No. 2014/077267, 1.8 parts of vinyltrimethoxysilane is bonded to 100 parts of the hydride of the triblock copolymer (ia1) to form a triblock product. Pellets of the alkoxysilyl modified product (ia1-s) of the hydride of the copolymer were produced.
 (A-3.熱可塑性樹脂層の製造)
 サイドフィーダー及び幅400mmのTダイを備えた二軸押出機(東芝機械社製「TEM-37B」)、並びに、キャストロール及び離形フィルム供給装置を備えたシート引取機を使用し、下記の方法で、熱可塑性樹脂層Aを製造した。
(A-3. Production of thermoplastic resin layer)
Using a twin-screw extruder equipped with a side feeder and a T-die with a width of 400 mm (“TEM-37B” manufactured by Toshiba Machine Co., Ltd.), and a sheet take-up machine equipped with a cast roll and a release film supply device, the following method Then, a thermoplastic resin layer A was manufactured.
 アルコキシシリル変性物(ia1-s)を、二軸押出機に供給し溶融状態とした。この溶融状態のアルコキシシリル変性物(ia1-s)(溶融樹脂)をTダイからキャストロール上に押し出し、フィルム状に成形した。この押し出しは、溶融樹脂温度180℃、Tダイ温度180℃、キャストロール温度40℃の成形条件にて行った。押し出された溶融樹脂はキャストロールによって冷却されて、厚み50μmの熱可塑性樹脂層が得られた。
 このキャストロール上に押し出した熱可塑性樹脂層の片面に、離形用のポリエチレンテレフタレート(PET)フィルム(厚さ50μm)を供給し、熱可塑性樹脂層とPETフィルムとを重ねてロール状に巻き取り、回収した。これにより、熱可塑性樹脂層及びPETフィルムを備える複層フィルムのフィルムロールを得た。
 複層フィルムのフィルムロールから複層フィルムを引き出し、PETフィルムを剥離して、熱可塑性樹脂層Aを得た。この熱可塑性樹脂層Aの透湿度は2g/m・24hであり、25℃における貯蔵弾性率は、1000MPa、E/Eは10であった。熱可塑性樹脂層Aの全光線透過率は92%、面内位相差Reは10nmであった。
The alkoxysilyl modified product (ia1-s) was supplied to a twin-screw extruder to be in a molten state. This alkoxysilyl modified product (ia1-s) (molten resin) in a molten state was extruded from a T die onto a cast roll to form a film. This extrusion was performed under the molding conditions of a molten resin temperature of 180° C., a T die temperature of 180° C., and a cast roll temperature of 40° C. The extruded molten resin was cooled by a cast roll to obtain a thermoplastic resin layer having a thickness of 50 μm.
A polyethylene terephthalate (PET) film (thickness: 50 μm) for release is supplied to one surface of the thermoplastic resin layer extruded on the cast roll, and the thermoplastic resin layer and the PET film are overlapped and wound into a roll shape. , Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained.
The multilayer film was pulled out from the film roll of the multilayer film and the PET film was peeled off to obtain a thermoplastic resin layer A. The moisture permeability of this thermoplastic resin layer A was 2 g/m 2 ·24 h, the storage elastic modulus at 25°C was 1000 MPa, and E 2 /E 1 was 10. The thermoplastic resin layer A had a total light transmittance of 92% and an in-plane retardation Re of 10 nm.
 [製造例2.熱可塑性樹脂層Bの製造]
 (B-1.ブロック共重合体の水素化物の製造)
 国際公開第2014/077267号に記載された方法を参考にして、スチレン25部、イソプレン50部及びスチレン25部をこの順に重合して、トリブロック共重合体水素化物(ib1)(重量平均分子量Mw=48,200;分子量分布Mw/Mn=1.04;主鎖及び側鎖の炭素-炭素不飽和結合、並びに、芳香環の炭素-炭素不飽和結合の水素化率≒100%)を製造した。
[Production Example 2. Production of Thermoplastic Resin Layer B]
(B-1. Production of hydride of block copolymer)
With reference to the method described in WO 2014/077267, 25 parts of styrene, 50 parts of isoprene and 25 parts of styrene are polymerized in this order to give a triblock copolymer hydride (ib1) (weight average molecular weight Mw =48,200; molecular weight distribution Mw/Mn=1.04; hydrogenation rates of carbon-carbon unsaturated bonds in the main chain and side chains, and carbon-carbon unsaturated bonds in aromatic rings ≈100%) were produced. ..
 (B-2.シリル基変性物の製造)
 さらに、前記国際公開2014/077267号に記載された方法を参考にして、前記のトリブロック共重合体水素化物(ib1)100部に、ビニルトリメトキシシラン1.8部を結合させて、トリブロック共重合体水素化物のアルコキシシリル変性物(ib1-s)のペレットを製造した。
(B-2. Production of modified silyl group)
Further, referring to the method described in International Publication No. 2014/077267, 1.8 parts of vinyltrimethoxysilane was bonded to 100 parts of the hydride (ib1) of the triblock copolymer to give a triblock product. Pellets of the alkoxysilyl modified product (ib1-s) of the hydride of the copolymer were produced.
 (B-3.熱可塑性樹脂層の製造)
 製造例1の(A-3)で使用したシート引取機を使用し、下記の方法で、熱可塑性樹脂層Bを製造した。
(B-3. Production of thermoplastic resin layer)
Using the sheet take-off machine used in (A-3) of Production Example 1, a thermoplastic resin layer B was produced by the following method.
 アルコキシシリル変性物(ib1-s)を、二軸押出機に供給した。このアルコキシシリル変性物(ib1-s)100部に対して水素化ポリブテン(日油社製「パールリーム(登録商標)24」)20部の割合となるように、サイドフィーダーから水素化ポリブテンを連続的に供給して、前記のアルコキシシリル変性物(ib1-s)及び水素化ポリブテンを含む溶融樹脂を得た。そして、この溶融樹脂をTダイからキャストロール上に押し出し、フィルム状に成形した。この押し出しは、溶融樹脂温度180℃、Tダイ温度180℃、キャストロール温度40℃の成形条件にて行った。押し出された溶融樹脂はキャストロールによって冷却されて、厚み50μmの熱可塑性樹脂層が得られた。
 このキャストロール上に押し出した熱可塑性樹脂層の片面に、離形用のポリエチレンテレフタレート(PET)フィルム(厚さ50μm)を供給し、熱可塑性樹脂層とPETフィルムとを重ねてロール状に巻き取り、回収した。これにより、熱可塑性樹脂層及びPETフィルムを備える複層フィルムのフィルムロールを得た。
 複層フィルムのフィルムロールから複層フィルムを引き出し、PETフィルムを剥離して、熱可塑性樹脂層Bを得た。この熱可塑性樹脂層Bの透湿度は5g/m・24hであり、25℃における貯蔵弾性率は、128MPa、E/Eは10であった。熱可塑性樹脂層Bの全光線透過率は92%であった。
 以下の方法により熱可塑性樹脂層Bを製造した。
 上述の方法により得られた熱可塑性樹脂層及びPETフィルムを備える複層フィルムのフィルムロールから複層フィルムを引き出し、PETフィルムを剥離して、熱可塑性樹脂層Bを得た。この熱可塑性樹脂層Bの透湿度は5g/m・24hであり、25℃における貯蔵弾性率は、12.8MPa、E/Eは10であった。熱可塑性樹脂層Bの全光線透過率は90%、面内位相差Reは10nmであった。
The alkoxysilyl modified product (ib1-s) was fed to a twin-screw extruder. Hydrogenated polybutene was continuously supplied from the side feeder so that the ratio of the hydrogenated polybutene (“pearlream (registered trademark) 24” manufactured by NOF CORPORATION) 20 parts to 100 parts of the alkoxysilyl modified product (ib1-s). Was continuously supplied to obtain a molten resin containing the alkoxysilyl modified product (ib1-s) and hydrogenated polybutene. Then, this molten resin was extruded from a T-die onto a cast roll to form a film. This extrusion was performed under the molding conditions of a molten resin temperature of 180° C., a T die temperature of 180° C., and a cast roll temperature of 40° C. The extruded molten resin was cooled by a cast roll to obtain a thermoplastic resin layer having a thickness of 50 μm.
A polyethylene terephthalate (PET) film (thickness: 50 μm) for release is supplied to one surface of the thermoplastic resin layer extruded on the cast roll, and the thermoplastic resin layer and the PET film are overlapped and wound into a roll shape. , Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained.
The multilayer film was pulled out from the film roll of the multilayer film and the PET film was peeled off to obtain a thermoplastic resin layer B. The moisture permeability of the thermoplastic resin layer B was 5 g/m 2 ·24 h, the storage elastic modulus at 25°C was 128 MPa, and E 2 /E 1 was 10. The total light transmittance of the thermoplastic resin layer B was 92%.
The thermoplastic resin layer B was manufactured by the following method.
A thermoplastic resin layer B was obtained by pulling out the multilayer film from the film roll of the multilayer film including the thermoplastic resin layer and the PET film obtained by the above method and peeling the PET film. The water vapor permeability of the thermoplastic resin layer B was 5 g/m 2 ·24 h, the storage elastic modulus at 25°C was 12.8 MPa, and E 2 /E 1 was 10. The thermoplastic resin layer B had a total light transmittance of 90% and an in-plane retardation Re of 10 nm.
 [製造例3.熱可塑性樹脂層Cの製造]
 製造例2の(B-1)で得られたトリブロック共重合体水素化物(ib1)(シリル化前の重合体)を用いて、以下の方法により熱可塑性樹脂層Cを製造した。
[Production Example 3. Production of Thermoplastic Resin Layer C]
Using the triblock copolymer hydride (ib1) (polymer before silylation) obtained in Production Example 2 (B-1), a thermoplastic resin layer C was produced by the following method.
 (C-3)熱可塑性樹脂層Cの製造
 製造例1の(A-3)で用いたシート引取機を使用して熱可塑性樹脂層Cを製造した。
 製造例1の(A-3)においてアルコキシシリル変性物(ia1-s)に代えて、トリブロック共重合体水素化物(ib1)を、二軸押出機に供給したこと以外は、製造例1の(A-3)と同じ操作を行い、厚み50μmの熱可塑性樹脂層を得た。
 キャストロール上に押し出した熱可塑性樹脂層の片面に、離形用のポリエチレンテレフタレート(PET)フィルム(厚さ50μm)を供給し、熱可塑性樹脂層とPETフィルムとを重ねてロール状に巻き取り、回収した。これにより、熱可塑性樹脂層及びPETフィルムを備える複層フィルムのフィルムロールを得た。
 複層フィルムのフィルムロールから複層フィルムを引き出し、PETフィルムを剥離して、熱可塑性樹脂層Cを得た。この熱可塑性樹脂層Cの透湿度は10g/m・24hであり、25℃における貯蔵弾性率は128MPa、E/Eは10であった。熱可塑性樹脂層Cの全光線透過率は92%、面内位相差Reは10nmであった。
(C-3) Production of Thermoplastic Resin Layer C A thermoplastic resin layer C was produced using the sheet take-off machine used in (A-3) of Production Example 1.
Instead of the alkoxysilyl modified product (ia1-s) in Preparation Example 1 (A-3), the triblock copolymer hydride (ib1) was supplied to the twin-screw extruder. The same operation as in (A-3) was performed to obtain a thermoplastic resin layer having a thickness of 50 μm.
On one surface of the thermoplastic resin layer extruded on the cast roll, a polyethylene terephthalate (PET) film for release (thickness 50 μm) was supplied, the thermoplastic resin layer and the PET film were overlapped and rolled up into a roll, Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained.
The multilayer film was pulled out from the film roll of the multilayer film and the PET film was peeled off to obtain a thermoplastic resin layer C. The water vapor permeability of the thermoplastic resin layer C was 10 g/m 2 ·24 h, the storage elastic modulus at 25°C was 128 MPa, and E 2 /E 1 was 10. The thermoplastic resin layer C had a total light transmittance of 92% and an in-plane retardation Re of 10 nm.
 [製造例4.熱可塑性樹脂層Dの製造]
 製造例2の(B-1)で得られたトリブロック共重合体水素化物(ib1)(シリル化前の重合体)と、シランカップリング剤とを用いて、以下の方法により熱可塑性樹脂層Dを製造した。
[Production Example 4. Production of Thermoplastic Resin Layer D]
Using the triblock copolymer hydride (ib1) (polymer before silylation) obtained in (B-1) of Production Example 2 and a silane coupling agent, a thermoplastic resin layer is prepared by the following method. D was produced.
 (D-3)熱可塑性樹脂層Dの製造
 製造例1の(A-3)で用いたシート引取機を使用して熱可塑性樹脂層Dを製造した。
 製造例1の(A-3)において、アルコキシシリル変性物(ia1-s)に代えて、トリブロック共重合体水素化物(ib1)及びトリブロック共重合体水素化物100部に対して5部のシランカップリング剤(3-アミノプロピルトリエオキシシラン(KE903信越化学社製))を、二軸押出機に供給したこと以外は、製造例1の(A-3)と同じ操作を行い、厚み50μmの熱可塑性樹脂層を得た。
 キャストロール上に押し出した熱可塑性樹脂層の片面に、離形用のポリエチレンテレフタレート(PET)フィルム(厚さ50μm)を供給し、熱可塑性樹脂層とPETフィルムとを重ねてロール状に巻き取り、回収した。これにより、熱可塑性樹脂層及びPETフィルムを備える複層フィルムのフィルムロールを得た。
 複層フィルムのフィルムロールから複層フィルムを引き出し、PETフィルムを剥離して、熱可塑性樹脂層Dを得た。この熱可塑性樹脂層Dの透湿度は10g/m・24hであり、25℃における貯蔵弾性率は、128MPa、E/Eは10であった。熱可塑性樹脂層Dの全光線透過率は90%、面内位相差Reは10nmであった。
(D-3) Production of Thermoplastic Resin Layer D A thermoplastic resin layer D was produced using the sheet take-off machine used in (A-3) of Production Example 1.
In Production Example 1 (A-3), in place of the alkoxysilyl modified product (ia1-s), 5 parts of triblock copolymer hydride (ib1) and 5 parts of 100 parts of triblock copolymer hydride were used. A silane coupling agent (3-aminopropyltrieoxysilane (KE903, manufactured by Shin-Etsu Chemical Co., Ltd.)) was supplied to the twin-screw extruder, the same operation as in (A-3) of Production Example 1 was performed, and the thickness was 50 μm. To obtain a thermoplastic resin layer.
On one surface of the thermoplastic resin layer extruded on the cast roll, a polyethylene terephthalate (PET) film for release (thickness 50 μm) was supplied, the thermoplastic resin layer and the PET film were overlapped and rolled up into a roll, Recovered. In this way, a film roll of a multilayer film including the thermoplastic resin layer and the PET film was obtained.
The multilayer film was pulled out from the film roll of the multilayer film, and the PET film was peeled off to obtain a thermoplastic resin layer D. The water vapor permeability of the thermoplastic resin layer D was 10 g/m 2 ·24 h, the storage elastic modulus at 25°C was 128 MPa, and E 2 /E 1 was 10. The thermoplastic resin layer D had a total light transmittance of 90% and an in-plane retardation Re of 10 nm.
 [実施例1]
 (1-1)基材Aの用意
 基材として、結晶性を有さない脂環式構造含有重合体としてのノルボルネン系重合体で形成された樹脂フィルム(日本ゼオン(株)製、「ゼオノアフィルム ZF16」;厚み50μm;樹脂のガラス転移温度160℃、以下「基材A」ともいう)を用意した。基材Aの25℃における貯蔵弾性率を測定したところ、2300MPaであった。また、基材Aの透湿度は2g/m・24h、面内位相差Reは5nmであった。基材Aの全光線透過率は90%であった。
[Example 1]
(1-1) Preparation of Base Material A As a base material, a resin film formed of a norbornene-based polymer as an alicyclic structure-containing polymer having no crystallinity (manufactured by Nippon Zeon Co., Ltd., “Zeonoa Film”) ZF16”; thickness 50 μm; glass transition temperature of resin 160° C., hereinafter also referred to as “base material A”). The storage elastic modulus of the substrate A at 25° C. was 2300 MPa. The water vapor permeability of the base material A was 2 g/m 2 ·24 h, and the in-plane retardation Re was 5 nm. The total light transmittance of the base material A was 90%.
 この基材Aの表面をプラズマ処理した。窒素及び乾燥空気を、窒素流量0.5NL/分、乾燥空気流量0.1NL/分で流しながら、25kHzの共振周波数で、基材Aに対し5cm/分の移動速度でプラズマを照射した。プラズマ発生源とフィルムとの距離は5mmとした。 The surface of the base material A was plasma-treated. While flowing nitrogen and dry air at a nitrogen flow rate of 0.5 NL/min and a dry air flow rate of 0.1 NL/min, the substrate A was irradiated with plasma at a moving frequency of 5 cm/min at a resonance frequency of 25 kHz. The distance between the plasma generation source and the film was 5 mm.
 (1-2)導電層の形成
 金属粒子として銀ナノ粒子を含む導電層形成用組成物としての銀インク(シグマ-アルドリッチ ジャパン製「Silver Nanoparticle Ink」)を用意した。
 プラズマ処理を行った基材Aの上に、バーコーターを用いて、前記の銀インクを塗布し、120℃で60秒間乾燥させた。これにより、基材Aの上に厚み0.7μmの銀粒子を含む層が形成された。この上にポジ型フォトレジスト(日本ゼオン(株)製、「ZPP1700」)を用いて塗布、乾燥、露光、現像しパターンを形成後、酸性のエッチング液によりエッチング処理を行い、基材Aの上に導電層を形成した。これにより導電層を備える基材Aを得た。
(1-2) Formation of Conductive Layer A silver ink (“Silver Nanoparticle Ink” manufactured by Sigma-Aldrich Japan) as a composition for forming a conductive layer containing silver nanoparticles as metal particles was prepared.
The above-mentioned silver ink was applied onto the plasma-treated base material A using a bar coater and dried at 120° C. for 60 seconds. As a result, a layer containing silver particles having a thickness of 0.7 μm was formed on the base material A. A positive photoresist (Zeon Corporation, "ZPP1700" manufactured by Nippon Zeon Co., Ltd.) is applied on this, dried, exposed, and developed to form a pattern, which is then subjected to etching treatment with an acidic etching solution to form a base material A. A conductive layer was formed on. This obtained the base material A provided with a conductive layer.
 (1-3)積層体の製造
 熱可塑性樹脂層として製造例1で製造した熱可塑性樹脂層Aを用い積層体を製造した。
 導電層を備える基材Aを、ホットプレート上で約100℃に加熱したのち、熱可塑樹脂層Aを導電層の上に載せ、0.3MPaの圧力で熱圧着処理を行った。これにより、導電層の上に熱可塑性樹脂層が熱圧着させた積層体を得た。得られた積層体について、折り返し試験を行い、結果を表1に示した。
(1-3) Production of Laminate A laminate was produced using the thermoplastic resin layer A produced in Production Example 1 as the thermoplastic resin layer.
After heating the base material A provided with the conductive layer to about 100° C. on a hot plate, the thermoplastic resin layer A was placed on the conductive layer and subjected to thermocompression bonding at a pressure of 0.3 MPa. In this way, a laminate was obtained in which the thermoplastic resin layer was thermocompression bonded onto the conductive layer. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
 [実施例2]
 本例では、基材Aに代えて、以下の方法により製造した結晶性樹脂フィルム(基材B)を用い、導電層上に熱可塑性樹脂層を形成する工程を、熱可塑性樹脂を含む溶液を塗布する方法により行って積層体を得た。以下に本例の積層体の製造方法について説明する。
[Example 2]
In this example, a step of forming a thermoplastic resin layer on the conductive layer using a crystalline resin film (base material B) produced by the following method in place of the base material A is performed using a solution containing a thermoplastic resin. The coating method was used to obtain a laminate. The method for manufacturing the laminate of this example will be described below.
 (2-1)基材Bの用意
 (2-1-1)結晶性樹脂:ジシクロペンタジエンの開環重合体の水素化物を含む結晶性COP樹脂(y1)の製造
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び、1-ヘキセン1.9部を加え、53℃に加温した。
(2-1) Preparation of Base Material B (2-1-1) Crystalline Resin: Production of Crystalline COP Resin (y1) Containing Hydride of Ring-Opening Polymer of Dicyclopentadiene A metal pressure resistant reactor is used. After sufficiently drying, the atmosphere was replaced with nitrogen. In this pressure resistant reactor, 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (end content 99% or more) (30 parts as the amount of dicyclopentadiene), and 1-hexene 1.9 parts was added and heated to 53°C.
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解し、溶液を調製した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
 この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750及び28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
A solution was prepared by dissolving 0.014 part of a tetrachlorotungsten phenylimide (tetrahydrofuran) complex in 0.70 part of toluene. To this solution, 0.061 part of a diethylaluminum ethoxide/n-hexane solution having a concentration of 19% was added and stirred for 10 minutes to prepare a catalyst solution.
This catalyst solution was added to the pressure resistant reactor to start the ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene. The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene were 8,750 and 28,100, respectively, and the molecular weight distribution (Mw/Mn) obtained from them was obtained. Was 3.21.
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。 To 200 parts of the obtained solution of the ring-opening polymer of dicyclopentadiene, 0.037 parts of 1,2-ethanediol was added as a terminating agent, and the mixture was heated to 60° C. and stirred for 1 hour to stop the polymerization reaction. Let To this, 1 part of a hydrotalcite-like compound (“Kyoward (registered trademark) 2000” manufactured by Kyowa Chemical Industry Co., Ltd.) was added, heated to 60° C., and stirred for 1 hour. Thereafter, 0.4 parts of a filter aid (“Radiolite (registered trademark) #1500” manufactured by Showa Chemical Industry Co., Ltd.) was added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Corp.) was used as an adsorbent. The solution was filtered off.
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間、水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。 To 200 parts of a solution of a ring-opening polymer of dicyclopentadiene after filtration (100 parts of polymer), 100 parts of cyclohexane was added, and 0.0043 parts of chlorohydridocarbonyltris(triphenylphosphine)ruthenium was added to obtain hydrogen. The hydrogenation reaction was carried out at a pressure of 6 MPa and 180° C. for 4 hours. As a result, a reaction solution containing a hydride of a ring-opening polymer of dicyclopentadiene was obtained. The reaction solution was a slurry solution in which hydride was deposited.
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上、ガラス転移温度Tgは93℃、融点Mpは262℃、ラセモ・ダイアッドの割合は89%であった。
 得られたジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合した後、内径3mmΦのダイ穴を4つ備えた二軸押出機(東芝機械社製「TEM-37B」)に投入した。二軸押出機を用いた熱溶融押出し成形により、樹脂をストランド状の成形体にした後、ストランドカッターにて細断して、結晶性の脂環式構造含有重合体を含む樹脂(結晶性COP樹脂)(y1)のペレットを得た。この結晶性COP樹脂(y1)は、結晶性を有する脂環式構造含有重合体としてジシクロペンタジエンの開環重合体の水素化物を含む樹脂である。
 前記の二軸押出機の運転条件は、以下のとおりであった。
 ・バレル設定温度=270℃~280℃。
 ・ダイ設定温度=250℃。
 ・スクリュー回転数=145rpm。
 ・フイーダー回転数=50rpm。
27. The hydride and the solution contained in the reaction solution were separated using a centrifuge and dried under reduced pressure at 60° C. for 24 hours to give a hydride of a crystalline ring-opening polymer of dicyclopentadiene 28. 5 parts were obtained. The hydride had a hydrogenation ratio of 99% or more, a glass transition temperature Tg of 93° C., a melting point Mp of 262° C., and a racemo dyad ratio of 89%.
An antioxidant (tetrakis[methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane was added to 100 parts of the hydride of the obtained ring-opening polymer of dicyclopentadiene. After mixing 1.1 parts of "IRGANOX (registered trademark) 1010" manufactured by BASF Japan Ltd., a twin-screw extruder ("TEM-37B" manufactured by Toshiba Machine Co., Ltd.) equipped with four die holes having an inner diameter of 3 mmΦ was mixed. I put it in. A resin is formed into a strand-shaped molded product by hot melt extrusion molding using a twin-screw extruder, and then shredded with a strand cutter to obtain a resin containing a crystalline alicyclic structure-containing polymer (crystalline COP Resin (y1) pellets were obtained. The crystalline COP resin (y1) is a resin containing a hydride of a ring-opening polymer of dicyclopentadiene as a crystalline alicyclic structure-containing polymer.
The operating conditions of the twin-screw extruder were as follows.
・Barrel setting temperature = 270°C-280°C.
-Die setting temperature = 250°C.
-Screw rotation speed = 145 rpm.
-Feeder rotation speed = 50 rpm.
 (2-1-2)結晶性樹脂フィルムの製造
 2.1.1.で得られた結晶性COP樹脂(y1)を、押出しスクリュー温度280℃でTダイに供給し、ダイス押出温度280℃でTダイから吐出させ、60℃に温度調整された冷却ロールにキャストし、結晶性COP樹脂からなる厚み15μmのフィルムを製造した。当該フィルムを、170℃のオーブン中で30秒間アニールして、結晶性樹脂フィルム(基材B)を得た。
 基材Bの25℃における貯蔵弾性率は2500MPa、透湿度は2g/m・24h、面内位相差Reは5nmであった。基材Bの全光線透過率は90%であった。
(2-1-2) Production of crystalline resin film 2.1.1. The crystalline COP resin (y1) obtained in (1) was supplied to a T die at an extrusion screw temperature of 280° C., discharged from the T die at a die extrusion temperature of 280° C., and cast on a cooling roll whose temperature was adjusted to 60° C., A film having a thickness of 15 μm and made of a crystalline COP resin was produced. The film was annealed in an oven at 170° C. for 30 seconds to obtain a crystalline resin film (base material B).
The storage elastic modulus at 25° C. of the base material B was 2500 MPa, the moisture permeability was 2 g/m 2 ·24 h, and the in-plane retardation Re was 5 nm. The total light transmittance of the base material B was 90%.
 (2-1-3)基材Bのプラズマ処理
 基材Bについて、実施例1の(1-1)の基材Aのプラズマ処理と同じ操作を行い、プラズマ処理を行った。
(2-1-3) Plasma Treatment of Substrate B Plasma treatment was performed on the substrate B by performing the same operation as the plasma treatment of the substrate A of (1-1) of Example 1.
 (2-2)導電層の形成
 基材Aに代えて基材Bを用いたこと以外は、実施例1の(2-1)と同じ操作を行い、基材Bの上に導電層を形成した。これにより導電層を備える基材Bを得た。
(2-2) Formation of Conductive Layer A conductive layer is formed on the base material B by performing the same operation as (2-1) of Example 1 except that the base material B is used instead of the base material A. did. This obtained the base material B provided with a conductive layer.
 (2-3)積層体の製造
 製造例1で製造した熱可塑性樹脂層Aをシクロヘキサンに溶解して、熱可塑性樹脂を20重量%含む溶液(樹脂溶液)を調製した。この樹脂溶液を、導電層を備える基材Bの上にスリットコートした後、90℃のホットプレート上で、60秒間加熱し、厚みが35μmの熱可塑性樹脂層Aを備える積層体を得た。得られた積層体について、折り返し試験を行い、結果を表1に示した。
(2-3) Production of Laminated Body The thermoplastic resin layer A produced in Production Example 1 was dissolved in cyclohexane to prepare a solution containing 20% by weight of the thermoplastic resin (resin solution). This resin solution was slit-coated on a base material B having a conductive layer and then heated on a hot plate at 90° C. for 60 seconds to obtain a laminate having a thermoplastic resin layer A having a thickness of 35 μm. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
 [実施例3]
 基材Aに代えて、ポリエチレンテレフタレート(PET)フィルム(帝人製、PETフィルム、「基材C」)を用いたこと以外は、実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表1に示した。
 基材Cの25℃における貯蔵弾性率は2300MPa、透湿度は10g/m・24h、面内位相差Reは150nmであった。基材Cの全光線透過率は88%であった。
[Example 3]
A laminate was obtained by performing the same operation as in Example 1 except that a polyethylene terephthalate (PET) film (PET film, "Substrate C" manufactured by Teijin Ltd.) was used in place of the substrate A. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
The storage elastic modulus at 25° C. of the substrate C was 2300 MPa, the moisture permeability was 10 g/m 2 ·24 h, and the in-plane retardation Re was 150 nm. The total light transmittance of the base material C was 88%.
 [実施例4]
 熱可塑性樹脂層Aに代えて、製造例2で製造した熱可塑性樹脂層Bを用いたこと以外は実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表1に示した。
[Example 4]
A laminated body was obtained by performing the same operation as in Example 1 except that the thermoplastic resin layer B produced in Production Example 2 was used instead of the thermoplastic resin layer A. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
 [実施例5]
 熱可塑性樹脂層Aに代えて、製造例2で製造した熱可塑性樹脂層Bを用いたこと、基材Aに代えて基材Bを用いたこと以外は、実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表1に示した。
[Example 5]
The same operation as in Example 1 was performed except that the thermoplastic resin layer B produced in Production Example 2 was used instead of the thermoplastic resin layer A, and the base material B was used instead of the base material A. A laminated body was obtained. A folding test was conducted on the obtained laminate, and the results are shown in Table 1.
 [実施例6]
 熱可塑性樹脂層Aに代えて、製造例2で製造した熱可塑性樹脂層Bを用いたこと、基材Aに代えて、長手方向に対して45°の方向に遅相軸を有する結晶性を有さない脂環式構造含有重合体を含むフィルム(ゼオノアフィルム ZDシリーズ、厚み80μm、「基材D」)を用いたこと以外は実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表1に示した。基材Dの25℃における貯蔵弾性率は2000MPa、透湿度は2g/m・24h、面内位相差Reは140nmであった。基材Dの全光線透過率は92%であった。
[Example 6]
Instead of the thermoplastic resin layer A, the thermoplastic resin layer B produced in Production Example 2 was used, and instead of the base material A, crystallinity having a slow axis in the direction of 45° with respect to the longitudinal direction was used. A laminate was obtained by performing the same operation as in Example 1 except that a film containing an alicyclic structure-containing polymer (Zeonor film ZD series, thickness 80 μm, “Substrate D”) was used. A folding test was conducted on the obtained laminate, and the results are shown in Table 1. The storage elastic modulus at 25° C. of the substrate D was 2000 MPa, the moisture permeability was 2 g/m 2 ·24 h, and the in-plane retardation Re was 140 nm. The total light transmittance of the substrate D was 92%.
 [比較例1]
 熱可塑性樹脂層Aに代えて、エチレン酢酸ビニル共重合体を含む樹脂のフィルム(宇部丸善ポリエチレン社製、UBEポリエチレンV115、EVAフィルム、厚み100μm)を用いたこと以外は実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表2に示した。
 EVAフィルムの透湿度は50g/m・24hであり、25℃における貯蔵弾性率は15MPa、E/Eは250であった。EVAフィルムの全光線透過率は89%で、面内位相差Reは10nmあった。
[Comparative Example 1]
The same operation as in Example 1 was repeated except that a film of a resin containing an ethylene-vinyl acetate copolymer (UBE Maruzen Polyethylene Co., Ltd., UBE polyethylene V115, EVA film, thickness 100 μm) was used instead of the thermoplastic resin layer A. Then, a laminated body was obtained. A folding test was conducted on the obtained laminate, and the results are shown in Table 2.
The EVA film had a water vapor transmission rate of 50 g/m 2 ·24 h, a storage elastic modulus at 25°C of 15 MPa, and an E 2 /E 1 of 250. The EVA film had a total light transmittance of 89% and an in-plane retardation Re of 10 nm.
 [比較例2]
 熱可塑性樹脂層Aに代えて、EVAフィルムを用いたこと、基材Aに代えて基材Cを用いたこと以外は実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表2に示した。EVAフィルムは比較例1で用いたものと同じものを用いた。
[Comparative example 2]
A laminate was obtained by performing the same operations as in Example 1 except that an EVA film was used instead of the thermoplastic resin layer A and a base material C was used instead of the base material A. A folding test was conducted on the obtained laminate, and the results are shown in Table 2. The EVA film used was the same as that used in Comparative Example 1.
 [比較例3]
 熱可塑性樹脂層Aに代えて、製造例3により製造した熱可塑性樹脂層C(シリル化前のトリブロック共重合体水素化物を含む熱可塑性樹脂層)を用いたこと以外は、実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表2に示した。
[Comparative Example 3]
Example 1 was repeated except that the thermoplastic resin layer A was replaced with the thermoplastic resin layer C (thermoplastic resin layer containing triblock copolymer hydride before silylation) produced in Production Example 3. The same operation was performed to obtain a laminated body. A folding test was conducted on the obtained laminate, and the results are shown in Table 2.
 [比較例4]
 熱可塑性樹脂層Aに代えて、製造例4により製造した熱可塑性樹脂層D(シリル化前のトリブロック共重合体水素化物とシランカップリング剤とを含む熱可塑性樹脂層)を用いたこと以外は、実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表2に示した。
[Comparative Example 4]
Other than using the thermoplastic resin layer D (thermoplastic resin layer containing a triblock copolymer hydride before silylation and a silane coupling agent) produced in Production Example 4 instead of the thermoplastic resin layer A The same operation as in Example 1 was performed to obtain a laminate. A folding test was conducted on the obtained laminate, and the results are shown in Table 2.
 [比較例5]
 熱可塑性樹脂層Aに代えて、テトラフルオロエチレンとエチレンとの共重合体を含む樹脂フィルム(AGC社製「Fluon」、ETFEフィルム、厚み100μm)を用いたこと以外は実施例1と同じ操作を行い、積層体を得た。得られた積層体について、折り返し試験を行い、結果を表2に示した。
 ETFEフィルムの透湿度は3g/m・24hであり、25℃における貯蔵弾性率は2400MPa、E/Eは30であった。ETFEフィルムの全光線透過率は90%、面内位相差Reは100nmであった。
[Comparative Example 5]
The same operation as in Example 1 was performed except that a resin film containing a copolymer of tetrafluoroethylene and ethylene (“Fluon” manufactured by AGC Co., ETFE film, thickness 100 μm) was used instead of the thermoplastic resin layer A. Then, a laminated body was obtained. A folding test was conducted on the obtained laminate, and the results are shown in Table 2.
The ETFE film had a water vapor permeability of 3 g/m 2 ·24 h, a storage elastic modulus at 25°C of 2400 MPa, and an E 2 /E 1 of 30. The ETFE film had a total light transmittance of 90% and an in-plane retardation Re of 100 nm.
 [実施例7]
 円偏光板が最表面に配置されている市販の表示装置(有機EL表示素子)の円偏光板を剥がし、実施例6の積層体を、熱可塑性樹脂層が最表面になるように実装して、積層体を備える表示装置を得た。表示装置の表示面に積層体を実装する前後における反射率を大塚電子(株)製、反射率測定用分光器MCP-9800により測定したところ、表示装置の外光からの反射率を95%抑制することができた。
[Example 7]
The circularly polarizing plate of the commercially available display device (organic EL display element) having the circularly polarizing plate disposed on the outermost surface was peeled off, and the laminated body of Example 6 was mounted so that the thermoplastic resin layer was on the outermost surface. A display device including the laminated body was obtained. The reflectance before and after mounting the laminated body on the display surface of the display device was measured by a reflectance measuring spectroscope MCP-9800 manufactured by Otsuka Electronics Co., Ltd., and the reflectance from the external light of the display device was suppressed by 95%. We were able to.
 前記の実施例1~6及び比較例1~5の物性値及び評価試験の結果を、下記の表1及び2に示す。下記の表において、略称の意味は、下記の通りである。
 「HSISシリル変性物」:ブロック共重合体水素化物シリル変性物。
 「Ag-NW」:銀ナノワイヤ。
 「EVA」:EVAフィルム。
 「HSIS」:ブロック共重合体水素化物。
 「ETFE」:ETFEフィルム。
 「HSISシリル変性物」:ブロック共重合体水素化物シリル変性物。
 「1000<」:1000回超。
 「100000<」:100000時間超。
The physical properties and the results of the evaluation tests of Examples 1 to 6 and Comparative Examples 1 to 5 are shown in Tables 1 and 2 below. In the table below, the abbreviations have the following meanings.
"HSIS silyl modified product": block copolymer hydride silyl modified product.
“Ag-NW”: silver nanowire.
"EVA": EVA film.
"HSIS": block copolymer hydride.
"ETFE": ETFE film.
"HSIS silyl modified product": block copolymer hydride silyl modified product.
“1000<”: more than 1000 times.
"100000<": over 100,000 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [結果]
 表1および表2に示すように、本発明の要件を満たす実施例の積層体は、マイグレーション防止効果に優れ、耐折り曲げ性に優れていた。その結果、本発明の要件を満たす実施例の積層体は、マイグレーション防止効果に優れ、且つ可撓性に優れていることがわかった。
[result]
As shown in Table 1 and Table 2, the laminates of Examples satisfying the requirements of the invention were excellent in the migration prevention effect and the bending resistance. As a result, it was found that the laminates of Examples satisfying the requirements of the invention were excellent in migration prevention effect and flexibility.
 10…積層体
 110…熱可塑性樹脂層
 120…導電層
 130…基材
10... Laminated body 110... Thermoplastic resin layer 120... Conductive layer 130... Base material

Claims (20)

  1.  熱可塑性樹脂層と導電層と基材とをこの順に備え、
     前記熱可塑性樹脂層は、透湿度が5g/m・24h以下で、25℃における貯蔵弾性率が1300MPa以下であり、
     前記導電層は、Sn、Pb、Ag、Cu及びAuのうちの少なくとも一種の元素を含む、積層体。
    A thermoplastic resin layer, a conductive layer and a substrate are provided in this order,
    The thermoplastic resin layer has a moisture permeability of 5 g/m 2 ·24 h or less and a storage elastic modulus at 25° C. of 1300 MPa or less,
    The said conductive layer is a laminated body containing the element of at least 1 type of Sn, Pb, Ag, Cu, and Au.
  2.  前記熱可塑性樹脂層が、シリル基を有する重合体を含む、請求項1記載の積層体。 The laminate according to claim 1, wherein the thermoplastic resin layer contains a polymer having a silyl group.
  3.  前記シリル基を有する重合体が、ブロック共重合体のシリル基変性物である、請求項2に記載の積層体。 The laminate according to claim 2, wherein the polymer having a silyl group is a silyl group-modified product of a block copolymer.
  4.  前記シリル基を有する重合体が、芳香族ビニル単量体と共役ジエン単量体との共重合体のシリル基変性物である、請求項2又は3に記載の積層体。 The laminate according to claim 2 or 3, wherein the polymer having a silyl group is a silyl group-modified product of a copolymer of an aromatic vinyl monomer and a conjugated diene monomer.
  5.  前記芳香族ビニル単量体に基づく単位の水素化率が90%以上であり、且つ前記共役ジエン単量体に基づく単位の水素化率が90%以上である、請求項4に記載の積層体。 The laminate according to claim 4, wherein the hydrogenation rate of the unit based on the aromatic vinyl monomer is 90% or more, and the hydrogenation rate of the unit based on the conjugated diene monomer is 90% or more. ..
  6.  前記熱可塑性樹脂層の-40℃における貯蔵弾性率Eに対する、前記熱可塑性樹脂層の100℃における貯蔵弾性率Eの比(E/E)が、15以下である請求項1~5のいずれか1項記載の積層体。 The ratio (E 2 /E 1 ) of the storage elastic modulus E 2 of the thermoplastic resin layer at 100° C. to the storage elastic modulus E 1 of −40° C. of the thermoplastic resin layer is 15 or less. The laminated body according to any one of 5 above.
  7.  前記基材の透湿度が、3g/m・24h以下である、請求項1~6のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the water vapor permeability of the base material is 3 g/m 2 ·24 h or less.
  8.  前記基材が、重合体を含む重合体フィルムである、請求項1~7のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the base material is a polymer film containing a polymer.
  9.  前記基材が、脂環式構造含有重合体を含む、請求項1~8のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the base material contains an alicyclic structure-containing polymer.
  10.  前記基材が、長尺状のフィルムであり、当該フィルムの幅方向に対して斜め方向に遅相軸を有する、請求項1~9のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 9, wherein the base material is a long film and has a slow axis in a direction oblique to the width direction of the film.
  11.  前記基材の25℃における貯蔵弾性率が、2000~3000MPaである、請求項1~10のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 10, wherein the base material has a storage elastic modulus at 25°C of 2000 to 3000 MPa.
  12.  前記熱可塑性樹脂層の、面内方向の位相差が、10nm以下である、請求項1~11のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 11, wherein the thermoplastic resin layer has an in-plane retardation of 10 nm or less.
  13.  前記熱可塑性樹脂層及び前記基材の少なくとも一方の全光線透過率が、80%以上である、請求項1~12のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 12, wherein the total light transmittance of at least one of the thermoplastic resin layer and the base material is 80% or more.
  14.  請求項1~13のいずれか1項記載の積層体と、偏光板と、を備える、円偏光板。 A circularly polarizing plate comprising the laminate according to any one of claims 1 to 13 and a polarizing plate.
  15.  請求項14記載の円偏光板を備える表示装置。 A display device comprising the circularly polarizing plate according to claim 14.
  16.  前記表示装置が有機エレクトロルミネッセンス装置である請求項15記載の表示装置。 The display device according to claim 15, wherein the display device is an organic electroluminescence device.
  17.  請求項1~13のいずれか1項記載の積層体を備える、タッチパネル。 A touch panel comprising the laminate according to any one of claims 1 to 13.
  18.  前記積層体の前記熱可塑性樹脂層に接して設けた偏光板を備える、請求項17記載のタッチパネル。 The touch panel according to claim 17, further comprising a polarizing plate provided in contact with the thermoplastic resin layer of the laminate.
  19.  前記積層体と、偏光板とを備え、
     前記積層体の前記基材の遅相軸に対する、前記偏光板の吸収軸のなす角が45°である、請求項17または18記載のタッチパネル。
    Comprising the laminate and a polarizing plate,
    19. The touch panel according to claim 17, wherein an angle formed by an absorption axis of the polarizing plate with respect to a slow axis of the base material of the laminate is 45°.
  20.  請求項1~13のいずれか1項に記載の積層体の製造方法であって、
     前記基材上に前記導電層を形成する工程1と、
     前記導電層上に前記熱可塑性樹脂層を形成する工程2と、を含み、
     前記工程2は、前記熱可塑性樹脂層を熱圧着すること、または熱可塑性樹脂を含む溶液を塗布することを含む、積層体の製造方法。
    The method for manufacturing a laminate according to any one of claims 1 to 13,
    Step 1 of forming the conductive layer on the substrate,
    A step 2 of forming the thermoplastic resin layer on the conductive layer,
    The said process 2 is a manufacturing method of a laminated body including thermocompression-bonding the said thermoplastic resin layer, or applying the solution containing a thermoplastic resin.
PCT/JP2019/044248 2018-12-10 2019-11-12 Laminate, method for producing same, circular polarizer, display device, and touch panel WO2020121708A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020559839A JP7355036B2 (en) 2018-12-10 2019-11-12 Laminated body and its manufacturing method, circularly polarizing plate, display device, and touch panel
KR1020217016752A KR20210102228A (en) 2018-12-10 2019-11-12 A laminate and its manufacturing method, a circular polarizing plate, a display device, and a touch panel
CN201980073702.3A CN112996657A (en) 2018-12-10 2019-11-12 Laminate, method for producing same, circularly polarizing plate, display device, and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018230755 2018-12-10
JP2018-230755 2018-12-10

Publications (1)

Publication Number Publication Date
WO2020121708A1 true WO2020121708A1 (en) 2020-06-18

Family

ID=71076860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044248 WO2020121708A1 (en) 2018-12-10 2019-11-12 Laminate, method for producing same, circular polarizer, display device, and touch panel

Country Status (5)

Country Link
JP (1) JP7355036B2 (en)
KR (1) KR20210102228A (en)
CN (1) CN112996657A (en)
TW (1) TWI829817B (en)
WO (1) WO2020121708A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201791A (en) * 1995-01-31 1996-08-09 Teijin Ltd Transparent electrode substrate
WO2014091759A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Optical film and method for producing same, circularly polarizing plate, and organic el display device
JP2015075950A (en) * 2013-10-09 2015-04-20 富士フイルム株式会社 Laminate for touch panel
WO2018003713A1 (en) * 2016-06-29 2018-01-04 日本ゼオン株式会社 Electrically conductive film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422055B2 (en) * 2010-09-07 2014-02-19 リンテック株式会社 Adhesive sheet and electronic device
JP2017009725A (en) * 2015-06-19 2017-01-12 ソニー株式会社 Display device
JP6830753B2 (en) 2015-10-02 2021-02-17 日東電工株式会社 Methods for improving bending resistance of laminates, touch panels, laminate formation kits, and transparent conductive films
JP6938112B2 (en) * 2016-01-29 2021-09-22 日東電工株式会社 Optical laminate
CN110337601A (en) * 2017-02-28 2019-10-15 日东电工株式会社 The manufacturing method of polarizing film and polarizing film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201791A (en) * 1995-01-31 1996-08-09 Teijin Ltd Transparent electrode substrate
WO2014091759A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Optical film and method for producing same, circularly polarizing plate, and organic el display device
JP2015075950A (en) * 2013-10-09 2015-04-20 富士フイルム株式会社 Laminate for touch panel
WO2018003713A1 (en) * 2016-06-29 2018-01-04 日本ゼオン株式会社 Electrically conductive film

Also Published As

Publication number Publication date
CN112996657A (en) 2021-06-18
JP7355036B2 (en) 2023-10-03
JPWO2020121708A1 (en) 2021-11-04
KR20210102228A (en) 2021-08-19
TWI829817B (en) 2024-01-21
TW202031495A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
US10521062B2 (en) Film sensor member and method for manufacturing same, circularly polarizing plate and method for manufacturing same, and image display device
CN107315216B (en) Phase difference film
TWI430886B (en) Conductive laminated film, polarizing laminated plate and touch panel
WO2018135359A1 (en) Film laminate for touch panel
US11322269B2 (en) Electrically conductive film
US20190006623A1 (en) Composite laminate and method for storing resin layer
CN105830533A (en) Sealing film, organic electroluminescent display, and organic semiconductor device
CN105793352A (en) Cyclic olefin-based resin composition film
JP7207333B2 (en) LAMINATED PRODUCT AND MANUFACTURING METHOD THEREOF AND TOUCH PANEL
JP6557108B2 (en) Transparent conductive film and touch panel
WO2020121708A1 (en) Laminate, method for producing same, circular polarizer, display device, and touch panel
KR102263799B1 (en) Cyclic olefin resin composition film
JP4849115B2 (en) Laminated body, liquid crystal display device and manufacturing method thereof
US20170152360A1 (en) Cyclic olefin resin composition film
JP6838456B2 (en) Transparent conductive film
JP2009126097A (en) Laminate
CN111830618A (en) Laminate body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894575

Country of ref document: EP

Kind code of ref document: A1