WO2019208240A1 - Shield layer, method for producing shield layer, and oxide sputtering target - Google Patents
Shield layer, method for producing shield layer, and oxide sputtering target Download PDFInfo
- Publication number
- WO2019208240A1 WO2019208240A1 PCT/JP2019/015779 JP2019015779W WO2019208240A1 WO 2019208240 A1 WO2019208240 A1 WO 2019208240A1 JP 2019015779 W JP2019015779 W JP 2019015779W WO 2019208240 A1 WO2019208240 A1 WO 2019208240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shield layer
- atomic
- transmittance
- range
- oxide
- Prior art date
Links
- 238000005477 sputtering target Methods 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 40
- 239000002184 metal Substances 0.000 claims abstract description 31
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 238000002834 transmittance Methods 0.000 claims description 68
- 238000004544 sputter deposition Methods 0.000 claims description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 239000001301 oxygen Substances 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 20
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 20
- 239000000843 powder Substances 0.000 description 25
- 239000011521 glass Substances 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 15
- 230000007613 environmental effect Effects 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003518 caustics Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/16—Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/0083—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention relates to a shield layer disposed for preventing charging in a display panel, a method for producing the shield layer, and an oxide sputtering target used in the method for producing the shield layer.
- a shield layer is provided in order to prevent malfunction due to charging of a liquid crystal element, an organic EL element, or the like.
- the above-described shield layer is also required to have an effect of causing the touch signal to reach the sensor portion inside the panel while eliminating external noise.
- this shield layer is also required to have high visible light permeability in order to ensure the visibility of the display panel.
- Patent Document 1 an ITO film and an IZO film are cited as the above-described shield layer.
- a polarizing film is disposed on the surface of a glass substrate disposed on a liquid crystal element, and the above-described shield layer is laminated on the polarizing film.
- Patent Document 2 proposes a transparent conductive film containing indium tin oxide (ITO) containing 7.2 to 11.2 at% silicon (Si).
- Patent Document 1 when an ITO film and an IZO film are used as a shield layer, the visible light transmittance is low, so that it appears to be yellowish. There was a risk that the visibility would deteriorate.
- the transparent conductive film described in Patent Document 2 has a high resistance value and excellent light transmittance, but has insufficient environmental resistance. There was a possibility that permeability might deteriorate.
- the shield layer even when used in a high temperature and high humidity environment, depending on the usage status of the display panel, excellent environmental resistance (heat resistance, Moisture resistance) is required.
- excellent environmental resistance heat resistance, Moisture resistance
- the ITO film and the IZO film described above are likely to be crystalline, corrosive substances such as moisture are likely to enter the film and the resistance value and transmittance change when used in a high temperature and high humidity environment. There was a risk of doing so.
- the present invention has been made in view of the above-described circumstances, has a high visible light transmittance, a sufficiently high resistance value, and has excellent environmental resistance (heat resistance, moisture resistance). It aims at providing a shield layer, a manufacturing method of a shield layer, and an oxide sputtering target.
- the shield layer of the present invention is a shield layer disposed in a display panel, wherein the total of metal components is 100 atomic%, and In is in the range of 60 atomic% to 80 atomic%. And the remainder is made of an oxide made of Si and inevitable impurity metal elements.
- the total of the metal components is 100 atomic%, In is included in the range of 60 atomic% or more and 80 atomic% or less, and the balance is composed of Si and an oxide with inevitable impurity metal elements. Therefore, it has excellent visible light transmittance and a sufficiently high resistance value. Furthermore, since the shield layer of the present invention tends to be amorphous, corrosive substances such as moisture are less likely to enter the film, and the resistance value and transmittance greatly change even when used in a high temperature and high humidity environment. Without having excellent environmental resistance (heat resistance, moisture resistance). Further, since the shield layer of the present invention has resistance to water and alcohol, the transmittance and the resistance value do not change greatly even when the shield layer is cleaned with water and alcohol.
- the total of the metal components may be 100 atomic%, and Zr may be further included in the range of 1 atomic% to 32 atomic%.
- the Zr content is 1 atomic% or more, the durability of the shield layer is further improved.
- the hardness is increased and it is strong against scratches and the like.
- the Zr content is limited to 32 atomic% or less, it is possible to suppress an increase in the refractive index, to suppress unnecessary reflection, and to reduce the visible light transmittance. Can be suppressed.
- the thickness is preferably in the range of 7 nm to 25 nm. In this case, since the thickness of the shield layer is 7 nm or more, the durability can be sufficiently improved. On the other hand, since the thickness of the shield layer is 25 nm or less, it is possible to sufficiently ensure the transmittance and the resistance value.
- the transmittance at a wavelength of 550 nm is preferably 95% or more.
- the transmittance for visible light is excellent. For this reason, it becomes possible to comprise the display panel excellent in visibility.
- the sheet resistance is preferably in the range of 1E + 7 ⁇ / ⁇ to 5E + 10 ⁇ / ⁇ .
- the sheet resistance is in the range of 1E + 7 ⁇ / ⁇ or more and 5E + 10 ⁇ / ⁇ , static electricity and noise can be effectively removed, and the touch sensor inside the display can detect the touch signal accurately.
- the numerical value A ⁇ 10 B is expressed as AE + B (when B is a positive number) based on JIS X 0210-1986. .
- the method for producing a shield layer according to the present invention is a method for producing a shield layer for producing the above-mentioned shield layer, wherein the total of the metal components is 100 atomic% and includes In in the range of 60 atomic% to 80 atomic%.
- oxygen is introduced into the sputtering apparatus to perform sputtering film formation.
- the flow rate ratio of oxygen / argon is 0.03 or less.
- the manufacturing method of the shield layer of this configuration using an oxide sputtering target composed of an oxide containing In in a range of 60 atomic% to 80 atomic% and the balance being Si and inevitable impurity metal elements, Since sputtering is performed by introducing oxygen into the sputtering apparatus, a shield layer having a high visible light transmittance and a sufficiently high resistance can be formed. Moreover, since the flow rate ratio of oxygen / argon is set to 0.03 or less for the amount of oxygen to be introduced, it is possible to suppress the resistance value of the formed shield layer from becoming too high.
- the oxide sputtering target may contain Zr in the range of 1 atomic% to 32 atomic%, with the total of the metal components being 100 atomic%. Good.
- the oxide sputtering target further contains Zr in the range of 1 atomic% to 32 atomic%, the shield has high hardness and excellent durability while ensuring visible light transmittance. A layer can be formed.
- the sheet resistance of the said shield layer into the range of 1E + 7 ohm / square or more and 5E + 10 ohm / square or less.
- the sheet resistance of the shield layer by setting the sheet resistance of the shield layer within the range of 1E + 7 ⁇ / ⁇ or more and 5E + 10 ⁇ / ⁇ , static electricity and noise can be effectively removed and the touch sensor inside the display can detect the touch signal accurately. It is possible to manufacture a shield layer that can be used.
- the oxide sputtering target of the present invention is used in the above-described method for producing a shield layer.
- the above-described shield layer can be formed by introducing oxygen into the sputtering apparatus with an oxygen / argon flow ratio of 0.03 or less and performing sputtering. .
- a shield layer having a high visible light transmittance and a sufficiently high resistance value, and further having excellent environmental resistance (heat resistance, moisture resistance), a method for manufacturing the shield layer, and An oxide sputtering target can be provided.
- the shield layer which is one Embodiment of this invention, and the manufacturing method of a shield layer are demonstrated with reference to attached drawing.
- the shield layer according to the present embodiment is disposed for preventing charging in a display panel such as a liquid crystal display panel, an organic EL display panel, and a touch panel.
- a display panel such as a liquid crystal display panel, an organic EL display panel, and a touch panel.
- description will be made assuming that the liquid crystal display panel is disposed.
- the liquid crystal display panel 10 provided with the shield layer 20 according to the present embodiment will be described with reference to FIG.
- the liquid crystal display panel 10 includes a first glass substrate 11, a second glass substrate 12, and a liquid crystal layer disposed between the first glass substrate 11 and the second glass substrate 12. 13.
- the first glass substrate 11 and the second glass substrate 12 are made of non-alkali glass and do not contain Na.
- the 1st glass substrate 11 and the 2nd glass substrate 12 with a non-alkali glass, it can suppress that an alkali component mixes in a liquid crystal layer or TFT, and can avoid display performance degradation.
- a shield layer 20 according to the present embodiment is disposed on the second glass substrate 12.
- a polarizing film 15 is disposed on the shield layer 20, and a protective film 16 is formed on the polarizing film 15.
- the shield layer 20 is formed, if the shield layer 20 surface is contaminated for some reason before proceeding to the next step, the surface of the shield layer 20 may be washed with water, alcohol, or the like. . For this reason, the above-described shield layer 20 also needs resistance to water and alcohol.
- the total of the metal components is 100 atomic%, In is included in the range of 60 atomic% to 80 atomic%, and the balance is Si and inevitable impurity metal elements. Made of oxide.
- the total of the metal components may be 100 atomic%, and in addition to In described above, Zr may be further included in the range of 1 atomic% to 32 atomic%. .
- the thickness t is in the range of 7 nm or more and 25 nm or less. Furthermore, in the shield layer 20 which is this embodiment, the transmittance
- the shield layer 20 made of an oxide of In and Si
- the conductivity necessary for the shield layer 20 may not be ensured. is there.
- the content of In exceeds 80 atomic%, the short wavelength transmittance is lowered, and the visibility may be lowered. From the above, in this embodiment, the total of the metal components is 100 atomic%, and the In content is in the range of 60 atomic% to 80 atomic%.
- the total of the metal components is 100 atomic%, and the lower limit of the In content is 62 atomic% or more, and 64 atomic% or more. Is more preferable.
- the upper limit of the In content is preferably set to 78 atomic% or less.
- the shield layer 20 according to the present embodiment may contain Zr as a metal component in addition to In and Si.
- Zr as a metal component in addition to In and Si.
- the durability of the shield layer 20 can be improved, the hardness becomes hard, and it is resistant to scratches. Become.
- the Zr content to 32 atomic% or less, an increase in the refractive index can be suppressed and generation of unnecessary reflection can be suppressed, so that a decrease in visible light transmittance can be suppressed.
- the total of the metal components is 100 atomic% and the Zr content is in the range of 1 atomic% to 32 atomic%.
- the content thereof may be less than 1 atomic%.
- the total of the metal components is 100 atomic%, and the lower limit of the Zr content is 2 atomic% or more, preferably 3 atomic% or more. Is more preferable.
- the upper limit of the Zr content is preferably 28 atomic% or less, and preferably 25 atomic% or less. Is more preferable.
- the thickness t of the shield layer 20 when the thickness t is 7 nm or more, the durability of the shield layer 20 can be sufficiently ensured. On the other hand, when the thickness t of the shield layer 20 is 25 nm or less, it is possible to sufficiently ensure the transmittance of visible light and the resistance value. From the above, in the present embodiment, it is preferable that the thickness t of the shield layer 20 is in the range of 7 nm to 25 nm.
- the lower limit of the thickness t of the shield layer 20 is preferably 8 nm or more, and more preferably 10 nm or more.
- the upper limit of the thickness t of the shield layer 20 is preferably 20 nm or less, and more preferably 18 nm or less.
- the transmittance at a wavelength of 550 nm when the transmittance at a wavelength of 550 nm is 95% or more, a sufficient transmittance can be ensured, and the liquid crystal display panel 10 having excellent visibility is configured. It becomes possible. From the above, in the shield layer 20 of the present embodiment, the transmittance at a wavelength of 550 nm is preferably 95% or more. In addition, in order to constitute the liquid crystal display panel 10 with further excellent visibility, the transmittance of the shield layer 20 according to the present embodiment at a wavelength of 550 nm is preferably 97% or more, and preferably 98% or more. Further preferred.
- the resistance value of the shield layer 20 is in the range of 1E + 7 ⁇ / ⁇ or more and 5E + 10 ⁇ / ⁇ or less.
- the lower limit of the resistance value in the shield layer 20 is preferably 3E + 7 ⁇ / ⁇ or more, and 5E + 7 ⁇ / ⁇ or more. More preferably.
- the upper limit of the resistance value is preferably 9E + 9 ⁇ / ⁇ or less, and more preferably 5E + 9 ⁇ / ⁇ or less.
- the manufacturing method of the shield layer which manufactures the shield layer 20 which is this embodiment mentioned above is demonstrated.
- the oxide sputtering target of the composition corresponding to the above-mentioned shield layer 20 is used.
- This oxide sputtering target is made of an oxide sintered body containing 100 atomic% of total metal components, containing In in the range of 60 atomic% to 80 atomic%, and the balance being Si and inevitable impurity metal elements. Become. Note that the total of the metal components may be 100 atomic%, and Zr may be further included in the range of 1 atomic% to 32 atomic%. When Zr is included as an inevitable impurity metal element, the content thereof may be less than 1 atomic%.
- this oxide sputtering target is manufactured as follows.
- the In 2 O 3 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.1 ⁇ m or more and 10 ⁇ m or less.
- the SiO 2 powder preferably has a purity of 99.8% by mass or more and an average particle size of 0.2 ⁇ m or more and 20 ⁇ m or less.
- the ZrO 2 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.2 ⁇ m or more and 20 ⁇ m or less.
- the purity of the ZrO 2 powder is calculated by measuring the contents of Fe 2 O 3 , SiO 2 , TiO 2 , and Na 2 O and the balance being ZrO 2 .
- the ZrO 2 powder of this embodiment may contain HfO 2 at a maximum of 2.5 mass%.
- the mixed raw material powder preferably has a specific surface area (BET specific surface area) in the range of 11.5 m 2 / g to 13.5 m 2 / g.
- BET specific surface area specific surface area
- the compact is placed in an electric furnace and heated to sinter.
- the holding temperature is preferably in the range of 1300 ° C. to 1600 ° C., and the holding time is preferably in the range of 2 hours to 10 hours.
- the obtained sintered body is machined to produce an oxide sputtering target of a predetermined size.
- the shield layer 20 is formed on the surface of the second glass substrate 12 using this oxide sputtering target.
- the above-mentioned oxide sputtering target is bonded to a backing material and mounted in a sputtering apparatus.
- Ar gas and oxygen gas are introduced to adjust the sputtering gas pressure, and sputtering film formation is performed.
- the flow rate ratio of oxygen / argon is preferably 0.03 or less, and more preferably 0.02 or less.
- the lower limit of the oxygen / argon flow ratio is not particularly limited, but is preferably 0.002 or more. By introducing oxygen within this range, a shield layer having a more preferable resistance value can be formed.
- the total of the metal components is 100 atomic%, In is included in the range of 60 atomic% to 80 atomic%, and the balance is Si and inevitable. Since it is composed of an oxide made of an impurity metal element, it has excellent visible light transmittance, has a sufficiently high resistance value, and functions sufficiently as the shield layer 20 in the liquid crystal display panel 10. become.
- the shield layer 20 according to the present embodiment is likely to be amorphous, corrosive substances such as moisture are difficult to enter the film, and even when used in a high temperature and high humidity environment, the resistance value and the transmittance. Does not change significantly and has excellent environmental resistance (heat resistance, moisture resistance). In addition, even when it comes into contact with water and alcohol, the transmittance and the resistance value do not change greatly. Therefore, after the shield layer 20 is formed, the surface of the shield layer 20 is caused for some reason before proceeding to the next step. Even if the contaminated shield layer 20 is washed with water and alcohol, the shield layer 20 does not deteriorate.
- the shield layer 20 when the total of the metal components is 100 atomic% and Zr is included in the range of 1 atomic% to 32 atomic%, the durability of the shield layer 20 Can be further improved. In addition, the hardness of the shield layer 20 increases, and it becomes strong against scratches and the like. Moreover, since it can suppress that a refractive index increases and generation
- the thickness of the shield layer 20 when the thickness of the shield layer 20 is 7 nm or more, the durability of the shield layer 20 can be sufficiently improved. On the other hand, when the thickness of the shield layer 20 is 25 nm or less, the visible light transmittance and resistance value of the shield layer 20 can be sufficiently ensured. Therefore, it is particularly suitable as the shield layer 20 in the liquid crystal display panel 10.
- the shield layer 20 when the transmittance at a wavelength of 550 nm is 95% or more, the transmittance of visible light is excellent and the visibility of the liquid crystal display panel 10 is ensured. Can do.
- the shield layer 20 when the resistance value is 1E + 7 ⁇ / ⁇ or more and 5E + 10 ⁇ / ⁇ or less, static electricity and noise can be effectively removed, and the touch sensor inside the display detects the touch signal. Does not prevent you from doing.
- oxygen is introduced into the sputtering apparatus using an oxide sputtering target made of an oxide containing In in a range of 60 atomic% to 80 atomic%. Since the sputtering film formation is performed, the shield layer 20 having a high visible light transmittance and a sufficiently high resistance value can be stably formed. Moreover, since the flow rate ratio of oxygen / argon is 0.03 or less with respect to the amount of oxygen to be introduced, it is possible to suppress the resistance value of the formed shield layer 20 from becoming too high.
- the shield layer 20 which is this embodiment, when the said oxide sputtering target contains the total of a metal component as 100 atomic%, and also contains Zr in 1 atomic% or more and 32 atomic% or less. Makes it possible to form the shield layer 20 having a high hardness and excellent durability while ensuring the transmittance of visible light.
- the shield layer 20 provided in the liquid crystal display panel 10 illustrated in FIG. 1 has been described as an example.
- the present invention is not limited thereto, and the shield layer 20 is provided in a liquid crystal display panel having another structure. It may be provided, or may be provided on another display panel such as an organic EL display and a touch panel.
- the film was formed using the oxide sputtering target manufactured as described above, but the present invention is not limited to this, and the sputtering target manufactured by another manufacturing method. You may form into a film using.
- ⁇ Oxide sputtering target As raw material powder, indium oxide powder (In 2 O 3 powder: purity 99.9% by mass or more, average particle size 1 ⁇ m) and silicon oxide powder (SiO 2 powder: purity 99.8% by mass or more, average particle size 2 ⁇ m) And zirconium oxide powder (ZrO 2 powder: purity 99.9% by mass or more, average particle diameter 2 ⁇ m) was prepared as needed. And these were weighed so that it might become a compounding ratio shown in Table 1.
- indium oxide powder In 2 O 3 powder: purity 99.9% by mass or more, average particle size 1 ⁇ m
- silicon oxide powder SiO 2 powder: purity 99.8% by mass or more, average particle size 2 ⁇ m
- zirconium oxide powder ZrO 2 powder: purity 99.9% by mass or more, average particle diameter 2 ⁇ m
- the purity of the zirconium oxide powder was calculated by measuring the content of Fe 2 O 3 , SiO 2 , TiO 2 , and Na 2 O and the balance being ZrO 2 , and HfO 2 may be contained at a maximum of 2.5 mass%.
- Each of the weighed raw material powders was put into a bead mill apparatus together with zirconia balls having a diameter of 0.5 mm and a solvent (Solmix A-11 manufactured by Nippon Alcohol Sales Co., Ltd.) as a grinding medium, and pulverized and mixed.
- the grinding / mixing time was 1 hour.
- zirconia balls were separated and recovered to obtain a slurry containing raw material powder and solvent.
- the obtained slurry was heated and the solvent was removed to obtain a mixed powder.
- the obtained mixed powder was filled in a mold having an inner diameter of 200 mm and pressed at a pressure of 150 kg / cm 2 to produce a disk-shaped molded body having a diameter of 200 mm and a thickness of 10 mm.
- the obtained molded body was charged into an electric furnace (furnace volume 27000 cm 3 ), fired by holding at a firing temperature of 1400 ° C. for 7 hours while introducing oxygen gas at a flow rate of 4 L / min, and sintered.
- the body was manufactured. After firing, the furnace was cooled to 600 ° C. at a cooling rate of 130 ° C./hour in an electric furnace while continuously introducing oxygen gas. Thereafter, the introduction of oxygen gas was stopped, the furnace was cooled to room temperature, and the sintered body was taken out of the electric furnace.
- the obtained sintered body was machined to produce a disk-shaped oxide sputtering target having a diameter of 152.4 mm and a thickness of 6 mm.
- the oxide sputtering target was soldered to an oxygen-free copper backing plate and mounted in a magnetron type sputtering apparatus (Showa Vacuum SPH-2307).
- a magnetron type sputtering apparatus Showa Vacuum SPH-2307
- the flow rate ratio of oxygen / argon described in the column of “amount of oxygen during sputtering” in Table 1 is obtained.
- Ar gas and oxygen gas were introduced, the sputtering gas pressure was adjusted to 0.67 Pa, and pre-sputtering for 1 hour was performed to remove the processed layer on the target surface.
- the flow rate with the oxygen gas at this time was the conditions described in Table 1, and the power was DC615W.
- the flow rate ratio of oxygen / argon was the ratio of oxygen flow rate (sccm) and argon flow rate (sccm).
- sputtering film formation was performed under the same conditions as the above pre-sputtering, on a 50 mm square non-alkali glass substrate, A shield layer (oxide film) having a thickness described in Table 1 was formed. The distance between the substrate and the target at this time was 60 mm.
- composition, transmittance, resistance value, refractive index, hardness, transmittance and resistance value after the constant temperature and humidity test of the obtained shield layer (oxide film) were evaluated as follows. Further, the crystallinity of the oxide film was confirmed.
- composition of oxide film The solution obtained by dissolving the above oxide film with an acid was analyzed with an induction plasma emission spectroscopy (ICP-OES) apparatus (Agilent 5100) manufactured by Agilent Technologies, Inc., and the In concentration, Zr concentration and The Si concentration was measured. Table 1 shows the composition of the film in which the total of the metal components is 100 atomic%.
- ICP-OES induction plasma emission spectroscopy
- the refractive index of the oxide film was measured using a spectroscopic ellipsometer at an incident angle of 75 ° and a measurement wavelength of 550 nm.
- Example 11 The oxide film formed to a thickness of 30 nm under the conditions of Invention Example 11 and Conventional Example 1 was subjected to XRD analysis to confirm the crystallinity of the oxide film. As a result, in Conventional Example 1, it was confirmed that the oxide film was crystalline. In contrast, in Example 11 of the present invention, the oxide film was amorphous.
- Example 1 in which an ITO film was formed as the shield layer, the initial transmittance at a wavelength of 550 nm, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm, and the resistance value were insufficient. Moreover, after the constant temperature / humidity test 1 and the constant temperature / humidity test 2, the fluctuation
- Example 2 in which an IZO film was formed as a shield layer, the initial transmittance at a wavelength of 550 nm, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm, and the resistance value were insufficient. Moreover, after the constant temperature / humidity test 1 and the constant temperature / humidity test 2, the fluctuation
- Comparative Example 1 In Comparative Example 1 in which the In content of the shield layer (oxide film) is less than the range of the present invention, the resistance value was too high, and the conductivity required for the shield layer could not be ensured.
- Comparative Example 2 where the In content of the shield layer (oxide film) is larger than the range of the present invention, the short wavelength transmittance was lowered. Moreover, the fluctuation
- Comparative Example 3 in which the Zr content of the shield layer (oxide film) is larger than the range of the present invention, the refractive index was increased.
- the transmittance is sufficiently high and the resistance value is within an appropriate range. It was confirmed that it is particularly suitable as a shield layer. Further, even after the constant temperature and humidity test 1 and the constant temperature and humidity test 2, the transmittance and the resistance value did not vary greatly. Further, it was confirmed that the inventive examples 1-4 and 6-17 containing Zr were improved in hardness as compared with the inventive example 5 containing no Zr.
- the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm was 0.85 or more, and high transmittance even at a short wavelength. It was confirmed that it has a rate.
- a shield layer having a high visible light transmittance and a sufficiently high resistance value, and further having excellent environmental resistance (heat resistance, moisture resistance), a method for manufacturing the shield layer, and An oxide sputtering target can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Ceramic Engineering (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Human Computer Interaction (AREA)
- Structural Engineering (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Provided is a shield layer (20) disposed on a liquid-crystal display panel (10) and characterized by comprising an oxide that contains, using 100 atom% for the total of the metal components, In in the range of 60 to 80 atom% with the balance being Si and unavoidable impurity metal elements. The shield layer (20) may also contain Zr in the range of 1 to 32 atom% using 100 atom% for the total of the metal components.
Description
本発明は、ディスプレイパネルにおいて、帯電防止のために配設されるシールド層、このシールド層の製造方法、及び、このシールド層の製造方法に使用される酸化物スパッタリングターゲットに関するものである。
本願は、2018年4月26日に日本に出願された特願2018-085459号、および、2019年3月29日に日本に出願された特願2019-068393号について優先権を主張し、その内容をここに援用する。 The present invention relates to a shield layer disposed for preventing charging in a display panel, a method for producing the shield layer, and an oxide sputtering target used in the method for producing the shield layer.
This application claims priority on Japanese Patent Application No. 2018-085459 filed in Japan on April 26, 2018, and Japanese Patent Application No. 2019-068393 filed in Japan on March 29, 2019. The contents are incorporated herein.
本願は、2018年4月26日に日本に出願された特願2018-085459号、および、2019年3月29日に日本に出願された特願2019-068393号について優先権を主張し、その内容をここに援用する。 The present invention relates to a shield layer disposed for preventing charging in a display panel, a method for producing the shield layer, and an oxide sputtering target used in the method for producing the shield layer.
This application claims priority on Japanese Patent Application No. 2018-085459 filed in Japan on April 26, 2018, and Japanese Patent Application No. 2019-068393 filed in Japan on March 29, 2019. The contents are incorporated herein.
液晶ディスプレイ、有機ELディスプレイ、及び、タッチパネル等のディスプレイパネルにおいては、液晶素子や有機EL素子等の帯電による誤動作を防止するために、シールド層を配設している。特に、インセル型のタッチパネルにおいては、上述のシールド層には、外部からのノイズは排除しながら、タッチ信号をパネル内部のセンサー部分に到達させる作用も求められる。
また、このシールド層においては、ディスプレイパネルの視認性を確保するために、可視光の透過性が高いことも求められる。 In display panels such as a liquid crystal display, an organic EL display, and a touch panel, a shield layer is provided in order to prevent malfunction due to charging of a liquid crystal element, an organic EL element, or the like. In particular, in the in-cell type touch panel, the above-described shield layer is also required to have an effect of causing the touch signal to reach the sensor portion inside the panel while eliminating external noise.
In addition, this shield layer is also required to have high visible light permeability in order to ensure the visibility of the display panel.
また、このシールド層においては、ディスプレイパネルの視認性を確保するために、可視光の透過性が高いことも求められる。 In display panels such as a liquid crystal display, an organic EL display, and a touch panel, a shield layer is provided in order to prevent malfunction due to charging of a liquid crystal element, an organic EL element, or the like. In particular, in the in-cell type touch panel, the above-described shield layer is also required to have an effect of causing the touch signal to reach the sensor portion inside the panel while eliminating external noise.
In addition, this shield layer is also required to have high visible light permeability in order to ensure the visibility of the display panel.
ここで、例えば、特許文献1においては、上述のシールド層として、ITO膜、IZO膜が挙げられている。
この特許文献1においては、液晶素子の上に配置されたガラス基板の表面に、偏光フィルムが配設されており、この偏光フィルム上に、上述のシールド層が積層された構造とされている。
また、特許文献2においては、酸化インジウムスズ(ITO)に、7.2~11.2at%のケイ素(Si)を含有させた透明導電膜が提案されている。 Here, for example, in Patent Document 1, an ITO film and an IZO film are cited as the above-described shield layer.
In Patent Document 1, a polarizing film is disposed on the surface of a glass substrate disposed on a liquid crystal element, and the above-described shield layer is laminated on the polarizing film.
Patent Document 2 proposes a transparent conductive film containing indium tin oxide (ITO) containing 7.2 to 11.2 at% silicon (Si).
この特許文献1においては、液晶素子の上に配置されたガラス基板の表面に、偏光フィルムが配設されており、この偏光フィルム上に、上述のシールド層が積層された構造とされている。
また、特許文献2においては、酸化インジウムスズ(ITO)に、7.2~11.2at%のケイ素(Si)を含有させた透明導電膜が提案されている。 Here, for example, in Patent Document 1, an ITO film and an IZO film are cited as the above-described shield layer.
In Patent Document 1, a polarizing film is disposed on the surface of a glass substrate disposed on a liquid crystal element, and the above-described shield layer is laminated on the polarizing film.
Patent Document 2 proposes a transparent conductive film containing indium tin oxide (ITO) containing 7.2 to 11.2 at% silicon (Si).
ところで、特許文献1に記載されているように、シールド層としてITO膜及びIZO膜を用いた場合には、可視光での透過率が低いために、黄色味が掛かっているように見えてしまい、視認性が劣化するおそれがあった。
また、特許文献2に記載された透明導電膜においては、抵抗値が高く、かつ、光の透過性に優れてはいるが、耐環境性が不十分であり、使用環境下において、抵抗値や透過性が劣化してしまうおそれがあった。 By the way, as described in Patent Document 1, when an ITO film and an IZO film are used as a shield layer, the visible light transmittance is low, so that it appears to be yellowish. There was a risk that the visibility would deteriorate.
In addition, the transparent conductive film described in Patent Document 2 has a high resistance value and excellent light transmittance, but has insufficient environmental resistance. There was a possibility that permeability might deteriorate.
また、特許文献2に記載された透明導電膜においては、抵抗値が高く、かつ、光の透過性に優れてはいるが、耐環境性が不十分であり、使用環境下において、抵抗値や透過性が劣化してしまうおそれがあった。 By the way, as described in Patent Document 1, when an ITO film and an IZO film are used as a shield layer, the visible light transmittance is low, so that it appears to be yellowish. There was a risk that the visibility would deteriorate.
In addition, the transparent conductive film described in Patent Document 2 has a high resistance value and excellent light transmittance, but has insufficient environmental resistance. There was a possibility that permeability might deteriorate.
さらに、上述のシールド層においては、ディスプレイパネルの使用状況に応じて、高温高湿環境下で使用した場合においても、抵抗値及び透過率が変化しないように、優れた耐環境性(耐熱性、耐湿性)が要求される。
ここで、上述のITO膜及びIZO膜は、結晶質となりやすいため、高温高湿環境下で使用した場合に、水分などの腐食性物質が膜内部に侵入しやすく、抵抗値及び透過率が変化してしまうおそれがあった。 Furthermore, in the above-mentioned shield layer, even when used in a high temperature and high humidity environment, depending on the usage status of the display panel, excellent environmental resistance (heat resistance, Moisture resistance) is required.
Here, since the ITO film and the IZO film described above are likely to be crystalline, corrosive substances such as moisture are likely to enter the film and the resistance value and transmittance change when used in a high temperature and high humidity environment. There was a risk of doing so.
ここで、上述のITO膜及びIZO膜は、結晶質となりやすいため、高温高湿環境下で使用した場合に、水分などの腐食性物質が膜内部に侵入しやすく、抵抗値及び透過率が変化してしまうおそれがあった。 Furthermore, in the above-mentioned shield layer, even when used in a high temperature and high humidity environment, depending on the usage status of the display panel, excellent environmental resistance (heat resistance, Moisture resistance) is required.
Here, since the ITO film and the IZO film described above are likely to be crystalline, corrosive substances such as moisture are likely to enter the film and the resistance value and transmittance change when used in a high temperature and high humidity environment. There was a risk of doing so.
この発明は、前述した事情に鑑みてなされたものであって、可視光の透過率が高く、かつ、抵抗値が十分に高く、さらに、優れた耐環境性(耐熱性、耐湿性)を有するシールド層、シールド層の製造方法、及び、酸化物スパッタリングターゲットを提供することを目的とする。
The present invention has been made in view of the above-described circumstances, has a high visible light transmittance, a sufficiently high resistance value, and has excellent environmental resistance (heat resistance, moisture resistance). It aims at providing a shield layer, a manufacturing method of a shield layer, and an oxide sputtering target.
上記課題を解決するために、本発明のシールド層は、ディスプレイパネルに配設されるシールド層であって、金属成分の合計を100原子%として、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物からなることを特徴としている。
In order to solve the above problems, the shield layer of the present invention is a shield layer disposed in a display panel, wherein the total of metal components is 100 atomic%, and In is in the range of 60 atomic% to 80 atomic%. And the remainder is made of an oxide made of Si and inevitable impurity metal elements.
本発明のシールド層によれば、金属成分の合計を100原子%として、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物で構成されているので、可視光の透過率に優れ、かつ、十分な高い抵抗値を有することになる。
さらに、本発明のシールド層は、非晶質となりやすいため、水分などの腐食性物質が膜内部に侵入しにくく、高温高湿環境下で使用した場合においても、抵抗値及び透過率が大きく変化せず、優れた耐環境性(耐熱性、耐湿性)を有している。
また、本発明のシールド層は、水及びアルコールに対する耐性を有していることから、水及びアルコール等で清浄した場合であっても、透過率や抵抗値が大きく変化することがない。 According to the shield layer of the present invention, the total of the metal components is 100 atomic%, In is included in the range of 60 atomic% or more and 80 atomic% or less, and the balance is composed of Si and an oxide with inevitable impurity metal elements. Therefore, it has excellent visible light transmittance and a sufficiently high resistance value.
Furthermore, since the shield layer of the present invention tends to be amorphous, corrosive substances such as moisture are less likely to enter the film, and the resistance value and transmittance greatly change even when used in a high temperature and high humidity environment. Without having excellent environmental resistance (heat resistance, moisture resistance).
Further, since the shield layer of the present invention has resistance to water and alcohol, the transmittance and the resistance value do not change greatly even when the shield layer is cleaned with water and alcohol.
さらに、本発明のシールド層は、非晶質となりやすいため、水分などの腐食性物質が膜内部に侵入しにくく、高温高湿環境下で使用した場合においても、抵抗値及び透過率が大きく変化せず、優れた耐環境性(耐熱性、耐湿性)を有している。
また、本発明のシールド層は、水及びアルコールに対する耐性を有していることから、水及びアルコール等で清浄した場合であっても、透過率や抵抗値が大きく変化することがない。 According to the shield layer of the present invention, the total of the metal components is 100 atomic%, In is included in the range of 60 atomic% or more and 80 atomic% or less, and the balance is composed of Si and an oxide with inevitable impurity metal elements. Therefore, it has excellent visible light transmittance and a sufficiently high resistance value.
Furthermore, since the shield layer of the present invention tends to be amorphous, corrosive substances such as moisture are less likely to enter the film, and the resistance value and transmittance greatly change even when used in a high temperature and high humidity environment. Without having excellent environmental resistance (heat resistance, moisture resistance).
Further, since the shield layer of the present invention has resistance to water and alcohol, the transmittance and the resistance value do not change greatly even when the shield layer is cleaned with water and alcohol.
ここで、本発明のシールド層においては、金属成分の合計を100原子%として、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいてもよい。
この場合、金属成分の合計を100原子%として、Zrの含有量が1原子%以上とされているので、シールド層の耐久性がさらに向上する。また、硬度が高くなり、ひっかき傷等に対して強くなる。
一方、Zrの含有量が32原子%以下に制限されているので、屈折率が増大することを抑制でき、不要な反射の発生を抑制することが可能となり、可視光の透過率が低下することを抑制できる。 Here, in the shield layer of the present invention, the total of the metal components may be 100 atomic%, and Zr may be further included in the range of 1 atomic% to 32 atomic%.
In this case, since the total of the metal components is 100 atomic% and the Zr content is 1 atomic% or more, the durability of the shield layer is further improved. In addition, the hardness is increased and it is strong against scratches and the like.
On the other hand, since the Zr content is limited to 32 atomic% or less, it is possible to suppress an increase in the refractive index, to suppress unnecessary reflection, and to reduce the visible light transmittance. Can be suppressed.
この場合、金属成分の合計を100原子%として、Zrの含有量が1原子%以上とされているので、シールド層の耐久性がさらに向上する。また、硬度が高くなり、ひっかき傷等に対して強くなる。
一方、Zrの含有量が32原子%以下に制限されているので、屈折率が増大することを抑制でき、不要な反射の発生を抑制することが可能となり、可視光の透過率が低下することを抑制できる。 Here, in the shield layer of the present invention, the total of the metal components may be 100 atomic%, and Zr may be further included in the range of 1 atomic% to 32 atomic%.
In this case, since the total of the metal components is 100 atomic% and the Zr content is 1 atomic% or more, the durability of the shield layer is further improved. In addition, the hardness is increased and it is strong against scratches and the like.
On the other hand, since the Zr content is limited to 32 atomic% or less, it is possible to suppress an increase in the refractive index, to suppress unnecessary reflection, and to reduce the visible light transmittance. Can be suppressed.
また、本発明のシールド層においては、厚さが7nm以上25nm以下の範囲内とされていることが好ましい。
この場合、シールド層の厚さが7nm以上とされているので、耐久性を十分に向上させることができる。
一方、シールド層の厚さが25nm以下とされているので、透過率及び抵抗値を十分に確保することができる。 In the shield layer of the present invention, the thickness is preferably in the range of 7 nm to 25 nm.
In this case, since the thickness of the shield layer is 7 nm or more, the durability can be sufficiently improved.
On the other hand, since the thickness of the shield layer is 25 nm or less, it is possible to sufficiently ensure the transmittance and the resistance value.
この場合、シールド層の厚さが7nm以上とされているので、耐久性を十分に向上させることができる。
一方、シールド層の厚さが25nm以下とされているので、透過率及び抵抗値を十分に確保することができる。 In the shield layer of the present invention, the thickness is preferably in the range of 7 nm to 25 nm.
In this case, since the thickness of the shield layer is 7 nm or more, the durability can be sufficiently improved.
On the other hand, since the thickness of the shield layer is 25 nm or less, it is possible to sufficiently ensure the transmittance and the resistance value.
さらに、本発明のシールド層においては、波長550nmにおける透過率が95%以上であることが好ましい。
この場合、波長550nmにおける透過率が95%以上とされているので、可視光の透過率に優れている。このため、視認性に優れたディスプレイパネルを構成することが可能となる。 Furthermore, in the shield layer of the present invention, the transmittance at a wavelength of 550 nm is preferably 95% or more.
In this case, since the transmittance at a wavelength of 550 nm is 95% or more, the transmittance for visible light is excellent. For this reason, it becomes possible to comprise the display panel excellent in visibility.
この場合、波長550nmにおける透過率が95%以上とされているので、可視光の透過率に優れている。このため、視認性に優れたディスプレイパネルを構成することが可能となる。 Furthermore, in the shield layer of the present invention, the transmittance at a wavelength of 550 nm is preferably 95% or more.
In this case, since the transmittance at a wavelength of 550 nm is 95% or more, the transmittance for visible light is excellent. For this reason, it becomes possible to comprise the display panel excellent in visibility.
また、本発明のシールド層においては、シート抵抗が1E+7Ω/□以上5E+10Ω/□以下の範囲内であることが好ましい。
この場合、シート抵抗が1E+7Ω/□以上5E+10Ω/□以下の範囲内とされているので、静電気やノイズを有効に除去して、ディスプレイ内部のタッチセンサーがタッチ信号を的確に検知させることが可能となる。
なおシート抵抗(単位:Ω/□(Ω/sq.))の数値については、JIS X 0210-1986に基づき、数値A×10Bを、AE+B(Bが正数の場合)の形式として表した。 In the shield layer of the present invention, the sheet resistance is preferably in the range of 1E + 7Ω / □ to 5E + 10Ω / □.
In this case, since the sheet resistance is in the range of 1E + 7Ω / □ or more and 5E + 10Ω / □, static electricity and noise can be effectively removed, and the touch sensor inside the display can detect the touch signal accurately. Become.
Regarding the numerical value of the sheet resistance (unit: Ω / □ (Ω / sq.)), The numerical value A × 10 B is expressed as AE + B (when B is a positive number) based on JIS X 0210-1986. .
この場合、シート抵抗が1E+7Ω/□以上5E+10Ω/□以下の範囲内とされているので、静電気やノイズを有効に除去して、ディスプレイ内部のタッチセンサーがタッチ信号を的確に検知させることが可能となる。
なおシート抵抗(単位:Ω/□(Ω/sq.))の数値については、JIS X 0210-1986に基づき、数値A×10Bを、AE+B(Bが正数の場合)の形式として表した。 In the shield layer of the present invention, the sheet resistance is preferably in the range of 1E + 7Ω / □ to 5E + 10Ω / □.
In this case, since the sheet resistance is in the range of 1E + 7Ω / □ or more and 5E + 10Ω / □, static electricity and noise can be effectively removed, and the touch sensor inside the display can detect the touch signal accurately. Become.
Regarding the numerical value of the sheet resistance (unit: Ω / □ (Ω / sq.)), The numerical value A × 10 B is expressed as AE + B (when B is a positive number) based on JIS X 0210-1986. .
本発明のシールド層の製造方法は、上述のシールド層を製造するシールド層の製造方法であって、金属成分の合計を100原子%として、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物からなる酸化物スパッタリングターゲットを用いて、スパッタ装置内に酸素を導入してスパッタ成膜を行う構成とされており、導入する酸素量について、酸素/アルゴンの流量比を0.03以下とすることを特徴としている。
The method for producing a shield layer according to the present invention is a method for producing a shield layer for producing the above-mentioned shield layer, wherein the total of the metal components is 100 atomic% and includes In in the range of 60 atomic% to 80 atomic%. In addition, using an oxide sputtering target made of an oxide with the balance being Si and inevitable impurity metal elements, oxygen is introduced into the sputtering apparatus to perform sputtering film formation. The flow rate ratio of oxygen / argon is 0.03 or less.
この構成のシールド層の製造方法によれば、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物からなる酸化物スパッタリングターゲットを用いて、スパッタ装置内に酸素を導入してスパッタ成膜を行っているので、可視光の透過率が高く、かつ、抵抗値が十分に高いシールド層を成膜することができる。
また、導入する酸素量について、酸素/アルゴンの流量比を0.03以下としているので、成膜されたシールド層の抵抗値が高くなりすぎることを抑制できる。 According to the manufacturing method of the shield layer of this configuration, using an oxide sputtering target composed of an oxide containing In in a range of 60 atomic% to 80 atomic% and the balance being Si and inevitable impurity metal elements, Since sputtering is performed by introducing oxygen into the sputtering apparatus, a shield layer having a high visible light transmittance and a sufficiently high resistance can be formed.
Moreover, since the flow rate ratio of oxygen / argon is set to 0.03 or less for the amount of oxygen to be introduced, it is possible to suppress the resistance value of the formed shield layer from becoming too high.
また、導入する酸素量について、酸素/アルゴンの流量比を0.03以下としているので、成膜されたシールド層の抵抗値が高くなりすぎることを抑制できる。 According to the manufacturing method of the shield layer of this configuration, using an oxide sputtering target composed of an oxide containing In in a range of 60 atomic% to 80 atomic% and the balance being Si and inevitable impurity metal elements, Since sputtering is performed by introducing oxygen into the sputtering apparatus, a shield layer having a high visible light transmittance and a sufficiently high resistance can be formed.
Moreover, since the flow rate ratio of oxygen / argon is set to 0.03 or less for the amount of oxygen to be introduced, it is possible to suppress the resistance value of the formed shield layer from becoming too high.
ここで、本発明のシールド層の製造方法においては、前記酸化物スパッタリングターゲットが、金属成分の合計を100原子%として、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいてもよい。
この場合、前記酸化物スパッタリングターゲットが、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいるので、可視光の透過率を確保したまま、硬度が硬く、耐久性に優れたシールド層を成膜することが可能となる。 Here, in the method for manufacturing a shield layer according to the present invention, the oxide sputtering target may contain Zr in the range of 1 atomic% to 32 atomic%, with the total of the metal components being 100 atomic%. Good.
In this case, since the oxide sputtering target further contains Zr in the range of 1 atomic% to 32 atomic%, the shield has high hardness and excellent durability while ensuring visible light transmittance. A layer can be formed.
この場合、前記酸化物スパッタリングターゲットが、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいるので、可視光の透過率を確保したまま、硬度が硬く、耐久性に優れたシールド層を成膜することが可能となる。 Here, in the method for manufacturing a shield layer according to the present invention, the oxide sputtering target may contain Zr in the range of 1 atomic% to 32 atomic%, with the total of the metal components being 100 atomic%. Good.
In this case, since the oxide sputtering target further contains Zr in the range of 1 atomic% to 32 atomic%, the shield has high hardness and excellent durability while ensuring visible light transmittance. A layer can be formed.
また、本発明のシールド層の製造方法においては、前記シールド層のシート抵抗を1E+7Ω/□以上5E+10Ω/□以下の範囲内とすることが好ましい。
この場合、前記シールド層のシート抵抗を1E+7Ω/□以上5E+10Ω/□以下の範囲内とすることにより、静電気やノイズを有効に除去して、ディスプレイ内部のタッチセンサーがタッチ信号を的確に検知させることが可能なシールド層を製造することが可能となる。 Moreover, in the manufacturing method of the shield layer of this invention, it is preferable to make the sheet resistance of the said shield layer into the range of 1E + 7 ohm / square or more and 5E + 10 ohm / square or less.
In this case, by setting the sheet resistance of the shield layer within the range of 1E + 7Ω / □ or more and 5E + 10Ω / □, static electricity and noise can be effectively removed and the touch sensor inside the display can detect the touch signal accurately. It is possible to manufacture a shield layer that can be used.
この場合、前記シールド層のシート抵抗を1E+7Ω/□以上5E+10Ω/□以下の範囲内とすることにより、静電気やノイズを有効に除去して、ディスプレイ内部のタッチセンサーがタッチ信号を的確に検知させることが可能なシールド層を製造することが可能となる。 Moreover, in the manufacturing method of the shield layer of this invention, it is preferable to make the sheet resistance of the said shield layer into the range of 1E + 7 ohm / square or more and 5E + 10 ohm / square or less.
In this case, by setting the sheet resistance of the shield layer within the range of 1E + 7Ω / □ or more and 5E + 10Ω / □, static electricity and noise can be effectively removed and the touch sensor inside the display can detect the touch signal accurately. It is possible to manufacture a shield layer that can be used.
本発明の酸化物スパッタリングターゲットは、上述のシールド層の製造方法において使用されることを特徴とする。
この構成の酸化物スパッタリングターゲットによれば、スパッタ装置内に酸素/アルゴンの流量比を0.03以下として酸素を導入してスパッタ成膜することにより、上述のシールド層を成膜することができる。 The oxide sputtering target of the present invention is used in the above-described method for producing a shield layer.
According to the oxide sputtering target having this configuration, the above-described shield layer can be formed by introducing oxygen into the sputtering apparatus with an oxygen / argon flow ratio of 0.03 or less and performing sputtering. .
この構成の酸化物スパッタリングターゲットによれば、スパッタ装置内に酸素/アルゴンの流量比を0.03以下として酸素を導入してスパッタ成膜することにより、上述のシールド層を成膜することができる。 The oxide sputtering target of the present invention is used in the above-described method for producing a shield layer.
According to the oxide sputtering target having this configuration, the above-described shield layer can be formed by introducing oxygen into the sputtering apparatus with an oxygen / argon flow ratio of 0.03 or less and performing sputtering. .
本発明によれば、可視光の透過率が高く、かつ、抵抗値が十分に高く、さらに、優れた耐環境性(耐熱性、耐湿性)を有するシールド層、シールド層の製造方法、及び、酸化物スパッタリングターゲットを提供することができる。
According to the present invention, a shield layer having a high visible light transmittance and a sufficiently high resistance value, and further having excellent environmental resistance (heat resistance, moisture resistance), a method for manufacturing the shield layer, and An oxide sputtering target can be provided.
以下に、本発明の一実施形態であるシールド層、及び、シールド層の製造方法について、添付した図面を参照して説明する。
本実施形態であるシールド層は、液晶ディスプレイパネル、有機ELディスプレイパネル、及び、タッチパネル等のディスプレイパネルにおいて、帯電防止のために配設されるものである。本実施形態においては、液晶ディスプレイパネルに配設されたものとして説明する。 Below, the shield layer which is one Embodiment of this invention, and the manufacturing method of a shield layer are demonstrated with reference to attached drawing.
The shield layer according to the present embodiment is disposed for preventing charging in a display panel such as a liquid crystal display panel, an organic EL display panel, and a touch panel. In the present embodiment, description will be made assuming that the liquid crystal display panel is disposed.
本実施形態であるシールド層は、液晶ディスプレイパネル、有機ELディスプレイパネル、及び、タッチパネル等のディスプレイパネルにおいて、帯電防止のために配設されるものである。本実施形態においては、液晶ディスプレイパネルに配設されたものとして説明する。 Below, the shield layer which is one Embodiment of this invention, and the manufacturing method of a shield layer are demonstrated with reference to attached drawing.
The shield layer according to the present embodiment is disposed for preventing charging in a display panel such as a liquid crystal display panel, an organic EL display panel, and a touch panel. In the present embodiment, description will be made assuming that the liquid crystal display panel is disposed.
まず、本実施形態であるシールド層20を備えた液晶ディスプレイパネル10を、図1を用いて説明する。
この液晶ディスプレイパネル10は、図1に示すように、第1ガラス基板11と、第2ガラス基板12と、これら第1ガラス基板11と第2ガラス基板12との間に配設された液晶層13と、を備えている。なお、本実施形態においては、これら第1ガラス基板11及び第2ガラス基板12は、無アルカリガラスとされており、Naを含まないものとされている。
なお、第1ガラス基板11及び第2ガラス基板12を無アルカリガラスで構成することにより、アルカリ成分が液晶層やTFTに混入することを抑制でき、ディスプレイ性能の劣化を回避することができる。 First, the liquidcrystal display panel 10 provided with the shield layer 20 according to the present embodiment will be described with reference to FIG.
As shown in FIG. 1, the liquidcrystal display panel 10 includes a first glass substrate 11, a second glass substrate 12, and a liquid crystal layer disposed between the first glass substrate 11 and the second glass substrate 12. 13. In the present embodiment, the first glass substrate 11 and the second glass substrate 12 are made of non-alkali glass and do not contain Na.
In addition, by comprising the1st glass substrate 11 and the 2nd glass substrate 12 with a non-alkali glass, it can suppress that an alkali component mixes in a liquid crystal layer or TFT, and can avoid display performance degradation.
この液晶ディスプレイパネル10は、図1に示すように、第1ガラス基板11と、第2ガラス基板12と、これら第1ガラス基板11と第2ガラス基板12との間に配設された液晶層13と、を備えている。なお、本実施形態においては、これら第1ガラス基板11及び第2ガラス基板12は、無アルカリガラスとされており、Naを含まないものとされている。
なお、第1ガラス基板11及び第2ガラス基板12を無アルカリガラスで構成することにより、アルカリ成分が液晶層やTFTに混入することを抑制でき、ディスプレイ性能の劣化を回避することができる。 First, the liquid
As shown in FIG. 1, the liquid
In addition, by comprising the
そして、第2ガラス基板12の上に、本実施形態であるシールド層20が配設されている。
このシールド層20の上に、偏光フィルム15が配設され、この偏光フィルム15の上に保護膜16が形成されている。 Ashield layer 20 according to the present embodiment is disposed on the second glass substrate 12.
Apolarizing film 15 is disposed on the shield layer 20, and a protective film 16 is formed on the polarizing film 15.
このシールド層20の上に、偏光フィルム15が配設され、この偏光フィルム15の上に保護膜16が形成されている。 A
A
このとき、シールド層20を形成した後、次の工程に進むまでの間に何らかの原因でシールド層20表面が汚染された場合、シールド層20の表面を、水やアルコール等で洗浄することがある。このため、上述のシールド層20には、水やアルコールに対する耐性も必要となる。
At this time, after the shield layer 20 is formed, if the shield layer 20 surface is contaminated for some reason before proceeding to the next step, the surface of the shield layer 20 may be washed with water, alcohol, or the like. . For this reason, the above-described shield layer 20 also needs resistance to water and alcohol.
ここで、本実施形態であるシールド層20においては、金属成分の合計を100原子%として、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物からなる。
なお、本実施形態であるシールド層20においては、金属成分の合計を100原子%として、上述のInに加えて、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいてもよい。 Here, in theshield layer 20 according to the present embodiment, the total of the metal components is 100 atomic%, In is included in the range of 60 atomic% to 80 atomic%, and the balance is Si and inevitable impurity metal elements. Made of oxide.
In theshield layer 20 according to the present embodiment, the total of the metal components may be 100 atomic%, and in addition to In described above, Zr may be further included in the range of 1 atomic% to 32 atomic%. .
なお、本実施形態であるシールド層20においては、金属成分の合計を100原子%として、上述のInに加えて、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいてもよい。 Here, in the
In the
また、本実施形態であるシールド層20においては、その厚さtが7nm以上25nm以下の範囲内とされている。
さらに、本実施形態であるシールド層20においては、波長550nmにおける透過率が95%以上とされている。
また、本実施形態であるシールド層20においては、抵抗値が1E+7Ω/□以上5E+10Ω/□以下の範囲内とされている。 Moreover, in theshield layer 20 which is this embodiment, the thickness t is in the range of 7 nm or more and 25 nm or less.
Furthermore, in theshield layer 20 which is this embodiment, the transmittance | permeability in wavelength 550nm is 95% or more.
In theshield layer 20 according to the present embodiment, the resistance value is in the range of 1E + 7Ω / □ or more and 5E + 10Ω / □ or less.
さらに、本実施形態であるシールド層20においては、波長550nmにおける透過率が95%以上とされている。
また、本実施形態であるシールド層20においては、抵抗値が1E+7Ω/□以上5E+10Ω/□以下の範囲内とされている。 Moreover, in the
Furthermore, in the
In the
ここで、シールド層20の組成、厚さ、特性等を、上述のように規定した理由について、説明する。
Here, the reason why the composition, thickness, characteristics and the like of the shield layer 20 are specified as described above will be described.
(In)
InとSiの酸化物からなるシールド層20において、金属成分の合計を100原子%として、Inの含有量が60原子%未満の場合には、シールド層20として必要な導電性を確保できないおそれがある。一方、Inの含有量が80原子%を超える場合には、短波長の透過率が低下し、視認性が低下してしまうおそれがある。
以上のことから、本実施形態においては、金属成分の合計を100原子%として、Inの含有量を60原子%以上80原子%以下の範囲内としている。 (In)
In theshield layer 20 made of an oxide of In and Si, if the total amount of metal components is 100 atomic% and the content of In is less than 60 atomic%, the conductivity necessary for the shield layer 20 may not be ensured. is there. On the other hand, when the content of In exceeds 80 atomic%, the short wavelength transmittance is lowered, and the visibility may be lowered.
From the above, in this embodiment, the total of the metal components is 100 atomic%, and the In content is in the range of 60 atomic% to 80 atomic%.
InとSiの酸化物からなるシールド層20において、金属成分の合計を100原子%として、Inの含有量が60原子%未満の場合には、シールド層20として必要な導電性を確保できないおそれがある。一方、Inの含有量が80原子%を超える場合には、短波長の透過率が低下し、視認性が低下してしまうおそれがある。
以上のことから、本実施形態においては、金属成分の合計を100原子%として、Inの含有量を60原子%以上80原子%以下の範囲内としている。 (In)
In the
From the above, in this embodiment, the total of the metal components is 100 atomic%, and the In content is in the range of 60 atomic% to 80 atomic%.
なお、シールド層20の導電性をさらに確保するためには、金属成分の合計を100原子%として、Inの含有量の下限を62原子%以上とすることが好ましく、64原子%以上とすることがさらに好ましい。
一方、可視光の透過率が低下することを確実に抑制するためには、Inの含有量の上限を78原子%以下とすることが好ましい。 In order to further secure the conductivity of theshield layer 20, it is preferable that the total of the metal components is 100 atomic%, and the lower limit of the In content is 62 atomic% or more, and 64 atomic% or more. Is more preferable.
On the other hand, in order to reliably suppress a decrease in visible light transmittance, the upper limit of the In content is preferably set to 78 atomic% or less.
一方、可視光の透過率が低下することを確実に抑制するためには、Inの含有量の上限を78原子%以下とすることが好ましい。 In order to further secure the conductivity of the
On the other hand, in order to reliably suppress a decrease in visible light transmittance, the upper limit of the In content is preferably set to 78 atomic% or less.
(Zr)
本実施形態であるシールド層20においては、金属成分として、In、Si以外にZrを含有していてもよい。
ここで、金属成分の合計を100原子%として、Zrの含有量を1原子%以上とすることにより、シールド層20の耐久性を向上させることができるとともに、硬度が硬くなり、ひっかき傷に強くなる。一方、Zrの含有量を32原子%以下とすることにより、屈折率が増大することを抑制でき、不要な反射の発生を抑制できるので、可視光の透過率が低下することを抑制できる。
以上のことから、本実施形態においてZrを含有する場合には、金属成分の合計を100原子%として、Zrの含有量を1原子%以上32原子%以下の範囲内とすることが好ましい。なお、Zrを不可避不純物金属元素として含む場合には、その含有量は1原子%未満であってもよい。 (Zr)
Theshield layer 20 according to the present embodiment may contain Zr as a metal component in addition to In and Si.
Here, by setting the total of the metal components to 100 atomic% and the Zr content to be 1 atomic% or more, the durability of theshield layer 20 can be improved, the hardness becomes hard, and it is resistant to scratches. Become. On the other hand, by setting the Zr content to 32 atomic% or less, an increase in the refractive index can be suppressed and generation of unnecessary reflection can be suppressed, so that a decrease in visible light transmittance can be suppressed.
From the above, when Zr is contained in the present embodiment, it is preferable that the total of the metal components is 100 atomic% and the Zr content is in the range of 1 atomic% to 32 atomic%. When Zr is included as an inevitable impurity metal element, the content thereof may be less than 1 atomic%.
本実施形態であるシールド層20においては、金属成分として、In、Si以外にZrを含有していてもよい。
ここで、金属成分の合計を100原子%として、Zrの含有量を1原子%以上とすることにより、シールド層20の耐久性を向上させることができるとともに、硬度が硬くなり、ひっかき傷に強くなる。一方、Zrの含有量を32原子%以下とすることにより、屈折率が増大することを抑制でき、不要な反射の発生を抑制できるので、可視光の透過率が低下することを抑制できる。
以上のことから、本実施形態においてZrを含有する場合には、金属成分の合計を100原子%として、Zrの含有量を1原子%以上32原子%以下の範囲内とすることが好ましい。なお、Zrを不可避不純物金属元素として含む場合には、その含有量は1原子%未満であってもよい。 (Zr)
The
Here, by setting the total of the metal components to 100 atomic% and the Zr content to be 1 atomic% or more, the durability of the
From the above, when Zr is contained in the present embodiment, it is preferable that the total of the metal components is 100 atomic% and the Zr content is in the range of 1 atomic% to 32 atomic%. When Zr is included as an inevitable impurity metal element, the content thereof may be less than 1 atomic%.
なお、シールド層20の耐久性をさらに向上させるためには、金属成分の合計を100原子%として、Zrの含有量の下限を2原子%以上とすることが好ましく、3原子%以上とすることがさらに好ましい。
一方、屈折率が増大することを抑制して透過率が低下することをさらに抑制するためには、Zrの含有量の上限を28原子%以下とすることが好ましく、25原子%以下とすることがさらに好ましい。 In order to further improve the durability of theshield layer 20, it is preferable that the total of the metal components is 100 atomic%, and the lower limit of the Zr content is 2 atomic% or more, preferably 3 atomic% or more. Is more preferable.
On the other hand, in order to suppress the increase in the refractive index and further suppress the decrease in the transmittance, the upper limit of the Zr content is preferably 28 atomic% or less, and preferably 25 atomic% or less. Is more preferable.
一方、屈折率が増大することを抑制して透過率が低下することをさらに抑制するためには、Zrの含有量の上限を28原子%以下とすることが好ましく、25原子%以下とすることがさらに好ましい。 In order to further improve the durability of the
On the other hand, in order to suppress the increase in the refractive index and further suppress the decrease in the transmittance, the upper limit of the Zr content is preferably 28 atomic% or less, and preferably 25 atomic% or less. Is more preferable.
(厚さ)
本実施形態であるシールド層20において、その厚さtが7nm以上である場合には、シールド層20の耐久性を十分に確保することができる。一方、シールド層20の厚さtが25nm以下である場合には、可視光の透過性及び抵抗値を十分に確保することが可能となる。
以上のことから、本実施形態においては、上述のシールド層20の厚さtを、7nm以上25nm以下の範囲内とすることが好ましい。 (thickness)
In theshield layer 20 according to the present embodiment, when the thickness t is 7 nm or more, the durability of the shield layer 20 can be sufficiently ensured. On the other hand, when the thickness t of the shield layer 20 is 25 nm or less, it is possible to sufficiently ensure the transmittance of visible light and the resistance value.
From the above, in the present embodiment, it is preferable that the thickness t of theshield layer 20 is in the range of 7 nm to 25 nm.
本実施形態であるシールド層20において、その厚さtが7nm以上である場合には、シールド層20の耐久性を十分に確保することができる。一方、シールド層20の厚さtが25nm以下である場合には、可視光の透過性及び抵抗値を十分に確保することが可能となる。
以上のことから、本実施形態においては、上述のシールド層20の厚さtを、7nm以上25nm以下の範囲内とすることが好ましい。 (thickness)
In the
From the above, in the present embodiment, it is preferable that the thickness t of the
なお、シールド層20の耐久性をさらに向上させるためには、シールド層20の厚さtの下限を8nm以上とすることが好ましく、10nm以上とすることがさらに好ましい。
一方、可視光の透過性及び抵抗値をさらに確保するためには、シールド層20の厚さtの上限を20nm以下とすることが好ましく、18nm以下とすることがさらに好ましい。 In order to further improve the durability of theshield layer 20, the lower limit of the thickness t of the shield layer 20 is preferably 8 nm or more, and more preferably 10 nm or more.
On the other hand, in order to further ensure the transmittance of visible light and the resistance value, the upper limit of the thickness t of theshield layer 20 is preferably 20 nm or less, and more preferably 18 nm or less.
一方、可視光の透過性及び抵抗値をさらに確保するためには、シールド層20の厚さtの上限を20nm以下とすることが好ましく、18nm以下とすることがさらに好ましい。 In order to further improve the durability of the
On the other hand, in order to further ensure the transmittance of visible light and the resistance value, the upper limit of the thickness t of the
(透過率)
本実施形態であるシールド層20において、波長550nmにおける透過率が95%以上とされている場合には、十分な透過率を確保することができ、視認性に優れた液晶ディスプレイパネル10を構成することが可能となる。
以上のことから、本実施形態のシールド層20においては、波長550nmにおける透過率を95%以上とすることが好ましい。
なお、さらに視認性に優れた液晶ディスプレイパネル10を構成するためには、本実施形態であるシールド層20の波長550nmにおける透過率は97%以上であることが好ましく、98%以上であることがさらに好ましい。 (Transmittance)
In theshield layer 20 according to this embodiment, when the transmittance at a wavelength of 550 nm is 95% or more, a sufficient transmittance can be ensured, and the liquid crystal display panel 10 having excellent visibility is configured. It becomes possible.
From the above, in theshield layer 20 of the present embodiment, the transmittance at a wavelength of 550 nm is preferably 95% or more.
In addition, in order to constitute the liquidcrystal display panel 10 with further excellent visibility, the transmittance of the shield layer 20 according to the present embodiment at a wavelength of 550 nm is preferably 97% or more, and preferably 98% or more. Further preferred.
本実施形態であるシールド層20において、波長550nmにおける透過率が95%以上とされている場合には、十分な透過率を確保することができ、視認性に優れた液晶ディスプレイパネル10を構成することが可能となる。
以上のことから、本実施形態のシールド層20においては、波長550nmにおける透過率を95%以上とすることが好ましい。
なお、さらに視認性に優れた液晶ディスプレイパネル10を構成するためには、本実施形態であるシールド層20の波長550nmにおける透過率は97%以上であることが好ましく、98%以上であることがさらに好ましい。 (Transmittance)
In the
From the above, in the
In addition, in order to constitute the liquid
(抵抗値)
本実施形態であるシールド層20において、抵抗値が1E+7Ω/□以上5E+10Ω/□以下である場合には、静電気やノイズを有効に除去でき、ディスプレイ内部のタッチセンサーがタッチ信号を検知することを妨げない。
以上のことから、本実施形態においては、上述のシールド層20の抵抗値を、1E+7Ω/□以上5E+10Ω/□以下の範囲内とすることが好ましい。
なお、より確実に静電気やノイズを除去し、タッチ信号をパネル内部のセンサー部分に到達させるためには、シールド層20における抵抗値の下限を3E+7Ω/□以上とすることが好ましく、5E+7Ω/□以上とすることがさらに好ましい。また、抵抗値の上限を9E+9Ω/□以下とすることが好ましく、5E+9Ω/□以下とすることがさらに好ましい。 (Resistance value)
In theshield layer 20 according to the present embodiment, when the resistance value is 1E + 7Ω / □ or more and 5E + 10Ω / □ or less, static electricity and noise can be effectively removed, and the touch sensor inside the display is prevented from detecting the touch signal. Absent.
From the above, in the present embodiment, it is preferable that the resistance value of theshield layer 20 is in the range of 1E + 7Ω / □ or more and 5E + 10Ω / □ or less.
In order to more reliably remove static electricity and noise and allow the touch signal to reach the sensor portion inside the panel, the lower limit of the resistance value in theshield layer 20 is preferably 3E + 7Ω / □ or more, and 5E + 7Ω / □ or more. More preferably. The upper limit of the resistance value is preferably 9E + 9Ω / □ or less, and more preferably 5E + 9Ω / □ or less.
本実施形態であるシールド層20において、抵抗値が1E+7Ω/□以上5E+10Ω/□以下である場合には、静電気やノイズを有効に除去でき、ディスプレイ内部のタッチセンサーがタッチ信号を検知することを妨げない。
以上のことから、本実施形態においては、上述のシールド層20の抵抗値を、1E+7Ω/□以上5E+10Ω/□以下の範囲内とすることが好ましい。
なお、より確実に静電気やノイズを除去し、タッチ信号をパネル内部のセンサー部分に到達させるためには、シールド層20における抵抗値の下限を3E+7Ω/□以上とすることが好ましく、5E+7Ω/□以上とすることがさらに好ましい。また、抵抗値の上限を9E+9Ω/□以下とすることが好ましく、5E+9Ω/□以下とすることがさらに好ましい。 (Resistance value)
In the
From the above, in the present embodiment, it is preferable that the resistance value of the
In order to more reliably remove static electricity and noise and allow the touch signal to reach the sensor portion inside the panel, the lower limit of the resistance value in the
次に、上述した本実施形態であるシールド層20を製造するシールド層の製造方法について説明する。
本実施形態のシールド層の製造方法においては、上述のシールド層20に対応する組成の酸化物スパッタリングターゲットを用いる。 Next, the manufacturing method of the shield layer which manufactures theshield layer 20 which is this embodiment mentioned above is demonstrated.
In the manufacturing method of the shield layer of this embodiment, the oxide sputtering target of the composition corresponding to the above-mentionedshield layer 20 is used.
本実施形態のシールド層の製造方法においては、上述のシールド層20に対応する組成の酸化物スパッタリングターゲットを用いる。 Next, the manufacturing method of the shield layer which manufactures the
In the manufacturing method of the shield layer of this embodiment, the oxide sputtering target of the composition corresponding to the above-mentioned
この酸化物スパッタリングターゲットは、金属成分の合計を100原子%として、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物の焼結体からなる。なお、金属成分の合計を100原子%として、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいてもよい。なお、Zrを不可避不純物金属元素として含む場合には、その含有量は1原子%未満であってもよい。
ここで、この酸化物スパッタリングターゲットは、以下のようにして製造される。 This oxide sputtering target is made of an oxide sintered body containing 100 atomic% of total metal components, containing In in the range of 60 atomic% to 80 atomic%, and the balance being Si and inevitable impurity metal elements. Become. Note that the total of the metal components may be 100 atomic%, and Zr may be further included in the range of 1 atomic% to 32 atomic%. When Zr is included as an inevitable impurity metal element, the content thereof may be less than 1 atomic%.
Here, this oxide sputtering target is manufactured as follows.
ここで、この酸化物スパッタリングターゲットは、以下のようにして製造される。 This oxide sputtering target is made of an oxide sintered body containing 100 atomic% of total metal components, containing In in the range of 60 atomic% to 80 atomic%, and the balance being Si and inevitable impurity metal elements. Become. Note that the total of the metal components may be 100 atomic%, and Zr may be further included in the range of 1 atomic% to 32 atomic%. When Zr is included as an inevitable impurity metal element, the content thereof may be less than 1 atomic%.
Here, this oxide sputtering target is manufactured as follows.
まず、原料粉末として、In2O3粉末と、SiO2粉末と、必要に応じてZrO2粉末を準備する。
In2O3粉末は、純度が99.9質量%以上、平均粒径が0.1μm以上10μm以下の範囲内であることが好ましい。
SiO2粉末は、純度が99.8質量%以上、平均粒径が0.2μm以上20μm以下の範囲内であることが好ましい。
ZrO2粉末は、純度が99.9質量%以上、平均粒径が0.2μm以上20μm以下の範囲内であることが好ましい。なお、本実施形態においては、ZrO2粉末の純度は、Fe2O3,SiO2,TiO2,Na2Oの含有量を測定し、残部がZrO2であるとして算出されたものである。本実施形態のZrO2粉末においては、HfO2を最大で2.5mass%含有することがある。 First, as raw material powder, In 2 O 3 powder, SiO 2 powder, and ZrO 2 powder as required are prepared.
The In 2 O 3 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.1 μm or more and 10 μm or less.
The SiO 2 powder preferably has a purity of 99.8% by mass or more and an average particle size of 0.2 μm or more and 20 μm or less.
The ZrO 2 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.2 μm or more and 20 μm or less. In this embodiment, the purity of the ZrO 2 powder is calculated by measuring the contents of Fe 2 O 3 , SiO 2 , TiO 2 , and Na 2 O and the balance being ZrO 2 . The ZrO 2 powder of this embodiment may contain HfO 2 at a maximum of 2.5 mass%.
In2O3粉末は、純度が99.9質量%以上、平均粒径が0.1μm以上10μm以下の範囲内であることが好ましい。
SiO2粉末は、純度が99.8質量%以上、平均粒径が0.2μm以上20μm以下の範囲内であることが好ましい。
ZrO2粉末は、純度が99.9質量%以上、平均粒径が0.2μm以上20μm以下の範囲内であることが好ましい。なお、本実施形態においては、ZrO2粉末の純度は、Fe2O3,SiO2,TiO2,Na2Oの含有量を測定し、残部がZrO2であるとして算出されたものである。本実施形態のZrO2粉末においては、HfO2を最大で2.5mass%含有することがある。 First, as raw material powder, In 2 O 3 powder, SiO 2 powder, and ZrO 2 powder as required are prepared.
The In 2 O 3 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.1 μm or more and 10 μm or less.
The SiO 2 powder preferably has a purity of 99.8% by mass or more and an average particle size of 0.2 μm or more and 20 μm or less.
The ZrO 2 powder preferably has a purity of 99.9% by mass or more and an average particle size of 0.2 μm or more and 20 μm or less. In this embodiment, the purity of the ZrO 2 powder is calculated by measuring the contents of Fe 2 O 3 , SiO 2 , TiO 2 , and Na 2 O and the balance being ZrO 2 . The ZrO 2 powder of this embodiment may contain HfO 2 at a maximum of 2.5 mass%.
これらの酸化物粉末を、所定の組成比となるように秤量し、粉砕混合装置を用いて混合し、混合原料粉末を準備する。ここで、混合原料粉末は、比表面積(BET比表面積)を11.5m2/g以上13.5m2/g以下の範囲内とすることが好ましい。
得られた混合原料粉末を、成形型に充填して加圧することによって、所定形状の成形体を得る。 These oxide powders are weighed so as to have a predetermined composition ratio, and mixed using a pulverizing and mixing device to prepare a mixed raw material powder. Here, the mixed raw material powder preferably has a specific surface area (BET specific surface area) in the range of 11.5 m 2 / g to 13.5 m 2 / g.
The obtained mixed raw material powder is filled in a mold and pressed to obtain a molded body having a predetermined shape.
得られた混合原料粉末を、成形型に充填して加圧することによって、所定形状の成形体を得る。 These oxide powders are weighed so as to have a predetermined composition ratio, and mixed using a pulverizing and mixing device to prepare a mixed raw material powder. Here, the mixed raw material powder preferably has a specific surface area (BET specific surface area) in the range of 11.5 m 2 / g to 13.5 m 2 / g.
The obtained mixed raw material powder is filled in a mold and pressed to obtain a molded body having a predetermined shape.
この成形体を電気炉内に装入し、加熱して焼結する。このとき、保持温度を1300℃以上1600℃以下の範囲内、保持時間を2時間以上10時間以下の範囲内とすることが好ましい。また、電気炉内には、酸素を導入することが好ましい。
そして、電気炉内で600℃まで、200℃/時間以下の冷却速度で冷却し、その後、室温まで炉冷し、焼結体を電気炉内から取り出す。
得られた焼結体に対して機械加工を行い、所定サイズの酸化物スパッタリングターゲットが製造される。 The compact is placed in an electric furnace and heated to sinter. At this time, the holding temperature is preferably in the range of 1300 ° C. to 1600 ° C., and the holding time is preferably in the range of 2 hours to 10 hours. Moreover, it is preferable to introduce oxygen into the electric furnace.
Then, it is cooled to 600 ° C. at a cooling rate of 200 ° C./hour or less in the electric furnace, and then cooled to room temperature, and the sintered body is taken out from the electric furnace.
The obtained sintered body is machined to produce an oxide sputtering target of a predetermined size.
そして、電気炉内で600℃まで、200℃/時間以下の冷却速度で冷却し、その後、室温まで炉冷し、焼結体を電気炉内から取り出す。
得られた焼結体に対して機械加工を行い、所定サイズの酸化物スパッタリングターゲットが製造される。 The compact is placed in an electric furnace and heated to sinter. At this time, the holding temperature is preferably in the range of 1300 ° C. to 1600 ° C., and the holding time is preferably in the range of 2 hours to 10 hours. Moreover, it is preferable to introduce oxygen into the electric furnace.
Then, it is cooled to 600 ° C. at a cooling rate of 200 ° C./hour or less in the electric furnace, and then cooled to room temperature, and the sintered body is taken out from the electric furnace.
The obtained sintered body is machined to produce an oxide sputtering target of a predetermined size.
次に、この酸化物スパッタリングターゲットを用いて、第2ガラス基板12の表面に、シールド層20を成膜する。
上述の酸化物スパッタリングターゲットをバッキング材に接合してスパッタ装置内に装着し、スパッタ装置内部を真空雰囲気とした後、Arガスと酸素ガスとを導入してスパッタガス圧を調整し、スパッタ成膜を実施する。
このとき、スパッタ装置内に導入する酸素量については、酸素/アルゴンの流量比を0.03以下とすることが好ましく、0.02以下とすることがさらに好ましい。なお、酸素/アルゴンの流量比の下限については、特に制限はないが、0.002以上とすることが好ましい。この範囲で酸素を導入することで、より好ましい抵抗値を有するシールド層を成膜することが可能となる。 Next, theshield layer 20 is formed on the surface of the second glass substrate 12 using this oxide sputtering target.
The above-mentioned oxide sputtering target is bonded to a backing material and mounted in a sputtering apparatus. After the sputtering apparatus is evacuated to a vacuum atmosphere, Ar gas and oxygen gas are introduced to adjust the sputtering gas pressure, and sputtering film formation is performed. To implement.
At this time, regarding the amount of oxygen introduced into the sputtering apparatus, the flow rate ratio of oxygen / argon is preferably 0.03 or less, and more preferably 0.02 or less. The lower limit of the oxygen / argon flow ratio is not particularly limited, but is preferably 0.002 or more. By introducing oxygen within this range, a shield layer having a more preferable resistance value can be formed.
上述の酸化物スパッタリングターゲットをバッキング材に接合してスパッタ装置内に装着し、スパッタ装置内部を真空雰囲気とした後、Arガスと酸素ガスとを導入してスパッタガス圧を調整し、スパッタ成膜を実施する。
このとき、スパッタ装置内に導入する酸素量については、酸素/アルゴンの流量比を0.03以下とすることが好ましく、0.02以下とすることがさらに好ましい。なお、酸素/アルゴンの流量比の下限については、特に制限はないが、0.002以上とすることが好ましい。この範囲で酸素を導入することで、より好ましい抵抗値を有するシールド層を成膜することが可能となる。 Next, the
The above-mentioned oxide sputtering target is bonded to a backing material and mounted in a sputtering apparatus. After the sputtering apparatus is evacuated to a vacuum atmosphere, Ar gas and oxygen gas are introduced to adjust the sputtering gas pressure, and sputtering film formation is performed. To implement.
At this time, regarding the amount of oxygen introduced into the sputtering apparatus, the flow rate ratio of oxygen / argon is preferably 0.03 or less, and more preferably 0.02 or less. The lower limit of the oxygen / argon flow ratio is not particularly limited, but is preferably 0.002 or more. By introducing oxygen within this range, a shield layer having a more preferable resistance value can be formed.
以上のような構成とされた本実施形態であるシールド層20によれば、金属成分の合計を100原子%として、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物で構成されているので、可視光の透過率に優れ、かつ、十分な高い抵抗値を有しており、液晶ディスプレイパネル10におけるシールド層20として十分に機能することになる。
According to the shield layer 20 of the present embodiment configured as described above, the total of the metal components is 100 atomic%, In is included in the range of 60 atomic% to 80 atomic%, and the balance is Si and inevitable. Since it is composed of an oxide made of an impurity metal element, it has excellent visible light transmittance, has a sufficiently high resistance value, and functions sufficiently as the shield layer 20 in the liquid crystal display panel 10. become.
また、本実施形態であるシールド層20は、非晶質となりやすいため、水分などの腐食性物質が膜内部に侵入しにくく、高温高湿環境下で使用した場合においても、抵抗値及び透過率が大きく変化せず、優れた耐環境性(耐熱性、耐湿性)を有している。
また、水及びアルコールと接触した場合であっても、透過率や抵抗値が大きく変化しないため、シールド層20を形成した後、次の工程に進むまでの間に何らかの原因でシールド層20表面が汚染されたシールド層20を水及びアルコールで洗浄しても、シールド層20が劣化することがない。 In addition, since theshield layer 20 according to the present embodiment is likely to be amorphous, corrosive substances such as moisture are difficult to enter the film, and even when used in a high temperature and high humidity environment, the resistance value and the transmittance. Does not change significantly and has excellent environmental resistance (heat resistance, moisture resistance).
In addition, even when it comes into contact with water and alcohol, the transmittance and the resistance value do not change greatly. Therefore, after theshield layer 20 is formed, the surface of the shield layer 20 is caused for some reason before proceeding to the next step. Even if the contaminated shield layer 20 is washed with water and alcohol, the shield layer 20 does not deteriorate.
また、水及びアルコールと接触した場合であっても、透過率や抵抗値が大きく変化しないため、シールド層20を形成した後、次の工程に進むまでの間に何らかの原因でシールド層20表面が汚染されたシールド層20を水及びアルコールで洗浄しても、シールド層20が劣化することがない。 In addition, since the
In addition, even when it comes into contact with water and alcohol, the transmittance and the resistance value do not change greatly. Therefore, after the
また、本実施形態であるシールド層20において、金属成分の合計を100原子%として、さらに、Zrを1原子%以上32原子%以下の範囲で含んでいる場合には、シールド層20の耐久性をさらに向上させることが可能となる。また、シールド層20の硬度が高くなり、ひっかき傷等に対して強くなる。また、屈折率が増大することを抑制でき、不要な反射の発生を抑制できるので、可視光の透過率が低下することを抑制できる。
なお、上述のように、本実施形態においては、ZrO2粉末がHfO2を最大で2.5mass%含有することがあるため、シールド層20においてもHfを、Zrに対して金属成分の原子比で最大1.7%含有することがある。 Further, in theshield layer 20 according to the present embodiment, when the total of the metal components is 100 atomic% and Zr is included in the range of 1 atomic% to 32 atomic%, the durability of the shield layer 20 Can be further improved. In addition, the hardness of the shield layer 20 increases, and it becomes strong against scratches and the like. Moreover, since it can suppress that a refractive index increases and generation | occurrence | production of an unnecessary reflection can be suppressed, it can suppress that the transmittance | permeability of visible light falls.
As described above, in the present embodiment, since the ZrO 2 powder may contain HfO 2 at a maximum of 2.5 mass%, theshield layer 20 also has an atomic ratio of metal component to Zr in the shield layer 20. May contain up to 1.7%.
なお、上述のように、本実施形態においては、ZrO2粉末がHfO2を最大で2.5mass%含有することがあるため、シールド層20においてもHfを、Zrに対して金属成分の原子比で最大1.7%含有することがある。 Further, in the
As described above, in the present embodiment, since the ZrO 2 powder may contain HfO 2 at a maximum of 2.5 mass%, the
また、本実施形態において、シールド層20の厚さが7nm以上とされている場合には、シールド層20の耐久性を十分に向上させることができる。
一方、シールド層20の厚さが25nm以下とされている場合には、シールド層20の可視光の透過率及び抵抗値を十分に確保することができる。よって、液晶ディスプレイパネル10におけるシールド層20として特に適している。 Moreover, in this embodiment, when the thickness of theshield layer 20 is 7 nm or more, the durability of the shield layer 20 can be sufficiently improved.
On the other hand, when the thickness of theshield layer 20 is 25 nm or less, the visible light transmittance and resistance value of the shield layer 20 can be sufficiently ensured. Therefore, it is particularly suitable as the shield layer 20 in the liquid crystal display panel 10.
一方、シールド層20の厚さが25nm以下とされている場合には、シールド層20の可視光の透過率及び抵抗値を十分に確保することができる。よって、液晶ディスプレイパネル10におけるシールド層20として特に適している。 Moreover, in this embodiment, when the thickness of the
On the other hand, when the thickness of the
さらに、本実施形態であるシールド層20において、波長550nmにおける透過率が95%以上とされている場合には、可視光の透過率に優れており、液晶ディスプレイパネル10の視認性を確保することができる。
Furthermore, in the shield layer 20 according to the present embodiment, when the transmittance at a wavelength of 550 nm is 95% or more, the transmittance of visible light is excellent and the visibility of the liquid crystal display panel 10 is ensured. Can do.
また、本実施形態であるシールド層20において、抵抗値が1E+7Ω/□以上5E+10Ω/□以下とされている場合には、静電気やノイズを有効に除去でき、ディスプレイ内部のタッチセンサーがタッチ信号を検知することを妨げない。
In addition, in the shield layer 20 according to the present embodiment, when the resistance value is 1E + 7Ω / □ or more and 5E + 10Ω / □ or less, static electricity and noise can be effectively removed, and the touch sensor inside the display detects the touch signal. Does not prevent you from doing.
本実施形態であるシールド層20の製造方法によれば、Inを60原子%以上80原子%以下の範囲で含む酸化物からなる酸化物スパッタリングターゲットを用いて、スパッタ装置内に酸素を導入してスパッタ成膜を行っているので、可視光の透過率が高く、かつ、抵抗値が十分に高いシールド層20を安定して成膜することができる。
また、導入する酸素量について、酸素/アルゴンの流量比を0.03以下としているので、成膜されたシールド層20の抵抗値が高くなりすぎることを抑制できる。 According to the method for manufacturing theshield layer 20 of the present embodiment, oxygen is introduced into the sputtering apparatus using an oxide sputtering target made of an oxide containing In in a range of 60 atomic% to 80 atomic%. Since the sputtering film formation is performed, the shield layer 20 having a high visible light transmittance and a sufficiently high resistance value can be stably formed.
Moreover, since the flow rate ratio of oxygen / argon is 0.03 or less with respect to the amount of oxygen to be introduced, it is possible to suppress the resistance value of the formedshield layer 20 from becoming too high.
また、導入する酸素量について、酸素/アルゴンの流量比を0.03以下としているので、成膜されたシールド層20の抵抗値が高くなりすぎることを抑制できる。 According to the method for manufacturing the
Moreover, since the flow rate ratio of oxygen / argon is 0.03 or less with respect to the amount of oxygen to be introduced, it is possible to suppress the resistance value of the formed
また、本実施形態であるシールド層20の製造方法において、前記酸化物スパッタリングターゲットが、金属成分の合計を100原子%として、さらに、Zrを1原子%以上32原子%以下の範囲で含む場合には、可視光の透過率を確保したまま、硬度が硬く、耐久性に優れたシールド層20を成膜することが可能となる。
Moreover, in the manufacturing method of the shield layer 20 which is this embodiment, when the said oxide sputtering target contains the total of a metal component as 100 atomic%, and also contains Zr in 1 atomic% or more and 32 atomic% or less. Makes it possible to form the shield layer 20 having a high hardness and excellent durability while ensuring the transmittance of visible light.
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、図1に示す液晶ディスプレイパネル10に設けられたシールド層20を例に挙げて説明したが、これに限定されることはなく、他の構造の液晶ディスプレイパネルに設けられたものであってもよいし、有機ELディスプレイ、及び、タッチパネル等の他のディスプレイパネルに設けられたものであってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, theshield layer 20 provided in the liquid crystal display panel 10 illustrated in FIG. 1 has been described as an example. However, the present invention is not limited thereto, and the shield layer 20 is provided in a liquid crystal display panel having another structure. It may be provided, or may be provided on another display panel such as an organic EL display and a touch panel.
例えば、本実施形態では、図1に示す液晶ディスプレイパネル10に設けられたシールド層20を例に挙げて説明したが、これに限定されることはなく、他の構造の液晶ディスプレイパネルに設けられたものであってもよいし、有機ELディスプレイ、及び、タッチパネル等の他のディスプレイパネルに設けられたものであってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in the present embodiment, the
また、本実施形態においては、上述のように製造された酸化物スパッタリングターゲットを用いて成膜するものとして説明したが、これに限定されることはなく、その他の製造方法で製造されたスパッタリングターゲットを用いて成膜してもよい。
In the present embodiment, the film was formed using the oxide sputtering target manufactured as described above, but the present invention is not limited to this, and the sputtering target manufactured by another manufacturing method. You may form into a film using.
以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。
Below, the result of the confirmation experiment performed in order to confirm the effectiveness of this invention is demonstrated.
<酸化物スパッタリングターゲット>
原料粉末として、酸化インジウム粉末(In2O3粉末:純度99.9質量%以上、平均粒径1μm)と、酸化シリコン粉末(SiO2粉末:純度99.8質量%以上、平均粒径2μm)と、必要に応じて、酸化ジルコニウム粉末(ZrO2粉末:純度99.9質量%以上、平均粒径2μm)と、を準備した。そして、これらを、表1に示す配合比となるように、秤量した。
なお、酸化ジルコニウム粉末(ZrO2粉末)の純度は、Fe2O3,SiO2,TiO2,Na2Oの含有量を測定し、残部がZrO2であるとして算出されたものであり、HfO2を最大で2.5mass%含有することがある。 <Oxide sputtering target>
As raw material powder, indium oxide powder (In 2 O 3 powder: purity 99.9% by mass or more, average particle size 1 μm) and silicon oxide powder (SiO 2 powder: purity 99.8% by mass or more, average particle size 2 μm) And zirconium oxide powder (ZrO 2 powder: purity 99.9% by mass or more, average particle diameter 2 μm) was prepared as needed. And these were weighed so that it might become a compounding ratio shown in Table 1.
The purity of the zirconium oxide powder (ZrO 2 powder) was calculated by measuring the content of Fe 2 O 3 , SiO 2 , TiO 2 , and Na 2 O and the balance being ZrO 2 , and HfO 2 may be contained at a maximum of 2.5 mass%.
原料粉末として、酸化インジウム粉末(In2O3粉末:純度99.9質量%以上、平均粒径1μm)と、酸化シリコン粉末(SiO2粉末:純度99.8質量%以上、平均粒径2μm)と、必要に応じて、酸化ジルコニウム粉末(ZrO2粉末:純度99.9質量%以上、平均粒径2μm)と、を準備した。そして、これらを、表1に示す配合比となるように、秤量した。
なお、酸化ジルコニウム粉末(ZrO2粉末)の純度は、Fe2O3,SiO2,TiO2,Na2Oの含有量を測定し、残部がZrO2であるとして算出されたものであり、HfO2を最大で2.5mass%含有することがある。 <Oxide sputtering target>
As raw material powder, indium oxide powder (In 2 O 3 powder: purity 99.9% by mass or more, average particle size 1 μm) and silicon oxide powder (SiO 2 powder: purity 99.8% by mass or more, average particle size 2 μm) And zirconium oxide powder (ZrO 2 powder: purity 99.9% by mass or more, average particle diameter 2 μm) was prepared as needed. And these were weighed so that it might become a compounding ratio shown in Table 1.
The purity of the zirconium oxide powder (ZrO 2 powder) was calculated by measuring the content of Fe 2 O 3 , SiO 2 , TiO 2 , and Na 2 O and the balance being ZrO 2 , and HfO 2 may be contained at a maximum of 2.5 mass%.
秤量した各原料粉末を、粉砕媒体である直径0.5mmのジルコニアボール及び溶媒(日本アルコール販売株式会社製ソルミックスA-11)とともに、ビーズミル装置に投入し、粉砕・混合した。なお、粉砕・混合時間は1時間とした。
粉砕・混合の後、ジルコニアボールを分離回収し、原料粉末と溶媒を含むスラリーを得た。得られたスラリーを加熱し、溶媒を除去して混合粉末を得た。
次に、得られた混合粉末を、内径200mmの金型に充填し、150kg/cm2の圧力でプレスすることにより、直径200mm、厚さ10mmの円板形状の成形体を作製した。 Each of the weighed raw material powders was put into a bead mill apparatus together with zirconia balls having a diameter of 0.5 mm and a solvent (Solmix A-11 manufactured by Nippon Alcohol Sales Co., Ltd.) as a grinding medium, and pulverized and mixed. The grinding / mixing time was 1 hour.
After pulverization and mixing, zirconia balls were separated and recovered to obtain a slurry containing raw material powder and solvent. The obtained slurry was heated and the solvent was removed to obtain a mixed powder.
Next, the obtained mixed powder was filled in a mold having an inner diameter of 200 mm and pressed at a pressure of 150 kg / cm 2 to produce a disk-shaped molded body having a diameter of 200 mm and a thickness of 10 mm.
粉砕・混合の後、ジルコニアボールを分離回収し、原料粉末と溶媒を含むスラリーを得た。得られたスラリーを加熱し、溶媒を除去して混合粉末を得た。
次に、得られた混合粉末を、内径200mmの金型に充填し、150kg/cm2の圧力でプレスすることにより、直径200mm、厚さ10mmの円板形状の成形体を作製した。 Each of the weighed raw material powders was put into a bead mill apparatus together with zirconia balls having a diameter of 0.5 mm and a solvent (Solmix A-11 manufactured by Nippon Alcohol Sales Co., Ltd.) as a grinding medium, and pulverized and mixed. The grinding / mixing time was 1 hour.
After pulverization and mixing, zirconia balls were separated and recovered to obtain a slurry containing raw material powder and solvent. The obtained slurry was heated and the solvent was removed to obtain a mixed powder.
Next, the obtained mixed powder was filled in a mold having an inner diameter of 200 mm and pressed at a pressure of 150 kg / cm 2 to produce a disk-shaped molded body having a diameter of 200 mm and a thickness of 10 mm.
得られた成形体を、電気炉(炉内容積27000cm3)に装入し、毎分4Lの流量で酸素ガスを導入しながら、焼成温度1400℃で7時間保持することによって焼成し、焼結体を製造した。
焼成後、継続して酸素ガスを導入しながら電気炉内で600℃まで、130℃/時間の冷却速度で冷却した。その後、酸素ガスの導入を中止し、室温にまで炉内で冷却し、焼結体を電気炉から取り出した。
得られた焼結体に対して機械加工を行い、直径152.4mm、厚さ6mmの円板形状の酸化物スパッタリングターゲットを製造した。 The obtained molded body was charged into an electric furnace (furnace volume 27000 cm 3 ), fired by holding at a firing temperature of 1400 ° C. for 7 hours while introducing oxygen gas at a flow rate of 4 L / min, and sintered. The body was manufactured.
After firing, the furnace was cooled to 600 ° C. at a cooling rate of 130 ° C./hour in an electric furnace while continuously introducing oxygen gas. Thereafter, the introduction of oxygen gas was stopped, the furnace was cooled to room temperature, and the sintered body was taken out of the electric furnace.
The obtained sintered body was machined to produce a disk-shaped oxide sputtering target having a diameter of 152.4 mm and a thickness of 6 mm.
焼成後、継続して酸素ガスを導入しながら電気炉内で600℃まで、130℃/時間の冷却速度で冷却した。その後、酸素ガスの導入を中止し、室温にまで炉内で冷却し、焼結体を電気炉から取り出した。
得られた焼結体に対して機械加工を行い、直径152.4mm、厚さ6mmの円板形状の酸化物スパッタリングターゲットを製造した。 The obtained molded body was charged into an electric furnace (furnace volume 27000 cm 3 ), fired by holding at a firing temperature of 1400 ° C. for 7 hours while introducing oxygen gas at a flow rate of 4 L / min, and sintered. The body was manufactured.
After firing, the furnace was cooled to 600 ° C. at a cooling rate of 130 ° C./hour in an electric furnace while continuously introducing oxygen gas. Thereafter, the introduction of oxygen gas was stopped, the furnace was cooled to room temperature, and the sintered body was taken out of the electric furnace.
The obtained sintered body was machined to produce a disk-shaped oxide sputtering target having a diameter of 152.4 mm and a thickness of 6 mm.
<シールド層(酸化物膜)の成膜>
酸化物スパッタリングターゲットを無酸素銅製のバッキングプレートにはんだ付けし、これをマグネトロン式のスパッタ装置(株式会社昭和真空SPH-2307)内に装着した。
次いで、真空排気装置にてスパッタ装置内を7×10-4Pa以下にまで排気した後、表1の「スパッタ時の酸素量」の欄に記載した酸素/アルゴンの流量比となるように、Arガスと酸素ガスを導入して、スパッタガス圧を0.67Paに調整し、1時間のプレスパッタを実施して、ターゲット表面の加工層を除去した。このときの酸素ガスとの流量は表1に記載した条件とし、電力はDC615Wとした。なお、酸素/アルゴンの流量比は、酸素流量(sccm)とアルゴン流量(sccm)の比とした。 <Deposition of shield layer (oxide film)>
The oxide sputtering target was soldered to an oxygen-free copper backing plate and mounted in a magnetron type sputtering apparatus (Showa Vacuum SPH-2307).
Next, after the inside of the sputtering apparatus is evacuated to 7 × 10 −4 Pa or less with a vacuum evacuation apparatus, the flow rate ratio of oxygen / argon described in the column of “amount of oxygen during sputtering” in Table 1 is obtained. Ar gas and oxygen gas were introduced, the sputtering gas pressure was adjusted to 0.67 Pa, and pre-sputtering for 1 hour was performed to remove the processed layer on the target surface. The flow rate with the oxygen gas at this time was the conditions described in Table 1, and the power was DC615W. The flow rate ratio of oxygen / argon was the ratio of oxygen flow rate (sccm) and argon flow rate (sccm).
酸化物スパッタリングターゲットを無酸素銅製のバッキングプレートにはんだ付けし、これをマグネトロン式のスパッタ装置(株式会社昭和真空SPH-2307)内に装着した。
次いで、真空排気装置にてスパッタ装置内を7×10-4Pa以下にまで排気した後、表1の「スパッタ時の酸素量」の欄に記載した酸素/アルゴンの流量比となるように、Arガスと酸素ガスを導入して、スパッタガス圧を0.67Paに調整し、1時間のプレスパッタを実施して、ターゲット表面の加工層を除去した。このときの酸素ガスとの流量は表1に記載した条件とし、電力はDC615Wとした。なお、酸素/アルゴンの流量比は、酸素流量(sccm)とアルゴン流量(sccm)の比とした。 <Deposition of shield layer (oxide film)>
The oxide sputtering target was soldered to an oxygen-free copper backing plate and mounted in a magnetron type sputtering apparatus (Showa Vacuum SPH-2307).
Next, after the inside of the sputtering apparatus is evacuated to 7 × 10 −4 Pa or less with a vacuum evacuation apparatus, the flow rate ratio of oxygen / argon described in the column of “amount of oxygen during sputtering” in Table 1 is obtained. Ar gas and oxygen gas were introduced, the sputtering gas pressure was adjusted to 0.67 Pa, and pre-sputtering for 1 hour was performed to remove the processed layer on the target surface. The flow rate with the oxygen gas at this time was the conditions described in Table 1, and the power was DC615W. The flow rate ratio of oxygen / argon was the ratio of oxygen flow rate (sccm) and argon flow rate (sccm).
この後、真空排気装置にて、スパッタ装置内を7×10-4Pa以下にまで排気した後、上記のプレスパッタと同一条件でスパッタ成膜を行い、50mm角の無アルカリガラス基板上に、表1に記載の厚さのシールド層(酸化物膜)を成膜した。このときの基板とターゲットの距離を60mmとした。
Then, after evacuating the inside of the sputtering apparatus to 7 × 10 −4 Pa or less with a vacuum evacuation apparatus, sputtering film formation was performed under the same conditions as the above pre-sputtering, on a 50 mm square non-alkali glass substrate, A shield layer (oxide film) having a thickness described in Table 1 was formed. The distance between the substrate and the target at this time was 60 mm.
そして、得られたシールド層(酸化物膜)の組成、透過率、抵抗値、屈折率、硬度、恒温恒湿試験後の透過率及び抵抗値を、以下のようにして評価した。また、酸化物膜の結晶性について確認した。
The composition, transmittance, resistance value, refractive index, hardness, transmittance and resistance value after the constant temperature and humidity test of the obtained shield layer (oxide film) were evaluated as follows. Further, the crystallinity of the oxide film was confirmed.
(酸化物膜の組成)
上述の酸化物膜を酸で溶解して得られた溶液を、アジレントテクノロジー株式会社製誘導プラズマ発光分光(ICP-OES)装置(Agilent5100)により分析し、各酸化物膜のIn濃度、Zr濃度及びSi濃度を測定した。金属成分の合計を100原子%とした膜の組成を表1に示す。 (Composition of oxide film)
The solution obtained by dissolving the above oxide film with an acid was analyzed with an induction plasma emission spectroscopy (ICP-OES) apparatus (Agilent 5100) manufactured by Agilent Technologies, Inc., and the In concentration, Zr concentration and The Si concentration was measured. Table 1 shows the composition of the film in which the total of the metal components is 100 atomic%.
上述の酸化物膜を酸で溶解して得られた溶液を、アジレントテクノロジー株式会社製誘導プラズマ発光分光(ICP-OES)装置(Agilent5100)により分析し、各酸化物膜のIn濃度、Zr濃度及びSi濃度を測定した。金属成分の合計を100原子%とした膜の組成を表1に示す。 (Composition of oxide film)
The solution obtained by dissolving the above oxide film with an acid was analyzed with an induction plasma emission spectroscopy (ICP-OES) apparatus (Agilent 5100) manufactured by Agilent Technologies, Inc., and the In concentration, Zr concentration and The Si concentration was measured. Table 1 shows the composition of the film in which the total of the metal components is 100 atomic%.
(透過率)
分光光度計(日本分光株式会社製V-550)を用いて、可視光の代表波長の透過率として波長550nmの光の透過率を測定した。 (Transmittance)
Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the transmittance of light having a wavelength of 550 nm was measured as the transmittance of a representative wavelength of visible light.
分光光度計(日本分光株式会社製V-550)を用いて、可視光の代表波長の透過率として波長550nmの光の透過率を測定した。 (Transmittance)
Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the transmittance of light having a wavelength of 550 nm was measured as the transmittance of a representative wavelength of visible light.
(短波長の透過率)
分光光度計(日本分光株式会社製V-550)を用いて、可視光の短波長域の透過率として波長350nmの光の透過率を測定し、波長550nmの透過率に対する波長350nmの透過率の相対値=350nmの透過率/550nmの透過率を算出した。
波長550nmの透過率に対する波長350nmの透過率の相対値が0.85以上の場合を「○」、0.85未満の場合を「×」とした。 (Transmittance of short wavelength)
Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the transmittance of light having a wavelength of 350 nm is measured as the transmittance of visible light in the short wavelength region, and the transmittance of a wavelength of 350 nm with respect to the transmittance of a wavelength of 550 nm is measured. Relative value = transmittance at 350 nm / transmittance at 550 nm was calculated.
The case where the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm is 0.85 or more is “◯”, and the case where it is less than 0.85 is “X”.
分光光度計(日本分光株式会社製V-550)を用いて、可視光の短波長域の透過率として波長350nmの光の透過率を測定し、波長550nmの透過率に対する波長350nmの透過率の相対値=350nmの透過率/550nmの透過率を算出した。
波長550nmの透過率に対する波長350nmの透過率の相対値が0.85以上の場合を「○」、0.85未満の場合を「×」とした。 (Transmittance of short wavelength)
Using a spectrophotometer (V-550 manufactured by JASCO Corporation), the transmittance of light having a wavelength of 350 nm is measured as the transmittance of visible light in the short wavelength region, and the transmittance of a wavelength of 350 nm with respect to the transmittance of a wavelength of 550 nm is measured. Relative value = transmittance at 350 nm / transmittance at 550 nm was calculated.
The case where the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm is 0.85 or more is “◯”, and the case where it is less than 0.85 is “X”.
(抵抗値)
低電圧印加/漏洩電流測定方式によって測定した。測定装置は、三菱ケミカルアナリテック株式会社製ハイレスタを用いた。 (Resistance value)
It was measured by a low voltage application / leakage current measurement method. As a measuring device, Hiresta manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.
低電圧印加/漏洩電流測定方式によって測定した。測定装置は、三菱ケミカルアナリテック株式会社製ハイレスタを用いた。 (Resistance value)
It was measured by a low voltage application / leakage current measurement method. As a measuring device, Hiresta manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.
(屈折率)
酸化物膜の屈折率を、分光エリプソメーターを用いて、入射角度75°、測定波長550nmで測定した。 (Refractive index)
The refractive index of the oxide film was measured using a spectroscopic ellipsometer at an incident angle of 75 ° and a measurement wavelength of 550 nm.
酸化物膜の屈折率を、分光エリプソメーターを用いて、入射角度75°、測定波長550nmで測定した。 (Refractive index)
The refractive index of the oxide film was measured using a spectroscopic ellipsometer at an incident angle of 75 ° and a measurement wavelength of 550 nm.
(硬さ)
上述したスパッタ条件にて、ガラス基板(コーニング社製EAGLE-XG)に、膜厚500nmとして酸化物膜を成膜した。この酸化物膜に対して、押し込み荷重を25mgfとし、超微小押し込み硬さ試験機(エリオニクス株式会社製ENT-1100a)を用いて測定した。なお、成膜したガラス基板は、27℃の装置内にセットして1時間経過した後に、硬さ測定を行った。また、硬さは、10点測定の平均値を表2に記載した。 (Hardness)
An oxide film with a thickness of 500 nm was formed on a glass substrate (Corning EAGLE-XG) under the sputtering conditions described above. With respect to this oxide film, the indentation load was set to 25 mgf, and measurement was performed using an ultrafine indentation hardness tester (ENT-1100a manufactured by Elionix Co., Ltd.). In addition, the glass substrate formed into a film was set in the apparatus of 27 degreeC, and the hardness measurement was performed, after 1 hour passed. Further, the hardness is shown in Table 2 as an average of 10-point measurement.
上述したスパッタ条件にて、ガラス基板(コーニング社製EAGLE-XG)に、膜厚500nmとして酸化物膜を成膜した。この酸化物膜に対して、押し込み荷重を25mgfとし、超微小押し込み硬さ試験機(エリオニクス株式会社製ENT-1100a)を用いて測定した。なお、成膜したガラス基板は、27℃の装置内にセットして1時間経過した後に、硬さ測定を行った。また、硬さは、10点測定の平均値を表2に記載した。 (Hardness)
An oxide film with a thickness of 500 nm was formed on a glass substrate (Corning EAGLE-XG) under the sputtering conditions described above. With respect to this oxide film, the indentation load was set to 25 mgf, and measurement was performed using an ultrafine indentation hardness tester (ENT-1100a manufactured by Elionix Co., Ltd.). In addition, the glass substrate formed into a film was set in the apparatus of 27 degreeC, and the hardness measurement was performed, after 1 hour passed. Further, the hardness is shown in Table 2 as an average of 10-point measurement.
(恒温恒湿試験)
温度60℃、相対湿度90%の恒温恒湿条件下で240時間保持する恒温恒湿試験1と、温度85℃、相対湿度85%の恒温恒湿条件下で240時間保持する恒温恒湿試験2を実施した。恒温恒湿試験1後及び恒温恒湿試験2後に、上述のようにして、波長550nmの透過率、抵抗値を測定した。 (Constant temperature and humidity test)
A constant temperature and humidity test 1 for 240 hours under a constant temperature and humidity condition at a temperature of 60 ° C. and a relative humidity of 90%, and a constant temperature and humidity test 2 for 240 hours under a constant temperature and humidity condition at a temperature of 85 ° C. and a relative humidity of 85%. Carried out. After the constant temperature and humidity test 1 and after the constant temperature and humidity test 2, the transmittance and resistance value at a wavelength of 550 nm were measured as described above.
温度60℃、相対湿度90%の恒温恒湿条件下で240時間保持する恒温恒湿試験1と、温度85℃、相対湿度85%の恒温恒湿条件下で240時間保持する恒温恒湿試験2を実施した。恒温恒湿試験1後及び恒温恒湿試験2後に、上述のようにして、波長550nmの透過率、抵抗値を測定した。 (Constant temperature and humidity test)
A constant temperature and humidity test 1 for 240 hours under a constant temperature and humidity condition at a temperature of 60 ° C. and a relative humidity of 90%, and a constant temperature and humidity test 2 for 240 hours under a constant temperature and humidity condition at a temperature of 85 ° C. and a relative humidity of 85%. Carried out. After the constant temperature and humidity test 1 and after the constant temperature and humidity test 2, the transmittance and resistance value at a wavelength of 550 nm were measured as described above.
(膜の結晶性)
本発明例11と従来例1の条件で30nmの膜厚に形成した酸化物膜について、XRD分析を行い、酸化物膜の結晶性について確認した。その結果、従来例1においては、酸化物膜が結晶質であることが確認された。これに対して、本発明例11においては、酸化物膜が非晶質であった。 (Membrane crystallinity)
The oxide film formed to a thickness of 30 nm under the conditions of Invention Example 11 and Conventional Example 1 was subjected to XRD analysis to confirm the crystallinity of the oxide film. As a result, in Conventional Example 1, it was confirmed that the oxide film was crystalline. In contrast, in Example 11 of the present invention, the oxide film was amorphous.
本発明例11と従来例1の条件で30nmの膜厚に形成した酸化物膜について、XRD分析を行い、酸化物膜の結晶性について確認した。その結果、従来例1においては、酸化物膜が結晶質であることが確認された。これに対して、本発明例11においては、酸化物膜が非晶質であった。 (Membrane crystallinity)
The oxide film formed to a thickness of 30 nm under the conditions of Invention Example 11 and Conventional Example 1 was subjected to XRD analysis to confirm the crystallinity of the oxide film. As a result, in Conventional Example 1, it was confirmed that the oxide film was crystalline. In contrast, in Example 11 of the present invention, the oxide film was amorphous.
シールド層としてITO膜を成膜した従来例1においては、初期の波長550nmの透過率、波長550nmの透過率に対する波長350nmの透過率の相対値、及び抵抗値が不十分であった。また、恒温恒湿試験1及び恒温恒湿試験2の後に、抵抗値の変動が認められており、耐環境性が不十分であった。
シールド層としてIZO膜を成膜した従来例2においては、初期の波長550nmの透過率、波長550nmの透過率に対する波長350nmの透過率の相対値、及び抵抗値が不十分であった。また、恒温恒湿試験1及び恒温恒湿試験2の後に、抵抗値の変動が認められており、耐環境性が不十分であった。
シールド層としてITO-Si膜を成膜した従来例3においては、恒温恒湿試験2の後に、透過率及び抵抗値の変動が認められており、耐環境性が不十分であった。 In Conventional Example 1 in which an ITO film was formed as the shield layer, the initial transmittance at a wavelength of 550 nm, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm, and the resistance value were insufficient. Moreover, after the constant temperature / humidity test 1 and the constant temperature / humidity test 2, the fluctuation | variation of resistance value was recognized and the environmental resistance was inadequate.
In Conventional Example 2 in which an IZO film was formed as a shield layer, the initial transmittance at a wavelength of 550 nm, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm, and the resistance value were insufficient. Moreover, after the constant temperature / humidity test 1 and the constant temperature / humidity test 2, the fluctuation | variation of resistance value was recognized and the environmental resistance was inadequate.
In Conventional Example 3 in which an ITO-Si film was formed as a shield layer, after the constant temperature and humidity test 2, fluctuations in transmittance and resistance values were recognized, and the environmental resistance was insufficient.
シールド層としてIZO膜を成膜した従来例2においては、初期の波長550nmの透過率、波長550nmの透過率に対する波長350nmの透過率の相対値、及び抵抗値が不十分であった。また、恒温恒湿試験1及び恒温恒湿試験2の後に、抵抗値の変動が認められており、耐環境性が不十分であった。
シールド層としてITO-Si膜を成膜した従来例3においては、恒温恒湿試験2の後に、透過率及び抵抗値の変動が認められており、耐環境性が不十分であった。 In Conventional Example 1 in which an ITO film was formed as the shield layer, the initial transmittance at a wavelength of 550 nm, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm, and the resistance value were insufficient. Moreover, after the constant temperature / humidity test 1 and the constant temperature / humidity test 2, the fluctuation | variation of resistance value was recognized and the environmental resistance was inadequate.
In Conventional Example 2 in which an IZO film was formed as a shield layer, the initial transmittance at a wavelength of 550 nm, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm, and the resistance value were insufficient. Moreover, after the constant temperature / humidity test 1 and the constant temperature / humidity test 2, the fluctuation | variation of resistance value was recognized and the environmental resistance was inadequate.
In Conventional Example 3 in which an ITO-Si film was formed as a shield layer, after the constant temperature and humidity test 2, fluctuations in transmittance and resistance values were recognized, and the environmental resistance was insufficient.
シールド層(酸化物膜)のIn含有量が本発明の範囲よりも少ない比較例1においては、抵抗値が高くなり過ぎて、シールド層として必要な導電性を確保することができなかった。
シールド層(酸化物膜)のIn含有量が本発明の範囲よりも多い比較例2においては、短波長の透過率が低下した。また、恒温恒湿試験1及び恒温恒湿試験2の後に、透過率の変動が認められており、耐環境性が不十分であった。
シールド層(酸化物膜)のZr含有量が本発明の範囲よりも多い比較例3においては、屈折率が大きくなった。 In Comparative Example 1 in which the In content of the shield layer (oxide film) is less than the range of the present invention, the resistance value was too high, and the conductivity required for the shield layer could not be ensured.
In Comparative Example 2 where the In content of the shield layer (oxide film) is larger than the range of the present invention, the short wavelength transmittance was lowered. Moreover, the fluctuation | variation of the transmittance | permeability was recognized after the constant temperature and humidity test 1 and the constant temperature and humidity test 2, and environmental resistance was inadequate.
In Comparative Example 3 in which the Zr content of the shield layer (oxide film) is larger than the range of the present invention, the refractive index was increased.
シールド層(酸化物膜)のIn含有量が本発明の範囲よりも多い比較例2においては、短波長の透過率が低下した。また、恒温恒湿試験1及び恒温恒湿試験2の後に、透過率の変動が認められており、耐環境性が不十分であった。
シールド層(酸化物膜)のZr含有量が本発明の範囲よりも多い比較例3においては、屈折率が大きくなった。 In Comparative Example 1 in which the In content of the shield layer (oxide film) is less than the range of the present invention, the resistance value was too high, and the conductivity required for the shield layer could not be ensured.
In Comparative Example 2 where the In content of the shield layer (oxide film) is larger than the range of the present invention, the short wavelength transmittance was lowered. Moreover, the fluctuation | variation of the transmittance | permeability was recognized after the constant temperature and humidity test 1 and the constant temperature and humidity test 2, and environmental resistance was inadequate.
In Comparative Example 3 in which the Zr content of the shield layer (oxide film) is larger than the range of the present invention, the refractive index was increased.
これに対して、In、Zrの含有量が本発明の範囲内とされたシールド層(酸化物膜)においては、透過率が十分に高く、かつ、抵抗値が適正な範囲内とされており、シールド層として特に適していることが確認された。また、恒温恒湿試験1及び恒温恒湿試験2後においても、透過率及び抵抗値が大きく変動しなかった。
また、Zrを含有する本発明例1-4,6-17においては、Zrを含まない本発明例5に比べて、膜の硬さが向上することが確認された。
さらに、厚さを20nm以下とした本発明例1-10,12-17においては、波長550nmの透過率に対する波長350nmの透過率の相対値が0.85以上であり、短波長においても高い透過率を備えることが確認された。 On the other hand, in the shield layer (oxide film) in which the contents of In and Zr are within the range of the present invention, the transmittance is sufficiently high and the resistance value is within an appropriate range. It was confirmed that it is particularly suitable as a shield layer. Further, even after the constant temperature and humidity test 1 and the constant temperature and humidity test 2, the transmittance and the resistance value did not vary greatly.
Further, it was confirmed that the inventive examples 1-4 and 6-17 containing Zr were improved in hardness as compared with the inventive example 5 containing no Zr.
Further, in Examples 1-10 and 12-17 of the present invention in which the thickness was 20 nm or less, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm was 0.85 or more, and high transmittance even at a short wavelength. It was confirmed that it has a rate.
また、Zrを含有する本発明例1-4,6-17においては、Zrを含まない本発明例5に比べて、膜の硬さが向上することが確認された。
さらに、厚さを20nm以下とした本発明例1-10,12-17においては、波長550nmの透過率に対する波長350nmの透過率の相対値が0.85以上であり、短波長においても高い透過率を備えることが確認された。 On the other hand, in the shield layer (oxide film) in which the contents of In and Zr are within the range of the present invention, the transmittance is sufficiently high and the resistance value is within an appropriate range. It was confirmed that it is particularly suitable as a shield layer. Further, even after the constant temperature and humidity test 1 and the constant temperature and humidity test 2, the transmittance and the resistance value did not vary greatly.
Further, it was confirmed that the inventive examples 1-4 and 6-17 containing Zr were improved in hardness as compared with the inventive example 5 containing no Zr.
Further, in Examples 1-10 and 12-17 of the present invention in which the thickness was 20 nm or less, the relative value of the transmittance at a wavelength of 350 nm with respect to the transmittance at a wavelength of 550 nm was 0.85 or more, and high transmittance even at a short wavelength. It was confirmed that it has a rate.
以上のことから、本発明例によれば、可視光の透過率が高く、かつ、抵抗値が十分に高く、さらに、優れた耐環境性(耐熱性、耐湿性)を有するシールド層を提供可能であることが確認された。
From the above, according to the example of the present invention, it is possible to provide a shield layer having a high visible light transmittance, a sufficiently high resistance value, and excellent environmental resistance (heat resistance, moisture resistance). It was confirmed that.
本発明によれば、可視光の透過率が高く、かつ、抵抗値が十分に高く、さらに、優れた耐環境性(耐熱性、耐湿性)を有するシールド層、シールド層の製造方法、及び、酸化物スパッタリングターゲットを提供することができる。
According to the present invention, a shield layer having a high visible light transmittance and a sufficiently high resistance value, and further having excellent environmental resistance (heat resistance, moisture resistance), a method for manufacturing the shield layer, and An oxide sputtering target can be provided.
10 液晶ディスプレイパネル
11 第1ガラス基板
12 第2ガラス基板
13 液晶層
15 偏光フィルム
16 保護膜
20 シールド層 DESCRIPTION OFSYMBOLS 10 Liquid crystal display panel 11 1st glass substrate 12 2nd glass substrate 13 Liquid crystal layer 15 Polarizing film 16 Protective film 20 Shield layer
11 第1ガラス基板
12 第2ガラス基板
13 液晶層
15 偏光フィルム
16 保護膜
20 シールド層 DESCRIPTION OF
Claims (9)
- ディスプレイパネルに配設されるシールド層であって、
金属成分の合計を100原子%として、Inを60原子%以上80原子%以下の範囲で含み、残部がSi及び不可避不純物金属元素とされた酸化物からなることを特徴とするシールド層。 A shield layer disposed on a display panel,
A shield layer characterized in that the total of metal components is 100 atomic%, In is contained in the range of 60 atomic% to 80 atomic%, and the balance is made of an oxide containing Si and inevitable impurity metal elements. - 金属成分の合計を100原子%として、さらに、Zrを1原子%以上32原子%以下の範囲で含むことを特徴とする請求項1に記載のシールド層。 2. The shield layer according to claim 1, wherein the total of the metal components is 100 atomic%, and Zr is further included in the range of 1 atomic% to 32 atomic%.
- 厚さが7nm以上25nm以下の範囲内とされていることを特徴とする請求項1又は請求項2に記載のシールド層。 The shield layer according to claim 1 or 2, wherein the thickness is in the range of 7 nm to 25 nm.
- 波長550nmにおける透過率が95%以上であることを特徴とする請求項1から請求項3のいずれか一項に記載のシールド層。 The shielding layer according to any one of claims 1 to 3, wherein the transmittance at a wavelength of 550 nm is 95% or more.
- シート抵抗が1E+7Ω/□以上5E+10Ω/□以下の範囲内であることを特徴とする請求項1から請求項4のいずれか一項に記載のシールド層。 The shield layer according to any one of claims 1 to 4, wherein the sheet resistance is in a range of 1E + 7Ω / □ or more and 5E + 10Ω / □ or less.
- 請求項1から請求項5のいずれか一項に記載のシールド層を製造するシールド層の製造方法であって、
金属成分の合計を100原子%として、Inを60原子%以上80原子%以下含み、残部がSi及び不可避不純物金属元素とされた酸化物からなる酸化物スパッタリングターゲットを用いて、
スパッタ装置内に酸素を導入してスパッタ成膜を行う構成とされており、導入する酸素量について、酸素/アルゴンの流量比を0.03以下とすることを特徴とするシールド層の製造方法。 A method for manufacturing a shield layer for manufacturing the shield layer according to any one of claims 1 to 5,
Using an oxide sputtering target composed of an oxide in which the total of the metal components is 100 atomic%, In is included in an amount of 60 atomic% to 80 atomic%, and the balance is Si and inevitable impurity metal elements,
A method for producing a shield layer, characterized in that oxygen is introduced into a sputtering apparatus to perform sputtering film formation, and the oxygen / argon flow rate ratio is set to 0.03 or less for the amount of oxygen to be introduced. - 前記酸化物スパッタリングターゲットが、金属成分の合計を100原子%として、さらに、Zrを1原子%以上32原子%以下の範囲で含むことを特徴とする請求項6に記載のシールド層の製造方法。 The method for manufacturing a shield layer according to claim 6, wherein the oxide sputtering target includes 100 atomic% of the total metal components and further contains Zr in a range of 1 atomic% to 32 atomic%.
- 前記シールド層のシート抵抗を1E+7Ω/□以上5E+10Ω/□以下の範囲内とすることを特徴とする請求項6又は請求項7に記載のシールド層の製造方法。 The method for manufacturing a shield layer according to claim 6 or 7, wherein the sheet resistance of the shield layer is in a range of 1E + 7Ω / □ or more and 5E + 10Ω / □ or less.
- 請求項6から請求項8のいずれか一項に記載のシールド層の製造方法において使用されることを特徴とする酸化物スパッタリングターゲット。 An oxide sputtering target used in the method for producing a shield layer according to any one of claims 6 to 8.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207025509A KR102234874B1 (en) | 2018-04-26 | 2019-04-11 | Shield layer, shield layer manufacturing method, and oxide sputtering target |
CN201980019072.1A CN111902561B (en) | 2018-04-26 | 2019-04-11 | Shield layer, method for producing shield layer, and oxide sputtering target |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-085459 | 2018-04-26 | ||
JP2018085459 | 2018-04-26 | ||
JP2019-068393 | 2019-03-29 | ||
JP2019068393A JP6705526B2 (en) | 2018-04-26 | 2019-03-29 | Shield layer, method for manufacturing shield layer, and oxide sputtering target |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208240A1 true WO2019208240A1 (en) | 2019-10-31 |
Family
ID=68295419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015779 WO2019208240A1 (en) | 2018-04-26 | 2019-04-11 | Shield layer, method for producing shield layer, and oxide sputtering target |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111902561B (en) |
WO (1) | WO2019208240A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021090829A1 (en) * | 2019-11-05 | 2021-05-14 | 三菱マテリアル株式会社 | High-resistance transparent film |
CN114853447A (en) * | 2021-02-04 | 2022-08-05 | 光洋应用材料科技股份有限公司 | Indium zirconium silicon oxide target material and preparation method thereof and indium zirconium silicon oxide film |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113068387B (en) * | 2021-03-18 | 2023-04-07 | 重庆电子工程职业学院 | Ultra-wideband transparent electromagnetic protection material structure and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322413A (en) * | 1998-02-16 | 1999-11-24 | Japan Energy Corp | Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film |
JP2007273455A (en) * | 2006-03-09 | 2007-10-18 | National Institute Of Advanced Industrial & Technology | Oxide film transparent conductive film, and transparent conductive base material, thin film transistor substrate, photoelectric conversion element and photo detector using the same |
JP2015013778A (en) * | 2013-07-05 | 2015-01-22 | 住友金属鉱山株式会社 | Oxidation sinter body and production method thereof, and oxidation film |
JP2018040032A (en) * | 2016-09-06 | 2018-03-15 | 三菱マテリアル株式会社 | Oxide sputtering target and manufacturing method of oxide sputtering target |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003215309A (en) * | 2001-04-17 | 2003-07-30 | Sony Corp | Antireflection film and antireflection layer-affixed plastic substrate |
CN100552078C (en) * | 2002-03-27 | 2009-10-21 | 住友金属矿山株式会社 | Transparent conducting film and manufacture method thereof and sintered target for production and application thereof |
JP5489604B2 (en) * | 2009-01-14 | 2014-05-14 | ホーヤ レンズ マニュファクチャリング フィリピン インク | Method for manufacturing optical article |
KR20170084351A (en) * | 2011-02-25 | 2017-07-19 | 미쓰비시 마테리알 가부시키가이샤 | Transparent oxide film and process for producing same |
JP5855948B2 (en) * | 2012-01-12 | 2016-02-09 | ジオマテック株式会社 | Transparent conductive film, substrate with transparent conductive film, IPS liquid crystal cell, capacitive touch panel, and method for manufacturing substrate with transparent conductive film |
-
2019
- 2019-04-11 WO PCT/JP2019/015779 patent/WO2019208240A1/en active Application Filing
- 2019-04-11 CN CN201980019072.1A patent/CN111902561B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11322413A (en) * | 1998-02-16 | 1999-11-24 | Japan Energy Corp | Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film |
JP2007273455A (en) * | 2006-03-09 | 2007-10-18 | National Institute Of Advanced Industrial & Technology | Oxide film transparent conductive film, and transparent conductive base material, thin film transistor substrate, photoelectric conversion element and photo detector using the same |
JP2015013778A (en) * | 2013-07-05 | 2015-01-22 | 住友金属鉱山株式会社 | Oxidation sinter body and production method thereof, and oxidation film |
JP2018040032A (en) * | 2016-09-06 | 2018-03-15 | 三菱マテリアル株式会社 | Oxide sputtering target and manufacturing method of oxide sputtering target |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021090829A1 (en) * | 2019-11-05 | 2021-05-14 | 三菱マテリアル株式会社 | High-resistance transparent film |
CN114853447A (en) * | 2021-02-04 | 2022-08-05 | 光洋应用材料科技股份有限公司 | Indium zirconium silicon oxide target material and preparation method thereof and indium zirconium silicon oxide film |
CN114853447B (en) * | 2021-02-04 | 2023-09-26 | 光洋应用材料科技股份有限公司 | InZr-Si oxide target material, preparation method thereof and InZr-Si oxide film |
Also Published As
Publication number | Publication date |
---|---|
CN111902561B (en) | 2022-04-08 |
CN111902561A (en) | 2020-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5170009B2 (en) | Indium oxide sputtering target and method for producing the same | |
JP6767723B2 (en) | Oxide thin film and oxide sintered body for sputtering target for producing the thin film | |
WO2019208240A1 (en) | Shield layer, method for producing shield layer, and oxide sputtering target | |
JP6705526B2 (en) | Shield layer, method for manufacturing shield layer, and oxide sputtering target | |
TWI654623B (en) | Laminated wiring film, manufacturing method thereof, and molybdenum alloy sputtering target | |
JP2011068993A (en) | Sputtering target, transparent conductive oxide, and method for preparing sputtering target | |
JP2016056065A (en) | Oxide sintered compact, sputtering target, thin film and method for producing oxide sintered compact | |
JP2016132609A (en) | Oxide sintered body, sputtering target and oxide thin film | |
KR101600169B1 (en) | METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM | |
TWI592383B (en) | Indium oxide-based oxide sintering article and method for producing the same | |
TW201447004A (en) | Copper-manganese alloy film and copper-manganese alloy sputtering target and film formation method of copper-manganese alloy film | |
JP6064895B2 (en) | Indium oxide-based oxide sintered body and method for producing the same | |
JP2016098396A (en) | Sputtering target, transparent conductive oxide thin film, and conductive film | |
KR101597018B1 (en) | METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM | |
JP2021075788A (en) | High resistance transparent film | |
JP2023057730A (en) | Oxide sputtering target and oxide film | |
WO2021090829A1 (en) | High-resistance transparent film | |
JP6155919B2 (en) | Composite oxide sintered body and oxide transparent conductive film | |
TW202018111A (en) | Optical functional film, sputtering target and method of manufacturing sputtering target | |
JP6398643B2 (en) | Sputtering target, transparent conductive oxide thin film, and conductive film | |
KR102646917B1 (en) | Molybdenum oxide based sintered body, metal oxide thin film using the sintered body, and thin film transistors and displa devices comprising the thin films | |
JP2012020911A (en) | Zinc oxide sintered compact, method for manufacturing the same, sputtering target, and method for manufacturing transparent film | |
JP5929979B2 (en) | Sputtering target, transparent conductive oxide thin film, and conductive film | |
WO2020050421A1 (en) | Optical functional film, sputtering target, and method for manufacturing sputtering target | |
JP6398644B2 (en) | Sputtering target, transparent conductive oxide thin film, and conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19793794 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207025509 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19793794 Country of ref document: EP Kind code of ref document: A1 |