JPH11284211A - Manufacture of zno transparent conductive film for thin film solar cell - Google Patents

Manufacture of zno transparent conductive film for thin film solar cell

Info

Publication number
JPH11284211A
JPH11284211A JP10098228A JP9822898A JPH11284211A JP H11284211 A JPH11284211 A JP H11284211A JP 10098228 A JP10098228 A JP 10098228A JP 9822898 A JP9822898 A JP 9822898A JP H11284211 A JPH11284211 A JP H11284211A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
zno
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10098228A
Other languages
Japanese (ja)
Other versions
JP3040373B2 (en
Inventor
Katsumi Kushiya
勝巳 櫛屋
Daisuke Okumura
大輔 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP10098228A priority Critical patent/JP3040373B2/en
Publication of JPH11284211A publication Critical patent/JPH11284211A/en
Application granted granted Critical
Publication of JP3040373B2 publication Critical patent/JP3040373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method by which a ZnO transparent conductive film having a performance which is equal to that of a ZnO:B transparent conductive film formed by the metal organic chemical vapor deposition(MOCVD) method and a superior moisture resistance can be formed in a large area at a high speed by reducing the influence of sputtering shocks on joint surfaces. SOLUTION: In a method for manufacturing a ZnO transparent conductive film which is used as the window layer 6 of a solar cell 1, a first conductive film (1) which works as a phase boundary protective film is formed on a high- resistance buffer (interface) layer 5 by reducing the influence of sputtering shocks on the joint surface by the low-output (<=500 W) RF sputtering method by using a ZnO:Al or ZnO:Ga target. Then second and third conductive films (2) and (3) which are used as the window layer 6 are respectively formed by the DC sputtering method by which films can be formed at a high speed through a plurality of treating processes each of which is executed by using the ZnO:Al or ZnO:Ga target.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CIS系薄膜太陽
電池の窓層として供されるZnO系透明導電膜及び該Z
nO系透明導電膜の製造方法に関する。
[0001] The present invention relates to a ZnO-based transparent conductive film used as a window layer of a CIS-based thin-film solar cell,
The present invention relates to a method for manufacturing an nO-based transparent conductive film.

【0002】[0002]

【従来の技術】CIS(二セレン化銅インジウムCuI
nSe2 又は二硫化銅インジウムCuInS2 )系薄膜
太陽電池においては、窓層として供されるn形の導電性
を有する透明導電膜が必要である。この透明導電膜に要
求される性能としては、 (1) 上部電極として使用するので抵抗値が低いこと。
(横方向に電流が流れるのでシート抵抗が低いことが必
要で10Ω/□以下が望ましい。) (2) 光が入射する窓層として働くので、透過率が高いこ
と。(透過率としては、90%以上(波長800nm)
あるいは表面反射量を差し引いて、400〜1300n
mまでの波長範囲の面積が大きいことが望ましい。) (3) CIS系薄膜太陽電池は積層構造であるので、接合
界面特性に損傷を与えないこと。等がある。
2. Description of the Related Art CIS (copper indium diselenide CuI)
In an nSe 2 or indium copper disulfide (CuInS 2 ) -based thin-film solar cell, a transparent conductive film having n-type conductivity to serve as a window layer is required. The performance required of this transparent conductive film is as follows: (1) Since the transparent conductive film is used as an upper electrode, its resistance value is low.
(Since current flows in the horizontal direction, the sheet resistance needs to be low and is preferably 10 Ω / □ or less.) (2) Since it functions as a window layer through which light enters, high transmittance is required. (Transmittance is 90% or more (wavelength 800 nm)
Alternatively, by subtracting the amount of surface reflection, 400-1300 n
It is desirable that the area of the wavelength range up to m be large. (3) Since the CIS thin-film solar cell has a laminated structure, the junction interface characteristics should not be damaged. Etc.

【0003】この透明導電膜としての酸化亜鉛(Zn
O)の製造方法としては、有機金属化学的気相成長法
(MOCVD:Metal Organic Chemical Vapor Deposit
ion Method)とスパッタ法があり、それぞれの製造方法
の特徴を以下に示す。
[0003] Zinc oxide (Zn) as this transparent conductive film
O) is produced by a metal organic chemical vapor deposition (MOCVD) method.
ion method) and sputtering method, and the features of each manufacturing method are described below.

【0004】MOCVD法においては、その利点とし
て、 ドーパント量を調整することで透明導電膜の抵抗率を
任意に変化させることができる。 化学反応を利用した透明導電膜の成長法であるために
柔らかいCIS系太陽電池の光吸収層に損傷を与えるこ
となく、穏やかな状態で硬質の酸化亜鉛(ZnO)を成
長させることができる。 透明導電膜表面の凹凸を制御したテクスチャー構造に
よる光閉じ込め効果により、部分的ではあるが反射防止
膜としての作用が期待できる。
The advantage of the MOCVD method is that the resistivity of the transparent conductive film can be arbitrarily changed by adjusting the amount of the dopant. Since the method uses a chemical reaction to grow a transparent conductive film, hard zinc oxide (ZnO) can be grown in a gentle state without damaging the light absorbing layer of a soft CIS-based solar cell. Due to the light confinement effect of the texture structure in which the irregularities on the surface of the transparent conductive film are controlled, the effect as an antireflection film can be expected partially.

【0005】また、その欠点としては、 透明導電膜の透過率と抵抗率を独立して調整すること
ができない。(この両者の交点が最適値となる。) 化学反応促進のために基板加熱が必要であり、この加
熱の熱応力による基板の弾性変形及びその変形による膜
の剥離等が発生し易い。 製造装置としてバッチ式の反応炉を使用するので、工
業化時には生産性が劣る可能性が高い。 大面積の薄膜太陽電池を製造する場合には、基板の加
熱の均一性及び原料ガスの流れの均一性を実現すること
が困難である。 抵抗率調整のためのドーパントとして特材ガスのB2
6 ガス等を使用する必要があり、除害装置設置等のコ
ストアップの要因がある。
Another drawback is that the transmittance and resistivity of the transparent conductive film cannot be adjusted independently. (The intersection of the two becomes an optimum value.) Heating of the substrate is required to promote the chemical reaction, and elastic deformation of the substrate due to the thermal stress of this heating and peeling of the film due to the deformation are likely to occur. Since a batch-type reaction furnace is used as a production apparatus, there is a high possibility that productivity will be poor during industrialization. When manufacturing a large-area thin-film solar cell, it is difficult to achieve uniform heating of the substrate and uniform flow of the source gas. B 2 of special material gas as a dopant for resistivity adjustment
It is necessary to use H 6 gas or the like, which causes an increase in cost such as installation of an abatement apparatus.

【0006】スパッタ法においては、従来RFスパッタ
法又はDCスパッタ法のいずれかの方法により、Arガ
ス又はO2 /Ar混合ガスをスパッタガスとして、加熱
した基板上に一枚のZnO:Al等のターゲットを使用
して1ステップで単層のZnO:Al透明導電膜を作製
していた。DCスパッタ法によるCIS系薄膜太陽電池
の製造方法に関する実施例は少なく、スパッタ法で得ら
れる高性能の窓層はいずれもZnO:Al等のターゲッ
トを使用したRFスパッタ法によるものである。しか
し、RFスパッタ法は製膜速度が遅く、MOCVD法と
比較しても製膜速度における利点はない。
In the sputtering method, a single sheet of ZnO: Al or the like is formed on a heated substrate by using an Ar gas or an O 2 / Ar mixed gas as a sputtering gas by a conventional RF sputtering method or a DC sputtering method. Using a target, a single-layer ZnO: Al transparent conductive film was produced in one step. There are few examples of a method for manufacturing a CIS-based thin-film solar cell by DC sputtering, and high-performance window layers obtained by sputtering are all formed by RF sputtering using a target such as ZnO: Al. However, the RF sputtering method has a low film forming speed, and has no advantage in the film forming speed as compared with the MOCVD method.

【0007】DCスパッタ法の特徴を以下に示す。その
利点として、 大面積薄膜作製技術として確立しているので大面積の
薄膜太陽電池の製造には有利である。 透明導電膜の高速製膜が可能で、工業化時には高生産
性が可能である。 ZnOターゲット中のAl、Ga等の合金元素量によ
り抵抗率の調整が可能なので、MOCVD法で作製した
ZnO:Bの透明導電膜の膜厚に対して1/2〜2/3
に薄膜化すると、透過率を増大することも可能である。 ZnO透明導電膜の成長初期から均一な膜が成長でき
る。 反応性スパッタ法を利用することにより金属亜鉛ター
ゲットあるいは、Alやそれ以外の種々のドーパント
(B、In、Ga)等を合金化した亜鉛ターゲットと酸
素混合ガスを使用して抵抗値を制御したZnO透明導電
膜の成長が可能である。
The characteristics of the DC sputtering method are as follows. As an advantage, it is advantageous for manufacturing large-area thin-film solar cells because it has been established as a large-area thin-film fabrication technology. High-speed film formation of a transparent conductive film is possible, and high productivity is possible during industrialization. Since the resistivity can be adjusted by the amount of alloying elements such as Al and Ga in the ZnO target, the thickness is 1/2 to 2/3 of the thickness of the ZnO: B transparent conductive film formed by the MOCVD method.
When the thickness is reduced, the transmittance can be increased. A uniform film can be grown from the initial growth of the ZnO transparent conductive film. ZnO in which the resistance value is controlled by using an oxygen mixed gas with a metal zinc target or a zinc target alloyed with Al or various other dopants (B, In, Ga) by utilizing the reactive sputtering method. A transparent conductive film can be grown.

【0008】また、その欠点としては、 MOCVD法と同程度の膜性能(キャリア濃度、移動
度)を有するZnO系透明導電膜を製造するには、20
0°C以上の基板加熱を行う必要がある。 DCスパッタ法はRFスパッタ法と比べてエネルギー
密度が高いので、接合界面又は光吸収層表面の損傷が起
こり易い。抵抗調整用の合金元素量はターゲット中の
濃度として一定であるので、抵抗率 を任意に調整できない。(但し、狭い範囲ならば、スパ
ッタガス中に酸素を混入することで微調整は可能であ
る。) 高性能のCIS系薄膜太陽電池を製造できる基板加熱
温度範囲では表面の凹凸を制御したテクスチャー構造が
作製できない。
[0008] Another drawback is that, in order to produce a ZnO-based transparent conductive film having the same film performance (carrier concentration and mobility) as that of the MOCVD method, 20
It is necessary to heat the substrate to 0 ° C. or higher. Since the DC sputtering method has a higher energy density than the RF sputtering method, the bonding interface or the surface of the light absorption layer is easily damaged. Since the amount of the alloy element for resistance adjustment is constant as the concentration in the target, the resistivity cannot be arbitrarily adjusted. (However, fine adjustment is possible by mixing oxygen into the sputtering gas within a narrow range.) Texture structure with controlled surface irregularities in the substrate heating temperature range where high-performance CIS-based thin-film solar cells can be manufactured Cannot be produced.

【0009】[0009]

【発明が解決しようとする課題】本発明は前記のような
問題点を解消するためになされたもので、本発明の目的
は、MOCVD法で作製したZnO:B透明導電膜と同
等の性能のものを、RFスパッタ法及びDCスパッタ法
により作製することにより、スパッタ衝撃の影響を低減
し、高速、且つ大面積で製膜することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a ZnO: B transparent conductive film having the same performance as that of a MOCVD method. An object of the present invention is to produce a film by an RF sputtering method and a DC sputtering method so as to reduce the influence of a sputtering impact and to form a film at a high speed and in a large area.

【0010】[0010]

【課題を解決するための手段】本発明は、裏面電極層上
に、光吸収層(p型)、界面層(バッファー層)、窓層
(n型)及び上部電極の順に積層される薄膜太陽電池の
ZnO系透明導電膜において、前記窓層が、界面層上に
形成され界面保護膜として作用する第1の膜と、前記第
1の膜上に形成される第2のZnO系透明導電膜と、前
記第2の透明導電膜上に形成される第3のZnO系透明
導電膜とからなる積層体で、前記第1膜及び第2〜3の
透明導電膜がZnO:Al又はZnO:Gaからなる薄
膜太陽電池のZnO系透明導電膜である。
According to the present invention, there is provided a thin-film solar cell having a light-absorbing layer (p-type), an interface layer (buffer layer), a window layer (n-type) and an upper electrode laminated in this order on a back electrode layer. In a ZnO-based transparent conductive film of a battery, a first film in which the window layer is formed on an interface layer and functions as an interface protective film, and a second ZnO-based transparent conductive film formed on the first film And a third ZnO-based transparent conductive film formed on the second transparent conductive film, wherein the first film and the second to third transparent conductive films are made of ZnO: Al or ZnO: Ga. It is a ZnO-based transparent conductive film of a thin-film solar cell comprising:

【0011】本発明は、前記第1の膜が、膜厚が100
nm以下である薄膜太陽電池のZnO系膜である。
In the present invention, the first film preferably has a thickness of 100
nm or less for a thin-film solar cell.

【0012】本発明は、前記第2の透明導電膜及び第3
の透明導電膜が、ドーパントとしてAl、Ga、In、
B又はこれらの組み合わせたものを含むZnOからなる
薄膜太陽電池のZnO系透明導電膜である。
According to the present invention, the second transparent conductive film and the third
Transparent conductive film, Al, Ga, In, as a dopant
It is a ZnO-based transparent conductive film of a thin-film solar cell made of ZnO containing B or a combination thereof.

【0013】本発明は、裏面電極層上に、光吸収層(p
形)、界面層(バッファー層)、窓層(n形)及び上部
電極の順に積層される薄膜太陽電池のZnO系透明導電
膜の製造方法であって、界面層上にRFスパッタ法によ
り第1の膜(界面保護膜として作用する)を作製する工
程と、前記第1の膜上にスパッタ法により第2の透明導
電膜を作製する工程と、前記第2の透明導電膜上にスパ
ッタ法により第3の透明導電膜を作製する工程とからな
り、前記各工程において、ZnO:Al又はZnO:G
aターゲットを用いる薄膜太陽電池のZnO系透明導電
膜の製造方法である。
According to the present invention, a light absorption layer (p
A method for producing a ZnO-based transparent conductive film of a thin-film solar cell, which is laminated in this order, an interface layer (buffer layer), a window layer (n-type), and an upper electrode. Forming a film (acting as an interface protection film), forming a second transparent conductive film on the first film by sputtering, and forming a film on the second transparent conductive film by sputtering. Forming a third transparent conductive film. In each of the above steps, ZnO: Al or ZnO: G
This is a method for producing a ZnO-based transparent conductive film of a thin-film solar cell using a target.

【0014】本発明は、裏面電極層上に、光吸収層(p
型)、界面層(バッファー層)、窓層(n型)及び上部
電極の順に積層される薄膜太陽電池のZnO系透明導電
膜の製造方法であって、界面層上にRFマグネトロンス
パッタ法により第1の膜(界面保護膜として作用する)
を作製する工程と、前記第1の膜上にDCマグネトロン
スパッタ法により第2の透明導電膜を作製する工程と、
前記第2の透明導電膜上にDCマグネトロンスパッタ法
により第3の透明導電膜を作製する工程とからなり、前
記各工程において、ZnO:Al又はZnO:Gaター
ゲットを用いる薄膜太陽電池のZnO系透明導電膜の製
造方法である。
According to the present invention, a light absorption layer (p
), An interface layer (buffer layer), a window layer (n-type), and an upper electrode, which are stacked in this order, on the interface layer by RF magnetron sputtering. Film 1 (acting as an interface protective film)
And a step of forming a second transparent conductive film on the first film by DC magnetron sputtering,
Forming a third transparent conductive film on the second transparent conductive film by a DC magnetron sputtering method. In each of the steps, a ZnO-based transparent film of a thin-film solar cell using a ZnO: Al or ZnO: Ga target. This is a method for manufacturing a conductive film.

【0015】本発明は、前記RFスパッタ法又はRFマ
グネトロンスパッタ法においては、パワー密度が2.2
W/cm2 以下で、ZnO:Al又はZnO:Ga透明
導電膜を作製する薄膜太陽電池のZnO系透明導電膜の
製造方法である。
According to the present invention, in the RF sputtering method or the RF magnetron sputtering method, the power density is 2.2.
This is a method for producing a ZnO-based transparent conductive film of a thin-film solar cell for producing a ZnO: Al or ZnO: Ga transparent conductive film at W / cm 2 or less.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明は、薄膜太陽電池の窓層として供されるZ
nO系透明導電膜及びその製造方法に関するものであっ
て、従来のMOCVD法で作製したZnO:B透明導電
膜と同等の性能で、かつ、耐湿性に優れたZnO系透明
導電膜を、RFスパッタ及びDCスパッタ法により製膜
することにより、接合界面へのスパッタ衝撃の影響を低
減し、高速に、且つ大面積の太陽電池を作製することが
できる。
Embodiments of the present invention will be described below. The present invention relates to a Z layer provided as a window layer of a thin-film solar cell.
The present invention relates to an nO-based transparent conductive film and a method for producing the same, and a ZnO-based transparent conductive film having the same performance as a ZnO: B transparent conductive film produced by a conventional MOCVD method and having excellent moisture resistance is formed by RF sputtering. In addition, by forming a film by the DC sputtering method, the influence of sputter impact on the bonding interface can be reduced, and a large-area solar cell can be manufactured at high speed.

【0017】先ず、ZnO:Al又はZnO:Gaター
ゲットを用いて低出力(500W以下)のRFスパッタ
法により、接合面へのスパッタ衝撃が少なく、接合界面
保護膜として作用する第1の導電膜を高抵抗バッファー
(界面)層上に形成し、その後、複数の処理工程に分け
て夫々ZnO:Al又はZnO:Gaターゲットを用い
て高速製膜が可能なDCスパッタ法により、窓層として
供される第2の導電膜及び第3の導電膜を形成すること
により、接合面へのスパッタ衝撃の影響を低減し、高速
に、且つ大面積の太陽電池を作製することができる。
First, by using a ZnO: Al or ZnO: Ga target and using a low-power (500 W or less) RF sputtering method, the first conductive film which acts as a bonding interface protective film with little sputter impact on the bonding surface is formed. It is formed on a high resistance buffer (interface) layer, and then provided as a window layer by a DC sputtering method capable of high-speed film formation using a ZnO: Al or ZnO: Ga target in a plurality of processing steps. By forming the second conductive film and the third conductive film, the influence of sputtering impact on the bonding surface can be reduced, and a large-area solar cell can be manufactured at high speed.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明は、前記薄膜太陽電池の窓層として供され
る透明導電膜及び該透明導電膜の製造方法に関する。
Embodiments of the present invention will be described below with reference to the drawings. The present invention relates to a transparent conductive film provided as a window layer of the thin-film solar cell and a method for producing the transparent conductive film.

【0019】図1は本発明の透明導電膜を用いたCIS
系薄膜太陽電池の概略構成図である。薄膜太陽電池1は
基板2、裏面電極層3、光吸収層(p型半導体)4、バ
ッファー層(界面層)5、窓層6及び上部電極7の順に
積層された積層構造体であり、特に、窓層6として供さ
れる透明導電膜に特徴を有し、前記窓層6は、界面層5
上に形成され界面保護膜として作用する第1の透明導電
膜と、前記第1の導電膜上に形成される第2の透明
導電膜と、前記第2の透明導電膜上に形成される第
3の透明導電膜とからなる積層体である。
FIG. 1 shows a CIS using the transparent conductive film of the present invention.
It is a schematic structure figure of a system thin film solar cell. The thin-film solar cell 1 is a laminated structure in which a substrate 2, a back electrode layer 3, a light absorbing layer (p-type semiconductor) 4, a buffer layer (interface layer) 5, a window layer 6, and an upper electrode 7 are laminated in this order. And a transparent conductive film serving as a window layer 6.
A first transparent conductive film formed thereon and acting as an interface protection film; a second transparent conductive film formed on the first conductive film; and a second transparent conductive film formed on the second transparent conductive film. 3 is a laminate including the transparent conductive film.

【0020】本発明の製造方法に使用される製造装置の
概略構成を図2に示す。製造装置は少なくとも、RFス
パッタ処理部I 、DCスパッタ処理部II、DCスパッタ
処理部III 及びこれら各スパッタ処理部にスパッタリン
グ処理対象物である下記基板部材Xを搬送する搬送手段
(図示せず)から構成される。
FIG. 2 shows a schematic configuration of a manufacturing apparatus used in the manufacturing method of the present invention. The manufacturing apparatus includes at least an RF sputtering unit I, a DC sputtering unit II, a DC sputtering unit III, and a conveying unit (not shown) for conveying a substrate member X to be sputtered to each of these sputtering units. Be composed.

【0021】以下に本発明の製造方法を図1及び図2を
参照して説明する。先ず、図2に図示の前記製造装置で
ZnO透明導電膜を作製する前に、基板2上に裏面電極
層3、光吸収層(p型半導体)4及びバッファー層(界
面層)5が形成されたもの(図1の斜線部分:以下、基
板部材Xという。)が準備される。
The manufacturing method of the present invention will be described below with reference to FIGS. First, a back electrode layer 3, a light absorbing layer (p-type semiconductor) 4, and a buffer layer (interface layer) 5 are formed on a substrate 2 before producing a ZnO transparent conductive film by the manufacturing apparatus shown in FIG. (A hatched portion in FIG. 1; hereinafter, referred to as a substrate member X).

【0022】先ず、最初の処理工程では、前記基板部材
Xが前記製造装置のRFスパッタ処理部I に搬送され、
RFスパッタ処理部I において、ZnO:Alあるいは
ZnO:Gaターゲット21を用いてパワー密度が2.
2W/cm2 以下の低出力でRFスパッタリングを行う
ことにより、界面保護膜として作用する膜厚100nm
以下の第1の導電膜が前記基板部材Xの高抵抗のバッ
ファー(界面)層5上に形成される。このRFスパッタ
処理工程では、スパッタ出力が低出力であるため、接合
界面へのスパッタ衝撃の影響が少ない。なお、前記RF
スパッタ処理工程では、RFマグネトロンスパッタ法の
他に、各種RFスパッタ法を適用し得る。
First, in the first processing step, the substrate member X is transferred to the RF sputtering processing section I of the manufacturing apparatus,
In the RF sputtering processing part I, the power density is set to 2. using a ZnO: Al or ZnO: Ga target 21.
By performing RF sputtering at a low output of 2 W / cm 2 or less, a film thickness of 100 nm acting as an interface protective film
The following first conductive film is formed on the high-resistance buffer (interface) layer 5 of the substrate member X. In this RF sputtering process, since the sputter output is low, the impact of sputter impact on the bonding interface is small. The RF
In the sputtering process, various RF sputtering methods can be applied in addition to the RF magnetron sputtering method.

【0023】次に、前記基板部材Xは前記製造装置の第
1DCスパッタ処理部IIに搬送され、該第1DCスパッ
タ処理部IIにおいて、ZnO:AlあるいはZnO:G
aターゲット22を用いてDCスパッタリングを行うこ
とにより、第2の導電膜が前記基板部材Xの第1の導
電膜上に形成される。
Next, the substrate member X is transported to the first DC sputter processing section II of the manufacturing apparatus, where ZnO: Al or ZnO: G
By performing DC sputtering using the target 22, a second conductive film is formed on the first conductive film of the substrate member X.

【0024】更に、前記基板部材Xは前記製造装置の第
2DCスパッタ処理部III に搬送され、該第2DCスパ
ッタ処理部III において、ZnO:AlあるいはZn
O:Gaターゲット23を用いてDCスパッタリングを
行うことにより、第3の導電膜が前記基板部材Xの第
2の導電膜上に形成される。なお、前記第2及び第3
のDCスパッタ処理工程では、DCマグネトロンスパッ
タ法の他に、各種DCスパッタ法又は全てのRFスパッ
タ法を適用し得る。
Further, the substrate member X is transported to the second DC sputtering processing section III of the manufacturing apparatus, where ZnO: Al or Zn
By performing DC sputtering using the O: Ga target 23, a third conductive film is formed on the second conductive film of the substrate member X. Note that the second and third
In the DC sputtering process step, various DC sputtering methods or all RF sputtering methods can be applied in addition to the DC magnetron sputtering method.

【0025】以上のように、本発明の製造方法において
は、前記ZnO系透明導電膜を作製するにあたり、RF
スパッタ法とDCスパッタ法とを併用するとともに、D
Cスパッタ法においては、第1DCスパッタ処理部IIと
第2DCスパッタ処理部IIIで、複数の処理工程に分け
て夫々ZnO:AlあるいはZnO:Gaターゲットを
用いてDCスパッタ処理することにより、第2の導電膜
及び第3の導電膜を形成するので、同一膜層を得る
ための各スパッタ処理工程でのターゲット一枚当たりの
出力を低減(1/ターゲットの枚数)することができ、
スパッタ衝撃の影響が低減される。
As described above, according to the manufacturing method of the present invention, when manufacturing the ZnO-based transparent conductive film, RF
In addition to using both sputtering and DC sputtering,
In the C sputtering method, the first DC sputtering processing section II and the second DC sputtering processing section III perform DC sputtering processing using a ZnO: Al or ZnO: Ga target in a plurality of processing steps, respectively. Since the conductive film and the third conductive film are formed, the output per target in each sputtering process for obtaining the same film layer can be reduced (1 / target number).
The effect of sputter impact is reduced.

【0026】また、RFスパッタ処理部I 、第1DCス
パッタ処理部II及び第2DCスパッタ処理部III におい
ては、夫々の処理部において作製される導電膜、及
びの膜厚に応じて基板部材Xの搬送速度が調節され
る。
In the RF sputtering processing section I, the first DC sputtering processing section II, and the second DC sputtering processing section III, the substrate member X is transported in accordance with the thickness of the conductive film formed in each processing section and the thickness of the conductive film. The speed is adjusted.

【0027】なお、前記実施例においては、DCスパッ
タ処理を2工程に分けて行ったが、必要に応じてその工
程数を増加または減少してもよい。
In the above embodiment, the DC sputtering process is performed in two steps. However, the number of steps may be increased or decreased as necessary.

【0028】次に、本発明の製造方法により製膜された
窓層として供せられる透明導電膜を用いた太陽電池の特
性を以下に示す。本発明のRFスパッタ法及びDCスパ
ッタ法で作製した窓層の第1及び2層がZnO:Al、
第3層がZnO:Ga透明導電膜からなる積層構造の太
陽電池(第3層のDCスパッタ電流:0.4A)(A)
と、本発明のRFスパッタ法及びDCスパッタ法で作製
した窓層の第1及び2層がZnO:Al、第3層がZn
O:Ga透明導電膜からなる積層構造の太陽電池(第3
層のDCスパッタ電流:0.6A)(B)と、本発明の
RFスパッタ法及びDCスパッタ法で作製した窓層の第
1〜3層がZnO:Al透明導電膜からなる積層構造の
太陽電池(C)と、DCスパッタ法で作製した窓層が単
層のZnO:Al透明導電膜からなる太陽電池(D)の
太陽電池特性の比較結果を図3に示す。
Next, the characteristics of the solar cell using the transparent conductive film provided as the window layer formed by the manufacturing method of the present invention are shown below. The first and second layers of the window layer produced by the RF sputtering method and the DC sputtering method of the present invention are ZnO: Al,
Solar cell having a laminated structure in which the third layer is made of a ZnO: Ga transparent conductive film (DC sputtering current of the third layer: 0.4 A) (A)
And the first and second window layers formed by the RF sputtering method and the DC sputtering method of the present invention are ZnO: Al, and the third layer is Zn.
O: A solar cell having a laminated structure composed of a Ga transparent conductive film (third structure)
Layer DC sputtering current: 0.6 A) (B), and a solar cell having a laminated structure in which the first to third layers of the window layer formed by the RF sputtering method and the DC sputtering method of the present invention are made of a ZnO: Al transparent conductive film. FIG. 3 shows a comparison result of solar cell characteristics between (C) and a solar cell (D) in which a window layer formed by a DC sputtering method has a single-layer ZnO: Al transparent conductive film.

【0029】ZnO系透明導電膜の良否は、太陽電池特
性のうち、短絡電流密度(JSC)により膜自体の直列抵
抗値を、曲線因子(FF)により光吸収層表面又は接合
界面の界面接合特性に及ぼす影響を、夫々評価すること
ができる。前記図3の比較結果より、短絡電流密度(J
SC)、曲線因子(FF)及び、その積(JSC×FF)の
いずれも、単層のZnO:Al透明導電膜を用いた太陽
電池(D)に比べて、本発明の第1及び2層がZnO:
Al、第3層がZnO:Ga透明導電膜からなる積層構
造の太陽電池(A) 及び(B) 並びに第1〜3層がZn
O:Alからなる積層構造の透明導電膜を用いた太陽電
池(C)の方が良好な結果を示すことが判明した。
The quality of the ZnO-based transparent conductive film is determined by determining the series resistance value of the film itself by the short-circuit current density (J SC ), the interface resistance of the light absorbing layer surface or the bonding interface by the fill factor (FF). The effect on the properties can be evaluated individually. From the comparison result of FIG. 3, the short-circuit current density (J
SC ), the fill factor (FF), and the product thereof (J SC × FF) are all different from the solar cell (D) using a single-layer ZnO: Al transparent conductive film in the first and second embodiments of the present invention. The layer is ZnO:
Al and the solar cells (A) and (B) having a laminated structure in which the third layer is composed of a ZnO: Ga transparent conductive film, and the first to third layers are composed of Zn.
It was found that the solar cell (C) using a transparent conductive film having a laminated structure of O: Al showed better results.

【0030】この結果より、DCスパッタ法で作製した
窓層が積層構造のZnO:Ga透明導電膜を使用するこ
とにより、従来の単層又は積層のZnO:Al透明導電
膜における膜の問題点であった、直列抵抗成分が大きい
ために、短絡電流密度(JSC)が低いという欠点を改善
でき、更に、低いDCスパッタ電流で製膜できるため、
界面接合特性を劣化させる欠点も透明導電膜の膜厚を薄
膜化することで解決できる。
From these results, it was found that the use of the ZnO: Ga transparent conductive film having a laminated structure as the window layer formed by the DC sputtering method caused a problem in the conventional single-layer or laminated ZnO: Al transparent conductive film. The disadvantage that the short circuit current density (J SC ) is low due to the large series resistance component can be improved, and the film can be formed with a low DC sputtering current.
The disadvantage of deteriorating the interface bonding characteristics can also be solved by reducing the thickness of the transparent conductive film.

【0031】本発明で提案する窓層が積層構造のZnO
系透明導電膜を使用した太陽電池と単層のZnO:Al
透明導電膜を用いた太陽電池の変換効率〔%〕の比較結
果を図4に示す。
The window layer proposed in the present invention has a laminated structure of ZnO.
Cell using single transparent conductive film and ZnO: Al of single layer
FIG. 4 shows a comparison result of the conversion efficiency [%] of the solar cell using the transparent conductive film.

【0032】(a)は単層のZnO:Al透明導電膜を
用いた太陽電池の特性、(b)は第1及び2層がZn
O:Al、第3層がZnO:Gaからなる積層構造の透
明導電膜を用いた太陽電池の特性、(c)は本発明の第
1乃至3層がZnO:Gaからなる積層構造の透明導電
膜を用いた太陽電池(Gaの含有量:第1層3.4%、
第2及び3層5.7%)、(d)は本発明の第1乃至3
層がZnO:Gaからなる積層構造の透明導電膜を用い
た太陽電池(Gaの含有量:第1乃至3層5.7%)の
特性である。
(A) shows the characteristics of a solar cell using a single-layer ZnO: Al transparent conductive film, and (b) shows the first and second layers formed of ZnO: Al.
Characteristics of a solar cell using a transparent conductive film having a laminated structure of O: Al and a third layer of ZnO: Ga, and (c) shows a transparent conductive film of a laminated structure of the first to third layers of ZnO: Ga of the present invention. Solar cell using film (Ga content: first layer 3.4%,
(2nd and 3rd layers 5.7%), (d) are the first to third layers of the present invention.
This is a characteristic of a solar cell (Ga content: first to third layers 5.7%) using a transparent conductive film having a layered structure of ZnO: Ga.

【0033】前記図4の比較結果より、太陽電池の変換
効率では、単層のZnO:Al透明導電膜を用いた太陽
電池(a)と比べて、本発明のZnO:Al及びZn
O:Gaの積層構造並びにZnO:Gaのみの積層構造
の太陽電池(b)、(c)、(d)が良好な結果を示す
ことが判明した。
According to the comparison result of FIG. 4, the conversion efficiency of the solar cell is higher than that of the solar cell (a) using the single-layer ZnO: Al transparent conductive film in comparison with the solar cell (a) of the present invention.
It was found that solar cells (b), (c), and (d) having a stacked structure of O: Ga and a stacked structure of only ZnO: Ga showed good results.

【0034】[0034]

【発明の効果】以上のように、本発明は、低出力のRF
スパッタ法によりZnO系透明導電膜の一部を製膜した
後、残りのZnO系透明導電膜部分をDCスパッタ法を
複数工程にわけてスパッタ処理することにより、スパッ
タ衝撃の影響を低減しつつ、MOCVD法で作製したZ
n:B透明導電膜と同等の性能有する透明導電膜を、高
速、且つ大面積で製膜することができる。また、Zn
O:Ga層を積層構造の中に取り入れることにより、耐
湿性を確保することができる。
As described above, the present invention provides a low-power RF
After forming a part of the ZnO-based transparent conductive film by the sputtering method, the remaining ZnO-based transparent conductive film portion is subjected to the sputtering process by dividing the DC sputtering method into a plurality of steps, thereby reducing the influence of the sputtering impact. Z produced by MOCVD
A transparent conductive film having the same performance as the n: B transparent conductive film can be formed at a high speed and in a large area. Also, Zn
By incorporating the O: Ga layer into the laminated structure, moisture resistance can be ensured.

【0035】更に、DCスパッタ法で作製した積層構造
のZnO:Ga透明導電膜を使用することにより、DC
スパッタ法における高速製膜が可能であるという長所を
生かしつつ、直列抵抗値を低減して、短絡電流密度(J
SC)を大きくすることができると共に、透明導電膜の膜
厚を薄膜化することにより、接合界面又は光吸収層表面
の損傷を防止して、界面接合特性を改善することが可能
となり、曲線因子(FF)を大きくできる。
Further, by using a ZnO: Ga transparent conductive film having a laminated structure produced by DC sputtering,
While taking advantage of the fact that high-speed film formation by sputtering is possible, the series resistance is reduced and the short-circuit current density (J
SC ) can be increased, and by reducing the thickness of the transparent conductive film, damage to the bonding interface or the surface of the light absorbing layer can be prevented, and the interface bonding characteristics can be improved. (FF) can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法で作製されるZnO系透明導
電膜を用いたCIS系薄膜太陽電池の概略構造図であ
る。
FIG. 1 is a schematic structural diagram of a CIS-based thin-film solar cell using a ZnO-based transparent conductive film manufactured by a manufacturing method of the present invention.

【図2】本発明の製造方法に使用される製造装置の概略
構成図である。
FIG. 2 is a schematic configuration diagram of a manufacturing apparatus used in the manufacturing method of the present invention.

【図3】本発明のRFスパッタ法及びDCスパッタ法で
作製した窓層の第1及び2層がZnO:Al、第3層が
ZnO:Ga透明導電膜からなる積層構造の太陽電池
(第3層のDCスパッタ電流:0.4A)(A)と、本
発明のRFスパッタ法及びDCスパッタ法で作製した窓
層の第1及び2層がZnO:Al、第3層がZnO:G
a透明導電膜からなる積層構造の太陽電池(第3層のD
Cスパッタ電流:0.6A)(B)と、本発明のRFス
パッタ法及びDCスパッタ法で作製した窓層の第1乃至
3層がZnO:Al透明導電膜からなる積層構造の太陽
電池(C)と、DCスパッタ法で作製した窓層が単層の
ZnO:Al透明導電膜からなる太陽電池(D)の太陽
電池特性の比較結果を示す図である。
FIG. 3 shows a solar cell (third layer) in which the first and second window layers formed by the RF sputtering method and the DC sputtering method of the present invention are made of ZnO: Al, and the third layer is made of a ZnO: Ga transparent conductive film. DC sputtering current of the layer: 0.4 A) (A), the first and second window layers prepared by the RF sputtering method and the DC sputtering method of the present invention were ZnO: Al, and the third layer was ZnO: G.
a Solar cell having a laminated structure composed of a transparent conductive film (D of the third layer)
(C sputtering current: 0.6 A) (B) and a solar cell (C) having a laminated structure in which the first to third layers of the window layer formed by the RF sputtering method and the DC sputtering method of the present invention are made of a ZnO: Al transparent conductive film. FIG. 7B) is a diagram showing comparison results of solar cell characteristics of a solar cell (D) in which a window layer formed by a DC sputtering method is made of a single-layer ZnO: Al transparent conductive film.

【図4】単層のZnO:Al透明導電膜を用いた太陽電
池の特性(a)と、第1及び2層がZnO:Al、第3
層がZnO:Gaからなる積層構造の透明導電膜を用い
た太陽電池の特性(b)と、本発明の第1乃至3層がZ
nO:Gaからなる積層構造の透明導電膜を用いた太陽
電池(Gaの含有量:第1層3.4%、第2及び3層
5.7%)(c)と、本発明の第1乃至3層がZnO:
Gaからなる積層構造の透明導電膜を用いた太陽電池
(Gaの含有量:第1乃至3層5.7%)(d)との変
換効率〔%〕の比較結果を示す図である。
FIG. 4 shows the characteristics (a) of a solar cell using a single-layer ZnO: Al transparent conductive film, wherein the first and second layers have ZnO: Al,
The characteristics (b) of the solar cell using the transparent conductive film having a laminated structure in which the layer is made of ZnO: Ga, and the first to third layers of the present invention are made of Z
A solar cell using a transparent conductive film having a laminated structure of nO: Ga (Ga content: first layer 3.4%, second and third layers 5.7%) (c), and a first cell of the present invention. 3 to 3 layers of ZnO:
It is a figure which shows the comparison result of the conversion efficiency [%] with the solar cell (Ga content: 5.7% of 1st thru | or 3rd layers) (d) using the transparent conductive film of the laminated structure made of Ga.

【符号の説明】[Explanation of symbols]

1 薄膜太陽電池 2 基板 3 裏面電極 4 光吸収層(p型) 5 界面層(バッファー層) 6 窓層(n型) 第1の導電膜(界面保護膜) 第2の導電膜 第3の導電膜 7 上部電極 I RFスパッタ処理部 II 第1DCスパッタ処理部 III 第2DCスパッタ処理部 X 基板部材 DESCRIPTION OF SYMBOLS 1 Thin-film solar cell 2 Substrate 3 Back electrode 4 Light absorption layer (p-type) 5 Interface layer (buffer layer) 6 Window layer (n-type) 1st conductive film (interface protective film) 2nd conductive film 3rd conductive Film 7 Upper electrode I RF sputtering unit II First DC sputtering unit III Second DC sputtering unit X Substrate member

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年12月28日[Submission date] December 28, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Correction target item name] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【請求項4】 裏面電極層上に、光吸収層(p型)、界
面層(バッファー層)、窓層(n型)及び上部電極の順
に積層される薄膜太陽電池のZnO系透明導電膜の製造
方法であって、界面層上にRFスパッタ法により第1の
膜(界面保護膜として作用する)を作製する工程と、前
記第1の膜上にスパッタ法により第2の透明導電膜を作
製する工程と、前記第2の透明導電膜上にスパッタ法に
より第3の透明導電膜を作製する工程とからなり、前記
各工程において、ZnO:Al又はZnO:Gaターゲ
ットを用いることを特徴とする薄膜太陽電池のZnO系
透明導電膜の製造方法。
4. A ZnO-based transparent conductive film of a thin-film solar cell which is laminated on a back electrode layer in the order of a light absorbing layer (p-type), an interface layer (buffer layer), a window layer (n-type) and an upper electrode. A method for producing a first film (acting as an interfacial protective film) on an interface layer by RF sputtering, and producing a second transparent conductive film on the first film by sputtering. And a step of forming a third transparent conductive film on the second transparent conductive film by a sputtering method. In each of the above steps, a ZnO: Al or ZnO: Ga target is used. A method for producing a ZnO-based transparent conductive film for a thin-film solar cell.

【手続補正書】[Procedure amendment]

【提出日】平成11年7月7日[Submission date] July 7, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 薄膜太陽電池のZnO系透明導電
膜の製造方法
Patent application title: Method for producing ZnO-based transparent conductive film for thin-film solar cell

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Correction target item name]

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CIS系薄膜太陽
電池の窓層として供されるZnO系透明導電膜及び該Z
nO系透明導電膜の製造方法に関する。
[0001] The present invention relates to a ZnO-based transparent conductive film used as a window layer of a CIS-based thin-film solar cell,
The present invention relates to a method for manufacturing an nO-based transparent conductive film.

【0002】[0002]

【従来の技術】CIS(二セレン化銅インジウムCuI
nSe2 又は二硫化銅インジウムCuInS2 )系薄膜
太陽電池においては、窓層として供されるn形の導電性
を有する透明導電膜が必要である。この透明導電膜に要
求される性能としては、 (1) 上部電極として使用するので抵抗値が低いこと。
(横方向に電流が流れるのでシート抵抗が低いことが必
要で10Ω/□以下が望ましい。) (2) 光が入射する窓層として働くので、透過率が高いこ
と。(透過率としては、90%以上(波長800nm)
あるいは表面反射量を差し引いて、400〜1300n
mまでの波長範囲の面積が大きいことが望ましい。) (3) CIS系薄膜太陽電池は積層構造であるので、接合
界面特性に損傷を与えないこと。 等がある。
2. Description of the Related Art CIS (copper indium diselenide CuI)
In an nSe 2 or indium copper disulfide (CuInS 2 ) -based thin-film solar cell, a transparent conductive film having n-type conductivity to serve as a window layer is required. The performance required of this transparent conductive film is as follows: (1) Since the transparent conductive film is used as an upper electrode, its resistance value is low.
(Since current flows in the horizontal direction, the sheet resistance needs to be low and is preferably 10 Ω / □ or less.) (2) Since it functions as a window layer through which light enters, high transmittance is required. (Transmittance is 90% or more (wavelength 800 nm)
Alternatively, by subtracting the amount of surface reflection, 400-1300 n
It is desirable that the area of the wavelength range up to m be large. (3) Since the CIS thin-film solar cell has a laminated structure, the junction interface characteristics should not be damaged. Etc.

【0003】この透明導電膜としての酸化亜鉛(Zn
O)の製造方法としては、有機金属化学的気相成長法
(MOCVD:Metal Organic Chemical Vapor Deposit
ion Method)とスパッタ法があり、それぞれの製造方法
の特徴を以下に示す。
[0003] Zinc oxide (Zn) as this transparent conductive film
O) is produced by a metal organic chemical vapor deposition (MOCVD) method.
ion method) and sputtering method, and the features of each manufacturing method are described below.

【0004】MOCVD法においては、その利点とし
て、 ドーパント量を調整することで透明導電膜の抵抗率を
任意に変化させることができる。 化学反応を利用した透明導電膜の成長法であるために
柔らかいCIS系太陽電池の光吸収層に損傷を与えるこ
となく、穏やかな状態で硬質の酸化亜鉛(ZnO)を成
長させることができる。 透明導電膜表面の凹凸を制御したテクスチャー構造に
よる光閉じ込め効果により、部分的ではあるが反射防止
膜としての作用が期待できる。
The advantage of the MOCVD method is that the resistivity of the transparent conductive film can be arbitrarily changed by adjusting the amount of the dopant. Since the method uses a chemical reaction to grow a transparent conductive film, hard zinc oxide (ZnO) can be grown in a gentle state without damaging the light absorbing layer of a soft CIS-based solar cell. Due to the light confinement effect of the texture structure in which the irregularities on the surface of the transparent conductive film are controlled, the effect as an antireflection film can be expected partially.

【0005】また、その欠点としては、 透明導電膜の透過率と抵抗率を独立して調整すること
ができない。(この両者の交点が最適値となる。) 化学反応促進のために基板加熱が必要であり、この加
熱の熱応力による基板の弾性変形及びその変形による膜
の剥離等が発生し易い。 製造装置としてバッチ式の反応炉を使用するので、工
業化時には生産性が劣る可能性が高い。 大面積の薄膜太陽電池を製造する場合には、基板の加
熱の均一性及び原料ガスの流れの均一性を実現すること
が困難である。 抵抗率調整のためのドーパントとして特材ガスのB2
6 ガス等を使用する必要があり、除害装置設置等のコ
ストアップの要因がある。
Another drawback is that the transmittance and resistivity of the transparent conductive film cannot be adjusted independently. (The intersection of the two becomes an optimum value.) Heating of the substrate is required to promote the chemical reaction, and elastic deformation of the substrate due to the thermal stress of this heating and peeling of the film due to the deformation are likely to occur. Since a batch-type reaction furnace is used as a production apparatus, there is a high possibility that productivity will be poor during industrialization. When manufacturing a large-area thin-film solar cell, it is difficult to achieve uniform heating of the substrate and uniform flow of the source gas. B 2 of special material gas as a dopant for resistivity adjustment
It is necessary to use H 6 gas or the like, which causes an increase in cost such as installation of an abatement apparatus.

【0006】スパッタ法においては、従来RFスパッタ
法又はDCスパッタ法のいずれかの方法により、Arガ
ス又はO 2 /Ar混合ガスをスパッタガスとして、加熱
した基板上に一枚のZnO:Al等のターゲットを使用
して1ステップで単層のZnO:Al透明導電膜を作製
していた。DCスパッタ法によるCIS系薄膜太陽電池
の製造方法に関する実施例は少なく、スパッタ法で得ら
れる高性能の窓層はいずれもZnO:Al等のターゲッ
トを使用したRFスパッタ法によるものである。しか
し、RFスパッタ法は製膜速度が遅く、MOCVD法と
比較しても製膜速度における利点はない。
In the sputtering method, a conventional RF sputtering
Ar gas by either the DC sputtering method or the DC sputtering method.
Or O Two / Ar mixed gas as sputtering gas and heating
A single target such as ZnO: Al on a substrate
To form a single-layer ZnO: Al transparent conductive film in one step
Was. CIS based thin film solar cell by DC sputtering method
There are few examples of the manufacturing method of
High performance window layers are made of targets such as ZnO: Al.
This is based on the RF sputtering method using a metal. Only
However, the RF sputtering method has a low film forming speed,
There is no advantage in the film formation speed by comparison.

【0007】DCスパッタ法の特徴を以下に示す。その
利点として、 大面積薄膜作製技術として確立しているので大面積の
薄膜太陽電池の製造には有利である。 透明導電膜の高速製膜が可能で、工業化時には高生産
性が可能である。 ZnOターゲット中のAl、Ga等の合金元素量によ
り抵抗率の調整が可能なので、MOCVD法で作製した
ZnO:Bの透明導電膜の膜厚に対して1/2〜2/3
に薄膜化すると、透過率を増大することも可能である。 ZnO透明導電膜の成長初期から均一な膜が成長でき
る。 反応性スパッタ法を利用することにより金属亜鉛ター
ゲットあるいは、Alやそれ以外の種々のドーパント
(B、In、Ga)等を合金化した亜鉛ターゲットと酸
素混合ガスを使用して抵抗値を制御したZnO透明導電
膜の成長が可能である。
The characteristics of the DC sputtering method are as follows. As an advantage, it is advantageous for manufacturing large-area thin-film solar cells because it has been established as a large-area thin-film fabrication technology. High-speed film formation of a transparent conductive film is possible, and high productivity is possible during industrialization. Since the resistivity can be adjusted by the amount of alloying elements such as Al and Ga in the ZnO target, the thickness is 1/2 to 2/3 of the thickness of the ZnO: B transparent conductive film formed by the MOCVD method.
When the thickness is reduced, the transmittance can be increased. A uniform film can be grown from the initial growth of the ZnO transparent conductive film. ZnO in which the resistance value is controlled by using an oxygen mixed gas with a metal zinc target or a zinc target alloyed with Al or various other dopants (B, In, Ga) by utilizing the reactive sputtering method. A transparent conductive film can be grown.

【0008】また、その欠点としては、 MOCVD法と同程度の膜性能(キャリア濃度、移動
度)を有するZnO系透明導電膜を製造するには、20
0°C以上の基板加熱を行う必要がある。 DCスパッタ法はRFスパッタ法と比べてエネルギー
密度が高いので、接合界面又は光吸収層表面の損傷が起
こり易い。 抵抗調整用の合金元素量はターゲット中の濃度として
一定であるので、抵抗率を任意に調整できない。(但
し、狭い範囲ならば、スパッタガス中に酸素を混入する
ことで微調整は可能である。) 高性能のCIS系薄膜太陽電池を製造できる基板加熱
温度範囲では表面の凹凸を制御したテクスチャー構造が
作製できない。
[0008] Another drawback is that, in order to produce a ZnO-based transparent conductive film having the same film performance (carrier concentration and mobility) as that of the MOCVD method, 20
It is necessary to heat the substrate to 0 ° C. or higher. Since the DC sputtering method has a higher energy density than the RF sputtering method, the bonding interface or the surface of the light absorption layer is easily damaged. Since the amount of the alloy element for resistance adjustment is constant as the concentration in the target, the resistivity cannot be arbitrarily adjusted. (However, fine adjustment is possible by mixing oxygen into the sputtering gas within a narrow range.) Texture structure with controlled surface irregularities in the substrate heating temperature range where high-performance CIS-based thin-film solar cells can be manufactured Cannot be produced.

【0009】[0009]

【発明が解決しようとする課題】本発明は前記のような
問題点を解消するためになされたもので、本発明の目的
は、MOCVD法で作製したZnO:B透明導電膜と同
等の性能のものを、RFスパッタ法及びDCスパッタ法
により作製することにより、スパッタ衝撃の影響を低減
し、高速、且つ大面積で製膜することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a ZnO: B transparent conductive film having the same performance as that of a MOCVD method. An object of the present invention is to produce a film by an RF sputtering method and a DC sputtering method so as to reduce the influence of a sputtering impact and to form a film at a high speed and in a large area.

【0010】[0010]

【課題を解決するための手段】本発明は、裏面電極層上
に、光吸収層(p形)、界面層(バッファー層)、窓層
(n形)及び上部電極の順に積層される薄膜太陽電池の
窓層の製造方法であって、界面層上に低出力のRFスパ
ッタ法により界面保護膜として作用する第1の膜を作製
する工程と、前記第1の膜上にスパッタ法により第2の
透明導電膜を作製する工程と、前記第2の透明導電膜上
にスパッタ法により第3の透明導電膜を作製する工程と
からなり、前記各工程において、ZnO:Al又はZn
O:Gaターゲットを用いる薄膜太陽電池のZnO系透
明導電膜の製造方法である。
According to the present invention, there is provided a thin-film solar cell having a light absorbing layer (p-type), an interface layer (buffer layer), a window layer (n-type) and an upper electrode laminated in this order on a back electrode layer. A method for manufacturing a window layer of a battery, comprising: forming a first film acting as an interface protective film on an interface layer by low-power RF sputtering; and forming a second film on the first film by sputtering. And a step of forming a third transparent conductive film on the second transparent conductive film by a sputtering method. In each of the steps, ZnO: Al or Zn
This is a method for producing a ZnO-based transparent conductive film of a thin-film solar cell using an O: Ga target.

【0011】本発明は、裏面電極層上に、光吸収層(p
形)、界面層(バッファー層)、窓層(n形)及び上部
電極の順に積層される薄膜太陽電池の窓層の製造方法で
あって、界面層上に低出力のRFマグネトロンスパッタ
法により界面保護膜として作用する第1の膜を作製する
工程と、前記第1の膜上にDCマグネトロンスパッタ法
により第2の透明導電膜を作製する工程と、前記第2の
透明導電膜上にDCマグネトロンスパッタ法により第3
の透明導電膜を作製する工程とからなり、前記各工程に
おいて、ZnO:Al又はZnO:Gaターゲットを用
いる薄膜太陽電池のZnO系透明導電膜の製造方法であ
る。
According to the present invention, a light absorption layer (p
A method for manufacturing a window layer of a thin-film solar cell in which an interface layer (buffer layer), a window layer (n-type), and an upper electrode are stacked in this order, wherein the interface is formed on the interface layer by RF magnetron sputtering with low output. A step of forming a first film acting as a protective film, a step of forming a second transparent conductive film on the first film by a DC magnetron sputtering method, and a step of forming a DC magnetron on the second transparent conductive film Third by sputtering
And a method for producing a ZnO-based transparent conductive film for a thin-film solar cell using a ZnO: Al or ZnO: Ga target in each of the above steps.

【0012】本発明は、前記RFスパッタ法又はRFマ
グネトロンスパッタ法においては、パワー密度が2.2
W/cm2 以下で、ZnO:Al又はZnO:Ga透明
導電膜を作製する薄膜太陽電池のZnO系透明導電膜の
製造方法である。
According to the present invention, in the RF sputtering method or the RF magnetron sputtering method, the power density is 2.2.
This is a method for producing a ZnO-based transparent conductive film of a thin-film solar cell for producing a ZnO: Al or ZnO: Ga transparent conductive film at W / cm 2 or less.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明は、薄膜太陽電池の窓層として供されるZ
nO系透明導電膜及びその製造方法に関するものであっ
て、従来のMOCVD法で作製したZnO:B透明導電
膜と同等の性能で、かつ、耐湿性に優れたZnO系透明
導電膜を、RFスパッタ及びDCスパッタ法により製膜
することにより、接合界面へのスパッタ衝撃の影響を低
減し、高速に、且つ大面積の太陽電池を作製することが
できる。
Embodiments of the present invention will be described below. The present invention relates to a Z layer provided as a window layer of a thin-film solar cell.
The present invention relates to an nO-based transparent conductive film and a method for producing the same, and a ZnO-based transparent conductive film having the same performance as a ZnO: B transparent conductive film produced by a conventional MOCVD method and having excellent moisture resistance is formed by RF sputtering. In addition, by forming a film by the DC sputtering method, the influence of sputter impact on the bonding interface can be reduced, and a large-area solar cell can be manufactured at high speed.

【0014】先ず、ZnO:Al又はZnO:Gaター
ゲットを用いて低出力(500W又は2.2W/cm2
以下)のRFスパッタ法により、接合面へのスパッタ衝
撃が少なく、接合界面保護膜として作用する第1の導電
膜を高抵抗バッファー層(界面層)上に形成し、その
後、複数の処理工程に分けて夫々ZnO:Al又はZn
O:Gaターゲットを用いて高速製膜が可能なDCスパ
ッタ法により、窓層として供される第2の導電膜及び第
3の導電膜を形成することにより、接合面へのスパッタ
衝撃の影響を低減し、高速に、且つ大面積の太陽電池を
作製することができる。
First, using a ZnO: Al or ZnO: Ga target, a low output (500 W or 2.2 W / cm 2)
By the following RF sputtering method, a first conductive film that acts as a bonding interface protective film with less sputter impact on the bonding surface is formed on a high-resistance buffer layer (interface layer), and is then subjected to a plurality of processing steps. Separately ZnO: Al or Zn
By forming a second conductive film and a third conductive film serving as window layers by a DC sputtering method capable of high-speed film formation using an O: Ga target, the influence of sputter impact on the bonding surface can be reduced. It is possible to manufacture a large-area solar cell with reduced power consumption at high speed.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明は、前記薄膜太陽電池の窓層として供され
る透明導電膜及び該透明導電膜の製造方法に関する。
Embodiments of the present invention will be described below with reference to the drawings. The present invention relates to a transparent conductive film provided as a window layer of the thin-film solar cell and a method for producing the transparent conductive film.

【0016】図1は本発明の透明導電膜を用いたCIS
系薄膜太陽電池の概略構成図である。薄膜太陽電池1は
基板2、裏面電極層3、光吸収層(p形半導体)4、バ
ッファー層(界面層)5、窓層6及び上部電極7の順に
積層された積層構造体であり、特に、窓層6として供さ
れるn形の半導体である透明導電膜に特徴を有し、前記
窓層6は、界面層5上に形成され界面保護膜として作用
する第1の透明導電膜と、前記第1の導電膜上に形
成される第2の透明導電膜と、前記第2の透明導電膜
上に形成される第3の透明導電膜とからなる積層体
である。
FIG. 1 shows a CIS using the transparent conductive film of the present invention.
It is a schematic structure figure of a system thin film solar cell. The thin-film solar cell 1 is a laminated structure in which a substrate 2, a back electrode layer 3, a light absorbing layer (p-type semiconductor) 4, a buffer layer (interface layer) 5, a window layer 6, and an upper electrode 7 are laminated in this order. A transparent conductive film that is an n-type semiconductor provided as a window layer 6, wherein the window layer 6 is formed on the interface layer 5 and acts as an interface protective film; A stacked body including a second transparent conductive film formed on the first conductive film and a third transparent conductive film formed on the second transparent conductive film.

【0017】本発明の製造方法に使用される製造装置の
概略構成を図2に示す。製造装置は少なくとも、RFス
パッタ処理部I 、DCスパッタ処理部II、DCスパッタ
処理部III 及びこれら各スパッタ処理部にスパッタリン
グ処理対象物である下記基板部材Xを搬送する搬送手段
(図示せず)から構成される。
FIG. 2 shows a schematic configuration of a manufacturing apparatus used in the manufacturing method of the present invention. The manufacturing apparatus includes at least an RF sputtering unit I, a DC sputtering unit II, a DC sputtering unit III, and a conveying unit (not shown) for conveying a substrate member X to be sputtered to each of these sputtering units. Be composed.

【0018】以下に本発明の製造方法を図1及び図2を
参照して説明する。先ず、図2に図示の前記製造装置で
ZnO透明導電膜を作製する前に、基板2上に裏面電極
層3、光吸収層(p形半導体)4及びバッファー層(界
面層)5が形成されたもの(図1の斜線部分:以下、基
板部材Xという。)が準備される。
The manufacturing method of the present invention will be described below with reference to FIGS. First, a back electrode layer 3, a light absorbing layer (p-type semiconductor) 4, and a buffer layer (interface layer) 5 are formed on a substrate 2 before producing a ZnO transparent conductive film by the manufacturing apparatus shown in FIG. (A hatched portion in FIG. 1; hereinafter, referred to as a substrate member X).

【0019】先ず、最初の処理工程では、前記基板部材
Xが前記製造装置のRFスパッタ処理部I に搬送され、
RFスパッタ処理部I において、ZnO:Alあるいは
ZnO:Gaターゲット21を用いてパワー密度が2.
2W/cm2 以下の低出力でRFスパッタリングを行う
ことにより、界面保護膜として作用する膜厚100nm
以下の第1の透明導電膜が前記基板部材Xの高抵抗の
バッファー層(界面層)5上に形成される。このRFス
パッタ処理工程では、スパッタ出力が低出力であるた
め、接合界面へのスパッタ衝撃の影響が少ない。なお、
前記RFスパッタ処理工程では、RFマグネトロンスパ
ッタ法の他に、各種RFスパッタ法を適用し得る。
First, in the first processing step, the substrate member X is transported to the RF sputtering processing section I of the manufacturing apparatus,
In the RF sputtering processing part I, the power density is set to 2. using a ZnO: Al or ZnO: Ga target 21.
By performing RF sputtering at a low output of 2 W / cm 2 or less, a film thickness of 100 nm acting as an interface protective film
The following first transparent conductive film is formed on the high-resistance buffer layer (interface layer) 5 of the substrate member X. In this RF sputtering process, since the sputter output is low, the impact of sputter impact on the bonding interface is small. In addition,
In the RF sputtering process, various RF sputtering methods can be applied in addition to the RF magnetron sputtering method.

【0020】次に、前記基板部材Xは前記製造装置の第
1DCスパッタ処理部IIに搬送され、該第1DCスパッ
タ処理部IIにおいて、ZnO:AlあるいはZnO:G
aターゲット22を用いてDCスパッタリングを行うこ
とにより、第2の透明導電膜が前記基板部材Xの第1
の透明導電膜上に形成される。
Next, the substrate member X is transported to the first DC sputter processing section II of the manufacturing apparatus, where the substrate member X is ZnO: Al or ZnO: G.
a By performing DC sputtering using the target 22, the second transparent conductive film
Is formed on the transparent conductive film.

【0021】更に、前記基板部材Xは前記製造装置の第
2DCスパッタ処理部III に搬送され、該第2DCスパ
ッタ処理部III において、ZnO:AlあるいはZn
O:Gaターゲット23を用いてDCスパッタリングを
行うことにより、第3の透明導電膜が前記基板部材X
の第2の透明導電膜上に形成される。なお、前記第2
及び第3のDCスパッタ処理工程では、DCマグネトロ
ンスパッタ法の他に、各種DCスパッタ法又は全てのR
Fスパッタ法を適用し得る。
Further, the substrate member X is transported to a second DC sputter processing section III of the manufacturing apparatus, where ZnO: Al or Zn
By performing DC sputtering using an O: Ga target 23, a third transparent conductive film is formed on the substrate member X.
Formed on the second transparent conductive film. Note that the second
In the third DC sputtering process, in addition to the DC magnetron sputtering method, various DC sputtering methods or all R sputtering methods are used.
An F sputtering method can be applied.

【0022】以上のように、本発明の製造方法において
は、前記ZnO系透明導電膜を作製するにあたり、RF
スパッタ法とDCスパッタ法とを併用するとともに、D
Cスパッタ法においては、第1DCスパッタ処理部IIと
第2DCスパッタ処理部IIIで、複数の処理工程に分け
て夫々ZnO:AlあるいはZnO:Gaターゲットを
用いてDCスパッタ処理することにより、第2の透明導
電膜及び第3の透明導電膜を形成するので、同一膜
層を得るための各スパッタ処理工程でのターゲット一枚
当たりの出力を低減(1/ターゲットの枚数)すること
ができ、スパッタ衝撃の影響が低減される。
As described above, according to the manufacturing method of the present invention, in manufacturing the ZnO-based transparent conductive film, RF
In addition to using both sputtering and DC sputtering,
In the C sputtering method, the first DC sputtering processing section II and the second DC sputtering processing section III perform DC sputtering processing using a ZnO: Al or ZnO: Ga target in a plurality of processing steps, respectively. Since the transparent conductive film and the third transparent conductive film are formed, the output per target in each sputtering process step for obtaining the same film layer can be reduced (1 / target number), and the sputtering impact can be reduced. Is reduced.

【0023】また、RFスパッタ処理部I 、第1DCス
パッタ処理部II及び第2DCスパッタ処理部III におい
ては、夫々の処理部において作製される透明導電膜、
及びの膜厚に応じて基板部材Xの搬送速度が調節さ
れる。
In the RF sputtering unit I, the first DC sputtering unit II, and the second DC sputtering unit III, a transparent conductive film formed in each processing unit;
The transport speed of the substrate member X is adjusted according to the film thickness of the substrate and the thickness of the substrate.

【0024】なお、前記実施例においては、DCスパッ
タ処理を2工程に分けて行ったが、必要に応じてその工
程数を増加または減少してもよい。
In the above embodiment, the DC sputtering process is performed in two steps. However, the number of steps may be increased or decreased as necessary.

【0025】次に、本発明の製造方法により製膜された
窓層として供せられる透明導電膜を用いた太陽電池の特
性を以下に示す。本発明のRFスパッタ法及びDCスパ
ッタ法で作製した窓層の第1及び2層がZnO:Al、
第3層がZnO:Ga透明導電膜からなる積層構造の太
陽電池(第3層のDCスパッタ電流:0.4A)(A)
と、本発明のRFスパッタ法及びDCスパッタ法で作製
した窓層の第1及び2層がZnO:Al、第3層がZn
O:Ga透明導電膜からなる積層構造の太陽電池(第3
層のDCスパッタ電流:0.6A)(B)と、本発明の
RFスパッタ法及びDCスパッタ法で作製した窓層の第
1〜3層がZnO:Al透明導電膜からなる積層構造の
太陽電池(C)と、DCスパッタ法で作製した窓層が単
層のZnO:Al透明導電膜からなる太陽電池(D)の
太陽電池特性の比較結果を図3に示す。
Next, the characteristics of the solar cell using the transparent conductive film provided as the window layer formed by the manufacturing method of the present invention will be described below. The first and second layers of the window layer produced by the RF sputtering method and the DC sputtering method of the present invention are ZnO: Al,
Solar cell having a laminated structure in which the third layer is made of a ZnO: Ga transparent conductive film (DC sputtering current of the third layer: 0.4 A) (A)
And the first and second window layers formed by the RF sputtering method and the DC sputtering method of the present invention are ZnO: Al, and the third layer is Zn.
O: A solar cell having a laminated structure composed of a Ga transparent conductive film (third structure)
Layer DC sputtering current: 0.6 A) (B), and a solar cell having a laminated structure in which the first to third layers of the window layer formed by the RF sputtering method and the DC sputtering method of the present invention are made of a ZnO: Al transparent conductive film. FIG. 3 shows a comparison result of solar cell characteristics between (C) and a solar cell (D) in which a window layer formed by a DC sputtering method has a single-layer ZnO: Al transparent conductive film.

【0026】ZnO系透明導電膜の良否は、太陽電池特
性のうち、短絡電流密度(JSC)により膜自体の直列抵
抗値を、曲線因子(FF)により光吸収層表面又は接合
界面の界面接合特性に及ぼす影響を、夫々評価すること
ができる。前記図3の比較結果より、短絡電流密度(J
SC)、曲線因子(FF)及び、その積(JSC×FF)の
いずれも、単層のZnO:Al透明導電膜を用いた太陽
電池(D)に比べて、本発明の第1及び2層がZnO:
Al、第3層がZnO:Ga透明導電膜からなる積層構
造の太陽電池(A) 及び(B) 並びに第1〜3層がZn
O:Alからなる積層構造の透明導電膜を用いた太陽電
池(C)の方が良好な結果を示すことが判明した。
The quality of the ZnO-based transparent conductive film is evaluated by determining the series resistance value of the film itself by the short-circuit current density (J SC ), the interface resistance of the light absorbing layer surface or the bonding interface by the fill factor (FF), among the solar cell characteristics. The effect on the properties can be evaluated individually. From the comparison result of FIG. 3, the short-circuit current density (J
SC ), the fill factor (FF), and the product thereof (J SC × FF) are all different from the solar cell (D) using a single-layer ZnO: Al transparent conductive film in the first and second embodiments of the present invention. The layer is ZnO:
Al and the solar cells (A) and (B) having a laminated structure in which the third layer is composed of a ZnO: Ga transparent conductive film, and the first to third layers are composed of Zn.
It was found that the solar cell (C) using a transparent conductive film having a laminated structure of O: Al showed better results.

【0027】この結果より、DCスパッタ法で作製した
窓層が積層構造のZnO:Ga透明導電膜を使用するこ
とにより、従来の単層又は積層のZnO:Al透明導電
膜における膜の問題点であった、直列抵抗成分が大きい
ために、短絡電流密度(JSC)が低いという欠点を改善
でき、更に、低いDCスパッタ電流で製膜できるため、
界面接合特性を劣化させる欠点も透明導電膜の膜厚を薄
膜化することで解決できる。
From these results, it was found that the use of the ZnO: Ga transparent conductive film having the laminated structure as the window layer formed by the DC sputtering method caused the problem of the conventional single-layer or laminated ZnO: Al transparent conductive film. The disadvantage that the short circuit current density (J SC ) is low due to the large series resistance component can be improved, and the film can be formed with a low DC sputtering current.
The disadvantage of deteriorating the interface bonding characteristics can also be solved by reducing the thickness of the transparent conductive film.

【0028】本発明で提案する窓層が積層構造のZnO
系透明導電膜を使用した太陽電池と単層のZnO:Al
透明導電膜を用いた太陽電池の変換効率〔%〕の比較結
果を図4に示す。
The window layer proposed in the present invention has a laminated structure of ZnO.
Cell using single transparent conductive film and ZnO: Al of single layer
FIG. 4 shows a comparison result of the conversion efficiency [%] of the solar cell using the transparent conductive film.

【0029】(a)は単層のZnO:Al透明導電膜を
用いた太陽電池の特性、(b)は第1及び2層がZn
O:Al、第3層がZnO:Gaからなる積層構造の透
明導電膜を用いた太陽電池の特性、(c)は本発明の第
1乃至3層がZnO:Gaからなる積層構造の透明導電
膜を用いた太陽電池(Gaの含有量:第1層3.4%、
第2及び3層5.7%)、(d)は本発明の第1乃至3
層がZnO:Gaからなる積層構造の透明導電膜を用い
た太陽電池(Gaの含有量:第1乃至3層5.7%)の
特性である。
(A) shows the characteristics of a solar cell using a single-layer ZnO: Al transparent conductive film, and (b) shows that the first and second layers are made of Zn.
Characteristics of a solar cell using a transparent conductive film having a laminated structure of O: Al and a third layer of ZnO: Ga, and (c) shows a transparent conductive film of a laminated structure of the first to third layers of ZnO: Ga of the present invention. Solar cell using film (Ga content: first layer 3.4%,
(2nd and 3rd layers 5.7%), (d) are the first to third layers of the present invention.
This is a characteristic of a solar cell (Ga content: first to third layers 5.7%) using a transparent conductive film having a layered structure of ZnO: Ga.

【0030】前記図4の比較結果より、太陽電池の変換
効率では、単層のZnO:Al透明導電膜を用いた太陽
電池(a)と比べて、本発明のZnO:Al及びZn
O:Gaの積層構造並びにZnO:Gaのみの積層構造
の太陽電池(b)、(c)、(d)が良好な結果を示す
ことが判明した。
According to the comparison result shown in FIG. 4, the conversion efficiency of the solar cell is higher than that of the solar cell (a) using a single-layer ZnO: Al transparent conductive film in comparison with the solar cell (a) of the present invention.
It was found that solar cells (b), (c), and (d) having a stacked structure of O: Ga and a stacked structure of only ZnO: Ga showed good results.

【0031】[0031]

【発明の効果】以上のように、本発明は、低出力のRF
スパッタ法によりZnO系透明導電膜の一部を製膜した
後、残りのZnO系透明導電膜部分をDCスパッタ法を
複数工程にわけてスパッタ処理することにより、スパッ
タ衝撃の影響を低減しつつ、MOCVD法で作製したZ
nO:B透明導電膜と同等の性能を有する透明導電膜
を、高速、且つ大面積で製膜することができる。また、
ZnO:Ga層を積層構造の中に取り入れることによ
り、耐湿性を確保することができる。
As described above, the present invention provides a low-power RF
After forming a part of the ZnO-based transparent conductive film by the sputtering method, the remaining ZnO-based transparent conductive film portion is subjected to the sputtering process by dividing the DC sputtering method into a plurality of steps, thereby reducing the influence of the sputtering impact. Z produced by MOCVD
A transparent conductive film having performance equivalent to that of the nO: B transparent conductive film can be formed at high speed and in a large area. Also,
By incorporating the ZnO: Ga layer into the laminated structure, moisture resistance can be ensured.

【0032】更に、DCスパッタ法で作製した積層構造
のZnO:Ga透明導電膜を使用することにより、DC
スパッタ法における高速製膜が可能であるという長所を
生かしつつ、直列抵抗値を低減して、短絡電流密度(J
SC)を大きくすることができると共に、透明導電膜の膜
厚を薄膜化することにより、接合界面又は光吸収層表面
の損傷を防止して、界面接合特性を改善することが可能
となり、曲線因子(FF)を大きくできる。
Further, by using a ZnO: Ga transparent conductive film having a laminated structure produced by a DC sputtering method, a DC
While taking advantage of the fact that high-speed film formation by sputtering is possible, the series resistance is reduced and the short-circuit current density (J
SC ) can be increased, and by reducing the thickness of the transparent conductive film, damage to the bonding interface or the surface of the light absorbing layer can be prevented, and the interface bonding characteristics can be improved. (FF) can be increased.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 裏面電極層上に、光吸収層(p型)、界
面層(バッファー層)、窓層(n型)及び上部電極の順
に積層される薄膜太陽電池のZnO系透明導電膜におい
て、前記窓層が、界面層上に形成され界面保護膜として
作用する第1の膜と、前記第1の膜上に形成される第2
のZnO系透明導電膜と、前記第2の透明導電膜上に形
成される第3のZnO系透明導電膜とからなる積層体
で、前記第1膜及び第2〜3の透明導電膜がZnO:A
l又はZnO:Gaからなることを特徴とする薄膜太陽
電池のZnO系透明導電膜。
1. A ZnO-based transparent conductive film of a thin-film solar cell in which a light absorbing layer (p-type), an interface layer (buffer layer), a window layer (n-type) and an upper electrode are laminated on a back electrode layer in this order. A first film formed on the interface layer and acting as an interface protective film, and a second film formed on the first film;
And a third ZnO-based transparent conductive film formed on the second transparent conductive film, wherein the first film and the second to third transparent conductive films are made of ZnO-based transparent conductive film. : A
1 or ZnO: A ZnO-based transparent conductive film for a thin-film solar cell, comprising Ga.
【請求項2】 前記第1の膜は、膜厚が100nm以下
であることを特徴とする請求項1記載の薄膜太陽電池の
ZnO系透明導電膜。
2. The ZnO-based transparent conductive film according to claim 1, wherein the first film has a thickness of 100 nm or less.
【請求項3】 前記第2の透明導電膜及び第3の透明導
電膜は、ドーパントとしてAl、Ga、In、B又はこ
れらの組み合わせたものを含むZnOからなることを特
徴とする請求項1記載の薄膜太陽電池のZnO系透明導
電膜。
3. The method according to claim 1, wherein the second transparent conductive film and the third transparent conductive film are made of ZnO containing Al, Ga, In, B or a combination thereof as a dopant. ZnO-based transparent conductive film for thin-film solar cells.
【請求項4】 裏面電極層上に、光吸収層(p型)、界
面層(バッファー層)、窓層(型形)及び上部電極の順
に積層される薄膜太陽電池のZnO系透明導電膜の製造
方法であって、界面層上にRFスパッタ法により第1の
膜(界面保護膜として作用する)を作製する工程と、前
記第1の膜上にスパッタ法により第2の透明導電膜を作
製する工程と、前記第2の透明導電膜上にスパッタ法に
より第3の透明導電膜を作製する工程とからなり、前記
各工程において、ZnO:Al又はZnO:Gaターゲ
ットを用いることを特徴とする薄膜太陽電池のZnO系
透明導電膜の製造方法。
4. A ZnO-based transparent conductive film of a thin-film solar cell which is laminated on a back electrode layer in the order of a light absorbing layer (p-type), an interface layer (buffer layer), a window layer (model) and an upper electrode. A method for producing a first film (acting as an interfacial protective film) on an interface layer by RF sputtering, and producing a second transparent conductive film on the first film by sputtering. And a step of forming a third transparent conductive film on the second transparent conductive film by a sputtering method. In each of the above steps, a ZnO: Al or ZnO: Ga target is used. A method for producing a ZnO-based transparent conductive film for a thin-film solar cell.
【請求項5】 裏面電極層上に、光吸収層(p型)、界
面層(バッファー層)、窓層(n型)及び上部電極の順
に積層される薄膜太陽電池のZnO系透明導電膜の製造
方法であって、界面層上にRFマグネトロンスパッタ法
により第1の膜(界面保護膜として作用する)を作製す
る工程と、前記第1の膜上にDCマグネトロンスパッタ
法により第2の透明導電膜を作製する工程と、前記第2
の透明導電膜上にDCマグネトロンスパッタ法により第
3の透明導電膜を作製する工程とからなり、前記各工程
において、ZnO:Al又はZnO:Gaターゲットを
用いることを特徴とする薄膜太陽電池のZnO系透明導
電膜の製造方法。
5. A ZnO-based transparent conductive film of a thin-film solar cell which is laminated on a back electrode layer in the order of a light absorbing layer (p-type), an interface layer (buffer layer), a window layer (n-type) and an upper electrode. A method of manufacturing a first film (acting as an interface protective film) on an interface layer by RF magnetron sputtering, and a method of forming a second transparent conductive film on the first film by DC magnetron sputtering. Forming a film;
Forming a third transparent conductive film on the transparent conductive film by a DC magnetron sputtering method, wherein each step uses a ZnO: Al or ZnO: Ga target. Method for producing transparent transparent conductive film.
【請求項6】 前記RFスパッタ法又はRFマグネトロ
ンスパッタ法においては、パワー密度が2.2W/cm
2 以下で、ZnO:Al又はZnO:Ga透明導電膜を
作製することを特徴とする請求項4又は5記載の薄膜太
陽電池のZnO系透明導電膜の製造方法。
6. A power density of 2.2 W / cm in the RF sputtering method or the RF magnetron sputtering method.
6. The method for producing a ZnO-based transparent conductive film of a thin-film solar cell according to claim 4, wherein a ZnO: Al or ZnO: Ga transparent conductive film is prepared in 2 or less.
JP10098228A 1998-03-27 1998-03-27 Method of manufacturing ZnO-based transparent conductive film for thin film solar cell Expired - Fee Related JP3040373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10098228A JP3040373B2 (en) 1998-03-27 1998-03-27 Method of manufacturing ZnO-based transparent conductive film for thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10098228A JP3040373B2 (en) 1998-03-27 1998-03-27 Method of manufacturing ZnO-based transparent conductive film for thin film solar cell

Publications (2)

Publication Number Publication Date
JPH11284211A true JPH11284211A (en) 1999-10-15
JP3040373B2 JP3040373B2 (en) 2000-05-15

Family

ID=14214113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10098228A Expired - Fee Related JP3040373B2 (en) 1998-03-27 1998-03-27 Method of manufacturing ZnO-based transparent conductive film for thin film solar cell

Country Status (1)

Country Link
JP (1) JP3040373B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264307A (en) * 2002-03-11 2003-09-19 Sharp Corp Thin film solar cell and its manufacturing method
US6822158B2 (en) * 2002-03-11 2004-11-23 Sharp Kabushiki Kaisha Thin-film solar cell and manufacture method therefor
KR100682741B1 (en) 2005-06-17 2007-02-15 한국과학기술연구원 Fabrication method of zinc oxide based transparent conductive oxide thin film
JP2007527121A (en) * 2004-03-05 2007-09-20 ソリブロ アーベー Method and apparatus for in-line process control of CIGS process
US7315662B2 (en) 2000-08-25 2008-01-01 N Gimat Co. Electronic and optical devices and methods of forming these devices
WO2008059857A1 (en) * 2006-11-17 2008-05-22 Kaneka Corporation Thin-film photoelectric conversion device
EP2028695A1 (en) * 2007-07-12 2009-02-25 Applied Materials, Inc. Method for creating a transparent conductible oxide coating
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
JP2009199986A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Zinc oxide transparent conductive film lamination layer, transparent conductive substrate and device
WO2009110092A1 (en) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Laminated structuer of cis-type solar battery and integrated structure
JP2009259938A (en) * 2008-04-15 2009-11-05 Honda Motor Co Ltd Method of manufacturing chalcopyrite thin film solar cell, and apparatus therefor
JP2009265629A (en) * 2008-03-31 2009-11-12 Kochi Univ Of Technology Display substrate, and manufacturing method and display device therefor
JP2010199305A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric conversion device
KR20130027991A (en) * 2011-09-08 2013-03-18 서울옵토디바이스주식회사 Ito for transparent electrode and method for the same
JP2013533637A (en) * 2010-07-30 2013-08-22 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof
CN103681888A (en) * 2013-12-24 2014-03-26 上海交通大学 Silicon-based thin-film solar cell with doped ZnOnano-wires distributed on surface
JP2020204057A (en) * 2019-06-14 2020-12-24 株式会社アルバック Formation method of transparent conductive oxide film, sputtering apparatus and solar cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804399A (en) * 2009-06-16 2012-11-28 Lg伊诺特有限公司 Solar cell and method of fabricating the same
US8546797B2 (en) 2009-10-20 2013-10-01 Stanley Electric Co., Ltd. Zinc oxide based compound semiconductor device
KR101154577B1 (en) * 2010-07-30 2012-06-08 엘지이노텍 주식회사 Solar cell and method of fabricating the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315662B2 (en) 2000-08-25 2008-01-01 N Gimat Co. Electronic and optical devices and methods of forming these devices
US6822158B2 (en) * 2002-03-11 2004-11-23 Sharp Kabushiki Kaisha Thin-film solar cell and manufacture method therefor
JP2003264307A (en) * 2002-03-11 2003-09-19 Sharp Corp Thin film solar cell and its manufacturing method
JP2007527121A (en) * 2004-03-05 2007-09-20 ソリブロ アーベー Method and apparatus for in-line process control of CIGS process
KR100682741B1 (en) 2005-06-17 2007-02-15 한국과학기술연구원 Fabrication method of zinc oxide based transparent conductive oxide thin film
WO2008059857A1 (en) * 2006-11-17 2008-05-22 Kaneka Corporation Thin-film photoelectric conversion device
EP2028695A1 (en) * 2007-07-12 2009-02-25 Applied Materials, Inc. Method for creating a transparent conductible oxide coating
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
JP4670877B2 (en) * 2008-02-25 2011-04-13 住友金属鉱山株式会社 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device
JP2009199986A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Zinc oxide transparent conductive film lamination layer, transparent conductive substrate and device
WO2009110092A1 (en) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Laminated structuer of cis-type solar battery and integrated structure
JP2009265629A (en) * 2008-03-31 2009-11-12 Kochi Univ Of Technology Display substrate, and manufacturing method and display device therefor
JP2009259938A (en) * 2008-04-15 2009-11-05 Honda Motor Co Ltd Method of manufacturing chalcopyrite thin film solar cell, and apparatus therefor
JP2010199305A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Method of manufacturing photoelectric conversion device
JP2013533637A (en) * 2010-07-30 2013-08-22 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof
US9871159B2 (en) 2010-07-30 2018-01-16 Lg Innotek Co., Ltd. Apparatus for generating electricity using solar power and method for manufacturing same
KR20130027991A (en) * 2011-09-08 2013-03-18 서울옵토디바이스주식회사 Ito for transparent electrode and method for the same
CN103681888A (en) * 2013-12-24 2014-03-26 上海交通大学 Silicon-based thin-film solar cell with doped ZnOnano-wires distributed on surface
JP2020204057A (en) * 2019-06-14 2020-12-24 株式会社アルバック Formation method of transparent conductive oxide film, sputtering apparatus and solar cell

Also Published As

Publication number Publication date
JP3040373B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JP3527815B2 (en) Method for producing transparent conductive film of thin film solar cell
JP3040373B2 (en) Method of manufacturing ZnO-based transparent conductive film for thin film solar cell
US6137048A (en) Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby
JP3249408B2 (en) Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
US6534704B2 (en) Solar cell
US6169246B1 (en) Photovoltaic devices comprising zinc stannate buffer layer and method for making
JP2002057359A (en) Laminated solar battery
WO2006016577A1 (en) Cis type compound semiconductor thin film solar cell and method for preparing light-absorbing layer of said solar cell
US20130133734A1 (en) Photovoltaic cell
Takamoto et al. Improved junction formation procedure for low temperature deposited CdSCdTe solar cells
EP2403015B1 (en) Thin film article and method for forming a reduced conductive area in transparent conductive films for photovoltaic modules
CN101393942B (en) Polycrystalline-silicon carbide lamination thin-film solar cell
JP2014503125A (en) Solar cell and manufacturing method thereof
CN103469170B (en) A kind of sputtering target for thin-film solar cells
JP2003282902A (en) Thin film solar cell
JP2003282600A (en) Method and device for manufacturing light-absorbing layer
JPH10190030A (en) Photovoltaic element
JPH10150212A (en) Precursor for semiconductor thin film formation use and manufacture of semiconductor thin film
KR20100085769A (en) Cds/cdte thin film solar cells and manufacturing method thereof
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2975693B2 (en) Method for producing chalcopyrite-type compound thin film
JP2000012883A (en) Manufacture of solar cell
CN103474514B (en) The preparation method of copper indium gallium selenium solar cell
JP2000174306A (en) Manufacture of compound semiconductor thin film
JPH0456172A (en) Method for forming thin cuinse2 film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees