WO2013066088A1 - Transparent thin film, light-emitting device comprising same and method for manufacturing same - Google Patents

Transparent thin film, light-emitting device comprising same and method for manufacturing same Download PDF

Info

Publication number
WO2013066088A1
WO2013066088A1 PCT/KR2012/009147 KR2012009147W WO2013066088A1 WO 2013066088 A1 WO2013066088 A1 WO 2013066088A1 KR 2012009147 W KR2012009147 W KR 2012009147W WO 2013066088 A1 WO2013066088 A1 WO 2013066088A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
type impurity
doped
zno thin
light emitting
Prior art date
Application number
PCT/KR2012/009147
Other languages
French (fr)
Korean (ko)
Inventor
이해권
이석헌
Original Assignee
주식회사 퀀텀디바이스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 퀀텀디바이스 filed Critical 주식회사 퀀텀디바이스
Publication of WO2013066088A1 publication Critical patent/WO2013066088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a transparent thin film, a light emitting device including the same, and a method for manufacturing the same, and more particularly, to a transparent thin film including a plurality of ZnO thin films, a light emitting device including the same, and a method for manufacturing the same.
  • N-type impurities are doped, p-type impurities such as As are doped, or n-type impurities such as Ga and p-type impurities such as As are simultaneously doped.
  • nitride semiconductors Materials of light emitting devices, particularly nitride semiconductors, have been spotlighted as core materials of light emitting devices such as light emitting diodes (LEDs) or laser diodes (LDs) with excellent physical and chemical properties.
  • the nitride semiconductor is usually made of a GaN-based material having a composition formula of Al x In y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • 1 is a cross-sectional view schematically showing a laminated structure of a light emitting device using a conventional AlInGaN-based nitride semiconductor.
  • the n-type nitride semiconductor layer 105 and the n-type nitride cladding layer 107 functioning as the substrate 101, the buffer layer 103, and the first electrode contact layer.
  • the active layer 109, the p-type nitride cladding layer 111, the p-type nitride semiconductor layer 113, and the n / p-type second electrode contact layer 115 are laminated and grown.
  • a transparent electrode layer particularly an ITO transparent electrode layer 117, is formed on the n / p-type second electrode contact layer 115, and finally a p-type for wire bonding.
  • the electrode pad 121 and the n-type electrode pad 119 are formed as shown in FIG.
  • the buffer layer 103 may be grown on the substrate 101 to minimize crystal defects caused by the difference in lattice constant and thermal expansion coefficient of the sapphire substrate 101 and the n-type nitride semiconductor layer 105.
  • the buffer layer 103 may be formed of GaN-based or AlN-based nitride having a thickness of 50 nm or less having an amorphous crystal phase at a low temperature of 500 ° C to 600 ° C.
  • an undoped GaN layer may be further formed on the buffer layer 103.
  • the type nitride semiconductor layer 105 is grown.
  • the n-type nitride semiconductor layer 105 is used as the first electrode contact layer in electrical contact with the n-type electrode pad 119.
  • the growth temperature is lowered to 700 ° C. to 800 ° C.
  • the active layer 109 having a single or multiple quantum well structure of InGaN / GaN and InGaN / InGaN. 109 is formed. Thereafter, the p-type nitride cladding layer 111, the p-type nitride semiconductor layer 113, and the n / p-type second electrode contact layer 115 are formed on the active layer 109.
  • n-type Si, p-type Cp 2 Mg or DMZn are doped as impurities.
  • DMZn is used as the p-type impurity
  • the Zn atoms are positioned at the 'deep energy level' as the acceptor in the n / p-type second electrode contact layer 115 to form holes as carriers.
  • the activation energy is so high that when the bias is applied, the carrier hole concentration is limited to ⁇ 10 17 / cm 3 . Therefore, as a p-type impurity for growing the n / p-type second electrode contact layer 115, relatively low activation energy Cp 2 Mg is used as the doping source.
  • the second electrode contact layer 115 is grown using a Cp 2 Mg as a doping source
  • NH 3 source gas used as a nitrogen (N) source in the GaN layer and hydrogen (H) gas separated from the doping source are combined.
  • Mg-H complex is formed and has a high resistance insulator characteristic of ⁇ 10 6 ohm.cm or more.
  • an activation process for breaking the bond of the Mg-H composite an activation process is required.
  • the activation process is performed through an annealing process in a temperature condition of 600 °C ⁇ 800 °C and N 2 or N 2 / O 2 atmosphere, but the activation efficiency of Mg present in the second electrode contact layer 115 As a result, the second electrode contact layer 115 has a much higher resistance characteristic than the n-type nitride semiconductor layer 105 which is the first electrode contact layer even when the activation process proceeds.
  • the Mg atomic concentration in the second electrode contact layer 115 is about 10 19 / cm 3 to 10 21 / cm 3 , but the concentration of the hole which is a carrier contributing to the electrical conductivity is 10 17 / cm 3 It is only a degree, and the hall mobility is very low, 10 cm 2 / Vsec.
  • Mg, Mg-H composites, crystal defects, and the like remaining in the second electrode contact layer 115 without being fully activated may trap light emitted from the active layer 109 toward the surface, or a high current When is applied, heat is generated by the resistance characteristics of the second electrode contact layer 115, which is relatively very high, thereby shortening the lifespan of the light emitting device and adversely affecting reliability.
  • a high current of 350 mA is applied, which is much higher than the existing 20 mA, so that a junction temperature of 100 ° C. or more occurs at the p- / n- junction surface.
  • the doping concentration of silicon increases linearly proportionally and is easily controlled in the range of 1 ⁇ 10 18 / cm 3 to 9 ⁇ 10 18 / cm 3 within a critical thickness where crystallinity is guaranteed, but the second In the case of the electrode contact layer 115, the carrier concentration purely contributes to the electron conductivity even if Mg atoms of up to ⁇ 10 21 / cm 3 or more are increased by increasing the flow rate of Cp 2 Mg as a doping source, and the hole concentration is 1 ⁇ 10 17 / cm Since it is limited in the range of 3 to 8 ⁇ 10 17 / cm 3 , it has a structure of a p- / n-junction light emitting device having an asymmetrical doping distribution. As described above, the low carrier concentration and the high resistance characteristics of the second electrode contact layer 115 lower the internal quantum efficiency, thereby limiting the implementation of a high efficiency AlInGaN-based nitride semiconductor light emitting device.
  • the AlInGaN-based nitride semiconductor light emitting device due to the high resistance characteristic of the second electrode contact layer 115, it corresponds to a lower portion of the p-type electrode pad 121 in electrical contact with the second electrode contact layer 115.
  • the InGaN / GaN multiple quantum well layer of the active layer 109 light is emitted through the recombination process of electrons and holes.
  • the p-type electrode pad 121 is connected by Au wire and wire bonding in a package process, the total metal thickness is deposited to be 1 ⁇ m or more so that light emitted from the active layer 109 does not pass through the thick metal. Failure to do so can result.
  • the transparent electrode has excellent light transmittance and low contact resistance with the second electrode contact layer 115 to improve the current concentration of the light emitting device and achieve uniform current spreading to the actual light emitting area of the active layer 109. This is necessary.
  • the above-described problems of the AlInGaN-based nitride semiconductor are solved by developing and applying a chip process technology to the limitation of the epi-wafer growth technology of the AlInGaN-based nitride semiconductor described above.
  • a solution is proposed. First, an attempt was made to lower the contact resistance by applying a thin Ni / Au alloy on the second electrode contact layer 115. That is, in order to improve current spreading of the second electrode contact layer 115 and increase luminous efficiency, a Ni / Au alloy having a thickness of 20 nm or less was used as the electrode material.
  • Ni / Au alloy which is used as an electrode material, is a transmissive metal and has a very thin NiO film at the interface when contacted with the second electrode contact layer 115, resulting in low contact resistance, but having a relative light transmittance of 50% to 60%. Low, it is difficult to implement a high efficiency light emitting device.
  • ITO In 2 O 3 : Sn
  • ITO is a transparent electrode instead of Ni / Au-transmissive metal, which has been mass-produced since 2002 as a transparent electrode. It is widely applied to backlight units and lighting products for LCD TVs. By using ITO as a transparent electrode, a breakthrough technical advance has been made in which the light output of the light emitting device is improved by about 30%.
  • the ITO transparent electrode layer 117 can be deposited using equipment for sputtering deposition and e-beam evaporation.
  • the light transmittance is 85% or more and the contact resistance is about 10 -5 ohm.cm.
  • the contact resistance is about 10 -5 ohm.cm.
  • the research and development for improving the performance of the ITO material itself used as a transparent electrode of the light emitting device has been continuously carried out, but the results are incomplete.
  • the performance of the light emitting device has been improved through the development of the patterning or texturing process technology for the ITO transparent electrode. This is not the case.
  • the reserve of indium (In) constituting the ITO material is extremely limited, which leads to a problem in that the manufacturing cost is very high.
  • ZnO thin film that can be used as a transparent electrode of the light emitting device has an excellent light transmittance of 85% or more, and has the same hexagonal crystal structure as that of the AlInGaN-based nitride semiconductor light emitting device, and has excellent thermal stability, thereby providing large area / high output light emission. It can be effectively applied to the device, and has the advantages of high refractive index and easy adjustment of energy bandgap.
  • the ZnO thin film has an advantage of easily forming columnar microstructures in the crystal growth direction.
  • the ZnO thin film uses much richer zinc (Zn) than the indium (In) of the conventional ITO transparent electrode, thereby providing a low cost smooth and stable supply of raw materials.
  • the ZnO material which can replace the conventional ITO transparent electrode, is formed on the p-GaN layer, which is the second electrode contact layer, and has the same hexagonal crystal structure as the p-GaN layer. Since the same can be applied to have the advantage of easily obtaining a good crystallinity.
  • the ZnO material may have a light transmittance of 90% or more due to a high refractive index and a low absorption coefficient, and the escape angle of light emitted from the InGaN / InGaN or InGaN / GaN active layer toward the surface through a change in the formation structure. The transmission efficiency of the light emitting device may be improved by changing the angle).
  • a light emitting device in order to increase the recombination efficiency of electrons and holes in the active layer with high light transmittance in terms of light emission, the contact resistance between the p- / n- electrode is minimized, so that the internal quantum efficiency is maximized even when a low voltage is applied.
  • the resistance design technology In order to be practically applied in mass production, the resistance design technology must be satisfied.
  • a direction of growing amorphous and polycrystalline structures containing additives using sputtering, electron beam deposition, molecular beam epitaxy (MBE), organic chemical vapor deposition (MOCVD), or pulse laser Research and development is progressing toward growing a single crystal structure doped with impurities using a deposition method (PLD).
  • the above-mentioned growth methods can be used to easily obtain a high permeability characteristic through the ZnO material itself or a change in structure, but the results with high electrical conductivity due to low contact resistance have not been obtained to date.
  • the development direction of ZnO transparent electrode is largely developed for nanorod and nanowire shapes to improve light transmittance, and impurities contributing to electrical conductivity in the form of thin film of 5000 ⁇ or less for improving light transmittance and electrical conductivity. It can be classified as the development of n- / p- doped structure with addition or doping.
  • ZnO transparent ZnO: Ga electrode for InGaN-LED and homoepitaxial ZnO films for UV-LEDs.
  • GZ0 zinc oxide: with n-type electrical conductivity is obtained by doping gallium (Ga) as a doping source during ZnO thin film growth process using molecular beam epitaxy (MBE).
  • MBE molecular beam epitaxy
  • a doping source of a ZnO thin film having n-type electrical conductivity Group III elements such as B, Al, Ca, In, and the like, and F, Cl, H, etc. may be used to easily form an n-type ZnO thin film.
  • Group III elements such as B, Al, Ca, In, and the like, and F, Cl, H, etc. may be used to easily form an n-type ZnO thin film.
  • P, As, N, C, Li, F, Na, etc. are used as doping sources for ZnO thin films with p-type electrical conductivity, but oxygen vacancies, native defects, and automatic compensation in forming ZnO thin films It is very difficult to form a p-type ZnO thin film because a non-radiative defect center does not contribute to electrical conductivity due to the self compensation effect and thus has n-type ZnO characteristics.
  • the present invention relates to an n / p-bonded ZnO light emitting device using a p-type ZnO single crystal thin film instead of a transparent electrode.
  • a p-type ZnO single crystal thin film instead of a transparent electrode.
  • PLD pulse radar deposition
  • p-type ZnO single crystal thin films having low resistance as N-Ga (C-In) co-doped using molecular beam epitaxy (MBE) are described, but p / n is not applied to transparent electrodes.
  • the present invention relates to a bonded ZnO light emitting device, and a light emitting device for improving light transmittance and electrical conductivity as a transparent electrode is not disclosed.
  • p-n ZnO single crystal thin films having low resistance were grown by secondary doping of F-Ga co-doped and Mg and Be elements using molecular beam epitaxy (MBE).
  • US 7,608,308 relates to p-ZnO single crystal thin film layers of p / n-bonded ZnO light-emitting devices by forming P-Li co-doped p-ZnO single crystals using pulsed laser deposition (PLD), but as a transparent electrode. There is no disclosure of light transmittance and electrical conductivity.
  • an object of the present invention is to provide a transparent thin film comprising a plurality of ZnO thin films having high light transmittance and high electrical conductivity at the same time, a light emitting device including the same, and a method of manufacturing the same.
  • Each ZnO thin film included in the ZnO thin film is doped with n-type impurities such as Ga, p-type impurities such as As, or simultaneously n-type impurities such as Ga and p-type impurities such as As. do.
  • Another object of the present invention is to use n- such as Ga using at least one of molecular beam epitaxy (MBE), organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), and atomic layer epitaxy (ALE).
  • MBE molecular beam epitaxy
  • MOCVD organic chemical vapor deposition
  • ALD atomic layer deposition
  • ALE atomic layer epitaxy
  • the present invention provides a method for manufacturing a highly efficient light emitting device having high light output, low operating voltage and high reliability, as well as being applicable to mass production.
  • the composition formula of Al x In y Ga (1-xy) N, (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) A nitride semiconductor light emitting device having: a substrate; a buffer layer formed on the substrate; a first electrode contact layer formed on the buffer layer; a first clad layer formed on the first electrode contact layer; and formed on the first clad layer A multi-layered transparent electrode formed on the active layer, the second cladding layer formed on the active layer, the second electrode contact layer formed on the second cladding layer, the second electrode contacting layer, and a plurality of ZnO thin films stacked thereon; Wherein at least some of the ZnO thin films are doped with n-type impurities which are at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H, or Group V of N, P, As, Sb P-type impurities, which are at least one selected
  • the n-type impurity is Ga
  • the p-type impurity is As
  • at least a portion of the ZnO thin films of the plurality of ZnO thin films may be different in thickness from other ZnO thin films.
  • the transparent electrode may be a multi-layered structure in which a ZnO thin film doped with n-type impurities and a ZnO thin film doped with p-type impurities are alternately stacked a plurality of times. The thickness of each of the ZnO thin film is characterized in that the same.
  • the transparent electrode may be a multi-layered structure in which a ZnO thin film doped with the p-type impurity and a ZnO thin film doped with the n-type impurity are alternately stacked a plurality of times.
  • the thickness of each of the ZnO thin film is characterized in that the same.
  • the transparent electrode has a multi-layered structure in which the ZnO thin film doped with the n-type impurity and the ZnO thin film doped with the p-type impurity are stacked.
  • the thickness of each of the ZnO thin film is characterized in that the same.
  • the transparent electrode has a multi-layered structure in which the ZnO thin film doped with the p-type impurity and the ZnO thin film doped with the n-type impurity are stacked.
  • the thickness of each of the ZnO thin film is characterized in that the same.
  • the transparent electrode has a multi-layered structure in which a ZnO thin film doped with the n-type impurity and the p-type impurity and a ZnO thin film doped with the n-type impurity are stacked.
  • the thickness of the ZnO thin film doped with the n-type impurity is thinner than the thickness of the ZnO thin film that is simultaneously doped with the n-type impurity and the p-type impurity.
  • the transparent electrode has a multi-layered structure in which the ZnO thin film doped with the n-type impurity, the ZnO thin film doped with the p-type impurity and the ZnO thin film doped with the n-type impurity are stacked. do.
  • the thickness of the ZnO thin film doped with the n-type impurity is thinner than the thickness of the ZnO thin film doped with the p-type impurity or the thickness of the ZnO thin film doped with the n-type impurity.
  • the transparent electrode is formed by stacking a ZnO thin film doped with the n-type impurity, a ZnO thin film doped with the n-type impurity and the p-type impurity, and a ZnO thin film doped with the n-type impurity. It is characterized in that the multi-layered structure.
  • the thickness of the ZnO thin film doped with the n-type impurity and the thickness of the ZnO thin film doped with the n-type impurity are the thickness of the ZnO thin film simultaneously doped with the n-type impurity and the p-type impurity. It is characterized by a thinner than.
  • each ZnO thin film is characterized in that the ZnO single crystal thin film.
  • the n-type impurity of the n-type impurity and the p-type impurity which is simultaneously doped is the main cause for improving the electrical characteristics
  • the p-type impurity is the main cause for improving the optical characteristics do.
  • a transparent thin film has a multilayer structure in which a plurality of ZnO thin films are laminated, and at least some ZnO thin films are formed from a group consisting of Group III elements of B, Al, Ga, In, and F, Cl, H.
  • the at least one selected n-type impurity is doped, or the at least one p-type impurity selected from the group consisting of Group V elements of N, P, As, Sb and Li, Na, C is doped, or the n-type impurity
  • the p-type impurity can be provided at the same time to provide a transparent thin film.
  • the present invention has a multi-layer structure in which a plurality of ZnO thin film is laminated, at least some ZnO thin film is at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H Phosphorus n-type impurities are doped, or p-type impurities which are at least one selected from the group consisting of Group V elements of N, P, As, and Sb and Li, Na, and C are doped, or the n-type impurities and the p It is possible to provide a light emitting device comprising a transparent thin film, characterized in that the -type impurities are formed by co-doped.
  • a method of forming a transparent thin film includes laminating a plurality of ZnO thin films, wherein at least some of the ZnO thin films are group III elements of B, Al, Ga, In and F, Cl, H At least one n-type impurity selected from the group consisting of doped or at least one p-type impurity selected from the group consisting of Group V elements of N, P, As, and Sb and Li, Na, C, or It is possible to provide a method for forming a transparent thin film, wherein the n-type impurity and the p-type impurity are simultaneously doped.
  • a method of manufacturing a light emitting device includes the step of forming a transparent thin film, wherein the forming of the transparent thin film includes a process of laminating a plurality of ZnO thin film, at least a portion of the ZnO thin film Group III elements of B, Al, Ga, In and at least one n-type impurity selected from the group consisting of F, Cl, H are doped, or Group V elements of N, P, As, Sb and Li, Na, C It is possible to provide a method of manufacturing a light emitting device, characterized in that the at least one p-type impurity selected from the group consisting of doped, or the n-type and the p-type impurity is formed by co-doped.
  • ZnO thin films are doped with n-type impurities such as Ga, p-type impurities such as As, or co-doped n-type impurities such as Ga and p-type impurities such as As.
  • n-type impurities such as Ga
  • p-type impurities such as As
  • co-doped n-type impurities such as Ga
  • p-type impurities such as As
  • MBE molecular beam epitaxy
  • MOCVD organic chemical vapor deposition
  • ALD atomic layer deposition
  • ALE atomic layer epitaxy
  • n-type impurities such as Ga based on zinc (Zn) which can improve the manufacturing cost, or As Maximize economics by using ZnO thin films, in which a plurality of ZnO single crystal thin films are laminated, in which a p-type impurity is doped or a n-type impurity such as Ga and a p-type impurity such as As are simultaneously stacked
  • ZnO thin films in which a plurality of ZnO single crystal thin films are laminated, in which a p-type impurity is doped or a n-type impurity such as Ga and a p-type impurity such as As are simultaneously stacked
  • a transparent thin film, an AlInGaN-based nitride semiconductor light emitting device including the same, and a method of manufacturing the same can be provided.
  • the present invention is not limited to AlInGaN-based nitride semiconductor light emitting devices, and can be applied to various application fields such as touch pads, organic EL, solar cells, etc., which can replace conventional ITO materials.
  • a transparent electrode and its manufacturing method can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a laminated structure of a light emitting device using a conventional AlInGaN-based nitride semiconductor.
  • FIG. 2 is a flowchart schematically illustrating a process of forming a ZnO thin film having a multilayer structure used as a transparent electrode of an AlInGaN-based nitride semiconductor light emitting device according to a preferred embodiment of the present invention.
  • FIG. 2 is a flowchart schematically illustrating a process of forming a ZnO thin film having a multilayer structure used as a transparent electrode of an AlInGaN-based nitride semiconductor light emitting device according to a preferred embodiment of the present invention.
  • FIG 3 is a cross-sectional view schematically showing a laminated structure of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a stacked structure of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another exemplary embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to an exemplary embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another exemplary embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention.
  • FIG. 10 illustrates n-type (Ga) and p-type (As) impurities doped in a ZnO thin film grown on a second electrode contact layer of a light emitting device using an AlInGaN-based nitride semiconductor according to an exemplary embodiment of the present invention.
  • the present invention relates to ZnO thin films, in particular ZnO single crystals, which are doped with n-type impurities such as Ga, p-type impurities such as As, or simultaneously doped with n-type impurities such as Ga and p-type impurities such as As.
  • the present invention relates to a transparent thin film in which a plurality of thin films are stacked, a light emitting device including the same, and a manufacturing method thereof.
  • a transparent thin film in which an n-type impurity such as Ga is doped, a p-type impurity such as As is doped, or an n-type impurity such as Ga and a p-type impurity such as As is simultaneously doped.
  • the ZnO single crystal thin film is not limited thereto.
  • the light emitting device according to the present invention is a nitride semiconductor light emitting device, in particular Al x In y Ga (1-xy) N, (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) for convenience of description.
  • the transparent thin film according to the present invention is formed using the molecular beam epitaxy method (MBE) for convenience of description, but is not limited thereto.
  • MBE molecular beam epitaxy method
  • the transparent thin film may be doped with n-type impurities such as Ga, p-type impurities such as As, or n-type impurities such as Ga and p-type such as As.
  • a nitride semiconductor light emitting device (hereinafter referred to as AlInGaN-based nitride semiconductor light emitting device) having a composition formula of 0 ⁇ x + y ⁇ 1, and a ZnO thin film is formed by using a molecular beam epitaxy method (MBE).
  • MBE molecular beam epitaxy method
  • n-type impurities and p-type impurities which are simultaneously doped or individually doped to individual ZnO thin films are mainly Ga and As, but are not limited thereto.
  • the type impurity is at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H, and the p-type impurities are Group V elements of N, P, As, Sb, Li, Na, The at least one selected from the group consisting of C is also included in the technical scope of the present invention.
  • Individual single crystal ZnO thin films capable of forming a transparent electrode according to the present invention for example, single crystal ZnO thin films doped with n-type impurities such as Ga (hereinafter referred to as ZGO (ZnO: Ga) thin films or ZGO thin films or ZGO single crystal thin films).
  • ZGO ZnO: Ga
  • ZGO ZnO: Ga
  • MBE equipment molecular beam epitaxy equipment
  • ZGAO ZnO: Ga-As thin film or ZGAO single crystal thin film
  • the growth chamber of the ZnO thin film preferably the ZnO single crystal thin film
  • 2 is a flowchart schematically illustrating a process of forming a ZnO thin film having a multilayer structure used as a transparent electrode of an AlInGaN-based nitride semiconductor light emitting device according to a preferred embodiment of the present invention. Referring to FIG.
  • the MBE equipment for forming a ZnO thin film having a multi-layer structure used as a transparent electrode of an AlInGaN-based nitride semiconductor light emitting device according to the present invention is an ultra-high vacuum equipment of 10 -9 torr or less and has an atomic level in a very clean environment. This has the advantage of growing the film very precisely.
  • MBE equipment for manufacturing a ZGAO thin film and an AlInGaN-based nitride semiconductor light emitting device employing the same according to the present invention is Al, In, Ga, Zn, As, Sb metal tablet (tablet) with high purity, preferably 99.999% or more in a high vacuum growth environment.
  • each metal source is housed, and a heater is settled, and is composed of independent individual cells controlling the flow rate.
  • an oxygen (O 2 ) gas of high purity, preferably 99.9999% or more, is used by dissociating using an RF plasma.
  • the substrate is heated. desirable.
  • the n-type impurity which is co-doped or individually doped to the ZnO thin film is preferably Ga, but at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H As a p-type impurity which is simultaneously doped or individually doped, it is preferably As, but may be at least one selected from the group consisting of Group V elements of N, P, As, and Sb, and Li, Na, and C.
  • ZGAO thin film, ZGO thin film, ZAO thin film, preferably ZGAO single crystal thin film, ZGO single crystal thin film, which can form a transparent thin film of the multi-layer structure according to the present invention is a light emitting structure comprising a substrate that is formed of a ZAO single crystal thin film is high Mg-doped p-GaN thin film having an unstable hexagonal structure, such as Mg, Mg-H composite, excess Mg that remains without being activated as a carrier as a carrier on the surface, but is not limited thereto.
  • a ZGAO thin film, a ZGO thin film, a ZAO thin film, preferably a ZGAO single crystal thin film, a ZGO single crystal thin film, and a ZAO single crystal thin film which can form a transparent thin film having a multilayer structure according to the present invention.
  • an AlInGaN-based nitride semiconductor light emitting device After the light emitting structure including the substrate having the structure is heated up to an appropriate heat treatment temperature, a ZGAO thin film, a ZGO thin film, a ZAO thin film, preferably a ZGAO single crystal thin film and a ZGO single crystal, which may form a transparent thin film having a multilayer structure according to the present invention.
  • the temperature is lowered to a temperature for forming the thin film, the ZAO single crystal thin film (step 201).
  • the heat treatment temperature of the mother substrate is preferably in the range of about 500 ° C to 700 ° C.
  • the temperature of each cell where the Al, In, Ga, Mg, Zn, As source is fixed is maintained at the optimum growth temperature condition for optimal flow rate control (step 203).
  • the optimal growth temperature in each cell may vary depending on the growth conditions of the ZGAO thin film, ZGO thin film, ZAO thin film, preferably ZGAO single crystal thin film, ZGO single crystal thin film, ZAO single crystal thin film, which can form a transparent thin film having a multilayer structure.
  • each cell may vary.
  • the temperature of the cell corresponding to the Zn source is appropriately in the range of about 300 ° C. to 600 ° C.
  • the temperature of the cell corresponding to the Ga source is suitably in the range of about 500 ° C. to 800 ° C. and corresponds to the As source.
  • the temperature of the cell is appropriately in the range of about 200 °C to 400 °C, within this range can be set the optimum flow conditions of each cell.
  • Appropriate temperature range of each cell described above is only one embodiment, it will be apparent to those skilled in the art that the present invention can be variously changed according to equipment specifications.
  • the optimal growth temperature is determined for the light emitting structure including the substrate, and the substrate is rotated after the optimal growth temperature is determined (step 205). Thereafter, the shutter of the cell provided with each material is opened to the light emitting structure including the rotating substrate correspondingly to the process (step 207).
  • an oxygen source obtained by dissociating oxygen (O 2 ) gas using an RF plasma may be further supplied to correspond to the process.
  • the shutter of each cell is opened to correspond to the process so that the material contained in the cell reaches the light emitting structure including the substrate by evaporation, and an oxygen source is further supplied to correspond to the process, thereby providing a multilayer structure according to the present invention.
  • ZGAO thin film, ZGO thin film, ZAO thin film, preferably ZGAO single crystal thin film, ZGO single crystal thin film, ZAO single crystal thin film that can form a transparent thin film is uniformly grown, ZGO thin film in which Ga, an n-type doping source, is individually doped , a transparent thin film comprising a plurality of ZAO thin films individually doped with As, a p-type doping source, and a ZGAO thin film simultaneously doped with Ga, an n-type doping source, and As, a p-type doping source.
  • a transparent electrode having a high light transmittance and a high electrical conductivity due to the low resistance characteristic (step 209).
  • Oxygen is generally present in a molecular state, but in order to proceed with the process according to the present invention, it is dissociated and supplied in an atomic state, and preferably, an RF plasma method may be used.
  • a transparent electrode formed of a multilayer structure including at least one of a ZGAO thin film, a ZGO thin film, a ZAO thin film, preferably a ZGAO single crystal thin film, a ZGO single crystal thin film, and a ZAO single crystal thin film according to the present invention The shutter of the cell is closed (step 211).
  • FIG 3 is a cross-sectional view schematically showing a laminated structure of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to an embodiment of the present invention
  • Figure 4 is a preferred embodiment of the present invention
  • FIGS. 3 and 4 exemplarily illustrate a state in which a ZnO thin film (including a ZnO single crystal thin film) according to the present invention is employed in a light emitting device, in particular, a light emitting device using an AlInGaN-based nitride semiconductor.
  • the scope is not to be construed as being limited thereto.
  • the light emitting device using the AlInGaN-based nitride semiconductor shown in FIGS. 3 and 4 includes an "Emitting Light Diode (LED)" and a "Laser Diode (LD)".
  • LED Light Diode
  • LD Laser Diode
  • the same parts as those of the conventional light emitting device using the conventional AlInGaN nitride semiconductor shown in Fig. 1 are omitted. Let's do it.
  • the n-type nitride semiconductor layer 305 serving as the substrate 301, the buffer layer 303, and the first electrode contact layer is provided.
  • the n-type nitride cladding layer 307, the active layer 309, the p-type nitride cladding layer 311 and the p-type nitride semiconductor layer 313 are sequentially stacked.
  • a thin p-InGaN layer or an n + -InGaN layer, an InGaN / InGaN superlattice layer, an n-InGaN / GaN superlattice layer, etc. 315, 415 may be further formed corresponding to the surface conditions of.
  • the second electrode contact layer 315 when the second electrode contact layer 315 is flat, a thin p-InGaN layer or n + -InGaN layer, InGaN / InGaN superlattice layer, An InGaN / GaN superlattice layer may be formed, and when the second electrode contact layer 415 is a rough type, a rough p-InGaN layer having a rough thickness or n + ⁇ on the second electrode contact layer 316.
  • An InGaN layer, an InGaN / InGaN superlattice layer, an n-InGaN / GaN superlattice layer, or the like may be formed.
  • the rough type according to the invention can be carried out by controlling the Mg flow rate.
  • the impurity source used as the n-type dopant is silicon (Si), and the doping concentration is about 10 17 / cm 3 to 10 18 / cm 3 , respectively.
  • the silicon doping concentration is 1 to 5 ⁇ 10 18. It is about / cm 3 and grows in the thickness range of 2-4 micrometers.
  • the impurity source used as the p-type dopant is magnesium (Mg), and after performing an activation process, the doping concentration of the carrier, which is a carrier, is in the range of about 1 to 5 x 10 17 / cm 3 .
  • the second electrode contact layers 315 and 415 are electrically contacted with the second electrode pad 321, which is a p-type electrode pad, to grow within a thickness range of 10 nm to 500 nm, and a hole concentration as a carrier by an activation process. Maximize. Similar to the light emitting device using the conventional AlInGaN nitride semiconductor described with reference to FIG.
  • the second electrode contact layer included in the light emitting device using the AlInGaN nitride semiconductor according to the present invention shown in FIGS. 3 and 4 have a high resistance / Ga-rich rough surface including excess Mg and Mg-H composites (10 2 / cm 3 to 10 4 / cm 3 ) inside and on the surface of the single crystal thin film.
  • the state of the light emitting structure By accurately grasping the crystal structure, surface roughness, and electrical properties, there is a need for an effective interface control technology with a transparent electrode formed later. 3 and 4, as described with reference to FIG. 2 on the second electrode contact layers 315 and 415, the transparent electrode formed of a multilayer structure of a transparent electrode, in particular, a ZnO thin film according to the present invention ( 317 and 417 may be formed corresponding to the surface state of the second electrode contact layers 315 and 415.
  • first electrode pads 419 and 421 and second electrode pads 321 and 421 for wire bonding are formed as shown in FIGS. 3 and 4. As shown in FIG.
  • the second electrode pads 321 and 421 may be formed to be directly connected to the second electrode contact layers 315 and 415.
  • the ZnO thin film required to form a transparent electrode of a light emitting device having a high efficiency / high reliability having a high light output, a low operating voltage and a long life by replacing the ITO material used as a transparent electrode of a conventional light emitting device The light transmittance can be maximized by the single crystal thin film having the same crystal structure as the second electrode contact layers 315 and 415 of the first light emitting structure, and the electrical characteristics of the carrier can be improved by simultaneous doping of n- / p-type impurities. It is controlled to minimize the contact resistance, which has the advantage of increasing the electrical conductivity.
  • the ZnO thin film according to the present invention is characterized in that holes are supplied by interfacial control with the light emitting structure, in particular, the second electrode contact layers 315 and 417, and doping of p-type impurities such as As. There is a characteristic.
  • the transparent electrodes 317 and 318 formed of a multilayer structure of a ZnO thin film which is a transparent electrode according to the present invention, include a light emitting structure including a substrate having a hexagonal crystal structure in a c-axis growth direction, particularly a second electrode contact layer 315. , 415) can be grown as a single crystal thin film having the same hexagonal crystal structure, and because the resistance can be adjusted through optimal doping control, it has excellent light transmittance and electrical conductivity compared to the conventional amorphous and polycrystalline ZnO thin film.
  • the second electrode contact layers 315 and 415 of the light emitting device using the AlInGaN-based nitride semiconductors have a host material of Ga-rich, nitrogen vacancies and excess Mg, Mg of 10 2 / cm 3 or more after the activation process.
  • the -H complex and the like are mixed and are in a relatively unstable state with high resistance and rough surface.
  • the transparent electrodes 317 and 417 formed of a multilayer structure of the ZnO thin film are grown on the second electrode contact layer 315 and 415, the ZnO thin film is initially grown in a high vacuum state.
  • the lower layer of the transparent electrode formed of a multilayer structure is a ZGAO single crystal thin film or a ZGO single crystal thin film
  • Zn a host material
  • Zn a host material
  • Zn Ga A ZnO-doped GaN layer localized at the interface between the ZGAO single crystal thin film or ZGO single crystal thin film, which is a lower layer of the transparent electrode formed of a multilayer structure of the ZnO thin film, and the second electrode contact layers 315 and 415 is formed.
  • the Mg-H composite that remains locally on the surface of the second electrode contact layers 315 and 316 after the activation process undergoes OH bonding by oxygen (O), which is a host of the ZnO single crystal thin film, thereby desorbing hydrogen (H).
  • O oxygen
  • H hydrogen
  • a host remaining as a dangling bond at the interface between the ZGAO single crystal thin film or ZGO single crystal thin film, which is a lower layer of the transparent electrode formed of a multilayer structure of the ZnO thin film, and the second electrode contact layers 315 and 415 ZgO single crystal thin film or ZGO single crystal thin film, which is a lower layer of a transparent electrode formed of a multi-layer structure of ZnO thin film, is formed by Mg substitution with Ga sites (Mg Ga ), and a p-doped layer having a very high hole doping concentration as a local carrier is formed. Contact resistance may be significantly lowered at the interface between the second electrode contact layers 315 and 415.
  • the ZGAO single crystal thin film or ZGO single crystal thin film which is the lower layer of the transparent electrode formed of the multilayer structure of the ZnO thin film, grows in the c-axis direction as the growth proceeds, but a native defect formed during oxygen voids and crystal growth.
  • High resistance due to an asymmetric stoichiometric composition ratio with Optimum doping techniques should be applied to improve low electrical conductivity by these non-radiative centers.
  • the transparent electrode formed of the multilayer structure of the ZnO thin film according to the present invention is a multilayer structure in which a ZAO single crystal thin film and a ZGO single crystal thin film are alternately stacked a plurality of times (see FIG. 5 and the description thereof), or alternately by adjusting the thickness of the ZnO thin film.
  • a multi-layer structure in which three kinds of ZnO single-crystal thin films of ZGO single crystal thin film, ZGAO single crystal thin film and ZAO single crystal thin film are laminated see FIGS. 9 and its description). Can be.
  • n-type impurities such as Ga are doped
  • p-type impurities such as As are doped
  • n-type impurities such as Ga and As ZnO thin film
  • a multi-layered transparent thin film in which a plurality of ZnO single crystal thin films are simultaneously stacked with p-type impurities, such as a light emitting device and a manufacturing method thereof, will be included in the technical scope of the present invention.
  • the transparent electrode formed of a multi-layer structure according to the present exemplary embodiment includes a ZAO single crystal thin film and a pair of ZGO single crystal thin films, or a pair of ZGO single crystal thin films and a ZAO single crystal thin film stacked multiple times.
  • a ZGO single crystal thin film is alternately laminated, or a ZGO single crystal thin film and a ZAO single crystal thin film are alternately laminated.
  • each ZnO single crystal thin film was 30 seconds, and a pair of ZGO single crystal thin films and ZAO single crystal thin films or a pair of ZAO single crystal thin films and ZGO single crystal thin films 50 times were laminated to have a final thickness of 320 nm.
  • a chip having a size of 500250 ⁇ m 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA.
  • the light output was 18.1 mW at the operating voltage (VF) 3.56 V in the LED wavelength band of 446 nm.
  • the LED light emitting device having the same thickness in the same wavelength band and a transparent electrode made of a single thin film of a simultaneously doped ZGAO single crystal the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Therefore, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 5 of the present invention has an improved light output compared to the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously is applied. It is evaluated to have.
  • FIG. 6 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another exemplary embodiment of the present invention.
  • the transparent electrode formed of a multilayer structure according to the present embodiment has a multilayer structure consisting of a pair of ZAO single crystal thin films and a ZGO single crystal thin film, or a pair of ZGO single crystal thin films and a ZAO single crystal thin film.
  • the thickness of each ZnO single crystal thin film constituting the transparent electrode in this embodiment is thicker than that of each ZnO single crystal thin film constituting the transparent electrode as shown in FIG. 5.
  • the growth time of each ZnO single crystal thin film is 25 minutes, and the ZAO single crystal thin film on the bottom and the ZGO single crystal thin film on the The laminate structure was made to have a final thickness of 320 nm.
  • a chip having a size of 500250 ⁇ m 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA.
  • the light output was 19.7 mW at 3.52 V of operating voltage (VF) in the LED wavelength band of 446 nm.
  • the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Therefore, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 6 of the present invention is further improved in light output compared to the LED light emitting device to which the transparent electrode composed of a single thin film of ZGAO single crystal doped with Ga and As simultaneously. It is evaluated to have an effect.
  • a transparent electrode formed of a multilayer structure according to the present exemplary embodiment has a lower thickness than that of a ZGAO single crystal thin film doped with n-type impurity Ga and p-type impurity As and a ZGAO single crystal thin film thereon. It has a multilayer structure including a Ga-doped ZGO single crystal thin film which is a thin n-type impurity.
  • the growth time of the ZGAO single crystal thin film is 45 minutes, the growth time of the ZGO single crystal thin film is 5 minutes, and the transparent electrode, which is a laminated structure of the ZGAO single crystal thin film and the ZGO single crystal thin film, has a final thickness of 320 nm.
  • a chip having a size of 500250 ⁇ m 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA.
  • the ZGO single crystal thin film doped with Ga which is an n-type impurity, is adopted to reduce the sheet resistance and improve the electrical conductivity.
  • the light output was 17.2 mW at an operating voltage (VF) of 3.37 V in the LED wavelength band of 446 nm.
  • the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Therefore, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 7 of the present invention has an improved light output compared to the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously is applied. It is evaluated to have.
  • the operating voltage of the LED light emitting device is reduced to 3.32V, The output is reduced to 16.24mW. This results in a lower operating voltage due to the reduction of the sheet resistance of the ZGO single crystal thin film and the improvement of the electrical properties with the metal pad, but the compensation effect at the joint surface doped with n-type impurity Ga and p-type impurity As. It is assumed that the optical power is lowered due to the compensation effect.
  • FIG. 8 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention. As shown in FIG.
  • the transparent electrode formed of the multilayer structure according to the present exemplary embodiment includes a ZGO single crystal thin film doped with Ga as an n-type impurity and a ZAO single crystal thin film doped with As as a p-type impurity thereon;
  • a ZGO single crystal thin film doped with Ga, which is an n-type impurity, is stacked thereon, and the lower ZGO single crystal thin film has a multilayer structure that is thinner than the upper ZAO single crystal thin film and the ZGO single crystal thin film.
  • the growth time of the lower ZGO single crystal thin film is 5 minutes, and the growth time of the upper ZAO single crystal thin film and the ZGO single crystal thin film is 25 minutes, respectively, and the transparent electrode which is the stacked structure of the lower ZGO single crystal thin film and the upper ZAO single crystal thin film and the ZGO single crystal thin film is final. It was to have a thickness of 320nm. Subsequently, a chip having a size of 500250 ⁇ m 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA.
  • VF operating voltage
  • P o optical output
  • the light output was 14.2 mW at an operating voltage (VF) of 3.90 V in the LED wavelength band of 446 nm.
  • the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Accordingly, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 8 of the present invention is applied has the electrical characteristics and the light output as compared with the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously. It is evaluated that the characteristic is degraded.
  • the p / n junction is formed at the junction with the second electrode layer of the AlInGaN-based light emitting device to increase the depletion region, and thus the operating voltage is high. As a result, the current injection efficiency is lowered and consequently the light output is also reduced. I guess. Therefore, the thickness of the ZGO single crystal thin film doped with n-type impurities forming the junction with the second electrode layer of the AlInGaN-based light emitting device is thinned with respect to the LED light emitting device shown in FIG. 8, and the doping concentration is increased to ⁇ 10 20 / cm 3 . The increase in the formation of tunnel junctions can effectively improve the operating voltage and light output.
  • the transparent electrode formed of the multilayer structure according to the present embodiment includes a ZGO single crystal thin film doped with Ga as an n-type impurity at the bottom thereof, Ga as a n-type impurity and As as a p-type impurity thereon.
  • ZGAO single crystal thin films doped simultaneously with ZGA single crystal thin films doped with Ga, which is doped with n-type impurities, are stacked on top of each other, and the lower and upper ZGO single crystal thin films have a thinner multilayer structure than the intermediate ZGAO single crystal thin films.
  • the growth time of the lower and upper ZGO single crystal thin films is 5 minutes, respectively, and the growth time of the intermediate ZGAO single crystal thin films is 45 minutes, and the transparent electrode which is a laminated structure of the lower ZGO single crystal thin film, the middle ZGAO single crystal thin film and the upper ZGO single crystal thin film is The final thickness was 320nm.
  • a chip having a size of 500250 ⁇ m 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA.
  • the light output was 14.1 mW at the operating voltage (VF) of 3.42 V in the LED wavelength band of 446 nm.
  • the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively.
  • the LED light emitting device to which the transparent electrode of the multi-layer structure as shown in FIG. 9 of the present invention is applied has the electrical characteristics and the light output compared to the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously. It is evaluated that the characteristic is degraded.
  • the ZGO single crystal thin film doped with Ga, the upper n-type impurity in contact with the metal pad has a low sheet resistance to improve electrical conductivity, thereby reducing operating voltage through smooth contact with the metal pad.
  • the operation voltage is high.
  • the current injection efficiency is lowered, and consequently, the light output is also reduced. Therefore, as described above, the thickness of the ZGO single crystal thin film doped with n-type impurities forming the junction with the second electrode layer of the AlInGaN based light emitting device is increased, and the doping concentration is increased to ⁇ 10 20 / cm 3.
  • FIG. 10 illustrates n-type (Ga) and p-type (As) impurities doped in a ZnO thin film grown on a second electrode contact layer of a light emitting device using an AlInGaN-based nitride semiconductor in accordance with a preferred embodiment of the present invention.
  • a graph showing the current-voltage characteristics.
  • the inventor emits light using MBE equipment on the second electrode contact layer of the light emitting device using a rough AlInGaN nitride semiconductor.
  • a ZnO single crystal thin film of about 2500 kV thick having the same hexagonal crystal structure as the structure was grown.
  • the resistance of semiconductor materials depends on the concentrations of n-type and p-type impurities to be doped, and thus the electrical properties of the doping of n-type (Ga) and p-type (As) impurities and their simultaneous doping are investigated.
  • the inventors fixed the thickness of the ZnO thin film to 2500 ⁇ , and then the undoped ZnO thin film, Ga doped ZnO thin film, As doped ZnO thin film (As doped ZnO) and Ga-As After the co-doped ZnO thin film (Ga-As co-doped ZnO) was grown to form an indium electrode to have the same distance, the current-voltage characteristics were confirmed.
  • Ga-As co-doped ZnO ie, ZGAO single crystal thin film
  • Ga-doped ZnO ie, ZGO single crystal thin film
  • n-type impurity ie, ZAO single crystal
  • As-doped ZnO ie, ZAO single crystal
  • the n-type impurities such as Ga are the main causes for improving the electrical characteristics.
  • n-type impurities such as Ga
  • p-type impurities such as As
  • the p-type impurities such as As are the main cause for improving the characteristics such as light output.
  • the light emitting structure itself of the semiconductor light emitting device has a hexagonal crystal structure with almost no lattice mismatch, and n-type impurities such as Ga which improves electrical characteristics and p-type impurities such as As which improves the optical characteristics.
  • n-type impurities such as Ga which improves electrical characteristics
  • p-type impurities such as As which improves the optical characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

The present invention relates to a transparent thin film, a light-emitting device comprising the same and to a method for manufacturing the same. A light-emitting device formed by a nitride semiconductor having a composition of AlxInyGa(1-x-y)N, (0≤x≤1, 0≤y≤1, 0≤x+y≤1) according to the present invention comprises: a substrate; a buffer layer formed on the substrate; a first electrode contact layer formed on the buffer layer; a first clad layer formed on the first electrode contact layer; an active layer formed on the first clad layer; a second clad layer formed on the active layer; a second electrode contact layer formed on the second clad layer; a transparent electrode which is formed on the second electrode contact layer and which has a multi-layer structure in which a plurality of ZnO thin films are stacked, wherein at least a portion of the ZnO thin films is doped with at least one n-type impurity selected from a group consisting of III family elements of B, Al, Ga and In and F, Cl and H, or doped with at least one p-type impurity selected from a group consisting of V family elements of N, P, As and Sb and Li, Na and C, or doped with both said n-type impurity and said p-type impurity; a first electrode pad formed on a portion of an upper surface of the first electrode contact layer; and a second electrode pad formed on a portion of an upper surface of the transparent electrode.

Description

투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법Transparent thin film, light emitting device comprising same and manufacturing method thereof
본 발명은 투명 박막, 이를 포함한 발광 소자와 이들의 제조 방법에 관한 것으로서, 특히 복수의 ZnO 박막을 포함하는 투명 박막, 이를 포함한 발광 소자와 이들의 제조 방법에 관한 것으로서, 각 ZnO 박막은 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑된다.The present invention relates to a transparent thin film, a light emitting device including the same, and a method for manufacturing the same, and more particularly, to a transparent thin film including a plurality of ZnO thin films, a light emitting device including the same, and a method for manufacturing the same. N-type impurities are doped, p-type impurities such as As are doped, or n-type impurities such as Ga and p-type impurities such as As are simultaneously doped.
발광 소자의 소재, 특히 질화물 반도체는 우수한 물리적, 화학적 특성으로 발광 다이오드(LED) 또는 레이저 다이오드(LD) 등과 같은 발광 소자의 핵심 소재로 각광을 받고 있다. 질화물 반도체는 통상 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 GaN계 물질로 이루어져 있다. 도 1은 통상적인 AlInGaN계 질화물 반도체를 이용한 발광 소자의 적층 구조를 개략적으로 나타낸 단면도이다. AlInGaN계 질화물 반도체를 이용한 발광 소자의 제조 과정에 있어서, 기판(101), 버퍼층(103), 제1 전극 접촉층으로 기능하는 n-형 질화물 반도체층(105), n-형 질화물 클래드층(107), 활성층(109), p-형 질화물 클래드층(111), p-형 질화물 반도체층(113), n/p-형 제2 전극 접촉층(115)이 적층 성장된다. 이 후 칩(chip) 제조 과정에서 투명 전극층, 특히 ITO 투명 전극층(117)이 n/p-형 제2 전극 접촉층(115) 위에 형성되며, 최종적으로 와이어 본딩(wire bonding)을 위한 p-형 전극 패드(121)와 n-형 전극 패드(119)가 도 1에 도시된 바와 같이 형성된다.Materials of light emitting devices, particularly nitride semiconductors, have been spotlighted as core materials of light emitting devices such as light emitting diodes (LEDs) or laser diodes (LDs) with excellent physical and chemical properties. The nitride semiconductor is usually made of a GaN-based material having a composition formula of Al x In y Ga (1-xy) N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). 1 is a cross-sectional view schematically showing a laminated structure of a light emitting device using a conventional AlInGaN-based nitride semiconductor. In manufacturing a light emitting device using an AlInGaN-based nitride semiconductor, the n-type nitride semiconductor layer 105 and the n-type nitride cladding layer 107 functioning as the substrate 101, the buffer layer 103, and the first electrode contact layer. ), The active layer 109, the p-type nitride cladding layer 111, the p-type nitride semiconductor layer 113, and the n / p-type second electrode contact layer 115 are laminated and grown. Subsequently, during the chip manufacturing process, a transparent electrode layer, particularly an ITO transparent electrode layer 117, is formed on the n / p-type second electrode contact layer 115, and finally a p-type for wire bonding. The electrode pad 121 and the n-type electrode pad 119 are formed as shown in FIG.
기판(101)은 육각형 결정 구조를 갖는 사파이어 기판이 주로 사용된다. 사파이어 기판(101)과 n-형 질화물 반도체층(105)의 격자 상수 및 열팽창 계수의 차이에 의하여 발생되는 결정 결함을 최소화시키기 위하여 버퍼층(103)이 기판(101) 위에 성장될 수 있다. 버퍼층(103)은 500℃~600℃의 저온에서 비정질 결정상을 갖는 50㎚ 이하의 두께를 갖는 GaN계 또는 AlN계 질화물로 형성될 수 있다. 또한 버퍼층(103) 위에 언도프 GaN층이 더 형성될 수 있다. 이어서 성장 온도를 1000℃~1100℃ 정도의 범위 내에서 전기 전도도(electrical conductivity)에 기여하는 캐리어인 전자를 형성하기 위하여 실리콘이 1~5×1018/㎝3 정도의 도핑 농도로 도핑된 n-형 질화물 반도체층(105)이 성장된다. 상기 n-형 질화물 반도체층(105)은 n-형 전극 패드(119)와 전기적으로 접촉되는 제1 전극 접촉층으로 사용된다. n-형 질화물 반도체층(105) 위에 n-형 질화물 클래드층(107)이 형성된 후, 성장 온도를 700℃~800℃로 낮추어 InGaN/GaN, InGaN/InGaN의 단일 또는 다중 양자 우물 구조의 활성층(109)이 형성된다. 이 후, 활성층(109) 위에 p-형 질화물 클래드층(111), p-형 질화물 반도체층(113) 및 n/p-형 제2 전극 접촉층(115)이 형성된다. As the substrate 101, a sapphire substrate having a hexagonal crystal structure is mainly used. The buffer layer 103 may be grown on the substrate 101 to minimize crystal defects caused by the difference in lattice constant and thermal expansion coefficient of the sapphire substrate 101 and the n-type nitride semiconductor layer 105. The buffer layer 103 may be formed of GaN-based or AlN-based nitride having a thickness of 50 nm or less having an amorphous crystal phase at a low temperature of 500 ° C to 600 ° C. In addition, an undoped GaN layer may be further formed on the buffer layer 103. Subsequently, n- doped with silicon at a doping concentration of 1 to 5 × 10 18 / cm 3 to form electrons as carriers contributing to electrical conductivity within a growth temperature of 1000 ° C. to 1100 ° C. The type nitride semiconductor layer 105 is grown. The n-type nitride semiconductor layer 105 is used as the first electrode contact layer in electrical contact with the n-type electrode pad 119. After the n-type nitride cladding layer 107 is formed on the n-type nitride semiconductor layer 105, the growth temperature is lowered to 700 ° C. to 800 ° C. to form an active layer having a single or multiple quantum well structure of InGaN / GaN and InGaN / InGaN. 109 is formed. Thereafter, the p-type nitride cladding layer 111, the p-type nitride semiconductor layer 113, and the n / p-type second electrode contact layer 115 are formed on the active layer 109.
n/p-형 제2 전극 접촉층(115)의 형성 과정에서, 불순물로서 n-형인 Si, p-형인 Cp2Mg 또는 DMZn이 도핑된다. p-형 불순물로서 DMZn이 사용될 경우 Zn 원자는 n/p-형 제2 전극 접촉층(115) 내에서 엑셉터로서 ‘깊은 에너지 준위(deep energy level)’로 위치함으로써 캐리어인 홀을 형성하기 위한 활성화 에너지(activation energy)가 매우 높아서 바이어스를 인가할 때 캐리어인 홀 농도가 ~1017/㎝3 정도로 제한된다. 따라서 n/p-형 제2 전극 접촉층(115)을 성장시키기 위한 p-형 불순물로서 상대적으로 활성화 에너지가 낮은 Cp2Mg가 도핑 소스로 사용된다. Cp2Mg를 도핑 소스로 하여 제2 전극 접촉층(115)을 성장시키는 경우, GaN층 내에 질소(N) 소스로 사용되는 NH3 소스 가스 및 도핑 소스에서 분리되는 수소(H) 가스와 결합되는 Mg-H 복합체(complex)가 형성되며, ~106ohm.㎝ 이상의 고저항 절연체 특성을 갖는다. 상기 활성층(109)에서 홀과 전자가 재결합 과정(recombination process)을 통하여 빛을 방출하기 위해서는, 고저항인 Mg이 도핑된 상태로 사용될 수 없으며, 반드시 Mg-H 복합체의 결합을 깨기 위한 활성화 공정(activation process)이 요구된다. 상기 활성화 공정은 600℃~800℃ 범위의 온도 조건 및 N2 또는 N2/O2 분위기에서 열처리 공정(annealing process)을 통하여 수행되지만, 제2 전극 접촉층(115) 내에 존재하는 Mg의 활성화 효율이 낮기 때문에 활성화 공정이 진행되더라도 제2 전극 접촉층(115)은 제1 전극 접촉층인 n-형 질화물 반도체층(105)에 비하여 매우 높은 저항 특성을 갖는다. 활성화 공정 이후 상기 제2 전극 접촉층(115) 내의 Mg 원자 농도(atomic concentration)는 1019/㎝3~1021/㎝3 정도이나, 전기 전도도에 기여하는 캐리어인 홀의 농도는 1017/㎝3 정도에 불과하며, 홀의 이동도(hall mobility) 또한 10㎝2/Vsec로 매우 낮다. 또한 상기 제2 전극 접촉층(115) 내에 활성화가 완전히 이루어지지 않고 잔류하는 Mg, Mg-H 복합체, 결정 결함 등이 상기 활성층(109)에서 표면 방향으로 방출하는 빛을 포획하거나(trap), 고전류가 인가될 경우 상대적으로 매우 높은 상기 제2 전극 접촉층(115)의 저항 특성에 의하여 열이 발생하기 때문에, 발광 소자의 수명을 단축시켜 신뢰성에 악영향이 발생한다. 특히 1㎜×1㎜ 크기의 대면적/고출력 발광 소자의 경우, 기존의 20mA 보다 훨씬 높은 350mA의 고전류가 인가되기 때문에, p-/n- 접합면에서 100℃ 이상의 접합 온도(junction temperature)가 발생되어 발광 소자의 성능 및 신뢰성에 치명적인 악영향을 끼치며, 고출력을 요구하는 응용 제품에 사용되기에 한계를 갖는 결과를 초래한다. 이러한 발열의 원인은 제2 전극 접촉층(115) 내에 캐리어로 활성화되지 않고 잔류하는 과잉 Mg 원자, Mg-H 복합체 등에 의한 저항 성분의 증가와 그에 따른 거친 표면 특성에 기인하는 것으로서, 미해결 과제로 남아있다. 또한 종래의 p-/n- 접합 AlInGaN계 질화물 반도체 발광 소자는 제1 전극 접촉층으로 사용되는 상기 n-형 질화물 반도체층(105)의 경우, 도핑 소스인 SiH4 또는 Si2H6의 유량 증가에 따른 실리콘의 도핑 농도가 선형적으로 비례하여 증가하며 결정성이 보장되는 임계 두께(critical thickness) 내에서 1×1018/㎝3~9×1018/㎝3 범위로 쉽게 제어되지만, 제2 전극 접촉층(115)의 경우, 도핑 소스인 Cp2Mg의 유량을 증가시켜 최대 ~1021/㎝3 이상의 Mg 원자가 도핑되더라도 전자 전도도에 순수하게 기여하는 캐리어로서 홀 농도가 1×1017/㎝3~ 8×1017/㎝3 범위로 제한되기 때문에, 비대칭적인 도핑 분포를 갖는 p-/n- 접합 발광 소자의 구조를 갖는다. 상술한 바와 같이, 제2 전극 접촉층(115)의 낮은 캐리어 농도 및 높은 저항 특성은 내부 양자 효율(internal quantum efficiency)을 저하시켜 고효율 AlInGaN계 질화물 반도체 발광 소자의 구현을 제한한다. In the process of forming the n / p-type second electrode contact layer 115, n-type Si, p-type Cp 2 Mg or DMZn are doped as impurities. When DMZn is used as the p-type impurity, the Zn atoms are positioned at the 'deep energy level' as the acceptor in the n / p-type second electrode contact layer 115 to form holes as carriers. The activation energy is so high that when the bias is applied, the carrier hole concentration is limited to ˜10 17 / cm 3 . Therefore, as a p-type impurity for growing the n / p-type second electrode contact layer 115, relatively low activation energy Cp 2 Mg is used as the doping source. When the second electrode contact layer 115 is grown using a Cp 2 Mg as a doping source, NH 3 source gas used as a nitrogen (N) source in the GaN layer and hydrogen (H) gas separated from the doping source are combined. Mg-H complex is formed and has a high resistance insulator characteristic of ~ 10 6 ohm.cm or more. In order to emit light in the active layer 109 through the recombination process, holes and electrons cannot be used in a doped state of high resistance Mg, and an activation process for breaking the bond of the Mg-H composite ( an activation process is required. The activation process is performed through an annealing process in a temperature condition of 600 ℃ ~ 800 ℃ and N 2 or N 2 / O 2 atmosphere, but the activation efficiency of Mg present in the second electrode contact layer 115 As a result, the second electrode contact layer 115 has a much higher resistance characteristic than the n-type nitride semiconductor layer 105 which is the first electrode contact layer even when the activation process proceeds. After the activation process, the Mg atomic concentration in the second electrode contact layer 115 is about 10 19 / cm 3 to 10 21 / cm 3 , but the concentration of the hole which is a carrier contributing to the electrical conductivity is 10 17 / cm 3 It is only a degree, and the hall mobility is very low, 10 cm 2 / Vsec. In addition, Mg, Mg-H composites, crystal defects, and the like remaining in the second electrode contact layer 115 without being fully activated may trap light emitted from the active layer 109 toward the surface, or a high current When is applied, heat is generated by the resistance characteristics of the second electrode contact layer 115, which is relatively very high, thereby shortening the lifespan of the light emitting device and adversely affecting reliability. In particular, in the case of a large area / high output light emitting device having a size of 1 mm × 1 mm, a high current of 350 mA is applied, which is much higher than the existing 20 mA, so that a junction temperature of 100 ° C. or more occurs at the p- / n- junction surface. This results in a fatal adverse effect on the performance and reliability of the light emitting device and results in a limitation in being used in applications requiring high power. The cause of such heat generation is due to an increase in resistance components due to excess Mg atoms, Mg-H composites, and the like remaining in the second electrode contact layer 115 without being activated as a carrier, and thus the rough surface properties remain unresolved. have. In the conventional p- / n-junction AlInGaN-based nitride semiconductor light emitting device, in the case of the n-type nitride semiconductor layer 105 used as the first electrode contact layer, a flow rate of SiH 4 or Si 2 H 6 which is a doping source is increased. The doping concentration of silicon increases linearly proportionally and is easily controlled in the range of 1 × 10 18 / cm 3 to 9 × 10 18 / cm 3 within a critical thickness where crystallinity is guaranteed, but the second In the case of the electrode contact layer 115, the carrier concentration purely contributes to the electron conductivity even if Mg atoms of up to ˜10 21 / cm 3 or more are increased by increasing the flow rate of Cp 2 Mg as a doping source, and the hole concentration is 1 × 10 17 / cm Since it is limited in the range of 3 to 8 × 10 17 / cm 3 , it has a structure of a p- / n-junction light emitting device having an asymmetrical doping distribution. As described above, the low carrier concentration and the high resistance characteristics of the second electrode contact layer 115 lower the internal quantum efficiency, thereby limiting the implementation of a high efficiency AlInGaN-based nitride semiconductor light emitting device.
AlInGaN계 질화물 반도체 발광 소자에 있어서, 제2 전극 접촉층(115)의 높은 저항 특성으로 인하여 제2 전극 접촉층(115)과 전기적으로 접촉되는 p-형 전극 패드(121)의 하단 부분에 해당하는 활성층(109)의 InGaN/GaN 다중 양자 우물층에서 전자와 홀의 재결합 과정을 통하여 빛이 방출된다. 그러나 p-형 전극 패드(121)는 패키지 공정에서 Au 와이어(wire)와 와이어 본딩에 의하여 연결되기 때문에 전체 금속 두께가 1㎛ 이상 두껍게 증착되어 활성층(109)에서 방출되는 빛이 두꺼운 금속을 통과하지 못하는 결과가 초래될 수 있다. 특히 제2 전극 접촉층(115)의 높은 저항 특성으로 인하여 횡방향(lateral direction)으로 균일한 전류 퍼짐(current spreading)이 없이 p-형 전극 패드(121) 부분에 국부적으로 집중되는 전류 집중(current concentrating)이 발생함으로써, 막대한 발열로 고효율/고신뢰성 발광 소자의 제작이 어려운 문제점이 있다. 따라서 발광 소자의 전류 집중을 개선하고, 활성층(109)의 실제 발광 면적까지 균일한 전류 퍼짐을 달성할 수 있도록 광투과도가 우수하고 제2 전극 접촉층(115)과의 낮은 접촉 저항을 갖는 투명 전극이 필요하다. 이러한 기술적 필요성과 함께, 상술한 AlInGaN계 질화물 반도체의 에피-웨이퍼(Epi-Wafer) 성장 기술의 한계에 대하여 칩(chip) 공정 기술을 개발하여 적용함으로써, 종래의 AlInGaN계 질화물 반도체의 상술한 문제점을 해결하려는 방안이 제시되고 있다. 우선 상기 제2 전극 접촉층(115) 위에 얇은 Ni/Au 합금을 적용하여 접촉 저항을 낮추는 시도가 있었다. 즉 제2 전극 접촉층(115)의 전류 퍼짐을 향상시켜 발광 효율을 증가시키기 위하여 20㎚ 이하의 얇은 두께를 갖는 Ni/Au 합금이 전극 물질로 사용되었다. 전극 물질로 사용되는 Ni/Au 합금은 투과 저항성 금속으로서 제2 전극 접촉층(115)과의 접촉시 계면에서 매우 얇은 NiO 막이 형성되어 접촉 저항이 낮아지지만, 광투과도가 50%~60% 정도로 상대적으로 낮아서 고효율 발광 소자의 구현이 어렵다. 이러한 문제점을 개선하기 위하여, Ni/Au 투과 저항성 금속 대신 광투과도가 높고 접촉 저항이 낮은 ITO(In2O3:Sn)가 투명 전극으로서 2002년 이후 본격 양산되는 이동 단말, 노트북, PC, 모니터, LCD TV용 백라이트 유닛, 조명 제품 등에 널리 적용되고 있다. ITO를 투명 전극으로 사용함으로써, 발광 소자의 광출력이 약 30% 향상되는 획기적인 기술적 진보를 이루게 되었다.In the AlInGaN-based nitride semiconductor light emitting device, due to the high resistance characteristic of the second electrode contact layer 115, it corresponds to a lower portion of the p-type electrode pad 121 in electrical contact with the second electrode contact layer 115. In the InGaN / GaN multiple quantum well layer of the active layer 109, light is emitted through the recombination process of electrons and holes. However, since the p-type electrode pad 121 is connected by Au wire and wire bonding in a package process, the total metal thickness is deposited to be 1 μm or more so that light emitted from the active layer 109 does not pass through the thick metal. Failure to do so can result. In particular, due to the high resistance characteristic of the second electrode contact layer 115, current concentration locally concentrated on the p-type electrode pad 121 without uniform current spreading in the lateral direction. As a result of concentrating, it is difficult to manufacture a high efficiency / high reliability light emitting device due to enormous heat generation. Therefore, the transparent electrode has excellent light transmittance and low contact resistance with the second electrode contact layer 115 to improve the current concentration of the light emitting device and achieve uniform current spreading to the actual light emitting area of the active layer 109. This is necessary. In addition to the technical necessity, the above-described problems of the AlInGaN-based nitride semiconductor are solved by developing and applying a chip process technology to the limitation of the epi-wafer growth technology of the AlInGaN-based nitride semiconductor described above. A solution is proposed. First, an attempt was made to lower the contact resistance by applying a thin Ni / Au alloy on the second electrode contact layer 115. That is, in order to improve current spreading of the second electrode contact layer 115 and increase luminous efficiency, a Ni / Au alloy having a thickness of 20 nm or less was used as the electrode material. Ni / Au alloy, which is used as an electrode material, is a transmissive metal and has a very thin NiO film at the interface when contacted with the second electrode contact layer 115, resulting in low contact resistance, but having a relative light transmittance of 50% to 60%. Low, it is difficult to implement a high efficiency light emitting device. In order to solve this problem, ITO (In 2 O 3 : Sn), which has high light transmittance and low contact resistance, is a transparent electrode instead of Ni / Au-transmissive metal, which has been mass-produced since 2002 as a transparent electrode. It is widely applied to backlight units and lighting products for LCD TVs. By using ITO as a transparent electrode, a breakthrough technical advance has been made in which the light output of the light emitting device is improved by about 30%.
ITO 투명 전극층(117)은 스퍼터링법(sputtering deposition) 및 전자빔 증착법(e-beam evaporation)에 관한 장비를 이용하여 증착될 수 있으며, 광투과도는 85% 이상이며 접촉저항은 10-5ohm.㎝ 수준이며, n-형 전기 전도도룰 갖는 비정질 또는 다결정질의 결정성을 가지며, 증착 후 결정성 회복을 위하여 반드시 후속의 열처리 공정을 필요로 한다. 다결정의 결정 구조에 의하여 제2 전극 접촉층(115)의 하단부에서 활성층(109)의 수직방향(vertical direction)에 대한 전류 흐름은 용이하나, 횡방향(lateral direction)에 대한 전류 흐름은 수직 방향의 전류 흐름에 비하여 매우 작기 때문에, 이에 대한 개선이 요구 되는 상황이다. 또한 발광 소자의 투명 전극으로 사용되는 ITO 물질 자체의 성능 개선을 위한 연구 개발이 지속적으로 수행되고 있으나, 그 결과는 미진한 상태이다. 최근에는 ITO 물질 자체에 대한 연구 개발보다는 ITO 투명 전극에 대한 패터링(pattering)또는 텍스쳐링(texturing) 공정 기술의 개발을 통하여 발광 소자의 성능 개선을 추구하고 있으나, 동작 전압이 증가하여 실질적으로 양산 제품에 적용되지 않은 실정이다. 또한 ITO 물질을 구성하는 인듐(In)의 매장량이 극히 한정되어 있어 제조 원가가 매우 높아지는 문제점이 있으며, 특히 최근 희유 원소에 대한 자원 무기화의 경향이 노골화되어 그 정도가 심각해지고 있다. The ITO transparent electrode layer 117 can be deposited using equipment for sputtering deposition and e-beam evaporation. The light transmittance is 85% or more and the contact resistance is about 10 -5 ohm.cm. And have amorphous or polycrystalline crystallinity with n-type electrical conductivity, and a subsequent heat treatment process is necessarily required for crystallinity recovery after deposition. Due to the polycrystalline crystal structure, current flow in the vertical direction of the active layer 109 at the lower end of the second electrode contact layer 115 is easy, but the current flow in the lateral direction is vertical. Since it is very small compared to the current flow, an improvement is required. In addition, the research and development for improving the performance of the ITO material itself used as a transparent electrode of the light emitting device has been continuously carried out, but the results are incomplete. Recently, rather than research and development on the ITO material itself, the performance of the light emitting device has been improved through the development of the patterning or texturing process technology for the ITO transparent electrode. This is not the case. In addition, the reserve of indium (In) constituting the ITO material is extremely limited, which leads to a problem in that the manufacturing cost is very high.
따라서 AlInGaN계 질화물 반도체 발광 소자의 성능 개선 및 낮은 제조 원가를 위하여 기존의 ITO 물질을 대체할 수 있는 투명 전극의 개발이 절실히 요구되고 있다. 스마트폰(smart phone), 노트북, PC, 모니터, LCD용 백라이트 유닛, 또는 조명 제품의 요구를 충족하기 위해서, 50% 이상의 광효율을 갖고 고효율의 발광 소자가 절실히 요구되고 있지만, 에피-웨이퍼 성장 기술 및 칩 공정에 대한 기술적 한계로 이를 충족시키지 못하는 실정이다. 즉 AlInGaN계 질화물 반도체 발광 소자의 에피-웨이퍼 성장 기술은 내부 양자 효율을 5% 이상 개선하기 위한 연구 개발이 막대한 비용과 인력이 투입되어 진행되고 있지만 미진한 상태이다. 또한 에피-웨이퍼 성장 기술의 기술적 한계를 극복하기 위하여, 칩 공정 기술의 개발을 통하여 발광 소자의 성능 개선을 위한 노력이 진행되고 있지만, 괄목할 만한 성과가 발견되지 않는다. 이러한 기술적 난관을 극복하기 위하여, 최근에는 특히 AlInGaN계 질화물 반도체 발광 소자의 투명 전극으로 사용되는 ITO 물질을 대체할 물질로 ZnO 투명 전극에 대한 연구 개발이 활발히 진행되고 있다. Therefore, in order to improve performance of AlInGaN-based nitride semiconductor light emitting device and low manufacturing cost, development of a transparent electrode that can replace the existing ITO material is urgently required. In order to meet the needs of smart phones, laptops, PCs, monitors, LCD backlight units, or lighting products, there is an urgent need for high-efficiency light-emitting devices with a light efficiency of 50% or more. The technical limitations on the chip process do not meet this situation. In other words, the epi-wafer growth technology of the AlInGaN-based nitride semiconductor light emitting device has been invested heavily in research and development to improve the internal quantum efficiency by more than 5%. In addition, in order to overcome the technical limitations of the epi-wafer growth technology, efforts have been made to improve the performance of the light emitting device through the development of chip process technology, but no remarkable results are found. In order to overcome such technical difficulties, recently, research and development on ZnO transparent electrodes have been actively conducted as a material to replace ITO materials used as transparent electrodes of AlInGaN-based nitride semiconductor light emitting devices.
발광 소자의 투명 전극으로 사용될 수 있는 ZnO 박막은 85% 이상의 우수한 광투과도를 가지며, AlInGaN계 질화물 반도체 발광 소자와 동일한 육각형의 결정 구조를 가지며, 열적 안정성(thermal stability)이 우수하여 대면적/고출력 발광 소자에 효과적으로 적용할 수 있으며, 높은 굴절률(refractive index)과 밴드갭(energy bandgap) 조절이 용이한 장점을 가진다. 또한 ZnO 박막의 경우, 쉽게 결정 성장 방향으로 주상 마이크로 구조(columnar microstructure) 형성이 가능한 장점이 있다. 더불어 ZnO 박막의 경우, 기존의 ITO 투명 전극의 인듐(In)에 비하여 훨씬 풍부한 아연(Zn)을 이용하므로, 저비용의 원활하면서 안정적인 원료 물질의 공급이 가능한 장점이 있다. 종래의 ITO 투명 전극을 대체할 수 있는 ZnO물질의 경우, 제2 전극 접촉층인 p-GaN층 위에 형성되는데, p-GaN층과 동일한 육각형의 결정 구조를 가지며, 증착에 사용되는 장비와 기술이 동일하게 적용될 수 있으므로 용이하게 양질의 결정성을 얻을 수 있는 장점을 지닌다. ZnO 물질은 높은 굴절률과 낮은 흡수 계수 등에 의하여 광투과도가 높게는 90% 이상이 될 수 있으며, 형성 구조의 변화를 통하여 InGaN/InGaN 또는 InGaN/GaN 활성층에서 표면 방향으로 방출되는 빛의 탈출각(escape angle)을 변화시켜 발광 소자의 투과 효율을 향상시킬 수도 있다. ZnO thin film that can be used as a transparent electrode of the light emitting device has an excellent light transmittance of 85% or more, and has the same hexagonal crystal structure as that of the AlInGaN-based nitride semiconductor light emitting device, and has excellent thermal stability, thereby providing large area / high output light emission. It can be effectively applied to the device, and has the advantages of high refractive index and easy adjustment of energy bandgap. In addition, the ZnO thin film has an advantage of easily forming columnar microstructures in the crystal growth direction. In addition, the ZnO thin film uses much richer zinc (Zn) than the indium (In) of the conventional ITO transparent electrode, thereby providing a low cost smooth and stable supply of raw materials. ZnO material, which can replace the conventional ITO transparent electrode, is formed on the p-GaN layer, which is the second electrode contact layer, and has the same hexagonal crystal structure as the p-GaN layer. Since the same can be applied to have the advantage of easily obtaining a good crystallinity. The ZnO material may have a light transmittance of 90% or more due to a high refractive index and a low absorption coefficient, and the escape angle of light emitted from the InGaN / InGaN or InGaN / GaN active layer toward the surface through a change in the formation structure. The transmission efficiency of the light emitting device may be improved by changing the angle).
발광 소자의 경우, 발광이라는 측면에서 높은 광투과도와 더불어 활성층에서 전자와 홀의 재결합 효율을 증가시키기 위하여 p-/n- 전극과의 접촉 저항을 최소화하여, 낮은 전압이 인가되더라도 내부 양자 효율이 극대화될 수 있는 저항 설계(resistance design)기술이 만족되어야만 실질적으로 양산에 적용될 수 있다. ZnO 투명 전극을 형성하기 위하여, 스퍼터링법, 전자빔 증착법을 이용한 첨가물을 함유한 비정질 및 다결정질 구조를 성장하는 방향과, 분자선 에피탁시법(MBE), 유기 화학 기상 증착법(MOCVD), 또는 펄스 레이저 증착법(PLD)을 이용한 불순물을 도핑한 단결정 구조를 성장하는 방향으로 연구 개발이 진행되고 있다. 상술한 성장 방법들을 이용하여 ZnO 물질 자체나, 구조의 변경을 통하여 용이하게 높은 투과도 특성을 얻을 수 있지만, 낮은 접촉 저항에 의한 높은 전기 전도도를 갖는 결과는 현재까지 얻어지지 않고 있다. ZnO 투명 전극의 개발 방향은 크게 광투과도 개선을 위한 나노로드(nanorod)와 나노와이어(nan0wire) 형태에 대한 개발 및 광투과도와 전기 전도도 개선을 위한 5000Å 이하 두께의 박막 형태로 전기 전도도에 기여하는 불순물을 첨가하거나 도핑한 n-/p- 도핑 구조의 개발로 분류될 수 있다. 특히 후자의 개발 방향에 있어서 전기 전도도를 개선하기 위한 불순물 및 불순물이 도핑된 AZO(ZnO:Al), GZO(ZnO:Ga), IZO(ZnO:In) 박막에 대한 연구 결과가 보고되고 있다. 연구 개발 결과를 구체적으로 살펴보면, 먼저 전자의 개발 방향에 있어서, Sung Jin An, ‘Near ultraviolet light emitting diode composed of n-GaN/ZnO coaxial nanoroad heterostructures on a p-GaN layer’, Applied Physics Letters 91, 123109(2007). Xiao-Mei Zhang 등 ‘Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film’, Advanced Materials. Vol.21, pp.2767-2770(2009)’논문 등에서 ZnO 나노로드, 나노와이어를 보고하였다. 그러나 ZnO 형태의 변경은 용이하게 가능하지만, 전기 전도도에 기여하는 저항값이 상대적으로 매우 높아 발광 소자의 동작 전압이 매우 높은 한계를 지니는 것으로 평가된다. 후자의 개발 방향에 있어서, K. Nakahara, ‘Two different features of ZnO: transparent ZnO:Ga electrode for InGaN-LED and homoepitaxial ZnO films for UV-LEDs.’ Zinc Oxide Materials and Devices, Proc. Of SPIE Vol.6122, pp61220N(2006), 논문에서 분자선 에피탁시법(MBE)을 이용하여 ZnO 박막 성장 과정에서 도핑 소스로서 갈륨(Ga)을 도핑하여 n-형 전기 전도도를 갖는 GZ0(ZnO:Ga)/p-GaN층 투명 전극을 사용하여 80% 이상의 광투과도를 갖는 발광 소자를 보고하였지만, 다양한 제품에서 요구하는 낮은 동작 전압에 대한 조건은 제시되지 못하였다. 또한 Gary S. Tompa, ‘Large Area Multi-Wafer MOCVD of Transparent and Conducting ZnO Fils’, Mater. Res. Soc. Symp. Vol.957(2007), 논문에서 유기 금속 화학 기상 증착법(MOCVD)을 이용하여 ZnO 박막 성장 과정에서 도핑 소스로서 알루미늄(Al)을 도핑하여 n-형 전기 전도도를 갖는 AZO(ZnO:Al) 투명 전극을 사용하여 80% 이상의 광투과도로 ITO 투명 전극에 비하여 10% 이상 개선된 발광 소자를 보고하였지만, 동작 전압이 상대적으로 높은 것으로 평가된다. In the case of a light emitting device, in order to increase the recombination efficiency of electrons and holes in the active layer with high light transmittance in terms of light emission, the contact resistance between the p- / n- electrode is minimized, so that the internal quantum efficiency is maximized even when a low voltage is applied. In order to be practically applied in mass production, the resistance design technology must be satisfied. In order to form a ZnO transparent electrode, a direction of growing amorphous and polycrystalline structures containing additives using sputtering, electron beam deposition, molecular beam epitaxy (MBE), organic chemical vapor deposition (MOCVD), or pulse laser Research and development is progressing toward growing a single crystal structure doped with impurities using a deposition method (PLD). The above-mentioned growth methods can be used to easily obtain a high permeability characteristic through the ZnO material itself or a change in structure, but the results with high electrical conductivity due to low contact resistance have not been obtained to date. The development direction of ZnO transparent electrode is largely developed for nanorod and nanowire shapes to improve light transmittance, and impurities contributing to electrical conductivity in the form of thin film of 5000 의 or less for improving light transmittance and electrical conductivity. It can be classified as the development of n- / p- doped structure with addition or doping. In particular, in the latter development direction, research results on AZO (ZnO: Al), GZO (ZnO: Ga), and IZO (ZnO: In) thin films doped with impurities and impurities to improve electrical conductivity have been reported. Specifically, in the direction of electron development, Sung Jin An, 'Near ultraviolet light emitting diode composed of n-GaN / ZnO coaxial nanoroad heterostructures on a p-GaN layer', Applied Physics Letters 91, 123109 (2007). Xiao-Mei Zhang et al., “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film”, Advanced Materials. Vol.21, pp.2767-2770 (2009) 'papers reported ZnO nanorods and nanowires. However, although the ZnO type can be easily changed, the resistance value contributing to the electrical conductivity is relatively high, and thus the operating voltage of the light emitting device is evaluated to have a very high limit. In the latter direction of development, K. Nakahara, 'Two different features of ZnO: transparent ZnO: Ga electrode for InGaN-LED and homoepitaxial ZnO films for UV-LEDs.' Zinc Oxide Materials and Devices, Proc. In SPIE Vol. 6222, pp61220N (2006), in the paper, GZ0 (ZnO: with n-type electrical conductivity is obtained by doping gallium (Ga) as a doping source during ZnO thin film growth process using molecular beam epitaxy (MBE). Although a light emitting device having a light transmittance of 80% or more was reported using a Ga) / p-GaN layer transparent electrode, conditions for low operating voltages required by various products were not presented. Gary S. Tompa, “Large Area Multi-Wafer MOCVD of Transparent and Conducting ZnO Fils,” Mater. Res. Soc. Symp. Vol.957 (2007), AZO (ZnO: Al) transparent electrode with n-type electrical conductivity by doping aluminum (Al) as doping source during ZnO thin film growth process using organometallic chemical vapor deposition (MOCVD) Although a light emitting device has been reported to have a light transmittance of 10% or more compared to an ITO transparent electrode with a light transmittance of 80% or more, the operating voltage is evaluated to be relatively high.
또한 Liu Zhen, 'A Ga-doped ZnO transparent Conduct Layer for GaN-based LEDs' , Journal of Semiconductor, Vol.31., No.9, 2010, 논문에서 LED위에 MOVPE 성장장비를 이용하여 Ga-doped ZnO 투명전극층 성장시켜 20mA에서 광출력이 23.6% 향상효과를 발표하여 하였으나 Ga2O3 절연막이 형성되어 높은 동작전압이 갖는다고 보고하였다. Ken Nakahara, 'Improved External Efficiency InGaN-based Light Emitting Diodes with Transparent Conductive Ga-doped ZnO as p-Electrodes' , Japanese Journal of Applied Physics, Vol.43, No.2A, pp.L180-182, 2004., 논문에서, 20mA에서 Ni/Au 투명전극보다 2배 높은 약 20.8%, 동작전압은 3.5V로 발표하였으나 양산적용중인 ITO 투명전극보다 낮은 결과로 평가된다. H. Y. Liu, 'InGaN based Light Emitting Didoes Utilizing Ga-doped ZnO as a Highly Transparent Contact to p-GaN', Phys. Status Solidi., C8, No.5, pp.1548-1551, 2011. 논문에서, Ni/Au 투명전극보다 1.7~2배 정도의 외부양자효율을 얻었지만 그에 따른 구체적인 동작전압에 대해서 제시하지 못하였다. 그리고 B. J. Kim, 'Output Power Enhancement of GaN Light Emitting Diodes with p-type ZnO Hole Injection Layer', Applied Physics Letters, APL94, 103506(2009), 논문에서, Ni/Au 투명전극보다 약 40% 정도의 광출력을 얻었다고 보고하였으나 그에 따른 동작전압을 제시하지 못하였다. Y. R. Ryu, 'Synthesis of p-type ZnO Films' Journal of Crystal Growth, 216, pp.330-334, 2000, 논문에서, PLD 장비를 이용하여 GaAs 기판위에 p-type ZnO(As) 성장시켰다고 보고하였다. S. D. Kirby, 'Improved Conductivity of ZnO through Co-doping with In and Al', Thin Solid Films, 517, pp.1958-1960, 2009., 논문에서, RF Sputtering 방식으로 Al-In co-doping ZnO 성장시켰다고 보고하였으나 소자에 대한 구체적인 언급을 하지 못하였다. Tae Hoon Kim, 'Inhanced Optical Output of Tunel Junction GaN-based Light Emitting Didoes with Transparent Conducting Al and Ga-doped ZnO Thin Films', Japanese Journal of Applied Physics 49, 091002, 2010, 논문에서, RF Magnetron Sputtering 방식을 이용하여 Al-Ga co-doped ZnO 박막을 이용하여 Ni/Au 투명전극보다 외부양자효율이 1.7배 높은 약 23%를 얻었다고 보고하였으나 동작전압이 매우 높다고 보고하였다. Liu Zhen, `` A Ga-doped ZnO transparent Conduct Layer for GaN-based LEDs '', Journal of Semiconductor, Vol.31., No.9, 2010, in the paper, uses GaV-doped ZnO transparent devices using MOVPE growth equipment. It was reported that a 23.6% improvement in light output was achieved at 20 mA by growing the electrode layer, but it was reported that a Ga 2 O 3 insulating film was formed to have a high operating voltage. Ken Nakahara, 'Improved External Efficiency InGaN-based Light Emitting Diodes with Transparent Conductive Ga-doped ZnO as p-Electrodes', Japanese Journal of Applied Physics, Vol. 43, No. 2A, pp. L180-182, 2004., Papers At 20mA, it is about 20.8% higher than Ni / Au transparent electrode and operating voltage is 3.5V, but it is lower than ITO transparent electrode in mass production. HY Liu, 'InGaN based Light Emitting Didoes Utilizing Ga-doped ZnO as a Highly Transparent Contact to p-GaN', Phys. Status Solidi., C8, No.5, pp.1548-1551, 2011. In the paper, external quantum efficiencies of 1.7 ~ 2 times of Ni / Au transparent electrodes were obtained, but the specific operating voltage was not presented. . And in BJ Kim, 'Output Power Enhancement of GaN Light Emitting Diodes with p-type ZnO Hole Injection Layer', Applied Physics Letters, APL94, 103506 (2009), paper, about 40% light output than Ni / Au transparent electrode It was reported that it was obtained but could not provide the operating voltage accordingly. YR Ryu, Synthesis of p-type ZnO Films Journal of Crystal Growth, 216, pp. 330-334, 2000, reported that P-type ZnO (As) was grown on GaAs substrates using PLD equipment. SD Kirby, 'Improved Conductivity of ZnO through Co-doping with In and Al', Thin Solid Films, 517, pp.1958-1960, 2009., reported that Al-In co-doping ZnO was grown by RF sputtering method. However, no specific reference was made to the device. Tae Hoon Kim, `` Inhanced Optical Output of Tunel Junction GaN-based Light Emitting Didoes with Transparent Conducting Al and Ga-doped ZnO Thin Films '', Japanese Journal of Applied Physics 49, 091002, 2010, in the paper, using RF Magnetron Sputtering By using Al-Ga co-doped ZnO thin film, the external quantum efficiency was 1.7 times higher than that of Ni / Au transparent electrode, which was about 23%, but the operating voltage was very high.
Jammy Ben-Yaacov, 'Properties of In-doped ZnO Film Grown by MOCVD on GaN(0001) Templates', Journal of Electronics Materials, Vol.39, No.5, 2010., 논문에서, 1.82x1019/cm3, 185 ohm/sq. 정도의 전기적 특성을 얻었지만 구체적인 소자에 대한 결과는 보고하지 못하였다. Chun-Ju Tun, 'Enhanced Light Output of GaN-based Power LEDs with Transparent Al-doped ZnO Current Spreading Layer', IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.18, NO.1, PP.274-276, 2006, 논문에서, Ni/AZO와 NiOx/AZO에서 광출력은 Ni/Au 투명전극 보다 38.2%와 60.6%로 높은 값을 얻었고 그에 따른 350mA에서 각각 5.13V와 4.06V로 현재 양산적용중인 ITO 투명전극의 3.3V이하 값과 비교했을 때 매우 높은 값으로 실제 광출력은 매우 낮게 평가된다. Dea-Kue Hwang, 'ZnO Thin Film and Light-Emitting Diodes', Journal of Phys. D. Appl, Phys.40, R387-412, 2007, 리뷰논문에서, 박막성장, 도핑제어 및 소자의 저항성 접촉에 대해서 언급하였지만 구체적인 소자의 전기적 특성에 대한 언급을 하지 못한 실정이다. Yang Hua, 'Light Extraction Efficiency Enhancement of GaN-based Light Emitting Diodes by a ZnO Current Spreading Layer', Journal of Semiconductors Vol.39, No.9, 2009, 논문에서, Ni/Au 과 ITO 투명전극대비 20mA의 동작전류에서 외부양자효율이 각각 93%, 35% 얻었다고 보고하였지만 그에 따른 동작전압은 높은 접촉저항으로 인해 7~8V 수준으로 매우 높은 값으로 정확한 외부양자효율의 평가가 어려운 결과이다. Jammy Ben-Yaacov, 'Properties of In-doped ZnO Film Grown by MOCVD on GaN (0001) Templates', Journal of Electronics Materials, Vol. 39, No. 5, 2010., in the paper, 1.82x10 19 / cm 3 , 185 ohm / sq. Although the electrical characteristics were obtained, the results for the specific devices were not reported. Chun-Ju Tun, 'Enhanced Light Output of GaN-based Power LEDs with Transparent Al-doped ZnO Current Spreading Layer', IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.18, NO.1, PP.274-276, 2006, in the paper, In Ni / AZO and NiO x / AZO, the light output is 38.2% and 60.6% higher than that of Ni / Au transparent electrode, and accordingly, it is 5.13V and 4.06V at 350mA, respectively, below 3.3V of ITO transparent electrode in mass production. Compared to the value, the value is very high and the actual light output is evaluated very low. Dea-Kue Hwang, 'ZnO Thin Film and Light-Emitting Diodes', Journal of Phys. D. Appl, Phys. 40, R387-412, 2007, Review article, mentioned thin film growth, doping control and resistive contact of devices, but failed to comment on the specific electrical properties of the device. Yang Hua, `` Light Extraction Efficiency Enhancement of GaN-based Light Emitting Diodes by a ZnO Current Spreading Layer '', Journal of Semiconductors Vol.39, No.9, 2009, in the paper, 20mA Operation of Ni / Au and ITO Transparent Electrodes Although the external quantum efficiency was reported to be 93% and 35%, respectively, it was reported that the operating voltage is 7 ~ 8V, which is very high due to the high contact resistance.
일반적으로 n-형 전기 전도도를 갖는 ZnO 박막의 도핑 소스로서 B, Al, Ca, In 등의 Ⅲ족 원소와 F, Cl, H 등이 사용되어 용이하게 n-형 ZnO 박막을 형성할 수 있다. p-형 전기 전도도를 갖는 ZnO 박막의 도핑 소스로서 P, As, N, C, Li, F, Na 등이 사용되지만 ZnO 박막 형성시 산소 공극(vacancy), 본질 결함(native defect), 및 자동 보상(self compensation)효과에 의하여 전기 전도도에 기여하지 않는 비발광 결함 센터(nonradiative defect center)가 발생하여 n-형 ZnO 특성을 갖기 때문에, p-형 ZnO 박막을 형성하기는 매우 어렵다. 이러한 문제점을 해결하기 위하여 최근에 Ga-N, F-Ni, Ga-C, Ga-H 등의 n-형/p-형 불순물 도핑 소스에 대한 동시 도핑(co-doped) 기술이 제시되어 높은 홀 캐리어를 갖는 p-형 ZnO 박막에 대한 연구가 활발히 진행되고 있지만, 현재까지 만족할만한 결과를 나타내는 보고는 없다. 구체적으로 살펴보면, US 6,291,085의 경우, 펄스 레이저 증착법(PLD)을 이용하여 n-GaAs 기판 위에 As-doped p-ZnO 박막을 형성시켜 홀의 도핑 농도, 이동도 및 비저항이 각각 1015/㎝3, 1~50㎝2/Vsec 및 1ohm.cm의 전기적 특성을 얻었으나, 투명 전극이 아닌 p-형 ZnO 단결정 박막을 이용한 n/p- 접합 ZnO 발광 소자에 관한 것이다. US 6,458,673의 경우, 펄스 레이더 증착법(PLD)을 이용하여 유리(glass) 기판 위에 H-Ga co-doped n-GaN 박막을 형성시켜 높은 광투과도 및 높은 전자농도를 제시하나, 발광 소자의 투명 전극의 개발은 제시하지 못하였다. US 6,527,858에서, 분자선 에피탁시법(MBE)을 이용하여 N-Ga(C-In) co-doped로 저저항을 갖는 p-형 ZnO 단결정 박막을 제시하나, 투명 전극의 적용이 아닌 p/n- 접합 ZnO 발광 소자에 관한 것으로서 투명 전극으로서 광투과도와 전기 전도도를 향상시키는 발광 소자에 대한 내용은 개시되어 있지 않다. US 6,896,731의 경우, 분자선 에피탁시법(MBE)을 이용하여 F-Ga co-doped 및 추가로 Mg, Be 원소를 2차 도핑하여 저저항을 갖는 p-형 ZnO 단결정 박막을 성장시켜 p/n- 접합 ZnO발광 소자에 적용하고자 하나, 투명 전극으로서 실제 광투과도 및 전기 전도도에 대한 내용이 개시되어 있지 않다. 또한 US 7,608,308의 경우, 펄스 레이저 증착법(PLD)을 이용하여 P-Li co-doped p-ZnO 단결정을 형성하여 p/n- 접합 ZnO 발광 소자의 p-ZnO 단결정 박막층에 관한 것이나, 투명 전극으로서 실제 광투과도 및 전기 전도도에 대한 내용이 개시되어 있지 않다. In general, as a doping source of a ZnO thin film having n-type electrical conductivity, Group III elements such as B, Al, Ca, In, and the like, and F, Cl, H, etc. may be used to easily form an n-type ZnO thin film. P, As, N, C, Li, F, Na, etc. are used as doping sources for ZnO thin films with p-type electrical conductivity, but oxygen vacancies, native defects, and automatic compensation in forming ZnO thin films It is very difficult to form a p-type ZnO thin film because a non-radiative defect center does not contribute to electrical conductivity due to the self compensation effect and thus has n-type ZnO characteristics. In order to solve this problem, a co-doped technique for n-type / p-type impurity doping sources such as Ga-N, F-Ni, Ga-C, and Ga-H has recently been proposed to provide high holes. Although studies on p-type ZnO thin films with carriers are being actively conducted, there are no reports showing satisfactory results. Specifically, in US 6,291,085, as-doped p-ZnO thin films are formed on an n-GaAs substrate by using pulsed laser deposition (PLD), and the doping concentration, mobility, and specific resistance of the holes are 10 15 / cm 3 , 1, respectively. Although the electrical characteristics of ˜50 cm 2 / Vsec and 1 ohm.cm are obtained, the present invention relates to an n / p-bonded ZnO light emitting device using a p-type ZnO single crystal thin film instead of a transparent electrode. In US 6,458,673, H-Ga co-doped n-GaN thin films are formed on a glass substrate by using pulse radar deposition (PLD) to present high light transmittance and high electron concentration. Development was not presented. In US 6,527,858, p-type ZnO single crystal thin films having low resistance as N-Ga (C-In) co-doped using molecular beam epitaxy (MBE) are described, but p / n is not applied to transparent electrodes. The present invention relates to a bonded ZnO light emitting device, and a light emitting device for improving light transmittance and electrical conductivity as a transparent electrode is not disclosed. In the case of US 6,896,731, p-n ZnO single crystal thin films having low resistance were grown by secondary doping of F-Ga co-doped and Mg and Be elements using molecular beam epitaxy (MBE). -It is intended to be applied to a bonded ZnO light emitting device, but the content of actual light transmittance and electrical conductivity as a transparent electrode is not disclosed. In addition, US 7,608,308 relates to p-ZnO single crystal thin film layers of p / n-bonded ZnO light-emitting devices by forming P-Li co-doped p-ZnO single crystals using pulsed laser deposition (PLD), but as a transparent electrode. There is no disclosure of light transmittance and electrical conductivity.
상술한 문제점을 극복하기 위하여 본 발명의 목적은 높은 광투과도와 높은 전기 전도도를 동시에 갖는 복수의 ZnO 박막을 포함하는 투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법을 제공하는 것이며, 여기서 복수의 ZnO 박막에 포함되는 각각의 ZnO 박막은 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑된다.SUMMARY OF THE INVENTION In order to overcome the above problems, an object of the present invention is to provide a transparent thin film comprising a plurality of ZnO thin films having high light transmittance and high electrical conductivity at the same time, a light emitting device including the same, and a method of manufacturing the same. Each ZnO thin film included in the ZnO thin film is doped with n-type impurities such as Ga, p-type impurities such as As, or simultaneously n-type impurities such as Ga and p-type impurities such as As. do.
본 발명의 다른 목적은 분자선 에피탁시법(MBE), 유기 화학 기상 증착법(MOCVD), 원자층 증착법(ALD), 원자층 에피탁시법(ALE) 중 적어도 하나를 이용하여 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 ZnO 박막, 특히 ZnO 단결정 박막을 복수개 적층한 투명 박막을 형성함으로써, 대량 양산에 적용이 가능할 뿐만 아니라, 높은 광출력, 낮은 동작 전압 및 고신뢰성을 갖는 고효율의 발광 소자를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to use n- such as Ga using at least one of molecular beam epitaxy (MBE), organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), and atomic layer epitaxy (ALE). A transparent thin film in which a plurality of ZnO thin films, in particular, ZnO single crystal thin films in which a dop-type impurity is doped, a p-type impurity such as As is doped, or an n-type impurity such as Ga and a p-type impurity such as As are simultaneously doped The present invention provides a method for manufacturing a highly efficient light emitting device having high light output, low operating voltage and high reliability, as well as being applicable to mass production.
상기 목적들을 달성하기 위하여, 본 발명의 일측면에 따르면, AlxInyGa(1-x-y)N, (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 질화물 반도체 발광 소자에 있어서, 기판, 상기 기판 위에 형성되는 버퍼층, 상기 버퍼층 위에 형성되는 제1 전극 접촉층, 상기 제1 전극 접촉층 위에 형성되는 제1 클래드층, 상기 제1 클래드층 위에 형성되는 활성층, 상기 활성층 위에 형성되는 제2 클래드층, 상기 제2 클래드층 위에 형성되는 제2 전극 접촉층, 상기 제2 전극 접촉층 위에 형성되며, 복수의 ZnO 박막이 적층된 다층 구조의 투명 전극-여기서 적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성됨-, 상기 제1 전극 접촉층의 상부 일측에 형성되는 제1 전극 패드 및 상기 투명 전극의 상부 일측에 형성되는 제2 전극 패드를 포함하는 질화물 반도체 발광 소자를 제공할 수 있다.In order to achieve the above objects, according to one aspect of the invention, the composition formula of Al x In y Ga (1-xy) N, (0≤x≤1, 0≤y≤1, 0≤x + y≤1) A nitride semiconductor light emitting device having: a substrate; a buffer layer formed on the substrate; a first electrode contact layer formed on the buffer layer; a first clad layer formed on the first electrode contact layer; and formed on the first clad layer A multi-layered transparent electrode formed on the active layer, the second cladding layer formed on the active layer, the second electrode contact layer formed on the second cladding layer, the second electrode contacting layer, and a plurality of ZnO thin films stacked thereon; Wherein at least some of the ZnO thin films are doped with n-type impurities which are at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H, or Group V of N, P, As, Sb P-type impurities, which are at least one selected from the group consisting of an element and Li, Na, and C, Doped or formed by simultaneously doping the n-type impurity and the p-type impurity, a first electrode pad formed on an upper side of the first electrode contact layer, and a second electrode formed on an upper side of the transparent electrode A nitride semiconductor light emitting device including a pad can be provided.
바람직한 실시예에서, 상기 n-형 불순물은 Ga이며, 상기 p-형 불순물은 As인 것을 특징으로 한다. 또한 상기 복수의 ZnO 박막의 적어도 일부의 ZnO 박막은 다른 ZnO 박막과 두께가 다른 것을 특징으로 한다. 또한 상기 투명 전극은 상기 n-형 불순물이 도핑된 ZnO 박막과 상기 p-형 불순물이 도핑된 ZnO 박막이 복수회 교번적으로 적층된 다층 구조인 것을 특징으로 한다. 여기서 상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 한다. 또한 상기 투명 전극은 상기 p-형 불순물이 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 ZnO 박막이 복수회 교번적으로 적층된 다층 구조인 것을 특징으로 한다. 여기서 상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 한다. 또한 상기 투명 전극은 상기 n-형 불순물이 도핑된 ZnO 박막과 상기 p-형 불순물이 도핑된 ZnO 박막이 적층된 다층 구조인 것을 특징으로 한다. 여기서 상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 한다. 또한 상기 투명 전극은 상기 p-형 불순물이 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 ZnO 박막이 적층된 다층 구조인 것을 특징으로 한다. 여기서 상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 한다. 또한 상기 투명 전극은 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑된 ZnO 박막과 n-형 불순물이 도핑된 ZnO 박막이 적층된 다층 구조인 것을 특징으로 한다. 여기서 상기 n-형 불순물이 도핑된 ZnO 박막의 두께가 상기 n-형 불순물아 상기 p-형 불순물이 동시 도핑된 ZnO 박막의 두께에 비하여 얇은 것을 특징으로 한다. 또한 상기 투명 전극은 상기 n-형 불순물이 도핑된 하부의 ZnO 박막과 상기 p-형 불순물이 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 상부의 ZnO 박막이 적층된 다층 구조인 것을 특징으로 한다. 여기서 상기 n-형 불순물이 도핑된 하부의 ZnO 박막의 두께가 상기 p-형 불순물이 도핑된 ZnO 박막의 두께 또는 상기 n-형 불순물이 도핑된 상부의 ZnO 박막의 두께에 비하여 얇은 것을 특징으로 한다. 또한 상기 투명 전극은 상기 n-형 불순물이 도핑된 하부의 ZnO 박막과 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 상부의 ZnO 박막이 적층된 다층 구조인 것을 특징으로 한다. 여기서 상기 n-형 불순물이 도핑된 하부의 ZnO 박막의 두께 및 상기 n-형 불순물이 도핑된 상부의 ZnO 박막의 두께가 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑된 ZnO 박막의 두께에 비하여 얇은 것을 특징으로 한다. 또한 상기 각 ZnO 박막은 ZnO 단결정 박막인 것을 특징으로 한다. 또한 동시 도핑되는 상기 n-형 불순물과 상기 p-형 불순물 중 상기 n-형 불순물이 전기적 특성을 양호하게 하는 주요 원인이며, 상기 p-형 불순물이 광 특성을 양호하게 하는 주요 원인인 것을 특징으로 한다.In an exemplary embodiment, the n-type impurity is Ga, and the p-type impurity is As. In addition, at least a portion of the ZnO thin films of the plurality of ZnO thin films may be different in thickness from other ZnO thin films. The transparent electrode may be a multi-layered structure in which a ZnO thin film doped with n-type impurities and a ZnO thin film doped with p-type impurities are alternately stacked a plurality of times. The thickness of each of the ZnO thin film is characterized in that the same. The transparent electrode may be a multi-layered structure in which a ZnO thin film doped with the p-type impurity and a ZnO thin film doped with the n-type impurity are alternately stacked a plurality of times. The thickness of each of the ZnO thin film is characterized in that the same. In addition, the transparent electrode has a multi-layered structure in which the ZnO thin film doped with the n-type impurity and the ZnO thin film doped with the p-type impurity are stacked. The thickness of each of the ZnO thin film is characterized in that the same. In addition, the transparent electrode has a multi-layered structure in which the ZnO thin film doped with the p-type impurity and the ZnO thin film doped with the n-type impurity are stacked. The thickness of each of the ZnO thin film is characterized in that the same. In addition, the transparent electrode has a multi-layered structure in which a ZnO thin film doped with the n-type impurity and the p-type impurity and a ZnO thin film doped with the n-type impurity are stacked. The thickness of the ZnO thin film doped with the n-type impurity is thinner than the thickness of the ZnO thin film that is simultaneously doped with the n-type impurity and the p-type impurity. In addition, the transparent electrode has a multi-layered structure in which the ZnO thin film doped with the n-type impurity, the ZnO thin film doped with the p-type impurity and the ZnO thin film doped with the n-type impurity are stacked. do. The thickness of the ZnO thin film doped with the n-type impurity is thinner than the thickness of the ZnO thin film doped with the p-type impurity or the thickness of the ZnO thin film doped with the n-type impurity. . The transparent electrode is formed by stacking a ZnO thin film doped with the n-type impurity, a ZnO thin film doped with the n-type impurity and the p-type impurity, and a ZnO thin film doped with the n-type impurity. It is characterized in that the multi-layered structure. Wherein the thickness of the ZnO thin film doped with the n-type impurity and the thickness of the ZnO thin film doped with the n-type impurity are the thickness of the ZnO thin film simultaneously doped with the n-type impurity and the p-type impurity. It is characterized by a thinner than. In addition, each ZnO thin film is characterized in that the ZnO single crystal thin film. In addition, the n-type impurity of the n-type impurity and the p-type impurity which is simultaneously doped is the main cause for improving the electrical characteristics, the p-type impurity is the main cause for improving the optical characteristics do.
본 발명의 다른 측면에 따르면, 투명 박막으로서 복수의 ZnO 박막이 적층된 다층 구조를 가지며, 적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성되는 것을 특징으로 하는 투명 박막을 제공할 수 있다.According to another aspect of the present invention, a transparent thin film has a multilayer structure in which a plurality of ZnO thin films are laminated, and at least some ZnO thin films are formed from a group consisting of Group III elements of B, Al, Ga, In, and F, Cl, H. The at least one selected n-type impurity is doped, or the at least one p-type impurity selected from the group consisting of Group V elements of N, P, As, Sb and Li, Na, C is doped, or the n-type impurity And the p-type impurity can be provided at the same time to provide a transparent thin film.
본 발명의 또 다른 측면에 따르면 복수의 ZnO 박막이 적층된 다층 구조를 가지며, 적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성되는 것을 특징으로 하는 투명 박막을 포함하는 발광 소자를 제공할 수 있다.According to another aspect of the present invention has a multi-layer structure in which a plurality of ZnO thin film is laminated, at least some ZnO thin film is at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H Phosphorus n-type impurities are doped, or p-type impurities which are at least one selected from the group consisting of Group V elements of N, P, As, and Sb and Li, Na, and C are doped, or the n-type impurities and the p It is possible to provide a light emitting device comprising a transparent thin film, characterized in that the -type impurities are formed by co-doped.
본 발명의 또 다른 측면에 따르면, 투명 박막의 형성 방법으로서 복수의 ZnO 박막을 적층하는 과정을 포함하되, 적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성되는 것을 특징으로 하는 투명 박막의 형성 방법을 제공할 수 있다.According to another aspect of the present invention, a method of forming a transparent thin film includes laminating a plurality of ZnO thin films, wherein at least some of the ZnO thin films are group III elements of B, Al, Ga, In and F, Cl, H At least one n-type impurity selected from the group consisting of doped or at least one p-type impurity selected from the group consisting of Group V elements of N, P, As, and Sb and Li, Na, C, or It is possible to provide a method for forming a transparent thin film, wherein the n-type impurity and the p-type impurity are simultaneously doped.
본 발명의 또 다른 측면에 따르면, 발광 소자의 제조 방법으로서 투명 박막을 형성하는 과정을 포함하되, 상기 투명 박막의 형성 과정은 복수의 ZnO 박막을 적층하는 과정을 포함하되, 적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성되는 것을 특징으로 하는 발광 소자의 제조 방법을 제공할 수 있다.According to another aspect of the present invention, a method of manufacturing a light emitting device includes the step of forming a transparent thin film, wherein the forming of the transparent thin film includes a process of laminating a plurality of ZnO thin film, at least a portion of the ZnO thin film Group III elements of B, Al, Ga, In and at least one n-type impurity selected from the group consisting of F, Cl, H are doped, or Group V elements of N, P, As, Sb and Li, Na, C It is possible to provide a method of manufacturing a light emitting device, characterized in that the at least one p-type impurity selected from the group consisting of doped, or the n-type and the p-type impurity is formed by co-doped.
본 발명에 따르면, 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.
본 발명에 의하여, Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 ZnO 박막, 특히 ZnO 단결정 박막을 복수개 적층한 투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법을 제공할 수 있다. According to the present invention, ZnO thin films, in particular, are doped with n-type impurities such as Ga, p-type impurities such as As, or co-doped n-type impurities such as Ga and p-type impurities such as As. A transparent thin film in which a plurality of ZnO single crystal thin films are laminated, a light emitting device including the same, and a method of manufacturing the same can be provided.
또한 본 발명에 의하여, 분자선 에피탁시법(MBE), 유기 화학 기상 증착법(MOCVD), 원자층 증착법(ALD), 원자층 에피탁시법(ALE) 중 적어도 하나를 이용하여 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 ZnO 박막, 특히 ZnO 단결정 박막을 복수개 적층한 투명 박막을 형성함으로써, 대량 양산에 적용이 가능할 뿐만 아니라, 높은 광출력, 낮은 동작 전압 및 고신뢰성을 갖는 고효율의 발광 소자를 제조하는 방법을 제공할 수 있다.In addition, according to the present invention, at least one of molecular beam epitaxy (MBE), organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), and atomic layer epitaxy (ALE) is used. A transparent thin film in which a plurality of ZnO thin films, in particular, ZnO single crystal thin films in which a dop-type impurity is doped, a p-type impurity such as As is doped, or an n-type impurity such as Ga and a p-type impurity such as As are simultaneously doped By forming, it is possible to provide a method of manufacturing a high-efficiency light emitting device having high light output, low operating voltage and high reliability as well as being applicable to mass production.
또한 본 발명에 의하여, ITO 물질의 인듐(In)에 비하여 상대적으로 매장량이 풍부하여, 제조 원가를 개선할 수 있는 아연(Zn)을 바탕으로 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 ZnO 박막, 특히 ZnO 단결정 박막을 복수개 적층한 투명 박막을 투명 전극으로 사용함으로써, 경제성을 극대화할 수 있는 투명 박막, 이를 포함하는 AlInGaN계 질화물 반도체 발광 소자와 이들의 제조 방법을 제공할 수 있다.In addition, according to the present invention, it is relatively rich in reserve compared to the indium (In) of the ITO material, doped with n-type impurities such as Ga based on zinc (Zn) which can improve the manufacturing cost, or As Maximize economics by using ZnO thin films, in which a plurality of ZnO single crystal thin films are laminated, in which a p-type impurity is doped or a n-type impurity such as Ga and a p-type impurity such as As are simultaneously stacked A transparent thin film, an AlInGaN-based nitride semiconductor light emitting device including the same, and a method of manufacturing the same can be provided.
또한 본 발명에 의하여, AlInGaN계 질화물반도체 발광 소자에 한정하지 않고 종래의 ITO 물질을 대체할 수 있는 터치 패드, 유기 이엘(EL), 태양 전지(solar cell) 등의 다양한 응용 분야에 적용할 수 있는 투명 전극 및 그 제조 방법을 제공할 수 있다.In addition, the present invention is not limited to AlInGaN-based nitride semiconductor light emitting devices, and can be applied to various application fields such as touch pads, organic EL, solar cells, etc., which can replace conventional ITO materials. A transparent electrode and its manufacturing method can be provided.
도 1은 통상적인 AlInGaN계 질화물 반도체를 이용한 발광 소자의 적층 구조를 개략적으로 나타낸 단면도.1 is a cross-sectional view schematically showing a laminated structure of a light emitting device using a conventional AlInGaN-based nitride semiconductor.
도 2는 본 발명의 바람직한 실시예에 따른 AlInGaN계 질화물 반도체 발광 소자의 투명 전극으로 사용되는 다층 구조의 ZnO 박막의 형성 과정을 개략적으로 나타낸 순서도.FIG. 2 is a flowchart schematically illustrating a process of forming a ZnO thin film having a multilayer structure used as a transparent electrode of an AlInGaN-based nitride semiconductor light emitting device according to a preferred embodiment of the present invention. FIG.
도 3은 본 발명의 바람직한 일 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자의 적층 구조를 개략적으로 나타낸 단면도.3 is a cross-sectional view schematically showing a laminated structure of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to an embodiment of the present invention.
도 4는 본 발명의 바람직한 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자의 적층 구조를 개략적으로 나타낸 단면도.4 is a schematic cross-sectional view of a stacked structure of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another exemplary embodiment of the present invention.
도 5는 본 발명의 바람직한 일 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도.5 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to an exemplary embodiment of the present invention.
도 6은 본 발명의 바람직한 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도.6 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another exemplary embodiment of the present invention.
도 7은 본 발명의 바람직한 또 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도.7 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 또 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도.8 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention.
도 9는 본 발명의 바람직한 또 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도.9 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention.
도 10은 본 발명의 바람직한 일 실시예에 따라서 AlInGaN계 질화물 반도체를 이용한 발광 소자의 제2 전극 접촉층 위에 성장된 ZnO 박막에 도핑되는 n-형(Ga)과 p-형(As) 불순물에 따른 전류-전압 특성을 나타낸 그래프.FIG. 10 illustrates n-type (Ga) and p-type (As) impurities doped in a ZnO thin film grown on a second electrode contact layer of a light emitting device using an AlInGaN-based nitride semiconductor according to an exemplary embodiment of the present invention. Graph showing current-voltage characteristics.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명은 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 ZnO 박막, 특히 ZnO 단결정 박막을 복수개 적층한 투명 박막과 이를 포함하는 발광 소자 및 이들의 제조 방법에 관한 것이다. 본 발명에 따른 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 투명 박막이 설명의 편의상 ZnO 단결정 박막인 것으로 하나, 이에 한정되지 않는다. 또한 본 발명에 따른 발광 소자는 설명의 편의상 질화물 반도체 발광 소자, 특히 AlxInyGa(1-x-y)N, (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 질화물 반도체 발광 소자인 것으로 하나, 이에 한정되지 않는다. 또한 본 발명에 따른 투명 박막이 설명의 편의상 분자선 에피탁시법(MBE)을 이용하여 형성되는 것으로 하나, 이에 한정되지 않으며, 바람직하게는 유기 화학기상 증착법(MOCVD), 원자층 증착법(ALD), 원자층 에피탁시법(ALE) 중 적어도 하나를 이용하여 투명 박막을 형성하는 점도 본 발명의 기술적 범위에 포함된다. 이하 본 발명에 대한 설명의 편의를 위하여, 투명 박막은 Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 ZnO 박막, 특히 ZnO 단결정 박막을 복수개 적층한 다층 구조의 투명 박막이며, 발광 소자는 AlxInyGa(1-x-y)N, (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 질화물 반도체 발광 소자(이하 AlInGaN계 질화물 반도체 발광 소자라 함)이며, 분자선 에피탁시법(MBE)을 이용하여 ZnO 박막이 형성되는 것으로 한다. 또한 본 발명에 대한 설명의 편의를 위하여, 개별 ZnO 박막에 동시 도핑되거나 개별적으로 도핑되는 n-형 불순물과 p-형 불순물이 주로 Ga과 As인 것으로 하나, 이에 한정되지 않으며, 바람직하게는 n-형 불순물이 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나이며, p-형 불순물이 N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 점도 본 발명의 기술적 범위에 포함된다.The present invention relates to ZnO thin films, in particular ZnO single crystals, which are doped with n-type impurities such as Ga, p-type impurities such as As, or simultaneously doped with n-type impurities such as Ga and p-type impurities such as As. The present invention relates to a transparent thin film in which a plurality of thin films are stacked, a light emitting device including the same, and a manufacturing method thereof. According to the present invention, a transparent thin film in which an n-type impurity such as Ga is doped, a p-type impurity such as As is doped, or an n-type impurity such as Ga and a p-type impurity such as As is simultaneously doped. For convenience, the ZnO single crystal thin film is not limited thereto. In addition, the light emitting device according to the present invention is a nitride semiconductor light emitting device, in particular Al x In y Ga (1-xy) N, (0≤x≤1, 0≤y≤1, 0≤x + y≤1) for convenience of description. The nitride semiconductor light emitting device having a compositional formula of 1, but is not limited thereto. In addition, the transparent thin film according to the present invention is formed using the molecular beam epitaxy method (MBE) for convenience of description, but is not limited thereto. Preferably, organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), It is also included in the technical scope of the present invention to form a transparent thin film using at least one of the atomic layer epitaxy method (ALE). Hereinafter, for convenience of description of the present invention, the transparent thin film may be doped with n-type impurities such as Ga, p-type impurities such as As, or n-type impurities such as Ga and p-type such as As. A multi-layered transparent thin film in which a plurality of ZnO thin films, in particular ZnO single crystal thin films, which are simultaneously doped with impurities are laminated, and the light emitting device is Al x In y Ga (1-xy) N, (0≤x≤1, 0≤y≤1 , A nitride semiconductor light emitting device (hereinafter referred to as AlInGaN-based nitride semiconductor light emitting device) having a composition formula of 0 ≦ x + y ≦ 1, and a ZnO thin film is formed by using a molecular beam epitaxy method (MBE). In addition, for convenience of description of the present invention, n-type impurities and p-type impurities which are simultaneously doped or individually doped to individual ZnO thin films are mainly Ga and As, but are not limited thereto. The type impurity is at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H, and the p-type impurities are Group V elements of N, P, As, Sb, Li, Na, The at least one selected from the group consisting of C is also included in the technical scope of the present invention.
본 발명에 따른 투명 전극을 이룰 수 있는 개별 단결정 ZnO 박막, 예를 들어 Ga과 같은 n-형 불순물이 도핑되는 단결정 ZnO 박막(이후 ZGO(ZnO:Ga) 박막 또는 ZGO 박막 또는 ZGO 단결정 박막이라 함), As와 같은 p-형 불순물이 도핑되는 단결정 ZnO 박막(이후 ZAO(ZnO:As) 박막 또는 ZAO 박막 또는 ZAO 단결정 박막이라 함), 또는 Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는(co-doped) 단결정 ZnO 박막(이후 ZGAO(ZnO:Ga-As) 박막 또는 ZGAO 단결정 박막이라 함)을 형성하기 위한 분자선 에피탁시 장비(이하, MBE장비라 함)는 크게 시료 장입실, 처리실 및 성장실로 구분된다. 특히 ZnO 박막, 바람직하게는 ZnO 단결정 박막의 성장실은 10-9 torr의 초고진공 및 오염 성분이 최대한 제거된 깨끗한 성장 환경을 유지하기 위하여 각각의 공간은 게이트 밸브(gate valve)로 분리된다. 도 2는 본 발명의 바람직한 실시예에 따른 AlInGaN계 질화물 반도체 발광 소자의 투명 전극으로 사용되는 다층 구조의 ZnO 박막의 형성 과정을 개략적으로 나타낸 순서도이다. 도 2를 참조하면, 본 발명에 따른 AlInGaN계 질화물 반도체 발광 소자의 투명 전극으로 사용되는 다층 구조의 ZnO 박막을 형성하기 위한 MBE 장비는 10-9 torr 이하의 초고진공 장비로서 매우 깨끗한 환경에서 원자 레벨로 매우 정교하게 막을 성장시키는 장점을 가진다. 본 발명에 따른 ZGAO 박막 및 이를 채용하는 AlInGaN계 질화물 반도체 발광 소자를 제조하는 MBE 장비는 고진공의 성장 환경에서 고순도, 바람직하게는 99.999% 이상의 Al, In, Ga, Zn, As, Sb 금속 태블릿(tablet)을 사용하며, 각 금속 소스가 수납되는 도가니와 히터(heater)가 정착되며 유량을 제어하는 독립된 개별 셀(cell)로 구성되어 있다. 소스 가스로서 RF 플라즈마를 이용하여 고순도, 바람직하게는 99.9999% 이상의 산소(O2) 가스를 해리시켜 사용한다. 본 발명에 따른 다층 구조의 투명 박막을 구성할 수 있는 ZGAO 박막, ZGO 박막, ZAO 박막, 바람직하게는 ZGAO 단결정 박막, ZGO 단결정 박막, ZAO 단결정 박막의 결정성을 향상시키기 위하여, 기판이 가열되는 것이 바람직하다. 상술한 바와 같이, ZnO 박막에 동시 도핑, 또는 개별 도핑되는 n-형 불순물로서 Ga인 것이 바람직하나, B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나일 수 있으며, 동시 도핑 또는 개별 도핑되는 p-형 불순물로서 As인 것이 바람직하나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나일 수 있다. 본 발명에 따른 다층 구조의 투명 박막을 구성할 수 있는 ZGAO 박막, ZGO 박막, ZAO 박막, 바람직하게는 ZGAO 단결정 박막, ZGO 단결정 박막, ZAO 단결정 박막이 형성되는 대상물인 기판을 포함하는 발광 구조물은 높은 저항 특성과 표면에 캐리어인 홀로 활성화되지 않고 잔류하는 Mg, Mg-H 복합체, 과잉(excess) Mg 등의 불안정한 육각형 구조를 갖는 Mg-doped p-GaN 박막인 것으로 하나, 이에 한정되지 않는다. 본 발명에 따른 다층 구조의 투명 박막을 구성할 수 있는 ZGAO 박막, ZGO 박막, ZAO 박막, 바람직하게는 ZGAO 단결정 박막, ZGO 단결정 박막, ZAO 단결정 박막이 성장 방법에 있어서, 먼저 AlInGaN계 질화물 반도체 발광 소자 구조를 갖는 기판을 포함하는 발광 구조물이 적정 열처리 온도까지 승온된 후, 본 발명에 따른 다층 구조의 투명 박막을 구성할 수 있는 ZGAO 박막, ZGO 박막, ZAO 박막, 바람직하게는 ZGAO 단결정 박막, ZGO 단결정 박막, ZAO 단결정 박막을 형성하기 위한 온도로 강온된다(단계 201). 모체 기판의 열처리 온도는 약 500℃~700℃ 범위인 것이 바람직하다. 기판을 포함하는 발광 구조물의 열처리 과정과 동시에, 최적의 유량 제어를 위하여 Al, In, Ga, Mg, Zn, As 소스가 정착된 각 셀의 온도를 최적의 성장 온도 조건으로 유지한다(단계 203). 각 셀에서 최적의 성장 온도는 다층 구조의 투명 박막을 구성할 수 있는 ZGAO 박막, ZGO 박막, ZAO 박막, 바람직하게는 ZGAO 단결정 박막, ZGO 단결정 박막, ZAO 단결정 박막의 성장 조건에 따라 달라질 수 있으며, 각 셀에 담긴 재료의 양과 구조에 따라서 달라질 수 있다. 예를 들어, Zn 소스에 상응하는 셀의 온도는 약 300℃~600℃의 범위가 적절하며, Ga 소스에 상응하는 셀의 온도는 약 500℃~800℃의 범위가 적절하며, As 소스에 상응하는 셀의 온도는 약 200℃~400℃의 범위가 적절하며, 이러한 범위 내에서 각 셀의 최적의 유량 조건이 설정될 수 있다. 상술한 각 셀의 적정 온도 범위는 일 실시예에 불과하며, 장비 사양에 따라 다양하게 변경될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명할 것이다.Individual single crystal ZnO thin films capable of forming a transparent electrode according to the present invention, for example, single crystal ZnO thin films doped with n-type impurities such as Ga (hereinafter referred to as ZGO (ZnO: Ga) thin films or ZGO thin films or ZGO single crystal thin films). , Monocrystalline ZnO thin films doped with p-type impurities such as As (hereinafter referred to as ZAO (ZnO: As) thin films or ZAO thin films or ZAO single crystal thin films), or n-type impurities such as Ga and p-type impurities such as As The molecular beam epitaxy equipment (hereinafter referred to as MBE equipment) for forming this co-doped single crystal ZnO thin film (hereinafter referred to as ZGAO (ZnO: Ga-As) thin film or ZGAO single crystal thin film) is largely a sample. It is divided into charging room, processing room and growth room. In particular, the growth chamber of the ZnO thin film, preferably the ZnO single crystal thin film, is separated by a gate valve in order to maintain a clean growth environment in which ultra-high vacuum and contaminants are removed as much as 10 -9 torr. 2 is a flowchart schematically illustrating a process of forming a ZnO thin film having a multilayer structure used as a transparent electrode of an AlInGaN-based nitride semiconductor light emitting device according to a preferred embodiment of the present invention. Referring to FIG. 2, the MBE equipment for forming a ZnO thin film having a multi-layer structure used as a transparent electrode of an AlInGaN-based nitride semiconductor light emitting device according to the present invention is an ultra-high vacuum equipment of 10 -9 torr or less and has an atomic level in a very clean environment. This has the advantage of growing the film very precisely. MBE equipment for manufacturing a ZGAO thin film and an AlInGaN-based nitride semiconductor light emitting device employing the same according to the present invention is Al, In, Ga, Zn, As, Sb metal tablet (tablet) with high purity, preferably 99.999% or more in a high vacuum growth environment. And a crucible in which each metal source is housed, and a heater is settled, and is composed of independent individual cells controlling the flow rate. As the source gas, an oxygen (O 2 ) gas of high purity, preferably 99.9999% or more, is used by dissociating using an RF plasma. In order to improve the crystallinity of the ZGAO thin film, ZGO thin film, ZAO thin film, preferably ZGAO single crystal thin film, ZGO single crystal thin film, ZAO single crystal thin film which can form a transparent thin film having a multilayer structure according to the present invention, the substrate is heated. desirable. As described above, the n-type impurity which is co-doped or individually doped to the ZnO thin film is preferably Ga, but at least one selected from the group consisting of Group III elements of B, Al, Ga, In and F, Cl, H As a p-type impurity which is simultaneously doped or individually doped, it is preferably As, but may be at least one selected from the group consisting of Group V elements of N, P, As, and Sb, and Li, Na, and C. ZGAO thin film, ZGO thin film, ZAO thin film, preferably ZGAO single crystal thin film, ZGO single crystal thin film, which can form a transparent thin film of the multi-layer structure according to the present invention is a light emitting structure comprising a substrate that is formed of a ZAO single crystal thin film is high Mg-doped p-GaN thin film having an unstable hexagonal structure, such as Mg, Mg-H composite, excess Mg that remains without being activated as a carrier as a carrier on the surface, but is not limited thereto. In the growth method, a ZGAO thin film, a ZGO thin film, a ZAO thin film, preferably a ZGAO single crystal thin film, a ZGO single crystal thin film, and a ZAO single crystal thin film, which can form a transparent thin film having a multilayer structure according to the present invention, first, an AlInGaN-based nitride semiconductor light emitting device After the light emitting structure including the substrate having the structure is heated up to an appropriate heat treatment temperature, a ZGAO thin film, a ZGO thin film, a ZAO thin film, preferably a ZGAO single crystal thin film and a ZGO single crystal, which may form a transparent thin film having a multilayer structure according to the present invention. The temperature is lowered to a temperature for forming the thin film, the ZAO single crystal thin film (step 201). The heat treatment temperature of the mother substrate is preferably in the range of about 500 ° C to 700 ° C. Simultaneously with the heat treatment process of the light emitting structure including the substrate, the temperature of each cell where the Al, In, Ga, Mg, Zn, As source is fixed is maintained at the optimum growth temperature condition for optimal flow rate control (step 203). . The optimal growth temperature in each cell may vary depending on the growth conditions of the ZGAO thin film, ZGO thin film, ZAO thin film, preferably ZGAO single crystal thin film, ZGO single crystal thin film, ZAO single crystal thin film, which can form a transparent thin film having a multilayer structure. The amount and structure of the material contained in each cell may vary. For example, the temperature of the cell corresponding to the Zn source is appropriately in the range of about 300 ° C. to 600 ° C., and the temperature of the cell corresponding to the Ga source is suitably in the range of about 500 ° C. to 800 ° C. and corresponds to the As source. The temperature of the cell is appropriately in the range of about 200 ℃ to 400 ℃, within this range can be set the optimum flow conditions of each cell. Appropriate temperature range of each cell described above is only one embodiment, it will be apparent to those skilled in the art that the present invention can be variously changed according to equipment specifications.
단계 201 및 203을 통하여 최적의 성장 환경이 준비된 상태에서, 기판을 포함하는 발광 구조물에 대하여 최적 성장 온도가 확정하며, 최적 성장 온도가 확정된 후 기판이 회전된다(단계 205). 이 후, 회전하는 기판을 포함하는 발광 구조물에 대하여 각각의 재료가 마련된 셀의 셔터를 공정 과정에 상응하게 개방한다(단계 207). 단계 207에서, 공정 과정에 상응하도록 RF 플라즈마를 이용하여 산소(O2)가스를 해리함으로써 얻어지는 산소 소스가 더 공급될 수 있다. 공정 과정에 상응하도록 각 셀의 셔터가 개방되어 셀에 수납된 재료가 증발에 의하여 기판을 포함하는 발광 구조물에 도달하며, 공정 과정에 상응하도록 산소 소스가 더 공급되어, 본 발명에 따른 다층 구조의 투명 박막을 구성할 수 있는 ZGAO 박막, ZGO 박막, ZAO 박막, 바람직하게는 ZGAO 단결정 박막, ZGO 단결정 박막, ZAO 단결정 박막이 균일하게 성장됨으로써, n-형 도핑 소스인 Ga이 개별적으로 도핑되는 ZGO 박막, p-형 도핑 소스인 As가 개별적으로 도핑되는 ZAO 박막, 및 n-형 도핑 소스인 Ga과 p-형 도핑 소스인 As가 동시 도핑되는 ZGAO 박막 중 적어도 하나를 복수개 포함하는 적층 구조의 투명 박막을 형성하여, 높은 광투과도와 저저항 특성으로 인한 높은 전기 전도도를 갖는 투명 전극이 형성된다(단계 209). 상술한 공정 과정에서, 대부분의 Zn 소스는 산소와 결합하여 산화아연(ZnO)의 단결정 박막을 형성한다. 산소의 경우 일반적으로 분자 상태로 존재하나, 본 발명에 따른 공정을 진행하기 위하여, 해리되어 원자 상태로 공급되며, 바람직하게는 RF 플라즈마 방식이 이용될 수 있다. 이 후, 본 발명에 따라서 ZGAO 박막, ZGO 박막, ZAO 박막, 바람직하게는 ZGAO 단결정 박막, ZGO 단결정 박막, ZAO 단결정 박막 중 적어도 하나를 포함하여 다층 구조로 형성되는 투명 전극의 형성을 완료하면, 각 셀의 셔터를 폐쇄한다(단계 211).With the optimum growth environment prepared in steps 201 and 203, the optimal growth temperature is determined for the light emitting structure including the substrate, and the substrate is rotated after the optimal growth temperature is determined (step 205). Thereafter, the shutter of the cell provided with each material is opened to the light emitting structure including the rotating substrate correspondingly to the process (step 207). In step 207, an oxygen source obtained by dissociating oxygen (O 2 ) gas using an RF plasma may be further supplied to correspond to the process. The shutter of each cell is opened to correspond to the process so that the material contained in the cell reaches the light emitting structure including the substrate by evaporation, and an oxygen source is further supplied to correspond to the process, thereby providing a multilayer structure according to the present invention. ZGAO thin film, ZGO thin film, ZAO thin film, preferably ZGAO single crystal thin film, ZGO single crystal thin film, ZAO single crystal thin film that can form a transparent thin film is uniformly grown, ZGO thin film in which Ga, an n-type doping source, is individually doped , a transparent thin film comprising a plurality of ZAO thin films individually doped with As, a p-type doping source, and a ZGAO thin film simultaneously doped with Ga, an n-type doping source, and As, a p-type doping source. By forming a transparent electrode having a high light transmittance and a high electrical conductivity due to the low resistance characteristic (step 209). In the process described above, most of the Zn source is combined with oxygen to form a single crystal thin film of zinc oxide (ZnO). Oxygen is generally present in a molecular state, but in order to proceed with the process according to the present invention, it is dissociated and supplied in an atomic state, and preferably, an RF plasma method may be used. After the formation of a transparent electrode formed of a multilayer structure including at least one of a ZGAO thin film, a ZGO thin film, a ZAO thin film, preferably a ZGAO single crystal thin film, a ZGO single crystal thin film, and a ZAO single crystal thin film according to the present invention, The shutter of the cell is closed (step 211).
도 3은 본 발명의 바람직한 일 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자의 적층 구조를 개략적으로 나타낸 단면도이며, 도 4는 본 발명의 바람직한 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자의 적층 구조를 개략적으로 나타낸 단면도이다. 도 3 및 도 4는 본 발명에 따른 ZnO 박막(ZnO 단결정 박막을 포함함)이 발광 소자, 특히 AlInGaN계 질화물 반도체를 이용한 발광 소자에 채용되는 상태를 예시적으로 설명하기 위한 것으로서, 본 발명의 기술적 범위가 이에 한정되어 해석되어서는 아니된다. 도 3 및 도 4에 도시된 AlInGaN계 질화물 반도체를 이용한 발광 소자는 “발광 다이오드(Emitting Light Diode, LED)” 및 “레이저 다이오드(Laser Diode, LD)”를 포함한다. 도 3 및 도 4에 도시된, 본 발명에 따른 AlInGaN계 질화물 반도체를 이용한 발광 소자에 있어서, 도 1에 도시된 종래의 통상적인 AlInGaN계 질화물 반도체를 이용한 발광 소자와 동일한 부분에 대하여 구체적인 설명을 생략하기로 한다. 도 3 및 도 4에 도시된 본 발명에 따른 AlInGaN계 질화물 반도체를 이용한 발광 소자에 있어서, 기판(301), 버퍼층(303), 제1 전극 접촉층으로 기능하는 n-형 질화물 반도체층(305), n-형 질화물 클래드층(307), 활성층(309), p-형 질화물 클래드층(311) 및 p-형 질화물 반도체층(313)이 순차로 적층된다. p-형 질화물 반도체층(313) 위에 n/p-형 제2 전극 접촉층(315, 415)이 평탄한 표면을 갖는 플랫 타입(flat type)(도 3의 315) 또는, 거친 표면을 갖는 러프 타입(rough type)으로 형성될 수 있다. 제2 전극 접촉층(315, 415) 위에 얇은 두께의 p-InGaN층 또는 n+-InGaN층, InGaN/InGaN 초격자층, n-InGaN/GaN 초격자층 등이 하부의 제2 전극 접촉층(315, 415)의 표면 상태에 상응하여 더 형성될 수 있다. 즉 제2 전극 접촉층(315)이 플랫 타입인 경우, 제2 전극 접촉층(315) 위에 플랫 타입의 얇은 두께의 p-InGaN층 또는 n+-InGaN층, InGaN/InGaN 초격자층, n-InGaN/GaN 초격자층 등이 형성될 수 있으며, 제2 전극 접촉층(415)이 러프 타입인 경우, 제2 전극 접촉층(316) 위에 러프 타입의 얇은 두께의 p-InGaN층 또는 n+-InGaN층, InGaN/InGaN 초격자층, n-InGaN/GaN 초격자층 등이 형성될 수 있다. 본 발명에 따른 러프 타입은 Mg 유량을 제어함으로써 수행될 수 있다. 본 발명에 따른 기판(301), 버퍼층(303), 제1 전극 접촉층으로 기능하는 n-형 질화물 반도체층(305), n-형 질화물 클래드층(307), 활성층(309), p-형 질화물 클래드층(311), p-형 질화물 반도체층(313), 제2 전극 접촉층(315, 316), 제2 전극 접촉층(315, 415) 위에 형성되는 얇은 두께의 p-InGaN층 또는 n+-InGaN층, InGaN/InGaN 초격자층, n-InGaN/GaN 초격자층 등은 유기 금속 화학 기상 증착법(MOCVD)에 의하여 성장되는 것이 바람직하나, 이에 한정되지는 않는다. 도 3 및 도 4에 도시된 본 발명에 따른 발광 소자에 있어서, n-형 도펀트로 사용되는 불순물 소스는 실리콘(Si)이며, 도핑 농도는 각각 1017/㎝3~1018/㎝3 정도이며, 특히 n-형 전극 패드인 제1 전극 패드(319)와 전기적으로 접촉되어 제1 전극 접촉층으로 사용되는 n-형 질화물 반도체층(305)의 경우, 실리콘 도핑 농도는 1~5×1018/㎝3 정도이며, 2~4㎛ 두께 범위에서 성장된다. p-형 도펀트로 사용되는 불순물 소스는 마그네슘(Mg)이며 활성화 공정(activation process)의 수행 후, 캐리어인 홀의 도핑 농도는 1~5×1017/㎝3 정도의 범위를 갖는다. 특히 p-형 전극 패드인 제2 전극 패드(321)와 전기적으로 접촉되어 제2 전극 접촉층(315, 415)은 10㎚~500㎚ 두께 범위 내에서 성장되며, 활성화 공정에 의하여 캐리어인 홀 농도를 극대화시킨다. 도 1을 참조하여 설명한 종래의 통상적인 AlInGaN계 질화물 반도체를 이용한 발광 소자와 마찬가지로, 도 3 및 도 4에 도시된 본 발명에 따른 AlInGaN계 질화물 반도체를 이용한 발광 소자에 포함되는 제2 전극 접촉층(315, 415)은 단결정 박막 내부와 표면에 과잉(excess) Mg, Mg-H 복합체등(102/㎝3~104/㎝3)이 포함된 고저항/Ga-rich의 거친 표면을 갖는다. 따라서 제2 전극 접촉층(315, 415) 위에 InGaN/InGaN 활성층(309)의 유효 발광 면적까지 인가 전류의 균일한 퍼짐과 주입에 의한 높은 광출력의 고효율 발광 소자를 얻기 위하여, 발광 구조물의 상태(결정 구조, 표면 거칠기, 전기적 특성)를 정확하게 파악함으로써 이후에 형성되는 투명 전극과의 효과적인 계면 제어 기술(interface control technology)이 요구된다. 다시 도 3 및 도 4를 참조하면, 상기 제2 전극 접촉층(315, 415) 위에 도 2를 참조하여 설명한 바와 같이, 본 발명에 따른 투명 전극, 특히 ZnO 박막의 다층 구조로 형성되는 투명 전극(317, 417)이 제2 전극 접촉층(315, 415)의 표면 상태에 상응하여 형성될 수 있다. 즉 제2 전극 접촉층(315)이 플랫 타입인 경우, 제2 전극 접촉층(315) 위에 플랫 타입의 ZnO 박막의 다층 구조로 형성되는 투명 전극(317, 도 3의 경우)이 형성되며, 제2 전극 접촉층(415)이 러프 타입인 경우, 제2 전극 접촉층(316) 위에 러프 타입의 ZnO 박막의 다층 구조로 형성되는 투명 전극(417, 도 4의 경우)이 형성되는 것이 바람직하나, 이에 한정되지 않는다. 최종적으로 와이어 본딩(wire bonding)을 위한 제1 전극 패드(419,421)와 제2 전극 패드(321,421)가 도 3 및 도 4에 도시된 바와 같이 형성된다. 제2 전극 패드(321,421)는 도 1에 도시된 바와 같이, 제2 전극 접촉층(315, 415)에 직접 연결되도록 형성될 수도 있다. 본 발명에서, 종래 발광 소자의 투명 전극으로 사용되는 ITO 물질을 대체하여 높은 광출력과 낮은 동작 전압 및 장기간의 수명을 갖는 고효율/고신뢰성을 갖는 발광 소자의 투명 전극을 형성하도록 요구되는 ZnO 박막은 첫째 대상물인 발광 구조물의 제2 전극 접촉층(315, 415)과 결정 구조가 동일한 단결정 박막에 의하여 광투과도를 극대화할 수 있으며, n-/p-형 불순물의 동시 도핑에 의하여 캐리어의 전기적 특성이 제어되어 접촉 저항을 최소화하여 전기 전도도를 크게 할 수 있는 장점을 지닌다. 본 발명에 따른 ZnO 박막은 성장되는 대상물인 발광 구조물, 특히 제2 전극 접촉층(315, 417)과의 계면 제어와 As와 같은 p-형 불순물의 도핑에 의하여 홀(hole)이 공급되는 점 등에서 특징이 있다.3 is a cross-sectional view schematically showing a laminated structure of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to an embodiment of the present invention, Figure 4 is a preferred embodiment of the present invention A cross-sectional view schematically showing a stacked structure of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another embodiment. 3 and 4 exemplarily illustrate a state in which a ZnO thin film (including a ZnO single crystal thin film) according to the present invention is employed in a light emitting device, in particular, a light emitting device using an AlInGaN-based nitride semiconductor. The scope is not to be construed as being limited thereto. The light emitting device using the AlInGaN-based nitride semiconductor shown in FIGS. 3 and 4 includes an "Emitting Light Diode (LED)" and a "Laser Diode (LD)". In the light emitting device using the AlInGaN nitride semiconductor according to the present invention shown in Figs. 3 and 4, the same parts as those of the conventional light emitting device using the conventional AlInGaN nitride semiconductor shown in Fig. 1 are omitted. Let's do it. In the light emitting device using the AlInGaN nitride semiconductor according to the present invention shown in FIGS. 3 and 4, the n-type nitride semiconductor layer 305 serving as the substrate 301, the buffer layer 303, and the first electrode contact layer is provided. The n-type nitride cladding layer 307, the active layer 309, the p-type nitride cladding layer 311 and the p-type nitride semiconductor layer 313 are sequentially stacked. Flat type (315 in FIG. 3) having a flat surface or n / p-type second electrode contact layers 315 and 415 on the p-type nitride semiconductor layer 313, or rough type having a rough surface (rough type) can be formed. On the second electrode contact layers 315 and 415, a thin p-InGaN layer or an n + -InGaN layer, an InGaN / InGaN superlattice layer, an n-InGaN / GaN superlattice layer, etc. 315, 415 may be further formed corresponding to the surface conditions of. That is, when the second electrode contact layer 315 is flat, a thin p-InGaN layer or n + -InGaN layer, InGaN / InGaN superlattice layer, An InGaN / GaN superlattice layer may be formed, and when the second electrode contact layer 415 is a rough type, a rough p-InGaN layer having a rough thickness or n + − on the second electrode contact layer 316. An InGaN layer, an InGaN / InGaN superlattice layer, an n-InGaN / GaN superlattice layer, or the like may be formed. The rough type according to the invention can be carried out by controlling the Mg flow rate. The substrate 301, the buffer layer 303, the n-type nitride semiconductor layer 305, the n-type nitride cladding layer 307, the active layer 309, and the p-type according to the present invention. A thin p-InGaN layer formed over the nitride clad layer 311, the p-type nitride semiconductor layer 313, the second electrode contact layers 315 and 316, and the second electrode contact layers 315 and 415. The + -InGaN layer, the InGaN / InGaN superlattice layer, the n-InGaN / GaN superlattice layer, etc. are preferably grown by organic metal chemical vapor deposition (MOCVD), but is not limited thereto. In the light emitting device according to the present invention shown in FIGS. 3 and 4, the impurity source used as the n-type dopant is silicon (Si), and the doping concentration is about 10 17 / cm 3 to 10 18 / cm 3 , respectively. In particular, in the case of the n-type nitride semiconductor layer 305 which is in electrical contact with the first electrode pad 319 which is an n-type electrode pad and used as the first electrode contact layer, the silicon doping concentration is 1 to 5 × 10 18. It is about / cm 3 and grows in the thickness range of 2-4 micrometers. The impurity source used as the p-type dopant is magnesium (Mg), and after performing an activation process, the doping concentration of the carrier, which is a carrier, is in the range of about 1 to 5 x 10 17 / cm 3 . In particular, the second electrode contact layers 315 and 415 are electrically contacted with the second electrode pad 321, which is a p-type electrode pad, to grow within a thickness range of 10 nm to 500 nm, and a hole concentration as a carrier by an activation process. Maximize. Similar to the light emitting device using the conventional AlInGaN nitride semiconductor described with reference to FIG. 1, the second electrode contact layer included in the light emitting device using the AlInGaN nitride semiconductor according to the present invention shown in FIGS. 3 and 4 ( 315 and 415 have a high resistance / Ga-rich rough surface including excess Mg and Mg-H composites (10 2 / cm 3 to 10 4 / cm 3 ) inside and on the surface of the single crystal thin film. Therefore, in order to obtain a high light output high-efficiency light emitting device by uniform spread and injection of applied current to the effective light emitting area of the InGaN / InGaN active layer 309 on the second electrode contact layers 315 and 415, the state of the light emitting structure ( By accurately grasping the crystal structure, surface roughness, and electrical properties, there is a need for an effective interface control technology with a transparent electrode formed later. 3 and 4, as described with reference to FIG. 2 on the second electrode contact layers 315 and 415, the transparent electrode formed of a multilayer structure of a transparent electrode, in particular, a ZnO thin film according to the present invention ( 317 and 417 may be formed corresponding to the surface state of the second electrode contact layers 315 and 415. That is, when the second electrode contact layer 315 is a flat type, a transparent electrode 317 (in case of FIG. 3) formed in a multilayer structure of a flat ZnO thin film is formed on the second electrode contact layer 315. When the two-electrode contact layer 415 is a rough type, it is preferable that a transparent electrode 417 (in the case of FIG. 4) formed of a multilayer structure of a rough-type ZnO thin film is formed on the second electrode contact layer 316. It is not limited to this. Finally, first electrode pads 419 and 421 and second electrode pads 321 and 421 for wire bonding are formed as shown in FIGS. 3 and 4. As shown in FIG. 1, the second electrode pads 321 and 421 may be formed to be directly connected to the second electrode contact layers 315 and 415. In the present invention, the ZnO thin film required to form a transparent electrode of a light emitting device having a high efficiency / high reliability having a high light output, a low operating voltage and a long life by replacing the ITO material used as a transparent electrode of a conventional light emitting device The light transmittance can be maximized by the single crystal thin film having the same crystal structure as the second electrode contact layers 315 and 415 of the first light emitting structure, and the electrical characteristics of the carrier can be improved by simultaneous doping of n- / p-type impurities. It is controlled to minimize the contact resistance, which has the advantage of increasing the electrical conductivity. The ZnO thin film according to the present invention is characterized in that holes are supplied by interfacial control with the light emitting structure, in particular, the second electrode contact layers 315 and 417, and doping of p-type impurities such as As. There is a characteristic.
본 발명에 따른 투명 전극인 ZnO 박막의 다층 구조로 형성되는 투명 전극(317, 318)은 c-axis 성장 방향으로 육각형의 결정 구조를 갖는 기판을 포함하는 발광 구조물, 특히 제2 전극 접촉층(315, 415) 위에 동일한 육각형 결정 구조를 갖는 단결정 박막으로 성장될 수 있으며, 최적의 도핑 제어를 통하여 저항 조절이 가능하기 때문에, 종래의 비정질과 다결정질의 ZnO 박막에 비하여 탁월한 광투과도와 전기 전도도를 갖는다. AlInGaN계 질화물 반도체를 이용한 발광 소자의 제2 전극 접촉층(315, 415)은 호스트(host) 물질인 Ga-rich, 질소 공극(vacancy) 및 활성화 공정 이후의 102/㎝3 이상의 과잉 Mg, Mg-H 복합체 등이 혼합되어 높은 저항과 거친 표면을 가지는 상대적으로 불안정한 상태에 있다. 본 발명의 바람직한 실시예에 따라서, 상기 제2 전극 접촉층(315, 415) 위에 ZnO 박막의 다층 구조로 형성되는 투명 전극(317, 417)이 성장될 때, 고진공 상태에서 성장 초기에 ZnO 박막의 다층 구조로 형성되는 투명 전극의 하부층이 ZGAO 단결정 박막 또는 ZGO 단결정 박막인 경우 호스트 물질인 Zn가 상기 제2 전극 접촉층(315, 415)의 Ga-rich 표면에서 Ga의 자리로 치환되어(ZnGa) ZnO 박막의 다층 구조로 형성되는 투명 전극의 하부층인 ZGAO 단결정 박막 또는 ZGO 단결정 박막과 상기 제2 전극 접촉층(315, 415)의 계면에서 국부적인(localized) Zn-doped GaN층이 형성된다. 또한 활성화 공정후, 상기 제2 전극 접촉층(315, 316) 표면에 국부적으로 잔류하는 Mg-H 복합체는 ZnO 단결정 박막의 호스트인 산소(O)에 의하여 OH 결합이 진행됨으로써 수소(H)가 이탈되며, 결국 ZnO 박막의 다층 구조로 형성되는 투명 전극의 하부층인 ZGAO 단결정 박막 또는 ZGO 단결정 박막과 상기 제2 전극 접촉층(315, 415)의 계면에서 댕글링 결합(dangling bond)으로 잔류하는 호스트인 Ga 자리로 Mg이 치환되면서(MgGa), 국부적으로 캐리어인 홀 도핑 농도가 매우 높은 p-doped 층이 형성되면서 ZnO 박막의 다층 구조로 형성되는 투명 전극의 하부층인 ZGAO 단결정 박막 또는 ZGO 단결정 박막과 상기 제2 전극 접촉층(315, 415)의 계면에서 접촉 저항이 크게 낮아질 수 있다. 이 후, ZnO 박막의 다층 구조로 형성되는 투명 전극의 하부층인 ZGAO 단결정 박막 또는 ZGO 단결정 박막은 성장이 진행되면서 c-axis 방향으로 성장되지만, 산소 공극, 결정 성장중에 형성되는 네이티브 결함(native defect)을 갖는 비대칭의 화학량론적 조성비에 의한 높은 저항이 나타난다. 이러한 비발광 센터(nonradiative center)에 의한 낮은 전기 전도도를 향상시키기 위하여 최적의 도핑 기술이 적용되어야 한다. The transparent electrodes 317 and 318 formed of a multilayer structure of a ZnO thin film, which is a transparent electrode according to the present invention, include a light emitting structure including a substrate having a hexagonal crystal structure in a c-axis growth direction, particularly a second electrode contact layer 315. , 415) can be grown as a single crystal thin film having the same hexagonal crystal structure, and because the resistance can be adjusted through optimal doping control, it has excellent light transmittance and electrical conductivity compared to the conventional amorphous and polycrystalline ZnO thin film. The second electrode contact layers 315 and 415 of the light emitting device using the AlInGaN-based nitride semiconductors have a host material of Ga-rich, nitrogen vacancies and excess Mg, Mg of 10 2 / cm 3 or more after the activation process. The -H complex and the like are mixed and are in a relatively unstable state with high resistance and rough surface. According to a preferred embodiment of the present invention, when the transparent electrodes 317 and 417 formed of a multilayer structure of the ZnO thin film are grown on the second electrode contact layer 315 and 415, the ZnO thin film is initially grown in a high vacuum state. When the lower layer of the transparent electrode formed of a multilayer structure is a ZGAO single crystal thin film or a ZGO single crystal thin film, Zn, a host material, is replaced with a Ga site on the Ga-rich surfaces of the second electrode contact layers 315 and 415 (Zn Ga A ZnO-doped GaN layer localized at the interface between the ZGAO single crystal thin film or ZGO single crystal thin film, which is a lower layer of the transparent electrode formed of a multilayer structure of the ZnO thin film, and the second electrode contact layers 315 and 415 is formed. In addition, the Mg-H composite that remains locally on the surface of the second electrode contact layers 315 and 316 after the activation process undergoes OH bonding by oxygen (O), which is a host of the ZnO single crystal thin film, thereby desorbing hydrogen (H). Finally, a host remaining as a dangling bond at the interface between the ZGAO single crystal thin film or ZGO single crystal thin film, which is a lower layer of the transparent electrode formed of a multilayer structure of the ZnO thin film, and the second electrode contact layers 315 and 415 ZgO single crystal thin film or ZGO single crystal thin film, which is a lower layer of a transparent electrode formed of a multi-layer structure of ZnO thin film, is formed by Mg substitution with Ga sites (Mg Ga ), and a p-doped layer having a very high hole doping concentration as a local carrier is formed. Contact resistance may be significantly lowered at the interface between the second electrode contact layers 315 and 415. Subsequently, the ZGAO single crystal thin film or ZGO single crystal thin film, which is the lower layer of the transparent electrode formed of the multilayer structure of the ZnO thin film, grows in the c-axis direction as the growth proceeds, but a native defect formed during oxygen voids and crystal growth. High resistance due to an asymmetric stoichiometric composition ratio with Optimum doping techniques should be applied to improve low electrical conductivity by these non-radiative centers.
본 발명에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극은 ZAO 단결정 박막과 ZGO 단결정 박막을 교번적으로 복수회 적층한 다층 구조이거나(도 5 및 그 설명 참조), ZnO 박막의 두께를 조절하여 교번적으로 적층한 다층 구조이거나(도 7 내지 8 및 그 설명 참조), ZGO 단결정 박막, ZGAO 단결정 박막 및 ZAO 단결정 박막의 세 종류의 ZnO 단결정 박막을 적층한 다층 구조(도 9 및 그 설명 참조)일 수 있다. 도 5 내지 9와 이에 대한 설명에 본 발명의 기술적 범위가 한정되지 않으며, Ga과 같은 n-형 불순물이 도핑되거나, As와 같은 p-형 불순물이 도핑되거나, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물이 동시 도핑되는 ZnO 박막, 특히 ZnO 단결정 박막을 복수개 적층한 다층 구조의 투명 박막, 이를 포함하는 발광 소자 및 이들의 제조 방법이라면 본 발명의 기술적 범위에 포함될 것이다.The transparent electrode formed of the multilayer structure of the ZnO thin film according to the present invention is a multilayer structure in which a ZAO single crystal thin film and a ZGO single crystal thin film are alternately stacked a plurality of times (see FIG. 5 and the description thereof), or alternately by adjusting the thickness of the ZnO thin film. Or a multi-layer structure in which three kinds of ZnO single-crystal thin films of ZGO single crystal thin film, ZGAO single crystal thin film and ZAO single crystal thin film are laminated (see FIGS. 9 and its description). Can be. 5 to 9 and the description thereof are not limited to the technical scope of the present invention, n-type impurities such as Ga are doped, p-type impurities such as As are doped, n-type impurities such as Ga and As ZnO thin film, in particular, a multi-layered transparent thin film in which a plurality of ZnO single crystal thin films are simultaneously stacked with p-type impurities, such as a light emitting device and a manufacturing method thereof, will be included in the technical scope of the present invention.
도 5는 본 발명의 바람직한 일 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도이다. 도 5에 도시된 바와 같이 본 실시예에 따른 다층 구조로 형성되는 투명 전극은 ZAO 단결정 박막과 ZGO 단결정 박막의 쌍, 또는 ZGO 단결정 박막과 ZAO 단결정 박막의 쌍을 복수회 적층하여, ZAO 단결정 박막과 ZGO 단결정 박막이 교번적으로 적층되거나, ZGO 단결정 박막과 ZAO 단결정 박막이 교번적으로 적층되는 다층 구조를 갖는다. 본 실시예에서 각 ZnO 단결정 박막의 성장 시간은 30초이며, ZGO 단결정 박막과 ZAO 단결정 박막의 쌍 또는 ZAO 단결정 박막과 ZGO 단결정 박막의 쌍을 50회 적층하여 최종 320㎚의 두께를 갖도록 하였다. 이 후, AlInGaN계 발광 소자에 대한 LED 칩 공정을 수행하여 500250㎛2의 크기를 갖는 칩을 제조하여 20mA의 인가 전류에서 동작 전압(VF) 및 광출력(Po) 등의 특성을 확인하였다. 본 실시예에서, 446㎚의 LED 파장 대역에서 동작 전압(VF) 3.56V에서 광출력은 18.1mW로 나타났다. 동일 파장 대역에서 같은 두께를 가지며 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자의 경우 동작 전압(VF)과 광출력은 각각 3.34V 및 15.65mW로 나타났다. 따라서 본 발명의 도 5에 도시된 바와 같은 다층 구조의 투명 전극을 적용한 LED 발광 소자는 Ga과 As가 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자에 비하여 광출력이 향상된 효과를 가지는 것으로 평가된다.5 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to an exemplary embodiment of the present invention. As shown in FIG. 5, the transparent electrode formed of a multi-layer structure according to the present exemplary embodiment includes a ZAO single crystal thin film and a pair of ZGO single crystal thin films, or a pair of ZGO single crystal thin films and a ZAO single crystal thin film stacked multiple times. A ZGO single crystal thin film is alternately laminated, or a ZGO single crystal thin film and a ZAO single crystal thin film are alternately laminated. In this embodiment, the growth time of each ZnO single crystal thin film was 30 seconds, and a pair of ZGO single crystal thin films and ZAO single crystal thin films or a pair of ZAO single crystal thin films and ZGO single crystal thin films 50 times were laminated to have a final thickness of 320 nm. Subsequently, a chip having a size of 500250 μm 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA. In the present embodiment, the light output was 18.1 mW at the operating voltage (VF) 3.56 V in the LED wavelength band of 446 nm. In the LED light emitting device having the same thickness in the same wavelength band and a transparent electrode made of a single thin film of a simultaneously doped ZGAO single crystal, the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Therefore, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 5 of the present invention has an improved light output compared to the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously is applied. It is evaluated to have.
도 6은 본 발명의 바람직한 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도이다. 도 6에 도시된 바와 같이, 본 실시예에 따른 다층 구조로 형성되는 투명 전극은 ZAO 단결정 박막과 ZGO 단결정 박막의 쌍, 또는 ZGO 단결정 박막과 ZAO 단결정 박막의 쌍으로 이루어지는 다층 구조를 갖는다. 도 5에 도시된 바와 같은 투명 전극을 이루는 각 ZnO 단결정 박막에 비하여 본 실시예에서의 투명 전극을 이루는 각 ZnO 단결정 박막의 두께가 두껍다. 본 실시예에서 특히 하부에 ZAO 단결정 박막과 상부에 ZGO 단결정 박막을 적층하여 다층 구조를 이루는 경우에, 각 ZnO 단결정 박막의 성장 시간은 25분이며, 하부의 ZAO 단결정 박막과 상부의 ZGO 단결정 박막의 적층 구조가 최종 320㎚의 두께를 갖도록 하였다. 이 후, AlInGaN계 발광 소자에 대한 LED 칩 공정을 수행하여 500250㎛2의 크기를 갖는 칩을 제조하여 20mA의 인가 전류에서 동작 전압(VF) 및 광출력(Po) 등의 특성을 확인하였다. 본 실시예에서, 446㎚의 LED 파장 대역에서 동작 전압(VF) 3.52V에서 광출력은 19.7mW로 나타났다. 동일 파장 대역에서 같은 두께를 가지며 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자의 경우 동작 전압(VF)과 광출력은 각각 3.34V 및 15.65mW로 나타났다. 따라서 본 발명의 도 6에 도시된 바와 같은 다층 구조의 투명 전극을 적용한 LED 발광 소자는 Ga과 As가 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자에 비하여 광출력이 더욱 향상된 효과를 가지는 것으로 평가된다. 6 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another exemplary embodiment of the present invention. As shown in FIG. 6, the transparent electrode formed of a multilayer structure according to the present embodiment has a multilayer structure consisting of a pair of ZAO single crystal thin films and a ZGO single crystal thin film, or a pair of ZGO single crystal thin films and a ZAO single crystal thin film. The thickness of each ZnO single crystal thin film constituting the transparent electrode in this embodiment is thicker than that of each ZnO single crystal thin film constituting the transparent electrode as shown in FIG. 5. In this embodiment, in particular, when the ZAO single crystal thin film is stacked on the bottom and the ZGO single crystal thin film is formed on the top to form a multilayer structure, the growth time of each ZnO single crystal thin film is 25 minutes, and the ZAO single crystal thin film on the bottom and the ZGO single crystal thin film on the The laminate structure was made to have a final thickness of 320 nm. Subsequently, a chip having a size of 500250 μm 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA. In this embodiment, the light output was 19.7 mW at 3.52 V of operating voltage (VF) in the LED wavelength band of 446 nm. In the LED light emitting device having the same thickness in the same wavelength band and a transparent electrode made of a single thin film of a simultaneously doped ZGAO single crystal, the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Therefore, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 6 of the present invention is further improved in light output compared to the LED light emitting device to which the transparent electrode composed of a single thin film of ZGAO single crystal doped with Ga and As simultaneously. It is evaluated to have an effect.
도 7은 본 발명의 바람직한 또 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도이다. 도 7에 도시된 바와 같이 본 실시예에 따른 다층 구조로 형성되는 투명 전극은 하부에 n-형 불순물인 Ga과 p-형 불순물인 As가 동시 도핑된 ZGAO 단결정 박막과 그 위에 ZGAO 단결정 박막에 비하여 두께가 얇은 n-형 불순물인 Ga이 도핑된 ZGO 단결정 박막을 포함하는 다층 구조를 갖는다. ZGAO 단결정 박막의 성장 시간은 45분이며 ZGO 단결정 박막의 성장 시간은 5분이며, ZGAO 단결정 박막과 ZGO 단결정 박막의 적층 구조인 투명 전극이 최종 320㎚의 두께를 갖도록 하였다. 이 후, AlInGaN계 발광 소자에 대한 LED 칩 공정을 수행하여 500250㎛2의 크기를 갖는 칩을 제조하여 20mA의 인가 전류에서 동작 전압(VF) 및 광출력(Po) 등의 특성을 확인하였다. 본 실시예에서, n-형 불순물인 Ga이 도핑된 ZGO 단결정 박막은 면저항을 감소시켜 전기 전도도를 향상시키기 위하여 채택되는 구성이며, 두께가 증가될수록 면저항값은 낮아지지만 광출력은 감소된다. 본 실시예에서 446㎚의 LED 파장 대역에서 동작 전압(VF) 3.37V에서 광출력은 17.2mW로 나타났다. 동일 파장 대역에서 같은 두께를 가지며 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자의 경우 동작 전압(VF)과 광출력은 각각 3.34V 및 15.65mW로 나타났다. 따라서 본 발명의 도 7에 도시된 바와 같은 다층 구조의 투명 전극을 적용한 LED 발광 소자는 Ga과 As가 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자에 비하여 광출력이 향상된 효과를 가지는 것으로 평가된다. ZGAO 단결정 박막의 두께를 동일하게 하고, n-형 불순물인 Ga이 도핑된 ZGO 단결정 박막의 성장 시간을 5분에서 10분으로 증가시킬 경우, LED 발광 소자의 동작 전압은 3.32V로 감소되지만, 광출력은 16.24mW로 감소된다. 이는 ZGO 단결정 박막의 면저항이 감소되면서 금속 패드와의 전기적 특성이 향상되는 결과에 의하여 동작 전압이 낮아지지만, n-형 불순물인 Ga과 p-형 불순물인 As가 동시 도핑된 접합면에서 보상 효과(compensation effect)가 발생하여 광출력이 낮아지는 것으로 추정된다.7 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention. As shown in FIG. 7, a transparent electrode formed of a multilayer structure according to the present exemplary embodiment has a lower thickness than that of a ZGAO single crystal thin film doped with n-type impurity Ga and p-type impurity As and a ZGAO single crystal thin film thereon. It has a multilayer structure including a Ga-doped ZGO single crystal thin film which is a thin n-type impurity. The growth time of the ZGAO single crystal thin film is 45 minutes, the growth time of the ZGO single crystal thin film is 5 minutes, and the transparent electrode, which is a laminated structure of the ZGAO single crystal thin film and the ZGO single crystal thin film, has a final thickness of 320 nm. Subsequently, a chip having a size of 500250 μm 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA. In this embodiment, the ZGO single crystal thin film doped with Ga, which is an n-type impurity, is adopted to reduce the sheet resistance and improve the electrical conductivity. As the thickness increases, the sheet resistance decreases but the light output decreases. In the present embodiment, the light output was 17.2 mW at an operating voltage (VF) of 3.37 V in the LED wavelength band of 446 nm. In the LED light emitting device having the same thickness in the same wavelength band and a transparent electrode made of a single thin film of a simultaneously doped ZGAO single crystal, the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Therefore, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 7 of the present invention has an improved light output compared to the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously is applied. It is evaluated to have. When the thickness of the ZGAO single crystal thin film is the same and the growth time of the Ga-doped ZGO single crystal thin film which is n-type impurity is increased from 5 minutes to 10 minutes, the operating voltage of the LED light emitting device is reduced to 3.32V, The output is reduced to 16.24mW. This results in a lower operating voltage due to the reduction of the sheet resistance of the ZGO single crystal thin film and the improvement of the electrical properties with the metal pad, but the compensation effect at the joint surface doped with n-type impurity Ga and p-type impurity As. It is assumed that the optical power is lowered due to the compensation effect.
도 8은 본 발명의 바람직한 또 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도이다. 도 8에 도시된 바와 같이 본 실시예에 따른 다층 구조로 형성되는 투명 전극은 하부에 n-형 불순물인 Ga이 도핑된 ZGO 단결정 박막과 그 위에 p-형 불순물인 As가 도핑된 ZAO 단결정 박막과 그 위에 다시 n-형 불순물인 Ga이 도핑된 ZGO 단결정 박막이 적층되며, 하부의 ZGO 단결정 박막이 상부의 ZAO 단결정 박막과 ZGO 단결정 박막에 비하여 두께가 얇은 다층 구조를 갖는다. 하부 ZGO 단결정 박막의 성장 시간은 5분이며 상부 ZAO 단결정 박막과 ZGO 단결정 박막의 성장 시간은 각각 25분이며, 하부 ZGO 단결정 박막과 상부의 ZAO 단결정 박막 및 ZGO 단결정 박막의 적층 구조인 투명 전극이 최종 320㎚의 두께를 갖도록 하였다. 이 후, AlInGaN계 발광 소자에 대한 LED 칩 공정을 수행하여 500250㎛2의 크기를 갖는 칩을 제조하여 20mA의 인가 전류에서 동작 전압(VF) 및 광출력(Po) 등의 특성을 확인하였다. 본 실시예에서 446㎚의 LED 파장 대역에서 동작 전압(VF) 3.90V에서 광출력은 14.2mW로 나타났다. 동일 파장 대역에서 같은 두께를 가지며 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자의 경우 동작 전압(VF)과 광출력은 각각 3.34V 및 15.65mW로 나타났다. 따라서 본 발명의 도 8에 도시된 바와 같은 다층 구조의 투명 전극을 적용한 LED 발광 소자는 Ga과 As가 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자에 비하여 전기적 특성 및 광출력 특성이 저하된 것으로 평가된다. 이는 AlInGaN계 발광 소자의 제2 전극층과의 접합에서 p/n 접합이 형성되어 공핍 영역이 증가되기 때문에 동작 전압이 높은 것을 원인으로 하며, 그에 따른 전류 주입 효율이 낮아져서 결과적으로 광출력 또한 감소하는 것으로 추측된다. 따라서 도 8에 도시된 LED 발광 소자에 대하여 AlInGaN계 발광 소자의 제2 전극층과의 접합을 이루는 n-형 불순물이 도핑된 ZGO 단결정 박막의 두께를 얇게 하고, ~1020/㎝3 정도로 도핑 농도를 증가시켜 터널 접합(tunnel junction)을 형성하면 동작 전압과 광출력을 효과적으로 개선할 수 있을 것으로 판단된다. 8 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention. As shown in FIG. 8, the transparent electrode formed of the multilayer structure according to the present exemplary embodiment includes a ZGO single crystal thin film doped with Ga as an n-type impurity and a ZAO single crystal thin film doped with As as a p-type impurity thereon; A ZGO single crystal thin film doped with Ga, which is an n-type impurity, is stacked thereon, and the lower ZGO single crystal thin film has a multilayer structure that is thinner than the upper ZAO single crystal thin film and the ZGO single crystal thin film. The growth time of the lower ZGO single crystal thin film is 5 minutes, and the growth time of the upper ZAO single crystal thin film and the ZGO single crystal thin film is 25 minutes, respectively, and the transparent electrode which is the stacked structure of the lower ZGO single crystal thin film and the upper ZAO single crystal thin film and the ZGO single crystal thin film is final. It was to have a thickness of 320nm. Subsequently, a chip having a size of 500250 μm 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA. In the present embodiment, the light output was 14.2 mW at an operating voltage (VF) of 3.90 V in the LED wavelength band of 446 nm. In the LED light emitting device having the same thickness in the same wavelength band and a transparent electrode made of a single thin film of a simultaneously doped ZGAO single crystal, the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Accordingly, the LED light emitting device to which the transparent electrode of the multilayer structure as shown in FIG. 8 of the present invention is applied has the electrical characteristics and the light output as compared with the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously. It is evaluated that the characteristic is degraded. This is because the p / n junction is formed at the junction with the second electrode layer of the AlInGaN-based light emitting device to increase the depletion region, and thus the operating voltage is high. As a result, the current injection efficiency is lowered and consequently the light output is also reduced. I guess. Therefore, the thickness of the ZGO single crystal thin film doped with n-type impurities forming the junction with the second electrode layer of the AlInGaN-based light emitting device is thinned with respect to the LED light emitting device shown in FIG. 8, and the doping concentration is increased to ˜10 20 / cm 3 . The increase in the formation of tunnel junctions can effectively improve the operating voltage and light output.
도 9는 본 발명의 바람직한 또 다른 실시예에 따른 ZnO 박막의 다층 구조로 형성되는 투명 전극을 포함하는 AlInGaN계 질화물 반도체를 이용한 발광 소자를 개략적으로 나타낸 단면도이다. 도 9에 도시된 바와 같이 본 실시예에 따른 다층 구조로 형성되는 투명 전극은 하부에 n-형 불순물인 Ga이 도핑된 ZGO 단결정 박막과 그 위에 n-형 불순물인 Ga과 p-형 불순물인 As가 동시 도핑된 ZGAO 단결정 박막과 그 위에 다시 n-형 불순물인 Ga이 도핑된 ZGO 단결정 박막이 적층되며, 하부 및 상부의 ZGO 단결정 박막이 중간의 ZGAO 단결정 박막에 비하여 두께가 얇은 다층 구조를 갖는다. 하부 및 상부 ZGO 단결정 박막의 성장 시간은 각각 5분이며 중간의 ZGAO 단결정 박막의 성장 시간은 45분이며, 하부 ZGO 단결정 박막, 중간의 ZGAO 단결정 박막과 상부의 ZGO 단결정 박막의 적층 구조인 투명 전극이 최종 320㎚의 두께를 갖도록 하였다. 이 후, AlInGaN계 발광 소자에 대한 LED 칩 공정을 수행하여 500250㎛2의 크기를 갖는 칩을 제조하여 20mA의 인가 전류에서 동작 전압(VF) 및 광출력(Po) 등의 특성을 확인하였다. 본 실시예에서 446㎚의 LED 파장 대역에서 동작 전압(VF) 3.42V에서 광출력은 14.1mW로 나타났다. 동일 파장 대역에서 같은 두께를 가지며 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자의 경우 동작 전압(VF)과 광출력은 각각 3.34V 및 15.65mW로 나타났다. 따라서 본 발명의 도 9에 도시된 바와 같은 다층 구조의 투명 전극을 적용한 LED 발광 소자는 Ga과 As가 동시 도핑된 ZGAO 단결정의 단일 박막으로 이루어지는 투명 전극이 적용된 LED 발광 소자에 비하여 전기적 특성 및 광출력 특성이 저하된 것으로 평가된다. 도 8을 참조하여 설명한 바와 같이, 금속 패드와 접촉하는 상부의 n-형 불순물인 Ga을 도핑한 ZGO 단결정 박막은 면저항이 낮아서 전기 전도도가 향상되어 금속 패드와의 원활한 접촉을 통하여 동작 전압이 감소되지만, AlInGaN계 발광 소자의 제2 전극층과의 접합에서 p/n 접합이 형성되어 공핍 영역이 증가되기 때문에 동작 전압이 높은 것을 원인으로 하며, 그에 따른 전류 주입 효율이 낮아져서 결과적으로 광출력 또한 감소한다. 따라서 상술한 바와 마찬가지로 LED 발광 소자에 대하여 AlInGaN계 발광 소자의 제2 전극층과의 접합을 이루는 n-형 불순물이 도핑된 ZGO 단결정 박막의 두께를 얇게 하고, ~1020/㎝3 정도로 도핑 농도를 증가시켜 터널 접합(tunnel junction)을 형성하면 동작 전압과 광출력을 효과적으로 개선할 수 있을 것으로 판단된다.9 is a schematic cross-sectional view of a light emitting device using an AlInGaN-based nitride semiconductor including a transparent electrode formed of a multilayer structure of a ZnO thin film according to another preferred embodiment of the present invention. As shown in FIG. 9, the transparent electrode formed of the multilayer structure according to the present embodiment includes a ZGO single crystal thin film doped with Ga as an n-type impurity at the bottom thereof, Ga as a n-type impurity and As as a p-type impurity thereon. ZGAO single crystal thin films doped simultaneously with ZGA single crystal thin films doped with Ga, which is doped with n-type impurities, are stacked on top of each other, and the lower and upper ZGO single crystal thin films have a thinner multilayer structure than the intermediate ZGAO single crystal thin films. The growth time of the lower and upper ZGO single crystal thin films is 5 minutes, respectively, and the growth time of the intermediate ZGAO single crystal thin films is 45 minutes, and the transparent electrode which is a laminated structure of the lower ZGO single crystal thin film, the middle ZGAO single crystal thin film and the upper ZGO single crystal thin film is The final thickness was 320nm. Subsequently, a chip having a size of 500250 μm 2 was manufactured by performing an LED chip process on the AlInGaN-based light emitting device to check characteristics such as an operating voltage (VF) and an optical output (P o ) at an applied current of 20 mA. In the present embodiment, the light output was 14.1 mW at the operating voltage (VF) of 3.42 V in the LED wavelength band of 446 nm. In the LED light emitting device having the same thickness in the same wavelength band and a transparent electrode made of a single thin film of a simultaneously doped ZGAO single crystal, the operating voltage (VF) and light output were 3.34V and 15.65mW, respectively. Therefore, the LED light emitting device to which the transparent electrode of the multi-layer structure as shown in FIG. 9 of the present invention is applied has the electrical characteristics and the light output compared to the LED light emitting device to which the transparent electrode made of a single thin film of ZGAO single crystal doped with Ga and As simultaneously. It is evaluated that the characteristic is degraded. As described with reference to FIG. 8, the ZGO single crystal thin film doped with Ga, the upper n-type impurity in contact with the metal pad, has a low sheet resistance to improve electrical conductivity, thereby reducing operating voltage through smooth contact with the metal pad. In addition, since the p / n junction is formed at the junction with the second electrode layer of the AlInGaN-based light emitting device to increase the depletion region, the operation voltage is high. As a result, the current injection efficiency is lowered, and consequently, the light output is also reduced. Therefore, as described above, the thickness of the ZGO single crystal thin film doped with n-type impurities forming the junction with the second electrode layer of the AlInGaN based light emitting device is increased, and the doping concentration is increased to ˜10 20 / cm 3. By forming a tunnel junction, it is considered that the operating voltage and the light output can be effectively improved.
도 10은 본 발명의 바람직한 일 실시예에 따라서 AlInGaN계 질화물 반도체를 이용한 발광 소자의 제2 전극 접촉층 위에 성장된 ZnO 박막에 도핑되는 n-형(Ga)과 p-형(As) 불순물에 따른 전류-전압 특성을 나타낸 그래프이다. 발명자는 ZnO 박막에 도핑되는 불순물에 따른 AlInGaN계 질화물 반도체를 이용한 발광 소자의 전기적 특성을 살펴보기 위하여, 러프 타입의 AlInGaN계 질화물 반도체를 이용한 발광 소자의 제2 전극 접촉층 위에 MBE 장비를 이용하여 발광 구조물과 동일한 육각형 결정 구조를 갖는 약 2500Å 두께의 ZnO 단결정 박막을 성장시켰다. 일반적으로 반도체 물질의 저항은 도핑되는 n-형과 p-형의 불순물의 농도에 의존하기 때문에 n-형(Ga)과 p-형(As) 불순물의 도핑 및 이들의 동시 도핑에 따른 전기적 특성을 확인하기 위하여, 발명자는 ZnO 박막의 두께를 2500Å으로 고정한 후, 도핑을 하지 않은 ZnO 박막(undoped ZnO), Ga 도핑 ZnO 박막(Ga doped ZnO), As 도핑 ZnO 박막(As doped ZnO) 및 Ga-As 동시 도핑 ZnO 박막(Ga-As co-doped ZnO)을 성장시켜 동일 거리를 갖도록 인듐 전극을 형성한 후, 전류-전압 특성을 확인하였다. 또한 발명자는 2 인치 사파이어 기판을 포함하는 AlInGaN계 질화물 반도체 발광 소자의 발광 구조물을 1/4 조각으로 나누어 전기적 특성을 확인함으로써, 각각의 도핑 영향 및 효과에 대한 정확도를 확보하였다. 도 10을 참조하면, 0.2V의 인가 전압에서 도핑을 하지 않은 ZnO 박막의 경우 5305ohm의 매우 높은 저항값이 나타남을 알 수 있다. 이러한 결과는 도핑을 하지 않은 ZnO 단결정 박막의 성장 도중에 발생하는 본질 결정 결함(native defect), 산소(O2) 공극(vacancy)과 같은 원인에 기인된 것으로 평가되며, 캐리어의 포획 등과 같이 전기 전도도에 악영향을 끼쳐, 결국 높은 저항값을 갖는 것으로 나타남을 알 수 있다. 그러나 Ga 도핑 ZnO 박막인 경우, 동일한 인가 전압에서 저항값이 6.7ohm으로 도핑을 하지 않은 ZnO 박막의 저항값인 5305ohm에 비하여 무시될 정도로 낮아진 것으로 나타난다. 이러한 결과는 산소(O2) 공극의 자리로 Ga이 치환되어 다수의 Ga-O와 Zn-Ga 결합이 형성되기 때문인 것으로 판단된다. 또한 As 도핑 ZnO 박막의 경우, 동일한 인가 전압에서 저항값이 397ohm으로 다시 증가하는 것을 알 수 있다. 이러한 결과는 As가 Zn 자리로 치환될 뿐만 아니라 산소(O2) 공극의 자리로 치환되면서 Zn-As와 As-O 결합에 의해서 결국 저항값이 Ga 도핑 ZnO 박막의 저항값에 비하여 다시 증가하는 것으로 유추된다. Ga-As 동시 도핑 ZnO 박막의 경우, 동일한 인가 전압에서 저항값이 17.6ohm임을 알 수 있으며, 이는 Ga 도핑 ZnO 박막의 저항값에 비하여 약간 높으나 As 도핑 ZnO 박막의 저항값에 비하여 매우 낮은 것을 알 수 있다. 이러한 결과는 Ga과 As가 동시 도핑이 됨으로써, 본질 결정 결함과 산소(O2) 공극을 갖는 호스트 ZnO 박막의 성장 중에 Ga에 의한 다수의 Ga-O 결합과 Ga-Zn 결합에 의한 저항 감소와 As에 의한 다수의 As-Zn 결합과 As-O 결합과 동시에 Ga-As 결합까지 진행되어, 도핑을 하지 않은 ZnO 박막이나 As 도핑 ZnO 박막에 비하여 매우 낮은 저항값을 갖는 것으로 유추된다. 도 5에 도시된 바와 같은 전기적 특성을 바탕으로, AlInGaN계 질화물 반도체 발광 소자의 투명 전극으로 사용될 수 있는 저저항에 따른 높은 전기 전도도를 갖는 ZGAO 박막을 형성이 가능하다. 도 10에 도시된 바와 같이, 발명자는 4 포인트 프로브(4 point probe) 측정을 통한 도핑을 하지 않은 ZnO 박막(undoped ZnO), Ga 도핑 ZnO 박막(Ga doped ZnO), As 도핑 ZnO 박막(As doped ZnO) 및 Ga-As 동시 도핑 ZnO 박막(Ga-As co-doped ZnO)의 시트 저항(sheet resistance, Rs) 값이 각각 6.5Kohm/sq, 7.2ohm/sq, 536ohm/sq, 및 45ohm/sq인 것을 확인할 수 있었으며, 도핑 영향에 따른 저항값 변화의 전류-전압 특성 곡선과 일치하는 신뢰성 있는 결과인 것으로 평가한다. FIG. 10 illustrates n-type (Ga) and p-type (As) impurities doped in a ZnO thin film grown on a second electrode contact layer of a light emitting device using an AlInGaN-based nitride semiconductor in accordance with a preferred embodiment of the present invention. A graph showing the current-voltage characteristics. In order to examine the electrical characteristics of a light emitting device using an AlInGaN nitride semiconductor according to an impurity doped in a ZnO thin film, the inventor emits light using MBE equipment on the second electrode contact layer of the light emitting device using a rough AlInGaN nitride semiconductor. A ZnO single crystal thin film of about 2500 kV thick having the same hexagonal crystal structure as the structure was grown. In general, the resistance of semiconductor materials depends on the concentrations of n-type and p-type impurities to be doped, and thus the electrical properties of the doping of n-type (Ga) and p-type (As) impurities and their simultaneous doping are investigated. In order to confirm, the inventors fixed the thickness of the ZnO thin film to 2500Å, and then the undoped ZnO thin film, Ga doped ZnO thin film, As doped ZnO thin film (As doped ZnO) and Ga-As After the co-doped ZnO thin film (Ga-As co-doped ZnO) was grown to form an indium electrode to have the same distance, the current-voltage characteristics were confirmed. In addition, the inventors divided the light emitting structure of the AlInGaN-based nitride semiconductor light emitting device including a 2-inch sapphire substrate into quarter pieces to confirm electrical characteristics, thereby securing accuracy of each doping effect and effects. Referring to FIG. 10, in the case of the ZnO thin film not doped at an applied voltage of 0.2 V, a very high resistance value of 5305 ohms can be seen. These results are attributed to the causes such as intrinsic crystal defects and oxygen (O 2 ) vacancy that occur during the growth of the undoped ZnO single crystal thin film. It can be seen that it adversely affects, resulting in a high resistance value. However, in the case of Ga-doped ZnO thin film, the resistance value at the same applied voltage is 6.7ohm lower than that of the non-doped ZnO thin film resistance of 5305ohm appears to be negligible. This result is believed to be due to the substitution of Ga in the place of the oxygen (O 2 ) pores to form a plurality of Ga-O and Zn-Ga bonds. In the case of the As-doped ZnO thin film, it can be seen that the resistance increases again to 397 ohm at the same applied voltage. These results indicate that As is not only substituted with Zn sites, but also with the sites of oxygen (O 2 ) pores, the resistance value is increased again compared to that of Ga-doped ZnO thin film by Zn-As and As-O bonding. Inferred. In the case of Ga-As co-doped ZnO thin film, it can be seen that the resistance value is 17.6 ohm at the same applied voltage, which is slightly higher than that of the Ga-doped ZnO thin film but very low compared to that of the As-doped ZnO thin film. have. These results indicate that Ga and As are co-doped, thereby reducing the resistance caused by the Ga-O and Ga-Zn bonds and increasing the number of Ga-O and Ga-Zn bonds during the growth of the host ZnO thin film having intrinsic crystal defects and oxygen (O 2 ) pores. It proceeds up to Ga-As bond simultaneously with many As-Zn bonds and As-O bonds, and it is inferred to have a very low resistance value compared to the undoped ZnO thin film or As doped ZnO thin film. Based on the electrical characteristics as shown in Figure 5, it is possible to form a ZGAO thin film having a high electrical conductivity according to the low resistance that can be used as a transparent electrode of the AlInGaN-based nitride semiconductor light emitting device. As shown in FIG. 10, the inventors have undoped ZnO, Ga-doped ZnO, and As-doped ZnO thin films. ) And sheet resistance (Rs) values of Ga-As co-doped ZnO thin films (Ga-As co-doped ZnO) are 6.5Kohm / sq, 7.2ohm / sq, 536ohm / sq, and 45ohm / sq, respectively. It was confirmed that the results were consistent with the current-voltage characteristic curve of the resistance value change due to the doping effect.
앞서 살펴본 바와 같이 본 발명에 따른 Ga-As 동시 도핑 ZnO(즉 ZGAO 단결정박막) 또는 n-형 불순물인 Ga 도핑 ZnO(즉, ZGO 단결정 박막) 또는 p-형 불순물인 As 도핑 ZnO(즉, ZAO 단결정 박막)에서, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물 중에서, Ga과 같은 n-형 불순물이 전기적 특성을 양호하게 하는 주요 원인이며, 도 5, 6을 참조하여 살펴본 바와 같이, Ga과 같은 n-형 불순물과 As와 같은 p-형 불순물 중에서, As와 같은 p-형 불순물이 광출력과 같은 특성을 양호하게 하는 주요 원인임을 알 수 있다. 본 발명에 따라서, 분자선 에피탁시법(MBE), 유기 화학 기상 증착법(MOCVD), 원자층 증착법(ALD), 원자층 에피탁시법(ALE) 등을 이용하여 육각형 단결정 구조를 갖는 AlInGaN계 질화물 반도체 발광 소자의 발광 구조물 자체를 기판으로 하여 격자 불일치가 거의 없는 육각형 결정 구조를 가지며, 전기적 특성을 양호하게 하는 Ga과 같은 n-형 불순물과 광 특성을 양호하게 하는 As와 같은 p-형 불순물을 동시 도핑 및 n-형 불순물과 p-형 불순물을 개별층하여 2개 이상의 적층 구조를 갖는 ZnO 박막(즉, ZGAO, ZGO, ZAO 단결정 박막)을 단결정으로 성장시킴으로써, 대량 양산에 적용이 가능할 뿐만 아니라, 높은 광출력, 저저항과 높은 전류 전도도의 전기적 특성을 갖는 고효율의 발광 소자를 제조하는 방법을 제공할 수 있다.As described above, Ga-As co-doped ZnO (ie, ZGAO single crystal thin film) or Ga-doped ZnO (ie, ZGO single crystal thin film) that is n-type impurity or As-doped ZnO (ie, ZAO single crystal) which is p-type impurity Thin film), among the n-type impurities such as Ga and the p-type impurities such as As, the n-type impurities such as Ga are the main causes for improving the electrical characteristics. As described with reference to FIGS. 5 and 6, Among the n-type impurities such as Ga and the p-type impurities such as As, it can be seen that the p-type impurities such as As are the main cause for improving the characteristics such as light output. According to the present invention, an AlInGaN-based nitride having a hexagonal single crystal structure using molecular beam epitaxy (MBE), organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), atomic layer epitaxy (ALE), or the like. The light emitting structure itself of the semiconductor light emitting device has a hexagonal crystal structure with almost no lattice mismatch, and n-type impurities such as Ga which improves electrical characteristics and p-type impurities such as As which improves the optical characteristics. By simultaneously doping and separately layering n-type and p-type impurities, ZnO thin films (ie, ZGAO, ZGO, and ZAO single crystal thin films) having two or more stacked structures can be grown to single crystals, which can be applied to mass production. It is possible to provide a method of manufacturing a high-efficiency light emitting device having electrical characteristics of high light output, low resistance and high current conductivity.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (23)

  1. AlxInyGa(1-x-y)N, (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 질화물 반도체 발광 소자에 있어서,In a nitride semiconductor light emitting device having a composition formula of Al x In y Ga (1-xy) N, (0≤x≤1, 0≤y≤1, 0≤x + y≤1),
    기판;Board;
    상기 기판 위에 형성되는 버퍼층;A buffer layer formed on the substrate;
    상기 버퍼층 위에 형성되는 제1 전극 접촉층;A first electrode contact layer formed on the buffer layer;
    상기 제1 전극 접촉층 위에 형성되는 제1 클래드층;A first clad layer formed on the first electrode contact layer;
    상기 제1 클래드층 위에 형성되는 활성층;An active layer formed on the first clad layer;
    상기 활성층 위에 형성되는 제2 클래드층;A second clad layer formed on the active layer;
    상기 제2 클래드층 위에 형성되는 제2 전극 접촉층;A second electrode contact layer formed on the second clad layer;
    상기 제2 전극 접촉층 위에 형성되며, 복수의 ZnO 박막이 적층된 다층 구조의 투명 전극-여기서 적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성됨-;A multi-layered transparent electrode formed on the second electrode contact layer and having a plurality of ZnO thin films stacked therein, wherein at least some of the ZnO thin films are a group consisting of Group III elements of B, Al, Ga, and In, F, Cl, and H. At least one n-type impurity selected from doped, or at least one p-type impurity selected from the group consisting of Group V elements of N, P, As, Sb and Li, Na, C is doped, or the n-type An impurity and the p-type impurity are formed by simultaneous doping;
    상기 제1 전극 접촉층의 상부 일측에 형성되는 제1 전극 패드; 및A first electrode pad formed on an upper side of the first electrode contact layer; And
    상기 투명 전극의 상부 일측에 형성되는 제2 전극 패드를 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a second electrode pad formed on an upper side of the transparent electrode.
  2. 제1항에 있어서,The method of claim 1,
    상기 n-형 불순물은 Ga이며, 상기 p-형 불순물은 As인 것을 특징으로 하는 질화물 반도체 발광 소자.And the n-type impurity is Ga and the p-type impurity is As.
  3. 제1항에 있어서,The method of claim 1,
    상기 복수의 ZnO 박막의 적어도 일부의 ZnO 박막은 다른 ZnO 박막과 두께가 다른 것을 특징으로 하는 질화물 반도체 발광 소자.At least a portion of the ZnO thin films of the plurality of ZnO thin films are nitride semiconductor light emitting device, characterized in that the thickness is different from other ZnO thin film.
  4. 제1항에 있어서,The method of claim 1,
    상기 투명 전극은The transparent electrode
    상기 n-형 불순물이 도핑된 ZnO 박막과 상기 p-형 불순물이 도핑된 ZnO 박막이 복수회 교번적으로 적층된 다층 구조인 것을 특징으로 하는 질화물 반도체 발광 소자.And a ZnO thin film doped with the n-type impurity and a ZnO thin film doped with the p-type impurity in a multilayer structure in which a plurality of alternating layers are alternately stacked.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 하는 질화물 반도체 발광 소자.The nitride semiconductor light emitting device of claim 1, wherein the thickness of each ZnO thin film is the same.
  6. 제1항에 있어서,The method of claim 1,
    상기 투명 전극은The transparent electrode
    상기 p-형 불순물이 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 ZnO 박막이 복수회 교번적으로 적층된 다층 구조인 것을 특징으로 하는 질화물 반도체 발광 소자.And a ZnO thin film doped with the p-type impurity and a ZnO thin film doped with the n-type impurity in a multilayer structure in which a plurality of alternating layers are alternately stacked.
  7. 제6항에 있어서,The method of claim 6,
    상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 하는 질화물 반도체 발광 소자.The nitride semiconductor light emitting device of claim 1, wherein the thickness of each ZnO thin film is the same.
  8. 제1항에 있어서,The method of claim 1,
    상기 투명 전극은The transparent electrode
    상기 n-형 불순물이 도핑된 ZnO 박막과 상기 p-형 불순물이 도핑된 ZnO 박막이 적층된 다층 구조인 것을 특징으로 하는 질화물 반도체 발광 소자.And a ZnO thin film doped with the n-type impurity and a ZnO thin film doped with the p-type impurity.
  9. 제8항에 있어서,The method of claim 8,
    상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 하는 질화물 반도체 발광 소자.The nitride semiconductor light emitting device of claim 1, wherein the thickness of each ZnO thin film is the same.
  10. 제1항에 있어서,The method of claim 1,
    상기 투명 전극은The transparent electrode
    상기 p-형 불순물이 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 ZnO 박막이 적층된 다층 구조인 것을 특징으로 하는 질화물 반도체 발광 소자.And a ZnO thin film doped with the p-type impurity and a ZnO thin film doped with the n-type impurity.
  11. 제10항에 있어서,The method of claim 10,
    상기 각 ZnO 박막의 두께는 동일한 것을 특징으로 하는 질화물 반도체 발광 소자.The nitride semiconductor light emitting device of claim 1, wherein the thickness of each ZnO thin film is the same.
  12. 제1항에 있어서,The method of claim 1,
    상기 투명 전극은The transparent electrode
    상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑된 ZnO 박막과 n-형 불순물이 도핑된 ZnO 박막이 적층된 다층 구조인 것을 특징으로 하는 질화물 반도체 발광 소자.And a ZnO thin film doped with the n-type impurity and the p-type impurity and a ZnO thin film doped with the n-type impurity.
  13. 제12항에 있어서,The method of claim 12,
    상기 n-형 불순물이 도핑된 ZnO 박막의 두께가 상기 n-형 불순물아 상기 p-형 불순물이 동시 도핑된 ZnO 박막의 두께에 비하여 얇은 것을 특징으로 하는 질화물 반도체 발광 소자.And the thickness of the ZnO thin film doped with the n-type impurity is thinner than the thickness of the ZnO thin film doped with the n-type impurity and the p-type impurity.
  14. 제1항에 있어서,The method of claim 1,
    상기 투명 전극은The transparent electrode
    상기 n-형 불순물이 도핑된 하부의 ZnO 박막과 상기 p-형 불순물이 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 상부의 ZnO 박막이 적층된 다층 구조인 것을 특징으로 하는 질화물 반도체 발광 소자.The nitride semiconductor light emitting device of claim 1, wherein the ZnO thin film doped with the n-type impurity, the ZnO thin film doped with the p-type impurity, and the ZnO thin film doped with the n-type impurity are stacked. .
  15. 제14항에 있어서,The method of claim 14,
    상기 n-형 불순물이 도핑된 하부의 ZnO 박막의 두께가 상기 p-형 불순물이 도핑된 ZnO 박막의 두께 또는 상기 n-형 불순물이 도핑된 상부의 ZnO 박막의 두께에 비하여 얇은 것을 특징으로 하는 질화물 반도체 발광 소자.The thickness of the lower ZnO thin film doped with the n-type impurities is thinner than the thickness of the ZnO thin film doped with the p-type impurities or the thickness of the upper ZnO thin film doped with the n-type impurities Semiconductor light emitting device.
  16. 제1항에 있어서,The method of claim 1,
    상기 투명 전극은The transparent electrode
    상기 n-형 불순물이 도핑된 하부의 ZnO 박막과 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑된 ZnO 박막과 상기 n-형 불순물이 도핑된 상부의 ZnO 박막이 적층된 다층 구조인 것을 특징으로 하는 질화물 반도체 발광 소자.A multi-layered structure in which the ZnO thin film doped with the n-type impurity, the ZnO thin film doped with the n-type impurity and the p-type impurity and the ZnO thin film doped with the n-type impurity are stacked A nitride semiconductor light emitting device characterized by the above-mentioned.
  17. 제16항에 있어서,The method of claim 16,
    상기 n-형 불순물이 도핑된 하부의 ZnO 박막의 두께 및 상기 n-형 불순물이 도핑된 상부의 ZnO 박막의 두께가 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑된 ZnO 박막의 두께에 비하여 얇은 것을 특징으로 하는 질화물 반도체 발광 소자.The thickness of the lower ZnO thin film doped with the n-type impurity and the thickness of the upper ZnO thin film doped with the n-type impurity correspond to the thickness of the ZnO thin film simultaneously doped with the n-type impurity and the p-type impurity. A nitride semiconductor light emitting device, characterized in that the thinner than.
  18. 제1항에 있어서,The method of claim 1,
    상기 각 ZnO 박막은 ZnO 단결정 박막인 것을 특징으로 하는 질화물 반도체 발광 소자.Each ZnO thin film is a nitride semiconductor light emitting device, characterized in that the ZnO single crystal thin film.
  19. 제1항에 있어서,The method of claim 1,
    동시 도핑되는 상기 n-형 불순물과 상기 p-형 불순물 중 상기 n-형 불순물이 전기적 특성을 양호하게 하는 주요 원인이며, 상기 p-형 불순물이 광 특성을 양호하게 하는 주요 원인인 것을 특징으로 하는 질화물 반도체 발광 소자.The n-type impurity among the n-type impurity and the p-type impurity which are simultaneously doped is the main cause for improving the electrical characteristics, and the p-type impurity is the main cause for improving the optical characteristics. Nitride semiconductor light emitting device.
  20. 투명 박막으로서,As a transparent thin film,
    복수의 ZnO 박막이 적층된 다층 구조를 가지며,Has a multi-layered structure in which a plurality of ZnO thin films are stacked,
    적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성되는 것을 특징으로 하는 투명 박막.At least some ZnO thin films are doped with group III elements of B, Al, Ga, In and n-type impurities selected from the group consisting of F, Cl, H, or group V elements of N, P, As, and Sb. And a p-type impurity which is at least one selected from the group consisting of Li, Na, and C, or is formed by simultaneously doping the n-type impurity and the p-type impurity.
  21. 청구항 20의 투명 박막을 포함하는 발광 소자.A light emitting device comprising the transparent thin film of claim 20.
  22. 투명 박막의 형성 방법으로서,As a method of forming a transparent thin film,
    복수의 ZnO 박막을 적층하는 과정을 포함하되,Including a process of laminating a plurality of ZnO thin film,
    적어도 일부의 ZnO 박막은 B, Al, Ga, In의 Ⅲ족 원소와 F, Cl, H로 이루어지는 군으로부터 선택된 적어도 하나인 n-형 불순물이 도핑되거나, N, P, As, Sb의 V족 원소와 Li, Na, C로 이루어지는 군으로부터 선택된 적어도 하나인 p-형 불순물이 도핑되거나, 상기 n-형 불순물과 상기 p-형 불순물이 동시 도핑되어 형성되는 것을 특징으로 하는 투명 박막의 형성 방법.At least some ZnO thin films are doped with group III elements of B, Al, Ga, In and n-type impurities selected from the group consisting of F, Cl, H, or group V elements of N, P, As, and Sb. And at least one p-type impurity selected from the group consisting of Li, Na, and C, or the n-type impurity and the p-type impurity are simultaneously doped.
  23. 발광 소자의 제조 방법으로서,As a manufacturing method of a light emitting element,
    투명 박막을 형성하는 과정을 포함하되,Including forming a transparent thin film,
    상기 투명 박막은 청구항 22의 방법으로 형성되는 것을 특징으로 하는 발광 소자의 제조 방법.The transparent thin film is a method of manufacturing a light emitting device, characterized in that formed by the method of claim 22.
PCT/KR2012/009147 2011-11-02 2012-11-02 Transparent thin film, light-emitting device comprising same and method for manufacturing same WO2013066088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0113392 2011-11-02
KR1020110113392A KR101201641B1 (en) 2011-11-02 2011-11-02 Transparent thin film, light emitting device comprising the same, and methods for preparing the same

Publications (1)

Publication Number Publication Date
WO2013066088A1 true WO2013066088A1 (en) 2013-05-10

Family

ID=47564706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009147 WO2013066088A1 (en) 2011-11-02 2012-11-02 Transparent thin film, light-emitting device comprising same and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101201641B1 (en)
WO (1) WO2013066088A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411137B2 (en) * 2016-02-05 2022-08-09 The Regents Of The University Of California III-nitride light emitting diodes with tunnel junctions wafer bonded to a conductive oxide and having optically pumped layers
CN116190519A (en) * 2023-04-27 2023-05-30 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322692B1 (en) 2015-05-29 2021-11-05 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Ultraviolet light emitting device
DE102017119931A1 (en) * 2017-08-30 2019-02-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053372A (en) * 2005-08-14 2007-03-01 Samsung Electronics Co Ltd Nitride-based white light emitting element and manufacturing method thereof
JP2007128936A (en) * 2005-11-01 2007-05-24 Stanley Electric Co Ltd METHOD OF MANUFACTURING ZnO CRYSTAL OR ZnO-BASED SEMICONDUCTOR COMPOUND CRYSTAL, AND METHOD OF MANUFACTURING ZnO-BASED LIGHT-EMITTING DEVICE
JP4670877B2 (en) * 2008-02-25 2011-04-13 住友金属鉱山株式会社 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device
KR101030823B1 (en) * 2011-01-19 2011-04-22 주식회사 퀀텀디바이스 Transparent thin film, light emitting device comprising the same, and methods for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053372A (en) * 2005-08-14 2007-03-01 Samsung Electronics Co Ltd Nitride-based white light emitting element and manufacturing method thereof
JP2007128936A (en) * 2005-11-01 2007-05-24 Stanley Electric Co Ltd METHOD OF MANUFACTURING ZnO CRYSTAL OR ZnO-BASED SEMICONDUCTOR COMPOUND CRYSTAL, AND METHOD OF MANUFACTURING ZnO-BASED LIGHT-EMITTING DEVICE
JP4670877B2 (en) * 2008-02-25 2011-04-13 住友金属鉱山株式会社 Zinc oxide based transparent conductive film laminate, transparent conductive substrate and device
KR101030823B1 (en) * 2011-01-19 2011-04-22 주식회사 퀀텀디바이스 Transparent thin film, light emitting device comprising the same, and methods for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11411137B2 (en) * 2016-02-05 2022-08-09 The Regents Of The University Of California III-nitride light emitting diodes with tunnel junctions wafer bonded to a conductive oxide and having optically pumped layers
CN116190519A (en) * 2023-04-27 2023-05-30 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED
CN116190519B (en) * 2023-04-27 2023-06-27 江西兆驰半导体有限公司 LED epitaxial wafer, preparation method thereof and LED

Also Published As

Publication number Publication date
KR101201641B1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
KR101324442B1 (en) Group iii nitride semiconductor light-emitting element and method for manufacturing the same, and lamp
US8859313B2 (en) Method for manufacturing semiconductor light emitting element, semiconductor light emitting element, lamp, electronic device and mechanical apparatus
US20080217646A1 (en) Nitride semiconductor light emitting device
CN105679893B (en) LED epitaxial slice production method and LED epitaxial slice
CN103337573B (en) The epitaxial wafer of semiconductor light-emitting-diode and manufacture method thereof
TWI569467B (en) Semiconductor light-emitting device
CN103531680A (en) LED epitaxy structure and preparation method thereof
CN105098004B (en) The growing method and epitaxial wafer of a kind of LED epitaxial slice
CN102208503A (en) Light-emitting diode (LED) epitaxial structure and manufacturing method thereof
KR101030823B1 (en) Transparent thin film, light emitting device comprising the same, and methods for preparing the same
CN104465898B (en) Growing method of light-emitting diode epitaxial wafer and light emitting diode epitaxial wafer
CN102280547A (en) GaN semiconductor luminotron with P-type active region
CN101740693A (en) Method for reducing luminous decay of III group nitride light-emitting diode
WO2013066088A1 (en) Transparent thin film, light-emitting device comprising same and method for manufacturing same
Fan et al. ZnO-based light-emitting diodes
CN1964081A (en) A zinc oxide based blue LED and its manufacture method
CN109473521B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109192826B (en) A kind of LED epitaxial slice and preparation method thereof
KR101232031B1 (en) Gallium nitride-based compound semiconductor light-emitting device
US20100176373A1 (en) Fabrication method of nitride semiconductor light emitting device and nitride semiconductor light emitting device thereby
KR20120116257A (en) Method for enhancing luminance of light-emitting diode and light-emitting diode by the same
KR20130021931A (en) Semiconductor light emitting device and manufacturing method of the same
JP2005136136A (en) Method of manufacturing semiconductor device, and method of manufacturing wafer
KR101919109B1 (en) Uv light emitting deviceand uv light emitting device package
CN103518266B (en) III group-III nitride semiconductor light-emitting component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845394

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (20.08.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12845394

Country of ref document: EP

Kind code of ref document: A1