JPH0731950B2 - Method for producing transparent conductive film - Google Patents

Method for producing transparent conductive film

Info

Publication number
JPH0731950B2
JPH0731950B2 JP60262940A JP26294085A JPH0731950B2 JP H0731950 B2 JPH0731950 B2 JP H0731950B2 JP 60262940 A JP60262940 A JP 60262940A JP 26294085 A JP26294085 A JP 26294085A JP H0731950 B2 JPH0731950 B2 JP H0731950B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
film
specific resistance
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60262940A
Other languages
Japanese (ja)
Other versions
JPS62122011A (en
Inventor
裕治郎 金子
康雄 沢田
文也 近江
元 町田
篤行 和多田
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP60262940A priority Critical patent/JPH0731950B2/en
Priority to DE19863639508 priority patent/DE3639508A1/en
Publication of JPS62122011A publication Critical patent/JPS62122011A/en
Publication of JPH0731950B2 publication Critical patent/JPH0731950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、透明導電膜の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a transparent conductive film.

従来の技術 透明導電膜は、大きな導電性と可視域での高透光性を兼
備したものであり、EL(エレクトロ・ルミネサンス)表
示素子、液晶表示素子などの表示パネルの透明電極や、
太陽電池、各種受光素子の電極膜などとして用いられて
いる。従来、透明導電膜としては、Auなどの金属薄膜や
SuO2,In2O3,CaO,ZnS,ZnOなどの薄膜が知られている。し
かし、これらの多くは電気伝導度が不十分であるばかり
か、機械的性質(硬さ、密着性)、化学的安定性の点か
ら欠点が多いため、現在では、In2O3,SnO2,ITO(Indium
in Oxide)が広く利用されている。
2. Description of the Related Art A transparent conductive film has both large conductivity and high translucency in the visible range, and is used for transparent electrodes of display panels such as EL (electro luminescence) display elements and liquid crystal display elements.
It is used as an electrode film for solar cells and various light-receiving elements. Conventionally, as a transparent conductive film, a metal thin film such as Au or
Thin films such as SuO 2 , In 2 O 3 , CaO, ZnS, and ZnO are known. However, most of these have not only insufficient electric conductivity, but also many defects in terms of mechanical properties (hardness, adhesion) and chemical stability. Therefore, currently, In 2 O 3 , SnO 2 , ITO (Indium
in Oxide) is widely used.

しかしながら、In2O3,SnO2,ITOも、次のような欠点を有
しており、よりいっそうの改善がまたれていた。
However, In 2 O 3 , SnO 2 , and ITO also have the following drawbacks, and further improvements have been made.

(1)熱的安定性が悪く、EL等のデバイスに用いた場
合、熱処理を受けると比抵抗が大きくなったり、InやSn
が発光層等に拡散して悪影響を及ぼす。
(1) It has poor thermal stability, and when it is used in devices such as EL, it undergoes heat treatment to increase its specific resistance.
Are diffused into the light emitting layer and the like, and have an adverse effect.

(2)比抵抗を下げるために成膜時または成膜後に300
℃以上の熱処理が必要である。
(2) 300 to reduce the specific resistance during or after film formation
Heat treatment at ℃ or above is required.

(3)材料が非常に高価である。(3) The material is very expensive.

酸化亜鉛(ZnO)は、In2O3やSnO2に比べて価格が非常に
安く、透明導電膜の工業的な材料としては好ましいもの
であった。しかし、ZnOは可視域における透光性が高い
ものの、電気伝導度が十分でなかった。
Zinc oxide (ZnO) has a very low price compared to In 2 O 3 and SnO 2 , and was preferable as an industrial material for the transparent conductive film. However, although ZnO has high translucency in the visible region, its electrical conductivity was not sufficient.

発明の目的 本発明は、電気伝導度が高く耐熱性を有し、かつ、安価
な材料から形成可能な透明導電膜を製造することを目的
とする。
OBJECT OF THE INVENTION It is an object of the present invention to produce a transparent conductive film which has a high electric conductivity and heat resistance and can be formed from an inexpensive material.

発明の構成 本発明の透明導電膜の製造方法は、酸化亜鉛を主成分と
し酸化アルミニウムを混合したターゲットを用い、スパ
ッタガス圧10-2Torr以下におけるDCマグネトロンスパッ
タリング法により、酸化亜鉛を主成分とし、アルミニウ
ムを含むC軸配向膜からなる透明導電膜を形成すること
を特徴とする。
Structure of the invention, the method for producing a transparent conductive film of the present invention, using a target in which aluminum oxide is mixed with zinc oxide as a main component, by DC magnetron sputtering method at a sputtering gas pressure of 10 -2 Torr or less, zinc oxide as a main component. A transparent conductive film formed of a C-axis alignment film containing aluminum is formed.

以下、本発明についてさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

酸化亜鉛(ZnO)膜は、本来電気伝導度が大きく、ま
た、可視域での透過率も高いが、これに対してアルミニ
ウムを添加することにより比抵抗をさらに小さくできる
ことが判った。
The zinc oxide (ZnO) film originally has high electric conductivity and high transmittance in the visible region, but it was found that the resistivity can be further reduced by adding aluminum.

また、この膜は熱的安定性もすぐれている。Further, this film also has excellent thermal stability.

第1図は、アルミニウムの添加量と比抵抗の関係を示す
グラフである。これはAl2O3粉体とZnO粉体とを混合し、
焼結したものをターゲット材として用い、基板温度300
℃、膜厚2000Åの条件でDCマグネトロンスパッタ法によ
り作成したものである。Al2O3の添加量により、比抵抗
が変化することが判る。透明導電膜におけるAl2O3
は、(Al2O3)/(ZnO+Al2O3)で0.5〜5重量%の範囲
が好ましく、より好ましくは1.0〜4.0重量%の範囲であ
る。なお、Al2O3を6wt%以上含むターゲットを用いた場
合は、ターゲット自体の抵抗が大きくなり、DC電源では
放電できなかつた。
FIG. 1 is a graph showing the relationship between the added amount of aluminum and the specific resistance. This mixes Al 2 O 3 powder and ZnO powder,
Using the sintered material as the target material, the substrate temperature is 300
It was created by DC magnetron sputtering under the conditions of ℃ and film thickness 2000Å. It can be seen that the specific resistance changes depending on the amount of Al 2 O 3 added. The amount of Al 2 O 3 in the transparent conductive film is 0.5 to 5% by weight (Al 2 O 3) / ( ZnO + Al 2 O 3) is preferably, and more preferably from 1.0 to 4.0 wt%. When a target containing Al 2 O 3 in an amount of 6 wt% or more was used, the resistance of the target itself increased and it was impossible to discharge with a DC power supply.

第2図は透明導電膜のC軸配向性を示す特性値としての
(002)面のロッキングカーブの半値幅:Δθ50と、比
抵抗:ρとの関係を示すグラフである。透明導電膜のΔ
θ50が小さくなるほど、即ちC軸配向性が向上するほど
比抵抗が小さくなることが判る。よつて、透明導電膜と
してはΔθ50を8.0(deg)以下とすることが好ましく、
より好ましくは4.0(deg)以下である。
FIG. 2 is a graph showing the relationship between the half value width: Δθ 50 of the rocking curve of the (002) plane as a characteristic value showing the C-axis orientation of the transparent conductive film and the specific resistance: ρ. Δ of transparent conductive film
It can be seen that the specific resistance decreases as θ 50 decreases, that is, as the C-axis orientation improves. Therefore, it is preferable that the transparent conductive film has Δθ 50 of 8.0 (deg) or less,
It is more preferably 4.0 (deg) or less.

Alを含むZnOの軸配向膜は、DCマグネトロンスパツタ法
により適宜の基板上に形成することができる。
The ZnO axial alignment film containing Al can be formed on an appropriate substrate by the DC magnetron sputtering method.

次に、DCマグネトロンスパッタ法による本発明の製造方
法について評価する。
Next, the manufacturing method of the present invention by the DC magnetron sputtering method will be evaluated.

第3図は、DCマグネトロンスパッタ装置の構成を示す概
略図である。真空槽11内には、スパッタ電極13が設けら
れ、その上にターゲット15が配設されている。ターゲッ
ト15の表面に対して平行となるように、ターゲット15と
対向して基板17が保持されている。排気系21により真空
槽11内を高真空、たとえば10-6〜10-7Torrまで排気した
のち、ガス導入バルブ23により、Ar、Ar+O2などのスパ
ッタガスを例えば10-2〜10-3Torrの真空度となるまで導
入してスパッタ圧力を10-2Torrに設定する。ついで、ス
パッタ電源25により電極間に高電圧を印加すると、スパ
ッタ電極13の裏面に設けられている磁石(図示せず)に
よる磁界によってマグネトロン放電が起こり、ターゲッ
トがスパッタされて基板17の表面に透明導電膜が形成さ
れる。図中においては、電源25として直流電源が用いら
れるが、RFマグネトロンスパッタ法による場合はRF電源
を用いればよい。しかし、DCマグネトロンスパッタ法
は、スパッタ速度が早く、しかも基板表面に与える熱的
ダメージも少ない。図中、19は基板温度測定用の熱電対
を示す。ターゲットの組成は(Al2O3)/(Al2O3)/
(Al2O3+ZnO)で0.5〜5.0重量%の範囲が好ましく、よ
り好ましくは1.0〜3.0重量%である。ターゲットはZnO
粉末とAl2O3粉末とを混合し、粉砕、圧縮成形後、900〜
1000℃程度で本焼結し、さらに高温で例えば1300℃程度
で熱処理して低抵抗化したものを用いる。
FIG. 3 is a schematic diagram showing the configuration of a DC magnetron sputtering apparatus. A sputtering electrode 13 is provided in the vacuum chamber 11, and a target 15 is provided on the sputtering electrode 13. The substrate 17 is held facing the target 15 so as to be parallel to the surface of the target 15. After the inside of the vacuum chamber 11 is evacuated to a high vacuum, for example, 10 −6 to 10 −7 Torr by the exhaust system 21, the gas introduction valve 23 is used to supply sputter gas such as Ar and Ar + O 2 to 10 −2 to 10 −3 Torr. And the sputtering pressure is set to 10 -2 Torr. Then, when a high voltage is applied between the electrodes by the sputtering power source 25, a magnetron discharge is generated by a magnetic field generated by a magnet (not shown) provided on the back surface of the sputtering electrode 13, and the target is sputtered to be transparent on the surface of the substrate 17. A conductive film is formed. Although a DC power supply is used as the power supply 25 in the figure, an RF power supply may be used in the case of the RF magnetron sputtering method. However, the DC magnetron sputtering method has a high sputtering speed and has little thermal damage to the substrate surface. In the figure, 19 indicates a thermocouple for measuring the substrate temperature. The composition of the target is (Al 2 O 3 ) / (Al 2 O 3 ) /
The range of (Al 2 O 3 + ZnO) is preferably 0.5 to 5.0% by weight, more preferably 1.0 to 3.0% by weight. Target is ZnO
900 ~ after mixing powder and Al 2 O 3 powder, crushing and compression molding
What is used is one that has been main-sintered at about 1000 ° C. and further heat-treated at a high temperature, for example, at about 1300 ° C. to reduce the resistance.

第4図は、基板温度と比抵抗ρとの関係を示すグラフで
ある。基板温度が高くなると比抵抗が低下し、300℃で
2〜3×10-4(Ω・cm)と最小値をとるが、300℃を越
えるとρはまた多少大きくなる。これは、アルゴンガス
圧:0.5×10-2Torr、膜厚2000Åの条件でDCマグネトロン
スパッタ法により行った。このように、本発明の透明導
電膜は、比較的低温でも、小さな比抵抗を実現すること
が可能である。
FIG. 4 is a graph showing the relationship between the substrate temperature and the specific resistance ρ. The resistivity decreases as the substrate temperature rises, reaching a minimum value of 2 to 3 x 10 -4 (Ω · cm) at 300 ° C, but ρ increases somewhat above 300 ° C. This was performed by a DC magnetron sputtering method under the conditions of argon gas pressure: 0.5 × 10 -2 Torr and film thickness 2000 Å. Thus, the transparent conductive film of the present invention can realize a small specific resistance even at a relatively low temperature.

第5図は、基板温度300℃、膜厚2000Åの条件で、マグ
ネトロンスパッタ法により透明導電膜を形成した場合
の、Arガス圧(Pr)と比抵抗ρとの関係を示すグラ
フである。アルゴンガス圧が小さい方が、比抵抗が小さ
な導電膜が得られることが判る。
Figure 5 is a substrate temperature of 300 ° C., under conditions of film thickness of 2000 Å, is a graph showing the case of forming the transparent conductive film by a magnetron sputtering method, the relationship between the specific resistance ρ and Ar gas pressure (P A r) . It can be seen that a conductive film having a smaller specific resistance can be obtained when the argon gas pressure is smaller.

第7図は基板温度が300℃、第6図は基板水冷(〜100
℃)での、ρ(比抵抗)、n(キャリア密度)、μH
(ホール移動度)についてのAlドープZnO膜の膜厚依存
性を示すグラフである。基板温度300℃の方がρが小さ
く、n,μHは大きい。また、膜厚依存性も改善される。
In Fig. 7, the substrate temperature is 300 ℃, and in Fig. 6, the substrate is water-cooled (~ 100
Ρ (specific resistance), n (carrier density), μH
It is a graph which shows the film thickness dependence of Al-doped ZnO film about (hole mobility). When the substrate temperature is 300 ° C., ρ is smaller and n, μH is larger. Further, the film thickness dependency is also improved.

第9図は基板温度が300℃、第8図は基板水冷でのX線
回折パターンを示す図である。両者とも(002)、(00
4)面のピークしか認められず、C軸に配向した膜構造
であることが判る。さらに、基板温度300℃が回折強度
が20倍程大きく、より配向度が強いものであると考えら
れる。
FIG. 9 is an X-ray diffraction pattern when the substrate temperature is 300 ° C. and when the substrate is water-cooled. Both (002), (00
4) Only the peak of the plane is recognized, which indicates that the film structure is oriented along the C axis. Furthermore, it is considered that the substrate temperature of 300 ° C. has a diffraction intensity about 20 times higher, and the degree of orientation is stronger.

また、DCマグネトロン法により得られたAlドープZnO膜
は、可視域で80%以上の透過率を示す。
The Al-doped ZnO film obtained by the DC magnetron method shows a transmittance of 80% or more in the visible region.

発明の効果 本発明によれば、耐熱性を有し熱的に安定で、比抵抗が
小さな透明導電膜が得られる。また、100℃以下でも10
-3〜10-4Ω・cmのオーダーの低抵抗な透明導電膜が得ら
れ、成膜後の熱処理も必要ないため耐熱温度の低いプラ
スチツクフイルム上にも形成できる。本発明で使用され
るZnOおよびAl2O3は、In2O3やSnO2に比較して非常に安
価であるため、工業上極めて有利である。
EFFECTS OF THE INVENTION According to the present invention, a transparent conductive film having heat resistance, thermal stability, and low specific resistance can be obtained. Also, even at 100 ° C or lower, 10
A transparent conductive film having a low resistance on the order of -3 to 10 -4 Ωcm can be obtained, and since heat treatment after film formation is not required, it can be formed on a plastic film having a low heat resistance temperature. ZnO and Al 2 O 3 used in the present invention are extremely inexpensive as compared with In 2 O 3 and SnO 2 , and are industrially extremely advantageous.

実施例1 ZnO粉末とAl2O3粉末とを、(Al2O3)/(Al2O3+ZnO)
で2wt%となるように混合し、仮焼、粉砕、圧縮成形
後、900〜1000℃で本焼結したのち、さらに1300℃で熱
処理して低抵抗化してターゲットを作成した。
Example 1 ZnO powder and Al 2 O 3 powder were mixed into (Al 2 O 3 ) / (Al 2 O 3 + ZnO)
Was mixed so as to be 2% by weight, calcined, crushed, compression-molded, then main-sintered at 900 to 1000 ℃, and further heat-treated at 1300 ℃ to reduce the resistance to prepare a target.

このターゲットを用いて第3図に示した装置により基板
温度300℃でDCマグネトロンスパッタし、7059ガラス
(コーニング社製)上に透明導電膜を形成した。
Using this target, DC magnetron sputtering was performed at a substrate temperature of 300 ° C. by the apparatus shown in FIG. 3 to form a transparent conductive film on 7059 glass (made by Corning Incorporated).

得られた透明導電膜の特性は以下の各実施例と共に後記
第1表に示した。
The characteristics of the obtained transparent conductive film are shown in Table 1 below together with the following examples.

実施例2 水冷により基板温度を100℃以下に維持した以外は実施
例1と同様に行つた。
Example 2 Example 1 was repeated except that the substrate temperature was kept at 100 ° C. or lower by water cooling.

実施例3 基板としてポリエチレンテレフタレートフィルムを用
い、水冷により基板温度を100℃以下保った以外は、実
施例1と同様にして透明導電膜を作成した。
Example 3 A transparent conductive film was prepared in the same manner as in Example 1 except that a polyethylene terephthalate film was used as the substrate and the substrate temperature was kept at 100 ° C. or lower by water cooling.

【図面の簡単な説明】[Brief description of drawings]

第1図は、ターゲットへのAl2O3の添加量と膜の比抵抗
ρとの関係を示すグラフである。 第2図は、Δθ50と比抵抗との関係を示すグラフであ
る。 第3図は、DCマグネトロンスパッタ装置の構成を示す概
略図である。 第4図は、基板温度と比抵抗ρとの関係を示すグラフで
ある。 第5図は、アルゴンガス圧と比抵抗ρとの関係を示すグ
ラフである。 第7図は基板温度が300℃、第6図は基板水冷(〜100
℃)での、ρ(比抵抗)、n(キャリア密度)、μH
(ホール移動度)についてのAlドープZnO膜の膜厚依存
性を示すグラフである。 第9図は基板温が300℃、第8図は基板水冷でのX線回
折パターンを示すグラフである。 11……真空槽 13……スパッタ電極 15……ターゲット 17……基板
FIG. 1 is a graph showing the relationship between the amount of Al 2 O 3 added to the target and the specific resistance ρ of the film. FIG. 2 is a graph showing the relationship between Δθ 50 and specific resistance. FIG. 3 is a schematic diagram showing the configuration of a DC magnetron sputtering apparatus. FIG. 4 is a graph showing the relationship between the substrate temperature and the specific resistance ρ. FIG. 5 is a graph showing the relationship between the argon gas pressure and the specific resistance ρ. In Fig. 7, the substrate temperature is 300 ℃, and in Fig. 6, the substrate is water-cooled (~ 100
Ρ (specific resistance), n (carrier density), μH
It is a graph which shows the film thickness dependence of Al-doped ZnO film about (hole mobility). FIG. 9 is a graph showing an X-ray diffraction pattern when the substrate temperature is 300 ° C. and when the substrate is water-cooled. 11 …… Vacuum chamber 13 …… Sputtering electrode 15 …… Target 17 …… Substrate

フロントページの続き (72)発明者 町田 元 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 和多田 篤行 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 中村 均 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (56)参考文献 特開 昭61−96609(JP,A) 特開 昭61−214306(JP,A)Front Page Continuation (72) Inventor Gen Machida 1-3-6 Nakamagome, Ota-ku, Tokyo In Ricoh Co., Ltd. (72) Inventor Atsuyuki Watada 1-3-6 Nakamagome, Ota-ku, Tokyo In Ricoh Co., Ltd. (72) Inventor Hitoshi Nakamura 1-3-6 Nakamagome, Ota-ku, Tokyo Within Ricoh Co., Ltd. (56) References JP-A-61-96609 (JP, A) JP-A-61-214306 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とし酸化アルミニウムを
混合したターゲットを用い、スパッタガス圧10-2Torr以
下におけるDCマグネトロンスパッタリング法により、酸
化亜鉛を主成分とし、アルミニウムを含むC軸配向膜か
らなる透明導電膜を形成することを特徴とする透明導電
膜の製造方法。
1. A C-axis oriented film containing zinc oxide as a main component and containing aluminum by a DC magnetron sputtering method at a sputtering gas pressure of 10 -2 Torr or less using a target containing zinc oxide as a main component and mixed with aluminum oxide. A method for producing a transparent conductive film, comprising:
JP60262940A 1985-11-22 1985-11-22 Method for producing transparent conductive film Expired - Fee Related JPH0731950B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60262940A JPH0731950B2 (en) 1985-11-22 1985-11-22 Method for producing transparent conductive film
DE19863639508 DE3639508A1 (en) 1985-11-22 1986-11-20 Transparent, electrically conducting film and method of fabricating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262940A JPH0731950B2 (en) 1985-11-22 1985-11-22 Method for producing transparent conductive film

Publications (2)

Publication Number Publication Date
JPS62122011A JPS62122011A (en) 1987-06-03
JPH0731950B2 true JPH0731950B2 (en) 1995-04-10

Family

ID=17382680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262940A Expired - Fee Related JPH0731950B2 (en) 1985-11-22 1985-11-22 Method for producing transparent conductive film

Country Status (2)

Country Link
JP (1) JPH0731950B2 (en)
DE (1) DE3639508A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200016A (en) * 2005-01-21 2006-08-03 Tosoh Corp ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM
CN101548343A (en) * 2007-09-05 2009-09-30 株式会社村田制作所 Transparent conductive film and method for producing transparent conductive film
US10889888B2 (en) 2011-06-08 2021-01-12 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948529A (en) * 1985-12-18 1990-08-14 Andus Corporation Stable high resistance transparent coating
US4710441A (en) * 1985-12-18 1987-12-01 Andus Corp. Stable high resistance transparent coating
JPH01265495A (en) * 1988-04-15 1989-10-23 Gunze Ltd Electroluminescent element
DE68919299T2 (en) * 1988-08-09 1995-04-06 Tosoh Corp Zinc oxide sintered body and its manufacture.
JP2758660B2 (en) * 1989-07-18 1998-05-28 グンゼ株式会社 Dispersion type electroluminescent device using zinc oxide as transparent electrode
JPH03164461A (en) * 1989-08-10 1991-07-16 Tosoh Corp Sputtering target of sintered body of conductive zinc oxide and production thereof
JPH0688218A (en) * 1990-11-15 1994-03-29 Tosoh Corp Sintered compact of zinc oxide system and its production and application
US5171411A (en) * 1991-05-21 1992-12-15 The Boc Group, Inc. Rotating cylindrical magnetron structure with self supporting zinc alloy target
DE29711973U1 (en) * 1997-07-08 1998-11-05 Glas Platz Fa Electrical device, electrical device or lighting device
DE10306925A1 (en) * 2003-02-19 2004-09-02 GfE Gesellschaft für Elektrometallurgie mbH PVD coating material
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4797712B2 (en) * 2006-03-08 2011-10-19 東ソー株式会社 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film
TW200834610A (en) * 2007-01-10 2008-08-16 Nitto Denko Corp Transparent conductive film and method for producing the same
WO2008105198A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Conductive film and method for production of conductive film
DE102007024986A1 (en) 2007-05-28 2008-12-04 Forschungszentrum Jülich GmbH Temperature-stable TCO layer, method of manufacture and application
EP2028695A1 (en) * 2007-07-12 2009-02-25 Applied Materials, Inc. Method for creating a transparent conductible oxide coating
JP4537434B2 (en) * 2007-08-31 2010-09-01 株式会社日立製作所 Zinc oxide thin film, transparent conductive film using the same, and display element
JP5352878B2 (en) * 2008-03-31 2013-11-27 公立大学法人高知工科大学 Display substrate, method for manufacturing the same, and display device
JP5432501B2 (en) * 2008-05-13 2014-03-05 日東電工株式会社 Transparent conductive film and method for producing the same
KR101146980B1 (en) * 2009-02-17 2012-05-22 삼성모바일디스플레이주식회사 Organic light emitting diode and manufacturing method thereof
JP5348394B2 (en) * 2009-03-13 2013-11-20 三菱マテリアル株式会社 (Zn, Al) O-based transparent electrode layer for solar cell and ZnO-Al2O3-based sputtering target used for forming the same
JP5348399B2 (en) * 2009-03-31 2013-11-20 三菱マテリアル株式会社 (Zn, Ga, Al) O-based transparent electrode layer for solar cell and ZnO-Ga2O3-Al-based sputtering target used for forming the same
JP5333144B2 (en) * 2009-10-14 2013-11-06 住友金属鉱山株式会社 Sintered body target for thin film manufacturing and its manufacturing method
JP5533448B2 (en) 2010-08-30 2014-06-25 住友金属鉱山株式会社 Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
JP5809952B2 (en) * 2011-12-12 2015-11-11 本田技研工業株式会社 Manufacturing method of solar cell
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
EP2904128A1 (en) * 2012-10-08 2015-08-12 Corning Incorporated Sputtered transparent conductive aluminum doped zinc oxide films
CN103046013A (en) * 2012-12-30 2013-04-17 青海天誉汇新能源开发有限公司 Method for preparing photovoltaic cell transparent oxide film with flexible substrate
JP6141777B2 (en) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP7378938B2 (en) * 2019-02-22 2023-11-14 日東電工株式会社 Light-transparent conductive film
JP7205313B2 (en) * 2019-03-11 2023-01-17 セイコーエプソン株式会社 Cables and ultrasound equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766041A (en) * 1970-09-29 1973-10-16 Matsushita Electric Ind Co Ltd Method of producing piezoelectric thin films by cathodic sputtering
JPS557554A (en) * 1978-06-30 1980-01-19 Murata Mfg Co Ltd Dielectric thin film
JPS5516554A (en) * 1978-07-21 1980-02-05 Toko Inc Manufacture of thin film of zinc oxide
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPS61214306A (en) * 1985-03-18 1986-09-24 大阪特殊合金株式会社 Method and apparatus for transparent conducting film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200016A (en) * 2005-01-21 2006-08-03 Tosoh Corp ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM
CN101548343A (en) * 2007-09-05 2009-09-30 株式会社村田制作所 Transparent conductive film and method for producing transparent conductive film
US10889888B2 (en) 2011-06-08 2021-01-12 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US11066739B2 (en) 2011-06-08 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US11959165B2 (en) 2011-06-08 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film

Also Published As

Publication number Publication date
JPS62122011A (en) 1987-06-03
DE3639508A1 (en) 1987-05-27

Similar Documents

Publication Publication Date Title
JPH0731950B2 (en) Method for producing transparent conductive film
JP2000040429A (en) Manufacturing of zinc oxide transparent conductive film
JPH056766B2 (en)
JP3780932B2 (en) Sintered target for producing transparent conductive thin film and method for producing the same
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
Igasaki et al. Some properties of Al-doped ZnO transparent conducting films prepared by RF reactive sputtering
JP2004006221A (en) Transparent conductive thin film, manufacturing method thereof, sintering body target for manufacturing the same, organic electroluminescent element and its manufacturing process
CN1600895A (en) Method for preparing transparent conducting film made from multi-element oxides with antimony being doped into
JPH06293956A (en) Zinc oxide transparent conductive film, its formation and sputtering target used therefor
JPH0344465A (en) Production of sputtering target for electrically conductive transparent ito film
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPH0756131A (en) Production of transparent conductive film
JP2003027216A (en) Method and apparatus for producing transparent electrically conductive film
JP3355610B2 (en) Method for increasing resistance of tin-doped indium oxide film
JPH0765167B2 (en) Sputtering target for ITO transparent conductive film
JPH07224383A (en) Method for making indium-tin oxide film high in resistance
JP2004168636A (en) Oxide sintered compact and sputtering target, and method for manufacturing oxide transparent electrode film
JPH04341707A (en) Transparent conductive film
CN102465273A (en) Multielement composite transparent conductive film and preparation method and application thereof
JP2002256423A (en) Sintered target for manufacturing transparent electroconductive film, and manufacturing method therefor
JP2010215948A (en) Method for manufacturing transparent conductive film
CN102465272A (en) Multielement composite transparent conductive film and preparation method and application thereof
JPH07224374A (en) Method for making tin doped indium oxide film high resistant
TWI228544B (en) Method for forming transparent conducting oxide film by arc ion plating

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees