JP3355610B2 - Method for increasing resistance of tin-doped indium oxide film - Google Patents

Method for increasing resistance of tin-doped indium oxide film

Info

Publication number
JP3355610B2
JP3355610B2 JP31294092A JP31294092A JP3355610B2 JP 3355610 B2 JP3355610 B2 JP 3355610B2 JP 31294092 A JP31294092 A JP 31294092A JP 31294092 A JP31294092 A JP 31294092A JP 3355610 B2 JP3355610 B2 JP 3355610B2
Authority
JP
Japan
Prior art keywords
film
resistance
tin
weight
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31294092A
Other languages
Japanese (ja)
Other versions
JPH06135742A (en
Inventor
潔 河村
一徳 斉藤
康弘 瀬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18035311&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3355610(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP31294092A priority Critical patent/JP3355610B2/en
Publication of JPH06135742A publication Critical patent/JPH06135742A/en
Application granted granted Critical
Publication of JP3355610B2 publication Critical patent/JP3355610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はスズドープ酸化インジウ
ム膜(以下、ITOと略す)の成膜方法に関するもので
あり、特にタッチパネルの透明電極として用いられるI
TO膜の高抵抗で均一性に優れた成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a tin-doped indium oxide film (hereinafter abbreviated as ITO), and more particularly to a method for forming a transparent electrode of a touch panel.
The present invention relates to a method for forming a TO film having high resistance and excellent uniformity.

【従来の技術】[Prior art]

【0002】ITO膜は透明導電膜であり、ガラス基板
上に成膜したITOガラスは、例えば液晶ディスプレ
イ、エレクトロルミネッセンスディスプレイ、面発熱
体、タッチパネルの電極等に広く使用されている。この
様に広い分野で使用されると、使用目的によってITO
膜の抵抗値は種々のものが要求される。すなわち、フラ
ットパネルディスプレイ用のITO膜では低抵抗のもの
が要求されるが、タッチパネル用のITO膜では逆に高
抵抗の膜が要求される。抵抗値をコントロールする方法
の中で最も普通に行われる方法は膜厚を変えることであ
った。
An ITO film is a transparent conductive film, and an ITO glass formed on a glass substrate is widely used for, for example, a liquid crystal display, an electroluminescence display, a surface heating element, an electrode of a touch panel, and the like. When used in such a wide field, ITO can be used depending on the purpose of use.
Various resistance values are required for the film. That is, a low-resistance ITO film for a flat panel display is required, while a high-resistance ITO film for a touch panel is required. The most common method of controlling the resistance value was to change the film thickness.

【0003】[0003]

【発明が解決しようとする課題】前記のように膜厚を変
化させて抵抗値をコントロールすると、当然可視光透過
率が変化する。 シート抵抗=比抵抗/膜厚 高抵抗ITOを得ようとする場合は膜厚を薄くする必要
があるが、通常の製法で成膜すると200〜1000Ω
/□のシート抵抗の膜を得るためには20Å〜100Å
の膜厚にする必要があるが、この場合は膜厚を均一にコ
ントロールするのは難しく、面内の抵抗値の均一性は悪
くなる傾向にある。また、可視光透過率を所定の値にし
ようとすると、膜厚が決定され、その膜厚で所定の抵抗
値の膜とするためには比抵抗をコントロールすることが
必要があった。
When the resistance value is controlled by changing the film thickness as described above, the visible light transmittance naturally changes. Sheet resistance = specific resistance / film thickness In order to obtain high-resistance ITO, it is necessary to reduce the film thickness.
/ □ to obtain a film with a sheet resistance of 20 to 100 °
However, in this case, it is difficult to control the film thickness uniformly, and the uniformity of the in-plane resistance tends to deteriorate. Further, in order to set the visible light transmittance to a predetermined value, the film thickness is determined, and it is necessary to control the specific resistance in order to obtain a film having a predetermined resistance value with the film thickness.

【0004】ITO膜が導電性を発現するメカニズム
は、酸化インジウム結晶中の微量の酸素欠陥と、In−
O結晶格子にSnが置換して生じる電子がキャリアとな
り、それが、電界中で移動することによる。従って、比
抵抗(ρ)はキャリア密度(n)と移動度(μ)によっ
て決定され、次式が成り立つ。 ρ=6.24×1018/(n×μ) ・・・・・(1) ここで、ρ:Ωcm,n:cm-3,μ:cm2 /V・se
c である。
[0004] The mechanism by which the ITO film develops conductivity is that a small amount of oxygen vacancies in the indium oxide crystal and the In-
Electrons generated by substituting Sn for the O crystal lattice serve as carriers, which move in an electric field. Therefore, the specific resistance (ρ) is determined by the carrier density (n) and the mobility (μ), and the following equation holds. ρ = 6.24 × 10 18 / (n × μ) (1) where ρ: Ωcm, n: cm −3 , μ: cm 2 / V · se
c.

【0005】ITO膜の場合、通常300Å以上の膜厚
では100Ω/□以下のシート抵抗の膜となり、キャリ
ア密度として1020〜1021、移動度として20〜5
0、比抵抗は1×10-4〜3×10-4の値をとる。先に
述べたタッチパネル用のITO膜の抵抗値は200〜1
000Ω/□程度のものが要求され、この場合、膜厚を
考慮すると、均一性に優れた膜を得るためには比抵抗値
は5×10-4以上が必要とされるが、この範囲での比抵
抗のコントロールは難しかった。
In the case of an ITO film, a film having a thickness of 300 ° or more usually has a sheet resistance of 100 Ω / □ or less, and has a carrier density of 10 20 to 10 21 and a mobility of 20 to 5 μm.
0, the specific resistance takes a value of 1 × 10 −4 to 3 × 10 −4 . The resistance value of the ITO film for the touch panel described above is 200 to 1
In this case, a specific resistance value of 5 × 10 −4 or more is required to obtain a film having excellent uniformity in consideration of the film thickness. It was difficult to control the specific resistance.

【0006】本発明は、前述の実情からみてなされたも
ので、シート抵抗値が200〜1000Ω/□であっ
て、かつ、均一性に優れたITO膜を成膜する方法を提
供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and has as its object to provide a method for forming an ITO film having a sheet resistance of 200 to 1000 Ω / □ and excellent uniformity. And

【0007】[0007]

【課題を解決するための手段】本発明者らはITO膜を
高比抵抗化する方法について鋭意検討した結果、膜中ス
ズドープ量をインジウムに対し0.05〜2.0重量%
或いは10〜40重量にすること、また、該方法と酸素
を含有雰囲気中で200℃以上の温度で加熱処理を併用
することにより高抵抗な均一性に優れたITO膜が得ら
れることを見出し、本発明を完成するに至った。以下、
本発明を詳細に説明する。
Means for Solving the Problems The present inventors have conducted intensive studies on a method of increasing the specific resistance of an ITO film, and found that the tin doping amount in the film was 0.05 to 2.0% by weight based on indium.
Alternatively, it has been found that an ITO film having high resistance and excellent uniformity can be obtained by using the method and a heat treatment at a temperature of 200 ° C. or more in an oxygen-containing atmosphere in combination with the above method, and The present invention has been completed. Less than,
The present invention will be described in detail.

【0008】比抵抗をコントロールする方法は二通りあ
って、一つは(1)式のキャリア密度をコントロールす
る方法と、もう一つは移動度をコントロールする方法で
ある。キャリア密度をコントロールする方法としては酸
素欠陥量を変化させる方法と、スズドープ量を変化する
方法がある。酸素欠陥量は、雰囲気、温度によって変化
し、次式に示すように可逆的な反応を利用する。 In2O3→In2O3-X +X/2 O2 →In2O3 ・・・・・(2) この反応は、高温で酸素を含む雰囲気においては酸素欠
陥量(X) が減少し、キャリア密度が減少するために高抵
抗化し、逆に高温、還元雰囲気では酸素欠陥量が増加
し、キャリア密度が増加するために低抵抗化する。
There are two methods for controlling the specific resistance. One is a method for controlling the carrier density of the formula (1), and the other is a method for controlling the mobility. Methods for controlling the carrier density include a method of changing the amount of oxygen vacancies and a method of changing the amount of tin doping. The amount of oxygen vacancy changes depending on the atmosphere and temperature, and utilizes a reversible reaction as shown in the following equation. In 2 O 3 → In 2 O 3-X + X / 2 O 2 → In 2 O 3 (2) In this reaction, the amount of oxygen defects (X) decreases in an atmosphere containing oxygen at a high temperature. However, the resistance is increased due to a decrease in the carrier density, and conversely, the amount of oxygen vacancies increases in a high-temperature and reducing atmosphere, and the resistance is decreased due to an increase in the carrier density.

【0009】スズドープ量とキャリア密度の関係は、S
n=0のとき n≒1019 であるが、Snが微量ドー
プされると飛躍的に増加し、Sn=1重量%(In=1
00)のとき n≒2×1020 となり、Sn=3〜1
0重量%のとき最大値n≒1021 を示す。更にドープ
量が増加するとnは単調減少する傾向を示し、Sn=2
0重量%のとき n≒5×1020 となる。
The relationship between the tin doping amount and the carrier density is expressed by S
When n = 0, n ≒ 10 19. However, when Sn is slightly doped, it increases dramatically, and Sn = 1% by weight (In = 1
00), n ≒ 2 × 10 20 , and Sn = 3 to 1
When it is 0% by weight, the maximum value n ≒ 10 21 is shown. As the doping amount further increases, n tends to decrease monotonically, and Sn = 2
When it is 0% by weight, n ≒ 5 × 10 20 .

【0010】移動度(μ)はキャリア(電子又は正孔)
の動き易さに対応しており、主として、ITO結晶性に
依存する量である。すなわち、結晶性が良好であって、
不純物が少なければキャリアの移動度は高い値となる
が、一方結晶性が悪く、結晶欠陥、転位、結晶粒界が多
いとキャリアがトラップされてしまうために低い値とな
る。また、不純物はキャリアの移動を阻害する大きな要
因であり、通常微量のドープで移動度に大きな影響を与
える。
The mobility (μ) is the carrier (electron or hole)
The amount is mainly dependent on ITO crystallinity. That is, the crystallinity is good,
If the amount of impurities is small, the mobility of the carrier is high. On the other hand, the crystallinity is low, and if the number of crystal defects, dislocations, and crystal grain boundaries is large, the carrier is trapped and the value is low. In addition, impurities are a major factor that hinders the movement of carriers, and a small amount of doping usually has a large effect on mobility.

【0011】Snドープ量と移動度の関係は、Sn微量
ドープのとき移動度は40以上の高い値を示すが、2重
量%以上のドープ量では単調に減少し、10重量%以上
では30以下の値となってしまう。
The relationship between the Sn doping amount and the mobility shows that the mobility shows a high value of 40 or more in the case of a small amount of Sn, but monotonically decreases at a doping amount of 2% by weight or more, and 30 or less at 10% by weight or more. Value.

【0012】これらの検討結果より、200〜1000
Ω/□の均一性に優れたITO膜を得る方法として、S
nドープ量をコントロールする方法を見出した。すなわ
ち、均一性を良くするには150Å以上の膜厚が必要で
あり、このとき比抵抗は3×10-4以上の値でコントロ
ールしなければならない。第一の方法として、Snドー
プ量がInに対して0.05〜2.0重量%であるIT
O膜とすること。第二の方法としてSnドープ量がIn
に対し10〜40重量%であるITO膜とすることで高
抵抗の膜となる。
From the results of these studies, 200 to 1000
As a method for obtaining an ITO film excellent in Ω / □ uniformity,
A method for controlling the n-doping amount has been found. That is, to improve uniformity, a film thickness of 150 ° or more is required, and at this time, the specific resistance must be controlled at a value of 3 × 10 −4 or more. As a first method, an IT in which the Sn doping amount is 0.05 to 2.0% by weight based on In.
O film. As a second method, when the Sn doping amount is In
By using an ITO film that is 10 to 40% by weight, a high-resistance film is obtained.

【0013】Snドープ量がInに対して0.05〜
2.0重量%の膜は、キャリア密度が低く移動度が高い
膜であり、Snドープ量を0.05%以内の精度でコン
トロールすることで面内シート抵抗の均一な膜が得られ
る。Snドープ量が0.1〜1.5重量%の範囲では次
の近似式により比抵抗(ρ)を推定することができる。 logρ=−2.83−0.4X ・・・・・(3) 但し、ρ:Ωcm X:Inに対するSnのwt%
When the Sn doping amount is 0.05 to
The 2.0 wt% film has a low carrier density and a high mobility, and a film having a uniform in-plane sheet resistance can be obtained by controlling the Sn doping amount with an accuracy of 0.05% or less. When the Sn doping amount is in the range of 0.1 to 1.5% by weight, the specific resistance (ρ) can be estimated by the following approximate expression. logρ = −2.83−0.4X (3) where ρ: Ωcm X: wt% of Sn with respect to In

【0014】Snドープ量がInに対して10〜40重
量%の膜は、キャリア密度が約5×1020個/cm3であ
り、移動度は30以下の値をとり、比抵抗は5〜8×1
-4Ωcmの値となる。この場合Snドープ量は数%オー
ダーの精度で良く、微量ドープの場合に比べてドープ量
の許容範囲が広く成膜し易い条件である。しかしなが
ら、このSnドープ量で8×10-4Ωcm以上の比抵抗を
得たい場合は、酸素欠陥量のコントロールにより、高比
抵抗化する必要がある。すなわち、成膜したITO膜
を、酸素を含む雰囲気中で200℃以上に加熱すること
で比抵抗をより増加することができる。250℃×30
分の処理で約1.5倍、300℃×30分で約2倍、3
50℃×30分で約2.5倍に増加するので最終的な比
抵抗のコントロールが可能となる。
The film having a Sn doping amount of 10 to 40% by weight with respect to In has a carrier density of about 5 × 10 20 / cm 3 , a mobility of 30 or less, and a specific resistance of 5 to 5. 8x1
The value is 0 -4 Ωcm. In this case, the Sn doping amount may be accurate to the order of several percent, which is a condition in which the allowable range of the doping amount is wider and the film is easily formed as compared with the case of the minute doping. However, if it is desired to obtain a specific resistance of 8 × 10 −4 Ωcm or more with this Sn doping amount, it is necessary to increase the specific resistance by controlling the amount of oxygen defects. That is, the specific resistance can be further increased by heating the formed ITO film to 200 ° C. or more in an atmosphere containing oxygen. 250 ° C x 30
About 1.5 times in the treatment for about 30 minutes, about 2 times in
Since it increases about 2.5 times at 50 ° C. × 30 minutes, it is possible to control the final specific resistance.

【0015】ITO膜を成膜する方法としては、一般に
知られている方法を採用できる。すなわち、スパッター
法、電子ビーム蒸着法、イオンプレーティング法、化学
気相成膜法(CVD法)、パイロゾル法等において、I
TO膜中に前記の量Snがドープされるよう成膜するこ
とで、高抵抗ITO膜が成膜される。得られる膜の透明
性、化学エッチングのし易さなど成膜方法によって条件
は異なるが、一般的にLCD用の低抵抗ITO膜を成膜
する条件でSnのドープ量を変えることで対処すること
が可能である。
As a method for forming the ITO film, a generally known method can be adopted. That is, in a sputtering method, an electron beam evaporation method, an ion plating method, a chemical vapor deposition method (CVD method), a pyrosol method, or the like,
By forming a film so that the above amount Sn is doped in the TO film, a high-resistance ITO film is formed. The conditions vary depending on the film formation method, such as the transparency of the obtained film and the ease of chemical etching. However, in general, this should be dealt with by changing the Sn doping amount under the conditions for forming a low-resistance ITO film for LCD. Is possible.

【0016】すなわち、スパッター法では、ターゲット
のSn組成を変え、電子ビーム蒸着法、イオンプレーテ
ィング法ではペレットのSn組成を変え、CVD法、パ
イロゾル法では原料中のSn組成を変えれば良い。その
結果いずれの方法を用いて成膜しても、高抵抗の所定の
値にコントロールされたITO膜が得られる。
That is, in the sputtering method, the Sn composition of the target may be changed, in the electron beam evaporation method and the ion plating method, the Sn composition of the pellet may be changed, and in the CVD method and the pyrosol method, the Sn composition in the raw material may be changed. As a result, regardless of which method is used, an ITO film having a high resistance and controlled to a predetermined value can be obtained.

【0017】また、Snドープ量が10〜40重量%の
ITO膜で8×10-4Ωcm以上の比抵抗を得たい場合
は、スパッター法、電子ビーム蒸着法、イオンプレーテ
ィング法の場合は、成膜終了と共に、真空の成膜室に酸
素を含むガスを導入し、所定時間200℃以上の温度で
処理することにより、均一性の良好な高抵抗ITO膜を
得ることができる。CVD法、パイロゾル法の場合は成
膜終了後、酸素含有ガスを成膜室に導入し、所定時間2
00℃以上の温度で処理することにより、均一性の良好
な200〜1000Ω/□のITO膜を得ることができ
る。なお、Snドープ量が0.05〜2.0重量%の場
合も同様にして処理することもできる。
When it is desired to obtain a specific resistance of 8 × 10 −4 Ωcm or more with an ITO film having a Sn doping amount of 10 to 40% by weight, a sputtering method, an electron beam evaporation method, and an ion plating method are used. At the end of the film formation, a gas containing oxygen is introduced into a vacuum film formation chamber, and the treatment is performed at a temperature of 200 ° C. or higher for a predetermined time, whereby a high-resistance ITO film with good uniformity can be obtained. In the case of the CVD method and the pyrosol method, after the film formation is completed, an oxygen-containing gas is introduced into the film formation chamber for a predetermined period of time.
By treating at a temperature of 00 ° C. or higher, an ITO film of 200 to 1000 Ω / □ with good uniformity can be obtained. In addition, when the Sn doping amount is 0.05 to 2.0% by weight, the same treatment can be performed.

【0018】通常の方法で得られるITO膜の比抵抗は
3×10-4Ωcm以下であり、200〜1000Ω/□の
抵抗の膜を得るためには、極端に膜厚を薄くしなければ
ならず、このため均一性の悪い膜しか得られなかった。
本発明はSnドープ量を0.05〜2.0重量%又は1
0〜40重量%にする方法であり、簡単に均一性の良好
な高抵抗の膜を得ることができる。
The specific resistance of the ITO film obtained by an ordinary method is 3 × 10 −4 Ωcm or less, and in order to obtain a film having a resistance of 200 to 1000 Ω / □, the film thickness must be extremely thin. Therefore, only a film having poor uniformity was obtained.
In the present invention, the Sn doping amount is set to 0.05 to 2.0% by weight or 1%.
This is a method in which the content is 0 to 40% by weight, and a high-resistance film with good uniformity can be easily obtained.

【0019】[0019]

【実施例】以下、実施例により本発明を更に具体的に説
明する。ただし、本発明はこれらに何ら限定されるもの
ではない。 実施例1 平均粒径0.2μm のIn23 粉末と平均粒径0.6
μm のSnO2 粉末とをInに対して0.4重量%にな
るよう配合し、ボールミル中で5時間粉砕した後、この
混合粉末を800℃、400Kg/cm2の条件でホットプレ
スして焼結体を得た。これをターゲットとして用い、ス
パッター成膜を行った。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these. Example 1 In 2 O 3 powder having an average particle size of 0.2 μm and an average particle size of 0.6
μm of SnO 2 powder was mixed at 0.4% by weight with respect to In, and the mixture was pulverized for 5 hours in a ball mill. Then, the mixed powder was sintered by hot pressing at 800 ° C. and 400 kg / cm 2. I got a body. Using this as a target, sputter deposition was performed.

【0020】スパッター条件は、RFスパッター装置を
用い、ガラス基板上に成膜した。ガラス基板は厚さ1m
mで10cm角のソーダライムガラス上に800ÅのS
iO2 膜がコートされたものを用いた。RF出力200
W,ガス組成はAr:O2 =98:2、基板温度=30
0℃、成膜時間4分で行った。
The sputtering conditions were such that a film was formed on a glass substrate using an RF sputtering apparatus. Glass substrate is 1m thick
800cm S on 10cm square soda lime glass
One coated with an iO 2 film was used. RF output 200
W, gas composition: Ar: O 2 = 98: 2, substrate temperature = 30
The film formation was performed at 0 ° C. for 4 minutes.

【0021】得られたITO膜は、膜中のSnをICP
発光分光法で分析したところ0.3重量%であり、膜厚
250Å、シート抵抗450Ω/□、比抵抗1.1×1
-3Ωcmであった。また、シート抵抗の均一性は±25
Ω/□以内であり良好な膜であった。
In the obtained ITO film, Sn contained in the film was replaced by ICP.
When analyzed by emission spectroscopy, it was 0.3% by weight, the film thickness was 250 °, the sheet resistance was 450Ω / □, and the specific resistance was 1.1 × 1.
0 -3 Ωcm. The sheet resistance uniformity is ± 25.
It was within Ω / □ and was a good film.

【0022】実施例2 実施例1において、SnO2 粉末の量を30重量%にし
て焼結体を作製した。これをターゲットとして実施例1
と同じ条件でスパッター成膜を行った。得られたITO
膜は、膜中のSnをICP発光分光法で分析したところ
24.6重量%であり膜厚220Å、シート抵抗350
Ω/□、比抵抗7.7×10-4Ωcmであった。また、シ
ート抵抗の均一性は±20Ω/□以内であり良好な膜で
あった。
Example 2 A sintered body was prepared in the same manner as in Example 1, except that the amount of SnO 2 powder was 30% by weight. Example 1 targeting this
Sputter deposition was performed under the same conditions as described above. The obtained ITO
When the Sn in the film was analyzed by ICP emission spectroscopy, it was found to be 24.6% by weight.
Ω / □, specific resistance 7.7 × 10 −4 Ωcm. Further, the uniformity of the sheet resistance was within ± 20 Ω / □, and the film was excellent.

【0023】実施例3 超音波霧化による常圧CVD法(パイロゾル成膜法)に
よりITO膜を成膜するに際し、インジウム原料として
InCl3 のメチルアルコール溶液を使用した。 濃度
は0.15mol/lで、ドープ用錫原料としてSnC
4 のメチルアルコール溶液(濃度は0.2mol/
l)を用いInに対して0.65重量%Snを添加した
溶液を調製した。基板には厚さ1mmで10cm角のソ
ーダライムガラス上に1000ÅのSiO2 膜がコート
されたものを用いた。パイロゾル成膜装置に基板をセッ
トし500℃に加熱し、超音波により2ml/min霧
化させ基板に導入し、2分間成膜した。
Example 3 In forming an ITO film by atmospheric pressure CVD (pyrosol film forming method) by ultrasonic atomization, a methyl alcohol solution of InCl 3 was used as an indium raw material. The concentration is 0.15 mol / l, and SnC
methyl alcohol solution of l 4 (concentration 0.2 mol /
Using 1), a solution in which 0.65% by weight of Sn was added to In was prepared. The substrate used was a soda lime glass plate having a thickness of 1 mm and 10 cm square coated with a 1000 ° SiO 2 film. The substrate was set in a pyrosol film forming apparatus, heated to 500 ° C., atomized by ultrasonic at 2 ml / min, introduced into the substrate, and formed into a film for 2 minutes.

【0024】得られたITO膜は、膜中のSnをICP
発光分光法で分析したところ0.5重量%であり、膜厚
200Å、シート抵抗400Ω/□、比抵抗8.0×1
-4Ωcmであった。また、シート抵抗の均一性は±20
Ω/□以内であり良好な膜であった。
In the obtained ITO film, Sn in the film was converted to ICP.
When analyzed by emission spectroscopy, it was 0.5% by weight, the film thickness was 200 °, the sheet resistance was 400Ω / □, and the specific resistance was 8.0 × 1.
0 -4 Ωcm. The sheet resistance uniformity is ± 20.
It was within Ω / □ and was a good film.

【0025】実施例4 実施例3においてSnを25重量%添加した溶液を調製
し、実施例3と同様の条件で成膜を行った。得られたI
TO膜は、膜中のSnが19.6重量%であり膜厚24
0Å、シート抵抗270Ω/□、比抵抗6.5×10-4
Ωcmであった。この膜を空気雰囲気中で電気炉にて30
0℃30分加熱処理を行ったところ、シート抵抗490
Ω/□、比抵抗1.2×10-3Ωcmに増加した。また、
シート抵抗の均一性は±30Ω/□以内であった。
Example 4 A solution prepared by adding Sn at 25% by weight in Example 3 was prepared, and a film was formed under the same conditions as in Example 3. I obtained
The TO film had a Sn content of 19.6% by weight and a film thickness of 24.
0 °, sheet resistance 270Ω / □, specific resistance 6.5 × 10 -4
Ωcm. This film is placed in an electric furnace in an air atmosphere for 30 minutes.
When heat treatment was performed at 0 ° C. for 30 minutes, the sheet resistance was 490.
Ω / □, and the specific resistance increased to 1.2 × 10 −3 Ωcm. Also,
The sheet resistance uniformity was within ± 30Ω / □.

【0026】[0026]

【発明の効果】本発明によれば、膜中のSnドープ量を
コントロールすることで比較的容易に均一性の良好な2
00Ω〜1000Ω/□のシート抵抗のITO膜を得る
ことができる。また、該方法と酸素含有雰囲気中で20
0℃以上の温度で加熱処理することで、より高抵抗の膜
を得ることができるので、その実用的価値は極めて大で
ある。
According to the present invention, by controlling the amount of Sn doping in the film, it is possible to relatively easily achieve uniformity.
An ITO film having a sheet resistance of 00Ω to 1000Ω / □ can be obtained. In addition, the method and an oxygen-containing atmosphere may be used.
By performing a heat treatment at a temperature of 0 ° C. or higher, a film having a higher resistance can be obtained, and therefore, its practical value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−51913(JP,A) 特開 昭61−256944(JP,A) 特開 平1−115010(JP,A) 特開 昭63−310970(JP,A) 特開 昭57−96402(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03C 17/00 - 17/42 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-48-51913 (JP, A) JP-A-61-256944 (JP, A) JP-A-1-115010 (JP, A) JP-A-63-1988 310970 (JP, A) JP-A-57-96402 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03C 17/00-17/42

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】膜中のスズ含有量がインジウムに対して
0.05〜2.0重量%で成膜することを特徴とするス
ズドープ酸化インジウム膜の成膜方法。
1. A method of forming a tin-doped indium oxide film, wherein the film is formed with a tin content of 0.05 to 2.0% by weight based on indium.
【請求項2】請求項1記載のスズドープ酸化インジウム
膜の成膜後、酸素を含む雰囲気中で200℃以上の温度
で加熱処理することを特徴とするスズドープ酸化インジ
ウム膜の成膜方法。
2. A method for forming a tin-doped indium oxide film according to claim 1, wherein the heat treatment is performed at a temperature of 200 ° C. or more in an atmosphere containing oxygen after forming the tin-doped indium oxide film.
JP31294092A 1992-10-28 1992-10-28 Method for increasing resistance of tin-doped indium oxide film Expired - Lifetime JP3355610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31294092A JP3355610B2 (en) 1992-10-28 1992-10-28 Method for increasing resistance of tin-doped indium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31294092A JP3355610B2 (en) 1992-10-28 1992-10-28 Method for increasing resistance of tin-doped indium oxide film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002217192A Division JP4255655B2 (en) 2002-07-25 2002-07-25 Method for forming high resistance tin-doped indium oxide film

Publications (2)

Publication Number Publication Date
JPH06135742A JPH06135742A (en) 1994-05-17
JP3355610B2 true JP3355610B2 (en) 2002-12-09

Family

ID=18035311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31294092A Expired - Lifetime JP3355610B2 (en) 1992-10-28 1992-10-28 Method for increasing resistance of tin-doped indium oxide film

Country Status (1)

Country Link
JP (1) JP3355610B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329044B1 (en) 1998-06-25 2001-12-11 Asahi Glass Company Ltd. Transparent conductive film and method of making the film
JP2002042582A (en) * 2000-07-25 2002-02-08 Nippon Sheet Glass Co Ltd Manufacturing method of substrate with transparent conductive film, and the substrate manufactured by the method, and touch panel using the substrate
JP4909492B2 (en) * 2003-04-11 2012-04-04 日本曹達株式会社 Transparent conductive laminate
JP4861707B2 (en) * 2006-01-20 2012-01-25 日東電工株式会社 Transparent conductive laminate

Also Published As

Publication number Publication date
JPH06135742A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
Enoki et al. The Electrical and Optical Properties of the ZnO‐SnO2 Thin Films Prepared by RF Magnetron Sputtering
US6042752A (en) Transparent conductive film, sputtering target and transparent conductive film-bonded substrate
US5045235A (en) Transparent conductive film
JPH07182924A (en) Transparent conductor containing gallium-indium oxide
Chen et al. Fabrication of transparent conducting ATO films using the ATO sintered targets by pulsed laser deposition
JP3366046B2 (en) Amorphous transparent conductive film
JP3163015B2 (en) Transparent conductive film
JP4358251B2 (en) Method for forming high resistance tin-doped indium oxide film
JP3355610B2 (en) Method for increasing resistance of tin-doped indium oxide film
JPH0344465A (en) Production of sputtering target for electrically conductive transparent ito film
JP2001035273A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for the transparent conductive film
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JP2017193755A (en) Method of manufacturing transparent conductive film, and transparent conductive film
JP4255655B2 (en) Method for forming high resistance tin-doped indium oxide film
JPH07224374A (en) Method for making tin doped indium oxide film high resistant
JPH07223814A (en) Indium oxide film having enhanced resistance
JPH06293957A (en) Indium oxide film enhanced in resistance
JPH11302017A (en) Transparent electrically conductive film
JPH054768B2 (en)
JP2002133956A (en) Adjusting method for sheet resistance value of transparent conductive film and forming method for transparent conductive film
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
JPH04341707A (en) Transparent conductive film
JPH0344464A (en) Sputtering target for electrically conductive transparent ito film
JP2002012964A (en) Transparent electroconductive film, its manufacturing method, and sputtering target
JPS6215961B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10